xref: /linux/drivers/md/dm.c (revision 31af04cd60d3162a58213363fd740a2b0cf0a08e)
1 /*
2  * Copyright (C) 2001, 2002 Sistina Software (UK) Limited.
3  * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
4  *
5  * This file is released under the GPL.
6  */
7 
8 #include "dm-core.h"
9 #include "dm-rq.h"
10 #include "dm-uevent.h"
11 
12 #include <linux/init.h>
13 #include <linux/module.h>
14 #include <linux/mutex.h>
15 #include <linux/sched/signal.h>
16 #include <linux/blkpg.h>
17 #include <linux/bio.h>
18 #include <linux/mempool.h>
19 #include <linux/dax.h>
20 #include <linux/slab.h>
21 #include <linux/idr.h>
22 #include <linux/uio.h>
23 #include <linux/hdreg.h>
24 #include <linux/delay.h>
25 #include <linux/wait.h>
26 #include <linux/pr.h>
27 #include <linux/refcount.h>
28 
29 #define DM_MSG_PREFIX "core"
30 
31 /*
32  * Cookies are numeric values sent with CHANGE and REMOVE
33  * uevents while resuming, removing or renaming the device.
34  */
35 #define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE"
36 #define DM_COOKIE_LENGTH 24
37 
38 static const char *_name = DM_NAME;
39 
40 static unsigned int major = 0;
41 static unsigned int _major = 0;
42 
43 static DEFINE_IDR(_minor_idr);
44 
45 static DEFINE_SPINLOCK(_minor_lock);
46 
47 static void do_deferred_remove(struct work_struct *w);
48 
49 static DECLARE_WORK(deferred_remove_work, do_deferred_remove);
50 
51 static struct workqueue_struct *deferred_remove_workqueue;
52 
53 atomic_t dm_global_event_nr = ATOMIC_INIT(0);
54 DECLARE_WAIT_QUEUE_HEAD(dm_global_eventq);
55 
56 void dm_issue_global_event(void)
57 {
58 	atomic_inc(&dm_global_event_nr);
59 	wake_up(&dm_global_eventq);
60 }
61 
62 /*
63  * One of these is allocated (on-stack) per original bio.
64  */
65 struct clone_info {
66 	struct dm_table *map;
67 	struct bio *bio;
68 	struct dm_io *io;
69 	sector_t sector;
70 	unsigned sector_count;
71 };
72 
73 /*
74  * One of these is allocated per clone bio.
75  */
76 #define DM_TIO_MAGIC 7282014
77 struct dm_target_io {
78 	unsigned magic;
79 	struct dm_io *io;
80 	struct dm_target *ti;
81 	unsigned target_bio_nr;
82 	unsigned *len_ptr;
83 	bool inside_dm_io;
84 	struct bio clone;
85 };
86 
87 /*
88  * One of these is allocated per original bio.
89  * It contains the first clone used for that original.
90  */
91 #define DM_IO_MAGIC 5191977
92 struct dm_io {
93 	unsigned magic;
94 	struct mapped_device *md;
95 	blk_status_t status;
96 	atomic_t io_count;
97 	struct bio *orig_bio;
98 	unsigned long start_time;
99 	spinlock_t endio_lock;
100 	struct dm_stats_aux stats_aux;
101 	/* last member of dm_target_io is 'struct bio' */
102 	struct dm_target_io tio;
103 };
104 
105 void *dm_per_bio_data(struct bio *bio, size_t data_size)
106 {
107 	struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
108 	if (!tio->inside_dm_io)
109 		return (char *)bio - offsetof(struct dm_target_io, clone) - data_size;
110 	return (char *)bio - offsetof(struct dm_target_io, clone) - offsetof(struct dm_io, tio) - data_size;
111 }
112 EXPORT_SYMBOL_GPL(dm_per_bio_data);
113 
114 struct bio *dm_bio_from_per_bio_data(void *data, size_t data_size)
115 {
116 	struct dm_io *io = (struct dm_io *)((char *)data + data_size);
117 	if (io->magic == DM_IO_MAGIC)
118 		return (struct bio *)((char *)io + offsetof(struct dm_io, tio) + offsetof(struct dm_target_io, clone));
119 	BUG_ON(io->magic != DM_TIO_MAGIC);
120 	return (struct bio *)((char *)io + offsetof(struct dm_target_io, clone));
121 }
122 EXPORT_SYMBOL_GPL(dm_bio_from_per_bio_data);
123 
124 unsigned dm_bio_get_target_bio_nr(const struct bio *bio)
125 {
126 	return container_of(bio, struct dm_target_io, clone)->target_bio_nr;
127 }
128 EXPORT_SYMBOL_GPL(dm_bio_get_target_bio_nr);
129 
130 #define MINOR_ALLOCED ((void *)-1)
131 
132 /*
133  * Bits for the md->flags field.
134  */
135 #define DMF_BLOCK_IO_FOR_SUSPEND 0
136 #define DMF_SUSPENDED 1
137 #define DMF_FROZEN 2
138 #define DMF_FREEING 3
139 #define DMF_DELETING 4
140 #define DMF_NOFLUSH_SUSPENDING 5
141 #define DMF_DEFERRED_REMOVE 6
142 #define DMF_SUSPENDED_INTERNALLY 7
143 
144 #define DM_NUMA_NODE NUMA_NO_NODE
145 static int dm_numa_node = DM_NUMA_NODE;
146 
147 /*
148  * For mempools pre-allocation at the table loading time.
149  */
150 struct dm_md_mempools {
151 	struct bio_set bs;
152 	struct bio_set io_bs;
153 };
154 
155 struct table_device {
156 	struct list_head list;
157 	refcount_t count;
158 	struct dm_dev dm_dev;
159 };
160 
161 static struct kmem_cache *_rq_tio_cache;
162 static struct kmem_cache *_rq_cache;
163 
164 /*
165  * Bio-based DM's mempools' reserved IOs set by the user.
166  */
167 #define RESERVED_BIO_BASED_IOS		16
168 static unsigned reserved_bio_based_ios = RESERVED_BIO_BASED_IOS;
169 
170 static int __dm_get_module_param_int(int *module_param, int min, int max)
171 {
172 	int param = READ_ONCE(*module_param);
173 	int modified_param = 0;
174 	bool modified = true;
175 
176 	if (param < min)
177 		modified_param = min;
178 	else if (param > max)
179 		modified_param = max;
180 	else
181 		modified = false;
182 
183 	if (modified) {
184 		(void)cmpxchg(module_param, param, modified_param);
185 		param = modified_param;
186 	}
187 
188 	return param;
189 }
190 
191 unsigned __dm_get_module_param(unsigned *module_param,
192 			       unsigned def, unsigned max)
193 {
194 	unsigned param = READ_ONCE(*module_param);
195 	unsigned modified_param = 0;
196 
197 	if (!param)
198 		modified_param = def;
199 	else if (param > max)
200 		modified_param = max;
201 
202 	if (modified_param) {
203 		(void)cmpxchg(module_param, param, modified_param);
204 		param = modified_param;
205 	}
206 
207 	return param;
208 }
209 
210 unsigned dm_get_reserved_bio_based_ios(void)
211 {
212 	return __dm_get_module_param(&reserved_bio_based_ios,
213 				     RESERVED_BIO_BASED_IOS, DM_RESERVED_MAX_IOS);
214 }
215 EXPORT_SYMBOL_GPL(dm_get_reserved_bio_based_ios);
216 
217 static unsigned dm_get_numa_node(void)
218 {
219 	return __dm_get_module_param_int(&dm_numa_node,
220 					 DM_NUMA_NODE, num_online_nodes() - 1);
221 }
222 
223 static int __init local_init(void)
224 {
225 	int r = -ENOMEM;
226 
227 	_rq_tio_cache = KMEM_CACHE(dm_rq_target_io, 0);
228 	if (!_rq_tio_cache)
229 		return r;
230 
231 	_rq_cache = kmem_cache_create("dm_old_clone_request", sizeof(struct request),
232 				      __alignof__(struct request), 0, NULL);
233 	if (!_rq_cache)
234 		goto out_free_rq_tio_cache;
235 
236 	r = dm_uevent_init();
237 	if (r)
238 		goto out_free_rq_cache;
239 
240 	deferred_remove_workqueue = alloc_workqueue("kdmremove", WQ_UNBOUND, 1);
241 	if (!deferred_remove_workqueue) {
242 		r = -ENOMEM;
243 		goto out_uevent_exit;
244 	}
245 
246 	_major = major;
247 	r = register_blkdev(_major, _name);
248 	if (r < 0)
249 		goto out_free_workqueue;
250 
251 	if (!_major)
252 		_major = r;
253 
254 	return 0;
255 
256 out_free_workqueue:
257 	destroy_workqueue(deferred_remove_workqueue);
258 out_uevent_exit:
259 	dm_uevent_exit();
260 out_free_rq_cache:
261 	kmem_cache_destroy(_rq_cache);
262 out_free_rq_tio_cache:
263 	kmem_cache_destroy(_rq_tio_cache);
264 
265 	return r;
266 }
267 
268 static void local_exit(void)
269 {
270 	flush_scheduled_work();
271 	destroy_workqueue(deferred_remove_workqueue);
272 
273 	kmem_cache_destroy(_rq_cache);
274 	kmem_cache_destroy(_rq_tio_cache);
275 	unregister_blkdev(_major, _name);
276 	dm_uevent_exit();
277 
278 	_major = 0;
279 
280 	DMINFO("cleaned up");
281 }
282 
283 static int (*_inits[])(void) __initdata = {
284 	local_init,
285 	dm_target_init,
286 	dm_linear_init,
287 	dm_stripe_init,
288 	dm_io_init,
289 	dm_kcopyd_init,
290 	dm_interface_init,
291 	dm_statistics_init,
292 };
293 
294 static void (*_exits[])(void) = {
295 	local_exit,
296 	dm_target_exit,
297 	dm_linear_exit,
298 	dm_stripe_exit,
299 	dm_io_exit,
300 	dm_kcopyd_exit,
301 	dm_interface_exit,
302 	dm_statistics_exit,
303 };
304 
305 static int __init dm_init(void)
306 {
307 	const int count = ARRAY_SIZE(_inits);
308 
309 	int r, i;
310 
311 	for (i = 0; i < count; i++) {
312 		r = _inits[i]();
313 		if (r)
314 			goto bad;
315 	}
316 
317 	return 0;
318 
319       bad:
320 	while (i--)
321 		_exits[i]();
322 
323 	return r;
324 }
325 
326 static void __exit dm_exit(void)
327 {
328 	int i = ARRAY_SIZE(_exits);
329 
330 	while (i--)
331 		_exits[i]();
332 
333 	/*
334 	 * Should be empty by this point.
