1 /* 2 * Copyright (C) 2001, 2002 Sistina Software (UK) Limited. 3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved. 4 * 5 * This file is released under the GPL. 6 */ 7 8 #include "dm-core.h" 9 #include "dm-rq.h" 10 #include "dm-uevent.h" 11 12 #include <linux/init.h> 13 #include <linux/module.h> 14 #include <linux/mutex.h> 15 #include <linux/sched/signal.h> 16 #include <linux/blkpg.h> 17 #include <linux/bio.h> 18 #include <linux/mempool.h> 19 #include <linux/dax.h> 20 #include <linux/slab.h> 21 #include <linux/idr.h> 22 #include <linux/uio.h> 23 #include <linux/hdreg.h> 24 #include <linux/delay.h> 25 #include <linux/wait.h> 26 #include <linux/pr.h> 27 #include <linux/refcount.h> 28 #include <linux/part_stat.h> 29 #include <linux/blk-crypto.h> 30 31 #define DM_MSG_PREFIX "core" 32 33 /* 34 * Cookies are numeric values sent with CHANGE and REMOVE 35 * uevents while resuming, removing or renaming the device. 36 */ 37 #define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE" 38 #define DM_COOKIE_LENGTH 24 39 40 static const char *_name = DM_NAME; 41 42 static unsigned int major = 0; 43 static unsigned int _major = 0; 44 45 static DEFINE_IDR(_minor_idr); 46 47 static DEFINE_SPINLOCK(_minor_lock); 48 49 static void do_deferred_remove(struct work_struct *w); 50 51 static DECLARE_WORK(deferred_remove_work, do_deferred_remove); 52 53 static struct workqueue_struct *deferred_remove_workqueue; 54 55 atomic_t dm_global_event_nr = ATOMIC_INIT(0); 56 DECLARE_WAIT_QUEUE_HEAD(dm_global_eventq); 57 58 void dm_issue_global_event(void) 59 { 60 atomic_inc(&dm_global_event_nr); 61 wake_up(&dm_global_eventq); 62 } 63 64 /* 65 * One of these is allocated (on-stack) per original bio. 66 */ 67 struct clone_info { 68 struct dm_table *map; 69 struct bio *bio; 70 struct dm_io *io; 71 sector_t sector; 72 unsigned sector_count; 73 }; 74 75 /* 76 * One of these is allocated per clone bio. 77 */ 78 #define DM_TIO_MAGIC 7282014 79 struct dm_target_io { 80 unsigned magic; 81 struct dm_io *io; 82 struct dm_target *ti; 83 unsigned target_bio_nr; 84 unsigned *len_ptr; 85 bool inside_dm_io; 86 struct bio clone; 87 }; 88 89 /* 90 * One of these is allocated per original bio. 91 * It contains the first clone used for that original. 92 */ 93 #define DM_IO_MAGIC 5191977 94 struct dm_io { 95 unsigned magic; 96 struct mapped_device *md; 97 blk_status_t status; 98 atomic_t io_count; 99 struct bio *orig_bio; 100 unsigned long start_time; 101 spinlock_t endio_lock; 102 struct dm_stats_aux stats_aux; 103 /* last member of dm_target_io is 'struct bio' */ 104 struct dm_target_io tio; 105 }; 106 107 void *dm_per_bio_data(struct bio *bio, size_t data_size) 108 { 109 struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone); 110 if (!tio->inside_dm_io) 111 return (char *)bio - offsetof(struct dm_target_io, clone) - data_size; 112 return (char *)bio - offsetof(struct dm_target_io, clone) - offsetof(struct dm_io, tio) - data_size; 113 } 114 EXPORT_SYMBOL_GPL(dm_per_bio_data); 115 116 struct bio *dm_bio_from_per_bio_data(void *data, size_t data_size) 117 { 118 struct dm_io *io = (struct dm_io *)((char *)data + data_size); 119 if (io->magic == DM_IO_MAGIC) 120 return (struct bio *)((char *)io + offsetof(struct dm_io, tio) + offsetof(struct dm_target_io, clone)); 121 BUG_ON(io->magic != DM_TIO_MAGIC); 122 return (struct bio *)((char *)io + offsetof(struct dm_target_io, clone)); 123 } 124 EXPORT_SYMBOL_GPL(dm_bio_from_per_bio_data); 125 126 unsigned dm_bio_get_target_bio_nr(const struct bio *bio) 127 { 128 return container_of(bio, struct dm_target_io, clone)->target_bio_nr; 129 } 130 EXPORT_SYMBOL_GPL(dm_bio_get_target_bio_nr); 131 132 #define MINOR_ALLOCED ((void *)-1) 133 134 /* 135 * Bits for the md->flags field. 136 */ 137 #define DMF_BLOCK_IO_FOR_SUSPEND 0 138 #define DMF_SUSPENDED 1 139 #define DMF_FROZEN 2 140 #define DMF_FREEING 3 141 #define DMF_DELETING 4 142 #define DMF_NOFLUSH_SUSPENDING 5 143 #define DMF_DEFERRED_REMOVE 6 144 #define DMF_SUSPENDED_INTERNALLY 7 145 146 #define DM_NUMA_NODE NUMA_NO_NODE 147 static int dm_numa_node = DM_NUMA_NODE; 148 149 /* 150 * For mempools pre-allocation at the table loading time. 151 */ 152 struct dm_md_mempools { 153 struct bio_set bs; 154 struct bio_set io_bs; 155 }; 156 157 struct table_device { 158 struct list_head list; 159 refcount_t count; 160 struct dm_dev dm_dev; 161 }; 162 163 /* 164 * Bio-based DM's mempools' reserved IOs set by the user. 165 */ 166 #define RESERVED_BIO_BASED_IOS 16 167 static unsigned reserved_bio_based_ios = RESERVED_BIO_BASED_IOS; 168 169 static int __dm_get_module_param_int(int *module_param, int min, int max) 170 { 171 int param = READ_ONCE(*module_param); 172 int modified_param = 0; 173 bool modified = true; 174 175 if (param < min) 176 modified_param = min; 177 else if (param > max) 178 modified_param = max; 179 else 180 modified = false; 181 182 if (modified) { 183 (void)cmpxchg(module_param, param, modified_param); 184 param = modified_param; 185 } 186 187 return param; 188 } 189 190 unsigned __dm_get_module_param(unsigned *module_param, 191 unsigned def, unsigned max) 192 { 193 unsigned param = READ_ONCE(*module_param); 194 unsigned modified_param = 0; 195 196 if (!param) 197 modified_param = def; 198 else if (param > max) 199 modified_param = max; 200 201 if (modified_param) { 202 (void)cmpxchg(module_param, param, modified_param); 203 param = modified_param; 204 } 205 206 return param; 207 } 208 209 unsigned dm_get_reserved_bio_based_ios(void) 210 { 211 return __dm_get_module_param(&reserved_bio_based_ios, 212 RESERVED_BIO_BASED_IOS, DM_RESERVED_MAX_IOS); 213 } 214 EXPORT_SYMBOL_GPL(dm_get_reserved_bio_based_ios); 215 216 static unsigned dm_get_numa_node(void) 217 { 218 return __dm_get_module_param_int(&dm_numa_node, 219 DM_NUMA_NODE, num_online_nodes() - 1); 220 } 221 222 static int __init local_init(void) 223 { 224 int r; 225 226 r = dm_uevent_init(); 227 if (r) 228 return r; 229 230 deferred_remove_workqueue = alloc_workqueue("kdmremove", WQ_UNBOUND, 1); 231 if (!deferred_remove_workqueue) { 232 r = -ENOMEM; 233 goto out_uevent_exit; 234 } 235 236 _major = major; 237 r = register_blkdev(_major, _name); 238 if (r < 0) 239 goto out_free_workqueue; 240 241 if (!_major) 242 _major = r; 243 244 return 0; 245 246 out_free_workqueue: 247 destroy_workqueue(deferred_remove_workqueue); 248 out_uevent_exit: 249 dm_uevent_exit(); 250 251 return r; 252 } 253 254 static void local_exit(void) 255 { 256 flush_scheduled_work(); 257 destroy_workqueue(deferred_remove_workqueue); 258 259 unregister_blkdev(_major, _name); 260 dm_uevent_exit(); 261 262 _major = 0; 263 264 DMINFO("cleaned up"); 265 } 266 267 static int (*_inits[])(void) __initdata = { 268 local_init, 269 dm_target_init, 270 dm_linear_init, 271 dm_stripe_init, 272 dm_io_init, 273 dm_kcopyd_init, 274 dm_interface_init, 275 dm_statistics_init, 276 }; 277 278 static void (*_exits[])(void) = { 279 local_exit, 280 dm_target_exit, 281 dm_linear_exit, 282 dm_stripe_exit, 283 dm_io_exit, 284 dm_kcopyd_exit, 285 dm_interface_exit, 286 dm_statistics_exit, 287 }; 288 289 static int __init dm_init(void) 290 { 291 const int count = ARRAY_SIZE(_inits); 292 293 int r, i; 294 295 for (i = 0; i < count; i++) { 296 r = _inits[i](); 297 if (r) 298 goto bad; 299 } 300 301 return 0; 302 303 bad: 304 while (i--) 305 _exits[i](); 306 307 return r; 308 } 309 310 static void __exit dm_exit(void) 311 { 312 int i = ARRAY_SIZE(_exits); 313 314 while (i--) 315 _exits[i](); 316 317 /* 318 * Should be empty by this point. 319 */ 320 idr_destroy(&_minor_idr); 321 } 322 323 /* 324 * Block device functions 325 */ 326 int dm_deleting_md(struct mapped_device *md) 327 { 328 return test_bit(DMF_DELETING, &md->flags); 329 } 330 331 static int dm_blk_open(struct block_device *bdev, fmode_t mode) 332 { 333 struct mapped_device *md; 334 335 spin_lock(&_minor_lock); 336 337 md = bdev->bd_disk->private_data; 338 if (!md) 339 goto out; 340 341 if (test_bit(DMF_FREEING, &md->flags) || 342 dm_deleting_md(md)) { 343 md = NULL; 344 goto out; 345 } 346 347 dm_get(md); 348 atomic_inc(&md->open_count); 349 out: 350 spin_unlock(&_minor_lock); 351 352 return md ? 0 : -ENXIO; 353 } 354 355 static void dm_blk_close(struct gendisk *disk, fmode_t mode) 356 { 357 struct mapped_device *md; 358 359 spin_lock(&_minor_lock); 360 361 md = disk->private_data; 362 if (WARN_ON(!md)) 363 goto out; 364 365 if (atomic_dec_and_test(&md->open_count) && 366 (test_bit(DMF_DEFERRED_REMOVE, &md->flags))) 367 queue_work(deferred_remove_workqueue, &deferred_remove_work); 368 369 dm_put(md); 370 out: 371 spin_unlock(&_minor_lock); 372 } 373 374 int dm_open_count(struct mapped_device *md) 375 { 376 return atomic_read(&md->open_count); 377 } 378 379 /* 380 * Guarantees nothing is using the device before it's deleted. 381 */ 382 int dm_lock_for_deletion(struct mapped_device *md, bool mark_deferred, bool only_deferred) 383 { 384 int r = 0; 385 386 spin_lock(&_minor_lock); 387 388 if (dm_open_count(md)) { 389 r = -EBUSY; 390 if (mark_deferred) 391 set_bit(DMF_DEFERRED_REMOVE, &md->flags); 392 } else if (only_deferred && !test_bit(DMF_DEFERRED_REMOVE, &md->flags)) 393 r = -EEXIST; 394 else 395 set_bit(DMF_DELETING, &md->flags); 396 397 spin_unlock(&_minor_lock); 398 399 return r; 400 } 401 402 int dm_cancel_deferred_remove(struct mapped_device *md) 403 { 404 int r = 0; 405 406 spin_lock(&_minor_lock); 407 408 if (test_bit(DMF_DELETING, &md->flags)) 409 r = -EBUSY; 410 else 411 clear_bit(DMF_DEFERRED_REMOVE, &md->flags); 412 413 spin_unlock(&_minor_lock); 414 415 return r; 416 } 417 418 static void do_deferred_remove(struct work_struct *w) 419 { 420 dm_deferred_remove(); 421 } 422 423 sector_t dm_get_size(struct mapped_device *md) 424 { 425 return get_capacity(md->disk); 426 } 427 428 struct request_queue *dm_get_md_queue(struct mapped_device *md) 429 { 430 return md->queue; 431 } 432 433 struct dm_stats *dm_get_stats(struct mapped_device *md) 434 { 435 return &md->stats; 436 } 437 438 static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo) 439 { 440 struct mapped_device *md = bdev->bd_disk->private_data; 441 442 return dm_get_geometry(md, geo); 443 } 444 445 #ifdef CONFIG_BLK_DEV_ZONED 446 int dm_report_zones_cb(struct blk_zone *zone, unsigned int idx, void *data) 447 { 448 struct dm_report_zones_args *args = data; 449 sector_t sector_diff = args->tgt->begin - args->start; 450 451 /* 452 * Ignore zones beyond the target range. 453 */ 454 if (zone->start >= args->start + args->tgt->len) 455 return 0; 456 457 /* 458 * Remap the start sector and write pointer position of the zone 459 * to match its position in the target range. 