1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 2001, 2002 Sistina Software (UK) Limited. 4 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved. 5 * 6 * This file is released under the GPL. 7 */ 8 9 #include "dm-core.h" 10 #include "dm-rq.h" 11 #include "dm-uevent.h" 12 #include "dm-ima.h" 13 14 #include <linux/bio-integrity.h> 15 #include <linux/init.h> 16 #include <linux/module.h> 17 #include <linux/mutex.h> 18 #include <linux/sched/mm.h> 19 #include <linux/sched/signal.h> 20 #include <linux/blkpg.h> 21 #include <linux/bio.h> 22 #include <linux/mempool.h> 23 #include <linux/dax.h> 24 #include <linux/slab.h> 25 #include <linux/idr.h> 26 #include <linux/uio.h> 27 #include <linux/hdreg.h> 28 #include <linux/delay.h> 29 #include <linux/wait.h> 30 #include <linux/pr.h> 31 #include <linux/refcount.h> 32 #include <linux/part_stat.h> 33 #include <linux/blk-crypto.h> 34 #include <linux/blk-crypto-profile.h> 35 36 #define DM_MSG_PREFIX "core" 37 38 /* 39 * Cookies are numeric values sent with CHANGE and REMOVE 40 * uevents while resuming, removing or renaming the device. 41 */ 42 #define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE" 43 #define DM_COOKIE_LENGTH 24 44 45 /* 46 * For REQ_POLLED fs bio, this flag is set if we link mapped underlying 47 * dm_io into one list, and reuse bio->bi_private as the list head. Before 48 * ending this fs bio, we will recover its ->bi_private. 49 */ 50 #define REQ_DM_POLL_LIST REQ_DRV 51 52 static const char *_name = DM_NAME; 53 54 static unsigned int major; 55 static unsigned int _major; 56 57 static DEFINE_IDR(_minor_idr); 58 59 static DEFINE_SPINLOCK(_minor_lock); 60 61 static void do_deferred_remove(struct work_struct *w); 62 63 static DECLARE_WORK(deferred_remove_work, do_deferred_remove); 64 65 static struct workqueue_struct *deferred_remove_workqueue; 66 67 atomic_t dm_global_event_nr = ATOMIC_INIT(0); 68 DECLARE_WAIT_QUEUE_HEAD(dm_global_eventq); 69 70 void dm_issue_global_event(void) 71 { 72 atomic_inc(&dm_global_event_nr); 73 wake_up(&dm_global_eventq); 74 } 75 76 DEFINE_STATIC_KEY_FALSE(stats_enabled); 77 DEFINE_STATIC_KEY_FALSE(swap_bios_enabled); 78 DEFINE_STATIC_KEY_FALSE(zoned_enabled); 79 80 /* 81 * One of these is allocated (on-stack) per original bio. 82 */ 83 struct clone_info { 84 struct dm_table *map; 85 struct bio *bio; 86 struct dm_io *io; 87 sector_t sector; 88 unsigned int sector_count; 89 bool is_abnormal_io:1; 90 bool submit_as_polled:1; 91 }; 92 93 static inline struct dm_target_io *clone_to_tio(struct bio *clone) 94 { 95 return container_of(clone, struct dm_target_io, clone); 96 } 97 98 void *dm_per_bio_data(struct bio *bio, size_t data_size) 99 { 100 if (!dm_tio_flagged(clone_to_tio(bio), DM_TIO_INSIDE_DM_IO)) 101 return (char *)bio - DM_TARGET_IO_BIO_OFFSET - data_size; 102 return (char *)bio - DM_IO_BIO_OFFSET - data_size; 103 } 104 EXPORT_SYMBOL_GPL(dm_per_bio_data); 105 106 struct bio *dm_bio_from_per_bio_data(void *data, size_t data_size) 107 { 108 struct dm_io *io = (struct dm_io *)((char *)data + data_size); 109 110 if (io->magic == DM_IO_MAGIC) 111 return (struct bio *)((char *)io + DM_IO_BIO_OFFSET); 112 BUG_ON(io->magic != DM_TIO_MAGIC); 113 return (struct bio *)((char *)io + DM_TARGET_IO_BIO_OFFSET); 114 } 115 EXPORT_SYMBOL_GPL(dm_bio_from_per_bio_data); 116 117 unsigned int dm_bio_get_target_bio_nr(const struct bio *bio) 118 { 119 return container_of(bio, struct dm_target_io, clone)->target_bio_nr; 120 } 121 EXPORT_SYMBOL_GPL(dm_bio_get_target_bio_nr); 122 123 #define MINOR_ALLOCED ((void *)-1) 124 125 #define DM_NUMA_NODE NUMA_NO_NODE 126 static int dm_numa_node = DM_NUMA_NODE; 127 128 #define DEFAULT_SWAP_BIOS (8 * 1048576 / PAGE_SIZE) 129 static int swap_bios = DEFAULT_SWAP_BIOS; 130 static int get_swap_bios(void) 131 { 132 int latch = READ_ONCE(swap_bios); 133 134 if (unlikely(latch <= 0)) 135 latch = DEFAULT_SWAP_BIOS; 136 return latch; 137 } 138 139 struct table_device { 140 struct list_head list; 141 refcount_t count; 142 struct dm_dev dm_dev; 143 }; 144 145 /* 146 * Bio-based DM's mempools' reserved IOs set by the user. 147 */ 148 #define RESERVED_BIO_BASED_IOS 16 149 static unsigned int reserved_bio_based_ios = RESERVED_BIO_BASED_IOS; 150 151 static int __dm_get_module_param_int(int *module_param, int min, int max) 152 { 153 int param = READ_ONCE(*module_param); 154 int modified_param = 0; 155 bool modified = true; 156 157 if (param < min) 158 modified_param = min; 159 else if (param > max) 160 modified_param = max; 161 else 162 modified = false; 163 164 if (modified) { 165 (void)cmpxchg(module_param, param, modified_param); 166 param = modified_param; 167 } 168 169 return param; 170 } 171 172 unsigned int __dm_get_module_param(unsigned int *module_param, unsigned int def, unsigned int max) 173 { 174 unsigned int param = READ_ONCE(*module_param); 175 unsigned int modified_param = 0; 176 177 if (!param) 178 modified_param = def; 179 else if (param > max) 180 modified_param = max; 181 182 if (modified_param) { 183 (void)cmpxchg(module_param, param, modified_param); 184 param = modified_param; 185 } 186 187 return param; 188 } 189 190 unsigned int dm_get_reserved_bio_based_ios(void) 191 { 192 return __dm_get_module_param(&reserved_bio_based_ios, 193 RESERVED_BIO_BASED_IOS, DM_RESERVED_MAX_IOS); 194 } 195 EXPORT_SYMBOL_GPL(dm_get_reserved_bio_based_ios); 196 197 static unsigned int dm_get_numa_node(void) 198 { 199 return __dm_get_module_param_int(&dm_numa_node, 200 DM_NUMA_NODE, num_online_nodes() - 1); 201 } 202 203 static int __init local_init(void) 204 { 205 int r; 206 207 r = dm_uevent_init(); 208 if (r) 209 return r; 210 211 deferred_remove_workqueue = alloc_ordered_workqueue("kdmremove", 0); 212 if (!deferred_remove_workqueue) { 213 r = -ENOMEM; 214 goto out_uevent_exit; 215 } 216 217 _major = major; 218 r = register_blkdev(_major, _name); 219 if (r < 0) 220 goto out_free_workqueue; 221 222 if (!_major) 223 _major = r; 224 225 return 0; 226 227 out_free_workqueue: 228 destroy_workqueue(deferred_remove_workqueue); 229 out_uevent_exit: 230 dm_uevent_exit(); 231 232 return r; 233 } 234 235 static void local_exit(void) 236 { 237 destroy_workqueue(deferred_remove_workqueue); 238 239 unregister_blkdev(_major, _name); 240 dm_uevent_exit(); 241 242 _major = 0; 243 244 DMINFO("cleaned up"); 245 } 246 247 static int (*_inits[])(void) __initdata = { 248 local_init, 249 dm_target_init, 250 dm_linear_init, 251 dm_stripe_init, 252 dm_io_init, 253 dm_kcopyd_init, 254 dm_interface_init, 255 dm_statistics_init, 256 }; 257 258 static void (*_exits[])(void) = { 259 local_exit, 260 dm_target_exit, 261 dm_linear_exit, 262 dm_stripe_exit, 263 dm_io_exit, 264 dm_kcopyd_exit, 265 dm_interface_exit, 266 dm_statistics_exit, 267 }; 268 269 static int __init dm_init(void) 270 { 271 const int count = ARRAY_SIZE(_inits); 272 int r, i; 273 274 #if (IS_ENABLED(CONFIG_IMA) && !IS_ENABLED(CONFIG_IMA_DISABLE_HTABLE)) 275 DMWARN("CONFIG_IMA_DISABLE_HTABLE is disabled." 276 " Duplicate IMA measurements will not be recorded in the IMA log."); 277 #endif 278 279 for (i = 0; i < count; i++) { 280 r = _inits[i](); 281 if (r) 282 goto bad; 283 } 284 285 return 0; 286 bad: 287 while (i--) 288 _exits[i](); 289 290 return r; 291 } 292 293 static void __exit dm_exit(void) 294 { 295 int i = ARRAY_SIZE(_exits); 296 297 while (i--) 298 _exits[i](); 299 300 /* 301 * Should be empty by this point. 302 */ 303 idr_destroy(&_minor_idr); 304 } 305 306 /* 307 * Block device functions 308 */ 309 int dm_deleting_md(struct mapped_device *md) 310 { 311 return test_bit(DMF_DELETING, &md->flags); 312 } 313 314 static int dm_blk_open(struct gendisk *disk, blk_mode_t mode) 315 { 316 struct mapped_device *md; 317 318 spin_lock(&_minor_lock); 319 320 md = disk->private_data; 321 if (!md) 322 goto out; 323 324 if (test_bit(DMF_FREEING, &md->flags) || 325 dm_deleting_md(md)) { 326 md = NULL; 327 goto out; 328 } 329 330 dm_get(md); 331 atomic_inc(&md->open_count); 332 out: 333 spin_unlock(&_minor_lock); 334 335 return md ? 0 : -ENXIO; 336 } 337 338 static void dm_blk_close(struct gendisk *disk) 339 { 340 struct mapped_device *md; 341 342 spin_lock(&_minor_lock); 343 344 md = disk->private_data; 345 if (WARN_ON(!md)) 346 goto out; 347 348 if (atomic_dec_and_test(&md->open_count) && 349 (test_bit(DMF_DEFERRED_REMOVE, &md->flags))) 350 queue_work(deferred_remove_workqueue, &deferred_remove_work); 351 352 dm_put(md); 353 out: 354 spin_unlock(&_minor_lock); 355 } 356 357 int dm_open_count(struct mapped_device *md) 358 { 359 return atomic_read(&md->open_count); 360 } 361 362 /* 363 * Guarantees nothing is using the device before it's deleted. 364 */ 365 int dm_lock_for_deletion(struct mapped_device *md, bool mark_deferred, bool only_deferred) 366 { 367 int r = 0; 368 369 spin_lock(&_minor_lock); 370 371 if (dm_open_count(md)) { 372 r = -EBUSY; 373 if (mark_deferred) 374 set_bit(DMF_DEFERRED_REMOVE, &md->flags); 375 } else if (only_deferred && !test_bit(DMF_DEFERRED_REMOVE, &md->flags)) 376 r = -EEXIST; 377 else 378 set_bit(DMF_DELETING, &md->flags); 379 380 spin_unlock(&_minor_lock); 381 382 return r; 383 } 384 385 int dm_cancel_deferred_remove(struct mapped_device *md) 386 { 387 int r = 0; 388 389 spin_lock(&_minor_lock); 390 391 if (test_bit(DMF_DELETING, &md->flags)) 392 r = -EBUSY; 393 else 394 clear_bit(DMF_DEFERRED_REMOVE, &md->flags); 395 396 spin_unlock(&_minor_lock); 397 398 return r; 399 } 400 401 static void do_deferred_remove(struct work_struct *w) 402 { 403 dm_deferred_remove(); 404 } 405 406 static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo) 407 { 408 struct mapped_device *md = bdev->bd_disk->private_data; 409 410 return dm_get_geometry(md, geo); 411 } 412 413 static int dm_prepare_ioctl(struct mapped_device *md, int *srcu_idx, 414 struct block_device **bdev) 415 { 416 struct dm_target *ti; 417 struct dm_table *map; 418 int r; 419 420 retry: 421 r = -ENOTTY; 422 map = dm_get_live_table(md, srcu_idx); 423 if (!map || !dm_table_get_size(map)) 424 return r; 425 426 /* We only support devices that have a single target */ 427 if (map->num_targets != 1) 428 return r; 429 430 ti = dm_table_get_target(map, 0); 431 if (!ti->type->prepare_ioctl) 432 return r; 433 434 if (dm_suspended_md(md)) 435 return -EAGAIN; 436 437 r = ti->type->prepare_ioctl(ti, bdev); 438 if (r == -ENOTCONN && !fatal_signal_pending(current)) { 439 dm_put_live_table(md, *srcu_idx); 440 fsleep(10000); 441 goto retry; 442 } 443 444 return r; 445 } 446 447 static void dm_unprepare_ioctl(struct mapped_device *md, int srcu_idx) 448 { 449 dm_put_live_table(md, srcu_idx); 450 } 451 452 static int dm_blk_ioctl(struct block_device *bdev, blk_mode_t mode, 453 unsigned int cmd, unsigned long arg) 454 { 455 struct mapped_device *md = bdev->bd_disk->private_data; 456 int r, srcu_idx; 457 458 r = dm_prepare_ioctl(md, &srcu_idx, &bdev); 459 if (r < 0) 460 goto out; 461 462 if (r > 0) { 463 /* 464 * Target determined this ioctl is being issued against a 465 * subset of the parent bdev; require extra privileges. 466 */ 467 if (!capable(CAP_SYS_RAWIO)) { 468 DMDEBUG_LIMIT( 469 "%s: sending ioctl %x to DM device without required privilege.", 470 current->comm, cmd); 471 r = -ENOIOCTLCMD; 472 goto out; 473 } 474 } 475 476 if (!bdev->bd_disk->fops->ioctl) 477 r = -ENOTTY; 478 else 479 r = bdev->bd_disk->fops->ioctl(bdev, mode, cmd, arg); 480 out: 481 dm_unprepare_ioctl(md, srcu_idx); 482 return r; 483 } 484 485 u64 dm_start_time_ns_from_clone(struct bio *bio) 486 { 487 return jiffies_to_nsecs(clone_to_tio(bio)->io->start_time); 488 } 489 EXPORT_SYMBOL_GPL(dm_start_time_ns_from_clone); 490 491 static inline bool bio_is_flush_with_data(struct bio *bio) 492 { 493 return ((bio->bi_opf & REQ_PREFLUSH) && bio->bi_iter.bi_size); 494 } 495 496 static inline unsigned int dm_io_sectors(struct dm_io *io, struct bio *bio) 497 { 498 /* 499 * If REQ_PREFLUSH set, don't account payload, it will be 500 * submitted (and accounted) after this flush completes. 