335 	 */
336 	idr_destroy(&_minor_idr);
337 }
338 
339 /*
340  * Block device functions
341  */
342 int dm_deleting_md(struct mapped_device *md)
343 {
344 	return test_bit(DMF_DELETING, &md->flags);
345 }
346 
347 static int dm_blk_open(struct block_device *bdev, fmode_t mode)
348 {
349 	struct mapped_device *md;
350 
351 	spin_lock(&_minor_lock);
352 
353 	md = bdev->bd_disk->private_data;
354 	if (!md)
355 		goto out;
356 
357 	if (test_bit(DMF_FREEING, &md->flags) ||
358 	    dm_deleting_md(md)) {
359 		md = NULL;
360 		goto out;
361 	}
362 
363 	dm_get(md);
364 	atomic_inc(&md->open_count);
365 out:
366 	spin_unlock(&_minor_lock);
367 
368 	return md ? 0 : -ENXIO;
369 }
370 
371 static void dm_blk_close(struct gendisk *disk, fmode_t mode)
372 {
373 	struct mapped_device *md;
374 
375 	spin_lock(&_minor_lock);
376 
377 	md = disk->private_data;
378 	if (WARN_ON(!md))
379 		goto out;
380 
381 	if (atomic_dec_and_test(&md->open_count) &&
382 	    (test_bit(DMF_DEFERRED_REMOVE, &md->flags)))
383 		queue_work(deferred_remove_workqueue, &deferred_remove_work);
384 
385 	dm_put(md);
386 out:
387 	spin_unlock(&_minor_lock);
388 }
389 
390 int dm_open_count(struct mapped_device *md)
391 {
392 	return atomic_read(&md->open_count);
393 }
394 
395 /*
396  * Guarantees nothing is using the device before it's deleted.
397  */
398 int dm_lock_for_deletion(struct mapped_device *md, bool mark_deferred, bool only_deferred)
399 {
400 	int r = 0;
401 
402 	spin_lock(&_minor_lock);
403 
404 	if (dm_open_count(md)) {
405 		r = -EBUSY;
406 		if (mark_deferred)
407 			set_bit(DMF_DEFERRED_REMOVE, &md->flags);
408 	} else if (only_deferred && !test_bit(DMF_DEFERRED_REMOVE, &md->flags))
409 		r = -EEXIST;
410 	else
411 		set_bit(DMF_DELETING, &md->flags);
412 
413 	spin_unlock(&_minor_lock);
414 
415 	return r;
416 }
417 
418 int dm_cancel_deferred_remove(struct mapped_device *md)
419 {
420 	int r = 0;
421 
422 	spin_lock(&_minor_lock);
423 
424 	if (test_bit(DMF_DELETING, &md->flags))
425 		r = -EBUSY;
426 	else
427 		clear_bit(DMF_DEFERRED_REMOVE, &md->flags);
428 
429 	spin_unlock(&_minor_lock);
430 
431 	return r;
432 }
433 
434 static void do_deferred_remove(struct work_struct *w)
435 {
436 	dm_deferred_remove();
437 }
438 
439 sector_t dm_get_size(struct mapped_device *md)
440 {
441 	return get_capacity(md->disk);
442 }
443 
444 struct request_queue *dm_get_md_queue(struct mapped_device *md)
445 {
446 	return md->queue;
447 }
448 
449 struct dm_stats *dm_get_stats(struct mapped_device *md)
450 {
451 	return &md->stats;
452 }
453 
454 static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
455 {
456 	struct mapped_device *md = bdev->bd_disk->private_data;
457 
458 	return dm_get_geometry(md, geo);
459 }
460 
461 static int dm_blk_report_zones(struct gendisk *disk, sector_t sector,
462 			       struct blk_zone *zones, unsigned int *nr_zones,
463 			       gfp_t gfp_mask)
464 {
465 #ifdef CONFIG_BLK_DEV_ZONED
466 	struct mapped_device *md = disk->private_data;
467 	struct dm_target *tgt;
468 	struct dm_table *map;
469 	int srcu_idx, ret;
470 
471 	if (dm_suspended_md(md))
472 		return -EAGAIN;
473 
474 	map = dm_get_live_table(md, &srcu_idx);
475 	if (!map)
476 		return -EIO;
477 
478 	tgt = dm_table_find_target(map, sector);
479 	if (!dm_target_is_valid(tgt)) {
480 		ret = -EIO;
481 		goto out;
482 	}
483 
484 	/*
485 	 * If we are executing this, we already know that the block device
486 	 * is a zoned device and so each target should have support for that
487 	 * type of drive. A missing report_zones method means that the target
488 	 * driver has a problem.
489 	 */
490 	if (WARN_ON(!tgt->type->report_zones)) {
491 		ret = -EIO;
492 		goto out;
493 	}
494 
495 	/*
496 	 * blkdev_report_zones() will loop and call this again to cover all the
497 	 * zones of the target, eventually moving on to the next target.
498 	 * So there is no need to loop here trying to fill the entire array
499 	 * of zones.
500 	 */
501 	ret = tgt->type->report_zones(tgt, sector, zones,
502 				      nr_zones, gfp_mask);
503 
504 out:
505 	dm_put_live_table(md, srcu_idx);
506 	return ret;
507 #else
508 	return -ENOTSUPP;
509 #endif
510 }
511 
512 static int dm_prepare_ioctl(struct mapped_device *md, int *srcu_idx,
513 			    struct block_device **bdev)
514 	__acquires(md->io_barrier)
515 {
516 	struct dm_target *tgt;
517 	struct dm_table *map;
518 	int r;
519 
520 retry:
521 	r = -ENOTTY;
522 	map = dm_get_live_table(md, srcu_idx);
523 	if (!map || !dm_table_get_size(map))
524 		return r;
525 
526 	/* We only support devices that have a single target */
527 	if (dm_table_get_num_targets(map) != 1)
528 		return r;
529 
530 	tgt = dm_table_get_target(map, 0);
531 	if (!tgt->type->prepare_ioctl)
532 		return r;
533 
534 	if (dm_suspended_md(md))
535 		return -EAGAIN;
536 
537 	r = tgt->type->prepare_ioctl(tgt, bdev);
538 	if (r == -ENOTCONN && !fatal_signal_pending(current)) {
539 		dm_put_live_table(md, *srcu_idx);
540 		msleep(10);
541 		goto retry;
542 	}
543 
544 	return r;
545 }
546 
547 static void dm_unprepare_ioctl(struct mapped_device *md, int srcu_idx)
548 	__releases(md->io_barrier)
549 {
550 	dm_put_live_table(md, srcu_idx);
551 }
552 
553 static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode,
554 			unsigned int cmd, unsigned long arg)
555 {
556 	struct mapped_device *md = bdev->bd_disk->private_data;
557 	int r, srcu_idx;
558 
559 	r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
560 	if (r < 0)
561 		goto out;
562 
563 	if (r > 0) {
564 		/*
565 		 * Target determined this ioctl is being issued against a
566 		 * subset of the parent bdev; require extra privileges.