460 */ 461 zone->start += sector_diff; 462 if (zone->type != BLK_ZONE_TYPE_CONVENTIONAL) { 463 if (zone->cond == BLK_ZONE_COND_FULL) 464 zone->wp = zone->start + zone->len; 465 else if (zone->cond == BLK_ZONE_COND_EMPTY) 466 zone->wp = zone->start; 467 else 468 zone->wp += sector_diff; 469 } 470 471 args->next_sector = zone->start + zone->len; 472 return args->orig_cb(zone, args->zone_idx++, args->orig_data); 473 } 474 EXPORT_SYMBOL_GPL(dm_report_zones_cb); 475 476 static int dm_blk_report_zones(struct gendisk *disk, sector_t sector, 477 unsigned int nr_zones, report_zones_cb cb, void *data) 478 { 479 struct mapped_device *md = disk->private_data; 480 struct dm_table *map; 481 int srcu_idx, ret; 482 struct dm_report_zones_args args = { 483 .next_sector = sector, 484 .orig_data = data, 485 .orig_cb = cb, 486 }; 487 488 if (dm_suspended_md(md)) 489 return -EAGAIN; 490 491 map = dm_get_live_table(md, &srcu_idx); 492 if (!map) 493 return -EIO; 494 495 do { 496 struct dm_target *tgt; 497 498 tgt = dm_table_find_target(map, args.next_sector); 499 if (WARN_ON_ONCE(!tgt->type->report_zones)) { 500 ret = -EIO; 501 goto out; 502 } 503 504 args.tgt = tgt; 505 ret = tgt->type->report_zones(tgt, &args, nr_zones); 506 if (ret < 0) 507 goto out; 508 } while (args.zone_idx < nr_zones && 509 args.next_sector < get_capacity(disk)); 510 511 ret = args.zone_idx; 512 out: 513 dm_put_live_table(md, srcu_idx); 514 return ret; 515 } 516 #else 517 #define dm_blk_report_zones NULL 518 #endif /* CONFIG_BLK_DEV_ZONED */ 519 520 static int dm_prepare_ioctl(struct mapped_device *md, int *srcu_idx, 521 struct block_device **bdev) 522 __acquires(md->io_barrier) 523 { 524 struct dm_target *tgt; 525 struct dm_table *map; 526 int r; 527 528 retry: 529 r = -ENOTTY; 530 map = dm_get_live_table(md, srcu_idx); 531 if (!map || !dm_table_get_size(map)) 532 return r; 533 534 /* We only support devices that have a single target */ 535 if (dm_table_get_num_targets(map) != 1) 536 return r; 537 538 tgt = dm_table_get_target(map, 0); 539 if (!tgt->type->prepare_ioctl) 540 return r; 541 542 if (dm_suspended_md(md)) 543 return -EAGAIN; 544 545 r = tgt->type->prepare_ioctl(tgt, bdev); 546 if (r == -ENOTCONN && !fatal_signal_pending(current)) { 547 dm_put_live_table(md, *srcu_idx); 548 msleep(10); 549 goto retry; 550 } 551 552 return r; 553 } 554 555 static void dm_unprepare_ioctl(struct mapped_device *md, int srcu_idx) 556 __releases(md->io_barrier) 557 { 558 dm_put_live_table(md, srcu_idx); 559 } 560 561 static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode, 562 unsigned int cmd, unsigned long arg) 563 { 564 struct mapped_device *md = bdev->bd_disk->private_data; 565 int r, srcu_idx; 566 567 r = dm_prepare_ioctl(md, &srcu_idx, &bdev); 568 if (r < 0) 569 goto out; 570 571 if (r > 0) { 572 /* 573 * Target determined this ioctl is being issued against a 574 * subset of the parent bdev; require extra privileges. 575 */ 576 if (!capable(CAP_SYS_RAWIO)) { 577 DMWARN_LIMIT( 578 "%s: sending ioctl %x to DM device without required privilege.", 579 current->comm, cmd); 580 r = -ENOIOCTLCMD; 581 goto out; 582 } 583 } 584 585 r = __blkdev_driver_ioctl(bdev, mode, cmd, arg); 586 out: 587 dm_unprepare_ioctl(md, srcu_idx); 588 return r; 589 } 590 591 static void start_io_acct(struct dm_io *io); 592 593 static struct dm_io *alloc_io(struct mapped_device *md, struct bio *bio) 594 { 595 struct dm_io *io; 596 struct dm_target_io *tio; 597 struct bio *clone; 598 599 clone = bio_alloc_bioset(GFP_NOIO, 0, &md->io_bs); 600 if (!clone) 601 return NULL; 602 603 tio = container_of(clone, struct dm_target_io, clone); 604 tio->inside_dm_io = true; 605 tio->io = NULL; 606 607 io = container_of(tio, struct dm_io, tio); 608 io->magic = DM_IO_MAGIC; 609 io->status = 0; 610 atomic_set(&io->io_count, 1); 611 io->orig_bio = bio; 612 io->md = md; 613 spin_lock_init(&io->endio_lock); 614 615 start_io_acct(io); 616 617 return io; 618 } 619 620 static void free_io(struct mapped_device *md, struct dm_io *io) 621 { 622 bio_put(&io->tio.clone); 623 } 624 625 static struct dm_target_io *alloc_tio(struct clone_info *ci, struct dm_target *ti, 626 unsigned target_bio_nr, gfp_t gfp_mask) 627 { 628 struct dm_target_io *tio; 629 630 if (!ci->io->tio.io) { 631 /* the dm_target_io embedded in ci->io is available */ 632 tio = &ci->io->tio; 633 } else { 634 struct bio *clone = bio_alloc_bioset(gfp_mask, 0, &ci->io->md->bs); 635 if (!clone) 636 return NULL; 637 638 tio = container_of(clone, struct dm_target_io, clone); 639 tio->inside_dm_io = false; 640 } 641 642 tio->magic = DM_TIO_MAGIC; 643 tio->io = ci->io; 644 tio->ti = ti; 645 tio->target_bio_nr = target_bio_nr; 646 647 return tio; 648 } 649 650 static void free_tio(struct dm_target_io *tio) 651 { 652 if (tio->inside_dm_io) 653 return; 654 bio_put(&tio->clone); 655 } 656 657 static bool md_in_flight_bios(struct mapped_device *md) 658 { 659 int cpu; 660 struct hd_struct *part = &dm_disk(md)->part0; 661 long sum = 0; 662 663 for_each_possible_cpu(cpu) { 664 sum += part_stat_local_read_cpu(part, in_flight[0], cpu); 665 sum += part_stat_local_read_cpu(part, in_flight[1], cpu); 666 } 667 668 return sum != 0; 669 } 670 671 static bool md_in_flight(struct mapped_device *md) 672 { 673 if (queue_is_mq(md->queue)) 674 return blk_mq_queue_inflight(md->queue); 675 else 676 return md_in_flight_bios(md); 677 } 678 679 u64 dm_start_time_ns_from_clone(struct bio *bio) 680 { 681 struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone); 682 struct dm_io *io = tio->io; 683 684 return jiffies_to_nsecs(io->start_time); 685 } 686 EXPORT_SYMBOL_GPL(dm_start_time_ns_from_clone); 687 688 static void start_io_acct(struct dm_io *io) 689 { 690 struct mapped_device *md = io->md; 691 struct bio *bio = io->orig_bio; 692 693 io->start_time = bio_start_io_acct(bio); 694 if (unlikely(dm_stats_used(&md->stats))) 695 dm_stats_account_io(&md->stats, bio_data_dir(bio), 696 bio->bi_iter.bi_sector, bio_sectors(bio), 697 false, 0, &io->stats_aux); 698 } 699 700 static void end_io_acct(struct dm_io *io) 701 { 702 struct mapped_device *md = io->md; 703 struct bio *bio = io->orig_bio; 704 unsigned long duration = jiffies - io->start_time; 705 706 bio_end_io_acct(bio, io->start_time); 707 708 if (unlikely(dm_stats_used(&md->stats))) 709 dm_stats_account_io(&md->stats, bio_data_dir(bio), 710 bio->bi_iter.bi_sector, bio_sectors(bio), 711 true, duration, &io->stats_aux); 712 713 /* nudge anyone waiting on suspend queue */ 714 if (unlikely(wq_has_sleeper(&md->wait))) 715 wake_up(&md->wait); 716 } 717 718 /* 719 * Add the bio to the list of deferred io. 720 */ 721 static void queue_io(struct mapped_device *md, struct bio *bio) 722 { 723 unsigned long flags; 724 725 spin_lock_irqsave(&md->deferred_lock, flags); 726 bio_list_add(&md->deferred, bio); 727 spin_unlock_irqrestore(&md->deferred_lock, flags); 728 queue_work(md->wq, &md->work); 729 } 730 731 /* 732 * Everyone (including functions in this file), should use this 733 * function to access the md->map field, and make sure they call 734 * dm_put_live_table() when finished. 735 */ 736 struct dm_table *dm_get_live_table(struct mapped_device *md, int *srcu_idx) __acquires(md->io_barrier) 737 { 738 *srcu_idx = srcu_read_lock(&md->io_barrier); 739 740 return srcu_dereference(md->map, &md->io_barrier); 741 } 742 743 void dm_put_live_table(struct mapped_device *md, int srcu_idx) __releases(md->io_barrier) 744 { 745 srcu_read_unlock(&md->io_barrier, srcu_idx); 746 } 747 748 void dm_sync_table(struct mapped_device *md) 749 { 750 synchronize_srcu(&md->io_barrier); 751 synchronize_rcu_expedited(); 752 } 753 754 /* 755 * A fast alternative to dm_get_live_table/dm_put_live_table. 756 * The caller must not block between these two functions. 757 */ 758 static struct dm_table *dm_get_live_table_fast(struct mapped_device *md) __acquires(RCU) 759 { 760 rcu_read_lock(); 761 return rcu_dereference(md->map); 762 } 763 764 static void dm_put_live_table_fast(struct mapped_device *md) __releases(RCU) 765 { 766 rcu_read_unlock(); 767 } 768 769 static char *_dm_claim_ptr = "I belong to device-mapper"; 770 771 /* 772 * Open a table device so we can use it as a map destination. 773 */ 774 static int open_table_device(struct table_device *td, dev_t dev, 775 struct mapped_device *md) 776 { 777 struct block_device *bdev; 778 779 int r; 780 781 BUG_ON(td->dm_dev.bdev); 782 783 bdev = blkdev_get_by_dev(dev, td->dm_dev.mode | FMODE_EXCL, _dm_claim_ptr); 784 if (IS_ERR(bdev)) 785 return PTR_ERR(bdev); 786 787 r = bd_link_disk_holder(bdev, dm_disk(md)); 788 if (r) { 789 blkdev_put(bdev, td->dm_dev.mode | FMODE_EXCL); 790 return r; 791 } 792 793 td->dm_dev.bdev = bdev; 794 td->dm_dev.dax_dev = dax_get_by_host(bdev->bd_disk->disk_name); 795 return 0; 796 } 797 798 /* 799 * Close a table device that we've been using. 800 */ 801 static void close_table_device(struct table_device *td, struct mapped_device *md) 802 { 803 if (!td->dm_dev.bdev) 804 return; 805 806 bd_unlink_disk_holder(td->dm_dev.bdev, dm_disk(md)); 807 blkdev_put(td->dm_dev.bdev, td->dm_dev.mode | FMODE_EXCL); 808 put_dax(td->dm_dev.dax_dev); 809 td->dm_dev.bdev = NULL; 810 td->dm_dev.dax_dev = NULL; 811 } 812 813 static struct table_device *find_table_device(struct list_head *l, dev_t dev, 814 fmode_t mode) 815 { 816 struct table_device *td; 817 818 list_for_each_entry(td, l, list) 819 if (td->dm_dev.bdev->bd_dev == dev && td->dm_dev.mode == mode) 820 return td; 821 822 return NULL; 823 } 824 825 int dm_get_table_device(struct mapped_device *md, dev_t dev, fmode_t mode, 826 struct dm_dev **result) 827 { 828 int r; 829 struct table_device *td; 830 831 mutex_lock(&md->table_devices_lock); 832 td = find_table_device(&md->table_devices, dev, mode); 833 if (!td) { 834 td = kmalloc_node(sizeof(*td), GFP_KERNEL, md->numa_node_id); 835 if (!td) { 836 mutex_unlock(&md->table_devices_lock); 837 return -ENOMEM; 838 } 839 840 td->dm_dev.mode = mode; 841 td->dm_dev.bdev = NULL; 842 843 if ((r = open_table_device(td, dev, md))) { 844 mutex_unlock(&md->table_devices_lock); 845 kfree(td); 846 return r; 847 } 848 849 format_dev_t(td->dm_dev.name, dev); 850 851 refcount_set(&td->count, 1); 852 list_add(&td->list, &md->table_devices); 853 } else { 854 refcount_inc(&td->count); 855 } 856 mutex_unlock(&md->table_devices_lock); 857 858 *result = &td->dm_dev; 859 return 0; 860 } 861 EXPORT_SYMBOL_GPL(dm_get_table_device); 862 863 void dm_put_table_device(struct mapped_device *md, struct dm_dev *d) 864 { 865 struct table_device *td = container_of(d, struct table_device, dm_dev); 866 867 mutex_lock(&md->table_devices_lock); 868 if (refcount_dec_and_test(&td->count)) { 869 close_table_device(td, md); 870 list_del(&td->list); 871 kfree(td); 872 } 873 mutex_unlock(&md->table_devices_lock); 874 } 875 EXPORT_SYMBOL(dm_put_table_device); 876 877 static void free_table_devices(struct list_head *devices) 878 { 879 struct list_head *tmp, *next; 880 881 list_for_each_safe(tmp, next, devices) { 882 struct table_device *td = list_entry(tmp, struct table_device, list); 883 884 DMWARN("dm_destroy: %s still exists with %d references", 885 td->dm_dev.name, refcount_read(&td->count)); 886 kfree(td); 887 } 888 } 889 890 /* 891 * Get the geometry associated with a dm device 892 */ 893 int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo) 894 { 895 *geo = md->geometry; 896 897 return 0; 898 } 899 900 /* 901 * Set the geometry of a device. 