xref: /linux/drivers/md/dm.c (revision 3932b9ca55b0be314a36d3e84faff3e823c081f5)
1 /*
2  * Copyright (C) 2001, 2002 Sistina Software (UK) Limited.
3  * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
4  *
5  * This file is released under the GPL.
6  */
7 
8 #include "dm.h"
9 #include "dm-uevent.h"
10 
11 #include <linux/init.h>
12 #include <linux/module.h>
13 #include <linux/mutex.h>
14 #include <linux/moduleparam.h>
15 #include <linux/blkpg.h>
16 #include <linux/bio.h>
17 #include <linux/mempool.h>
18 #include <linux/slab.h>
19 #include <linux/idr.h>
20 #include <linux/hdreg.h>
21 #include <linux/delay.h>
22 
23 #include <trace/events/block.h>
24 
25 #define DM_MSG_PREFIX "core"
26 
27 #ifdef CONFIG_PRINTK
28 /*
29  * ratelimit state to be used in DMXXX_LIMIT().
30  */
31 DEFINE_RATELIMIT_STATE(dm_ratelimit_state,
32 		       DEFAULT_RATELIMIT_INTERVAL,
33 		       DEFAULT_RATELIMIT_BURST);
34 EXPORT_SYMBOL(dm_ratelimit_state);
35 #endif
36 
37 /*
38  * Cookies are numeric values sent with CHANGE and REMOVE
39  * uevents while resuming, removing or renaming the device.
40  */
41 #define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE"
42 #define DM_COOKIE_LENGTH 24
43 
44 static const char *_name = DM_NAME;
45 
46 static unsigned int major = 0;
47 static unsigned int _major = 0;
48 
49 static DEFINE_IDR(_minor_idr);
50 
51 static DEFINE_SPINLOCK(_minor_lock);
52 
53 static void do_deferred_remove(struct work_struct *w);
54 
55 static DECLARE_WORK(deferred_remove_work, do_deferred_remove);
56 
57 static struct workqueue_struct *deferred_remove_workqueue;
58 
59 /*
60  * For bio-based dm.
61  * One of these is allocated per bio.
62  */
63 struct dm_io {
64 	struct mapped_device *md;
65 	int error;
66 	atomic_t io_count;
67 	struct bio *bio;
68 	unsigned long start_time;
69 	spinlock_t endio_lock;
70 	struct dm_stats_aux stats_aux;
71 };
72 
73 /*
74  * For request-based dm.
75  * One of these is allocated per request.
76  */
77 struct dm_rq_target_io {
78 	struct mapped_device *md;
79 	struct dm_target *ti;
80 	struct request *orig, clone;
81 	int error;
82 	union map_info info;
83 };
84 
85 /*
86  * For request-based dm - the bio clones we allocate are embedded in these
87  * structs.
88  *
89  * We allocate these with bio_alloc_bioset, using the front_pad parameter when
90  * the bioset is created - this means the bio has to come at the end of the
91  * struct.
92  */
93 struct dm_rq_clone_bio_info {
94 	struct bio *orig;
95 	struct dm_rq_target_io *tio;
96 	struct bio clone;
97 };
98 
99 union map_info *dm_get_rq_mapinfo(struct request *rq)
100 {
101 	if (rq && rq->end_io_data)
102 		return &((struct dm_rq_target_io *)rq->end_io_data)->info;
103 	return NULL;
104 }
105 EXPORT_SYMBOL_GPL(dm_get_rq_mapinfo);
106 
107 #define MINOR_ALLOCED ((void *)-1)
108 
109 /*
110  * Bits for the md->flags field.
111  */
112 #define DMF_BLOCK_IO_FOR_SUSPEND 0
113 #define DMF_SUSPENDED 1
114 #define DMF_FROZEN 2
115 #define DMF_FREEING 3
116 #define DMF_DELETING 4
117 #define DMF_NOFLUSH_SUSPENDING 5
118 #define DMF_MERGE_IS_OPTIONAL 6
119 #define DMF_DEFERRED_REMOVE 7
120 
121 /*
122  * A dummy definition to make RCU happy.
123  * struct dm_table should never be dereferenced in this file.
124  */
125 struct dm_table {
126 	int undefined__;
127 };
128 
129 /*
130  * Work processed by per-device workqueue.
131  */
132 struct mapped_device {
133 	struct srcu_struct io_barrier;
134 	struct mutex suspend_lock;
135 	atomic_t holders;
136 	atomic_t open_count;
137 
138 	/*
139 	 * The current mapping.
140 	 * Use dm_get_live_table{_fast} or take suspend_lock for
141 	 * dereference.
142 	 */
143 	struct dm_table *map;
144 
145 	unsigned long flags;
146 
147 	struct request_queue *queue;
148 	unsigned type;
149 	/* Protect queue and type against concurrent access. */
150 	struct mutex type_lock;
151 
152 	struct target_type *immutable_target_type;
153 
154 	struct gendisk *disk;
155 	char name[16];
156 
157 	void *interface_ptr;
158 
159 	/*
160 	 * A list of ios that arrived while we were suspended.
161 	 */
162 	atomic_t pending[2];
163 	wait_queue_head_t wait;
164 	struct work_struct work;
165 	struct bio_list deferred;
166 	spinlock_t deferred_lock;
167 
168 	/*
169 	 * Processing queue (flush)
170 	 */
171 	struct workqueue_struct *wq;
172 
173 	/*
174 	 * io objects are allocated from here.
175 	 */
176 	mempool_t *io_pool;
177 
178 	struct bio_set *bs;
179 
180 	/*
181 	 * Event handling.
182 	 */
183 	atomic_t event_nr;
184 	wait_queue_head_t eventq;
185 	atomic_t uevent_seq;
186 	struct list_head uevent_list;
187 	spinlock_t uevent_lock; /* Protect access to uevent_list */
188 
189 	/*
190 	 * freeze/thaw support require holding onto a super block
191 	 */
192 	struct super_block *frozen_sb;
193 	struct block_device *bdev;
194 
195 	/* forced geometry settings */
196 	struct hd_geometry geometry;
197 
198 	/* kobject and completion */
199 	struct dm_kobject_holder kobj_holder;
200 
201 	/* zero-length flush that will be cloned and submitted to targets */
202 	struct bio flush_bio;
203 
204 	struct dm_stats stats;
205 };
206 
207 /*
208  * For mempools pre-allocation at the table loading time.
209  */
210 struct dm_md_mempools {
211 	mempool_t *io_pool;
212 	struct bio_set *bs;
213 };
214 
215 #define RESERVED_BIO_BASED_IOS		16
216 #define RESERVED_REQUEST_BASED_IOS	256
217 #define RESERVED_MAX_IOS		1024
218 static struct kmem_cache *_io_cache;
219 static struct kmem_cache *_rq_tio_cache;
220 
221 /*
222  * Bio-based DM's mempools' reserved IOs set by the user.
223  */
224 static unsigned reserved_bio_based_ios = RESERVED_BIO_BASED_IOS;
225 
226 /*
227  * Request-based DM's mempools' reserved IOs set by the user.
228  */
229 static unsigned reserved_rq_based_ios = RESERVED_REQUEST_BASED_IOS;
230 
231 static unsigned __dm_get_reserved_ios(unsigned *reserved_ios,
232 				      unsigned def, unsigned max)
233 {
234 	unsigned ios = ACCESS_ONCE(*reserved_ios);
235 	unsigned modified_ios = 0;
236 
237 	if (!ios)
238 		modified_ios = def;
239 	else if (ios > max)
240 		modified_ios = max;
241 
242 	if (modified_ios) {
243 		(void)cmpxchg(reserved_ios, ios, modified_ios);
244 		ios = modified_ios;
245 	}
246 
247 	return ios;
248 }
249 
250 unsigned dm_get_reserved_bio_based_ios(void)
251 {
252 	return __dm_get_reserved_ios(&reserved_bio_based_ios,
253 				     RESERVED_BIO_BASED_IOS, RESERVED_MAX_IOS);
254 }
255 EXPORT_SYMBOL_GPL(dm_get_reserved_bio_based_ios);
256 
257 unsigned dm_get_reserved_rq_based_ios(void)
258 {
259 	return __dm_get_reserved_ios(&reserved_rq_based_ios,
260 				     RESERVED_REQUEST_BASED_IOS, RESERVED_MAX_IOS);
261 }
262 EXPORT_SYMBOL_GPL(dm_get_reserved_rq_based_ios);
263 
264 static int __init local_init(void)
265 {
266 	int r = -ENOMEM;
267 
268 	/* allocate a slab for the dm_ios */
269 	_io_cache = KMEM_CACHE(dm_io, 0);
270 	if (!_io_cache)
271 		return r;
272 
273 	_rq_tio_cache = KMEM_CACHE(dm_rq_target_io, 0);
274 	if (!_rq_tio_cache)
275 		goto out_free_io_cache;
276 
277 	r = dm_uevent_init();
278 	if (r)
279 		goto out_free_rq_tio_cache;
280 
281 	deferred_remove_workqueue = alloc_workqueue("kdmremove", WQ_UNBOUND, 1);
282 	if (!deferred_remove_workqueue) {
283 		r = -ENOMEM;
284 		goto out_uevent_exit;
285 	}
286 
287 	_major = major;
288 	r = register_blkdev(_major, _name);
289 	if (r < 0)
290 		goto out_free_workqueue;
291 
292 	if (!_major)
293 		_major = r;
294 
295 	return 0;
296 
297 out_free_workqueue:
298 	destroy_workqueue(deferred_remove_workqueue);
299 out_uevent_exit:
300 	dm_uevent_exit();
301 out_free_rq_tio_cache:
302 	kmem_cache_destroy(_rq_tio_cache);
303 out_free_io_cache:
304 	kmem_cache_destroy(_io_cache);
305 
306 	return r;
307 }
308 
309 static void local_exit(void)
310 {
311 	flush_scheduled_work();
312 	destroy_workqueue(deferred_remove_workqueue);
313 
314 	kmem_cache_destroy(_rq_tio_cache);
315 	kmem_cache_destroy(_io_cache);
316 	unregister_blkdev(_major, _name);
317 	dm_uevent_exit();
318 
319 	_major = 0;
320 
321 	DMINFO("cleaned up");
322 }
323 
324 static int (*_inits[])(void) __initdata = {
325 	local_init,
326 	dm_target_init,
327 	dm_linear_init,
328 	dm_stripe_init,
329 	dm_io_init,
330 	dm_kcopyd_init,
331 	dm_interface_init,
332 	dm_statistics_init,
333 };
334 
335 static void (*_exits[])(void) = {
336 	local_exit,
337 	dm_target_exit,
338 	dm_linear_exit,
339 	dm_stripe_exit,
340 	dm_io_exit,
341 	dm_kcopyd_exit,
342 	dm_interface_exit,
343 	dm_statistics_exit,
344 };
345 
346 static int __init dm_init(void)
347 {
348 	const int count = ARRAY_SIZE(_inits);
349 
350 	int r, i;
351 
352 	for (i = 0; i < count; i++) {
353 		r = _inits[i]();
354 		if (r)
355 			goto bad;
356 	}
357 
358 	return 0;
359 
360       bad:
361 	while (i--)
362 		_exits[i]();
363 
364 	return r;
365 }
366 
367 static void __exit dm_exit(void)
368 {
369 	int i = ARRAY_SIZE(_exits);
370 
371 	while (i--)
372 		_exits[i]();
373 
374 	/*
375 	 * Should be empty by this point.
376 	 */
377 	idr_destroy(&_minor_idr);
378 }
379 
380 /*
381  * Block device functions
382  */
383 int dm_deleting_md(struct mapped_device *md)
384 {
385 	return test_bit(DMF_DELETING, &md->flags);
386 }
387 
388 static int dm_blk_open(struct block_device *bdev, fmode_t mode)
389 {
390 	struct mapped_device *md;
391 
392 	spin_lock(&_minor_lock);
393 
394 	md = bdev->bd_disk->private_data;
395 	if (!md)
396 		goto out;
397 
398 	if (test_bit(DMF_FREEING, &md->flags) ||
399 	    dm_deleting_md(md)) {
400 		md = NULL;
401 		goto out;
402 	}
403 
404 	dm_get(md);
405 	atomic_inc(&md->open_count);
406 
407 out:
408 	spin_unlock(&_minor_lock);
409 
410 	return md ? 0 : -ENXIO;
411 }
412 
413 static void dm_blk_close(struct gendisk *disk, fmode_t mode)
414 {
415 	struct mapped_device *md = disk->private_data;
416 
417 	spin_lock(&_minor_lock);
418 
419 	if (atomic_dec_and_test(&md->open_count) &&
420 	    (test_bit(DMF_DEFERRED_REMOVE, &md->flags)))
421 		queue_work(deferred_remove_workqueue, &deferred_remove_work);
422 
423 	dm_put(md);
424 
425 	spin_unlock(&_minor_lock);
426 }
427 
428 int dm_open_count(struct mapped_device *md)
429 {
430 	return atomic_read(&md->open_count);
431 }
432 
433 /*
434  * Guarantees nothing is using the device before it's deleted.