567 		 */
568 		if (!capable(CAP_SYS_RAWIO)) {
569 			DMWARN_LIMIT(
570 	"%s: sending ioctl %x to DM device without required privilege.",
571 				current->comm, cmd);
572 			r = -ENOIOCTLCMD;
573 			goto out;
574 		}
575 	}
576 
577 	r =  __blkdev_driver_ioctl(bdev, mode, cmd, arg);
578 out:
579 	dm_unprepare_ioctl(md, srcu_idx);
580 	return r;
581 }
582 
583 static void start_io_acct(struct dm_io *io);
584 
585 static struct dm_io *alloc_io(struct mapped_device *md, struct bio *bio)
586 {
587 	struct dm_io *io;
588 	struct dm_target_io *tio;
589 	struct bio *clone;
590 
591 	clone = bio_alloc_bioset(GFP_NOIO, 0, &md->io_bs);
592 	if (!clone)
593 		return NULL;
594 
595 	tio = container_of(clone, struct dm_target_io, clone);
596 	tio->inside_dm_io = true;
597 	tio->io = NULL;
598 
599 	io = container_of(tio, struct dm_io, tio);
600 	io->magic = DM_IO_MAGIC;
601 	io->status = 0;
602 	atomic_set(&io->io_count, 1);
603 	io->orig_bio = bio;
604 	io->md = md;
605 	spin_lock_init(&io->endio_lock);
606 
607 	start_io_acct(io);
608 
609 	return io;
610 }
611 
612 static void free_io(struct mapped_device *md, struct dm_io *io)
613 {
614 	bio_put(&io->tio.clone);
615 }
616 
617 static struct dm_target_io *alloc_tio(struct clone_info *ci, struct dm_target *ti,
618 				      unsigned target_bio_nr, gfp_t gfp_mask)
619 {
620 	struct dm_target_io *tio;
621 
622 	if (!ci->io->tio.io) {
623 		/* the dm_target_io embedded in ci->io is available */
624 		tio = &ci->io->tio;
625 	} else {
626 		struct bio *clone = bio_alloc_bioset(gfp_mask, 0, &ci->io->md->bs);
627 		if (!clone)
628 			return NULL;
629 
630 		tio = container_of(clone, struct dm_target_io, clone);
631 		tio->inside_dm_io = false;
632 	}
633 
634 	tio->magic = DM_TIO_MAGIC;
635 	tio->io = ci->io;
636 	tio->ti = ti;
637 	tio->target_bio_nr = target_bio_nr;
638 
639 	return tio;
640 }
641 
642 static void free_tio(struct dm_target_io *tio)
643 {
644 	if (tio->inside_dm_io)
645 		return;
646 	bio_put(&tio->clone);
647 }
648 
649 static bool md_in_flight_bios(struct mapped_device *md)
650 {
651 	int cpu;
652 	struct hd_struct *part = &dm_disk(md)->part0;
653 	long sum = 0;
654 
655 	for_each_possible_cpu(cpu) {
656 		sum += part_stat_local_read_cpu(part, in_flight[0], cpu);
657 		sum += part_stat_local_read_cpu(part, in_flight[1], cpu);
658 	}
659 
660 	return sum != 0;
661 }
662 
663 static bool md_in_flight(struct mapped_device *md)
664 {
665 	if (queue_is_mq(md->queue))
666 		return blk_mq_queue_inflight(md->queue);
667 	else
668 		return md_in_flight_bios(md);
669 }
670 
671 static void start_io_acct(struct dm_io *io)
672 {
673 	struct mapped_device *md = io->md;
674 	struct bio *bio = io->orig_bio;
675 
676 	io->start_time = jiffies;
677 
678 	generic_start_io_acct(md->queue, bio_op(bio), bio_sectors(bio),
679 			      &dm_disk(md)->part0);
680 
681 	if (unlikely(dm_stats_used(&md->stats)))
682 		dm_stats_account_io(&md->stats, bio_data_dir(bio),
683 				    bio->bi_iter.bi_sector, bio_sectors(bio),
684 				    false, 0, &io->stats_aux);
685 }
686 
687 static void end_io_acct(struct dm_io *io)
688 {
689 	struct mapped_device *md = io->md;
690 	struct bio *bio = io->orig_bio;
691 	unsigned long duration = jiffies - io->start_time;
692 
693 	generic_end_io_acct(md->queue, bio_op(bio), &dm_disk(md)->part0,
694 			    io->start_time);
695 
696 	if (unlikely(dm_stats_used(&md->stats)))
697 		dm_stats_account_io(&md->stats, bio_data_dir(bio),
698 				    bio->bi_iter.bi_sector, bio_sectors(bio),
699 				    true, duration, &io->stats_aux);
700 
701 	/* nudge anyone waiting on suspend queue */
702 	if (unlikely(waitqueue_active(&md->wait)))
703 		wake_up(&md->wait);
704 }
705 
706 /*
707  * Add the bio to the list of deferred io.
708  */
709 static void queue_io(struct mapped_device *md, struct bio *bio)
710 {
711 	unsigned long flags;
712 
713 	spin_lock_irqsave(&md->deferred_lock, flags);
714 	bio_list_add(&md->deferred, bio);
715 	spin_unlock_irqrestore(&md->deferred_lock, flags);
716 	queue_work(md->wq, &md->work);
717 }
718 
719 /*
720  * Everyone (including functions in this file), should use this
721  * function to access the md->map field, and make sure they call
722  * dm_put_live_table() when finished.
723  */
724 struct dm_table *dm_get_live_table(struct mapped_device *md, int *srcu_idx) __acquires(md->io_barrier)
725 {
726 	*srcu_idx = srcu_read_lock(&md->io_barrier);
727 
728 	return srcu_dereference(md->map, &md->io_barrier);
729 }
730 
731 void dm_put_live_table(struct mapped_device *md, int srcu_idx) __releases(md->io_barrier)
732 {
733 	srcu_read_unlock(&md->io_barrier, srcu_idx);
734 }
735 
736 void dm_sync_table(struct mapped_device *md)
737 {
738 	synchronize_srcu(&md->io_barrier);
739 	synchronize_rcu_expedited();
740 }
741 
742 /*
743  * A fast alternative to dm_get_live_table/dm_put_live_table.
744  * The caller must not block between these two functions.
745  */
746 static struct dm_table *dm_get_live_table_fast(struct mapped_device *md) __acquires(RCU)
747 {
748 	rcu_read_lock();
749 	return rcu_dereference(md->map);
750 }
751 
752 static void dm_put_live_table_fast(struct mapped_device *md) __releases(RCU)
753 {
754 	rcu_read_unlock();
755 }
756 
757 static char *_dm_claim_ptr = "I belong to device-mapper";
758 
759 /*
760  * Open a table device so we can use it as a map destination.
761  */
762 static int open_table_device(struct table_device *td, dev_t dev,
763 			     struct mapped_device *md)
764 {
765 	struct block_device *bdev;
766 
767 	int r;
768 
769 	BUG_ON(td->dm_dev.bdev);
770 
771 	bdev = blkdev_get_by_dev(dev, td->dm_dev.mode | FMODE_EXCL, _dm_claim_ptr);
772 	if (IS_ERR(bdev))
773 		return PTR_ERR(bdev);
774 
775 	r = bd_link_disk_holder(bdev, dm_disk(md));
776 	if (r) {
777 		blkdev_put(bdev, td->dm_dev.mode | FMODE_EXCL);
778 		return r;
779 	}
780 
781 	td->dm_dev.bdev = bdev;
782 	td->dm_dev.dax_dev = dax_get_by_host(bdev->bd_disk->disk_name);
783 	return 0;
784 }
785 
786 /*
787  * Close a table device that we've been using.
788  */
789 static void close_table_device(struct table_device *td, struct mapped_device *md)
790 {
791 	if (!td->dm_dev.bdev)
792 		return;
793 
794 	bd_unlink_disk_holder(td->dm_dev.bdev, dm_disk(md));
795 	blkdev_put(td->dm_dev.bdev, td->dm_dev.mode | FMODE_EXCL);
796 	put_dax(td->dm_dev.dax_dev);
797 	td->dm_dev.bdev = NULL;
798 	td->dm_dev.dax_dev = NULL;
799 }
800 
801 static struct table_device *find_table_device(struct list_head *l, dev_t dev,
802 					      fmode_t mode) {
803 	struct table_device *td;
804 
805 	list_for_each_entry(td, l, list)
806 		if (td->dm_dev.bdev->bd_dev == dev && td->dm_dev.mode == mode)
807 			return td;
808 
809 	return NULL;
810 }
811 
812 int dm_get_table_device(struct mapped_device *md, dev_t dev, fmode_t mode,
813 			struct dm_dev **result) {
814 	int r;
815 	struct table_device *td;
816 
817 	mutex_lock(&md->table_devices_lock);
818 	td = find_table_device(&md->table_devices, dev, mode);
819 	if (!td) {
820 		td = kmalloc_node(sizeof(*td), GFP_KERNEL, md->numa_node_id);
821 		if (!td) {
822 			mutex_unlock(&md->table_devices_lock);
823 			return -ENOMEM;
824 		}
825 
826 		td->dm_dev.mode = mode;
827 		td->dm_dev.bdev = NULL;
828 
829 		if ((r = open_table_device(td, dev, md))) {
830 			mutex_unlock(&md->table_devices_lock);
831 			kfree(td);
832 			return r;
833 		}
834 
835 		format_dev_t(td->dm_dev.name, dev);
836 
837 		refcount_set(&td->count, 1);
838 		list_add(&td->list, &md->table_devices);
839 	} else {
840 		refcount_inc(&td->count);
841 	}
842 	mutex_unlock(&md->table_devices_lock);
843 
844 	*result = &td->dm_dev;
845 	return 0;
846 }
847 EXPORT_SYMBOL_GPL(dm_get_table_device);
848 
849 void dm_put_table_device(struct mapped_device *md, struct dm_dev *d)
850 {
851 	struct table_device *td = container_of(d, struct table_device, dm_dev);
852 
853 	mutex_lock(&md->table_devices_lock);
854 	if (refcount_dec_and_test(&td->count)) {
855 		close_table_device(td, md);
856 		list_del(&td->list);
857 		kfree(td);
858 	}
859 	mutex_unlock(&md->table_devices_lock);
860 }
861 EXPORT_SYMBOL(dm_put_table_device);
862 
863 static void free_table_devices(struct list_head *devices)
864 {
865 	struct list_head *tmp, *next;
866 
867 	list_for_each_safe(tmp, next, devices) {
868 		struct table_device *td = list_entry(tmp, struct table_device, list);
869 
870 		DMWARN("dm_destroy: %s still exists with %d references",
871 		       td->dm_dev.name, refcount_read(&td->count));
872 		kfree(td);
873 	}
874 }
875 
876 /*
877  * Get the geometry associated with a dm device
878  */
879 int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo)
880 {
881 	*geo = md->geometry;
882 
883 	return 0;
884 }
885 
886 /*
887  * Set the geometry of a device.