501 */ 502 if (bio_is_flush_with_data(bio)) 503 return 0; 504 if (unlikely(dm_io_flagged(io, DM_IO_WAS_SPLIT))) 505 return io->sectors; 506 return bio_sectors(bio); 507 } 508 509 static void dm_io_acct(struct dm_io *io, bool end) 510 { 511 struct bio *bio = io->orig_bio; 512 513 if (dm_io_flagged(io, DM_IO_BLK_STAT)) { 514 if (!end) 515 bdev_start_io_acct(bio->bi_bdev, bio_op(bio), 516 io->start_time); 517 else 518 bdev_end_io_acct(bio->bi_bdev, bio_op(bio), 519 dm_io_sectors(io, bio), 520 io->start_time); 521 } 522 523 if (static_branch_unlikely(&stats_enabled) && 524 unlikely(dm_stats_used(&io->md->stats))) { 525 sector_t sector; 526 527 if (unlikely(dm_io_flagged(io, DM_IO_WAS_SPLIT))) 528 sector = bio_end_sector(bio) - io->sector_offset; 529 else 530 sector = bio->bi_iter.bi_sector; 531 532 dm_stats_account_io(&io->md->stats, bio_data_dir(bio), 533 sector, dm_io_sectors(io, bio), 534 end, io->start_time, &io->stats_aux); 535 } 536 } 537 538 static void __dm_start_io_acct(struct dm_io *io) 539 { 540 dm_io_acct(io, false); 541 } 542 543 static void dm_start_io_acct(struct dm_io *io, struct bio *clone) 544 { 545 /* 546 * Ensure IO accounting is only ever started once. 547 */ 548 if (dm_io_flagged(io, DM_IO_ACCOUNTED)) 549 return; 550 551 /* Expect no possibility for race unless DM_TIO_IS_DUPLICATE_BIO. */ 552 if (!clone || likely(dm_tio_is_normal(clone_to_tio(clone)))) { 553 dm_io_set_flag(io, DM_IO_ACCOUNTED); 554 } else { 555 unsigned long flags; 556 /* Can afford locking given DM_TIO_IS_DUPLICATE_BIO */ 557 spin_lock_irqsave(&io->lock, flags); 558 if (dm_io_flagged(io, DM_IO_ACCOUNTED)) { 559 spin_unlock_irqrestore(&io->lock, flags); 560 return; 561 } 562 dm_io_set_flag(io, DM_IO_ACCOUNTED); 563 spin_unlock_irqrestore(&io->lock, flags); 564 } 565 566 __dm_start_io_acct(io); 567 } 568 569 static void dm_end_io_acct(struct dm_io *io) 570 { 571 dm_io_acct(io, true); 572 } 573 574 static struct dm_io *alloc_io(struct mapped_device *md, struct bio *bio, gfp_t gfp_mask) 575 { 576 struct dm_io *io; 577 struct dm_target_io *tio; 578 struct bio *clone; 579 580 clone = bio_alloc_clone(NULL, bio, gfp_mask, &md->mempools->io_bs); 581 if (unlikely(!clone)) 582 return NULL; 583 tio = clone_to_tio(clone); 584 tio->flags = 0; 585 dm_tio_set_flag(tio, DM_TIO_INSIDE_DM_IO); 586 tio->io = NULL; 587 588 io = container_of(tio, struct dm_io, tio); 589 io->magic = DM_IO_MAGIC; 590 io->status = BLK_STS_OK; 591 592 /* one ref is for submission, the other is for completion */ 593 atomic_set(&io->io_count, 2); 594 this_cpu_inc(*md->pending_io); 595 io->orig_bio = bio; 596 io->md = md; 597 spin_lock_init(&io->lock); 598 io->start_time = jiffies; 599 io->flags = 0; 600 if (blk_queue_io_stat(md->queue)) 601 dm_io_set_flag(io, DM_IO_BLK_STAT); 602 603 if (static_branch_unlikely(&stats_enabled) && 604 unlikely(dm_stats_used(&md->stats))) 605 dm_stats_record_start(&md->stats, &io->stats_aux); 606 607 return io; 608 } 609 610 static void free_io(struct dm_io *io) 611 { 612 bio_put(&io->tio.clone); 613 } 614 615 static struct bio *alloc_tio(struct clone_info *ci, struct dm_target *ti, 616 unsigned int target_bio_nr, unsigned int *len, gfp_t gfp_mask) 617 { 618 struct mapped_device *md = ci->io->md; 619 struct dm_target_io *tio; 620 struct bio *clone; 621 622 if (!ci->io->tio.io) { 623 /* the dm_target_io embedded in ci->io is available */ 624 tio = &ci->io->tio; 625 /* alloc_io() already initialized embedded clone */ 626 clone = &tio->clone; 627 } else { 628 clone = bio_alloc_clone(NULL, ci->bio, gfp_mask, 629 &md->mempools->bs); 630 if (!clone) 631 return NULL; 632 633 /* REQ_DM_POLL_LIST shouldn't be inherited */ 634 clone->bi_opf &= ~REQ_DM_POLL_LIST; 635 636 tio = clone_to_tio(clone); 637 tio->flags = 0; /* also clears DM_TIO_INSIDE_DM_IO */ 638 } 639 640 tio->magic = DM_TIO_MAGIC; 641 tio->io = ci->io; 642 tio->ti = ti; 643 tio->target_bio_nr = target_bio_nr; 644 tio->len_ptr = len; 645 tio->old_sector = 0; 646 647 /* Set default bdev, but target must bio_set_dev() before issuing IO */ 648 clone->bi_bdev = md->disk->part0; 649 if (likely(ti != NULL) && unlikely(ti->needs_bio_set_dev)) 650 bio_set_dev(clone, md->disk->part0); 651 652 if (len) { 653 clone->bi_iter.bi_size = to_bytes(*len); 654 if (bio_integrity(clone)) 655 bio_integrity_trim(clone); 656 } 657 658 return clone; 659 } 660 661 static void free_tio(struct bio *clone) 662 { 663 if (dm_tio_flagged(clone_to_tio(clone), DM_TIO_INSIDE_DM_IO)) 664 return; 665 bio_put(clone); 666 } 667 668 /* 669 * Add the bio to the list of deferred io. 670 */ 671 static void queue_io(struct mapped_device *md, struct bio *bio) 672 { 673 unsigned long flags; 674 675 spin_lock_irqsave(&md->deferred_lock, flags); 676 bio_list_add(&md->deferred, bio); 677 spin_unlock_irqrestore(&md->deferred_lock, flags); 678 queue_work(md->wq, &md->work); 679 } 680 681 /* 682 * Everyone (including functions in this file), should use this 683 * function to access the md->map field, and make sure they call 684 * dm_put_live_table() when finished. 685 */ 686 struct dm_table *dm_get_live_table(struct mapped_device *md, 687 int *srcu_idx) __acquires(md->io_barrier) 688 { 689 *srcu_idx = srcu_read_lock(&md->io_barrier); 690 691 return srcu_dereference(md->map, &md->io_barrier); 692 } 693 694 void dm_put_live_table(struct mapped_device *md, 695 int srcu_idx) __releases(md->io_barrier) 696 { 697 srcu_read_unlock(&md->io_barrier, srcu_idx); 698 } 699 700 void dm_sync_table(struct mapped_device *md) 701 { 702 synchronize_srcu(&md->io_barrier); 703 synchronize_rcu_expedited(); 704 } 705 706 /* 707 * A fast alternative to dm_get_live_table/dm_put_live_table. 708 * The caller must not block between these two functions. 709 */ 710 static struct dm_table *dm_get_live_table_fast(struct mapped_device *md) __acquires(RCU) 711 { 712 rcu_read_lock(); 713 return rcu_dereference(md->map); 714 } 715 716 static void dm_put_live_table_fast(struct mapped_device *md) __releases(RCU) 717 { 718 rcu_read_unlock(); 719 } 720 721 static char *_dm_claim_ptr = "I belong to device-mapper"; 722 723 /* 724 * Open a table device so we can use it as a map destination. 725 */ 726 static struct table_device *open_table_device(struct mapped_device *md, 727 dev_t dev, blk_mode_t mode) 728 { 729 struct table_device *td; 730 struct file *bdev_file; 731 struct block_device *bdev; 732 u64 part_off; 733 int r; 734 735 td = kmalloc_node(sizeof(*td), GFP_KERNEL, md->numa_node_id); 736 if (!td) 737 return ERR_PTR(-ENOMEM); 738 refcount_set(&td->count, 1); 739 740 bdev_file = bdev_file_open_by_dev(dev, mode, _dm_claim_ptr, NULL); 741 if (IS_ERR(bdev_file)) { 742 r = PTR_ERR(bdev_file); 743 goto out_free_td; 744 } 745 746 bdev = file_bdev(bdev_file); 747 748 /* 749 * We can be called before the dm disk is added. In that case we can't 750 * register the holder relation here. It will be done once add_disk was 751 * called. 752 */ 753 if (md->disk->slave_dir) { 754 r = bd_link_disk_holder(bdev, md->disk); 755 if (r) 756 goto out_blkdev_put; 757 } 758 759 td->dm_dev.mode = mode; 760 td->dm_dev.bdev = bdev; 761 td->dm_dev.bdev_file = bdev_file; 762 td->dm_dev.dax_dev = fs_dax_get_by_bdev(bdev, &part_off, 763 NULL, NULL); 764 format_dev_t(td->dm_dev.name, dev); 765 list_add(&td->list, &md->table_devices); 766 return td; 767 768 out_blkdev_put: 769 __fput_sync(bdev_file); 770 out_free_td: 771 kfree(td); 772 return ERR_PTR(r); 773 } 774 775 /* 776 * Close a table device that we've been using. 777 */ 778 static void close_table_device(struct table_device *td, struct mapped_device *md) 779 { 780 if (md->disk->slave_dir) 781 bd_unlink_disk_holder(td->dm_dev.bdev, md->disk); 782 783 /* Leverage async fput() if DMF_DEFERRED_REMOVE set */ 784 if (unlikely(test_bit(DMF_DEFERRED_REMOVE, &md->flags))) 785 fput(td->dm_dev.bdev_file); 786 else 787 __fput_sync(td->dm_dev.bdev_file); 788 789 put_dax(td->dm_dev.dax_dev); 790 list_del(&td->list); 791 kfree(td); 792 } 793 794 static struct table_device *find_table_device(struct list_head *l, dev_t dev, 795 blk_mode_t mode) 796 { 797 struct table_device *td; 798 799 list_for_each_entry(td, l, list) 800 if (td->dm_dev.bdev->bd_dev == dev && td->dm_dev.mode == mode) 801 return td; 802 803 return NULL; 804 } 805 806 int dm_get_table_device(struct mapped_device *md, dev_t dev, blk_mode_t mode, 807 struct dm_dev **result) 808 { 809 struct table_device *td; 810 811 mutex_lock(&md->table_devices_lock); 812 td = find_table_device(&md->table_devices, dev, mode); 813 if (!td) { 814 td = open_table_device(md, dev, mode); 815 if (IS_ERR(td)) { 816 mutex_unlock(&md->table_devices_lock); 817 return PTR_ERR(td); 818 } 819 } else { 820 refcount_inc(&td->count); 821 } 822 mutex_unlock(&md->table_devices_lock); 823 824 *result = &td->dm_dev; 825 return 0; 826 } 827 828 void dm_put_table_device(struct mapped_device *md, struct dm_dev *d) 829 { 830 struct table_device *td = container_of(d, struct table_device, dm_dev); 831 832 mutex_lock(&md->table_devices_lock); 833 if (refcount_dec_and_test(&td->count)) 834 close_table_device(td, md); 835 mutex_unlock(&md->table_devices_lock); 836 } 837 838 /* 839 * Get the geometry associated with a dm device 840 */ 841 int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo) 842 { 843 *geo = md->geometry; 844 845 return 0; 846 } 847 848 /* 849 * Set the geometry of a device. 850 */ 851 int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo) 852 { 853 sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors; 854 855 if (geo->start > sz) { 856 DMERR("Start sector is beyond the geometry limits."); 857 return -EINVAL; 858 } 859 860 md->geometry = *geo; 861 862 return 0; 863 } 864 865 static int __noflush_suspending(struct mapped_device *md) 866 { 867 return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags); 868 } 869 870 static void dm_requeue_add_io(struct dm_io *io, bool first_stage) 871 { 872 struct mapped_device *md = io->md; 873 874 if (first_stage) { 875 struct dm_io *next = md->requeue_list; 876 877 md->requeue_list = io; 878 io->next = next; 879 } else { 880 bio_list_add_head(&md->deferred, io->orig_bio); 881 } 882 } 883 884 static void dm_kick_requeue(struct mapped_device *md, bool first_stage) 885 { 886 if (first_stage) 887 queue_work(md->wq, &md->requeue_work); 888 else 889 queue_work(md->wq, &md->work); 890 } 891 892 /* 893 * Return true if the dm_io's original bio is requeued. 894 * io->status is updated with error if requeue disallowed. 895 */ 896 static bool dm_handle_requeue(struct dm_io *io, bool first_stage) 897 { 898 struct bio *bio = io->orig_bio; 899 bool handle_requeue = (io->status == BLK_STS_DM_REQUEUE); 900 bool handle_polled_eagain = ((io->status == BLK_STS_AGAIN) && 901 (bio->bi_opf & REQ_POLLED)); 902 struct mapped_device *md = io->md; 903 bool requeued = false; 904 905 if (handle_requeue || handle_polled_eagain) { 906 unsigned long flags; 907 908 if (bio->bi_opf & REQ_POLLED) { 909 /* 910 * Upper layer won't help us poll split bio 911 * (io->orig_bio may only reflect a subset of the 912 * pre-split original) so clear REQ_POLLED. 913 */ 914 bio_clear_polled(bio); 915 } 916 917 /* 918 * Target requested pushing back the I/O or 919 * polled IO hit BLK_STS_AGAIN. 920 */ 921 spin_lock_irqsave(&md->deferred_lock, flags); 922 if ((__noflush_suspending(md) && 923 !WARN_ON_ONCE(dm_is_zone_write(md, bio))) || 924 handle_polled_eagain || first_stage) { 925 dm_requeue_add_io(io, first_stage); 926 requeued = true; 927 } else { 928 /* 929 * noflush suspend was interrupted or this is 930 * a write to a zoned target. 931 */ 932 io->status = BLK_STS_IOERR; 933 } 934 spin_unlock_irqrestore(&md->deferred_lock, flags); 935 } 936 937 if (requeued) 938 dm_kick_requeue(md, first_stage); 939 940 return requeued; 941 } 942 943 static void __dm_io_complete(struct dm_io *io, bool first_stage) 944 { 945 struct bio *bio = io->orig_bio; 946 struct mapped_device *md = io->md; 947 blk_status_t io_error; 948 bool requeued; 949 950 requeued = dm_handle_requeue(io, first_stage); 951 if (requeued && first_stage) 952 return; 953 954 io_error = io->status; 955 if (dm_io_flagged(io, DM_IO_ACCOUNTED)) 956 dm_end_io_acct(io); 957 else if (!io_error) { 958 /* 959 * Must handle target that DM_MAPIO_SUBMITTED only to 960 * then bio_endio() rather than dm_submit_bio_remap() 961 */ 962 __dm_start_io_acct(io); 963 dm_end_io_acct(io); 964 } 965 free_io(io); 966 smp_wmb(); 967 this_cpu_dec(*md->pending_io); 968 969 /* nudge anyone waiting on suspend queue */ 970 if (unlikely(wq_has_sleeper(&md->wait))) 971 wake_up(&md->wait); 972 973 /* Return early if the original bio was requeued */ 974 if (requeued) 975 return; 976 977 if (bio_is_flush_with_data(bio)) { 978 /* 979 * Preflush done for flush with data, reissue 980 * without REQ_PREFLUSH. 