435  */
436 int dm_lock_for_deletion(struct mapped_device *md, bool mark_deferred, bool only_deferred)
437 {
438 	int r = 0;
439 
440 	spin_lock(&_minor_lock);
441 
442 	if (dm_open_count(md)) {
443 		r = -EBUSY;
444 		if (mark_deferred)
445 			set_bit(DMF_DEFERRED_REMOVE, &md->flags);
446 	} else if (only_deferred && !test_bit(DMF_DEFERRED_REMOVE, &md->flags))
447 		r = -EEXIST;
448 	else
449 		set_bit(DMF_DELETING, &md->flags);
450 
451 	spin_unlock(&_minor_lock);
452 
453 	return r;
454 }
455 
456 int dm_cancel_deferred_remove(struct mapped_device *md)
457 {
458 	int r = 0;
459 
460 	spin_lock(&_minor_lock);
461 
462 	if (test_bit(DMF_DELETING, &md->flags))
463 		r = -EBUSY;
464 	else
465 		clear_bit(DMF_DEFERRED_REMOVE, &md->flags);
466 
467 	spin_unlock(&_minor_lock);
468 
469 	return r;
470 }
471 
472 static void do_deferred_remove(struct work_struct *w)
473 {
474 	dm_deferred_remove();
475 }
476 
477 sector_t dm_get_size(struct mapped_device *md)
478 {
479 	return get_capacity(md->disk);
480 }
481 
482 struct request_queue *dm_get_md_queue(struct mapped_device *md)
483 {
484 	return md->queue;
485 }
486 
487 struct dm_stats *dm_get_stats(struct mapped_device *md)
488 {
489 	return &md->stats;
490 }
491 
492 static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
493 {
494 	struct mapped_device *md = bdev->bd_disk->private_data;
495 
496 	return dm_get_geometry(md, geo);
497 }
498 
499 static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode,
500 			unsigned int cmd, unsigned long arg)
501 {
502 	struct mapped_device *md = bdev->bd_disk->private_data;
503 	int srcu_idx;
504 	struct dm_table *map;
505 	struct dm_target *tgt;
506 	int r = -ENOTTY;
507 
508 retry:
509 	map = dm_get_live_table(md, &srcu_idx);
510 
511 	if (!map || !dm_table_get_size(map))
512 		goto out;
513 
514 	/* We only support devices that have a single target */
515 	if (dm_table_get_num_targets(map) != 1)
516 		goto out;
517 
518 	tgt = dm_table_get_target(map, 0);
519 
520 	if (dm_suspended_md(md)) {
521 		r = -EAGAIN;
522 		goto out;
523 	}
524 
525 	if (tgt->type->ioctl)
526 		r = tgt->type->ioctl(tgt, cmd, arg);
527 
528 out:
529 	dm_put_live_table(md, srcu_idx);
530 
531 	if (r == -ENOTCONN) {
532 		msleep(10);
533 		goto retry;
534 	}
535 
536 	return r;
537 }
538 
539 static struct dm_io *alloc_io(struct mapped_device *md)
540 {
541 	return mempool_alloc(md->io_pool, GFP_NOIO);
542 }
543 
544 static void free_io(struct mapped_device *md, struct dm_io *io)
545 {
546 	mempool_free(io, md->io_pool);
547 }
548 
549 static void free_tio(struct mapped_device *md, struct dm_target_io *tio)
550 {
551 	bio_put(&tio->clone);
552 }
553 
554 static struct dm_rq_target_io *alloc_rq_tio(struct mapped_device *md,
555 					    gfp_t gfp_mask)
556 {
557 	return mempool_alloc(md->io_pool, gfp_mask);
558 }
559 
560 static void free_rq_tio(struct dm_rq_target_io *tio)
561 {
562 	mempool_free(tio, tio->md->io_pool);
563 }
564 
565 static int md_in_flight(struct mapped_device *md)
566 {
567 	return atomic_read(&md->pending[READ]) +
568 	       atomic_read(&md->pending[WRITE]);
569 }
570 
571 static void start_io_acct(struct dm_io *io)
572 {
573 	struct mapped_device *md = io->md;
574 	struct bio *bio = io->bio;
575 	int cpu;
576 	int rw = bio_data_dir(bio);
577 
578 	io->start_time = jiffies;
579 
580 	cpu = part_stat_lock();
581 	part_round_stats(cpu, &dm_disk(md)->part0);
582 	part_stat_unlock();
583 	atomic_set(&dm_disk(md)->part0.in_flight[rw],
584 		atomic_inc_return(&md->pending[rw]));
585 
586 	if (unlikely(dm_stats_used(&md->stats)))
587 		dm_stats_account_io(&md->stats, bio->bi_rw, bio->bi_iter.bi_sector,
588 				    bio_sectors(bio), false, 0, &io->stats_aux);
589 }
590 
591 static void end_io_acct(struct dm_io *io)
592 {
593 	struct mapped_device *md = io->md;
594 	struct bio *bio = io->bio;
595 	unsigned long duration = jiffies - io->start_time;
596 	int pending, cpu;
597 	int rw = bio_data_dir(bio);
598 
599 	cpu = part_stat_lock();
600 	part_round_stats(cpu, &dm_disk(md)->part0);
601 	part_stat_add(cpu, &dm_disk(md)->part0, ticks[rw], duration);
602 	part_stat_unlock();
603 
604 	if (unlikely(dm_stats_used(&md->stats)))
605 		dm_stats_account_io(&md->stats, bio->bi_rw, bio->bi_iter.bi_sector,
606 				    bio_sectors(bio), true, duration, &io->stats_aux);
607 
608 	/*
609 	 * After this is decremented the bio must not be touched if it is
610 	 * a flush.
611 	 */
612 	pending = atomic_dec_return(&md->pending[rw]);
613 	atomic_set(&dm_disk(md)->part0.in_flight[rw], pending);
614 	pending += atomic_read(&md->pending[rw^0x1]);
615 
616 	/* nudge anyone waiting on suspend queue */
617 	if (!pending)
618 		wake_up(&md->wait);
619 }
620 
621 /*
622  * Add the bio to the list of deferred io.
623  */
624 static void queue_io(struct mapped_device *md, struct bio *bio)
625 {
626 	unsigned long flags;
627 
628 	spin_lock_irqsave(&md->deferred_lock, flags);
629 	bio_list_add(&md->deferred, bio);
630 	spin_unlock_irqrestore(&md->deferred_lock, flags);
631 	queue_work(md->wq, &md->work);
632 }
633 
634 /*
635  * Everyone (including functions in this file), should use this
636  * function to access the md->map field, and make sure they call
637  * dm_put_live_table() when finished.
638  */
639 struct dm_table *dm_get_live_table(struct mapped_device *md, int *srcu_idx) __acquires(md->io_barrier)
640 {
641 	*srcu_idx = srcu_read_lock(&md->io_barrier);
642 
643 	return srcu_dereference(md->map, &md->io_barrier);
644 }
645 
646 void dm_put_live_table(struct mapped_device *md, int srcu_idx) __releases(md->io_barrier)
647 {
648 	srcu_read_unlock(&md->io_barrier, srcu_idx);
649 }
650 
651 void dm_sync_table(struct mapped_device *md)
652 {
653 	synchronize_srcu(&md->io_barrier);
654 	synchronize_rcu_expedited();
655 }
656 
657 /*
658  * A fast alternative to dm_get_live_table/dm_put_live_table.
659  * The caller must not block between these two functions.
660  */
661 static struct dm_table *dm_get_live_table_fast(struct mapped_device *md) __acquires(RCU)
662 {
663 	rcu_read_lock();
664 	return rcu_dereference(md->map);
665 }
666 
667 static void dm_put_live_table_fast(struct mapped_device *md) __releases(RCU)
668 {
669 	rcu_read_unlock();
670 }
671 
672 /*
673  * Get the geometry associated with a dm device
674  */
675 int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo)
676 {
677 	*geo = md->geometry;
678 
679 	return 0;
680 }
681 
682 /*
683  * Set the geometry of a device.
684  */
685 int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo)
686 {
687 	sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors;
688 
689 	if (geo->start > sz) {
690 		DMWARN("Start sector is beyond the geometry limits.");
691 		return -EINVAL;
692 	}
693 
694 	md->geometry = *geo;
695 
696 	return 0;
697 }
698 
699 /*-----------------------------------------------------------------
700  * CRUD START:
701  *   A more elegant soln is in the works that uses the queue
702  *   merge fn, unfortunately there are a couple of changes to
703  *   the block layer that I want to make for this.  So in the
704  *   interests of getting something for people to use I give
705  *   you this clearly demarcated crap.
706  *---------------------------------------------------------------*/
707 
708 static int __noflush_suspending(struct mapped_device *md)
709 {
710 	return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
711 }
712 
713 /*
714  * Decrements the number of outstanding ios that a bio has been
715  * cloned into, completing the original io if necc.
716  */
717 static void dec_pending(struct dm_io *io, int error)
718 {
719 	unsigned long flags;
720 	int io_error;
721 	struct bio *bio;
722 	struct mapped_device *md = io->md;
723 
724 	/* Push-back supersedes any I/O errors */
725 	if (unlikely(error)) {
726 		spin_lock_irqsave(&io->endio_lock, flags);
727 		if (!(io->error > 0 && __noflush_suspending(md)))
728 			io->error = error;
729 		spin_unlock_irqrestore(&io->endio_lock, flags);
730 	}
731 
732 	if (atomic_dec_and_test(&io->io_count)) {
733 		if (io->error == DM_ENDIO_REQUEUE) {
734 			/*
735 			 * Target requested pushing back the I/O.
736 			 */
737 			spin_lock_irqsave(&md->deferred_lock, flags);
738 			if (__noflush_suspending(md))
739 				bio_list_add_head(&md->deferred, io->bio);
740 			else
741 				/* noflush suspend was interrupted. */
742 				io->error = -EIO;
743 			spin_unlock_irqrestore(&md->deferred_lock, flags);
744 		}
745 
746 		io_error = io->error;
747 		bio = io->bio;
748 		end_io_acct(io);
749 		free_io(md, io);
750 
751 		if (io_error == DM_ENDIO_REQUEUE)
752 			return;
753 
754 		if ((bio->bi_rw & REQ_FLUSH) && bio->bi_iter.bi_size) {
755 			/*
756 			 * Preflush done for flush with data, reissue
757 			 * without REQ_FLUSH.
758 			 */
759 			bio->bi_rw &= ~REQ_FLUSH;
760 			queue_io(md, bio);
761 		} else {
762 			/* done with normal IO or empty flush */
763 			trace_block_bio_complete(md->queue, bio, io_error);
764 			bio_endio(bio, io_error);
765 		}
766 	}
767 }
768 
769 static void disable_write_same(struct mapped_device *md)
770 {
771 	struct queue_limits *limits = dm_get_queue_limits(md);
772 
773 	/* device doesn't really support WRITE SAME, disable it */
774 	limits->max_write_same_sectors = 0;
775 }
776 
777 static void clone_endio(struct bio *bio, int error)
778 {
779 	int r = 0;
780 	struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
781 	struct dm_io *io = tio->io;
782 	struct mapped_device *md = tio->io->md;
783 	dm_endio_fn endio = tio->ti->type->end_io;
784 
785 	if (!bio_flagged(bio, BIO_UPTODATE) && !error)
786 		error = -EIO;
787 
788 	if (endio) {
789 		r = endio(tio->ti, bio, error);
790 		if (r < 0 || r == DM_ENDIO_REQUEUE)
791 			/*
792 			 * error and requeue request are handled
793 			 * in dec_pending().