902 */ 903 int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo) 904 { 905 sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors; 906 907 if (geo->start > sz) { 908 DMWARN("Start sector is beyond the geometry limits."); 909 return -EINVAL; 910 } 911 912 md->geometry = *geo; 913 914 return 0; 915 } 916 917 static int __noflush_suspending(struct mapped_device *md) 918 { 919 return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags); 920 } 921 922 /* 923 * Decrements the number of outstanding ios that a bio has been 924 * cloned into, completing the original io if necc. 925 */ 926 static void dec_pending(struct dm_io *io, blk_status_t error) 927 { 928 unsigned long flags; 929 blk_status_t io_error; 930 struct bio *bio; 931 struct mapped_device *md = io->md; 932 933 /* Push-back supersedes any I/O errors */ 934 if (unlikely(error)) { 935 spin_lock_irqsave(&io->endio_lock, flags); 936 if (!(io->status == BLK_STS_DM_REQUEUE && __noflush_suspending(md))) 937 io->status = error; 938 spin_unlock_irqrestore(&io->endio_lock, flags); 939 } 940 941 if (atomic_dec_and_test(&io->io_count)) { 942 if (io->status == BLK_STS_DM_REQUEUE) { 943 /* 944 * Target requested pushing back the I/O. 945 */ 946 spin_lock_irqsave(&md->deferred_lock, flags); 947 if (__noflush_suspending(md)) 948 /* NOTE early return due to BLK_STS_DM_REQUEUE below */ 949 bio_list_add_head(&md->deferred, io->orig_bio); 950 else 951 /* noflush suspend was interrupted. */ 952 io->status = BLK_STS_IOERR; 953 spin_unlock_irqrestore(&md->deferred_lock, flags); 954 } 955 956 io_error = io->status; 957 bio = io->orig_bio; 958 end_io_acct(io); 959 free_io(md, io); 960 961 if (io_error == BLK_STS_DM_REQUEUE) 962 return; 963 964 if ((bio->bi_opf & REQ_PREFLUSH) && bio->bi_iter.bi_size) { 965 /* 966 * Preflush done for flush with data, reissue 967 * without REQ_PREFLUSH. 968 */ 969 bio->bi_opf &= ~REQ_PREFLUSH; 970 queue_io(md, bio); 971 } else { 972 /* done with normal IO or empty flush */ 973 if (io_error) 974 bio->bi_status = io_error; 975 bio_endio(bio); 976 } 977 } 978 } 979 980 void disable_discard(struct mapped_device *md) 981 { 982 struct queue_limits *limits = dm_get_queue_limits(md); 983 984 /* device doesn't really support DISCARD, disable it */ 985 limits->max_discard_sectors = 0; 986 blk_queue_flag_clear(QUEUE_FLAG_DISCARD, md->queue); 987 } 988 989 void disable_write_same(struct mapped_device *md) 990 { 991 struct queue_limits *limits = dm_get_queue_limits(md); 992 993 /* device doesn't really support WRITE SAME, disable it */ 994 limits->max_write_same_sectors = 0; 995 } 996 997 void disable_write_zeroes(struct mapped_device *md) 998 { 999 struct queue_limits *limits = dm_get_queue_limits(md); 1000 1001 /* device doesn't really support WRITE ZEROES, disable it */ 1002 limits->max_write_zeroes_sectors = 0; 1003 } 1004 1005 static void clone_endio(struct bio *bio) 1006 { 1007 blk_status_t error = bio->bi_status; 1008 struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone); 1009 struct dm_io *io = tio->io; 1010 struct mapped_device *md = tio->io->md; 1011 dm_endio_fn endio = tio->ti->type->end_io; 1012 1013 if (unlikely(error == BLK_STS_TARGET) && md->type != DM_TYPE_NVME_BIO_BASED) { 1014 if (bio_op(bio) == REQ_OP_DISCARD && 1015 !bio->bi_disk->queue->limits.max_discard_sectors) 1016 disable_discard(md); 1017 else if (bio_op(bio) == REQ_OP_WRITE_SAME && 1018 !bio->bi_disk->queue->limits.max_write_same_sectors) 1019 disable_write_same(md); 1020 else if (bio_op(bio) == REQ_OP_WRITE_ZEROES && 1021 !bio->bi_disk->queue->limits.max_write_zeroes_sectors) 1022 disable_write_zeroes(md); 1023 } 1024 1025 if (endio) { 1026 int r = endio(tio->ti, bio, &error); 1027 switch (r) { 1028 case DM_ENDIO_REQUEUE: 1029 error = BLK_STS_DM_REQUEUE; 1030 /*FALLTHRU*/ 1031 case DM_ENDIO_DONE: 1032 break; 1033 case DM_ENDIO_INCOMPLETE: 1034 /* The target will handle the io */ 1035 return; 1036 default: 1037 DMWARN("unimplemented target endio return value: %d", r); 1038 BUG(); 1039 } 1040 } 1041 1042 free_tio(tio); 1043 dec_pending(io, error); 1044 } 1045 1046 /* 1047 * Return maximum size of I/O possible at the supplied sector up to the current 1048 * target boundary. 1049 */ 1050 static sector_t max_io_len_target_boundary(sector_t sector, struct dm_target *ti) 1051 { 1052 sector_t target_offset = dm_target_offset(ti, sector); 1053 1054 return ti->len - target_offset; 1055 } 1056 1057 static sector_t max_io_len(sector_t sector, struct dm_target *ti) 1058 { 1059 sector_t len = max_io_len_target_boundary(sector, ti); 1060 sector_t offset, max_len; 1061 1062 /* 1063 * Does the target need to split even further? 1064 */ 1065 if (ti->max_io_len) { 1066 offset = dm_target_offset(ti, sector); 1067 if (unlikely(ti->max_io_len & (ti->max_io_len - 1))) 1068 max_len = sector_div(offset, ti->max_io_len); 1069 else 1070 max_len = offset & (ti->max_io_len - 1); 1071 max_len = ti->max_io_len - max_len; 1072 1073 if (len > max_len) 1074 len = max_len; 1075 } 1076 1077 return len; 1078 } 1079 1080 int dm_set_target_max_io_len(struct dm_target *ti, sector_t len) 1081 { 1082 if (len > UINT_MAX) { 1083 DMERR("Specified maximum size of target IO (%llu) exceeds limit (%u)", 1084 (unsigned long long)len, UINT_MAX); 1085 ti->error = "Maximum size of target IO is too large"; 1086 return -EINVAL; 1087 } 1088 1089 ti->max_io_len = (uint32_t) len; 1090 1091 return 0; 1092 } 1093 EXPORT_SYMBOL_GPL(dm_set_target_max_io_len); 1094 1095 static struct dm_target *dm_dax_get_live_target(struct mapped_device *md, 1096 sector_t sector, int *srcu_idx) 1097 __acquires(md->io_barrier) 1098 { 1099 struct dm_table *map; 1100 struct dm_target *ti; 1101 1102 map = dm_get_live_table(md, srcu_idx); 1103 if (!map) 1104 return NULL; 1105 1106 ti = dm_table_find_target(map, sector); 1107 if (!ti) 1108 return NULL; 1109 1110 return ti; 1111 } 1112 1113 static long dm_dax_direct_access(struct dax_device *dax_dev, pgoff_t pgoff, 1114 long nr_pages, void **kaddr, pfn_t *pfn) 1115 { 1116 struct mapped_device *md = dax_get_private(dax_dev); 1117 sector_t sector = pgoff * PAGE_SECTORS; 1118 struct dm_target *ti; 1119 long len, ret = -EIO; 1120 int srcu_idx; 1121 1122 ti = dm_dax_get_live_target(md, sector, &srcu_idx); 1123 1124 if (!ti) 1125 goto out; 1126 if (!ti->type->direct_access) 1127 goto out; 1128 len = max_io_len(sector, ti) / PAGE_SECTORS; 1129 if (len < 1) 1130 goto out; 1131 nr_pages = min(len, nr_pages); 1132 ret = ti->type->direct_access(ti, pgoff, nr_pages, kaddr, pfn); 1133 1134 out: 1135 dm_put_live_table(md, srcu_idx); 1136 1137 return ret; 1138 } 1139 1140 static bool dm_dax_supported(struct dax_device *dax_dev, struct block_device *bdev, 1141 int blocksize, sector_t start, sector_t len) 1142 { 1143 struct mapped_device *md = dax_get_private(dax_dev); 1144 struct dm_table *map; 1145 int srcu_idx; 1146 bool ret; 1147 1148 map = dm_get_live_table(md, &srcu_idx); 1149 if (!map) 1150 return false; 1151 1152 ret = dm_table_supports_dax(map, device_supports_dax, &blocksize); 1153 1154 dm_put_live_table(md, srcu_idx); 1155 1156 return ret; 1157 } 1158 1159 static size_t dm_dax_copy_from_iter(struct dax_device *dax_dev, pgoff_t pgoff, 1160 void *addr, size_t bytes, struct iov_iter *i) 1161 { 1162 struct mapped_device *md = dax_get_private(dax_dev); 1163 sector_t sector = pgoff * PAGE_SECTORS; 1164 struct dm_target *ti; 1165 long ret = 0; 1166 int srcu_idx; 1167 1168 ti = dm_dax_get_live_target(md, sector, &srcu_idx); 1169 1170 if (!ti) 1171 goto out; 1172 if (!ti->type->dax_copy_from_iter) { 1173 ret = copy_from_iter(addr, bytes, i); 1174 goto out; 1175 } 1176 ret = ti->type->dax_copy_from_iter(ti, pgoff, addr, bytes, i); 1177 out: 1178 dm_put_live_table(md, srcu_idx); 1179 1180 return ret; 1181 } 1182 1183 static size_t dm_dax_copy_to_iter(struct dax_device *dax_dev, pgoff_t pgoff, 1184 void *addr, size_t bytes, struct iov_iter *i) 1185 { 1186 struct mapped_device *md = dax_get_private(dax_dev); 1187 sector_t sector = pgoff * PAGE_SECTORS; 1188 struct dm_target *ti; 1189 long ret = 0; 1190 int srcu_idx; 1191 1192 ti = dm_dax_get_live_target(md, sector, &srcu_idx); 1193 1194 if (!ti) 1195 goto out; 1196 if (!ti->type->dax_copy_to_iter) { 1197 ret = copy_to_iter(addr, bytes, i); 1198 goto out; 1199 } 1200 ret = ti->type->dax_copy_to_iter(ti, pgoff, addr, bytes, i); 1201 out: 1202 dm_put_live_table(md, srcu_idx); 1203 1204 return ret; 1205 } 1206 1207 static int dm_dax_zero_page_range(struct dax_device *dax_dev, pgoff_t pgoff, 1208 size_t nr_pages) 1209 { 1210 struct mapped_device *md = dax_get_private(dax_dev); 1211 sector_t sector = pgoff * PAGE_SECTORS; 1212 struct dm_target *ti; 1213 int ret = -EIO; 1214 int srcu_idx; 1215 1216 ti = dm_dax_get_live_target(md, sector, &srcu_idx); 1217 1218 if (!ti) 1219 goto out; 1220 if (WARN_ON(!ti->type->dax_zero_page_range)) { 1221 /* 1222 * ->zero_page_range() is mandatory dax operation. If we are 1223 * here, something is wrong. 1224 */ 1225 dm_put_live_table(md, srcu_idx); 1226 goto out; 1227 } 1228 ret = ti->type->dax_zero_page_range(ti, pgoff, nr_pages); 1229 1230 out: 1231 dm_put_live_table(md, srcu_idx); 1232 1233 return ret; 1234 } 1235 1236 /* 1237 * A target may call dm_accept_partial_bio only from the map routine. It is 1238 * allowed for all bio types except REQ_PREFLUSH, REQ_OP_ZONE_RESET, 1239 * REQ_OP_ZONE_OPEN, REQ_OP_ZONE_CLOSE and REQ_OP_ZONE_FINISH. 1240 * 1241 * dm_accept_partial_bio informs the dm that the target only wants to process 1242 * additional n_sectors sectors of the bio and the rest of the data should be 1243 * sent in a next bio. 1244 * 1245 * A diagram that explains the arithmetics: 1246 * +--------------------+---------------+-------+ 1247 * | 1 | 2 | 3 | 1248 * +--------------------+---------------+-------+ 1249 * 1250 * <-------------- *tio->len_ptr ---------------> 1251 * <------- bi_size -------> 1252 * <-- n_sectors --> 1253 * 1254 * Region 1 was already iterated over with bio_advance or similar function. 1255 * (it may be empty if the target doesn't use bio_advance) 1256 * Region 2 is the remaining bio size that the target wants to process. 