981 */ 982 bio->bi_opf &= ~REQ_PREFLUSH; 983 queue_io(md, bio); 984 } else { 985 /* done with normal IO or empty flush */ 986 if (io_error) 987 bio->bi_status = io_error; 988 bio_endio(bio); 989 } 990 } 991 992 static void dm_wq_requeue_work(struct work_struct *work) 993 { 994 struct mapped_device *md = container_of(work, struct mapped_device, 995 requeue_work); 996 unsigned long flags; 997 struct dm_io *io; 998 999 /* reuse deferred lock to simplify dm_handle_requeue */ 1000 spin_lock_irqsave(&md->deferred_lock, flags); 1001 io = md->requeue_list; 1002 md->requeue_list = NULL; 1003 spin_unlock_irqrestore(&md->deferred_lock, flags); 1004 1005 while (io) { 1006 struct dm_io *next = io->next; 1007 1008 dm_io_rewind(io, &md->disk->bio_split); 1009 1010 io->next = NULL; 1011 __dm_io_complete(io, false); 1012 io = next; 1013 cond_resched(); 1014 } 1015 } 1016 1017 /* 1018 * Two staged requeue: 1019 * 1020 * 1) io->orig_bio points to the real original bio, and the part mapped to 1021 * this io must be requeued, instead of other parts of the original bio. 1022 * 1023 * 2) io->orig_bio points to new cloned bio which matches the requeued dm_io. 1024 */ 1025 static void dm_io_complete(struct dm_io *io) 1026 { 1027 bool first_requeue; 1028 1029 /* 1030 * Only dm_io that has been split needs two stage requeue, otherwise 1031 * we may run into long bio clone chain during suspend and OOM could 1032 * be triggered. 1033 * 1034 * Also flush data dm_io won't be marked as DM_IO_WAS_SPLIT, so they 1035 * also aren't handled via the first stage requeue. 1036 */ 1037 if (dm_io_flagged(io, DM_IO_WAS_SPLIT)) 1038 first_requeue = true; 1039 else 1040 first_requeue = false; 1041 1042 __dm_io_complete(io, first_requeue); 1043 } 1044 1045 /* 1046 * Decrements the number of outstanding ios that a bio has been 1047 * cloned into, completing the original io if necc. 1048 */ 1049 static inline void __dm_io_dec_pending(struct dm_io *io) 1050 { 1051 if (atomic_dec_and_test(&io->io_count)) 1052 dm_io_complete(io); 1053 } 1054 1055 static void dm_io_set_error(struct dm_io *io, blk_status_t error) 1056 { 1057 unsigned long flags; 1058 1059 /* Push-back supersedes any I/O errors */ 1060 spin_lock_irqsave(&io->lock, flags); 1061 if (!(io->status == BLK_STS_DM_REQUEUE && 1062 __noflush_suspending(io->md))) { 1063 io->status = error; 1064 } 1065 spin_unlock_irqrestore(&io->lock, flags); 1066 } 1067 1068 static void dm_io_dec_pending(struct dm_io *io, blk_status_t error) 1069 { 1070 if (unlikely(error)) 1071 dm_io_set_error(io, error); 1072 1073 __dm_io_dec_pending(io); 1074 } 1075 1076 /* 1077 * The queue_limits are only valid as long as you have a reference 1078 * count on 'md'. But _not_ imposing verification to avoid atomic_read(), 1079 */ 1080 static inline struct queue_limits *dm_get_queue_limits(struct mapped_device *md) 1081 { 1082 return &md->queue->limits; 1083 } 1084 1085 void disable_discard(struct mapped_device *md) 1086 { 1087 struct queue_limits *limits = dm_get_queue_limits(md); 1088 1089 /* device doesn't really support DISCARD, disable it */ 1090 limits->max_hw_discard_sectors = 0; 1091 } 1092 1093 void disable_write_zeroes(struct mapped_device *md) 1094 { 1095 struct queue_limits *limits = dm_get_queue_limits(md); 1096 1097 /* device doesn't really support WRITE ZEROES, disable it */ 1098 limits->max_write_zeroes_sectors = 0; 1099 } 1100 1101 static bool swap_bios_limit(struct dm_target *ti, struct bio *bio) 1102 { 1103 return unlikely((bio->bi_opf & REQ_SWAP) != 0) && unlikely(ti->limit_swap_bios); 1104 } 1105 1106 static void clone_endio(struct bio *bio) 1107 { 1108 blk_status_t error = bio->bi_status; 1109 struct dm_target_io *tio = clone_to_tio(bio); 1110 struct dm_target *ti = tio->ti; 1111 dm_endio_fn endio = likely(ti != NULL) ? ti->type->end_io : NULL; 1112 struct dm_io *io = tio->io; 1113 struct mapped_device *md = io->md; 1114 1115 if (unlikely(error == BLK_STS_TARGET)) { 1116 if (bio_op(bio) == REQ_OP_DISCARD && 1117 !bdev_max_discard_sectors(bio->bi_bdev)) 1118 disable_discard(md); 1119 else if (bio_op(bio) == REQ_OP_WRITE_ZEROES && 1120 !bdev_write_zeroes_sectors(bio->bi_bdev)) 1121 disable_write_zeroes(md); 1122 } 1123 1124 if (static_branch_unlikely(&zoned_enabled) && 1125 unlikely(bdev_is_zoned(bio->bi_bdev))) 1126 dm_zone_endio(io, bio); 1127 1128 if (endio) { 1129 int r = endio(ti, bio, &error); 1130 1131 switch (r) { 1132 case DM_ENDIO_REQUEUE: 1133 if (static_branch_unlikely(&zoned_enabled)) { 1134 /* 1135 * Requeuing writes to a sequential zone of a zoned 1136 * target will break the sequential write pattern: 1137 * fail such IO. 1138 */ 1139 if (WARN_ON_ONCE(dm_is_zone_write(md, bio))) 1140 error = BLK_STS_IOERR; 1141 else 1142 error = BLK_STS_DM_REQUEUE; 1143 } else 1144 error = BLK_STS_DM_REQUEUE; 1145 fallthrough; 1146 case DM_ENDIO_DONE: 1147 break; 1148 case DM_ENDIO_INCOMPLETE: 1149 /* The target will handle the io */ 1150 return; 1151 default: 1152 DMCRIT("unimplemented target endio return value: %d", r); 1153 BUG(); 1154 } 1155 } 1156 1157 if (static_branch_unlikely(&swap_bios_enabled) && 1158 likely(ti != NULL) && unlikely(swap_bios_limit(ti, bio))) 1159 up(&md->swap_bios_semaphore); 1160 1161 free_tio(bio); 1162 dm_io_dec_pending(io, error); 1163 } 1164 1165 /* 1166 * Return maximum size of I/O possible at the supplied sector up to the current 1167 * target boundary. 1168 */ 1169 static inline sector_t max_io_len_target_boundary(struct dm_target *ti, 1170 sector_t target_offset) 1171 { 1172 return ti->len - target_offset; 1173 } 1174 1175 static sector_t __max_io_len(struct dm_target *ti, sector_t sector, 1176 unsigned int max_granularity, 1177 unsigned int max_sectors) 1178 { 1179 sector_t target_offset = dm_target_offset(ti, sector); 1180 sector_t len = max_io_len_target_boundary(ti, target_offset); 1181 1182 /* 1183 * Does the target need to split IO even further? 1184 * - varied (per target) IO splitting is a tenet of DM; this 1185 * explains why stacked chunk_sectors based splitting via 1186 * bio_split_to_limits() isn't possible here. 1187 */ 1188 if (!max_granularity) 1189 return len; 1190 return min_t(sector_t, len, 1191 min(max_sectors ? : queue_max_sectors(ti->table->md->queue), 1192 blk_boundary_sectors_left(target_offset, max_granularity))); 1193 } 1194 1195 static inline sector_t max_io_len(struct dm_target *ti, sector_t sector) 1196 { 1197 return __max_io_len(ti, sector, ti->max_io_len, 0); 1198 } 1199 1200 int dm_set_target_max_io_len(struct dm_target *ti, sector_t len) 1201 { 1202 if (len > UINT_MAX) { 1203 DMERR("Specified maximum size of target IO (%llu) exceeds limit (%u)", 1204 (unsigned long long)len, UINT_MAX); 1205 ti->error = "Maximum size of target IO is too large"; 1206 return -EINVAL; 1207 } 1208 1209 ti->max_io_len = (uint32_t) len; 1210 1211 return 0; 1212 } 1213 EXPORT_SYMBOL_GPL(dm_set_target_max_io_len); 1214 1215 static struct dm_target *dm_dax_get_live_target(struct mapped_device *md, 1216 sector_t sector, int *srcu_idx) 1217 __acquires(md->io_barrier) 1218 { 1219 struct dm_table *map; 1220 struct dm_target *ti; 1221 1222 map = dm_get_live_table(md, srcu_idx); 1223 if (!map) 1224 return NULL; 1225 1226 ti = dm_table_find_target(map, sector); 1227 if (!ti) 1228 return NULL; 1229 1230 return ti; 1231 } 1232 1233 static long dm_dax_direct_access(struct dax_device *dax_dev, pgoff_t pgoff, 1234 long nr_pages, enum dax_access_mode mode, void **kaddr, 1235 pfn_t *pfn) 1236 { 1237 struct mapped_device *md = dax_get_private(dax_dev); 1238 sector_t sector = pgoff * PAGE_SECTORS; 1239 struct dm_target *ti; 1240 long len, ret = -EIO; 1241 int srcu_idx; 1242 1243 ti = dm_dax_get_live_target(md, sector, &srcu_idx); 1244 1245 if (!ti) 1246 goto out; 1247 if (!ti->type->direct_access) 1248 goto out; 1249 len = max_io_len(ti, sector) / PAGE_SECTORS; 1250 if (len < 1) 1251 goto out; 1252 nr_pages = min(len, nr_pages); 1253 ret = ti->type->direct_access(ti, pgoff, nr_pages, mode, kaddr, pfn); 1254 1255 out: 1256 dm_put_live_table(md, srcu_idx); 1257 1258 return ret; 1259 } 1260 1261 static int dm_dax_zero_page_range(struct dax_device *dax_dev, pgoff_t pgoff, 1262 size_t nr_pages) 1263 { 1264 struct mapped_device *md = dax_get_private(dax_dev); 1265 sector_t sector = pgoff * PAGE_SECTORS; 1266 struct dm_target *ti; 1267 int ret = -EIO; 1268 int srcu_idx; 1269 1270 ti = dm_dax_get_live_target(md, sector, &srcu_idx); 1271 1272 if (!ti) 1273 goto out; 1274 if (WARN_ON(!ti->type->dax_zero_page_range)) { 1275 /* 1276 * ->zero_page_range() is mandatory dax operation. If we are 1277 * here, something is wrong. 1278 */ 1279 goto out; 1280 } 1281 ret = ti->type->dax_zero_page_range(ti, pgoff, nr_pages); 1282 out: 1283 dm_put_live_table(md, srcu_idx); 1284 1285 return ret; 1286 } 1287 1288 static size_t dm_dax_recovery_write(struct dax_device *dax_dev, pgoff_t pgoff, 1289 void *addr, size_t bytes, struct iov_iter *i) 1290 { 1291 struct mapped_device *md = dax_get_private(dax_dev); 1292 sector_t sector = pgoff * PAGE_SECTORS; 1293 struct dm_target *ti; 1294 int srcu_idx; 1295 long ret = 0; 1296 1297 ti = dm_dax_get_live_target(md, sector, &srcu_idx); 1298 if (!ti || !ti->type->dax_recovery_write) 1299 goto out; 1300 1301 ret = ti->type->dax_recovery_write(ti, pgoff, addr, bytes, i); 1302 out: 1303 dm_put_live_table(md, srcu_idx); 1304 return ret; 1305 } 1306 1307 /* 1308 * A target may call dm_accept_partial_bio only from the map routine. It is 1309 * allowed for all bio types except REQ_PREFLUSH, REQ_OP_ZONE_* zone management 1310 * operations, REQ_OP_ZONE_APPEND (zone append writes) and any bio serviced by 1311 * __send_duplicate_bios(). 1312 * 1313 * dm_accept_partial_bio informs the dm that the target only wants to process 1314 * additional n_sectors sectors of the bio and the rest of the data should be 1315 * sent in a next bio. 1316 * 1317 * A diagram that explains the arithmetics: 1318 * +--------------------+---------------+-------+ 1319 * | 1 | 2 | 3 | 1320 * +--------------------+---------------+-------+ 1321 * 1322 * <-------------- *tio->len_ptr ---------------> 1323 * <----- bio_sectors -----> 1324 * <-- n_sectors --> 1325 * 1326 * Region 1 was already iterated over with bio_advance or similar function. 1327 * (it may be empty if the target doesn't use bio_advance) 1328 * Region 2 is the remaining bio size that the target wants to process. 1329 * (it may be empty if region 1 is non-empty, although there is no reason 1330 * to make it empty) 1331 * The target requires that region 3 is to be sent in the next bio. 1332 * 1333 * If the target wants to receive multiple copies of the bio (via num_*bios, etc), 1334 * the partially processed part (the sum of regions 1+2) must be the same for all 1335 * copies of the bio. 1336 */ 1337 void dm_accept_partial_bio(struct bio *bio, unsigned int n_sectors) 1338 { 1339 struct dm_target_io *tio = clone_to_tio(bio); 1340 struct dm_io *io = tio->io; 1341 unsigned int bio_sectors = bio_sectors(bio); 1342 1343 BUG_ON(dm_tio_flagged(tio, DM_TIO_IS_DUPLICATE_BIO)); 1344 BUG_ON(op_is_zone_mgmt(bio_op(bio))); 1345 BUG_ON(bio_op(bio) == REQ_OP_ZONE_APPEND); 1346 BUG_ON(bio_sectors > *tio->len_ptr); 1347 BUG_ON(n_sectors > bio_sectors); 1348 1349 *tio->len_ptr -= bio_sectors - n_sectors; 1350 bio->bi_iter.bi_size = n_sectors << SECTOR_SHIFT; 1351 1352 /* 1353 * __split_and_process_bio() may have already saved mapped part 1354 * for accounting but it is being reduced so update accordingly. 1355 */ 1356 dm_io_set_flag(io, DM_IO_WAS_SPLIT); 1357 io->sectors = n_sectors; 1358 io->sector_offset = bio_sectors(io->orig_bio); 1359 } 1360 EXPORT_SYMBOL_GPL(dm_accept_partial_bio); 1361 1362 /* 1363 * @clone: clone bio that DM core passed to target's .map function 1364 * @tgt_clone: clone of @clone bio that target needs submitted 1365 * 1366 * Targets should use this interface to submit bios they take 1367 * ownership of when returning DM_MAPIO_SUBMITTED. 1368 * 1369 * Target should also enable ti->accounts_remapped_io 1370 */ 1371 void dm_submit_bio_remap(struct bio *clone, struct bio *tgt_clone) 1372 { 1373 struct dm_target_io *tio = clone_to_tio(clone); 1374 struct dm_io *io = tio->io; 1375 1376 /* establish bio that will get submitted */ 1377 if (!tgt_clone) 1378 tgt_clone = clone; 1379 1380 /* 1381 * Account io->origin_bio to DM dev on behalf of target 1382 * that took ownership of IO with DM_MAPIO_SUBMITTED. 1383 */ 1384 dm_start_io_acct(io, clone); 1385 1386 trace_block_bio_remap(tgt_clone, disk_devt(io->md->disk), 1387 tio->old_sector); 1388 submit_bio_noacct(tgt_clone); 1389 } 1390 EXPORT_SYMBOL_GPL(dm_submit_bio_remap); 1391 1392 static noinline void __set_swap_bios_limit(struct mapped_device *md, int latch) 1393 { 1394 mutex_lock(&md->swap_bios_lock); 1395 while (latch < md->swap_bios) { 1396 cond_resched(); 1397 down(&md->swap_bios_semaphore); 1398 md->swap_bios--; 1399 } 1400 while (latch > md->swap_bios) { 1401 cond_resched(); 1402 up(&md->swap_bios_semaphore); 1403 md->swap_bios++; 1404 } 1405 mutex_unlock(&md->swap_bios_lock); 1406 } 1407 1408 static void __map_bio(struct bio *clone) 1409 { 1410 struct dm_target_io *tio = clone_to_tio(clone); 1411 struct dm_target *ti = tio->ti; 1412 struct dm_io *io = tio->io; 1413 struct mapped_device *md = io->md; 1414 int r; 1415 1416 clone->bi_end_io = clone_endio; 1417 1418 /* 1419 * Map the clone. 