794 			 */
795 			error = r;
796 		else if (r == DM_ENDIO_INCOMPLETE)
797 			/* The target will handle the io */
798 			return;
799 		else if (r) {
800 			DMWARN("unimplemented target endio return value: %d", r);
801 			BUG();
802 		}
803 	}
804 
805 	if (unlikely(r == -EREMOTEIO && (bio->bi_rw & REQ_WRITE_SAME) &&
806 		     !bdev_get_queue(bio->bi_bdev)->limits.max_write_same_sectors))
807 		disable_write_same(md);
808 
809 	free_tio(md, tio);
810 	dec_pending(io, error);
811 }
812 
813 /*
814  * Partial completion handling for request-based dm
815  */
816 static void end_clone_bio(struct bio *clone, int error)
817 {
818 	struct dm_rq_clone_bio_info *info =
819 		container_of(clone, struct dm_rq_clone_bio_info, clone);
820 	struct dm_rq_target_io *tio = info->tio;
821 	struct bio *bio = info->orig;
822 	unsigned int nr_bytes = info->orig->bi_iter.bi_size;
823 
824 	bio_put(clone);
825 
826 	if (tio->error)
827 		/*
828 		 * An error has already been detected on the request.
829 		 * Once error occurred, just let clone->end_io() handle
830 		 * the remainder.
831 		 */
832 		return;
833 	else if (error) {
834 		/*
835 		 * Don't notice the error to the upper layer yet.
836 		 * The error handling decision is made by the target driver,
837 		 * when the request is completed.
838 		 */
839 		tio->error = error;
840 		return;
841 	}
842 
843 	/*
844 	 * I/O for the bio successfully completed.
845 	 * Notice the data completion to the upper layer.
846 	 */
847 
848 	/*
849 	 * bios are processed from the head of the list.
850 	 * So the completing bio should always be rq->bio.
851 	 * If it's not, something wrong is happening.
852 	 */
853 	if (tio->orig->bio != bio)
854 		DMERR("bio completion is going in the middle of the request");
855 
856 	/*
857 	 * Update the original request.
858 	 * Do not use blk_end_request() here, because it may complete
859 	 * the original request before the clone, and break the ordering.
860 	 */
861 	blk_update_request(tio->orig, 0, nr_bytes);
862 }
863 
864 /*
865  * Don't touch any member of the md after calling this function because
866  * the md may be freed in dm_put() at the end of this function.
867  * Or do dm_get() before calling this function and dm_put() later.
868  */
869 static void rq_completed(struct mapped_device *md, int rw, int run_queue)
870 {
871 	atomic_dec(&md->pending[rw]);
872 
873 	/* nudge anyone waiting on suspend queue */
874 	if (!md_in_flight(md))
875 		wake_up(&md->wait);
876 
877 	/*
878 	 * Run this off this callpath, as drivers could invoke end_io while
879 	 * inside their request_fn (and holding the queue lock). Calling
880 	 * back into ->request_fn() could deadlock attempting to grab the
881 	 * queue lock again.
882 	 */
883 	if (run_queue)
884 		blk_run_queue_async(md->queue);
885 
886 	/*
887 	 * dm_put() must be at the end of this function. See the comment above
888 	 */
889 	dm_put(md);
890 }
891 
892 static void free_rq_clone(struct request *clone)
893 {
894 	struct dm_rq_target_io *tio = clone->end_io_data;
895 
896 	blk_rq_unprep_clone(clone);
897 	free_rq_tio(tio);
898 }
899 
900 /*
901  * Complete the clone and the original request.
902  * Must be called without queue lock.
903  */
904 static void dm_end_request(struct request *clone, int error)
905 {
906 	int rw = rq_data_dir(clone);
907 	struct dm_rq_target_io *tio = clone->end_io_data;
908 	struct mapped_device *md = tio->md;
909 	struct request *rq = tio->orig;
910 
911 	if (rq->cmd_type == REQ_TYPE_BLOCK_PC) {
912 		rq->errors = clone->errors;
913 		rq->resid_len = clone->resid_len;
914 
915 		if (rq->sense)
916 			/*
917 			 * We are using the sense buffer of the original
918 			 * request.
919 			 * So setting the length of the sense data is enough.
920 			 */
921 			rq->sense_len = clone->sense_len;
922 	}
923 
924 	free_rq_clone(clone);
925 	blk_end_request_all(rq, error);
926 	rq_completed(md, rw, true);
927 }
928 
929 static void dm_unprep_request(struct request *rq)
930 {
931 	struct request *clone = rq->special;
932 
933 	rq->special = NULL;
934 	rq->cmd_flags &= ~REQ_DONTPREP;
935 
936 	free_rq_clone(clone);
937 }
938 
939 /*
940  * Requeue the original request of a clone.
941  */
942 void dm_requeue_unmapped_request(struct request *clone)
943 {
944 	int rw = rq_data_dir(clone);
945 	struct dm_rq_target_io *tio = clone->end_io_data;
946 	struct mapped_device *md = tio->md;
947 	struct request *rq = tio->orig;
948 	struct request_queue *q = rq->q;
949 	unsigned long flags;
950 
951 	dm_unprep_request(rq);
952 
953 	spin_lock_irqsave(q->queue_lock, flags);
954 	blk_requeue_request(q, rq);
955 	spin_unlock_irqrestore(q->queue_lock, flags);
956 
957 	rq_completed(md, rw, 0);
958 }
959 EXPORT_SYMBOL_GPL(dm_requeue_unmapped_request);
960 
961 static void __stop_queue(struct request_queue *q)
962 {
963 	blk_stop_queue(q);
964 }
965 
966 static void stop_queue(struct request_queue *q)
967 {
968 	unsigned long flags;
969 
970 	spin_lock_irqsave(q->queue_lock, flags);
971 	__stop_queue(q);
972 	spin_unlock_irqrestore(q->queue_lock, flags);
973 }
974 
975 static void __start_queue(struct request_queue *q)
976 {
977 	if (blk_queue_stopped(q))
978 		blk_start_queue(q);
979 }
980 
981 static void start_queue(struct request_queue *q)
982 {
983 	unsigned long flags;
984 
985 	spin_lock_irqsave(q->queue_lock, flags);
986 	__start_queue(q);
987 	spin_unlock_irqrestore(q->queue_lock, flags);
988 }
989 
990 static void dm_done(struct request *clone, int error, bool mapped)
991 {
992 	int r = error;
993 	struct dm_rq_target_io *tio = clone->end_io_data;
994 	dm_request_endio_fn rq_end_io = NULL;
995 
996 	if (tio->ti) {
997 		rq_end_io = tio->ti->type->rq_end_io;
998 
999 		if (mapped && rq_end_io)
1000 			r = rq_end_io(tio->ti, clone, error, &tio->info);
1001 	}
1002 
1003 	if (unlikely(r == -EREMOTEIO && (clone->cmd_flags & REQ_WRITE_SAME) &&
1004 		     !clone->q->limits.max_write_same_sectors))
1005 		disable_write_same(tio->md);
1006 
1007 	if (r <= 0)
1008 		/* The target wants to complete the I/O */
1009 		dm_end_request(clone, r);
1010 	else if (r == DM_ENDIO_INCOMPLETE)
1011 		/* The target will handle the I/O */
1012 		return;
1013 	else if (r == DM_ENDIO_REQUEUE)
1014 		/* The target wants to requeue the I/O */
1015 		dm_requeue_unmapped_request(clone);
1016 	else {
1017 		DMWARN("unimplemented target endio return value: %d", r);
1018 		BUG();
1019 	}
1020 }
1021 
1022 /*
1023  * Request completion handler for request-based dm
1024  */
1025 static void dm_softirq_done(struct request *rq)
1026 {
1027 	bool mapped = true;
1028 	struct request *clone = rq->completion_data;
1029 	struct dm_rq_target_io *tio = clone->end_io_data;
1030 
1031 	if (rq->cmd_flags & REQ_FAILED)
1032 		mapped = false;
1033 
1034 	dm_done(clone, tio->error, mapped);
1035 }
1036 
1037 /*
1038  * Complete the clone and the original request with the error status
1039  * through softirq context.
1040  */
1041 static void dm_complete_request(struct request *clone, int error)
1042 {
1043 	struct dm_rq_target_io *tio = clone->end_io_data;
1044 	struct request *rq = tio->orig;
1045 
1046 	tio->error = error;
1047 	rq->completion_data = clone;
1048 	blk_complete_request(rq);
1049 }
1050 
1051 /*
1052  * Complete the not-mapped clone and the original request with the error status
1053  * through softirq context.
1054  * Target's rq_end_io() function isn't called.
1055  * This may be used when the target's map_rq() function fails.
1056  */
1057 void dm_kill_unmapped_request(struct request *clone, int error)
1058 {
1059 	struct dm_rq_target_io *tio = clone->end_io_data;
1060 	struct request *rq = tio->orig;
1061 
1062 	rq->cmd_flags |= REQ_FAILED;
1063 	dm_complete_request(clone, error);
1064 }
1065 EXPORT_SYMBOL_GPL(dm_kill_unmapped_request);
1066 
1067 /*
1068  * Called with the queue lock held
1069  */
1070 static void end_clone_request(struct request *clone, int error)
1071 {
1072 	/*
1073 	 * For just cleaning up the information of the queue in which
1074 	 * the clone was dispatched.
1075 	 * The clone is *NOT* freed actually here because it is alloced from
1076 	 * dm own mempool and REQ_ALLOCED isn't set in clone->cmd_flags.
1077 	 */
1078 	__blk_put_request(clone->q, clone);
1079 
1080 	/*
1081 	 * Actual request completion is done in a softirq context which doesn't
1082 	 * hold the queue lock.  Otherwise, deadlock could occur because:
1083 	 *     - another request may be submitted by the upper level driver
1084 	 *       of the stacking during the completion
1085 	 *     - the submission which requires queue lock may be done
1086 	 *       against this queue
1087 	 */
1088 	dm_complete_request(clone, error);
1089 }
1090 
1091 /*
1092  * Return maximum size of I/O possible at the supplied sector up to the current
1093  * target boundary.
1094  */
1095 static sector_t max_io_len_target_boundary(sector_t sector, struct dm_target *ti)
1096 {
1097 	sector_t target_offset = dm_target_offset(ti, sector);
1098 
1099 	return ti->len - target_offset;
1100 }
1101 
1102 static sector_t max_io_len(sector_t sector, struct dm_target *ti)
1103 {
1104 	sector_t len = max_io_len_target_boundary(sector, ti);
1105 	sector_t offset, max_len;
1106 
1107 	/*
1108 	 * Does the target need to split even further?
1109 	 */
1110 	if (ti->max_io_len) {
1111 		offset = dm_target_offset(ti, sector);
1112 		if (unlikely(ti->max_io_len & (ti->max_io_len - 1)))
1113 			max_len = sector_div(offset, ti->max_io_len);
1114 		else
1115 			max_len = offset & (ti->max_io_len - 1);
1116 		max_len = ti->max_io_len - max_len;
1117 
1118 		if (len > max_len)
1119 			len = max_len;
1120 	}
1121 
1122 	return len;
1123 }
1124 
1125 int dm_set_target_max_io_len(struct dm_target *ti, sector_t len)
1126 {
1127 	if (len > UINT_MAX) {
1128 		DMERR("Specified maximum size of target IO (%llu) exceeds limit (%u)",
1129 		      (unsigned long long)len, UINT_MAX);
1130 		ti->error = "Maximum size of target IO is too large";
1131 		return -EINVAL;
1132 	}
1133 
1134 	ti->max_io_len = (uint32_t) len;
1135 
1136 	return 0;
1137 }
1138 EXPORT_SYMBOL_GPL(dm_set_target_max_io_len);
1139 
1140 /*
1141  * A target may call dm_accept_partial_bio only from the map routine.  It is
1142  * allowed for all bio types except REQ_FLUSH.
1143  *
1144  * dm_accept_partial_bio informs the dm that the target only wants to process
1145  * additional n_sectors sectors of the bio and the rest of the data should be
1146  * sent in a next bio.
1147  *
1148  * A diagram that explains the arithmetics:
1149  * +--------------------+---------------+-------+
1150  * |         1          |       2       |   3   |
1151  * +--------------------+---------------+-------+
1152  *
1153  * <-------------- *tio->len_ptr --------------->
1154  *                      <------- bi_size ------->
1155  *                      <-- n_sectors -->
1156  *
1157  * Region 1 was already iterated over with bio_advance or similar function.
1158  *	(it may be empty if the target doesn't use bio_advance)
1159  * Region 2 is the remaining bio size that the target wants to process.
1160  *	(it may be empty if region 1 is non-empty, although there is no reason
1161  *	 to make it empty)
1162  * The target requires that region 3 is to be sent in the next bio.
1163  *
1164  * If the target wants to receive multiple copies of the bio (via num_*bios, etc),
1165  * the partially processed part (the sum of regions 1+2) must be the same for all
1166  * copies of the bio.