1257 * (it may be empty if region 1 is non-empty, although there is no reason 1258 * to make it empty) 1259 * The target requires that region 3 is to be sent in the next bio. 1260 * 1261 * If the target wants to receive multiple copies of the bio (via num_*bios, etc), 1262 * the partially processed part (the sum of regions 1+2) must be the same for all 1263 * copies of the bio. 1264 */ 1265 void dm_accept_partial_bio(struct bio *bio, unsigned n_sectors) 1266 { 1267 struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone); 1268 unsigned bi_size = bio->bi_iter.bi_size >> SECTOR_SHIFT; 1269 BUG_ON(bio->bi_opf & REQ_PREFLUSH); 1270 BUG_ON(bi_size > *tio->len_ptr); 1271 BUG_ON(n_sectors > bi_size); 1272 *tio->len_ptr -= bi_size - n_sectors; 1273 bio->bi_iter.bi_size = n_sectors << SECTOR_SHIFT; 1274 } 1275 EXPORT_SYMBOL_GPL(dm_accept_partial_bio); 1276 1277 static blk_qc_t __map_bio(struct dm_target_io *tio) 1278 { 1279 int r; 1280 sector_t sector; 1281 struct bio *clone = &tio->clone; 1282 struct dm_io *io = tio->io; 1283 struct mapped_device *md = io->md; 1284 struct dm_target *ti = tio->ti; 1285 blk_qc_t ret = BLK_QC_T_NONE; 1286 1287 clone->bi_end_io = clone_endio; 1288 1289 /* 1290 * Map the clone. If r == 0 we don't need to do 1291 * anything, the target has assumed ownership of 1292 * this io. 1293 */ 1294 atomic_inc(&io->io_count); 1295 sector = clone->bi_iter.bi_sector; 1296 1297 r = ti->type->map(ti, clone); 1298 switch (r) { 1299 case DM_MAPIO_SUBMITTED: 1300 break; 1301 case DM_MAPIO_REMAPPED: 1302 /* the bio has been remapped so dispatch it */ 1303 trace_block_bio_remap(clone->bi_disk->queue, clone, 1304 bio_dev(io->orig_bio), sector); 1305 if (md->type == DM_TYPE_NVME_BIO_BASED) 1306 ret = direct_make_request(clone); 1307 else 1308 ret = generic_make_request(clone); 1309 break; 1310 case DM_MAPIO_KILL: 1311 free_tio(tio); 1312 dec_pending(io, BLK_STS_IOERR); 1313 break; 1314 case DM_MAPIO_REQUEUE: 1315 free_tio(tio); 1316 dec_pending(io, BLK_STS_DM_REQUEUE); 1317 break; 1318 default: 1319 DMWARN("unimplemented target map return value: %d", r); 1320 BUG(); 1321 } 1322 1323 return ret; 1324 } 1325 1326 static void bio_setup_sector(struct bio *bio, sector_t sector, unsigned len) 1327 { 1328 bio->bi_iter.bi_sector = sector; 1329 bio->bi_iter.bi_size = to_bytes(len); 1330 } 1331 1332 /* 1333 * Creates a bio that consists of range of complete bvecs. 1334 */ 1335 static int clone_bio(struct dm_target_io *tio, struct bio *bio, 1336 sector_t sector, unsigned len) 1337 { 1338 struct bio *clone = &tio->clone; 1339 1340 __bio_clone_fast(clone, bio); 1341 1342 bio_crypt_clone(clone, bio, GFP_NOIO); 1343 1344 if (bio_integrity(bio)) { 1345 int r; 1346 1347 if (unlikely(!dm_target_has_integrity(tio->ti->type) && 1348 !dm_target_passes_integrity(tio->ti->type))) { 1349 DMWARN("%s: the target %s doesn't support integrity data.", 1350 dm_device_name(tio->io->md), 1351 tio->ti->type->name); 1352 return -EIO; 1353 } 1354 1355 r = bio_integrity_clone(clone, bio, GFP_NOIO); 1356 if (r < 0) 1357 return r; 1358 } 1359 1360 bio_advance(clone, to_bytes(sector - clone->bi_iter.bi_sector)); 1361 clone->bi_iter.bi_size = to_bytes(len); 1362 1363 if (bio_integrity(bio)) 1364 bio_integrity_trim(clone); 1365 1366 return 0; 1367 } 1368 1369 static void alloc_multiple_bios(struct bio_list *blist, struct clone_info *ci, 1370 struct dm_target *ti, unsigned num_bios) 1371 { 1372 struct dm_target_io *tio; 1373 int try; 1374 1375 if (!num_bios) 1376 return; 1377 1378 if (num_bios == 1) { 1379 tio = alloc_tio(ci, ti, 0, GFP_NOIO); 1380 bio_list_add(blist, &tio->clone); 1381 return; 1382 } 1383 1384 for (try = 0; try < 2; try++) { 1385 int bio_nr; 1386 struct bio *bio; 1387 1388 if (try) 1389 mutex_lock(&ci->io->md->table_devices_lock); 1390 for (bio_nr = 0; bio_nr < num_bios; bio_nr++) { 1391 tio = alloc_tio(ci, ti, bio_nr, try ? GFP_NOIO : GFP_NOWAIT); 1392 if (!tio) 1393 break; 1394 1395 bio_list_add(blist, &tio->clone); 1396 } 1397 if (try) 1398 mutex_unlock(&ci->io->md->table_devices_lock); 1399 if (bio_nr == num_bios) 1400 return; 1401 1402 while ((bio = bio_list_pop(blist))) { 1403 tio = container_of(bio, struct dm_target_io, clone); 1404 free_tio(tio); 1405 } 1406 } 1407 } 1408 1409 static blk_qc_t __clone_and_map_simple_bio(struct clone_info *ci, 1410 struct dm_target_io *tio, unsigned *len) 1411 { 1412 struct bio *clone = &tio->clone; 1413 1414 tio->len_ptr = len; 1415 1416 __bio_clone_fast(clone, ci->bio); 1417 if (len) 1418 bio_setup_sector(clone, ci->sector, *len); 1419 1420 return __map_bio(tio); 1421 } 1422 1423 static void __send_duplicate_bios(struct clone_info *ci, struct dm_target *ti, 1424 unsigned num_bios, unsigned *len) 1425 { 1426 struct bio_list blist = BIO_EMPTY_LIST; 1427 struct bio *bio; 1428 struct dm_target_io *tio; 1429 1430 alloc_multiple_bios(&blist, ci, ti, num_bios); 1431 1432 while ((bio = bio_list_pop(&blist))) { 1433 tio = container_of(bio, struct dm_target_io, clone); 1434 (void) __clone_and_map_simple_bio(ci, tio, len); 1435 } 1436 } 1437 1438 static int __send_empty_flush(struct clone_info *ci) 1439 { 1440 unsigned target_nr = 0; 1441 struct dm_target *ti; 1442 1443 /* 1444 * Empty flush uses a statically initialized bio, as the base for 1445 * cloning. However, blkg association requires that a bdev is 1446 * associated with a gendisk, which doesn't happen until the bdev is 1447 * opened. So, blkg association is done at issue time of the flush 1448 * rather than when the device is created in alloc_dev(). 1449 */ 1450 bio_set_dev(ci->bio, ci->io->md->bdev); 1451 1452 BUG_ON(bio_has_data(ci->bio)); 1453 while ((ti = dm_table_get_target(ci->map, target_nr++))) 1454 __send_duplicate_bios(ci, ti, ti->num_flush_bios, NULL); 1455 1456 bio_disassociate_blkg(ci->bio); 1457 1458 return 0; 1459 } 1460 1461 static int __clone_and_map_data_bio(struct clone_info *ci, struct dm_target *ti, 1462 sector_t sector, unsigned *len) 1463 { 1464 struct bio *bio = ci->bio; 1465 struct dm_target_io *tio; 1466 int r; 1467 1468 tio = alloc_tio(ci, ti, 0, GFP_NOIO); 1469 tio->len_ptr = len; 1470 r = clone_bio(tio, bio, sector, *len); 1471 if (r < 0) { 1472 free_tio(tio); 1473 return r; 1474 } 1475 (void) __map_bio(tio); 1476 1477 return 0; 1478 } 1479 1480 typedef unsigned (*get_num_bios_fn)(struct dm_target *ti); 1481 1482 static unsigned get_num_discard_bios(struct dm_target *ti) 1483 { 1484 return ti->num_discard_bios; 1485 } 1486 1487 static unsigned get_num_secure_erase_bios(struct dm_target *ti) 1488 { 1489 return ti->num_secure_erase_bios; 1490 } 1491 1492 static unsigned get_num_write_same_bios(struct dm_target *ti) 1493 { 1494 return ti->num_write_same_bios; 1495 } 1496 1497 static unsigned get_num_write_zeroes_bios(struct dm_target *ti) 1498 { 1499 return ti->num_write_zeroes_bios; 1500 } 1501 1502 static int __send_changing_extent_only(struct clone_info *ci, struct dm_target *ti, 1503 unsigned num_bios) 1504 { 1505 unsigned len; 1506 1507 /* 1508 * Even though the device advertised support for this type of 1509 * request, that does not mean every target supports it, and 1510 * reconfiguration might also have changed that since the 1511 * check was performed. 1512 */ 1513 if (!num_bios) 1514 return -EOPNOTSUPP; 1515 1516 len = min((sector_t)ci->sector_count, max_io_len_target_boundary(ci->sector, ti)); 1517 1518 __send_duplicate_bios(ci, ti, num_bios, &len); 1519 1520 ci->sector += len; 1521 ci->sector_count -= len; 1522 1523 return 0; 1524 } 1525 1526 static int __send_discard(struct clone_info *ci, struct dm_target *ti) 1527 { 1528 return __send_changing_extent_only(ci, ti, get_num_discard_bios(ti)); 1529 } 1530 1531 static int __send_secure_erase(struct clone_info *ci, struct dm_target *ti) 1532 { 1533 return __send_changing_extent_only(ci, ti, get_num_secure_erase_bios(ti)); 1534 } 1535 1536 static int __send_write_same(struct clone_info *ci, struct dm_target *ti) 1537 { 1538 return __send_changing_extent_only(ci, ti, get_num_write_same_bios(ti)); 1539 } 1540 1541 static int __send_write_zeroes(struct clone_info *ci, struct dm_target *ti) 1542 { 1543 return __send_changing_extent_only(ci, ti, get_num_write_zeroes_bios(ti)); 1544 } 1545 1546 static bool is_abnormal_io(struct bio *bio) 1547 { 1548 bool r = false; 1549 1550 switch (bio_op(bio)) { 1551 case REQ_OP_DISCARD: 1552 case REQ_OP_SECURE_ERASE: 1553 case REQ_OP_WRITE_SAME: 1554 case REQ_OP_WRITE_ZEROES: 1555 r = true; 1556 break; 1557 } 1558 1559 return r; 1560 } 1561 1562 static bool __process_abnormal_io(struct clone_info *ci, struct dm_target *ti, 1563 int *result) 1564 { 1565 struct bio *bio = ci->bio; 1566 1567 if (bio_op(bio) == REQ_OP_DISCARD) 1568 *result = __send_discard(ci, ti); 1569 else if (bio_op(bio) == REQ_OP_SECURE_ERASE) 1570 *result = __send_secure_erase(ci, ti); 1571 else if (bio_op(bio) == REQ_OP_WRITE_SAME) 1572 *result = __send_write_same(ci, ti); 1573 else if (bio_op(bio) == REQ_OP_WRITE_ZEROES) 1574 *result = __send_write_zeroes(ci, ti); 1575 else 1576 return false; 1577 1578 return true; 1579 } 1580 1581 /* 1582 * Select the correct strategy for processing a non-flush bio. 1583 */ 1584 static int __split_and_process_non_flush(struct clone_info *ci) 1585 { 1586 struct dm_target *ti; 1587 unsigned len; 1588 int r; 1589 1590 ti = dm_table_find_target(ci->map, ci->sector); 1591 if (!ti) 1592 return -EIO; 1593 1594 if (__process_abnormal_io(ci, ti, &r)) 1595 return r; 1596 1597 len = min_t(sector_t, max_io_len(ci->sector, ti), ci->sector_count); 1598 1599 r = __clone_and_map_data_bio(ci, ti, ci->sector, &len); 1600 if (r < 0) 1601 return r; 1602 1603 ci->sector += len; 1604 ci->sector_count -= len; 1605 1606 return 0; 1607 } 1608 1609 static void init_clone_info(struct clone_info *ci, struct mapped_device *md, 1610 struct dm_table *map, struct bio *bio) 1611 { 1612 ci->map = map; 1613 ci->io = alloc_io(md, bio); 1614 ci->sector = bio->bi_iter.bi_sector; 1615 } 1616 1617 #define __dm_part_stat_sub(part, field, subnd) \ 1618 (part_stat_get(part, field) -= (subnd)) 1619 1620 /* 1621 * Entry point to split a bio into clones and submit them to the targets. 1622 */ 1623 static blk_qc_t __split_and_process_bio(struct mapped_device *md, 1624 struct dm_table *map, struct bio *bio) 1625 { 1626 struct clone_info ci; 1627 blk_qc_t ret = BLK_QC_T_NONE; 1628 int error = 0; 1629 1630 init_clone_info(&ci, md, map, bio); 1631 1632 if (bio->bi_opf & REQ_PREFLUSH) { 1633 struct bio flush_bio; 1634 1635 /* 1636 * Use an on-stack bio for this, it's safe since we don't 1637 * need to reference it after submit. It's just used as 1638 * the basis for the clone(s). 1639 */ 1640 bio_init(&flush_bio, NULL, 0); 1641 flush_bio.bi_opf = REQ_OP_WRITE | REQ_PREFLUSH | REQ_SYNC; 1642 ci.bio = &flush_bio; 1643 ci.sector_count = 0; 1644 error = __send_empty_flush(&ci); 1645 /* dec_pending submits any data associated with flush */ 1646 } else if (op_is_zone_mgmt(bio_op(bio))) { 1647 ci.bio = bio; 1648 ci.sector_count = 0; 1649 error = __split_and_process_non_flush(&ci); 1650 } else { 1651 ci.bio = bio; 1652 ci.sector_count = bio_sectors(bio); 1653 while (ci.sector_count && !error) { 1654 error = __split_and_process_non_flush(&ci); 1655 if (current->bio_list && ci.sector_count && !error) { 1656 /* 1657 * Remainder must be passed to generic_make_request() 1658 * so that it gets handled *after* bios already submitted 1659 * have been completely processed. 1660 * We take a clone of the original to store in 1661 * ci.io->orig_bio to be used by end_io_acct() and 1662 * for dec_pending to use for completion handling. 1663 */ 1664 struct bio *b = bio_split(bio, bio_sectors(bio) - ci.sector_count, 1665 GFP_NOIO, &md->queue->bio_split); 1666 ci.io->orig_bio = b; 1667 1668 /* 1669 * Adjust IO stats for each split, otherwise upon queue 1670 * reentry there will be redundant IO accounting. 