1420 */ 1421 tio->old_sector = clone->bi_iter.bi_sector; 1422 1423 if (static_branch_unlikely(&swap_bios_enabled) && 1424 unlikely(swap_bios_limit(ti, clone))) { 1425 int latch = get_swap_bios(); 1426 1427 if (unlikely(latch != md->swap_bios)) 1428 __set_swap_bios_limit(md, latch); 1429 down(&md->swap_bios_semaphore); 1430 } 1431 1432 if (likely(ti->type->map == linear_map)) 1433 r = linear_map(ti, clone); 1434 else if (ti->type->map == stripe_map) 1435 r = stripe_map(ti, clone); 1436 else 1437 r = ti->type->map(ti, clone); 1438 1439 switch (r) { 1440 case DM_MAPIO_SUBMITTED: 1441 /* target has assumed ownership of this io */ 1442 if (!ti->accounts_remapped_io) 1443 dm_start_io_acct(io, clone); 1444 break; 1445 case DM_MAPIO_REMAPPED: 1446 dm_submit_bio_remap(clone, NULL); 1447 break; 1448 case DM_MAPIO_KILL: 1449 case DM_MAPIO_REQUEUE: 1450 if (static_branch_unlikely(&swap_bios_enabled) && 1451 unlikely(swap_bios_limit(ti, clone))) 1452 up(&md->swap_bios_semaphore); 1453 free_tio(clone); 1454 if (r == DM_MAPIO_KILL) 1455 dm_io_dec_pending(io, BLK_STS_IOERR); 1456 else 1457 dm_io_dec_pending(io, BLK_STS_DM_REQUEUE); 1458 break; 1459 default: 1460 DMCRIT("unimplemented target map return value: %d", r); 1461 BUG(); 1462 } 1463 } 1464 1465 static void setup_split_accounting(struct clone_info *ci, unsigned int len) 1466 { 1467 struct dm_io *io = ci->io; 1468 1469 if (ci->sector_count > len) { 1470 /* 1471 * Split needed, save the mapped part for accounting. 1472 * NOTE: dm_accept_partial_bio() will update accordingly. 1473 */ 1474 dm_io_set_flag(io, DM_IO_WAS_SPLIT); 1475 io->sectors = len; 1476 io->sector_offset = bio_sectors(ci->bio); 1477 } 1478 } 1479 1480 static void alloc_multiple_bios(struct bio_list *blist, struct clone_info *ci, 1481 struct dm_target *ti, unsigned int num_bios, 1482 unsigned *len, gfp_t gfp_flag) 1483 { 1484 struct bio *bio; 1485 int try = (gfp_flag & GFP_NOWAIT) ? 0 : 1; 1486 1487 for (; try < 2; try++) { 1488 int bio_nr; 1489 1490 if (try && num_bios > 1) 1491 mutex_lock(&ci->io->md->table_devices_lock); 1492 for (bio_nr = 0; bio_nr < num_bios; bio_nr++) { 1493 bio = alloc_tio(ci, ti, bio_nr, len, 1494 try ? GFP_NOIO : GFP_NOWAIT); 1495 if (!bio) 1496 break; 1497 1498 bio_list_add(blist, bio); 1499 } 1500 if (try && num_bios > 1) 1501 mutex_unlock(&ci->io->md->table_devices_lock); 1502 if (bio_nr == num_bios) 1503 return; 1504 1505 while ((bio = bio_list_pop(blist))) 1506 free_tio(bio); 1507 } 1508 } 1509 1510 static unsigned int __send_duplicate_bios(struct clone_info *ci, struct dm_target *ti, 1511 unsigned int num_bios, unsigned int *len, 1512 gfp_t gfp_flag) 1513 { 1514 struct bio_list blist = BIO_EMPTY_LIST; 1515 struct bio *clone; 1516 unsigned int ret = 0; 1517 1518 if (WARN_ON_ONCE(num_bios == 0)) /* num_bios = 0 is a bug in caller */ 1519 return 0; 1520 1521 /* dm_accept_partial_bio() is not supported with shared tio->len_ptr */ 1522 if (len) 1523 setup_split_accounting(ci, *len); 1524 1525 /* 1526 * Using alloc_multiple_bios(), even if num_bios is 1, to consistently 1527 * support allocating using GFP_NOWAIT with GFP_NOIO fallback. 1528 */ 1529 alloc_multiple_bios(&blist, ci, ti, num_bios, len, gfp_flag); 1530 while ((clone = bio_list_pop(&blist))) { 1531 if (num_bios > 1) 1532 dm_tio_set_flag(clone_to_tio(clone), DM_TIO_IS_DUPLICATE_BIO); 1533 __map_bio(clone); 1534 ret += 1; 1535 } 1536 1537 return ret; 1538 } 1539 1540 static void __send_empty_flush(struct clone_info *ci) 1541 { 1542 struct dm_table *t = ci->map; 1543 struct bio flush_bio; 1544 1545 /* 1546 * Use an on-stack bio for this, it's safe since we don't 1547 * need to reference it after submit. It's just used as 1548 * the basis for the clone(s). 1549 */ 1550 bio_init(&flush_bio, ci->io->md->disk->part0, NULL, 0, 1551 REQ_OP_WRITE | REQ_PREFLUSH | REQ_SYNC); 1552 1553 ci->bio = &flush_bio; 1554 ci->sector_count = 0; 1555 ci->io->tio.clone.bi_iter.bi_size = 0; 1556 1557 if (!t->flush_bypasses_map) { 1558 for (unsigned int i = 0; i < t->num_targets; i++) { 1559 unsigned int bios; 1560 struct dm_target *ti = dm_table_get_target(t, i); 1561 1562 if (unlikely(ti->num_flush_bios == 0)) 1563 continue; 1564 1565 atomic_add(ti->num_flush_bios, &ci->io->io_count); 1566 bios = __send_duplicate_bios(ci, ti, ti->num_flush_bios, 1567 NULL, GFP_NOWAIT); 1568 atomic_sub(ti->num_flush_bios - bios, &ci->io->io_count); 1569 } 1570 } else { 1571 /* 1572 * Note that there's no need to grab t->devices_lock here 1573 * because the targets that support flush optimization don't 1574 * modify the list of devices. 1575 */ 1576 struct list_head *devices = dm_table_get_devices(t); 1577 unsigned int len = 0; 1578 struct dm_dev_internal *dd; 1579 list_for_each_entry(dd, devices, list) { 1580 struct bio *clone; 1581 /* 1582 * Note that the structure dm_target_io is not 1583 * associated with any target (because the device may be 1584 * used by multiple targets), so we set tio->ti = NULL. 1585 * We must check for NULL in the I/O processing path, to 1586 * avoid NULL pointer dereference. 1587 */ 1588 clone = alloc_tio(ci, NULL, 0, &len, GFP_NOIO); 1589 atomic_add(1, &ci->io->io_count); 1590 bio_set_dev(clone, dd->dm_dev->bdev); 1591 clone->bi_end_io = clone_endio; 1592 dm_submit_bio_remap(clone, NULL); 1593 } 1594 } 1595 1596 /* 1597 * alloc_io() takes one extra reference for submission, so the 1598 * reference won't reach 0 without the following subtraction 1599 */ 1600 atomic_sub(1, &ci->io->io_count); 1601 1602 bio_uninit(ci->bio); 1603 } 1604 1605 static void __send_abnormal_io(struct clone_info *ci, struct dm_target *ti, 1606 unsigned int num_bios, unsigned int max_granularity, 1607 unsigned int max_sectors) 1608 { 1609 unsigned int len, bios; 1610 1611 len = min_t(sector_t, ci->sector_count, 1612 __max_io_len(ti, ci->sector, max_granularity, max_sectors)); 1613 1614 atomic_add(num_bios, &ci->io->io_count); 1615 bios = __send_duplicate_bios(ci, ti, num_bios, &len, GFP_NOIO); 1616 /* 1617 * alloc_io() takes one extra reference for submission, so the 1618 * reference won't reach 0 without the following (+1) subtraction 1619 */ 1620 atomic_sub(num_bios - bios + 1, &ci->io->io_count); 1621 1622 ci->sector += len; 1623 ci->sector_count -= len; 1624 } 1625 1626 static bool is_abnormal_io(struct bio *bio) 1627 { 1628 switch (bio_op(bio)) { 1629 case REQ_OP_READ: 1630 case REQ_OP_WRITE: 1631 case REQ_OP_FLUSH: 1632 return false; 1633 case REQ_OP_DISCARD: 1634 case REQ_OP_SECURE_ERASE: 1635 case REQ_OP_WRITE_ZEROES: 1636 case REQ_OP_ZONE_RESET_ALL: 1637 return true; 1638 default: 1639 return false; 1640 } 1641 } 1642 1643 static blk_status_t __process_abnormal_io(struct clone_info *ci, 1644 struct dm_target *ti) 1645 { 1646 unsigned int num_bios = 0; 1647 unsigned int max_granularity = 0; 1648 unsigned int max_sectors = 0; 1649 struct queue_limits *limits = dm_get_queue_limits(ti->table->md); 1650 1651 switch (bio_op(ci->bio)) { 1652 case REQ_OP_DISCARD: 1653 num_bios = ti->num_discard_bios; 1654 max_sectors = limits->max_discard_sectors; 1655 if (ti->max_discard_granularity) 1656 max_granularity = max_sectors; 1657 break; 1658 case REQ_OP_SECURE_ERASE: 1659 num_bios = ti->num_secure_erase_bios; 1660 max_sectors = limits->max_secure_erase_sectors; 1661 break; 1662 case REQ_OP_WRITE_ZEROES: 1663 num_bios = ti->num_write_zeroes_bios; 1664 max_sectors = limits->max_write_zeroes_sectors; 1665 break; 1666 default: 1667 break; 1668 } 1669 1670 /* 1671 * Even though the device advertised support for this type of 1672 * request, that does not mean every target supports it, and 1673 * reconfiguration might also have changed that since the 1674 * check was performed. 1675 */ 1676 if (unlikely(!num_bios)) 1677 return BLK_STS_NOTSUPP; 1678 1679 __send_abnormal_io(ci, ti, num_bios, max_granularity, max_sectors); 1680 1681 return BLK_STS_OK; 1682 } 1683 1684 /* 1685 * Reuse ->bi_private as dm_io list head for storing all dm_io instances 1686 * associated with this bio, and this bio's bi_private needs to be 1687 * stored in dm_io->data before the reuse. 1688 * 1689 * bio->bi_private is owned by fs or upper layer, so block layer won't 1690 * touch it after splitting. Meantime it won't be changed by anyone after 1691 * bio is submitted. So this reuse is safe. 1692 */ 1693 static inline struct dm_io **dm_poll_list_head(struct bio *bio) 1694 { 1695 return (struct dm_io **)&bio->bi_private; 1696 } 1697 1698 static void dm_queue_poll_io(struct bio *bio, struct dm_io *io) 1699 { 1700 struct dm_io **head = dm_poll_list_head(bio); 1701 1702 if (!(bio->bi_opf & REQ_DM_POLL_LIST)) { 1703 bio->bi_opf |= REQ_DM_POLL_LIST; 1704 /* 1705 * Save .bi_private into dm_io, so that we can reuse 1706 * .bi_private as dm_io list head for storing dm_io list 1707 */ 1708 io->data = bio->bi_private; 1709 1710 /* tell block layer to poll for completion */ 1711 bio->bi_cookie = ~BLK_QC_T_NONE; 1712 1713 io->next = NULL; 1714 } else { 1715 /* 1716 * bio recursed due to split, reuse original poll list, 1717 * and save bio->bi_private too. 1718 */ 1719 io->data = (*head)->data; 1720 io->next = *head; 1721 } 1722 1723 *head = io; 1724 } 1725 1726 /* 1727 * Select the correct strategy for processing a non-flush bio. 1728 */ 1729 static blk_status_t __split_and_process_bio(struct clone_info *ci) 1730 { 1731 struct bio *clone; 1732 struct dm_target *ti; 1733 unsigned int len; 1734 1735 ti = dm_table_find_target(ci->map, ci->sector); 1736 if (unlikely(!ti)) 1737 return BLK_STS_IOERR; 1738 1739 if (unlikely(ci->is_abnormal_io)) 1740 return __process_abnormal_io(ci, ti); 1741 1742 /* 1743 * Only support bio polling for normal IO, and the target io is 1744 * exactly inside the dm_io instance (verified in dm_poll_dm_io) 1745 */ 1746 ci->submit_as_polled = !!(ci->bio->bi_opf & REQ_POLLED); 1747 1748 len = min_t(sector_t, max_io_len(ti, ci->sector), ci->sector_count); 1749 setup_split_accounting(ci, len); 1750 1751 if (unlikely(ci->bio->bi_opf & REQ_NOWAIT)) { 1752 if (unlikely(!dm_target_supports_nowait(ti->type))) 1753 return BLK_STS_NOTSUPP; 1754 1755 clone = alloc_tio(ci, ti, 0, &len, GFP_NOWAIT); 1756 if (unlikely(!clone)) 1757 return BLK_STS_AGAIN; 1758 } else { 1759 clone = alloc_tio(ci, ti, 0, &len, GFP_NOIO); 1760 } 1761 __map_bio(clone); 1762 1763 ci->sector += len; 1764 ci->sector_count -= len; 1765 1766 return BLK_STS_OK; 1767 } 1768 1769 static void init_clone_info(struct clone_info *ci, struct dm_io *io, 1770 struct dm_table *map, struct bio *bio, bool is_abnormal) 1771 { 1772 ci->map = map; 1773 ci->io = io; 1774 ci->bio = bio; 1775 ci->is_abnormal_io = is_abnormal; 1776 ci->submit_as_polled = false; 1777 ci->sector = bio->bi_iter.bi_sector; 1778 ci->sector_count = bio_sectors(bio); 1779 1780 /* Shouldn't happen but sector_count was being set to 0 so... */ 1781 if (static_branch_unlikely(&zoned_enabled) && 1782 WARN_ON_ONCE(op_is_zone_mgmt(bio_op(bio)) && ci->sector_count)) 1783 ci->sector_count = 0; 1784 } 1785 1786 #ifdef CONFIG_BLK_DEV_ZONED 1787 static inline bool dm_zone_bio_needs_split(struct mapped_device *md, 1788 struct bio *bio) 1789 { 1790 /* 1791 * For mapped device that need zone append emulation, we must 1792 * split any large BIO that straddles zone boundaries. 1793 */ 1794 return dm_emulate_zone_append(md) && bio_straddles_zones(bio) && 1795 !bio_flagged(bio, BIO_ZONE_WRITE_PLUGGING); 1796 } 1797 static inline bool dm_zone_plug_bio(struct mapped_device *md, struct bio *bio) 1798 { 1799 return dm_emulate_zone_append(md) && blk_zone_plug_bio(bio, 0); 1800 } 1801 1802 static blk_status_t __send_zone_reset_all_emulated(struct clone_info *ci, 1803 struct dm_target *ti) 1804 { 1805 struct bio_list blist = BIO_EMPTY_LIST; 1806 struct mapped_device *md = ci->io->md; 1807 unsigned int zone_sectors = md->disk->queue->limits.chunk_sectors; 1808 unsigned long *need_reset; 1809 unsigned int i, nr_zones, nr_reset; 1810 unsigned int num_bios = 0; 1811 blk_status_t sts = BLK_STS_OK; 1812 sector_t sector = ti->begin; 1813 struct bio *clone; 1814 int ret; 1815 1816 nr_zones = ti->len >> ilog2(zone_sectors); 1817 need_reset = bitmap_zalloc(nr_zones, GFP_NOIO); 1818 if (!need_reset) 1819 return BLK_STS_RESOURCE; 1820 1821 ret = dm_zone_get_reset_bitmap(md, ci->map, ti->begin, 1822 nr_zones, need_reset); 1823 if (ret) { 1824 sts = BLK_STS_IOERR; 1825 goto free_bitmap; 1826 } 1827 1828 /* If we have no zone to reset, we are done. */ 1829 nr_reset = bitmap_weight(need_reset, nr_zones); 1830 if (!nr_reset) 1831 goto free_bitmap; 1832 1833 atomic_add(nr_zones, &ci->io->io_count); 1834 1835 for (i = 0; i < nr_zones; i++) { 1836 1837 if (!test_bit(i, need_reset)) { 1838 sector += zone_sectors; 1839 continue; 1840 } 1841 1842 if (bio_list_empty(&blist)) { 1843 /* This may take a while, so be nice to others */ 1844 if (num_bios) 1845 cond_resched(); 1846 1847 /* 1848 * We may need to reset thousands of zones, so let's 1849 * not go crazy with the clone allocation. 