888  */
889 int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo)
890 {
891 	sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors;
892 
893 	if (geo->start > sz) {
894 		DMWARN("Start sector is beyond the geometry limits.");
895 		return -EINVAL;
896 	}
897 
898 	md->geometry = *geo;
899 
900 	return 0;
901 }
902 
903 static int __noflush_suspending(struct mapped_device *md)
904 {
905 	return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
906 }
907 
908 /*
909  * Decrements the number of outstanding ios that a bio has been
910  * cloned into, completing the original io if necc.
911  */
912 static void dec_pending(struct dm_io *io, blk_status_t error)
913 {
914 	unsigned long flags;
915 	blk_status_t io_error;
916 	struct bio *bio;
917 	struct mapped_device *md = io->md;
918 
919 	/* Push-back supersedes any I/O errors */
920 	if (unlikely(error)) {
921 		spin_lock_irqsave(&io->endio_lock, flags);
922 		if (!(io->status == BLK_STS_DM_REQUEUE && __noflush_suspending(md)))
923 			io->status = error;
924 		spin_unlock_irqrestore(&io->endio_lock, flags);
925 	}
926 
927 	if (atomic_dec_and_test(&io->io_count)) {
928 		if (io->status == BLK_STS_DM_REQUEUE) {
929 			/*
930 			 * Target requested pushing back the I/O.
931 			 */
932 			spin_lock_irqsave(&md->deferred_lock, flags);
933 			if (__noflush_suspending(md))
934 				/* NOTE early return due to BLK_STS_DM_REQUEUE below */
935 				bio_list_add_head(&md->deferred, io->orig_bio);
936 			else
937 				/* noflush suspend was interrupted. */
938 				io->status = BLK_STS_IOERR;
939 			spin_unlock_irqrestore(&md->deferred_lock, flags);
940 		}
941 
942 		io_error = io->status;
943 		bio = io->orig_bio;
944 		end_io_acct(io);
945 		free_io(md, io);
946 
947 		if (io_error == BLK_STS_DM_REQUEUE)
948 			return;
949 
950 		if ((bio->bi_opf & REQ_PREFLUSH) && bio->bi_iter.bi_size) {
951 			/*
952 			 * Preflush done for flush with data, reissue
953 			 * without REQ_PREFLUSH.
954 			 */
955 			bio->bi_opf &= ~REQ_PREFLUSH;
956 			queue_io(md, bio);
957 		} else {
958 			/* done with normal IO or empty flush */
959 			if (io_error)
960 				bio->bi_status = io_error;
961 			bio_endio(bio);
962 		}
963 	}
964 }
965 
966 void disable_write_same(struct mapped_device *md)
967 {
968 	struct queue_limits *limits = dm_get_queue_limits(md);
969 
970 	/* device doesn't really support WRITE SAME, disable it */
971 	limits->max_write_same_sectors = 0;
972 }
973 
974 void disable_write_zeroes(struct mapped_device *md)
975 {
976 	struct queue_limits *limits = dm_get_queue_limits(md);
977 
978 	/* device doesn't really support WRITE ZEROES, disable it */
979 	limits->max_write_zeroes_sectors = 0;
980 }
981 
982 static void clone_endio(struct bio *bio)
983 {
984 	blk_status_t error = bio->bi_status;
985 	struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
986 	struct dm_io *io = tio->io;
987 	struct mapped_device *md = tio->io->md;
988 	dm_endio_fn endio = tio->ti->type->end_io;
989 
990 	if (unlikely(error == BLK_STS_TARGET) && md->type != DM_TYPE_NVME_BIO_BASED) {
991 		if (bio_op(bio) == REQ_OP_WRITE_SAME &&
992 		    !bio->bi_disk->queue->limits.max_write_same_sectors)
993 			disable_write_same(md);
994 		if (bio_op(bio) == REQ_OP_WRITE_ZEROES &&
995 		    !bio->bi_disk->queue->limits.max_write_zeroes_sectors)
996 			disable_write_zeroes(md);
997 	}
998 
999 	if (endio) {
1000 		int r = endio(tio->ti, bio, &error);
1001 		switch (r) {
1002 		case DM_ENDIO_REQUEUE:
1003 			error = BLK_STS_DM_REQUEUE;
1004 			/*FALLTHRU*/
1005 		case DM_ENDIO_DONE:
1006 			break;
1007 		case DM_ENDIO_INCOMPLETE:
1008 			/* The target will handle the io */
1009 			return;
1010 		default:
1011 			DMWARN("unimplemented target endio return value: %d", r);
1012 			BUG();
1013 		}
1014 	}
1015 
1016 	free_tio(tio);
1017 	dec_pending(io, error);
1018 }
1019 
1020 /*
1021  * Return maximum size of I/O possible at the supplied sector up to the current
1022  * target boundary.
1023  */
1024 static sector_t max_io_len_target_boundary(sector_t sector, struct dm_target *ti)
1025 {
1026 	sector_t target_offset = dm_target_offset(ti, sector);
1027 
1028 	return ti->len - target_offset;
1029 }
1030 
1031 static sector_t max_io_len(sector_t sector, struct dm_target *ti)
1032 {
1033 	sector_t len = max_io_len_target_boundary(sector, ti);
1034 	sector_t offset, max_len;
1035 
1036 	/*
1037 	 * Does the target need to split even further?
1038 	 */
1039 	if (ti->max_io_len) {
1040 		offset = dm_target_offset(ti, sector);
1041 		if (unlikely(ti->max_io_len & (ti->max_io_len - 1)))
1042 			max_len = sector_div(offset, ti->max_io_len);
1043 		else
1044 			max_len = offset & (ti->max_io_len - 1);
1045 		max_len = ti->max_io_len - max_len;
1046 
1047 		if (len > max_len)
1048 			len = max_len;
1049 	}
1050 
1051 	return len;
1052 }
1053 
1054 int dm_set_target_max_io_len(struct dm_target *ti, sector_t len)
1055 {
1056 	if (len > UINT_MAX) {
1057 		DMERR("Specified maximum size of target IO (%llu) exceeds limit (%u)",
1058 		      (unsigned long long)len, UINT_MAX);
1059 		ti->error = "Maximum size of target IO is too large";
1060 		return -EINVAL;
1061 	}
1062 
1063 	/*
1064 	 * BIO based queue uses its own splitting. When multipage bvecs
1065 	 * is switched on, size of the incoming bio may be too big to
1066 	 * be handled in some targets, such as crypt.
1067 	 *
1068 	 * When these targets are ready for the big bio, we can remove
1069 	 * the limit.