1167  */
1168 void dm_accept_partial_bio(struct bio *bio, unsigned n_sectors)
1169 {
1170 	struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
1171 	unsigned bi_size = bio->bi_iter.bi_size >> SECTOR_SHIFT;
1172 	BUG_ON(bio->bi_rw & REQ_FLUSH);
1173 	BUG_ON(bi_size > *tio->len_ptr);
1174 	BUG_ON(n_sectors > bi_size);
1175 	*tio->len_ptr -= bi_size - n_sectors;
1176 	bio->bi_iter.bi_size = n_sectors << SECTOR_SHIFT;
1177 }
1178 EXPORT_SYMBOL_GPL(dm_accept_partial_bio);
1179 
1180 static void __map_bio(struct dm_target_io *tio)
1181 {
1182 	int r;
1183 	sector_t sector;
1184 	struct mapped_device *md;
1185 	struct bio *clone = &tio->clone;
1186 	struct dm_target *ti = tio->ti;
1187 
1188 	clone->bi_end_io = clone_endio;
1189 
1190 	/*
1191 	 * Map the clone.  If r == 0 we don't need to do
1192 	 * anything, the target has assumed ownership of
1193 	 * this io.
1194 	 */
1195 	atomic_inc(&tio->io->io_count);
1196 	sector = clone->bi_iter.bi_sector;
1197 	r = ti->type->map(ti, clone);
1198 	if (r == DM_MAPIO_REMAPPED) {
1199 		/* the bio has been remapped so dispatch it */
1200 
1201 		trace_block_bio_remap(bdev_get_queue(clone->bi_bdev), clone,
1202 				      tio->io->bio->bi_bdev->bd_dev, sector);
1203 
1204 		generic_make_request(clone);
1205 	} else if (r < 0 || r == DM_MAPIO_REQUEUE) {
1206 		/* error the io and bail out, or requeue it if needed */
1207 		md = tio->io->md;
1208 		dec_pending(tio->io, r);
1209 		free_tio(md, tio);
1210 	} else if (r) {
1211 		DMWARN("unimplemented target map return value: %d", r);
1212 		BUG();
1213 	}
1214 }
1215 
1216 struct clone_info {
1217 	struct mapped_device *md;
1218 	struct dm_table *map;
1219 	struct bio *bio;
1220 	struct dm_io *io;
1221 	sector_t sector;
1222 	unsigned sector_count;
1223 };
1224 
1225 static void bio_setup_sector(struct bio *bio, sector_t sector, unsigned len)
1226 {
1227 	bio->bi_iter.bi_sector = sector;
1228 	bio->bi_iter.bi_size = to_bytes(len);
1229 }
1230 
1231 /*
1232  * Creates a bio that consists of range of complete bvecs.
1233  */
1234 static void clone_bio(struct dm_target_io *tio, struct bio *bio,
1235 		      sector_t sector, unsigned len)
1236 {
1237 	struct bio *clone = &tio->clone;
1238 
1239 	__bio_clone_fast(clone, bio);
1240 
1241 	if (bio_integrity(bio))
1242 		bio_integrity_clone(clone, bio, GFP_NOIO);
1243 
1244 	bio_advance(clone, to_bytes(sector - clone->bi_iter.bi_sector));
1245 	clone->bi_iter.bi_size = to_bytes(len);
1246 
1247 	if (bio_integrity(bio))
1248 		bio_integrity_trim(clone, 0, len);
1249 }
1250 
1251 static struct dm_target_io *alloc_tio(struct clone_info *ci,
1252 				      struct dm_target *ti, int nr_iovecs,
1253 				      unsigned target_bio_nr)
1254 {
1255 	struct dm_target_io *tio;
1256 	struct bio *clone;
1257 
1258 	clone = bio_alloc_bioset(GFP_NOIO, nr_iovecs, ci->md->bs);
1259 	tio = container_of(clone, struct dm_target_io, clone);
1260 
1261 	tio->io = ci->io;
1262 	tio->ti = ti;
1263 	tio->target_bio_nr = target_bio_nr;
1264 
1265 	return tio;
1266 }
1267 
1268 static void __clone_and_map_simple_bio(struct clone_info *ci,
1269 				       struct dm_target *ti,
1270 				       unsigned target_bio_nr, unsigned *len)
1271 {
1272 	struct dm_target_io *tio = alloc_tio(ci, ti, ci->bio->bi_max_vecs, target_bio_nr);
1273 	struct bio *clone = &tio->clone;
1274 
1275 	tio->len_ptr = len;
1276 
1277 	/*
1278 	 * Discard requests require the bio's inline iovecs be initialized.
1279 	 * ci->bio->bi_max_vecs is BIO_INLINE_VECS anyway, for both flush
1280 	 * and discard, so no need for concern about wasted bvec allocations.
1281 	 */
1282 	 __bio_clone_fast(clone, ci->bio);
1283 	if (len)
1284 		bio_setup_sector(clone, ci->sector, *len);
1285 
1286 	__map_bio(tio);
1287 }
1288 
1289 static void __send_duplicate_bios(struct clone_info *ci, struct dm_target *ti,
1290 				  unsigned num_bios, unsigned *len)
1291 {
1292 	unsigned target_bio_nr;
1293 
1294 	for (target_bio_nr = 0; target_bio_nr < num_bios; target_bio_nr++)
1295 		__clone_and_map_simple_bio(ci, ti, target_bio_nr, len);
1296 }
1297 
1298 static int __send_empty_flush(struct clone_info *ci)
1299 {
1300 	unsigned target_nr = 0;
1301 	struct dm_target *ti;
1302 
1303 	BUG_ON(bio_has_data(ci->bio));
1304 	while ((ti = dm_table_get_target(ci->map, target_nr++)))
1305 		__send_duplicate_bios(ci, ti, ti->num_flush_bios, NULL);
1306 
1307 	return 0;
1308 }
1309 
1310 static void __clone_and_map_data_bio(struct clone_info *ci, struct dm_target *ti,
1311 				     sector_t sector, unsigned *len)
1312 {
1313 	struct bio *bio = ci->bio;
1314 	struct dm_target_io *tio;
1315 	unsigned target_bio_nr;
1316 	unsigned num_target_bios = 1;
1317 
1318 	/*
1319 	 * Does the target want to receive duplicate copies of the bio?
1320 	 */
1321 	if (bio_data_dir(bio) == WRITE && ti->num_write_bios)
1322 		num_target_bios = ti->num_write_bios(ti, bio);
1323 
1324 	for (target_bio_nr = 0; target_bio_nr < num_target_bios; target_bio_nr++) {
1325 		tio = alloc_tio(ci, ti, 0, target_bio_nr);
1326 		tio->len_ptr = len;
1327 		clone_bio(tio, bio, sector, *len);
1328 		__map_bio(tio);
1329 	}
1330 }
1331 
1332 typedef unsigned (*get_num_bios_fn)(struct dm_target *ti);
1333 
1334 static unsigned get_num_discard_bios(struct dm_target *ti)
1335 {
1336 	return ti->num_discard_bios;
1337 }
1338 
1339 static unsigned get_num_write_same_bios(struct dm_target *ti)
1340 {
1341 	return ti->num_write_same_bios;
1342 }
1343 
1344 typedef bool (*is_split_required_fn)(struct dm_target *ti);
1345 
1346 static bool is_split_required_for_discard(struct dm_target *ti)
1347 {
1348 	return ti->split_discard_bios;
1349 }
1350 
1351 static int __send_changing_extent_only(struct clone_info *ci,
1352 				       get_num_bios_fn get_num_bios,
1353 				       is_split_required_fn is_split_required)
1354 {
1355 	struct dm_target *ti;
1356 	unsigned len;
1357 	unsigned num_bios;
1358 
1359 	do {
1360 		ti = dm_table_find_target(ci->map, ci->sector);
1361 		if (!dm_target_is_valid(ti))
1362 			return -EIO;
1363 
1364 		/*
1365 		 * Even though the device advertised support for this type of
1366 		 * request, that does not mean every target supports it, and
1367 		 * reconfiguration might also have changed that since the
1368 		 * check was performed.
1369 		 */
1370 		num_bios = get_num_bios ? get_num_bios(ti) : 0;
1371 		if (!num_bios)
1372 			return -EOPNOTSUPP;
1373 
1374 		if (is_split_required && !is_split_required(ti))
1375 			len = min((sector_t)ci->sector_count, max_io_len_target_boundary(ci->sector, ti));
1376 		else
1377 			len = min((sector_t)ci->sector_count, max_io_len(ci->sector, ti));
1378 
1379 		__send_duplicate_bios(ci, ti, num_bios, &len);
1380 
1381 		ci->sector += len;
1382 	} while (ci->sector_count -= len);
1383 
1384 	return 0;
1385 }
1386 
1387 static int __send_discard(struct clone_info *ci)
1388 {
1389 	return __send_changing_extent_only(ci, get_num_discard_bios,
1390 					   is_split_required_for_discard);
1391 }
1392 
1393 static int __send_write_same(struct clone_info *ci)
1394 {
1395 	return __send_changing_extent_only(ci, get_num_write_same_bios, NULL);
1396 }
1397 
1398 /*
1399  * Select the correct strategy for processing a non-flush bio.
1400  */
1401 static int __split_and_process_non_flush(struct clone_info *ci)
1402 {
1403 	struct bio *bio = ci->bio;
1404 	struct dm_target *ti;
1405 	unsigned len;
1406 
1407 	if (unlikely(bio->bi_rw & REQ_DISCARD))
1408 		return __send_discard(ci);
1409 	else if (unlikely(bio->bi_rw & REQ_WRITE_SAME))
1410 		return __send_write_same(ci);
1411 
1412 	ti = dm_table_find_target(ci->map, ci->sector);
1413 	if (!dm_target_is_valid(ti))
1414 		return -EIO;
1415 
1416 	len = min_t(sector_t, max_io_len(ci->sector, ti), ci->sector_count);
1417 
1418 	__clone_and_map_data_bio(ci, ti, ci->sector, &len);
1419 
1420 	ci->sector += len;
1421 	ci->sector_count -= len;
1422 
1423 	return 0;
1424 }
1425 
1426 /*
1427  * Entry point to split a bio into clones and submit them to the targets.
1428  */
1429 static void __split_and_process_bio(struct mapped_device *md,
1430 				    struct dm_table *map, struct bio *bio)
1431 {
1432 	struct clone_info ci;
1433 	int error = 0;
1434 
1435 	if (unlikely(!map)) {
1436 		bio_io_error(bio);
1437 		return;
1438 	}
1439 
1440 	ci.map = map;
1441 	ci.md = md;
1442 	ci.io = alloc_io(md);
1443 	ci.io->error = 0;
1444 	atomic_set(&ci.io->io_count, 1);
1445 	ci.io->bio = bio;
1446 	ci.io->md = md;
1447 	spin_lock_init(&ci.io->endio_lock);
1448 	ci.sector = bio->bi_iter.bi_sector;
1449 
1450 	start_io_acct(ci.io);
1451 
1452 	if (bio->bi_rw & REQ_FLUSH) {
1453 		ci.bio = &ci.md->flush_bio;
1454 		ci.sector_count = 0;
1455 		error = __send_empty_flush(&ci);
1456 		/* dec_pending submits any data associated with flush */
1457 	} else {
1458 		ci.bio = bio;
1459 		ci.sector_count = bio_sectors(bio);
1460 		while (ci.sector_count && !error)
1461 			error = __split_and_process_non_flush(&ci);
1462 	}
1463 
1464 	/* drop the extra reference count */
1465 	dec_pending(ci.io, error);
1466 }
1467 /*-----------------------------------------------------------------
1468  * CRUD END
1469  *---------------------------------------------------------------*/
1470 
1471 static int dm_merge_bvec(struct request_queue *q,
1472 			 struct bvec_merge_data *bvm,
1473 			 struct bio_vec *biovec)
1474 {
1475 	struct mapped_device *md = q->queuedata;
1476 	struct dm_table *map = dm_get_live_table_fast(md);
1477 	struct dm_target *ti;
1478 	sector_t max_sectors;
1479 	int max_size = 0;
1480 
1481 	if (unlikely(!map))
1482 		goto out;
1483 
1484 	ti = dm_table_find_target(map, bvm->bi_sector);
1485 	if (!dm_target_is_valid(ti))
1486 		goto out;
1487 
1488 	/*
1489 	 * Find maximum amount of I/O that won't need splitting
1490 	 */
1491 	max_sectors = min(max_io_len(bvm->bi_sector, ti),
1492 			  (sector_t) BIO_MAX_SECTORS);
1493 	max_size = (max_sectors << SECTOR_SHIFT) - bvm->bi_size;
1494 	if (max_size < 0)
1495 		max_size = 0;
1496 
1497 	/*
1498 	 * merge_bvec_fn() returns number of bytes
1499 	 * it can accept at this offset
1500 	 * max is precomputed maximal io size
1501 	 */
1502 	if (max_size && ti->type->merge)
1503 		max_size = ti->type->merge(ti, bvm, biovec, max_size);
1504 	/*
1505 	 * If the target doesn't support merge method and some of the devices
1506 	 * provided their merge_bvec method (we know this by looking at
1507 	 * queue_max_hw_sectors), then we can't allow bios with multiple vector
1508 	 * entries.  So always set max_size to 0, and the code below allows
1509 	 * just one page.