1850 */ 1851 alloc_multiple_bios(&blist, ci, ti, min(nr_reset, 32), 1852 NULL, GFP_NOIO); 1853 } 1854 1855 /* Get a clone and change it to a regular reset operation. */ 1856 clone = bio_list_pop(&blist); 1857 clone->bi_opf &= ~REQ_OP_MASK; 1858 clone->bi_opf |= REQ_OP_ZONE_RESET | REQ_SYNC; 1859 clone->bi_iter.bi_sector = sector; 1860 clone->bi_iter.bi_size = 0; 1861 __map_bio(clone); 1862 1863 sector += zone_sectors; 1864 num_bios++; 1865 nr_reset--; 1866 } 1867 1868 WARN_ON_ONCE(!bio_list_empty(&blist)); 1869 atomic_sub(nr_zones - num_bios, &ci->io->io_count); 1870 ci->sector_count = 0; 1871 1872 free_bitmap: 1873 bitmap_free(need_reset); 1874 1875 return sts; 1876 } 1877 1878 static void __send_zone_reset_all_native(struct clone_info *ci, 1879 struct dm_target *ti) 1880 { 1881 unsigned int bios; 1882 1883 atomic_add(1, &ci->io->io_count); 1884 bios = __send_duplicate_bios(ci, ti, 1, NULL, GFP_NOIO); 1885 atomic_sub(1 - bios, &ci->io->io_count); 1886 1887 ci->sector_count = 0; 1888 } 1889 1890 static blk_status_t __send_zone_reset_all(struct clone_info *ci) 1891 { 1892 struct dm_table *t = ci->map; 1893 blk_status_t sts = BLK_STS_OK; 1894 1895 for (unsigned int i = 0; i < t->num_targets; i++) { 1896 struct dm_target *ti = dm_table_get_target(t, i); 1897 1898 if (ti->zone_reset_all_supported) { 1899 __send_zone_reset_all_native(ci, ti); 1900 continue; 1901 } 1902 1903 sts = __send_zone_reset_all_emulated(ci, ti); 1904 if (sts != BLK_STS_OK) 1905 break; 1906 } 1907 1908 /* Release the reference that alloc_io() took for submission. */ 1909 atomic_sub(1, &ci->io->io_count); 1910 1911 return sts; 1912 } 1913 1914 #else 1915 static inline bool dm_zone_bio_needs_split(struct mapped_device *md, 1916 struct bio *bio) 1917 { 1918 return false; 1919 } 1920 static inline bool dm_zone_plug_bio(struct mapped_device *md, struct bio *bio) 1921 { 1922 return false; 1923 } 1924 static blk_status_t __send_zone_reset_all(struct clone_info *ci) 1925 { 1926 return BLK_STS_NOTSUPP; 1927 } 1928 #endif 1929 1930 /* 1931 * Entry point to split a bio into clones and submit them to the targets. 1932 */ 1933 static void dm_split_and_process_bio(struct mapped_device *md, 1934 struct dm_table *map, struct bio *bio) 1935 { 1936 struct clone_info ci; 1937 struct dm_io *io; 1938 blk_status_t error = BLK_STS_OK; 1939 bool is_abnormal, need_split; 1940 1941 is_abnormal = is_abnormal_io(bio); 1942 if (static_branch_unlikely(&zoned_enabled)) { 1943 /* Special case REQ_OP_ZONE_RESET_ALL as it cannot be split. */ 1944 need_split = (bio_op(bio) != REQ_OP_ZONE_RESET_ALL) && 1945 (is_abnormal || dm_zone_bio_needs_split(md, bio)); 1946 } else { 1947 need_split = is_abnormal; 1948 } 1949 1950 if (unlikely(need_split)) { 1951 /* 1952 * Use bio_split_to_limits() for abnormal IO (e.g. discard, etc) 1953 * otherwise associated queue_limits won't be imposed. 1954 * Also split the BIO for mapped devices needing zone append 1955 * emulation to ensure that the BIO does not cross zone 1956 * boundaries. 1957 */ 1958 bio = bio_split_to_limits(bio); 1959 if (!bio) 1960 return; 1961 } 1962 1963 /* 1964 * Use the block layer zone write plugging for mapped devices that 1965 * need zone append emulation (e.g. dm-crypt). 1966 */ 1967 if (static_branch_unlikely(&zoned_enabled) && dm_zone_plug_bio(md, bio)) 1968 return; 1969 1970 /* Only support nowait for normal IO */ 1971 if (unlikely(bio->bi_opf & REQ_NOWAIT) && !is_abnormal) { 1972 io = alloc_io(md, bio, GFP_NOWAIT); 1973 if (unlikely(!io)) { 1974 /* Unable to do anything without dm_io. */ 1975 bio_wouldblock_error(bio); 1976 return; 1977 } 1978 } else { 1979 io = alloc_io(md, bio, GFP_NOIO); 1980 } 1981 init_clone_info(&ci, io, map, bio, is_abnormal); 1982 1983 if (bio->bi_opf & REQ_PREFLUSH) { 1984 __send_empty_flush(&ci); 1985 /* dm_io_complete submits any data associated with flush */ 1986 goto out; 1987 } 1988 1989 if (static_branch_unlikely(&zoned_enabled) && 1990 (bio_op(bio) == REQ_OP_ZONE_RESET_ALL)) { 1991 error = __send_zone_reset_all(&ci); 1992 goto out; 1993 } 1994 1995 error = __split_and_process_bio(&ci); 1996 if (error || !ci.sector_count) 1997 goto out; 1998 /* 1999 * Remainder must be passed to submit_bio_noacct() so it gets handled 2000 * *after* bios already submitted have been completely processed. 2001 */ 2002 bio_trim(bio, io->sectors, ci.sector_count); 2003 trace_block_split(bio, bio->bi_iter.bi_sector); 2004 bio_inc_remaining(bio); 2005 submit_bio_noacct(bio); 2006 out: 2007 /* 2008 * Drop the extra reference count for non-POLLED bio, and hold one 2009 * reference for POLLED bio, which will be released in dm_poll_bio 2010 * 2011 * Add every dm_io instance into the dm_io list head which is stored 2012 * in bio->bi_private, so that dm_poll_bio can poll them all. 2013 */ 2014 if (error || !ci.submit_as_polled) { 2015 /* 2016 * In case of submission failure, the extra reference for 2017 * submitting io isn't consumed yet 2018 */ 2019 if (error) 2020 atomic_dec(&io->io_count); 2021 dm_io_dec_pending(io, error); 2022 } else 2023 dm_queue_poll_io(bio, io); 2024 } 2025 2026 static void dm_submit_bio(struct bio *bio) 2027 { 2028 struct mapped_device *md = bio->bi_bdev->bd_disk->private_data; 2029 int srcu_idx; 2030 struct dm_table *map; 2031 2032 map = dm_get_live_table(md, &srcu_idx); 2033 2034 /* If suspended, or map not yet available, queue this IO for later */ 2035 if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) || 2036 unlikely(!map)) { 2037 if (bio->bi_opf & REQ_NOWAIT) 2038 bio_wouldblock_error(bio); 2039 else if (bio->bi_opf & REQ_RAHEAD) 2040 bio_io_error(bio); 2041 else 2042 queue_io(md, bio); 2043 goto out; 2044 } 2045 2046 dm_split_and_process_bio(md, map, bio); 2047 out: 2048 dm_put_live_table(md, srcu_idx); 2049 } 2050 2051 static bool dm_poll_dm_io(struct dm_io *io, struct io_comp_batch *iob, 2052 unsigned int flags) 2053 { 2054 WARN_ON_ONCE(!dm_tio_is_normal(&io->tio)); 2055 2056 /* don't poll if the mapped io is done */ 2057 if (atomic_read(&io->io_count) > 1) 2058 bio_poll(&io->tio.clone, iob, flags); 2059 2060 /* bio_poll holds the last reference */ 2061 return atomic_read(&io->io_count) == 1; 2062 } 2063 2064 static int dm_poll_bio(struct bio *bio, struct io_comp_batch *iob, 2065 unsigned int flags) 2066 { 2067 struct dm_io **head = dm_poll_list_head(bio); 2068 struct dm_io *list = *head; 2069 struct dm_io *tmp = NULL; 2070 struct dm_io *curr, *next; 2071 2072 /* Only poll normal bio which was marked as REQ_DM_POLL_LIST */ 2073 if (!(bio->bi_opf & REQ_DM_POLL_LIST)) 2074 return 0; 2075 2076 WARN_ON_ONCE(!list); 2077 2078 /* 2079 * Restore .bi_private before possibly completing dm_io. 2080 * 2081 * bio_poll() is only possible once @bio has been completely 2082 * submitted via submit_bio_noacct()'s depth-first submission. 2083 * So there is no dm_queue_poll_io() race associated with 2084 * clearing REQ_DM_POLL_LIST here. 2085 */ 2086 bio->bi_opf &= ~REQ_DM_POLL_LIST; 2087 bio->bi_private = list->data; 2088 2089 for (curr = list, next = curr->next; curr; curr = next, next = 2090 curr ? curr->next : NULL) { 2091 if (dm_poll_dm_io(curr, iob, flags)) { 2092 /* 2093 * clone_endio() has already occurred, so no 2094 * error handling is needed here. 2095 */ 2096 __dm_io_dec_pending(curr); 2097 } else { 2098 curr->next = tmp; 2099 tmp = curr; 2100 } 2101 } 2102 2103 /* Not done? */ 2104 if (tmp) { 2105 bio->bi_opf |= REQ_DM_POLL_LIST; 2106 /* Reset bio->bi_private to dm_io list head */ 2107 *head = tmp; 2108 return 0; 2109 } 2110 return 1; 2111 } 2112 2113 /* 2114 *--------------------------------------------------------------- 2115 * An IDR is used to keep track of allocated minor numbers. 2116 *--------------------------------------------------------------- 2117 */ 2118 static void free_minor(int minor) 2119 { 2120 spin_lock(&_minor_lock); 2121 idr_remove(&_minor_idr, minor); 2122 spin_unlock(&_minor_lock); 2123 } 2124 2125 /* 2126 * See if the device with a specific minor # is free. 2127 */ 2128 static int specific_minor(int minor) 2129 { 2130 int r; 2131 2132 if (minor >= (1 << MINORBITS)) 2133 return -EINVAL; 2134 2135 idr_preload(GFP_KERNEL); 2136 spin_lock(&_minor_lock); 2137 2138 r = idr_alloc(&_minor_idr, MINOR_ALLOCED, minor, minor + 1, GFP_NOWAIT); 2139 2140 spin_unlock(&_minor_lock); 2141 idr_preload_end(); 2142 if (r < 0) 2143 return r == -ENOSPC ? -EBUSY : r; 2144 return 0; 2145 } 2146 2147 static int next_free_minor(int *minor) 2148 { 2149 int r; 2150 2151 idr_preload(GFP_KERNEL); 2152 spin_lock(&_minor_lock); 2153 2154 r = idr_alloc(&_minor_idr, MINOR_ALLOCED, 0, 1 << MINORBITS, GFP_NOWAIT); 2155 2156 spin_unlock(&_minor_lock); 2157 idr_preload_end(); 2158 if (r < 0) 2159 return r; 2160 *minor = r; 2161 return 0; 2162 } 2163 2164 static const struct block_device_operations dm_blk_dops; 2165 static const struct block_device_operations dm_rq_blk_dops; 2166 static const struct dax_operations dm_dax_ops; 2167 2168 static void dm_wq_work(struct work_struct *work); 2169 2170 #ifdef CONFIG_BLK_INLINE_ENCRYPTION 2171 static void dm_queue_destroy_crypto_profile(struct request_queue *q) 2172 { 2173 dm_destroy_crypto_profile(q->crypto_profile); 2174 } 2175 2176 #else /* CONFIG_BLK_INLINE_ENCRYPTION */ 2177 2178 static inline void dm_queue_destroy_crypto_profile(struct request_queue *q) 2179 { 2180 } 2181 #endif /* !CONFIG_BLK_INLINE_ENCRYPTION */ 2182 2183 static void cleanup_mapped_device(struct mapped_device *md) 2184 { 2185 if (md->wq) 2186 destroy_workqueue(md->wq); 2187 dm_free_md_mempools(md->mempools); 2188 2189 if (md->dax_dev) { 2190 dax_remove_host(md->disk); 2191 kill_dax(md->dax_dev); 2192 put_dax(md->dax_dev); 2193 md->dax_dev = NULL; 2194 } 2195 2196 if (md->disk) { 2197 spin_lock(&_minor_lock); 2198 md->disk->private_data = NULL; 2199 spin_unlock(&_minor_lock); 2200 if (dm_get_md_type(md) != DM_TYPE_NONE) { 2201 struct table_device *td; 2202 2203 dm_sysfs_exit(md); 2204 list_for_each_entry(td, &md->table_devices, list) { 2205 bd_unlink_disk_holder(td->dm_dev.bdev, 2206 md->disk); 2207 } 2208 2209 /* 2210 * Hold lock to make sure del_gendisk() won't concurrent 2211 * with open/close_table_device(). 2212 */ 2213 mutex_lock(&md->table_devices_lock); 2214 del_gendisk(md->disk); 2215 mutex_unlock(&md->table_devices_lock); 2216 } 2217 dm_queue_destroy_crypto_profile(md->queue); 2218 put_disk(md->disk); 2219 } 2220 2221 if (md->pending_io) { 2222 free_percpu(md->pending_io); 2223 md->pending_io = NULL; 2224 } 2225 2226 cleanup_srcu_struct(&md->io_barrier); 2227 2228 mutex_destroy(&md->suspend_lock); 2229 mutex_destroy(&md->type_lock); 2230 mutex_destroy(&md->table_devices_lock); 2231 mutex_destroy(&md->swap_bios_lock); 2232 2233 dm_mq_cleanup_mapped_device(md); 2234 } 2235 2236 /* 2237 * Allocate and initialise a blank device with a given minor. 2238 */ 2239 static struct mapped_device *alloc_dev(int minor) 2240 { 2241 int r, numa_node_id = dm_get_numa_node(); 2242 struct dax_device *dax_dev; 2243 struct mapped_device *md; 2244 void *old_md; 2245 2246 md = kvzalloc_node(sizeof(*md), GFP_KERNEL, numa_node_id); 2247 if (!md) { 2248 DMERR("unable to allocate device, out of memory."); 2249 return NULL; 2250 } 2251 2252 if (!try_module_get(THIS_MODULE)) 2253 goto bad_module_get; 2254 2255 /* get a minor number for the dev */ 2256 if (minor == DM_ANY_MINOR) 2257 r = next_free_minor(&minor); 2258 else 2259 r = specific_minor(minor); 2260 if (r < 0) 2261 goto bad_minor; 2262 2263 r = init_srcu_struct(&md->io_barrier); 2264 if (r < 0) 2265 goto bad_io_barrier; 2266 2267 md->numa_node_id = numa_node_id; 2268 md->init_tio_pdu = false; 2269 md->type = DM_TYPE_NONE; 2270 mutex_init(&md->suspend_lock); 2271 mutex_init(&md->type_lock); 2272 mutex_init(&md->table_devices_lock); 2273 spin_lock_init(&md->deferred_lock); 2274 atomic_set(&md->holders, 1); 2275 atomic_set(&md->open_count, 0); 2276 atomic_set(&md->event_nr, 0); 2277 atomic_set(&md->uevent_seq, 0); 2278 INIT_LIST_HEAD(&md->uevent_list); 2279 INIT_LIST_HEAD(&md->table_devices); 2280 spin_lock_init(&md->uevent_lock); 2281 2282 /* 2283 * default to bio-based until DM table is loaded and md->type 2284 * established. If request-based table is loaded: blk-mq will 2285 * override accordingly. 