1671 * NOTE: this is a stop-gap fix, a proper fix involves 1672 * significant refactoring of DM core's bio splitting 1673 * (by eliminating DM's splitting and just using bio_split) 1674 */ 1675 part_stat_lock(); 1676 __dm_part_stat_sub(&dm_disk(md)->part0, 1677 sectors[op_stat_group(bio_op(bio))], ci.sector_count); 1678 part_stat_unlock(); 1679 1680 bio_chain(b, bio); 1681 trace_block_split(md->queue, b, bio->bi_iter.bi_sector); 1682 ret = generic_make_request(bio); 1683 break; 1684 } 1685 } 1686 } 1687 1688 /* drop the extra reference count */ 1689 dec_pending(ci.io, errno_to_blk_status(error)); 1690 return ret; 1691 } 1692 1693 /* 1694 * Optimized variant of __split_and_process_bio that leverages the 1695 * fact that targets that use it do _not_ have a need to split bios. 1696 */ 1697 static blk_qc_t __process_bio(struct mapped_device *md, struct dm_table *map, 1698 struct bio *bio, struct dm_target *ti) 1699 { 1700 struct clone_info ci; 1701 blk_qc_t ret = BLK_QC_T_NONE; 1702 int error = 0; 1703 1704 init_clone_info(&ci, md, map, bio); 1705 1706 if (bio->bi_opf & REQ_PREFLUSH) { 1707 struct bio flush_bio; 1708 1709 /* 1710 * Use an on-stack bio for this, it's safe since we don't 1711 * need to reference it after submit. It's just used as 1712 * the basis for the clone(s). 1713 */ 1714 bio_init(&flush_bio, NULL, 0); 1715 flush_bio.bi_opf = REQ_OP_WRITE | REQ_PREFLUSH | REQ_SYNC; 1716 ci.bio = &flush_bio; 1717 ci.sector_count = 0; 1718 error = __send_empty_flush(&ci); 1719 /* dec_pending submits any data associated with flush */ 1720 } else { 1721 struct dm_target_io *tio; 1722 1723 ci.bio = bio; 1724 ci.sector_count = bio_sectors(bio); 1725 if (__process_abnormal_io(&ci, ti, &error)) 1726 goto out; 1727 1728 tio = alloc_tio(&ci, ti, 0, GFP_NOIO); 1729 ret = __clone_and_map_simple_bio(&ci, tio, NULL); 1730 } 1731 out: 1732 /* drop the extra reference count */ 1733 dec_pending(ci.io, errno_to_blk_status(error)); 1734 return ret; 1735 } 1736 1737 static void dm_queue_split(struct mapped_device *md, struct dm_target *ti, struct bio **bio) 1738 { 1739 unsigned len, sector_count; 1740 1741 sector_count = bio_sectors(*bio); 1742 len = min_t(sector_t, max_io_len((*bio)->bi_iter.bi_sector, ti), sector_count); 1743 1744 if (sector_count > len) { 1745 struct bio *split = bio_split(*bio, len, GFP_NOIO, &md->queue->bio_split); 1746 1747 bio_chain(split, *bio); 1748 trace_block_split(md->queue, split, (*bio)->bi_iter.bi_sector); 1749 generic_make_request(*bio); 1750 *bio = split; 1751 } 1752 } 1753 1754 static blk_qc_t dm_process_bio(struct mapped_device *md, 1755 struct dm_table *map, struct bio *bio) 1756 { 1757 blk_qc_t ret = BLK_QC_T_NONE; 1758 struct dm_target *ti = md->immutable_target; 1759 1760 if (unlikely(!map)) { 1761 bio_io_error(bio); 1762 return ret; 1763 } 1764 1765 if (!ti) { 1766 ti = dm_table_find_target(map, bio->bi_iter.bi_sector); 1767 if (unlikely(!ti)) { 1768 bio_io_error(bio); 1769 return ret; 1770 } 1771 } 1772 1773 /* 1774 * If in ->make_request_fn we need to use blk_queue_split(), otherwise 1775 * queue_limits for abnormal requests (e.g. discard, writesame, etc) 1776 * won't be imposed. 1777 */ 1778 if (current->bio_list) { 1779 if (is_abnormal_io(bio)) 1780 blk_queue_split(md->queue, &bio); 1781 else 1782 dm_queue_split(md, ti, &bio); 1783 } 1784 1785 if (dm_get_md_type(md) == DM_TYPE_NVME_BIO_BASED) 1786 return __process_bio(md, map, bio, ti); 1787 else 1788 return __split_and_process_bio(md, map, bio); 1789 } 1790 1791 static blk_qc_t dm_make_request(struct request_queue *q, struct bio *bio) 1792 { 1793 struct mapped_device *md = q->queuedata; 1794 blk_qc_t ret = BLK_QC_T_NONE; 1795 int srcu_idx; 1796 struct dm_table *map; 1797 1798 if (dm_get_md_type(md) == DM_TYPE_REQUEST_BASED) { 1799 /* 1800 * We are called with a live reference on q_usage_counter, but 1801 * that one will be released as soon as we return. Grab an 1802 * extra one as blk_mq_make_request expects to be able to 1803 * consume a reference (which lives until the request is freed 1804 * in case a request is allocated). 1805 */ 1806 percpu_ref_get(&q->q_usage_counter); 1807 return blk_mq_make_request(q, bio); 1808 } 1809 1810 map = dm_get_live_table(md, &srcu_idx); 1811 1812 /* if we're suspended, we have to queue this io for later */ 1813 if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))) { 1814 dm_put_live_table(md, srcu_idx); 1815 1816 if (!(bio->bi_opf & REQ_RAHEAD)) 1817 queue_io(md, bio); 1818 else 1819 bio_io_error(bio); 1820 return ret; 1821 } 1822 1823 ret = dm_process_bio(md, map, bio); 1824 1825 dm_put_live_table(md, srcu_idx); 1826 return ret; 1827 } 1828 1829 static int dm_any_congested(void *congested_data, int bdi_bits) 1830 { 1831 int r = bdi_bits; 1832 struct mapped_device *md = congested_data; 1833 struct dm_table *map; 1834 1835 if (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) { 1836 if (dm_request_based(md)) { 1837 /* 1838 * With request-based DM we only need to check the 1839 * top-level queue for congestion. 1840 */ 1841 struct backing_dev_info *bdi = md->queue->backing_dev_info; 1842 r = bdi->wb.congested->state & bdi_bits; 1843 } else { 1844 map = dm_get_live_table_fast(md); 1845 if (map) 1846 r = dm_table_any_congested(map, bdi_bits); 1847 dm_put_live_table_fast(md); 1848 } 1849 } 1850 1851 return r; 1852 } 1853 1854 /*----------------------------------------------------------------- 1855 * An IDR is used to keep track of allocated minor numbers. 1856 *---------------------------------------------------------------*/ 1857 static void free_minor(int minor) 1858 { 1859 spin_lock(&_minor_lock); 1860 idr_remove(&_minor_idr, minor); 1861 spin_unlock(&_minor_lock); 1862 } 1863 1864 /* 1865 * See if the device with a specific minor # is free. 1866 */ 1867 static int specific_minor(int minor) 1868 { 1869 int r; 1870 1871 if (minor >= (1 << MINORBITS)) 1872 return -EINVAL; 1873 1874 idr_preload(GFP_KERNEL); 1875 spin_lock(&_minor_lock); 1876 1877 r = idr_alloc(&_minor_idr, MINOR_ALLOCED, minor, minor + 1, GFP_NOWAIT); 1878 1879 spin_unlock(&_minor_lock); 1880 idr_preload_end(); 1881 if (r < 0) 1882 return r == -ENOSPC ? -EBUSY : r; 1883 return 0; 1884 } 1885 1886 static int next_free_minor(int *minor) 1887 { 1888 int r; 1889 1890 idr_preload(GFP_KERNEL); 1891 spin_lock(&_minor_lock); 1892 1893 r = idr_alloc(&_minor_idr, MINOR_ALLOCED, 0, 1 << MINORBITS, GFP_NOWAIT); 1894 1895 spin_unlock(&_minor_lock); 1896 idr_preload_end(); 1897 if (r < 0) 1898 return r; 1899 *minor = r; 1900 return 0; 1901 } 1902 1903 static const struct block_device_operations dm_blk_dops; 1904 static const struct dax_operations dm_dax_ops; 1905 1906 static void dm_wq_work(struct work_struct *work); 1907 1908 static void cleanup_mapped_device(struct mapped_device *md) 1909 { 1910 if (md->wq) 1911 destroy_workqueue(md->wq); 1912 bioset_exit(&md->bs); 1913 bioset_exit(&md->io_bs); 1914 1915 if (md->dax_dev) { 1916 kill_dax(md->dax_dev); 1917 put_dax(md->dax_dev); 1918 md->dax_dev = NULL; 1919 } 1920 1921 if (md->disk) { 1922 spin_lock(&_minor_lock); 1923 md->disk->private_data = NULL; 1924 spin_unlock(&_minor_lock); 1925 del_gendisk(md->disk); 1926 put_disk(md->disk); 1927 } 1928 1929 if (md->queue) 1930 blk_cleanup_queue(md->queue); 1931 1932 cleanup_srcu_struct(&md->io_barrier); 1933 1934 if (md->bdev) { 1935 bdput(md->bdev); 1936 md->bdev = NULL; 1937 } 1938 1939 mutex_destroy(&md->suspend_lock); 1940 mutex_destroy(&md->type_lock); 1941 mutex_destroy(&md->table_devices_lock); 1942 1943 dm_mq_cleanup_mapped_device(md); 1944 } 1945 1946 /* 1947 * Allocate and initialise a blank device with a given minor. 1948 */ 1949 static struct mapped_device *alloc_dev(int minor) 1950 { 1951 int r, numa_node_id = dm_get_numa_node(); 1952 struct mapped_device *md; 1953 void *old_md; 1954 1955 md = kvzalloc_node(sizeof(*md), GFP_KERNEL, numa_node_id); 1956 if (!md) { 1957 DMWARN("unable to allocate device, out of memory."); 1958 return NULL; 1959 } 1960 1961 if (!try_module_get(THIS_MODULE)) 1962 goto bad_module_get; 1963 1964 /* get a minor number for the dev */ 1965 if (minor == DM_ANY_MINOR) 1966 r = next_free_minor(&minor); 1967 else 1968 r = specific_minor(minor); 1969 if (r < 0) 1970 goto bad_minor; 1971 1972 r = init_srcu_struct(&md->io_barrier); 1973 if (r < 0) 1974 goto bad_io_barrier; 1975 1976 md->numa_node_id = numa_node_id; 1977 md->init_tio_pdu = false; 1978 md->type = DM_TYPE_NONE; 1979 mutex_init(&md->suspend_lock); 1980 mutex_init(&md->type_lock); 1981 mutex_init(&md->table_devices_lock); 1982 spin_lock_init(&md->deferred_lock); 1983 atomic_set(&md->holders, 1); 1984 atomic_set(&md->open_count, 0); 1985 atomic_set(&md->event_nr, 0); 1986 atomic_set(&md->uevent_seq, 0); 1987 INIT_LIST_HEAD(&md->uevent_list); 1988 INIT_LIST_HEAD(&md->table_devices); 1989 spin_lock_init(&md->uevent_lock); 1990 1991 /* 1992 * default to bio-based required ->make_request_fn until DM 1993 * table is loaded and md->type established. If request-based 1994 * table is loaded: blk-mq will override accordingly. 1995 */ 1996 md->queue = blk_alloc_queue(dm_make_request, numa_node_id); 1997 if (!md->queue) 1998 goto bad; 1999 md->queue->queuedata = md; 2000 2001 md->disk = alloc_disk_node(1, md->numa_node_id); 2002 if (!md->disk) 2003 goto bad; 2004 2005 init_waitqueue_head(&md->wait); 2006 INIT_WORK(&md->work, dm_wq_work); 2007 init_waitqueue_head(&md->eventq); 2008 init_completion(&md->kobj_holder.completion); 2009 2010 md->disk->major = _major; 2011 md->disk->first_minor = minor; 2012 md->disk->fops = &dm_blk_dops; 2013 md->disk->queue = md->queue; 2014 md->disk->private_data = md; 2015 sprintf(md->disk->disk_name, "dm-%d", minor); 2016 2017 if (IS_ENABLED(CONFIG_DAX_DRIVER)) { 2018 md->dax_dev = alloc_dax(md, md->disk->disk_name, 2019 &dm_dax_ops, 0); 2020 if (IS_ERR(md->dax_dev)) 2021 goto bad; 2022 } 2023 2024 add_disk_no_queue_reg(md->disk); 2025 format_dev_t(md->name, MKDEV(_major, minor)); 2026 2027 md->wq = alloc_workqueue("kdmflush", WQ_MEM_RECLAIM, 0); 2028 if (!md->wq) 2029 goto bad; 2030 2031 md->bdev = bdget_disk(md->disk, 0); 2032 if (!md->bdev) 2033 goto bad; 2034 2035 dm_stats_init(&md->stats); 2036 2037 /* Populate the mapping, nobody knows we exist yet */ 2038 spin_lock(&_minor_lock); 2039 old_md = idr_replace(&_minor_idr, md, minor); 2040 spin_unlock(&_minor_lock); 2041 2042 BUG_ON(old_md != MINOR_ALLOCED); 2043 2044 return md; 2045 2046 bad: 2047 cleanup_mapped_device(md); 2048 bad_io_barrier: 2049 free_minor(minor); 2050 bad_minor: 2051 module_put(THIS_MODULE); 2052 bad_module_get: 2053 kvfree(md); 2054 return NULL; 2055 } 2056 2057 static void unlock_fs(struct mapped_device *md); 2058 2059 static void free_dev(struct mapped_device *md) 2060 { 2061 int minor = MINOR(disk_devt(md->disk)); 2062 2063 unlock_fs(md); 2064 2065 cleanup_mapped_device(md); 2066 2067 free_table_devices(&md->table_devices); 2068 dm_stats_cleanup(&md->stats); 2069 free_minor(minor); 2070 2071 module_put(THIS_MODULE); 2072 kvfree(md); 2073 } 2074 2075 static int __bind_mempools(struct mapped_device *md, struct dm_table *t) 2076 { 2077 struct dm_md_mempools *p = dm_table_get_md_mempools(t); 2078 int ret = 0; 2079 2080 if (dm_table_bio_based(t)) { 2081 /* 2082 * The md may already have mempools that need changing. 