1510 	 */
1511 	else if (queue_max_hw_sectors(q) <= PAGE_SIZE >> 9)
1512 		max_size = 0;
1513 
1514 out:
1515 	dm_put_live_table_fast(md);
1516 	/*
1517 	 * Always allow an entire first page
1518 	 */
1519 	if (max_size <= biovec->bv_len && !(bvm->bi_size >> SECTOR_SHIFT))
1520 		max_size = biovec->bv_len;
1521 
1522 	return max_size;
1523 }
1524 
1525 /*
1526  * The request function that just remaps the bio built up by
1527  * dm_merge_bvec.
1528  */
1529 static void _dm_request(struct request_queue *q, struct bio *bio)
1530 {
1531 	int rw = bio_data_dir(bio);
1532 	struct mapped_device *md = q->queuedata;
1533 	int cpu;
1534 	int srcu_idx;
1535 	struct dm_table *map;
1536 
1537 	map = dm_get_live_table(md, &srcu_idx);
1538 
1539 	cpu = part_stat_lock();
1540 	part_stat_inc(cpu, &dm_disk(md)->part0, ios[rw]);
1541 	part_stat_add(cpu, &dm_disk(md)->part0, sectors[rw], bio_sectors(bio));
1542 	part_stat_unlock();
1543 
1544 	/* if we're suspended, we have to queue this io for later */
1545 	if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))) {
1546 		dm_put_live_table(md, srcu_idx);
1547 
1548 		if (bio_rw(bio) != READA)
1549 			queue_io(md, bio);
1550 		else
1551 			bio_io_error(bio);
1552 		return;
1553 	}
1554 
1555 	__split_and_process_bio(md, map, bio);
1556 	dm_put_live_table(md, srcu_idx);
1557 	return;
1558 }
1559 
1560 int dm_request_based(struct mapped_device *md)
1561 {
1562 	return blk_queue_stackable(md->queue);
1563 }
1564 
1565 static void dm_request(struct request_queue *q, struct bio *bio)
1566 {
1567 	struct mapped_device *md = q->queuedata;
1568 
1569 	if (dm_request_based(md))
1570 		blk_queue_bio(q, bio);
1571 	else
1572 		_dm_request(q, bio);
1573 }
1574 
1575 void dm_dispatch_request(struct request *rq)
1576 {
1577 	int r;
1578 
1579 	if (blk_queue_io_stat(rq->q))
1580 		rq->cmd_flags |= REQ_IO_STAT;
1581 
1582 	rq->start_time = jiffies;
1583 	r = blk_insert_cloned_request(rq->q, rq);
1584 	if (r)
1585 		dm_complete_request(rq, r);
1586 }
1587 EXPORT_SYMBOL_GPL(dm_dispatch_request);
1588 
1589 static int dm_rq_bio_constructor(struct bio *bio, struct bio *bio_orig,
1590 				 void *data)
1591 {
1592 	struct dm_rq_target_io *tio = data;
1593 	struct dm_rq_clone_bio_info *info =
1594 		container_of(bio, struct dm_rq_clone_bio_info, clone);
1595 
1596 	info->orig = bio_orig;
1597 	info->tio = tio;
1598 	bio->bi_end_io = end_clone_bio;
1599 
1600 	return 0;
1601 }
1602 
1603 static int setup_clone(struct request *clone, struct request *rq,
1604 		       struct dm_rq_target_io *tio)
1605 {
1606 	int r;
1607 
1608 	r = blk_rq_prep_clone(clone, rq, tio->md->bs, GFP_ATOMIC,
1609 			      dm_rq_bio_constructor, tio);
1610 	if (r)
1611 		return r;
1612 
1613 	clone->cmd = rq->cmd;
1614 	clone->cmd_len = rq->cmd_len;
1615 	clone->sense = rq->sense;
1616 	clone->end_io = end_clone_request;
1617 	clone->end_io_data = tio;
1618 
1619 	return 0;
1620 }
1621 
1622 static struct request *clone_rq(struct request *rq, struct mapped_device *md,
1623 				gfp_t gfp_mask)
1624 {
1625 	struct request *clone;
1626 	struct dm_rq_target_io *tio;
1627 
1628 	tio = alloc_rq_tio(md, gfp_mask);
1629 	if (!tio)
1630 		return NULL;
1631 
1632 	tio->md = md;
1633 	tio->ti = NULL;
1634 	tio->orig = rq;
1635 	tio->error = 0;
1636 	memset(&tio->info, 0, sizeof(tio->info));
1637 
1638 	clone = &tio->clone;
1639 	if (setup_clone(clone, rq, tio)) {
1640 		/* -ENOMEM */
1641 		free_rq_tio(tio);
1642 		return NULL;
1643 	}
1644 
1645 	return clone;
1646 }
1647 
1648 /*
1649  * Called with the queue lock held.
1650  */
1651 static int dm_prep_fn(struct request_queue *q, struct request *rq)
1652 {
1653 	struct mapped_device *md = q->queuedata;
1654 	struct request *clone;
1655 
1656 	if (unlikely(rq->special)) {
1657 		DMWARN("Already has something in rq->special.");
1658 		return BLKPREP_KILL;
1659 	}
1660 
1661 	clone = clone_rq(rq, md, GFP_ATOMIC);
1662 	if (!clone)
1663 		return BLKPREP_DEFER;
1664 
1665 	rq->special = clone;
1666 	rq->cmd_flags |= REQ_DONTPREP;
1667 
1668 	return BLKPREP_OK;
1669 }
1670 
1671 /*
1672  * Returns:
1673  * 0  : the request has been processed (not requeued)
1674  * !0 : the request has been requeued
1675  */
1676 static int map_request(struct dm_target *ti, struct request *clone,
1677 		       struct mapped_device *md)
1678 {
1679 	int r, requeued = 0;
1680 	struct dm_rq_target_io *tio = clone->end_io_data;
1681 
1682 	tio->ti = ti;
1683 	r = ti->type->map_rq(ti, clone, &tio->info);
1684 	switch (r) {
1685 	case DM_MAPIO_SUBMITTED:
1686 		/* The target has taken the I/O to submit by itself later */
1687 		break;
1688 	case DM_MAPIO_REMAPPED:
1689 		/* The target has remapped the I/O so dispatch it */
1690 		trace_block_rq_remap(clone->q, clone, disk_devt(dm_disk(md)),
1691 				     blk_rq_pos(tio->orig));
1692 		dm_dispatch_request(clone);
1693 		break;
1694 	case DM_MAPIO_REQUEUE:
1695 		/* The target wants to requeue the I/O */
1696 		dm_requeue_unmapped_request(clone);
1697 		requeued = 1;
1698 		break;
1699 	default:
1700 		if (r > 0) {
1701 			DMWARN("unimplemented target map return value: %d", r);
1702 			BUG();
1703 		}
1704 
1705 		/* The target wants to complete the I/O */
1706 		dm_kill_unmapped_request(clone, r);
1707 		break;
1708 	}
1709 
1710 	return requeued;
1711 }
1712 
1713 static struct request *dm_start_request(struct mapped_device *md, struct request *orig)
1714 {
1715 	struct request *clone;
1716 
1717 	blk_start_request(orig);
1718 	clone = orig->special;
1719 	atomic_inc(&md->pending[rq_data_dir(clone)]);
1720 
1721 	/*
1722 	 * Hold the md reference here for the in-flight I/O.
1723 	 * We can't rely on the reference count by device opener,
1724 	 * because the device may be closed during the request completion
1725 	 * when all bios are completed.
1726 	 * See the comment in rq_completed() too.
1727 	 */
1728 	dm_get(md);
1729 
1730 	return clone;
1731 }
1732 
1733 /*
1734  * q->request_fn for request-based dm.
1735  * Called with the queue lock held.
1736  */
1737 static void dm_request_fn(struct request_queue *q)
1738 {
1739 	struct mapped_device *md = q->queuedata;
1740 	int srcu_idx;
1741 	struct dm_table *map = dm_get_live_table(md, &srcu_idx);
1742 	struct dm_target *ti;
1743 	struct request *rq, *clone;
1744 	sector_t pos;
1745 
1746 	/*
1747 	 * For suspend, check blk_queue_stopped() and increment
1748 	 * ->pending within a single queue_lock not to increment the
1749 	 * number of in-flight I/Os after the queue is stopped in
1750 	 * dm_suspend().
1751 	 */
1752 	while (!blk_queue_stopped(q)) {
1753 		rq = blk_peek_request(q);
1754 		if (!rq)
1755 			goto delay_and_out;
1756 
1757 		/* always use block 0 to find the target for flushes for now */
1758 		pos = 0;
1759 		if (!(rq->cmd_flags & REQ_FLUSH))
1760 			pos = blk_rq_pos(rq);
1761 
1762 		ti = dm_table_find_target(map, pos);
1763 		if (!dm_target_is_valid(ti)) {
1764 			/*
1765 			 * Must perform setup, that dm_done() requires,
1766 			 * before calling dm_kill_unmapped_request
1767 			 */
1768 			DMERR_LIMIT("request attempted access beyond the end of device");
1769 			clone = dm_start_request(md, rq);
1770 			dm_kill_unmapped_request(clone, -EIO);
1771 			continue;
1772 		}
1773 
1774 		if (ti->type->busy && ti->type->busy(ti))
1775 			goto delay_and_out;
1776 
1777 		clone = dm_start_request(md, rq);
1778 
1779 		spin_unlock(q->queue_lock);
1780 		if (map_request(ti, clone, md))
1781 			goto requeued;
1782 
1783 		BUG_ON(!irqs_disabled());
1784 		spin_lock(q->queue_lock);
1785 	}
1786 
1787 	goto out;
1788 
1789 requeued:
1790 	BUG_ON(!irqs_disabled());
1791 	spin_lock(q->queue_lock);
1792 
1793 delay_and_out:
1794 	blk_delay_queue(q, HZ / 10);
1795 out:
1796 	dm_put_live_table(md, srcu_idx);
1797 }
1798 
1799 int dm_underlying_device_busy(struct request_queue *q)
1800 {
1801 	return blk_lld_busy(q);
1802 }
1803 EXPORT_SYMBOL_GPL(dm_underlying_device_busy);
1804 
1805 static int dm_lld_busy(struct request_queue *q)
1806 {
1807 	int r;
1808 	struct mapped_device *md = q->queuedata;
1809 	struct dm_table *map = dm_get_live_table_fast(md);
1810 
1811 	if (!map || test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))
1812 		r = 1;
1813 	else
1814 		r = dm_table_any_busy_target(map);
1815 
1816 	dm_put_live_table_fast(md);
1817 
1818 	return r;
1819 }
1820 
1821 static int dm_any_congested(void *congested_data, int bdi_bits)
1822 {
1823 	int r = bdi_bits;
1824 	struct mapped_device *md = congested_data;
1825 	struct dm_table *map;
1826 
1827 	if (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
1828 		map = dm_get_live_table_fast(md);
1829 		if (map) {
1830 			/*
1831 			 * Request-based dm cares about only own queue for
1832 			 * the query about congestion status of request_queue
1833 			 */
1834 			if (dm_request_based(md))
1835 				r = md->queue->backing_dev_info.state &
1836 				    bdi_bits;
1837 			else
1838 				r = dm_table_any_congested(map, bdi_bits);
1839 		}
1840 		dm_put_live_table_fast(md);
1841 	}
1842 
1843 	return r;
1844 }
1845 
1846 /*-----------------------------------------------------------------
1847  * An IDR is used to keep track of allocated minor numbers.
1848  *---------------------------------------------------------------*/
1849 static void free_minor(int minor)
1850 {
1851 	spin_lock(&_minor_lock);
1852 	idr_remove(&_minor_idr, minor);
1853 	spin_unlock(&_minor_lock);
1854 }
1855 
1856 /*
1857  * See if the device with a specific minor # is free.