2286 */ 2287 md->disk = blk_alloc_disk(NULL, md->numa_node_id); 2288 if (IS_ERR(md->disk)) 2289 goto bad; 2290 md->queue = md->disk->queue; 2291 2292 init_waitqueue_head(&md->wait); 2293 INIT_WORK(&md->work, dm_wq_work); 2294 INIT_WORK(&md->requeue_work, dm_wq_requeue_work); 2295 init_waitqueue_head(&md->eventq); 2296 init_completion(&md->kobj_holder.completion); 2297 2298 md->requeue_list = NULL; 2299 md->swap_bios = get_swap_bios(); 2300 sema_init(&md->swap_bios_semaphore, md->swap_bios); 2301 mutex_init(&md->swap_bios_lock); 2302 2303 md->disk->major = _major; 2304 md->disk->first_minor = minor; 2305 md->disk->minors = 1; 2306 md->disk->flags |= GENHD_FL_NO_PART; 2307 md->disk->fops = &dm_blk_dops; 2308 md->disk->private_data = md; 2309 sprintf(md->disk->disk_name, "dm-%d", minor); 2310 2311 dax_dev = alloc_dax(md, &dm_dax_ops); 2312 if (IS_ERR(dax_dev)) { 2313 if (PTR_ERR(dax_dev) != -EOPNOTSUPP) 2314 goto bad; 2315 } else { 2316 set_dax_nocache(dax_dev); 2317 set_dax_nomc(dax_dev); 2318 md->dax_dev = dax_dev; 2319 if (dax_add_host(dax_dev, md->disk)) 2320 goto bad; 2321 } 2322 2323 format_dev_t(md->name, MKDEV(_major, minor)); 2324 2325 md->wq = alloc_workqueue("kdmflush/%s", WQ_MEM_RECLAIM, 0, md->name); 2326 if (!md->wq) 2327 goto bad; 2328 2329 md->pending_io = alloc_percpu(unsigned long); 2330 if (!md->pending_io) 2331 goto bad; 2332 2333 r = dm_stats_init(&md->stats); 2334 if (r < 0) 2335 goto bad; 2336 2337 /* Populate the mapping, nobody knows we exist yet */ 2338 spin_lock(&_minor_lock); 2339 old_md = idr_replace(&_minor_idr, md, minor); 2340 spin_unlock(&_minor_lock); 2341 2342 BUG_ON(old_md != MINOR_ALLOCED); 2343 2344 return md; 2345 2346 bad: 2347 cleanup_mapped_device(md); 2348 bad_io_barrier: 2349 free_minor(minor); 2350 bad_minor: 2351 module_put(THIS_MODULE); 2352 bad_module_get: 2353 kvfree(md); 2354 return NULL; 2355 } 2356 2357 static void unlock_fs(struct mapped_device *md); 2358 2359 static void free_dev(struct mapped_device *md) 2360 { 2361 int minor = MINOR(disk_devt(md->disk)); 2362 2363 unlock_fs(md); 2364 2365 cleanup_mapped_device(md); 2366 2367 WARN_ON_ONCE(!list_empty(&md->table_devices)); 2368 dm_stats_cleanup(&md->stats); 2369 free_minor(minor); 2370 2371 module_put(THIS_MODULE); 2372 kvfree(md); 2373 } 2374 2375 /* 2376 * Bind a table to the device. 2377 */ 2378 static void event_callback(void *context) 2379 { 2380 unsigned long flags; 2381 LIST_HEAD(uevents); 2382 struct mapped_device *md = context; 2383 2384 spin_lock_irqsave(&md->uevent_lock, flags); 2385 list_splice_init(&md->uevent_list, &uevents); 2386 spin_unlock_irqrestore(&md->uevent_lock, flags); 2387 2388 dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj); 2389 2390 atomic_inc(&md->event_nr); 2391 wake_up(&md->eventq); 2392 dm_issue_global_event(); 2393 } 2394 2395 /* 2396 * Returns old map, which caller must destroy. 2397 */ 2398 static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t, 2399 struct queue_limits *limits) 2400 { 2401 struct dm_table *old_map; 2402 sector_t size; 2403 int ret; 2404 2405 lockdep_assert_held(&md->suspend_lock); 2406 2407 size = dm_table_get_size(t); 2408 2409 /* 2410 * Wipe any geometry if the size of the table changed. 2411 */ 2412 if (size != dm_get_size(md)) 2413 memset(&md->geometry, 0, sizeof(md->geometry)); 2414 2415 set_capacity(md->disk, size); 2416 2417 dm_table_event_callback(t, event_callback, md); 2418 2419 if (dm_table_request_based(t)) { 2420 /* 2421 * Leverage the fact that request-based DM targets are 2422 * immutable singletons - used to optimize dm_mq_queue_rq. 2423 */ 2424 md->immutable_target = dm_table_get_immutable_target(t); 2425 2426 /* 2427 * There is no need to reload with request-based dm because the 2428 * size of front_pad doesn't change. 2429 * 2430 * Note for future: If you are to reload bioset, prep-ed 2431 * requests in the queue may refer to bio from the old bioset, 2432 * so you must walk through the queue to unprep. 2433 */ 2434 if (!md->mempools) { 2435 md->mempools = t->mempools; 2436 t->mempools = NULL; 2437 } 2438 } else { 2439 /* 2440 * The md may already have mempools that need changing. 2441 * If so, reload bioset because front_pad may have changed 2442 * because a different table was loaded. 2443 */ 2444 dm_free_md_mempools(md->mempools); 2445 md->mempools = t->mempools; 2446 t->mempools = NULL; 2447 } 2448 2449 ret = dm_table_set_restrictions(t, md->queue, limits); 2450 if (ret) { 2451 old_map = ERR_PTR(ret); 2452 goto out; 2453 } 2454 2455 old_map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock)); 2456 rcu_assign_pointer(md->map, (void *)t); 2457 md->immutable_target_type = dm_table_get_immutable_target_type(t); 2458 2459 if (old_map) 2460 dm_sync_table(md); 2461 out: 2462 return old_map; 2463 } 2464 2465 /* 2466 * Returns unbound table for the caller to free. 2467 */ 2468 static struct dm_table *__unbind(struct mapped_device *md) 2469 { 2470 struct dm_table *map = rcu_dereference_protected(md->map, 1); 2471 2472 if (!map) 2473 return NULL; 2474 2475 dm_table_event_callback(map, NULL, NULL); 2476 RCU_INIT_POINTER(md->map, NULL); 2477 dm_sync_table(md); 2478 2479 return map; 2480 } 2481 2482 /* 2483 * Constructor for a new device. 2484 */ 2485 int dm_create(int minor, struct mapped_device **result) 2486 { 2487 struct mapped_device *md; 2488 2489 md = alloc_dev(minor); 2490 if (!md) 2491 return -ENXIO; 2492 2493 dm_ima_reset_data(md); 2494 2495 *result = md; 2496 return 0; 2497 } 2498 2499 /* 2500 * Functions to manage md->type. 2501 * All are required to hold md->type_lock. 2502 */ 2503 void dm_lock_md_type(struct mapped_device *md) 2504 { 2505 mutex_lock(&md->type_lock); 2506 } 2507 2508 void dm_unlock_md_type(struct mapped_device *md) 2509 { 2510 mutex_unlock(&md->type_lock); 2511 } 2512 2513 void dm_set_md_type(struct mapped_device *md, enum dm_queue_mode type) 2514 { 2515 BUG_ON(!mutex_is_locked(&md->type_lock)); 2516 md->type = type; 2517 } 2518 2519 enum dm_queue_mode dm_get_md_type(struct mapped_device *md) 2520 { 2521 return md->type; 2522 } 2523 2524 struct target_type *dm_get_immutable_target_type(struct mapped_device *md) 2525 { 2526 return md->immutable_target_type; 2527 } 2528 2529 /* 2530 * Setup the DM device's queue based on md's type 2531 */ 2532 int dm_setup_md_queue(struct mapped_device *md, struct dm_table *t) 2533 { 2534 enum dm_queue_mode type = dm_table_get_type(t); 2535 struct queue_limits limits; 2536 struct table_device *td; 2537 int r; 2538 2539 WARN_ON_ONCE(type == DM_TYPE_NONE); 2540 2541 if (type == DM_TYPE_REQUEST_BASED) { 2542 md->disk->fops = &dm_rq_blk_dops; 2543 r = dm_mq_init_request_queue(md, t); 2544 if (r) { 2545 DMERR("Cannot initialize queue for request-based dm mapped device"); 2546 return r; 2547 } 2548 } 2549 2550 r = dm_calculate_queue_limits(t, &limits); 2551 if (r) { 2552 DMERR("Cannot calculate initial queue limits"); 2553 return r; 2554 } 2555 r = dm_table_set_restrictions(t, md->queue, &limits); 2556 if (r) 2557 return r; 2558 2559 /* 2560 * Hold lock to make sure add_disk() and del_gendisk() won't concurrent 2561 * with open_table_device() and close_table_device(). 2562 */ 2563 mutex_lock(&md->table_devices_lock); 2564 r = add_disk(md->disk); 2565 mutex_unlock(&md->table_devices_lock); 2566 if (r) 2567 return r; 2568 2569 /* 2570 * Register the holder relationship for devices added before the disk 2571 * was live. 2572 */ 2573 list_for_each_entry(td, &md->table_devices, list) { 2574 r = bd_link_disk_holder(td->dm_dev.bdev, md->disk); 2575 if (r) 2576 goto out_undo_holders; 2577 } 2578 2579 r = dm_sysfs_init(md); 2580 if (r) 2581 goto out_undo_holders; 2582 2583 md->type = type; 2584 return 0; 2585 2586 out_undo_holders: 2587 list_for_each_entry_continue_reverse(td, &md->table_devices, list) 2588 bd_unlink_disk_holder(td->dm_dev.bdev, md->disk); 2589 mutex_lock(&md->table_devices_lock); 2590 del_gendisk(md->disk); 2591 mutex_unlock(&md->table_devices_lock); 2592 return r; 2593 } 2594 2595 struct mapped_device *dm_get_md(dev_t dev) 2596 { 2597 struct mapped_device *md; 2598 unsigned int minor = MINOR(dev); 2599 2600 if (MAJOR(dev) != _major || minor >= (1 << MINORBITS)) 2601 return NULL; 2602 2603 spin_lock(&_minor_lock); 2604 2605 md = idr_find(&_minor_idr, minor); 2606 if (!md || md == MINOR_ALLOCED || (MINOR(disk_devt(dm_disk(md))) != minor) || 2607 test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) { 2608 md = NULL; 2609 goto out; 2610 } 2611 dm_get(md); 2612 out: 2613 spin_unlock(&_minor_lock); 2614 2615 return md; 2616 } 2617 EXPORT_SYMBOL_GPL(dm_get_md); 2618 2619 void *dm_get_mdptr(struct mapped_device *md) 2620 { 2621 return md->interface_ptr; 2622 } 2623 2624 void dm_set_mdptr(struct mapped_device *md, void *ptr) 2625 { 2626 md->interface_ptr = ptr; 2627 } 2628 2629 void dm_get(struct mapped_device *md) 2630 { 2631 atomic_inc(&md->holders); 2632 BUG_ON(test_bit(DMF_FREEING, &md->flags)); 2633 } 2634 2635 int dm_hold(struct mapped_device *md) 2636 { 2637 spin_lock(&_minor_lock); 2638 if (test_bit(DMF_FREEING, &md->flags)) { 2639 spin_unlock(&_minor_lock); 2640 return -EBUSY; 2641 } 2642 dm_get(md); 2643 spin_unlock(&_minor_lock); 2644 return 0; 2645 } 2646 EXPORT_SYMBOL_GPL(dm_hold); 2647 2648 const char *dm_device_name(struct mapped_device *md) 2649 { 2650 return md->name; 2651 } 2652 EXPORT_SYMBOL_GPL(dm_device_name); 2653 2654 static void __dm_destroy(struct mapped_device *md, bool wait) 2655 { 2656 struct dm_table *map; 2657 int srcu_idx; 2658 2659 might_sleep(); 2660 2661 spin_lock(&_minor_lock); 2662 idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md)))); 2663 set_bit(DMF_FREEING, &md->flags); 2664 spin_unlock(&_minor_lock); 2665 2666 blk_mark_disk_dead(md->disk); 2667 2668 /* 2669 * Take suspend_lock so that presuspend and postsuspend methods 2670 * do not race with internal suspend. 2671 */ 2672 mutex_lock(&md->suspend_lock); 2673 map = dm_get_live_table(md, &srcu_idx); 2674 if (!dm_suspended_md(md)) { 2675 dm_table_presuspend_targets(map); 2676 set_bit(DMF_SUSPENDED, &md->flags); 2677 set_bit(DMF_POST_SUSPENDING, &md->flags); 2678 dm_table_postsuspend_targets(map); 2679 } 2680 /* dm_put_live_table must be before fsleep, otherwise deadlock is possible */ 2681 dm_put_live_table(md, srcu_idx); 2682 mutex_unlock(&md->suspend_lock); 2683 2684 /* 2685 * Rare, but there may be I/O requests still going to complete, 2686 * for example. Wait for all references to disappear. 2687 * No one should increment the reference count of the mapped_device, 2688 * after the mapped_device state becomes DMF_FREEING. 2689 */ 2690 if (wait) 2691 while (atomic_read(&md->holders)) 2692 fsleep(1000); 2693 else if (atomic_read(&md->holders)) 2694 DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)", 2695 dm_device_name(md), atomic_read(&md->holders)); 2696 2697 dm_table_destroy(__unbind(md)); 2698 free_dev(md); 2699 } 2700 2701 void dm_destroy(struct mapped_device *md) 2702 { 2703 __dm_destroy(md, true); 2704 } 2705 2706 void dm_destroy_immediate(struct mapped_device *md) 2707 { 2708 __dm_destroy(md, false); 2709 } 2710 2711 void dm_put(struct mapped_device *md) 2712 { 2713 atomic_dec(&md->holders); 2714 } 2715 EXPORT_SYMBOL_GPL(dm_put); 2716 2717 static bool dm_in_flight_bios(struct mapped_device *md) 2718 { 2719 int cpu; 2720 unsigned long sum = 0; 2721 2722 for_each_possible_cpu(cpu) 2723 sum += *per_cpu_ptr(md->pending_io, cpu); 2724 2725 return sum != 0; 2726 } 2727 2728 static int dm_wait_for_bios_completion(struct mapped_device *md, unsigned int task_state) 2729 { 2730 int r = 0; 2731 DEFINE_WAIT(wait); 2732 2733 while (true) { 2734 prepare_to_wait(&md->wait, &wait, task_state); 2735 2736 if (!dm_in_flight_bios(md)) 2737 break; 2738 2739 if (signal_pending_state(task_state, current)) { 2740 r = -EINTR; 2741 break; 2742 } 2743 2744 io_schedule(); 2745 } 2746 finish_wait(&md->wait, &wait); 2747 2748 smp_rmb(); 2749 2750 return r; 2751 } 2752 2753 static int dm_wait_for_completion(struct mapped_device *md, unsigned int task_state) 2754 { 2755 int r = 0; 2756 2757 if (!queue_is_mq(md->queue)) 2758 return dm_wait_for_bios_completion(md, task_state); 2759 2760 while (true) { 2761 if (!blk_mq_queue_inflight(md->queue)) 2762 break; 2763 2764 if (signal_pending_state(task_state, current)) { 2765 r = -EINTR; 2766 break; 2767 } 2768 2769 fsleep(5000); 2770 } 2771 2772 return r; 2773 } 2774 2775 /* 2776 * Process the deferred bios 2777 */ 2778 static void dm_wq_work(struct work_struct *work) 2779 { 2780 struct mapped_device *md = container_of(work, struct mapped_device, work); 2781 struct bio *bio; 2782 2783 while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) { 2784 spin_lock_irq(&md->deferred_lock); 2785 bio = bio_list_pop(&md->deferred); 2786 spin_unlock_irq(&md->deferred_lock); 2787 2788 if (!bio) 2789 break; 2790 2791 submit_bio_noacct(bio); 2792 cond_resched(); 2793 } 2794 } 2795 2796 static void dm_queue_flush(struct mapped_device *md) 2797 { 2798 clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags); 2799 smp_mb__after_atomic(); 2800 queue_work(md->wq, &md->work); 2801 } 2802 2803 /* 2804 * Swap in a new table, returning the old one for the caller to destroy. 