1070 	 */
1071 	ti->max_io_len = min_t(uint32_t, len, BIO_MAX_PAGES * PAGE_SIZE);
1072 
1073 	return 0;
1074 }
1075 EXPORT_SYMBOL_GPL(dm_set_target_max_io_len);
1076 
1077 static struct dm_target *dm_dax_get_live_target(struct mapped_device *md,
1078 						sector_t sector, int *srcu_idx)
1079 	__acquires(md->io_barrier)
1080 {
1081 	struct dm_table *map;
1082 	struct dm_target *ti;
1083 
1084 	map = dm_get_live_table(md, srcu_idx);
1085 	if (!map)
1086 		return NULL;
1087 
1088 	ti = dm_table_find_target(map, sector);
1089 	if (!dm_target_is_valid(ti))
1090 		return NULL;
1091 
1092 	return ti;
1093 }
1094 
1095 static long dm_dax_direct_access(struct dax_device *dax_dev, pgoff_t pgoff,
1096 				 long nr_pages, void **kaddr, pfn_t *pfn)
1097 {
1098 	struct mapped_device *md = dax_get_private(dax_dev);
1099 	sector_t sector = pgoff * PAGE_SECTORS;
1100 	struct dm_target *ti;
1101 	long len, ret = -EIO;
1102 	int srcu_idx;
1103 
1104 	ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1105 
1106 	if (!ti)
1107 		goto out;
1108 	if (!ti->type->direct_access)
1109 		goto out;
1110 	len = max_io_len(sector, ti) / PAGE_SECTORS;
1111 	if (len < 1)
1112 		goto out;
1113 	nr_pages = min(len, nr_pages);
1114 	ret = ti->type->direct_access(ti, pgoff, nr_pages, kaddr, pfn);
1115 
1116  out:
1117 	dm_put_live_table(md, srcu_idx);
1118 
1119 	return ret;
1120 }
1121 
1122 static size_t dm_dax_copy_from_iter(struct dax_device *dax_dev, pgoff_t pgoff,
1123 				    void *addr, size_t bytes, struct iov_iter *i)
1124 {
1125 	struct mapped_device *md = dax_get_private(dax_dev);
1126 	sector_t sector = pgoff * PAGE_SECTORS;
1127 	struct dm_target *ti;
1128 	long ret = 0;
1129 	int srcu_idx;
1130 
1131 	ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1132 
1133 	if (!ti)
1134 		goto out;
1135 	if (!ti->type->dax_copy_from_iter) {
1136 		ret = copy_from_iter(addr, bytes, i);
1137 		goto out;
1138 	}
1139 	ret = ti->type->dax_copy_from_iter(ti, pgoff, addr, bytes, i);
1140  out:
1141 	dm_put_live_table(md, srcu_idx);
1142 
1143 	return ret;
1144 }
1145 
1146 static size_t dm_dax_copy_to_iter(struct dax_device *dax_dev, pgoff_t pgoff,
1147 		void *addr, size_t bytes, struct iov_iter *i)
1148 {
1149 	struct mapped_device *md = dax_get_private(dax_dev);
1150 	sector_t sector = pgoff * PAGE_SECTORS;
1151 	struct dm_target *ti;
1152 	long ret = 0;
1153 	int srcu_idx;
1154 
1155 	ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1156 
1157 	if (!ti)
1158 		goto out;
1159 	if (!ti->type->dax_copy_to_iter) {
1160 		ret = copy_to_iter(addr, bytes, i);
1161 		goto out;
1162 	}
1163 	ret = ti->type->dax_copy_to_iter(ti, pgoff, addr, bytes, i);
1164  out:
1165 	dm_put_live_table(md, srcu_idx);
1166 
1167 	return ret;
1168 }
1169 
1170 /*
1171  * A target may call dm_accept_partial_bio only from the map routine.  It is
1172  * allowed for all bio types except REQ_PREFLUSH and REQ_OP_ZONE_RESET.
1173  *
1174  * dm_accept_partial_bio informs the dm that the target only wants to process
1175  * additional n_sectors sectors of the bio and the rest of the data should be
1176  * sent in a next bio.
1177  *
1178  * A diagram that explains the arithmetics:
1179  * +--------------------+---------------+-------+
1180  * |         1          |       2       |   3   |
1181  * +--------------------+---------------+-------+
1182  *
1183  * <-------------- *tio->len_ptr --------------->
1184  *                      <------- bi_size ------->
1185  *                      <-- n_sectors -->
1186  *
1187  * Region 1 was already iterated over with bio_advance or similar function.
1188  *	(it may be empty if the target doesn't use bio_advance)
1189  * Region 2 is the remaining bio size that the target wants to process.
1190  *	(it may be empty if region 1 is non-empty, although there is no reason
1191  *	 to make it empty)
1192  * The target requires that region 3 is to be sent in the next bio.
1193  *
1194  * If the target wants to receive multiple copies of the bio (via num_*bios, etc),
1195  * the partially processed part (the sum of regions 1+2) must be the same for all
1196  * copies of the bio.
1197  */
1198 void dm_accept_partial_bio(struct bio *bio, unsigned n_sectors)
1199 {
1200 	struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
1201 	unsigned bi_size = bio->bi_iter.bi_size >> SECTOR_SHIFT;
1202 	BUG_ON(bio->bi_opf & REQ_PREFLUSH);
1203 	BUG_ON(bi_size > *tio->len_ptr);
1204 	BUG_ON(n_sectors > bi_size);
1205 	*tio->len_ptr -= bi_size - n_sectors;
1206 	bio->bi_iter.bi_size = n_sectors << SECTOR_SHIFT;
1207 }
1208 EXPORT_SYMBOL_GPL(dm_accept_partial_bio);
1209 
1210 /*
1211  * The zone descriptors obtained with a zone report indicate
1212  * zone positions within the underlying device of the target. The zone
1213  * descriptors must be remapped to match their position within the dm device.
1214  * The caller target should obtain the zones information using
1215  * blkdev_report_zones() to ensure that remapping for partition offset is
1216  * already handled.
1217  */
1218 void dm_remap_zone_report(struct dm_target *ti, sector_t start,
1219 			  struct blk_zone *zones, unsigned int *nr_zones)
1220 {
1221 #ifdef CONFIG_BLK_DEV_ZONED
1222 	struct blk_zone *zone;
1223 	unsigned int nrz = *nr_zones;
1224 	int i;
1225 
1226 	/*
1227 	 * Remap the start sector and write pointer position of the zones in
1228 	 * the array. Since we may have obtained from the target underlying
1229 	 * device more zones that the target size, also adjust the number
1230 	 * of zones.
1231 	 */
1232 	for (i = 0; i < nrz; i++) {
1233 		zone = zones + i;
1234 		if (zone->start >= start + ti->len) {
1235 			memset(zone, 0, sizeof(struct blk_zone) * (nrz - i));
1236 			break;
1237 		}
1238 
1239 		zone->start = zone->start + ti->begin - start;
1240 		if (zone->type == BLK_ZONE_TYPE_CONVENTIONAL)
1241 			continue;
1242 
1243 		if (zone->cond == BLK_ZONE_COND_FULL)
1244 			zone->wp = zone->start + zone->len;
1245 		else if (zone->cond == BLK_ZONE_COND_EMPTY)
1246 			zone->wp = zone->start;
1247 		else
1248 			zone->wp = zone->wp + ti->begin - start;
1249 	}
1250 
1251 	*nr_zones = i;
1252 #else /* !CONFIG_BLK_DEV_ZONED */
1253 	*nr_zones = 0;
1254 #endif
1255 }
1256 EXPORT_SYMBOL_GPL(dm_remap_zone_report);
1257 
1258 static blk_qc_t __map_bio(struct dm_target_io *tio)
1259 {
1260 	int r;
1261 	sector_t sector;
1262 	struct bio *clone = &tio->clone;
1263 	struct dm_io *io = tio->io;
1264 	struct mapped_device *md = io->md;
1265 	struct dm_target *ti = tio->ti;
1266 	blk_qc_t ret = BLK_QC_T_NONE;
1267 
1268 	clone->bi_end_io = clone_endio;
1269 
1270 	/*
1271 	 * Map the clone.  If r == 0 we don't need to do
1272 	 * anything, the target has assumed ownership of
1273 	 * this io.
1274 	 */
1275 	atomic_inc(&io->io_count);
1276 	sector = clone->bi_iter.bi_sector;
1277 
1278 	r = ti->type->map(ti, clone);
1279 	switch (r) {
1280 	case DM_MAPIO_SUBMITTED:
1281 		break;
1282 	case DM_MAPIO_REMAPPED:
1283 		/* the bio has been remapped so dispatch it */
1284 		trace_block_bio_remap(clone->bi_disk->queue, clone,
1285 				      bio_dev(io->orig_bio), sector);
1286 		if (md->type == DM_TYPE_NVME_BIO_BASED)
1287 			ret = direct_make_request(clone);
1288 		else
1289 			ret = generic_make_request(clone);
1290 		break;
1291 	case DM_MAPIO_KILL:
1292 		free_tio(tio);
1293 		dec_pending(io, BLK_STS_IOERR);
1294 		break;
1295 	case DM_MAPIO_REQUEUE:
1296 		free_tio(tio);
1297 		dec_pending(io, BLK_STS_DM_REQUEUE);
1298 		break;
1299 	default:
1300 		DMWARN("unimplemented target map return value: %d", r);
1301 		BUG();
1302 	}
1303 
1304 	return ret;
1305 }
1306 
1307 static void bio_setup_sector(struct bio *bio, sector_t sector, unsigned len)
1308 {
1309 	bio->bi_iter.bi_sector = sector;
1310 	bio->bi_iter.bi_size = to_bytes(len);
1311 }
1312 
1313 /*
1314  * Creates a bio that consists of range of complete bvecs.