1858  */
1859 static int specific_minor(int minor)
1860 {
1861 	int r;
1862 
1863 	if (minor >= (1 << MINORBITS))
1864 		return -EINVAL;
1865 
1866 	idr_preload(GFP_KERNEL);
1867 	spin_lock(&_minor_lock);
1868 
1869 	r = idr_alloc(&_minor_idr, MINOR_ALLOCED, minor, minor + 1, GFP_NOWAIT);
1870 
1871 	spin_unlock(&_minor_lock);
1872 	idr_preload_end();
1873 	if (r < 0)
1874 		return r == -ENOSPC ? -EBUSY : r;
1875 	return 0;
1876 }
1877 
1878 static int next_free_minor(int *minor)
1879 {
1880 	int r;
1881 
1882 	idr_preload(GFP_KERNEL);
1883 	spin_lock(&_minor_lock);
1884 
1885 	r = idr_alloc(&_minor_idr, MINOR_ALLOCED, 0, 1 << MINORBITS, GFP_NOWAIT);
1886 
1887 	spin_unlock(&_minor_lock);
1888 	idr_preload_end();
1889 	if (r < 0)
1890 		return r;
1891 	*minor = r;
1892 	return 0;
1893 }
1894 
1895 static const struct block_device_operations dm_blk_dops;
1896 
1897 static void dm_wq_work(struct work_struct *work);
1898 
1899 static void dm_init_md_queue(struct mapped_device *md)
1900 {
1901 	/*
1902 	 * Request-based dm devices cannot be stacked on top of bio-based dm
1903 	 * devices.  The type of this dm device has not been decided yet.
1904 	 * The type is decided at the first table loading time.
1905 	 * To prevent problematic device stacking, clear the queue flag
1906 	 * for request stacking support until then.
1907 	 *
1908 	 * This queue is new, so no concurrency on the queue_flags.
1909 	 */
1910 	queue_flag_clear_unlocked(QUEUE_FLAG_STACKABLE, md->queue);
1911 
1912 	md->queue->queuedata = md;
1913 	md->queue->backing_dev_info.congested_fn = dm_any_congested;
1914 	md->queue->backing_dev_info.congested_data = md;
1915 	blk_queue_make_request(md->queue, dm_request);
1916 	blk_queue_bounce_limit(md->queue, BLK_BOUNCE_ANY);
1917 	blk_queue_merge_bvec(md->queue, dm_merge_bvec);
1918 }
1919 
1920 /*
1921  * Allocate and initialise a blank device with a given minor.
1922  */
1923 static struct mapped_device *alloc_dev(int minor)
1924 {
1925 	int r;
1926 	struct mapped_device *md = kzalloc(sizeof(*md), GFP_KERNEL);
1927 	void *old_md;
1928 
1929 	if (!md) {
1930 		DMWARN("unable to allocate device, out of memory.");
1931 		return NULL;
1932 	}
1933 
1934 	if (!try_module_get(THIS_MODULE))
1935 		goto bad_module_get;
1936 
1937 	/* get a minor number for the dev */
1938 	if (minor == DM_ANY_MINOR)
1939 		r = next_free_minor(&minor);
1940 	else
1941 		r = specific_minor(minor);
1942 	if (r < 0)
1943 		goto bad_minor;
1944 
1945 	r = init_srcu_struct(&md->io_barrier);
1946 	if (r < 0)
1947 		goto bad_io_barrier;
1948 
1949 	md->type = DM_TYPE_NONE;
1950 	mutex_init(&md->suspend_lock);
1951 	mutex_init(&md->type_lock);
1952 	spin_lock_init(&md->deferred_lock);
1953 	atomic_set(&md->holders, 1);
1954 	atomic_set(&md->open_count, 0);
1955 	atomic_set(&md->event_nr, 0);
1956 	atomic_set(&md->uevent_seq, 0);
1957 	INIT_LIST_HEAD(&md->uevent_list);
1958 	spin_lock_init(&md->uevent_lock);
1959 
1960 	md->queue = blk_alloc_queue(GFP_KERNEL);
1961 	if (!md->queue)
1962 		goto bad_queue;
1963 
1964 	dm_init_md_queue(md);
1965 
1966 	md->disk = alloc_disk(1);
1967 	if (!md->disk)
1968 		goto bad_disk;
1969 
1970 	atomic_set(&md->pending[0], 0);
1971 	atomic_set(&md->pending[1], 0);
1972 	init_waitqueue_head(&md->wait);
1973 	INIT_WORK(&md->work, dm_wq_work);
1974 	init_waitqueue_head(&md->eventq);
1975 	init_completion(&md->kobj_holder.completion);
1976 
1977 	md->disk->major = _major;
1978 	md->disk->first_minor = minor;
1979 	md->disk->fops = &dm_blk_dops;
1980 	md->disk->queue = md->queue;
1981 	md->disk->private_data = md;
1982 	sprintf(md->disk->disk_name, "dm-%d", minor);
1983 	add_disk(md->disk);
1984 	format_dev_t(md->name, MKDEV(_major, minor));
1985 
1986 	md->wq = alloc_workqueue("kdmflush", WQ_MEM_RECLAIM, 0);
1987 	if (!md->wq)
1988 		goto bad_thread;
1989 
1990 	md->bdev = bdget_disk(md->disk, 0);
1991 	if (!md->bdev)
1992 		goto bad_bdev;
1993 
1994 	bio_init(&md->flush_bio);
1995 	md->flush_bio.bi_bdev = md->bdev;
1996 	md->flush_bio.bi_rw = WRITE_FLUSH;
1997 
1998 	dm_stats_init(&md->stats);
1999 
2000 	/* Populate the mapping, nobody knows we exist yet */
2001 	spin_lock(&_minor_lock);
2002 	old_md = idr_replace(&_minor_idr, md, minor);
2003 	spin_unlock(&_minor_lock);
2004 
2005 	BUG_ON(old_md != MINOR_ALLOCED);
2006 
2007 	return md;
2008 
2009 bad_bdev:
2010 	destroy_workqueue(md->wq);
2011 bad_thread:
2012 	del_gendisk(md->disk);
2013 	put_disk(md->disk);
2014 bad_disk:
2015 	blk_cleanup_queue(md->queue);
2016 bad_queue:
2017 	cleanup_srcu_struct(&md->io_barrier);
2018 bad_io_barrier:
2019 	free_minor(minor);
2020 bad_minor:
2021 	module_put(THIS_MODULE);
2022 bad_module_get:
2023 	kfree(md);
2024 	return NULL;
2025 }
2026 
2027 static void unlock_fs(struct mapped_device *md);
2028 
2029 static void free_dev(struct mapped_device *md)
2030 {
2031 	int minor = MINOR(disk_devt(md->disk));
2032 
2033 	unlock_fs(md);
2034 	bdput(md->bdev);
2035 	destroy_workqueue(md->wq);
2036 	if (md->io_pool)
2037 		mempool_destroy(md->io_pool);
2038 	if (md->bs)
2039 		bioset_free(md->bs);
2040 	blk_integrity_unregister(md->disk);
2041 	del_gendisk(md->disk);
2042 	cleanup_srcu_struct(&md->io_barrier);
2043 	free_minor(minor);
2044 
2045 	spin_lock(&_minor_lock);
2046 	md->disk->private_data = NULL;
2047 	spin_unlock(&_minor_lock);
2048 
2049 	put_disk(md->disk);
2050 	blk_cleanup_queue(md->queue);
2051 	dm_stats_cleanup(&md->stats);
2052 	module_put(THIS_MODULE);
2053 	kfree(md);
2054 }
2055 
2056 static void __bind_mempools(struct mapped_device *md, struct dm_table *t)
2057 {
2058 	struct dm_md_mempools *p = dm_table_get_md_mempools(t);
2059 
2060 	if (md->io_pool && md->bs) {
2061 		/* The md already has necessary mempools. */
2062 		if (dm_table_get_type(t) == DM_TYPE_BIO_BASED) {
2063 			/*
2064 			 * Reload bioset because front_pad may have changed
2065 			 * because a different table was loaded.
2066 			 */
2067 			bioset_free(md->bs);
2068 			md->bs = p->bs;
2069 			p->bs = NULL;
2070 		} else if (dm_table_get_type(t) == DM_TYPE_REQUEST_BASED) {
2071 			/*
2072 			 * There's no need to reload with request-based dm
2073 			 * because the size of front_pad doesn't change.
2074 			 * Note for future: If you are to reload bioset,
2075 			 * prep-ed requests in the queue may refer
2076 			 * to bio from the old bioset, so you must walk
2077 			 * through the queue to unprep.
2078 			 */
2079 		}
2080 		goto out;
2081 	}
2082 
2083 	BUG_ON(!p || md->io_pool || md->bs);
2084 
2085 	md->io_pool = p->io_pool;
2086 	p->io_pool = NULL;
2087 	md->bs = p->bs;
2088 	p->bs = NULL;
2089 
2090 out:
2091 	/* mempool bind completed, now no need any mempools in the table */
2092 	dm_table_free_md_mempools(t);
2093 }
2094 
2095 /*
2096  * Bind a table to the device.
2097  */
2098 static void event_callback(void *context)
2099 {
2100 	unsigned long flags;
2101 	LIST_HEAD(uevents);
2102 	struct mapped_device *md = (struct mapped_device *) context;
2103 
2104 	spin_lock_irqsave(&md->uevent_lock, flags);
2105 	list_splice_init(&md->uevent_list, &uevents);
2106 	spin_unlock_irqrestore(&md->uevent_lock, flags);
2107 
2108 	dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj);
2109 
2110 	atomic_inc(&md->event_nr);
2111 	wake_up(&md->eventq);
2112 }
2113 
2114 /*
2115  * Protected by md->suspend_lock obtained by dm_swap_table().
2116  */
2117 static void __set_size(struct mapped_device *md, sector_t size)
2118 {
2119 	set_capacity(md->disk, size);
2120 
2121 	i_size_write(md->bdev->bd_inode, (loff_t)size << SECTOR_SHIFT);
2122 }
2123 
2124 /*
2125  * Return 1 if the queue has a compulsory merge_bvec_fn function.
2126  *
2127  * If this function returns 0, then the device is either a non-dm
2128  * device without a merge_bvec_fn, or it is a dm device that is
2129  * able to split any bios it receives that are too big.
2130  */
2131 int dm_queue_merge_is_compulsory(struct request_queue *q)
2132 {
2133 	struct mapped_device *dev_md;
2134 
2135 	if (!q->merge_bvec_fn)
2136 		return 0;
2137 
2138 	if (q->make_request_fn == dm_request) {
2139 		dev_md = q->queuedata;
2140 		if (test_bit(DMF_MERGE_IS_OPTIONAL, &dev_md->flags))
2141 			return 0;
2142 	}
2143 
2144 	return 1;
2145 }
2146 
2147 static int dm_device_merge_is_compulsory(struct dm_target *ti,
2148 					 struct dm_dev *dev, sector_t start,
2149 					 sector_t len, void *data)
2150 {
2151 	struct block_device *bdev = dev->bdev;
2152 	struct request_queue *q = bdev_get_queue(bdev);
2153 
2154 	return dm_queue_merge_is_compulsory(q);
2155 }
2156 
2157 /*
2158  * Return 1 if it is acceptable to ignore merge_bvec_fn based
2159  * on the properties of the underlying devices.
2160  */
2161 static int dm_table_merge_is_optional(struct dm_table *table)
2162 {
2163 	unsigned i = 0;
2164 	struct dm_target *ti;
2165 
2166 	while (i < dm_table_get_num_targets(table)) {
2167 		ti = dm_table_get_target(table, i++);
2168 
2169 		if (ti->type->iterate_devices &&
2170 		    ti->type->iterate_devices(ti, dm_device_merge_is_compulsory, NULL))
2171 			return 0;
2172 	}
2173 
2174 	return 1;
2175 }
2176 
2177 /*
2178  * Returns old map, which caller must destroy.
2179  */
2180 static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t,
2181 			       struct queue_limits *limits)
2182 {
2183 	struct dm_table *old_map;
2184 	struct request_queue *q = md->queue;
2185 	sector_t size;
2186 	int merge_is_optional;
2187 
2188 	size = dm_table_get_size(t);
2189 
2190 	/*
2191 	 * Wipe any geometry if the size of the table changed.
2192 	 */
2193 	if (size != dm_get_size(md))
2194 		memset(&md->geometry, 0, sizeof(md->geometry));
2195 
2196 	__set_size(md, size);
2197 
2198 	dm_table_event_callback(t, event_callback, md);
2199 
2200 	/*
2201 	 * The queue hasn't been stopped yet, if the old table type wasn't
2202 	 * for request-based during suspension.  So stop it to prevent
2203 	 * I/O mapping before resume.
2204 	 * This must be done before setting the queue restrictions,
2205 	 * because request-based dm may be run just after the setting.