2083 * If so, reload bioset because front_pad may have changed 2084 * because a different table was loaded. 2085 */ 2086 bioset_exit(&md->bs); 2087 bioset_exit(&md->io_bs); 2088 2089 } else if (bioset_initialized(&md->bs)) { 2090 /* 2091 * There's no need to reload with request-based dm 2092 * because the size of front_pad doesn't change. 2093 * Note for future: If you are to reload bioset, 2094 * prep-ed requests in the queue may refer 2095 * to bio from the old bioset, so you must walk 2096 * through the queue to unprep. 2097 */ 2098 goto out; 2099 } 2100 2101 BUG_ON(!p || 2102 bioset_initialized(&md->bs) || 2103 bioset_initialized(&md->io_bs)); 2104 2105 ret = bioset_init_from_src(&md->bs, &p->bs); 2106 if (ret) 2107 goto out; 2108 ret = bioset_init_from_src(&md->io_bs, &p->io_bs); 2109 if (ret) 2110 bioset_exit(&md->bs); 2111 out: 2112 /* mempool bind completed, no longer need any mempools in the table */ 2113 dm_table_free_md_mempools(t); 2114 return ret; 2115 } 2116 2117 /* 2118 * Bind a table to the device. 2119 */ 2120 static void event_callback(void *context) 2121 { 2122 unsigned long flags; 2123 LIST_HEAD(uevents); 2124 struct mapped_device *md = (struct mapped_device *) context; 2125 2126 spin_lock_irqsave(&md->uevent_lock, flags); 2127 list_splice_init(&md->uevent_list, &uevents); 2128 spin_unlock_irqrestore(&md->uevent_lock, flags); 2129 2130 dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj); 2131 2132 atomic_inc(&md->event_nr); 2133 wake_up(&md->eventq); 2134 dm_issue_global_event(); 2135 } 2136 2137 /* 2138 * Protected by md->suspend_lock obtained by dm_swap_table(). 2139 */ 2140 static void __set_size(struct mapped_device *md, sector_t size) 2141 { 2142 lockdep_assert_held(&md->suspend_lock); 2143 2144 set_capacity(md->disk, size); 2145 2146 i_size_write(md->bdev->bd_inode, (loff_t)size << SECTOR_SHIFT); 2147 } 2148 2149 /* 2150 * Returns old map, which caller must destroy. 2151 */ 2152 static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t, 2153 struct queue_limits *limits) 2154 { 2155 struct dm_table *old_map; 2156 struct request_queue *q = md->queue; 2157 bool request_based = dm_table_request_based(t); 2158 sector_t size; 2159 int ret; 2160 2161 lockdep_assert_held(&md->suspend_lock); 2162 2163 size = dm_table_get_size(t); 2164 2165 /* 2166 * Wipe any geometry if the size of the table changed. 2167 */ 2168 if (size != dm_get_size(md)) 2169 memset(&md->geometry, 0, sizeof(md->geometry)); 2170 2171 __set_size(md, size); 2172 2173 dm_table_event_callback(t, event_callback, md); 2174 2175 /* 2176 * The queue hasn't been stopped yet, if the old table type wasn't 2177 * for request-based during suspension. So stop it to prevent 2178 * I/O mapping before resume. 2179 * This must be done before setting the queue restrictions, 2180 * because request-based dm may be run just after the setting. 2181 */ 2182 if (request_based) 2183 dm_stop_queue(q); 2184 2185 if (request_based || md->type == DM_TYPE_NVME_BIO_BASED) { 2186 /* 2187 * Leverage the fact that request-based DM targets and 2188 * NVMe bio based targets are immutable singletons 2189 * - used to optimize both dm_request_fn and dm_mq_queue_rq; 2190 * and __process_bio. 2191 */ 2192 md->immutable_target = dm_table_get_immutable_target(t); 2193 } 2194 2195 ret = __bind_mempools(md, t); 2196 if (ret) { 2197 old_map = ERR_PTR(ret); 2198 goto out; 2199 } 2200 2201 old_map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock)); 2202 rcu_assign_pointer(md->map, (void *)t); 2203 md->immutable_target_type = dm_table_get_immutable_target_type(t); 2204 2205 dm_table_set_restrictions(t, q, limits); 2206 if (old_map) 2207 dm_sync_table(md); 2208 2209 out: 2210 return old_map; 2211 } 2212 2213 /* 2214 * Returns unbound table for the caller to free. 2215 */ 2216 static struct dm_table *__unbind(struct mapped_device *md) 2217 { 2218 struct dm_table *map = rcu_dereference_protected(md->map, 1); 2219 2220 if (!map) 2221 return NULL; 2222 2223 dm_table_event_callback(map, NULL, NULL); 2224 RCU_INIT_POINTER(md->map, NULL); 2225 dm_sync_table(md); 2226 2227 return map; 2228 } 2229 2230 /* 2231 * Constructor for a new device. 2232 */ 2233 int dm_create(int minor, struct mapped_device **result) 2234 { 2235 int r; 2236 struct mapped_device *md; 2237 2238 md = alloc_dev(minor); 2239 if (!md) 2240 return -ENXIO; 2241 2242 r = dm_sysfs_init(md); 2243 if (r) { 2244 free_dev(md); 2245 return r; 2246 } 2247 2248 *result = md; 2249 return 0; 2250 } 2251 2252 /* 2253 * Functions to manage md->type. 2254 * All are required to hold md->type_lock. 2255 */ 2256 void dm_lock_md_type(struct mapped_device *md) 2257 { 2258 mutex_lock(&md->type_lock); 2259 } 2260 2261 void dm_unlock_md_type(struct mapped_device *md) 2262 { 2263 mutex_unlock(&md->type_lock); 2264 } 2265 2266 void dm_set_md_type(struct mapped_device *md, enum dm_queue_mode type) 2267 { 2268 BUG_ON(!mutex_is_locked(&md->type_lock)); 2269 md->type = type; 2270 } 2271 2272 enum dm_queue_mode dm_get_md_type(struct mapped_device *md) 2273 { 2274 return md->type; 2275 } 2276 2277 struct target_type *dm_get_immutable_target_type(struct mapped_device *md) 2278 { 2279 return md->immutable_target_type; 2280 } 2281 2282 /* 2283 * The queue_limits are only valid as long as you have a reference 2284 * count on 'md'. 2285 */ 2286 struct queue_limits *dm_get_queue_limits(struct mapped_device *md) 2287 { 2288 BUG_ON(!atomic_read(&md->holders)); 2289 return &md->queue->limits; 2290 } 2291 EXPORT_SYMBOL_GPL(dm_get_queue_limits); 2292 2293 static void dm_init_congested_fn(struct mapped_device *md) 2294 { 2295 md->queue->backing_dev_info->congested_data = md; 2296 md->queue->backing_dev_info->congested_fn = dm_any_congested; 2297 } 2298 2299 /* 2300 * Setup the DM device's queue based on md's type 2301 */ 2302 int dm_setup_md_queue(struct mapped_device *md, struct dm_table *t) 2303 { 2304 int r; 2305 struct queue_limits limits; 2306 enum dm_queue_mode type = dm_get_md_type(md); 2307 2308 switch (type) { 2309 case DM_TYPE_REQUEST_BASED: 2310 r = dm_mq_init_request_queue(md, t); 2311 if (r) { 2312 DMERR("Cannot initialize queue for request-based dm-mq mapped device"); 2313 return r; 2314 } 2315 dm_init_congested_fn(md); 2316 break; 2317 case DM_TYPE_BIO_BASED: 2318 case DM_TYPE_DAX_BIO_BASED: 2319 case DM_TYPE_NVME_BIO_BASED: 2320 dm_init_congested_fn(md); 2321 break; 2322 case DM_TYPE_NONE: 2323 WARN_ON_ONCE(true); 2324 break; 2325 } 2326 2327 r = dm_calculate_queue_limits(t, &limits); 2328 if (r) { 2329 DMERR("Cannot calculate initial queue limits"); 2330 return r; 2331 } 2332 dm_table_set_restrictions(t, md->queue, &limits); 2333 blk_register_queue(md->disk); 2334 2335 return 0; 2336 } 2337 2338 struct mapped_device *dm_get_md(dev_t dev) 2339 { 2340 struct mapped_device *md; 2341 unsigned minor = MINOR(dev); 2342 2343 if (MAJOR(dev) != _major || minor >= (1 << MINORBITS)) 2344 return NULL; 2345 2346 spin_lock(&_minor_lock); 2347 2348 md = idr_find(&_minor_idr, minor); 2349 if (!md || md == MINOR_ALLOCED || (MINOR(disk_devt(dm_disk(md))) != minor) || 2350 test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) { 2351 md = NULL; 2352 goto out; 2353 } 2354 dm_get(md); 2355 out: 2356 spin_unlock(&_minor_lock); 2357 2358 return md; 2359 } 2360 EXPORT_SYMBOL_GPL(dm_get_md); 2361 2362 void *dm_get_mdptr(struct mapped_device *md) 2363 { 2364 return md->interface_ptr; 2365 } 2366 2367 void dm_set_mdptr(struct mapped_device *md, void *ptr) 2368 { 2369 md->interface_ptr = ptr; 2370 } 2371 2372 void dm_get(struct mapped_device *md) 2373 { 2374 atomic_inc(&md->holders); 2375 BUG_ON(test_bit(DMF_FREEING, &md->flags)); 2376 } 2377 2378 int dm_hold(struct mapped_device *md) 2379 { 2380 spin_lock(&_minor_lock); 2381 if (test_bit(DMF_FREEING, &md->flags)) { 2382 spin_unlock(&_minor_lock); 2383 return -EBUSY; 2384 } 2385 dm_get(md); 2386 spin_unlock(&_minor_lock); 2387 return 0; 2388 } 2389 EXPORT_SYMBOL_GPL(dm_hold); 2390 2391 const char *dm_device_name(struct mapped_device *md) 2392 { 2393 return md->name; 2394 } 2395 EXPORT_SYMBOL_GPL(dm_device_name); 2396 2397 static void __dm_destroy(struct mapped_device *md, bool wait) 2398 { 2399 struct dm_table *map; 2400 int srcu_idx; 2401 2402 might_sleep(); 2403 2404 spin_lock(&_minor_lock); 2405 idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md)))); 2406 set_bit(DMF_FREEING, &md->flags); 2407 spin_unlock(&_minor_lock); 2408 2409 blk_set_queue_dying(md->queue); 2410 2411 /* 2412 * Take suspend_lock so that presuspend and postsuspend methods 2413 * do not race with internal suspend. 2414 */ 2415 mutex_lock(&md->suspend_lock); 2416 map = dm_get_live_table(md, &srcu_idx); 2417 if (!dm_suspended_md(md)) { 2418 dm_table_presuspend_targets(map); 2419 set_bit(DMF_SUSPENDED, &md->flags); 2420 dm_table_postsuspend_targets(map); 2421 } 2422 /* dm_put_live_table must be before msleep, otherwise deadlock is possible */ 2423 dm_put_live_table(md, srcu_idx); 2424 mutex_unlock(&md->suspend_lock); 2425 2426 /* 2427 * Rare, but there may be I/O requests still going to complete, 2428 * for example. Wait for all references to disappear. 2429 * No one should increment the reference count of the mapped_device, 2430 * after the mapped_device state becomes DMF_FREEING. 2431 */ 2432 if (wait) 2433 while (atomic_read(&md->holders)) 2434 msleep(1); 2435 else if (atomic_read(&md->holders)) 2436 DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)", 2437 dm_device_name(md), atomic_read(&md->holders)); 2438 2439 dm_sysfs_exit(md); 2440 dm_table_destroy(__unbind(md)); 2441 free_dev(md); 2442 } 2443 2444 void dm_destroy(struct mapped_device *md) 2445 { 2446 __dm_destroy(md, true); 2447 } 2448 2449 void dm_destroy_immediate(struct mapped_device *md) 2450 { 2451 __dm_destroy(md, false); 2452 } 2453 2454 void dm_put(struct mapped_device *md) 2455 { 2456 atomic_dec(&md->holders); 2457 } 2458 EXPORT_SYMBOL_GPL(dm_put); 2459 2460 static int dm_wait_for_completion(struct mapped_device *md, long task_state) 2461 { 2462 int r = 0; 2463 DEFINE_WAIT(wait); 2464 2465 while (1) { 2466 prepare_to_wait(&md->wait, &wait, task_state); 2467 2468 if (!md_in_flight(md)) 2469 break; 2470 2471 if (signal_pending_state(task_state, current)) { 2472 r = -EINTR; 2473 break; 2474 } 2475 2476 io_schedule(); 2477 } 2478 finish_wait(&md->wait, &wait); 2479 2480 return r; 2481 } 2482 2483 /* 2484 * Process the deferred bios 2485 */ 2486 static void dm_wq_work(struct work_struct *work) 2487 { 2488 struct mapped_device *md = container_of(work, struct mapped_device, 2489 work); 2490 struct bio *c; 2491 int srcu_idx; 2492 struct dm_table *map; 2493 2494 map = dm_get_live_table(md, &srcu_idx); 2495 2496 while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) { 2497 spin_lock_irq(&md->deferred_lock); 2498 c = bio_list_pop(&md->deferred); 2499 spin_unlock_irq(&md->deferred_lock); 2500 2501 if (!c) 2502 break; 2503 2504 if (dm_request_based(md)) 2505 (void) generic_make_request(c); 2506 else 2507 (void) dm_process_bio(md, map, c); 2508 } 2509 2510 dm_put_live_table(md, srcu_idx); 2511 } 2512 2513 static void dm_queue_flush(struct mapped_device *md) 2514 { 2515 clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags); 2516 smp_mb__after_atomic(); 2517 queue_work(md->wq, &md->work); 2518 } 2519 2520 /* 2521 * Swap in a new table, returning the old one for the caller to destroy. 