2805 */ 2806 struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table) 2807 { 2808 struct dm_table *live_map = NULL, *map = ERR_PTR(-EINVAL); 2809 struct queue_limits limits; 2810 int r; 2811 2812 mutex_lock(&md->suspend_lock); 2813 2814 /* device must be suspended */ 2815 if (!dm_suspended_md(md)) 2816 goto out; 2817 2818 /* 2819 * If the new table has no data devices, retain the existing limits. 2820 * This helps multipath with queue_if_no_path if all paths disappear, 2821 * then new I/O is queued based on these limits, and then some paths 2822 * reappear. 2823 */ 2824 if (dm_table_has_no_data_devices(table)) { 2825 live_map = dm_get_live_table_fast(md); 2826 if (live_map) 2827 limits = md->queue->limits; 2828 dm_put_live_table_fast(md); 2829 } 2830 2831 if (!live_map) { 2832 r = dm_calculate_queue_limits(table, &limits); 2833 if (r) { 2834 map = ERR_PTR(r); 2835 goto out; 2836 } 2837 } 2838 2839 map = __bind(md, table, &limits); 2840 dm_issue_global_event(); 2841 2842 out: 2843 mutex_unlock(&md->suspend_lock); 2844 return map; 2845 } 2846 2847 /* 2848 * Functions to lock and unlock any filesystem running on the 2849 * device. 2850 */ 2851 static int lock_fs(struct mapped_device *md) 2852 { 2853 int r; 2854 2855 WARN_ON(test_bit(DMF_FROZEN, &md->flags)); 2856 2857 r = bdev_freeze(md->disk->part0); 2858 if (!r) 2859 set_bit(DMF_FROZEN, &md->flags); 2860 return r; 2861 } 2862 2863 static void unlock_fs(struct mapped_device *md) 2864 { 2865 if (!test_bit(DMF_FROZEN, &md->flags)) 2866 return; 2867 bdev_thaw(md->disk->part0); 2868 clear_bit(DMF_FROZEN, &md->flags); 2869 } 2870 2871 /* 2872 * @suspend_flags: DM_SUSPEND_LOCKFS_FLAG and/or DM_SUSPEND_NOFLUSH_FLAG 2873 * @task_state: e.g. TASK_INTERRUPTIBLE or TASK_UNINTERRUPTIBLE 2874 * @dmf_suspended_flag: DMF_SUSPENDED or DMF_SUSPENDED_INTERNALLY 2875 * 2876 * If __dm_suspend returns 0, the device is completely quiescent 2877 * now. There is no request-processing activity. All new requests 2878 * are being added to md->deferred list. 2879 */ 2880 static int __dm_suspend(struct mapped_device *md, struct dm_table *map, 2881 unsigned int suspend_flags, unsigned int task_state, 2882 int dmf_suspended_flag) 2883 { 2884 bool do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG; 2885 bool noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG; 2886 int r; 2887 2888 lockdep_assert_held(&md->suspend_lock); 2889 2890 /* 2891 * DMF_NOFLUSH_SUSPENDING must be set before presuspend. 2892 * This flag is cleared before dm_suspend returns. 2893 */ 2894 if (noflush) 2895 set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags); 2896 else 2897 DMDEBUG("%s: suspending with flush", dm_device_name(md)); 2898 2899 /* 2900 * This gets reverted if there's an error later and the targets 2901 * provide the .presuspend_undo hook. 2902 */ 2903 dm_table_presuspend_targets(map); 2904 2905 /* 2906 * Flush I/O to the device. 2907 * Any I/O submitted after lock_fs() may not be flushed. 2908 * noflush takes precedence over do_lockfs. 2909 * (lock_fs() flushes I/Os and waits for them to complete.) 2910 */ 2911 if (!noflush && do_lockfs) { 2912 r = lock_fs(md); 2913 if (r) { 2914 dm_table_presuspend_undo_targets(map); 2915 return r; 2916 } 2917 } 2918 2919 /* 2920 * Here we must make sure that no processes are submitting requests 2921 * to target drivers i.e. no one may be executing 2922 * dm_split_and_process_bio from dm_submit_bio. 2923 * 2924 * To get all processes out of dm_split_and_process_bio in dm_submit_bio, 2925 * we take the write lock. To prevent any process from reentering 2926 * dm_split_and_process_bio from dm_submit_bio and quiesce the thread 2927 * (dm_wq_work), we set DMF_BLOCK_IO_FOR_SUSPEND and call 2928 * flush_workqueue(md->wq). 2929 */ 2930 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags); 2931 if (map) 2932 synchronize_srcu(&md->io_barrier); 2933 2934 /* 2935 * Stop md->queue before flushing md->wq in case request-based 2936 * dm defers requests to md->wq from md->queue. 2937 */ 2938 if (dm_request_based(md)) 2939 dm_stop_queue(md->queue); 2940 2941 flush_workqueue(md->wq); 2942 2943 /* 2944 * At this point no more requests are entering target request routines. 2945 * We call dm_wait_for_completion to wait for all existing requests 2946 * to finish. 2947 */ 2948 r = dm_wait_for_completion(md, task_state); 2949 if (!r) 2950 set_bit(dmf_suspended_flag, &md->flags); 2951 2952 if (noflush) 2953 clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags); 2954 if (map) 2955 synchronize_srcu(&md->io_barrier); 2956 2957 /* were we interrupted ? */ 2958 if (r < 0) { 2959 dm_queue_flush(md); 2960 2961 if (dm_request_based(md)) 2962 dm_start_queue(md->queue); 2963 2964 unlock_fs(md); 2965 dm_table_presuspend_undo_targets(map); 2966 /* pushback list is already flushed, so skip flush */ 2967 } 2968 2969 return r; 2970 } 2971 2972 /* 2973 * We need to be able to change a mapping table under a mounted 2974 * filesystem. For example we might want to move some data in 2975 * the background. Before the table can be swapped with 2976 * dm_bind_table, dm_suspend must be called to flush any in 2977 * flight bios and ensure that any further io gets deferred. 2978 */ 2979 /* 2980 * Suspend mechanism in request-based dm. 2981 * 2982 * 1. Flush all I/Os by lock_fs() if needed. 2983 * 2. Stop dispatching any I/O by stopping the request_queue. 2984 * 3. Wait for all in-flight I/Os to be completed or requeued. 2985 * 2986 * To abort suspend, start the request_queue. 2987 */ 2988 int dm_suspend(struct mapped_device *md, unsigned int suspend_flags) 2989 { 2990 struct dm_table *map = NULL; 2991 int r = 0; 2992 2993 retry: 2994 mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING); 2995 2996 if (dm_suspended_md(md)) { 2997 r = -EINVAL; 2998 goto out_unlock; 2999 } 3000 3001 if (dm_suspended_internally_md(md)) { 3002 /* already internally suspended, wait for internal resume */ 3003 mutex_unlock(&md->suspend_lock); 3004 r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE); 3005 if (r) 3006 return r; 3007 goto retry; 3008 } 3009 3010 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock)); 3011 if (!map) { 3012 /* avoid deadlock with fs/namespace.c:do_mount() */ 3013 suspend_flags &= ~DM_SUSPEND_LOCKFS_FLAG; 3014 } 3015 3016 r = __dm_suspend(md, map, suspend_flags, TASK_INTERRUPTIBLE, DMF_SUSPENDED); 3017 if (r) 3018 goto out_unlock; 3019 3020 set_bit(DMF_POST_SUSPENDING, &md->flags); 3021 dm_table_postsuspend_targets(map); 3022 clear_bit(DMF_POST_SUSPENDING, &md->flags); 3023 3024 out_unlock: 3025 mutex_unlock(&md->suspend_lock); 3026 return r; 3027 } 3028 3029 static int __dm_resume(struct mapped_device *md, struct dm_table *map) 3030 { 3031 if (map) { 3032 int r = dm_table_resume_targets(map); 3033 3034 if (r) 3035 return r; 3036 } 3037 3038 dm_queue_flush(md); 3039 3040 /* 3041 * Flushing deferred I/Os must be done after targets are resumed 3042 * so that mapping of targets can work correctly. 3043 * Request-based dm is queueing the deferred I/Os in its request_queue. 3044 */ 3045 if (dm_request_based(md)) 3046 dm_start_queue(md->queue); 3047 3048 unlock_fs(md); 3049 3050 return 0; 3051 } 3052 3053 int dm_resume(struct mapped_device *md) 3054 { 3055 int r; 3056 struct dm_table *map = NULL; 3057 3058 retry: 3059 r = -EINVAL; 3060 mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING); 3061 3062 if (!dm_suspended_md(md)) 3063 goto out; 3064 3065 if (dm_suspended_internally_md(md)) { 3066 /* already internally suspended, wait for internal resume */ 3067 mutex_unlock(&md->suspend_lock); 3068 r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE); 3069 if (r) 3070 return r; 3071 goto retry; 3072 } 3073 3074 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock)); 3075 if (!map || !dm_table_get_size(map)) 3076 goto out; 3077 3078 r = __dm_resume(md, map); 3079 if (r) 3080 goto out; 3081 3082 clear_bit(DMF_SUSPENDED, &md->flags); 3083 out: 3084 mutex_unlock(&md->suspend_lock); 3085 3086 return r; 3087 } 3088 3089 /* 3090 * Internal suspend/resume works like userspace-driven suspend. It waits 3091 * until all bios finish and prevents issuing new bios to the target drivers. 3092 * It may be used only from the kernel. 3093 */ 3094 3095 static void __dm_internal_suspend(struct mapped_device *md, unsigned int suspend_flags) 3096 { 3097 struct dm_table *map = NULL; 3098 3099 lockdep_assert_held(&md->suspend_lock); 3100 3101 if (md->internal_suspend_count++) 3102 return; /* nested internal suspend */ 3103 3104 if (dm_suspended_md(md)) { 3105 set_bit(DMF_SUSPENDED_INTERNALLY, &md->flags); 3106 return; /* nest suspend */ 3107 } 3108 3109 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock)); 3110 3111 /* 3112 * Using TASK_UNINTERRUPTIBLE because only NOFLUSH internal suspend is 3113 * supported. Properly supporting a TASK_INTERRUPTIBLE internal suspend 3114 * would require changing .presuspend to return an error -- avoid this 3115 * until there is a need for more elaborate variants of internal suspend. 3116 */ 3117 (void) __dm_suspend(md, map, suspend_flags, TASK_UNINTERRUPTIBLE, 3118 DMF_SUSPENDED_INTERNALLY); 3119 3120 set_bit(DMF_POST_SUSPENDING, &md->flags); 3121 dm_table_postsuspend_targets(map); 3122 clear_bit(DMF_POST_SUSPENDING, &md->flags); 3123 } 3124 3125 static void __dm_internal_resume(struct mapped_device *md) 3126 { 3127 int r; 3128 struct dm_table *map; 3129 3130 BUG_ON(!md->internal_suspend_count); 3131 3132 if (--md->internal_suspend_count) 3133 return; /* resume from nested internal suspend */ 3134 3135 if (dm_suspended_md(md)) 3136 goto done; /* resume from nested suspend */ 3137 3138 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock)); 3139 r = __dm_resume(md, map); 3140 if (r) { 3141 /* 3142 * If a preresume method of some target failed, we are in a 3143 * tricky situation. We can't return an error to the caller. We 3144 * can't fake success because then the "resume" and 3145 * "postsuspend" methods would not be paired correctly, and it 3146 * would break various targets, for example it would cause list 3147 * corruption in the "origin" target. 3148 * 3149 * So, we fake normal suspend here, to make sure that the 3150 * "resume" and "postsuspend" methods will be paired correctly. 3151 */ 3152 DMERR("Preresume method failed: %d", r); 3153 set_bit(DMF_SUSPENDED, &md->flags); 3154 } 3155 done: 3156 clear_bit(DMF_SUSPENDED_INTERNALLY, &md->flags); 3157 smp_mb__after_atomic(); 3158 wake_up_bit(&md->flags, DMF_SUSPENDED_INTERNALLY); 3159 } 3160 3161 void dm_internal_suspend_noflush(struct mapped_device *md) 3162 { 3163 mutex_lock(&md->suspend_lock); 3164 __dm_internal_suspend(md, DM_SUSPEND_NOFLUSH_FLAG); 3165 mutex_unlock(&md->suspend_lock); 3166 } 3167 EXPORT_SYMBOL_GPL(dm_internal_suspend_noflush); 3168 3169 void dm_internal_resume(struct mapped_device *md) 3170 { 3171 mutex_lock(&md->suspend_lock); 3172 __dm_internal_resume(md); 3173 mutex_unlock(&md->suspend_lock); 3174 } 3175 EXPORT_SYMBOL_GPL(dm_internal_resume); 3176 3177 /* 3178 * Fast variants of internal suspend/resume hold md->suspend_lock, 3179 * which prevents interaction with userspace-driven suspend. 3180 */ 3181 3182 void dm_internal_suspend_fast(struct mapped_device *md) 3183 { 3184 mutex_lock(&md->suspend_lock); 3185 if (dm_suspended_md(md) || dm_suspended_internally_md(md)) 3186 return; 3187 3188 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags); 3189 synchronize_srcu(&md->io_barrier); 3190 flush_workqueue(md->wq); 3191 dm_wait_for_completion(md, TASK_UNINTERRUPTIBLE); 3192 } 3193 EXPORT_SYMBOL_GPL(dm_internal_suspend_fast); 3194 3195 void dm_internal_resume_fast(struct mapped_device *md) 3196 { 3197 if (dm_suspended_md(md) || dm_suspended_internally_md(md)) 3198 goto done; 3199 3200 dm_queue_flush(md); 3201 3202 done: 3203 mutex_unlock(&md->suspend_lock); 3204 } 3205 EXPORT_SYMBOL_GPL(dm_internal_resume_fast); 3206 3207 /* 3208 *--------------------------------------------------------------- 3209 * Event notification. 