2206 	 */
2207 	if (dm_table_request_based(t) && !blk_queue_stopped(q))
2208 		stop_queue(q);
2209 
2210 	__bind_mempools(md, t);
2211 
2212 	merge_is_optional = dm_table_merge_is_optional(t);
2213 
2214 	old_map = md->map;
2215 	rcu_assign_pointer(md->map, t);
2216 	md->immutable_target_type = dm_table_get_immutable_target_type(t);
2217 
2218 	dm_table_set_restrictions(t, q, limits);
2219 	if (merge_is_optional)
2220 		set_bit(DMF_MERGE_IS_OPTIONAL, &md->flags);
2221 	else
2222 		clear_bit(DMF_MERGE_IS_OPTIONAL, &md->flags);
2223 	dm_sync_table(md);
2224 
2225 	return old_map;
2226 }
2227 
2228 /*
2229  * Returns unbound table for the caller to free.
2230  */
2231 static struct dm_table *__unbind(struct mapped_device *md)
2232 {
2233 	struct dm_table *map = md->map;
2234 
2235 	if (!map)
2236 		return NULL;
2237 
2238 	dm_table_event_callback(map, NULL, NULL);
2239 	RCU_INIT_POINTER(md->map, NULL);
2240 	dm_sync_table(md);
2241 
2242 	return map;
2243 }
2244 
2245 /*
2246  * Constructor for a new device.
2247  */
2248 int dm_create(int minor, struct mapped_device **result)
2249 {
2250 	struct mapped_device *md;
2251 
2252 	md = alloc_dev(minor);
2253 	if (!md)
2254 		return -ENXIO;
2255 
2256 	dm_sysfs_init(md);
2257 
2258 	*result = md;
2259 	return 0;
2260 }
2261 
2262 /*
2263  * Functions to manage md->type.
2264  * All are required to hold md->type_lock.
2265  */
2266 void dm_lock_md_type(struct mapped_device *md)
2267 {
2268 	mutex_lock(&md->type_lock);
2269 }
2270 
2271 void dm_unlock_md_type(struct mapped_device *md)
2272 {
2273 	mutex_unlock(&md->type_lock);
2274 }
2275 
2276 void dm_set_md_type(struct mapped_device *md, unsigned type)
2277 {
2278 	BUG_ON(!mutex_is_locked(&md->type_lock));
2279 	md->type = type;
2280 }
2281 
2282 unsigned dm_get_md_type(struct mapped_device *md)
2283 {
2284 	BUG_ON(!mutex_is_locked(&md->type_lock));
2285 	return md->type;
2286 }
2287 
2288 struct target_type *dm_get_immutable_target_type(struct mapped_device *md)
2289 {
2290 	return md->immutable_target_type;
2291 }
2292 
2293 /*
2294  * The queue_limits are only valid as long as you have a reference
2295  * count on 'md'.
2296  */
2297 struct queue_limits *dm_get_queue_limits(struct mapped_device *md)
2298 {
2299 	BUG_ON(!atomic_read(&md->holders));
2300 	return &md->queue->limits;
2301 }
2302 EXPORT_SYMBOL_GPL(dm_get_queue_limits);
2303 
2304 /*
2305  * Fully initialize a request-based queue (->elevator, ->request_fn, etc).
2306  */
2307 static int dm_init_request_based_queue(struct mapped_device *md)
2308 {
2309 	struct request_queue *q = NULL;
2310 
2311 	if (md->queue->elevator)
2312 		return 1;
2313 
2314 	/* Fully initialize the queue */
2315 	q = blk_init_allocated_queue(md->queue, dm_request_fn, NULL);
2316 	if (!q)
2317 		return 0;
2318 
2319 	md->queue = q;
2320 	dm_init_md_queue(md);
2321 	blk_queue_softirq_done(md->queue, dm_softirq_done);
2322 	blk_queue_prep_rq(md->queue, dm_prep_fn);
2323 	blk_queue_lld_busy(md->queue, dm_lld_busy);
2324 
2325 	elv_register_queue(md->queue);
2326 
2327 	return 1;
2328 }
2329 
2330 /*
2331  * Setup the DM device's queue based on md's type
2332  */
2333 int dm_setup_md_queue(struct mapped_device *md)
2334 {
2335 	if ((dm_get_md_type(md) == DM_TYPE_REQUEST_BASED) &&
2336 	    !dm_init_request_based_queue(md)) {
2337 		DMWARN("Cannot initialize queue for request-based mapped device");
2338 		return -EINVAL;
2339 	}
2340 
2341 	return 0;
2342 }
2343 
2344 static struct mapped_device *dm_find_md(dev_t dev)
2345 {
2346 	struct mapped_device *md;
2347 	unsigned minor = MINOR(dev);
2348 
2349 	if (MAJOR(dev) != _major || minor >= (1 << MINORBITS))
2350 		return NULL;
2351 
2352 	spin_lock(&_minor_lock);
2353 
2354 	md = idr_find(&_minor_idr, minor);
2355 	if (md && (md == MINOR_ALLOCED ||
2356 		   (MINOR(disk_devt(dm_disk(md))) != minor) ||
2357 		   dm_deleting_md(md) ||
2358 		   test_bit(DMF_FREEING, &md->flags))) {
2359 		md = NULL;
2360 		goto out;
2361 	}
2362 
2363 out:
2364 	spin_unlock(&_minor_lock);
2365 
2366 	return md;
2367 }
2368 
2369 struct mapped_device *dm_get_md(dev_t dev)
2370 {
2371 	struct mapped_device *md = dm_find_md(dev);
2372 
2373 	if (md)
2374 		dm_get(md);
2375 
2376 	return md;
2377 }
2378 EXPORT_SYMBOL_GPL(dm_get_md);
2379 
2380 void *dm_get_mdptr(struct mapped_device *md)
2381 {
2382 	return md->interface_ptr;
2383 }
2384 
2385 void dm_set_mdptr(struct mapped_device *md, void *ptr)
2386 {
2387 	md->interface_ptr = ptr;
2388 }
2389 
2390 void dm_get(struct mapped_device *md)
2391 {
2392 	atomic_inc(&md->holders);
2393 	BUG_ON(test_bit(DMF_FREEING, &md->flags));
2394 }
2395 
2396 const char *dm_device_name(struct mapped_device *md)
2397 {
2398 	return md->name;
2399 }
2400 EXPORT_SYMBOL_GPL(dm_device_name);
2401 
2402 static void __dm_destroy(struct mapped_device *md, bool wait)
2403 {
2404 	struct dm_table *map;
2405 	int srcu_idx;
2406 
2407 	might_sleep();
2408 
2409 	spin_lock(&_minor_lock);
2410 	map = dm_get_live_table(md, &srcu_idx);
2411 	idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md))));
2412 	set_bit(DMF_FREEING, &md->flags);
2413 	spin_unlock(&_minor_lock);
2414 
2415 	if (!dm_suspended_md(md)) {
2416 		dm_table_presuspend_targets(map);
2417 		dm_table_postsuspend_targets(map);
2418 	}
2419 
2420 	/* dm_put_live_table must be before msleep, otherwise deadlock is possible */
2421 	dm_put_live_table(md, srcu_idx);
2422 
2423 	/*
2424 	 * Rare, but there may be I/O requests still going to complete,
2425 	 * for example.  Wait for all references to disappear.
2426 	 * No one should increment the reference count of the mapped_device,
2427 	 * after the mapped_device state becomes DMF_FREEING.
2428 	 */
2429 	if (wait)
2430 		while (atomic_read(&md->holders))
2431 			msleep(1);
2432 	else if (atomic_read(&md->holders))
2433 		DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)",
2434 		       dm_device_name(md), atomic_read(&md->holders));
2435 
2436 	dm_sysfs_exit(md);
2437 	dm_table_destroy(__unbind(md));
2438 	free_dev(md);
2439 }
2440 
2441 void dm_destroy(struct mapped_device *md)
2442 {
2443 	__dm_destroy(md, true);
2444 }
2445 
2446 void dm_destroy_immediate(struct mapped_device *md)
2447 {
2448 	__dm_destroy(md, false);
2449 }
2450 
2451 void dm_put(struct mapped_device *md)
2452 {
2453 	atomic_dec(&md->holders);
2454 }
2455 EXPORT_SYMBOL_GPL(dm_put);
2456 
2457 static int dm_wait_for_completion(struct mapped_device *md, int interruptible)
2458 {
2459 	int r = 0;
2460 	DECLARE_WAITQUEUE(wait, current);
2461 
2462 	add_wait_queue(&md->wait, &wait);
2463 
2464 	while (1) {
2465 		set_current_state(interruptible);
2466 
2467 		if (!md_in_flight(md))
2468 			break;
2469 
2470 		if (interruptible == TASK_INTERRUPTIBLE &&
2471 		    signal_pending(current)) {
2472 			r = -EINTR;
2473 			break;
2474 		}
2475 
2476 		io_schedule();
2477 	}
2478 	set_current_state(TASK_RUNNING);
2479 
2480 	remove_wait_queue(&md->wait, &wait);
2481 
2482 	return r;
2483 }
2484 
2485 /*
2486  * Process the deferred bios
2487  */
2488 static void dm_wq_work(struct work_struct *work)
2489 {
2490 	struct mapped_device *md = container_of(work, struct mapped_device,
2491 						work);
2492 	struct bio *c;
2493 	int srcu_idx;
2494 	struct dm_table *map;
2495 
2496 	map = dm_get_live_table(md, &srcu_idx);
2497 
2498 	while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
2499 		spin_lock_irq(&md->deferred_lock);
2500 		c = bio_list_pop(&md->deferred);
2501 		spin_unlock_irq(&md->deferred_lock);
2502 
2503 		if (!c)
2504 			break;
2505 
2506 		if (dm_request_based(md))
2507 			generic_make_request(c);
2508 		else
2509 			__split_and_process_bio(md, map, c);
2510 	}
2511 
2512 	dm_put_live_table(md, srcu_idx);
2513 }
2514 
2515 static void dm_queue_flush(struct mapped_device *md)
2516 {
2517 	clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2518 	smp_mb__after_atomic();
2519 	queue_work(md->wq, &md->work);
2520 }
2521 
2522 /*
2523  * Swap in a new table, returning the old one for the caller to destroy.
2524  */
2525 struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table)
2526 {
2527 	struct dm_table *live_map = NULL, *map = ERR_PTR(-EINVAL);
2528 	struct queue_limits limits;
2529 	int r;
2530 
2531 	mutex_lock(&md->suspend_lock);
2532 
2533 	/* device must be suspended */
2534 	if (!dm_suspended_md(md))
2535 		goto out;
2536 
2537 	/*
2538 	 * If the new table has no data devices, retain the existing limits.
2539 	 * This helps multipath with queue_if_no_path if all paths disappear,
2540 	 * then new I/O is queued based on these limits, and then some paths
2541 	 * reappear.
2542 	 */
2543 	if (dm_table_has_no_data_devices(table)) {
2544 		live_map = dm_get_live_table_fast(md);
2545 		if (live_map)
2546 			limits = md->queue->limits;
2547 		dm_put_live_table_fast(md);
2548 	}
2549 
2550 	if (!live_map) {
2551 		r = dm_calculate_queue_limits(table, &limits);
2552 		if (r) {
2553 			map = ERR_PTR(r);
2554 			goto out;
2555 		}
2556 	}
2557 
2558 	map = __bind(md, table, &limits);
2559 
2560 out:
2561 	mutex_unlock(&md->suspend_lock);
2562 	return map;
2563 }
2564 
2565 /*
2566  * Functions to lock and unlock any filesystem running on the
2567  * device.
2568  */
2569 static int lock_fs(struct mapped_device *md)
2570 {
2571 	int r;
2572 
2573 	WARN_ON(md->frozen_sb);
2574 
2575 	md->frozen_sb = freeze_bdev(md->bdev);
2576 	if (IS_ERR(md->frozen_sb)) {
2577 		r = PTR_ERR(md->frozen_sb);
2578 		md->frozen_sb = NULL;
2579 		return r;
2580 	}
2581 
2582 	set_bit(DMF_FROZEN, &md->flags);
2583 
2584 	return 0;
2585 }
2586 
2587 static void unlock_fs(struct mapped_device *md)
2588 {
2589 	if (!test_bit(DMF_FROZEN, &md->flags))
2590 		return;
2591 
2592 	thaw_bdev(md->bdev, md->frozen_sb);
2593 	md->frozen_sb = NULL;
2594 	clear_bit(DMF_FROZEN, &md->flags);
2595 }
2596 
2597 /*
2598  * We need to be able to change a mapping table under a mounted
2599  * filesystem.  For example we might want to move some data in
2600  * the background.  Before the table can be swapped with
2601  * dm_bind_table, dm_suspend must be called to flush any in
2602  * flight bios and ensure that any further io gets deferred.