2522 */ 2523 struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table) 2524 { 2525 struct dm_table *live_map = NULL, *map = ERR_PTR(-EINVAL); 2526 struct queue_limits limits; 2527 int r; 2528 2529 mutex_lock(&md->suspend_lock); 2530 2531 /* device must be suspended */ 2532 if (!dm_suspended_md(md)) 2533 goto out; 2534 2535 /* 2536 * If the new table has no data devices, retain the existing limits. 2537 * This helps multipath with queue_if_no_path if all paths disappear, 2538 * then new I/O is queued based on these limits, and then some paths 2539 * reappear. 2540 */ 2541 if (dm_table_has_no_data_devices(table)) { 2542 live_map = dm_get_live_table_fast(md); 2543 if (live_map) 2544 limits = md->queue->limits; 2545 dm_put_live_table_fast(md); 2546 } 2547 2548 if (!live_map) { 2549 r = dm_calculate_queue_limits(table, &limits); 2550 if (r) { 2551 map = ERR_PTR(r); 2552 goto out; 2553 } 2554 } 2555 2556 map = __bind(md, table, &limits); 2557 dm_issue_global_event(); 2558 2559 out: 2560 mutex_unlock(&md->suspend_lock); 2561 return map; 2562 } 2563 2564 /* 2565 * Functions to lock and unlock any filesystem running on the 2566 * device. 2567 */ 2568 static int lock_fs(struct mapped_device *md) 2569 { 2570 int r; 2571 2572 WARN_ON(md->frozen_sb); 2573 2574 md->frozen_sb = freeze_bdev(md->bdev); 2575 if (IS_ERR(md->frozen_sb)) { 2576 r = PTR_ERR(md->frozen_sb); 2577 md->frozen_sb = NULL; 2578 return r; 2579 } 2580 2581 set_bit(DMF_FROZEN, &md->flags); 2582 2583 return 0; 2584 } 2585 2586 static void unlock_fs(struct mapped_device *md) 2587 { 2588 if (!test_bit(DMF_FROZEN, &md->flags)) 2589 return; 2590 2591 thaw_bdev(md->bdev, md->frozen_sb); 2592 md->frozen_sb = NULL; 2593 clear_bit(DMF_FROZEN, &md->flags); 2594 } 2595 2596 /* 2597 * @suspend_flags: DM_SUSPEND_LOCKFS_FLAG and/or DM_SUSPEND_NOFLUSH_FLAG 2598 * @task_state: e.g. TASK_INTERRUPTIBLE or TASK_UNINTERRUPTIBLE 2599 * @dmf_suspended_flag: DMF_SUSPENDED or DMF_SUSPENDED_INTERNALLY 2600 * 2601 * If __dm_suspend returns 0, the device is completely quiescent 2602 * now. There is no request-processing activity. All new requests 2603 * are being added to md->deferred list. 2604 */ 2605 static int __dm_suspend(struct mapped_device *md, struct dm_table *map, 2606 unsigned suspend_flags, long task_state, 2607 int dmf_suspended_flag) 2608 { 2609 bool do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG; 2610 bool noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG; 2611 int r; 2612 2613 lockdep_assert_held(&md->suspend_lock); 2614 2615 /* 2616 * DMF_NOFLUSH_SUSPENDING must be set before presuspend. 2617 * This flag is cleared before dm_suspend returns. 2618 */ 2619 if (noflush) 2620 set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags); 2621 else 2622 DMDEBUG("%s: suspending with flush", dm_device_name(md)); 2623 2624 /* 2625 * This gets reverted if there's an error later and the targets 2626 * provide the .presuspend_undo hook. 2627 */ 2628 dm_table_presuspend_targets(map); 2629 2630 /* 2631 * Flush I/O to the device. 2632 * Any I/O submitted after lock_fs() may not be flushed. 2633 * noflush takes precedence over do_lockfs. 2634 * (lock_fs() flushes I/Os and waits for them to complete.) 2635 */ 2636 if (!noflush && do_lockfs) { 2637 r = lock_fs(md); 2638 if (r) { 2639 dm_table_presuspend_undo_targets(map); 2640 return r; 2641 } 2642 } 2643 2644 /* 2645 * Here we must make sure that no processes are submitting requests 2646 * to target drivers i.e. no one may be executing 2647 * __split_and_process_bio. This is called from dm_request and 2648 * dm_wq_work. 2649 * 2650 * To get all processes out of __split_and_process_bio in dm_request, 2651 * we take the write lock. To prevent any process from reentering 2652 * __split_and_process_bio from dm_request and quiesce the thread 2653 * (dm_wq_work), we set BMF_BLOCK_IO_FOR_SUSPEND and call 2654 * flush_workqueue(md->wq). 2655 */ 2656 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags); 2657 if (map) 2658 synchronize_srcu(&md->io_barrier); 2659 2660 /* 2661 * Stop md->queue before flushing md->wq in case request-based 2662 * dm defers requests to md->wq from md->queue. 2663 */ 2664 if (dm_request_based(md)) 2665 dm_stop_queue(md->queue); 2666 2667 flush_workqueue(md->wq); 2668 2669 /* 2670 * At this point no more requests are entering target request routines. 2671 * We call dm_wait_for_completion to wait for all existing requests 2672 * to finish. 2673 */ 2674 r = dm_wait_for_completion(md, task_state); 2675 if (!r) 2676 set_bit(dmf_suspended_flag, &md->flags); 2677 2678 if (noflush) 2679 clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags); 2680 if (map) 2681 synchronize_srcu(&md->io_barrier); 2682 2683 /* were we interrupted ? */ 2684 if (r < 0) { 2685 dm_queue_flush(md); 2686 2687 if (dm_request_based(md)) 2688 dm_start_queue(md->queue); 2689 2690 unlock_fs(md); 2691 dm_table_presuspend_undo_targets(map); 2692 /* pushback list is already flushed, so skip flush */ 2693 } 2694 2695 return r; 2696 } 2697 2698 /* 2699 * We need to be able to change a mapping table under a mounted 2700 * filesystem. For example we might want to move some data in 2701 * the background. Before the table can be swapped with 2702 * dm_bind_table, dm_suspend must be called to flush any in 2703 * flight bios and ensure that any further io gets deferred. 2704 */ 2705 /* 2706 * Suspend mechanism in request-based dm. 2707 * 2708 * 1. Flush all I/Os by lock_fs() if needed. 2709 * 2. Stop dispatching any I/O by stopping the request_queue. 2710 * 3. Wait for all in-flight I/Os to be completed or requeued. 2711 * 2712 * To abort suspend, start the request_queue. 2713 */ 2714 int dm_suspend(struct mapped_device *md, unsigned suspend_flags) 2715 { 2716 struct dm_table *map = NULL; 2717 int r = 0; 2718 2719 retry: 2720 mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING); 2721 2722 if (dm_suspended_md(md)) { 2723 r = -EINVAL; 2724 goto out_unlock; 2725 } 2726 2727 if (dm_suspended_internally_md(md)) { 2728 /* already internally suspended, wait for internal resume */ 2729 mutex_unlock(&md->suspend_lock); 2730 r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE); 2731 if (r) 2732 return r; 2733 goto retry; 2734 } 2735 2736 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock)); 2737 2738 r = __dm_suspend(md, map, suspend_flags, TASK_INTERRUPTIBLE, DMF_SUSPENDED); 2739 if (r) 2740 goto out_unlock; 2741 2742 dm_table_postsuspend_targets(map); 2743 2744 out_unlock: 2745 mutex_unlock(&md->suspend_lock); 2746 return r; 2747 } 2748 2749 static int __dm_resume(struct mapped_device *md, struct dm_table *map) 2750 { 2751 if (map) { 2752 int r = dm_table_resume_targets(map); 2753 if (r) 2754 return r; 2755 } 2756 2757 dm_queue_flush(md); 2758 2759 /* 2760 * Flushing deferred I/Os must be done after targets are resumed 2761 * so that mapping of targets can work correctly. 2762 * Request-based dm is queueing the deferred I/Os in its request_queue. 2763 */ 2764 if (dm_request_based(md)) 2765 dm_start_queue(md->queue); 2766 2767 unlock_fs(md); 2768 2769 return 0; 2770 } 2771 2772 int dm_resume(struct mapped_device *md) 2773 { 2774 int r; 2775 struct dm_table *map = NULL; 2776 2777 retry: 2778 r = -EINVAL; 2779 mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING); 2780 2781 if (!dm_suspended_md(md)) 2782 goto out; 2783 2784 if (dm_suspended_internally_md(md)) { 2785 /* already internally suspended, wait for internal resume */ 2786 mutex_unlock(&md->suspend_lock); 2787 r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE); 2788 if (r) 2789 return r; 2790 goto retry; 2791 } 2792 2793 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock)); 2794 if (!map || !dm_table_get_size(map)) 2795 goto out; 2796 2797 r = __dm_resume(md, map); 2798 if (r) 2799 goto out; 2800 2801 clear_bit(DMF_SUSPENDED, &md->flags); 2802 out: 2803 mutex_unlock(&md->suspend_lock); 2804 2805 return r; 2806 } 2807 2808 /* 2809 * Internal suspend/resume works like userspace-driven suspend. It waits 2810 * until all bios finish and prevents issuing new bios to the target drivers. 2811 * It may be used only from the kernel. 2812 */ 2813 2814 static void __dm_internal_suspend(struct mapped_device *md, unsigned suspend_flags) 2815 { 2816 struct dm_table *map = NULL; 2817 2818 lockdep_assert_held(&md->suspend_lock); 2819 2820 if (md->internal_suspend_count++) 2821 return; /* nested internal suspend */ 2822 2823 if (dm_suspended_md(md)) { 2824 set_bit(DMF_SUSPENDED_INTERNALLY, &md->flags); 2825 return; /* nest suspend */ 2826 } 2827 2828 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock)); 2829 2830 /* 2831 * Using TASK_UNINTERRUPTIBLE because only NOFLUSH internal suspend is 2832 * supported. Properly supporting a TASK_INTERRUPTIBLE internal suspend 2833 * would require changing .presuspend to return an error -- avoid this 2834 * until there is a need for more elaborate variants of internal suspend. 2835 */ 2836 (void) __dm_suspend(md, map, suspend_flags, TASK_UNINTERRUPTIBLE, 2837 DMF_SUSPENDED_INTERNALLY); 2838 2839 dm_table_postsuspend_targets(map); 2840 } 2841 2842 static void __dm_internal_resume(struct mapped_device *md) 2843 { 2844 BUG_ON(!md->internal_suspend_count); 2845 2846 if (--md->internal_suspend_count) 2847 return; /* resume from nested internal suspend */ 2848 2849 if (dm_suspended_md(md)) 2850 goto done; /* resume from nested suspend */ 2851 2852 /* 2853 * NOTE: existing callers don't need to call dm_table_resume_targets 2854 * (which may fail -- so best to avoid it for now by passing NULL map) 2855 */ 2856 (void) __dm_resume(md, NULL); 2857 2858 done: 2859 clear_bit(DMF_SUSPENDED_INTERNALLY, &md->flags); 2860 smp_mb__after_atomic(); 2861 wake_up_bit(&md->flags, DMF_SUSPENDED_INTERNALLY); 2862 } 2863 2864 void dm_internal_suspend_noflush(struct mapped_device *md) 2865 { 2866 mutex_lock(&md->suspend_lock); 2867 __dm_internal_suspend(md, DM_SUSPEND_NOFLUSH_FLAG); 2868 mutex_unlock(&md->suspend_lock); 2869 } 2870 EXPORT_SYMBOL_GPL(dm_internal_suspend_noflush); 2871 2872 void dm_internal_resume(struct mapped_device *md) 2873 { 2874 mutex_lock(&md->suspend_lock); 2875 __dm_internal_resume(md); 2876 mutex_unlock(&md->suspend_lock); 2877 } 2878 EXPORT_SYMBOL_GPL(dm_internal_resume); 2879 2880 /* 2881 * Fast variants of internal suspend/resume hold md->suspend_lock, 2882 * which prevents interaction with userspace-driven suspend. 