3210 *--------------------------------------------------------------- 3211 */ 3212 int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action, 3213 unsigned int cookie, bool need_resize_uevent) 3214 { 3215 int r; 3216 unsigned int noio_flag; 3217 char udev_cookie[DM_COOKIE_LENGTH]; 3218 char *envp[3] = { NULL, NULL, NULL }; 3219 char **envpp = envp; 3220 if (cookie) { 3221 snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u", 3222 DM_COOKIE_ENV_VAR_NAME, cookie); 3223 *envpp++ = udev_cookie; 3224 } 3225 if (need_resize_uevent) { 3226 *envpp++ = "RESIZE=1"; 3227 } 3228 3229 noio_flag = memalloc_noio_save(); 3230 3231 r = kobject_uevent_env(&disk_to_dev(md->disk)->kobj, action, envp); 3232 3233 memalloc_noio_restore(noio_flag); 3234 3235 return r; 3236 } 3237 3238 uint32_t dm_next_uevent_seq(struct mapped_device *md) 3239 { 3240 return atomic_add_return(1, &md->uevent_seq); 3241 } 3242 3243 uint32_t dm_get_event_nr(struct mapped_device *md) 3244 { 3245 return atomic_read(&md->event_nr); 3246 } 3247 3248 int dm_wait_event(struct mapped_device *md, int event_nr) 3249 { 3250 return wait_event_interruptible(md->eventq, 3251 (event_nr != atomic_read(&md->event_nr))); 3252 } 3253 3254 void dm_uevent_add(struct mapped_device *md, struct list_head *elist) 3255 { 3256 unsigned long flags; 3257 3258 spin_lock_irqsave(&md->uevent_lock, flags); 3259 list_add(elist, &md->uevent_list); 3260 spin_unlock_irqrestore(&md->uevent_lock, flags); 3261 } 3262 3263 /* 3264 * The gendisk is only valid as long as you have a reference 3265 * count on 'md'. 3266 */ 3267 struct gendisk *dm_disk(struct mapped_device *md) 3268 { 3269 return md->disk; 3270 } 3271 EXPORT_SYMBOL_GPL(dm_disk); 3272 3273 struct kobject *dm_kobject(struct mapped_device *md) 3274 { 3275 return &md->kobj_holder.kobj; 3276 } 3277 3278 struct mapped_device *dm_get_from_kobject(struct kobject *kobj) 3279 { 3280 struct mapped_device *md; 3281 3282 md = container_of(kobj, struct mapped_device, kobj_holder.kobj); 3283 3284 spin_lock(&_minor_lock); 3285 if (test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) { 3286 md = NULL; 3287 goto out; 3288 } 3289 dm_get(md); 3290 out: 3291 spin_unlock(&_minor_lock); 3292 3293 return md; 3294 } 3295 3296 int dm_suspended_md(struct mapped_device *md) 3297 { 3298 return test_bit(DMF_SUSPENDED, &md->flags); 3299 } 3300 3301 static int dm_post_suspending_md(struct mapped_device *md) 3302 { 3303 return test_bit(DMF_POST_SUSPENDING, &md->flags); 3304 } 3305 3306 int dm_suspended_internally_md(struct mapped_device *md) 3307 { 3308 return test_bit(DMF_SUSPENDED_INTERNALLY, &md->flags); 3309 } 3310 3311 int dm_test_deferred_remove_flag(struct mapped_device *md) 3312 { 3313 return test_bit(DMF_DEFERRED_REMOVE, &md->flags); 3314 } 3315 3316 int dm_suspended(struct dm_target *ti) 3317 { 3318 return dm_suspended_md(ti->table->md); 3319 } 3320 EXPORT_SYMBOL_GPL(dm_suspended); 3321 3322 int dm_post_suspending(struct dm_target *ti) 3323 { 3324 return dm_post_suspending_md(ti->table->md); 3325 } 3326 EXPORT_SYMBOL_GPL(dm_post_suspending); 3327 3328 int dm_noflush_suspending(struct dm_target *ti) 3329 { 3330 return __noflush_suspending(ti->table->md); 3331 } 3332 EXPORT_SYMBOL_GPL(dm_noflush_suspending); 3333 3334 void dm_free_md_mempools(struct dm_md_mempools *pools) 3335 { 3336 if (!pools) 3337 return; 3338 3339 bioset_exit(&pools->bs); 3340 bioset_exit(&pools->io_bs); 3341 3342 kfree(pools); 3343 } 3344 3345 struct dm_pr { 3346 u64 old_key; 3347 u64 new_key; 3348 u32 flags; 3349 bool abort; 3350 bool fail_early; 3351 int ret; 3352 enum pr_type type; 3353 struct pr_keys *read_keys; 3354 struct pr_held_reservation *rsv; 3355 }; 3356 3357 static int dm_call_pr(struct block_device *bdev, iterate_devices_callout_fn fn, 3358 struct dm_pr *pr) 3359 { 3360 struct mapped_device *md = bdev->bd_disk->private_data; 3361 struct dm_table *table; 3362 struct dm_target *ti; 3363 int ret = -ENOTTY, srcu_idx; 3364 3365 table = dm_get_live_table(md, &srcu_idx); 3366 if (!table || !dm_table_get_size(table)) 3367 goto out; 3368 3369 /* We only support devices that have a single target */ 3370 if (table->num_targets != 1) 3371 goto out; 3372 ti = dm_table_get_target(table, 0); 3373 3374 if (dm_suspended_md(md)) { 3375 ret = -EAGAIN; 3376 goto out; 3377 } 3378 3379 ret = -EINVAL; 3380 if (!ti->type->iterate_devices) 3381 goto out; 3382 3383 ti->type->iterate_devices(ti, fn, pr); 3384 ret = 0; 3385 out: 3386 dm_put_live_table(md, srcu_idx); 3387 return ret; 3388 } 3389 3390 /* 3391 * For register / unregister we need to manually call out to every path. 3392 */ 3393 static int __dm_pr_register(struct dm_target *ti, struct dm_dev *dev, 3394 sector_t start, sector_t len, void *data) 3395 { 3396 struct dm_pr *pr = data; 3397 const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops; 3398 int ret; 3399 3400 if (!ops || !ops->pr_register) { 3401 pr->ret = -EOPNOTSUPP; 3402 return -1; 3403 } 3404 3405 ret = ops->pr_register(dev->bdev, pr->old_key, pr->new_key, pr->flags); 3406 if (!ret) 3407 return 0; 3408 3409 if (!pr->ret) 3410 pr->ret = ret; 3411 3412 if (pr->fail_early) 3413 return -1; 3414 3415 return 0; 3416 } 3417 3418 static int dm_pr_register(struct block_device *bdev, u64 old_key, u64 new_key, 3419 u32 flags) 3420 { 3421 struct dm_pr pr = { 3422 .old_key = old_key, 3423 .new_key = new_key, 3424 .flags = flags, 3425 .fail_early = true, 3426 .ret = 0, 3427 }; 3428 int ret; 3429 3430 ret = dm_call_pr(bdev, __dm_pr_register, &pr); 3431 if (ret) { 3432 /* Didn't even get to register a path */ 3433 return ret; 3434 } 3435 3436 if (!pr.ret) 3437 return 0; 3438 ret = pr.ret; 3439 3440 if (!new_key) 3441 return ret; 3442 3443 /* unregister all paths if we failed to register any path */ 3444 pr.old_key = new_key; 3445 pr.new_key = 0; 3446 pr.flags = 0; 3447 pr.fail_early = false; 3448 (void) dm_call_pr(bdev, __dm_pr_register, &pr); 3449 return ret; 3450 } 3451 3452 3453 static int __dm_pr_reserve(struct dm_target *ti, struct dm_dev *dev, 3454 sector_t start, sector_t len, void *data) 3455 { 3456 struct dm_pr *pr = data; 3457 const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops; 3458 3459 if (!ops || !ops->pr_reserve) { 3460 pr->ret = -EOPNOTSUPP; 3461 return -1; 3462 } 3463 3464 pr->ret = ops->pr_reserve(dev->bdev, pr->old_key, pr->type, pr->flags); 3465 if (!pr->ret) 3466 return -1; 3467 3468 return 0; 3469 } 3470 3471 static int dm_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type, 3472 u32 flags) 3473 { 3474 struct dm_pr pr = { 3475 .old_key = key, 3476 .flags = flags, 3477 .type = type, 3478 .fail_early = false, 3479 .ret = 0, 3480 }; 3481 int ret; 3482 3483 ret = dm_call_pr(bdev, __dm_pr_reserve, &pr); 3484 if (ret) 3485 return ret; 3486 3487 return pr.ret; 3488 } 3489 3490 /* 3491 * If there is a non-All Registrants type of reservation, the release must be 3492 * sent down the holding path. For the cases where there is no reservation or 3493 * the path is not the holder the device will also return success, so we must 3494 * try each path to make sure we got the correct path. 3495 */ 3496 static int __dm_pr_release(struct dm_target *ti, struct dm_dev *dev, 3497 sector_t start, sector_t len, void *data) 3498 { 3499 struct dm_pr *pr = data; 3500 const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops; 3501 3502 if (!ops || !ops->pr_release) { 3503 pr->ret = -EOPNOTSUPP; 3504 return -1; 3505 } 3506 3507 pr->ret = ops->pr_release(dev->bdev, pr->old_key, pr->type); 3508 if (pr->ret) 3509 return -1; 3510 3511 return 0; 3512 } 3513 3514 static int dm_pr_release(struct block_device *bdev, u64 key, enum pr_type type) 3515 { 3516 struct dm_pr pr = { 3517 .old_key = key, 3518 .type = type, 3519 .fail_early = false, 3520 }; 3521 int ret; 3522 3523 ret = dm_call_pr(bdev, __dm_pr_release, &pr); 3524 if (ret) 3525 return ret; 3526 3527 return pr.ret; 3528 } 3529 3530 static int __dm_pr_preempt(struct dm_target *ti, struct dm_dev *dev, 3531 sector_t start, sector_t len, void *data) 3532 { 3533 struct dm_pr *pr = data; 3534 const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops; 3535 3536 if (!ops || !ops->pr_preempt) { 3537 pr->ret = -EOPNOTSUPP; 3538 return -1; 3539 } 3540 3541 pr->ret = ops->pr_preempt(dev->bdev, pr->old_key, pr->new_key, pr->type, 3542 pr->abort); 3543 if (!pr->ret) 3544 return -1; 3545 3546 return 0; 3547 } 3548 3549 static int dm_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key, 3550 enum pr_type type, bool abort) 3551 { 3552 struct dm_pr pr = { 3553 .new_key = new_key, 3554 .old_key = old_key, 3555 .type = type, 3556 .fail_early = false, 3557 }; 3558 int ret; 3559 3560 ret = dm_call_pr(bdev, __dm_pr_preempt, &pr); 3561 if (ret) 3562 return ret; 3563 3564 return pr.ret; 3565 } 3566 3567 static int dm_pr_clear(struct block_device *bdev, u64 key) 3568 { 3569 struct mapped_device *md = bdev->bd_disk->private_data; 3570 const struct pr_ops *ops; 3571 int r, srcu_idx; 3572 3573 r = dm_prepare_ioctl(md, &srcu_idx, &bdev); 3574 if (r < 0) 3575 goto out; 3576 3577 ops = bdev->bd_disk->fops->pr_ops; 3578 if (ops && ops->pr_clear) 3579 r = ops->pr_clear(bdev, key); 3580 else 3581 r = -EOPNOTSUPP; 3582 out: 3583 dm_unprepare_ioctl(md, srcu_idx); 3584 return r; 3585 } 3586 3587 static int __dm_pr_read_keys(struct dm_target *ti, struct dm_dev *dev, 3588 sector_t start, sector_t len, void *data) 3589 { 3590 struct dm_pr *pr = data; 3591 const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops; 3592 3593 if (!ops || !ops->pr_read_keys) { 3594 pr->ret = -EOPNOTSUPP; 3595 return -1; 3596 } 3597 3598 pr->ret = ops->pr_read_keys(dev->bdev, pr->read_keys); 3599 if (!pr->ret) 3600 return -1; 3601 3602 return 0; 3603 } 3604 3605 static int dm_pr_read_keys(struct block_device *bdev, struct pr_keys *keys) 3606 { 3607 struct dm_pr pr = { 3608 .read_keys = keys, 3609 }; 3610 int ret; 3611 3612 ret = dm_call_pr(bdev, __dm_pr_read_keys, &pr); 3613 if (ret) 3614 return ret; 3615 3616 return pr.ret; 3617 } 3618 3619 static int __dm_pr_read_reservation(struct dm_target *ti, struct dm_dev *dev, 3620 sector_t start, sector_t len, void *data) 3621 { 3622 struct dm_pr *pr = data; 3623 const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops; 3624 3625 if (!ops || !ops->pr_read_reservation) { 3626 pr->ret = -EOPNOTSUPP; 3627 return -1; 3628 } 3629 3630 pr->ret = ops->pr_read_reservation(dev->bdev, pr->rsv); 3631 if (!pr->ret) 3632 return -1; 3633 3634 return 0; 3635 } 3636 3637 static int dm_pr_read_reservation(struct block_device *bdev, 3638 struct pr_held_reservation *rsv) 3639 { 3640 struct dm_pr pr = { 3641 .rsv = rsv, 3642 }; 3643 int ret; 3644 3645 ret = dm_call_pr(bdev, __dm_pr_read_reservation, &pr); 3646 if (ret) 3647 return ret; 3648 3649 return pr.ret; 3650 } 3651 3652 static const struct pr_ops dm_pr_ops = { 3653 .pr_register = dm_pr_register, 3654 .pr_reserve = dm_pr_reserve, 3655 .pr_release = dm_pr_release, 3656 .pr_preempt = dm_pr_preempt, 3657 .pr_clear = dm_pr_clear, 3658 .pr_read_keys = dm_pr_read_keys, 3659 .pr_read_reservation = dm_pr_read_reservation, 3660 }; 3661 3662 static const struct block_device_operations dm_blk_dops = { 3663 .submit_bio = dm_submit_bio, 3664 .poll_bio = dm_poll_bio, 3665 .open = dm_blk_open, 3666 .release = dm_blk_close, 3667 .ioctl = dm_blk_ioctl, 3668 .getgeo = dm_blk_getgeo, 3669 .report_zones = dm_blk_report_zones, 3670 .pr_ops = &dm_pr_ops, 3671 .owner = THIS_MODULE 3672 }; 3673 3674 static const struct block_device_operations dm_rq_blk_dops = { 3675 .open = dm_blk_open, 3676 .release = dm_blk_close, 3677 .ioctl = dm_blk_ioctl, 3678 .getgeo = dm_blk_getgeo, 3679 .pr_ops = &dm_pr_ops, 3680 .owner = THIS_MODULE 3681 }; 3682 3683 static const struct dax_operations dm_dax_ops = { 3684 .direct_access = dm_dax_direct_access, 3685 .zero_page_range = dm_dax_zero_page_range, 3686 .recovery_write = dm_dax_recovery_write, 3687 }; 3688 3689 /* 3690 * module hooks 3691 */ 3692 module_init(dm_init); 3693 module_exit(dm_exit); 3694 3695 module_param(major, uint, 0); 3696 MODULE_PARM_DESC(major, "The major number of the device mapper"); 3697 3698 module_param(reserved_bio_based_ios, uint, 0644); 3699 MODULE_PARM_DESC(reserved_bio_based_ios, "Reserved IOs in bio-based mempools"); 3700 3701 module_param(dm_numa_node, int, 0644); 3702 MODULE_PARM_DESC(dm_numa_node, "NUMA node for DM device memory allocations"); 3703 3704 module_param(swap_bios, int, 0644); 3705 MODULE_PARM_DESC(swap_bios, "Maximum allowed inflight swap IOs"); 3706 3707 MODULE_DESCRIPTION(DM_NAME " driver"); 3708 MODULE_AUTHOR("Joe Thornber <dm-devel@lists.linux.dev>"); 3709 MODULE_LICENSE("GPL"); 3710