1315  */
1316 static int clone_bio(struct dm_target_io *tio, struct bio *bio,
1317 		     sector_t sector, unsigned len)
1318 {
1319 	struct bio *clone = &tio->clone;
1320 
1321 	__bio_clone_fast(clone, bio);
1322 
1323 	if (bio_integrity(bio)) {
1324 		int r;
1325 
1326 		if (unlikely(!dm_target_has_integrity(tio->ti->type) &&
1327 			     !dm_target_passes_integrity(tio->ti->type))) {
1328 			DMWARN("%s: the target %s doesn't support integrity data.",
1329 				dm_device_name(tio->io->md),
1330 				tio->ti->type->name);
1331 			return -EIO;
1332 		}
1333 
1334 		r = bio_integrity_clone(clone, bio, GFP_NOIO);
1335 		if (r < 0)
1336 			return r;
1337 	}
1338 
1339 	bio_trim(clone, sector - clone->bi_iter.bi_sector, len);
1340 
1341 	return 0;
1342 }
1343 
1344 static void alloc_multiple_bios(struct bio_list *blist, struct clone_info *ci,
1345 				struct dm_target *ti, unsigned num_bios)
1346 {
1347 	struct dm_target_io *tio;
1348 	int try;
1349 
1350 	if (!num_bios)
1351 		return;
1352 
1353 	if (num_bios == 1) {
1354 		tio = alloc_tio(ci, ti, 0, GFP_NOIO);
1355 		bio_list_add(blist, &tio->clone);
1356 		return;
1357 	}
1358 
1359 	for (try = 0; try < 2; try++) {
1360 		int bio_nr;
1361 		struct bio *bio;
1362 
1363 		if (try)
1364 			mutex_lock(&ci->io->md->table_devices_lock);
1365 		for (bio_nr = 0; bio_nr < num_bios; bio_nr++) {
1366 			tio = alloc_tio(ci, ti, bio_nr, try ? GFP_NOIO : GFP_NOWAIT);
1367 			if (!tio)
1368 				break;
1369 
1370 			bio_list_add(blist, &tio->clone);
1371 		}
1372 		if (try)
1373 			mutex_unlock(&ci->io->md->table_devices_lock);
1374 		if (bio_nr == num_bios)
1375 			return;
1376 
1377 		while ((bio = bio_list_pop(blist))) {
1378 			tio = container_of(bio, struct dm_target_io, clone);
1379 			free_tio(tio);
1380 		}
1381 	}
1382 }
1383 
1384 static blk_qc_t __clone_and_map_simple_bio(struct clone_info *ci,
1385 					   struct dm_target_io *tio, unsigned *len)
1386 {
1387 	struct bio *clone = &tio->clone;
1388 
1389 	tio->len_ptr = len;
1390 
1391 	__bio_clone_fast(clone, ci->bio);
1392 	if (len)
1393 		bio_setup_sector(clone, ci->sector, *len);
1394 
1395 	return __map_bio(tio);
1396 }
1397 
1398 static void __send_duplicate_bios(struct clone_info *ci, struct dm_target *ti,
1399 				  unsigned num_bios, unsigned *len)
1400 {
1401 	struct bio_list blist = BIO_EMPTY_LIST;
1402 	struct bio *bio;
1403 	struct dm_target_io *tio;
1404 
1405 	alloc_multiple_bios(&blist, ci, ti, num_bios);
1406 
1407 	while ((bio = bio_list_pop(&blist))) {
1408 		tio = container_of(bio, struct dm_target_io, clone);
1409 		(void) __clone_and_map_simple_bio(ci, tio, len);
1410 	}
1411 }
1412 
1413 static int __send_empty_flush(struct clone_info *ci)
1414 {
1415 	unsigned target_nr = 0;
1416 	struct dm_target *ti;
1417 
1418 	/*
1419 	 * Empty flush uses a statically initialized bio, as the base for
1420 	 * cloning.  However, blkg association requires that a bdev is
1421 	 * associated with a gendisk, which doesn't happen until the bdev is
1422 	 * opened.  So, blkg association is done at issue time of the flush
1423 	 * rather than when the device is created in alloc_dev().
1424 	 */
1425 	bio_set_dev(ci->bio, ci->io->md->bdev);
1426 
1427 	BUG_ON(bio_has_data(ci->bio));
1428 	while ((ti = dm_table_get_target(ci->map, target_nr++)))
1429 		__send_duplicate_bios(ci, ti, ti->num_flush_bios, NULL);
1430 
1431 	bio_disassociate_blkg(ci->bio);
1432 
1433 	return 0;
1434 }
1435 
1436 static int __clone_and_map_data_bio(struct clone_info *ci, struct dm_target *ti,
1437 				    sector_t sector, unsigned *len)
1438 {
1439 	struct bio *bio = ci->bio;
1440 	struct dm_target_io *tio;
1441 	int r;
1442 
1443 	tio = alloc_tio(ci, ti, 0, GFP_NOIO);
1444 	tio->len_ptr = len;
1445 	r = clone_bio(tio, bio, sector, *len);
1446 	if (r < 0) {
1447 		free_tio(tio);
1448 		return r;
1449 	}
1450 	(void) __map_bio(tio);
1451 
1452 	return 0;
1453 }
1454 
1455 typedef unsigned (*get_num_bios_fn)(struct dm_target *ti);
1456 
1457 static unsigned get_num_discard_bios(struct dm_target *ti)
1458 {
1459 	return ti->num_discard_bios;
1460 }
1461 
1462 static unsigned get_num_secure_erase_bios(struct dm_target *ti)
1463 {
1464 	return ti->num_secure_erase_bios;
1465 }
1466 
1467 static unsigned get_num_write_same_bios(struct dm_target *ti)
1468 {
1469 	return ti->num_write_same_bios;
1470 }
1471 
1472 static unsigned get_num_write_zeroes_bios(struct dm_target *ti)
1473 {
1474 	return ti->num_write_zeroes_bios;
1475 }
1476 
1477 typedef bool (*is_split_required_fn)(struct dm_target *ti);
1478 
1479 static bool is_split_required_for_discard(struct dm_target *ti)
1480 {
1481 	return ti->split_discard_bios;
1482 }
1483 
1484 static int __send_changing_extent_only(struct clone_info *ci, struct dm_target *ti,
1485 				       unsigned num_bios, bool is_split_required)
1486 {
1487 	unsigned len;
1488 
1489 	/*
1490 	 * Even though the device advertised support for this type of
1491 	 * request, that does not mean every target supports it, and
1492 	 * reconfiguration might also have changed that since the
1493 	 * check was performed.
1494 	 */
1495 	if (!num_bios)
1496 		return -EOPNOTSUPP;
1497 
1498 	if (!is_split_required)
1499 		len = min((sector_t)ci->sector_count, max_io_len_target_boundary(ci->sector, ti));
1500 	else
1501 		len = min((sector_t)ci->sector_count, max_io_len(ci->sector, ti));
1502 
1503 	__send_duplicate_bios(ci, ti, num_bios, &len);
1504 
1505 	ci->sector += len;
1506 	ci->sector_count -= len;
1507 
1508 	return 0;
1509 }
1510 
1511 static int __send_discard(struct clone_info *ci, struct dm_target *ti)
1512 {
1513 	return __send_changing_extent_only(ci, ti, get_num_discard_bios(ti),
1514 					   is_split_required_for_discard(ti));
1515 }
1516 
1517 static int __send_secure_erase(struct clone_info *ci, struct dm_target *ti)
1518 {
1519 	return __send_changing_extent_only(ci, ti, get_num_secure_erase_bios(ti), false);
1520 }
1521 
1522 static int __send_write_same(struct clone_info *ci, struct dm_target *ti)
1523 {
1524 	return __send_changing_extent_only(ci, ti, get_num_write_same_bios(ti), false);
1525 }
1526 
1527 static int __send_write_zeroes(struct clone_info *ci, struct dm_target *ti)
1528 {
1529 	return __send_changing_extent_only(ci, ti, get_num_write_zeroes_bios(ti), false);
1530 }
1531 
1532 static bool __process_abnormal_io(struct clone_info *ci, struct dm_target *ti,
1533 				  int *result)
1534 {
1535 	struct bio *bio = ci->bio;
1536 
1537 	if (bio_op(bio) == REQ_OP_DISCARD)
1538 		*result = __send_discard(ci, ti);
1539 	else if (bio_op(bio) == REQ_OP_SECURE_ERASE)
1540 		*result = __send_secure_erase(ci, ti);
1541 	else if (bio_op(bio) == REQ_OP_WRITE_SAME)
1542 		*result = __send_write_same(ci, ti);
1543 	else if (bio_op(bio) == REQ_OP_WRITE_ZEROES)
1544 		*result = __send_write_zeroes(ci, ti);
1545 	else
1546 		return false;
1547 
1548 	return true;
1549 }
1550 
1551 /*
1552  * Select the correct strategy for processing a non-flush bio.
1553  */
1554 static int __split_and_process_non_flush(struct clone_info *ci)
1555 {
1556 	struct dm_target *ti;
1557 	unsigned len;
1558 	int r;
1559 
1560 	ti = dm_table_find_target(ci->map, ci->sector);
1561 	if (!dm_target_is_valid(ti))
1562 		return -EIO;
1563 
1564 	if (unlikely(__process_abnormal_io(ci, ti, &r)))
1565 		return r;
1566 
1567 	len = min_t(sector_t, max_io_len(ci->sector, ti), ci->sector_count);
1568 
1569 	r = __clone_and_map_data_bio(ci, ti, ci->sector, &len);
1570 	if (r < 0)
1571 		return r;
1572 
1573 	ci->sector += len;
1574 	ci->sector_count -= len;
1575 
1576 	return 0;
1577 }
1578 
1579 static void init_clone_info(struct clone_info *ci, struct mapped_device *md,
1580 			    struct dm_table *map, struct bio *bio)
1581 {
1582 	ci->map = map;
1583 	ci->io = alloc_io(md, bio);
1584 	ci->sector = bio->bi_iter.bi_sector;
1585 }
1586 
1587 #define __dm_part_stat_sub(part, field, subnd)	\
1588 	(part_stat_get(part, field) -= (subnd))
1589 
1590 /*
1591  * Entry point to split a bio into clones and submit them to the targets.