2603  */
2604 /*
2605  * Suspend mechanism in request-based dm.
2606  *
2607  * 1. Flush all I/Os by lock_fs() if needed.
2608  * 2. Stop dispatching any I/O by stopping the request_queue.
2609  * 3. Wait for all in-flight I/Os to be completed or requeued.
2610  *
2611  * To abort suspend, start the request_queue.
2612  */
2613 int dm_suspend(struct mapped_device *md, unsigned suspend_flags)
2614 {
2615 	struct dm_table *map = NULL;
2616 	int r = 0;
2617 	int do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG ? 1 : 0;
2618 	int noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG ? 1 : 0;
2619 
2620 	mutex_lock(&md->suspend_lock);
2621 
2622 	if (dm_suspended_md(md)) {
2623 		r = -EINVAL;
2624 		goto out_unlock;
2625 	}
2626 
2627 	map = md->map;
2628 
2629 	/*
2630 	 * DMF_NOFLUSH_SUSPENDING must be set before presuspend.
2631 	 * This flag is cleared before dm_suspend returns.
2632 	 */
2633 	if (noflush)
2634 		set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2635 
2636 	/* This does not get reverted if there's an error later. */
2637 	dm_table_presuspend_targets(map);
2638 
2639 	/*
2640 	 * Flush I/O to the device.
2641 	 * Any I/O submitted after lock_fs() may not be flushed.
2642 	 * noflush takes precedence over do_lockfs.
2643 	 * (lock_fs() flushes I/Os and waits for them to complete.)
2644 	 */
2645 	if (!noflush && do_lockfs) {
2646 		r = lock_fs(md);
2647 		if (r)
2648 			goto out_unlock;
2649 	}
2650 
2651 	/*
2652 	 * Here we must make sure that no processes are submitting requests
2653 	 * to target drivers i.e. no one may be executing
2654 	 * __split_and_process_bio. This is called from dm_request and
2655 	 * dm_wq_work.
2656 	 *
2657 	 * To get all processes out of __split_and_process_bio in dm_request,
2658 	 * we take the write lock. To prevent any process from reentering
2659 	 * __split_and_process_bio from dm_request and quiesce the thread
2660 	 * (dm_wq_work), we set BMF_BLOCK_IO_FOR_SUSPEND and call
2661 	 * flush_workqueue(md->wq).
2662 	 */
2663 	set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2664 	synchronize_srcu(&md->io_barrier);
2665 
2666 	/*
2667 	 * Stop md->queue before flushing md->wq in case request-based
2668 	 * dm defers requests to md->wq from md->queue.
2669 	 */
2670 	if (dm_request_based(md))
2671 		stop_queue(md->queue);
2672 
2673 	flush_workqueue(md->wq);
2674 
2675 	/*
2676 	 * At this point no more requests are entering target request routines.
2677 	 * We call dm_wait_for_completion to wait for all existing requests
2678 	 * to finish.
2679 	 */
2680 	r = dm_wait_for_completion(md, TASK_INTERRUPTIBLE);
2681 
2682 	if (noflush)
2683 		clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2684 	synchronize_srcu(&md->io_barrier);
2685 
2686 	/* were we interrupted ? */
2687 	if (r < 0) {
2688 		dm_queue_flush(md);
2689 
2690 		if (dm_request_based(md))
2691 			start_queue(md->queue);
2692 
2693 		unlock_fs(md);
2694 		goto out_unlock; /* pushback list is already flushed, so skip flush */
2695 	}
2696 
2697 	/*
2698 	 * If dm_wait_for_completion returned 0, the device is completely
2699 	 * quiescent now. There is no request-processing activity. All new
2700 	 * requests are being added to md->deferred list.
2701 	 */
2702 
2703 	set_bit(DMF_SUSPENDED, &md->flags);
2704 
2705 	dm_table_postsuspend_targets(map);
2706 
2707 out_unlock:
2708 	mutex_unlock(&md->suspend_lock);
2709 	return r;
2710 }
2711 
2712 int dm_resume(struct mapped_device *md)
2713 {
2714 	int r = -EINVAL;
2715 	struct dm_table *map = NULL;
2716 
2717 	mutex_lock(&md->suspend_lock);
2718 	if (!dm_suspended_md(md))
2719 		goto out;
2720 
2721 	map = md->map;
2722 	if (!map || !dm_table_get_size(map))
2723 		goto out;
2724 
2725 	r = dm_table_resume_targets(map);
2726 	if (r)
2727 		goto out;
2728 
2729 	dm_queue_flush(md);
2730 
2731 	/*
2732 	 * Flushing deferred I/Os must be done after targets are resumed
2733 	 * so that mapping of targets can work correctly.
2734 	 * Request-based dm is queueing the deferred I/Os in its request_queue.
2735 	 */
2736 	if (dm_request_based(md))
2737 		start_queue(md->queue);
2738 
2739 	unlock_fs(md);
2740 
2741 	clear_bit(DMF_SUSPENDED, &md->flags);
2742 
2743 	r = 0;
2744 out:
2745 	mutex_unlock(&md->suspend_lock);
2746 
2747 	return r;
2748 }
2749 
2750 /*
2751  * Internal suspend/resume works like userspace-driven suspend. It waits
2752  * until all bios finish and prevents issuing new bios to the target drivers.
2753  * It may be used only from the kernel.
2754  *
2755  * Internal suspend holds md->suspend_lock, which prevents interaction with
2756  * userspace-driven suspend.
2757  */
2758 
2759 void dm_internal_suspend(struct mapped_device *md)
2760 {
2761 	mutex_lock(&md->suspend_lock);
2762 	if (dm_suspended_md(md))
2763 		return;
2764 
2765 	set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2766 	synchronize_srcu(&md->io_barrier);
2767 	flush_workqueue(md->wq);
2768 	dm_wait_for_completion(md, TASK_UNINTERRUPTIBLE);
2769 }
2770 
2771 void dm_internal_resume(struct mapped_device *md)
2772 {
2773 	if (dm_suspended_md(md))
2774 		goto done;
2775 
2776 	dm_queue_flush(md);
2777 
2778 done:
2779 	mutex_unlock(&md->suspend_lock);
2780 }
2781 
2782 /*-----------------------------------------------------------------
2783  * Event notification.
2784  *---------------------------------------------------------------*/
2785 int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action,
2786 		       unsigned cookie)
2787 {
2788 	char udev_cookie[DM_COOKIE_LENGTH];
2789 	char *envp[] = { udev_cookie, NULL };
2790 
2791 	if (!cookie)
2792 		return kobject_uevent(&disk_to_dev(md->disk)->kobj, action);
2793 	else {
2794 		snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u",
2795 			 DM_COOKIE_ENV_VAR_NAME, cookie);
2796 		return kobject_uevent_env(&disk_to_dev(md->disk)->kobj,
2797 					  action, envp);
2798 	}
2799 }
2800 
2801 uint32_t dm_next_uevent_seq(struct mapped_device *md)
2802 {
2803 	return atomic_add_return(1, &md->uevent_seq);
2804 }
2805 
2806 uint32_t dm_get_event_nr(struct mapped_device *md)
2807 {
2808 	return atomic_read(&md->event_nr);
2809 }
2810 
2811 int dm_wait_event(struct mapped_device *md, int event_nr)
2812 {
2813 	return wait_event_interruptible(md->eventq,
2814 			(event_nr != atomic_read(&md->event_nr)));
2815 }
2816 
2817 void dm_uevent_add(struct mapped_device *md, struct list_head *elist)
2818 {
2819 	unsigned long flags;
2820 
2821 	spin_lock_irqsave(&md->uevent_lock, flags);
2822 	list_add(elist, &md->uevent_list);
2823 	spin_unlock_irqrestore(&md->uevent_lock, flags);
2824 }
2825 
2826 /*
2827  * The gendisk is only valid as long as you have a reference
2828  * count on 'md'.
2829  */
2830 struct gendisk *dm_disk(struct mapped_device *md)
2831 {
2832 	return md->disk;
2833 }
2834 
2835 struct kobject *dm_kobject(struct mapped_device *md)
2836 {
2837 	return &md->kobj_holder.kobj;
2838 }
2839 
2840 struct mapped_device *dm_get_from_kobject(struct kobject *kobj)
2841 {
2842 	struct mapped_device *md;
2843 
2844 	md = container_of(kobj, struct mapped_device, kobj_holder.kobj);
2845 
2846 	if (test_bit(DMF_FREEING, &md->flags) ||
2847 	    dm_deleting_md(md))
2848 		return NULL;
2849 
2850 	dm_get(md);
2851 	return md;
2852 }
2853 
2854 int dm_suspended_md(struct mapped_device *md)
2855 {
2856 	return test_bit(DMF_SUSPENDED, &md->flags);
2857 }
2858 
2859 int dm_test_deferred_remove_flag(struct mapped_device *md)
2860 {
2861 	return test_bit(DMF_DEFERRED_REMOVE, &md->flags);
2862 }
2863 
2864 int dm_suspended(struct dm_target *ti)
2865 {
2866 	return dm_suspended_md(dm_table_get_md(ti->table));
2867 }
2868 EXPORT_SYMBOL_GPL(dm_suspended);
2869 
2870 int dm_noflush_suspending(struct dm_target *ti)
2871 {
2872 	return __noflush_suspending(dm_table_get_md(ti->table));
2873 }
2874 EXPORT_SYMBOL_GPL(dm_noflush_suspending);
2875 
2876 struct dm_md_mempools *dm_alloc_md_mempools(unsigned type, unsigned integrity, unsigned per_bio_data_size)
2877 {
2878 	struct dm_md_mempools *pools = kzalloc(sizeof(*pools), GFP_KERNEL);
2879 	struct kmem_cache *cachep;
2880 	unsigned int pool_size;
2881 	unsigned int front_pad;
2882 
2883 	if (!pools)
2884 		return NULL;
2885 
2886 	if (type == DM_TYPE_BIO_BASED) {
2887 		cachep = _io_cache;
2888 		pool_size = dm_get_reserved_bio_based_ios();
2889 		front_pad = roundup(per_bio_data_size, __alignof__(struct dm_target_io)) + offsetof(struct dm_target_io, clone);
2890 	} else if (type == DM_TYPE_REQUEST_BASED) {
2891 		cachep = _rq_tio_cache;
2892 		pool_size = dm_get_reserved_rq_based_ios();
2893 		front_pad = offsetof(struct dm_rq_clone_bio_info, clone);
2894 		/* per_bio_data_size is not used. See __bind_mempools(). */
2895 		WARN_ON(per_bio_data_size != 0);
2896 	} else
2897 		goto out;
2898 
2899 	pools->io_pool = mempool_create_slab_pool(pool_size, cachep);
2900 	if (!pools->io_pool)
2901 		goto out;
2902 
2903 	pools->bs = bioset_create(pool_size, front_pad);
2904 	if (!pools->bs)
2905 		goto out;
2906 
2907 	if (integrity && bioset_integrity_create(pools->bs, pool_size))
2908 		goto out;
2909 
2910 	return pools;
2911 
2912 out:
2913 	dm_free_md_mempools(pools);
2914 
2915 	return NULL;
2916 }
2917 
2918 void dm_free_md_mempools(struct dm_md_mempools *pools)
2919 {
2920 	if (!pools)
2921 		return;
2922 
2923 	if (pools->io_pool)
2924 		mempool_destroy(pools->io_pool);
2925 
2926 	if (pools->bs)
2927 		bioset_free(pools->bs);
2928 
2929 	kfree(pools);
2930 }
2931 
2932 static const struct block_device_operations dm_blk_dops = {
2933 	.open = dm_blk_open,
2934 	.release = dm_blk_close,
2935 	.ioctl = dm_blk_ioctl,
2936 	.getgeo = dm_blk_getgeo,
2937 	.owner = THIS_MODULE
2938 };
2939 
2940 /*
2941  * module hooks
2942  */
2943 module_init(dm_init);
2944 module_exit(dm_exit);
2945 
2946 module_param(major, uint, 0);
2947 MODULE_PARM_DESC(major, "The major number of the device mapper");
2948 
2949 module_param(reserved_bio_based_ios, uint, S_IRUGO | S_IWUSR);
2950 MODULE_PARM_DESC(reserved_bio_based_ios, "Reserved IOs in bio-based mempools");
2951 
2952 module_param(reserved_rq_based_ios, uint, S_IRUGO | S_IWUSR);
2953 MODULE_PARM_DESC(reserved_rq_based_ios, "Reserved IOs in request-based mempools");
2954 
2955 MODULE_DESCRIPTION(DM_NAME " driver");
2956 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
2957 MODULE_LICENSE("GPL");
2958