2883 */ 2884 2885 void dm_internal_suspend_fast(struct mapped_device *md) 2886 { 2887 mutex_lock(&md->suspend_lock); 2888 if (dm_suspended_md(md) || dm_suspended_internally_md(md)) 2889 return; 2890 2891 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags); 2892 synchronize_srcu(&md->io_barrier); 2893 flush_workqueue(md->wq); 2894 dm_wait_for_completion(md, TASK_UNINTERRUPTIBLE); 2895 } 2896 EXPORT_SYMBOL_GPL(dm_internal_suspend_fast); 2897 2898 void dm_internal_resume_fast(struct mapped_device *md) 2899 { 2900 if (dm_suspended_md(md) || dm_suspended_internally_md(md)) 2901 goto done; 2902 2903 dm_queue_flush(md); 2904 2905 done: 2906 mutex_unlock(&md->suspend_lock); 2907 } 2908 EXPORT_SYMBOL_GPL(dm_internal_resume_fast); 2909 2910 /*----------------------------------------------------------------- 2911 * Event notification. 2912 *---------------------------------------------------------------*/ 2913 int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action, 2914 unsigned cookie) 2915 { 2916 char udev_cookie[DM_COOKIE_LENGTH]; 2917 char *envp[] = { udev_cookie, NULL }; 2918 2919 if (!cookie) 2920 return kobject_uevent(&disk_to_dev(md->disk)->kobj, action); 2921 else { 2922 snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u", 2923 DM_COOKIE_ENV_VAR_NAME, cookie); 2924 return kobject_uevent_env(&disk_to_dev(md->disk)->kobj, 2925 action, envp); 2926 } 2927 } 2928 2929 uint32_t dm_next_uevent_seq(struct mapped_device *md) 2930 { 2931 return atomic_add_return(1, &md->uevent_seq); 2932 } 2933 2934 uint32_t dm_get_event_nr(struct mapped_device *md) 2935 { 2936 return atomic_read(&md->event_nr); 2937 } 2938 2939 int dm_wait_event(struct mapped_device *md, int event_nr) 2940 { 2941 return wait_event_interruptible(md->eventq, 2942 (event_nr != atomic_read(&md->event_nr))); 2943 } 2944 2945 void dm_uevent_add(struct mapped_device *md, struct list_head *elist) 2946 { 2947 unsigned long flags; 2948 2949 spin_lock_irqsave(&md->uevent_lock, flags); 2950 list_add(elist, &md->uevent_list); 2951 spin_unlock_irqrestore(&md->uevent_lock, flags); 2952 } 2953 2954 /* 2955 * The gendisk is only valid as long as you have a reference 2956 * count on 'md'. 2957 */ 2958 struct gendisk *dm_disk(struct mapped_device *md) 2959 { 2960 return md->disk; 2961 } 2962 EXPORT_SYMBOL_GPL(dm_disk); 2963 2964 struct kobject *dm_kobject(struct mapped_device *md) 2965 { 2966 return &md->kobj_holder.kobj; 2967 } 2968 2969 struct mapped_device *dm_get_from_kobject(struct kobject *kobj) 2970 { 2971 struct mapped_device *md; 2972 2973 md = container_of(kobj, struct mapped_device, kobj_holder.kobj); 2974 2975 spin_lock(&_minor_lock); 2976 if (test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) { 2977 md = NULL; 2978 goto out; 2979 } 2980 dm_get(md); 2981 out: 2982 spin_unlock(&_minor_lock); 2983 2984 return md; 2985 } 2986 2987 int dm_suspended_md(struct mapped_device *md) 2988 { 2989 return test_bit(DMF_SUSPENDED, &md->flags); 2990 } 2991 2992 int dm_suspended_internally_md(struct mapped_device *md) 2993 { 2994 return test_bit(DMF_SUSPENDED_INTERNALLY, &md->flags); 2995 } 2996 2997 int dm_test_deferred_remove_flag(struct mapped_device *md) 2998 { 2999 return test_bit(DMF_DEFERRED_REMOVE, &md->flags); 3000 } 3001 3002 int dm_suspended(struct dm_target *ti) 3003 { 3004 return dm_suspended_md(dm_table_get_md(ti->table)); 3005 } 3006 EXPORT_SYMBOL_GPL(dm_suspended); 3007 3008 int dm_noflush_suspending(struct dm_target *ti) 3009 { 3010 return __noflush_suspending(dm_table_get_md(ti->table)); 3011 } 3012 EXPORT_SYMBOL_GPL(dm_noflush_suspending); 3013 3014 struct dm_md_mempools *dm_alloc_md_mempools(struct mapped_device *md, enum dm_queue_mode type, 3015 unsigned integrity, unsigned per_io_data_size, 3016 unsigned min_pool_size) 3017 { 3018 struct dm_md_mempools *pools = kzalloc_node(sizeof(*pools), GFP_KERNEL, md->numa_node_id); 3019 unsigned int pool_size = 0; 3020 unsigned int front_pad, io_front_pad; 3021 int ret; 3022 3023 if (!pools) 3024 return NULL; 3025 3026 switch (type) { 3027 case DM_TYPE_BIO_BASED: 3028 case DM_TYPE_DAX_BIO_BASED: 3029 case DM_TYPE_NVME_BIO_BASED: 3030 pool_size = max(dm_get_reserved_bio_based_ios(), min_pool_size); 3031 front_pad = roundup(per_io_data_size, __alignof__(struct dm_target_io)) + offsetof(struct dm_target_io, clone); 3032 io_front_pad = roundup(front_pad, __alignof__(struct dm_io)) + offsetof(struct dm_io, tio); 3033 ret = bioset_init(&pools->io_bs, pool_size, io_front_pad, 0); 3034 if (ret) 3035 goto out; 3036 if (integrity && bioset_integrity_create(&pools->io_bs, pool_size)) 3037 goto out; 3038 break; 3039 case DM_TYPE_REQUEST_BASED: 3040 pool_size = max(dm_get_reserved_rq_based_ios(), min_pool_size); 3041 front_pad = offsetof(struct dm_rq_clone_bio_info, clone); 3042 /* per_io_data_size is used for blk-mq pdu at queue allocation */ 3043 break; 3044 default: 3045 BUG(); 3046 } 3047 3048 ret = bioset_init(&pools->bs, pool_size, front_pad, 0); 3049 if (ret) 3050 goto out; 3051 3052 if (integrity && bioset_integrity_create(&pools->bs, pool_size)) 3053 goto out; 3054 3055 return pools; 3056 3057 out: 3058 dm_free_md_mempools(pools); 3059 3060 return NULL; 3061 } 3062 3063 void dm_free_md_mempools(struct dm_md_mempools *pools) 3064 { 3065 if (!pools) 3066 return; 3067 3068 bioset_exit(&pools->bs); 3069 bioset_exit(&pools->io_bs); 3070 3071 kfree(pools); 3072 } 3073 3074 struct dm_pr { 3075 u64 old_key; 3076 u64 new_key; 3077 u32 flags; 3078 bool fail_early; 3079 }; 3080 3081 static int dm_call_pr(struct block_device *bdev, iterate_devices_callout_fn fn, 3082 void *data) 3083 { 3084 struct mapped_device *md = bdev->bd_disk->private_data; 3085 struct dm_table *table; 3086 struct dm_target *ti; 3087 int ret = -ENOTTY, srcu_idx; 3088 3089 table = dm_get_live_table(md, &srcu_idx); 3090 if (!table || !dm_table_get_size(table)) 3091 goto out; 3092 3093 /* We only support devices that have a single target */ 3094 if (dm_table_get_num_targets(table) != 1) 3095 goto out; 3096 ti = dm_table_get_target(table, 0); 3097 3098 ret = -EINVAL; 3099 if (!ti->type->iterate_devices) 3100 goto out; 3101 3102 ret = ti->type->iterate_devices(ti, fn, data); 3103 out: 3104 dm_put_live_table(md, srcu_idx); 3105 return ret; 3106 } 3107 3108 /* 3109 * For register / unregister we need to manually call out to every path. 3110 */ 3111 static int __dm_pr_register(struct dm_target *ti, struct dm_dev *dev, 3112 sector_t start, sector_t len, void *data) 3113 { 3114 struct dm_pr *pr = data; 3115 const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops; 3116 3117 if (!ops || !ops->pr_register) 3118 return -EOPNOTSUPP; 3119 return ops->pr_register(dev->bdev, pr->old_key, pr->new_key, pr->flags); 3120 } 3121 3122 static int dm_pr_register(struct block_device *bdev, u64 old_key, u64 new_key, 3123 u32 flags) 3124 { 3125 struct dm_pr pr = { 3126 .old_key = old_key, 3127 .new_key = new_key, 3128 .flags = flags, 3129 .fail_early = true, 3130 }; 3131 int ret; 3132 3133 ret = dm_call_pr(bdev, __dm_pr_register, &pr); 3134 if (ret && new_key) { 3135 /* unregister all paths if we failed to register any path */ 3136 pr.old_key = new_key; 3137 pr.new_key = 0; 3138 pr.flags = 0; 3139 pr.fail_early = false; 3140 dm_call_pr(bdev, __dm_pr_register, &pr); 3141 } 3142 3143 return ret; 3144 } 3145 3146 static int dm_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type, 3147 u32 flags) 3148 { 3149 struct mapped_device *md = bdev->bd_disk->private_data; 3150 const struct pr_ops *ops; 3151 int r, srcu_idx; 3152 3153 r = dm_prepare_ioctl(md, &srcu_idx, &bdev); 3154 if (r < 0) 3155 goto out; 3156 3157 ops = bdev->bd_disk->fops->pr_ops; 3158 if (ops && ops->pr_reserve) 3159 r = ops->pr_reserve(bdev, key, type, flags); 3160 else 3161 r = -EOPNOTSUPP; 3162 out: 3163 dm_unprepare_ioctl(md, srcu_idx); 3164 return r; 3165 } 3166 3167 static int dm_pr_release(struct block_device *bdev, u64 key, enum pr_type type) 3168 { 3169 struct mapped_device *md = bdev->bd_disk->private_data; 3170 const struct pr_ops *ops; 3171 int r, srcu_idx; 3172 3173 r = dm_prepare_ioctl(md, &srcu_idx, &bdev); 3174 if (r < 0) 3175 goto out; 3176 3177 ops = bdev->bd_disk->fops->pr_ops; 3178 if (ops && ops->pr_release) 3179 r = ops->pr_release(bdev, key, type); 3180 else 3181 r = -EOPNOTSUPP; 3182 out: 3183 dm_unprepare_ioctl(md, srcu_idx); 3184 return r; 3185 } 3186 3187 static int dm_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key, 3188 enum pr_type type, bool abort) 3189 { 3190 struct mapped_device *md = bdev->bd_disk->private_data; 3191 const struct pr_ops *ops; 3192 int r, srcu_idx; 3193 3194 r = dm_prepare_ioctl(md, &srcu_idx, &bdev); 3195 if (r < 0) 3196 goto out; 3197 3198 ops = bdev->bd_disk->fops->pr_ops; 3199 if (ops && ops->pr_preempt) 3200 r = ops->pr_preempt(bdev, old_key, new_key, type, abort); 3201 else 3202 r = -EOPNOTSUPP; 3203 out: 3204 dm_unprepare_ioctl(md, srcu_idx); 3205 return r; 3206 } 3207 3208 static int dm_pr_clear(struct block_device *bdev, u64 key) 3209 { 3210 struct mapped_device *md = bdev->bd_disk->private_data; 3211 const struct pr_ops *ops; 3212 int r, srcu_idx; 3213 3214 r = dm_prepare_ioctl(md, &srcu_idx, &bdev); 3215 if (r < 0) 3216 goto out; 3217 3218 ops = bdev->bd_disk->fops->pr_ops; 3219 if (ops && ops->pr_clear) 3220 r = ops->pr_clear(bdev, key); 3221 else 3222 r = -EOPNOTSUPP; 3223 out: 3224 dm_unprepare_ioctl(md, srcu_idx); 3225 return r; 3226 } 3227 3228 static const struct pr_ops dm_pr_ops = { 3229 .pr_register = dm_pr_register, 3230 .pr_reserve = dm_pr_reserve, 3231 .pr_release = dm_pr_release, 3232 .pr_preempt = dm_pr_preempt, 3233 .pr_clear = dm_pr_clear, 3234 }; 3235 3236 static const struct block_device_operations dm_blk_dops = { 3237 .open = dm_blk_open, 3238 .release = dm_blk_close, 3239 .ioctl = dm_blk_ioctl, 3240 .getgeo = dm_blk_getgeo, 3241 .report_zones = dm_blk_report_zones, 3242 .pr_ops = &dm_pr_ops, 3243 .owner = THIS_MODULE 3244 }; 3245 3246 static const struct dax_operations dm_dax_ops = { 3247 .direct_access = dm_dax_direct_access, 3248 .dax_supported = dm_dax_supported, 3249 .copy_from_iter = dm_dax_copy_from_iter, 3250 .copy_to_iter = dm_dax_copy_to_iter, 3251 .zero_page_range = dm_dax_zero_page_range, 3252 }; 3253 3254 /* 3255 * module hooks 3256 */ 3257 module_init(dm_init); 3258 module_exit(dm_exit); 3259 3260 module_param(major, uint, 0); 3261 MODULE_PARM_DESC(major, "The major number of the device mapper"); 3262 3263 module_param(reserved_bio_based_ios, uint, S_IRUGO | S_IWUSR); 3264 MODULE_PARM_DESC(reserved_bio_based_ios, "Reserved IOs in bio-based mempools"); 3265 3266 module_param(dm_numa_node, int, S_IRUGO | S_IWUSR); 3267 MODULE_PARM_DESC(dm_numa_node, "NUMA node for DM device memory allocations"); 3268 3269 MODULE_DESCRIPTION(DM_NAME " driver"); 3270 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>"); 3271 MODULE_LICENSE("GPL"); 3272