1592  */
1593 static blk_qc_t __split_and_process_bio(struct mapped_device *md,
1594 					struct dm_table *map, struct bio *bio)
1595 {
1596 	struct clone_info ci;
1597 	blk_qc_t ret = BLK_QC_T_NONE;
1598 	int error = 0;
1599 
1600 	if (unlikely(!map)) {
1601 		bio_io_error(bio);
1602 		return ret;
1603 	}
1604 
1605 	blk_queue_split(md->queue, &bio);
1606 
1607 	init_clone_info(&ci, md, map, bio);
1608 
1609 	if (bio->bi_opf & REQ_PREFLUSH) {
1610 		struct bio flush_bio;
1611 
1612 		/*
1613 		 * Use an on-stack bio for this, it's safe since we don't
1614 		 * need to reference it after submit. It's just used as
1615 		 * the basis for the clone(s).
1616 		 */
1617 		bio_init(&flush_bio, NULL, 0);
1618 		flush_bio.bi_opf = REQ_OP_WRITE | REQ_PREFLUSH | REQ_SYNC;
1619 		ci.bio = &flush_bio;
1620 		ci.sector_count = 0;
1621 		error = __send_empty_flush(&ci);
1622 		/* dec_pending submits any data associated with flush */
1623 	} else if (bio_op(bio) == REQ_OP_ZONE_RESET) {
1624 		ci.bio = bio;
1625 		ci.sector_count = 0;
1626 		error = __split_and_process_non_flush(&ci);
1627 	} else {
1628 		ci.bio = bio;
1629 		ci.sector_count = bio_sectors(bio);
1630 		while (ci.sector_count && !error) {
1631 			error = __split_and_process_non_flush(&ci);
1632 			if (current->bio_list && ci.sector_count && !error) {
1633 				/*
1634 				 * Remainder must be passed to generic_make_request()
1635 				 * so that it gets handled *after* bios already submitted
1636 				 * have been completely processed.
1637 				 * We take a clone of the original to store in
1638 				 * ci.io->orig_bio to be used by end_io_acct() and
1639 				 * for dec_pending to use for completion handling.
1640 				 */
1641 				struct bio *b = bio_split(bio, bio_sectors(bio) - ci.sector_count,
1642 							  GFP_NOIO, &md->queue->bio_split);
1643 				ci.io->orig_bio = b;
1644 
1645 				/*
1646 				 * Adjust IO stats for each split, otherwise upon queue
1647 				 * reentry there will be redundant IO accounting.
1648 				 * NOTE: this is a stop-gap fix, a proper fix involves
1649 				 * significant refactoring of DM core's bio splitting
1650 				 * (by eliminating DM's splitting and just using bio_split)
1651 				 */
1652 				part_stat_lock();
1653 				__dm_part_stat_sub(&dm_disk(md)->part0,
1654 						   sectors[op_stat_group(bio_op(bio))], ci.sector_count);
1655 				part_stat_unlock();
1656 
1657 				bio_chain(b, bio);
1658 				trace_block_split(md->queue, b, bio->bi_iter.bi_sector);
1659 				ret = generic_make_request(bio);
1660 				break;
1661 			}
1662 		}
1663 	}
1664 
1665 	/* drop the extra reference count */
1666 	dec_pending(ci.io, errno_to_blk_status(error));
1667 	return ret;
1668 }
1669 
1670 /*
1671  * Optimized variant of __split_and_process_bio that leverages the
1672  * fact that targets that use it do _not_ have a need to split bios.
1673  */
1674 static blk_qc_t __process_bio(struct mapped_device *md,
1675 			      struct dm_table *map, struct bio *bio)
1676 {
1677 	struct clone_info ci;
1678 	blk_qc_t ret = BLK_QC_T_NONE;
1679 	int error = 0;
1680 
1681 	if (unlikely(!map)) {
1682 		bio_io_error(bio);
1683 		return ret;
1684 	}
1685 
1686 	init_clone_info(&ci, md, map, bio);
1687 
1688 	if (bio->bi_opf & REQ_PREFLUSH) {
1689 		struct bio flush_bio;
1690 
1691 		/*
1692 		 * Use an on-stack bio for this, it's safe since we don't
1693 		 * need to reference it after submit. It's just used as
1694 		 * the basis for the clone(s).
1695 		 */
1696 		bio_init(&flush_bio, NULL, 0);
1697 		flush_bio.bi_opf = REQ_OP_WRITE | REQ_PREFLUSH | REQ_SYNC;
1698 		ci.bio = &flush_bio;
1699 		ci.sector_count = 0;
1700 		error = __send_empty_flush(&ci);
1701 		/* dec_pending submits any data associated with flush */
1702 	} else {
1703 		struct dm_target *ti = md->immutable_target;
1704 		struct dm_target_io *tio;
1705 
1706 		/*
1707 		 * Defend against IO still getting in during teardown
1708 		 * - as was seen for a time with nvme-fcloop
1709 		 */
1710 		if (WARN_ON_ONCE(!ti || !dm_target_is_valid(ti))) {
1711 			error = -EIO;
1712 			goto out;
1713 		}
1714 
1715 		ci.bio = bio;
1716 		ci.sector_count = bio_sectors(bio);
1717 		if (unlikely(__process_abnormal_io(&ci, ti, &error)))
1718 			goto out;
1719 
1720 		tio = alloc_tio(&ci, ti, 0, GFP_NOIO);
1721 		ret = __clone_and_map_simple_bio(&ci, tio, NULL);
1722 	}
1723 out:
1724 	/* drop the extra reference count */
1725 	dec_pending(ci.io, errno_to_blk_status(error));
1726 	return ret;
1727 }
1728 
1729 static blk_qc_t dm_process_bio(struct mapped_device *md,
1730 			       struct dm_table *map, struct bio *bio)
1731 {
1732 	if (dm_get_md_type(md) == DM_TYPE_NVME_BIO_BASED)
1733 		return __process_bio(md, map, bio);
1734 	else
1735 		return __split_and_process_bio(md, map, bio);
1736 }
1737 
1738 static blk_qc_t dm_make_request(struct request_queue *q, struct bio *bio)
1739 {
1740 	struct mapped_device *md = q->queuedata;
1741 	blk_qc_t ret = BLK_QC_T_NONE;
1742 	int srcu_idx;
1743 	struct dm_table *map;
1744 
1745 	map = dm_get_live_table(md, &srcu_idx);
1746 
1747 	/* if we're suspended, we have to queue this io for later */
1748 	if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))) {
1749 		dm_put_live_table(md, srcu_idx);
1750 
1751 		if (!(bio->bi_opf & REQ_RAHEAD))
1752 			queue_io(md, bio);
1753 		else
1754 			bio_io_error(bio);
1755 		return ret;
1756 	}
1757 
1758 	ret = dm_process_bio(md, map, bio);
1759 
1760 	dm_put_live_table(md, srcu_idx);
1761 	return ret;
1762 }
1763 
1764 static int dm_any_congested(void *congested_data, int bdi_bits)
1765 {
1766 	int r = bdi_bits;
1767 	struct mapped_device *md = congested_data;
1768 	struct dm_table *map;
1769 
1770 	if (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
1771 		if (dm_request_based(md)) {
1772 			/*
1773 			 * With request-based DM we only need to check the
1774 			 * top-level queue for congestion.
1775 			 */
1776 			r = md->queue->backing_dev_info->wb.state & bdi_bits;
1777 		} else {
1778 			map = dm_get_live_table_fast(md);
1779 			if (map)
1780 				r = dm_table_any_congested(map, bdi_bits);
1781 			dm_put_live_table_fast(md);
1782 		}
1783 	}
1784 
1785 	return r;
1786 }
1787 
1788 /*-----------------------------------------------------------------
1789  * An IDR is used to keep track of allocated minor numbers.
1790  *---------------------------------------------------------------*/
1791 static void free_minor(int minor)
1792 {
1793 	spin_lock(&_minor_lock);
1794 	idr_remove(&_minor_idr, minor);
1795 	spin_unlock(&_minor_lock);
1796 }
1797 
1798 /*
1799  * See if the device with a specific minor # is free.
1800  */
1801 static int specific_minor(int minor)
1802 {
1803 	int r;
1804 
1805 	if (minor >= (1 << MINORBITS))
1806 		return -EINVAL;
1807 
1808 	idr_preload(GFP_KERNEL);
1809 	spin_lock(&_minor_lock);
1810 
1811 	r = idr_alloc(&_minor_idr, MINOR_ALLOCED, minor, minor + 1, GFP_NOWAIT);
1812 
1813 	spin_unlock(&_minor_lock);
1814 	idr_preload_end();
1815 	if (r < 0)
1816 		return r == -ENOSPC ? -EBUSY : r;
1817 	return 0;
1818 }
1819 
1820 static int next_free_minor(int *minor)
1821 {
1822 	int r;
1823 
1824 	idr_preload(GFP_KERNEL);
1825 	spin_lock(&_minor_lock);
1826 
1827 	r = idr_alloc(&_minor_idr, MINOR_ALLOCED, 0, 1 << MINORBITS, GFP_NOWAIT);
1828 
1829 	spin_unlock(&_minor_lock);
1830 	idr_preload_end();
1831 	if (r < 0)
1832 		return r;
1833 	*minor = r;
1834 	return 0;
1835 }
1836 
1837 static const struct block_device_operations dm_blk_dops;
1838 static const struct dax_operations dm_dax_ops;
1839 
1840 static void dm_wq_work(struct work_struct *work);
1841 
1842 static void dm_init_normal_md_queue(struct mapped_device *md)
1843 {
1844 	/*
1845 	 * Initialize aspects of queue that aren't relevant for blk-mq
1846 	 */
1847 	md->queue->backing_dev_info->congested_fn = dm_any_congested;
1848 }
1849 
1850 static void cleanup_mapped_device(struct mapped_device *md)
1851 {
1852 	if (md->wq)
1853 		destroy_workqueue(md->wq);
1854 	bioset_exit(&md->bs);
1855 	bioset_exit(&md->io_bs);
1856 
1857 	if (md->dax_dev) {
1858 		kill_dax(md->dax_dev);
1859 		put_dax(md->dax_dev);
1860 		md->dax_dev = NULL;
1861 	}
1862 
1863 	if (md->disk) {
1864 		spin_lock(&_minor_lock);
1865 		md->disk->private_data = NULL;
1866 		spin_unlock(&_minor_lock);
1867 		del_gendisk(md->disk);
1868 		put_disk(md->disk);
1869 	}
1870 
1871 	if (md->queue)
1872 		blk_cleanup_queue(md->queue);
1873 
1874 	cleanup_srcu_struct(&md->io_barrier);
1875 
1876 	if (md->bdev) {
1877 		bdput(md->bdev);
1878 		md->bdev = NULL;
1879 	}
1880 
1881 	mutex_destroy(&md->suspend_lock);
1882 	mutex_destroy(&md->type_lock);
1883 	mutex_destroy(&md->table_devices_lock);
1884 
1885 	dm_mq_cleanup_mapped_device(md);
1886 }
1887 
1888 /*
1889  * Allocate and initialise a blank device with a given minor.
1890  */
1891 static struct mapped_device *alloc_dev(int minor)
1892 {
1893 	int r, numa_node_id = dm_get_numa_node();
1894 	struct dax_device *dax_dev = NULL;
1895 	struct mapped_device *md;
1896 	void *old_md;
1897 
1898 	md = kvzalloc_node(sizeof(*md), GFP_KERNEL, numa_node_id);
1899 	if (!md) {
1900 		DMWARN("unable to allocate device, out of memory.");
1901 		return NULL;
1902 	}
1903 
1904 	if (!try_module_get(THIS_MODULE))
1905 		goto bad_module_get;
1906 
1907 	/* get a minor number for the dev */
1908 	if (minor == DM_ANY_MINOR)
1909 		r = next_free_minor(&minor);
1910 	else
1911 		r = specific_minor(minor);
1912 	if (r < 0)
1913 		goto bad_minor;
1914 
1915 	r = init_srcu_struct(&md->io_barrier);
1916 	if (r < 0)
1917 		goto bad_io_barrier;
1918 
1919 	md->numa_node_id = numa_node_id;
1920 	md->init_tio_pdu = false;
1921 	md->type = DM_TYPE_NONE;
1922 	mutex_init(&md->suspend_lock);
1923 	mutex_init(&md->type_lock);
1924 	mutex_init(&md->table_devices_lock);
1925 	spin_lock_init(&md->deferred_lock);
1926 	atomic_set(&md->holders, 1);
1927 	atomic_set(&md->open_count, 0);
1928 	atomic_set(&md->event_nr, 0);
1929 	atomic_set(&md->uevent_seq, 0);
1930 	INIT_LIST_HEAD(&md->uevent_list);
1931 	INIT_LIST_HEAD(&md->table_devices);
1932 	spin_lock_init(&md->uevent_lock);
1933 
1934 	md->queue = blk_alloc_queue_node(GFP_KERNEL, numa_node_id);
1935 	if (!md->queue)
1936 		goto bad;
1937 	md->queue->queuedata = md;
1938 	md->queue->backing_dev_info->congested_data = md;
1939 
1940 	md->disk = alloc_disk_node(1, md->numa_node_id);
1941 	if (!md->disk)
1942 		goto bad;
1943 
1944 	init_waitqueue_head(&md->wait);
1945 	INIT_WORK(&md->work, dm_wq_work);
1946 	init_waitqueue_head(&md->eventq);
1947 	init_completion(&md->kobj_holder.completion);
1948 
1949 	md->disk->major = _major;
1950 	md->disk->first_minor = minor;
1951 	md->disk->fops = &dm_blk_dops;
1952 	md->disk->queue = md->queue;
1953 	md->disk->private_data = md;
1954 	sprintf(md->disk->disk_name, "dm-%d", minor);
1955 
1956 	if (IS_ENABLED(CONFIG_DAX_DRIVER)) {
1957 		dax_dev = alloc_dax(md, md->disk->disk_name, &dm_dax_ops);
1958 		if (!dax_dev)
1959 			goto bad;
1960 	}
1961 	md->dax_dev = dax_dev;
1962 
1963 	add_disk_no_queue_reg(md->disk);
1964 	format_dev_t(md->name, MKDEV(_major, minor));
1965 
1966 	md->wq = alloc_workqueue("kdmflush", WQ_MEM_RECLAIM, 0);
1967 	if (!md->wq)
1968 		goto bad;
1969 
1970 	md->bdev = bdget_disk(md->disk, 0);
1971 	if (!md->bdev)
1972 		goto bad;
1973 
1974 	dm_stats_init(&md->stats);
1975 
1976 	/* Populate the mapping, nobody knows we exist yet */
1977 	spin_lock(&_minor_lock);
1978 	old_md = idr_replace(&_minor_idr, md, minor);
1979 	spin_unlock(&_minor_lock);
1980 
1981 	BUG_ON(old_md != MINOR_ALLOCED);
1982 
1983 	return md;
1984 
1985 bad:
1986 	cleanup_mapped_device(md);
1987 bad_io_barrier:
1988 	free_minor(minor);
1989 bad_minor:
1990 	module_put(THIS_MODULE);
1991 bad_module_get:
1992 	kvfree(md);
1993 	return NULL;
1994 }
1995 
1996 static void unlock_fs(struct mapped_device *md);
1997 
1998 static void free_dev(struct mapped_device *md)
1999 {
2000 	int minor = MINOR(disk_devt(md->disk));
2001 
2002 	unlock_fs(md);
2003 
2004 	cleanup_mapped_device(md);
2005 
2006 	free_table_devices(&md->table_devices);
2007 	dm_stats_cleanup(&md->stats);
2008 	free_minor(minor);
2009 
2010 	module_put(THIS_MODULE);
2011 	kvfree(md);
2012 }
2013 
2014 static int __bind_mempools(struct mapped_device *md, struct dm_table *t)
2015 {
2016 	struct dm_md_mempools *p = dm_table_get_md_mempools(t);
2017 	int ret = 0;
2018 
2019 	if (dm_table_bio_based(t)) {
2020 		/*
2021 		 * The md may already have mempools that need changing.
2022 		 * If so, reload bioset because front_pad may have changed
2023 		 * because a different table was loaded.
2024 		 */
2025 		bioset_exit(&md->bs);
2026 		bioset_exit(&md->io_bs);
2027 
2028 	} else if (bioset_initialized(&md->bs)) {
2029 		/*
2030 		 * There's no need to reload with request-based dm
2031 		 * because the size of front_pad doesn't change.
2032 		 * Note for future: If you are to reload bioset,
2033 		 * prep-ed requests in the queue may refer
2034 		 * to bio from the old bioset, so you must walk
2035 		 * through the queue to unprep.
2036 		 */
2037 		goto out;
2038 	}
2039 
2040 	BUG_ON(!p ||
2041 	       bioset_initialized(&md->bs) ||
2042 	       bioset_initialized(&md->io_bs));
2043 
2044 	ret = bioset_init_from_src(&md->bs, &p->bs);
2045 	if (ret)
2046 		goto out;
2047 	ret = bioset_init_from_src(&md->io_bs, &p->io_bs);
2048 	if (ret)
2049 		bioset_exit(&md->bs);
2050 out:
2051 	/* mempool bind completed, no longer need any mempools in the table */
2052 	dm_table_free_md_mempools(t);
2053 	return ret;
2054 }
2055 
2056 /*
2057  * Bind a table to the device.
2058  */
2059 static void event_callback(void *context)
2060 {
2061 	unsigned long flags;
2062 	LIST_HEAD(uevents);
2063 	struct mapped_device *md = (struct mapped_device *) context;
2064 
2065 	spin_lock_irqsave(&md->uevent_lock, flags);
2066 	list_splice_init(&md->uevent_list, &uevents);
2067 	spin_unlock_irqrestore(&md->uevent_lock, flags);
2068 
2069 	dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj);
2070 
2071 	atomic_inc(&md->event_nr);
2072 	wake_up(&md->eventq);
2073 	dm_issue_global_event();
2074 }
2075 
2076 /*
2077  * Protected by md->suspend_lock obtained by dm_swap_table().
2078  */
2079 static void __set_size(struct mapped_device *md, sector_t size)
2080 {
2081 	lockdep_assert_held(&md->suspend_lock);
2082 
2083 	set_capacity(md->disk, size);
2084 
2085 	i_size_write(md->bdev->bd_inode, (loff_t)size << SECTOR_SHIFT);
2086 }
2087 
2088 /*
2089  * Returns old map, which caller must destroy.
2090  */
2091 static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t,
2092 			       struct queue_limits *limits)
2093 {
2094 	struct dm_table *old_map;
2095 	struct request_queue *q = md->queue;
2096 	bool request_based = dm_table_request_based(t);
2097 	sector_t size;
2098 	int ret;
2099 
2100 	lockdep_assert_held(&md->suspend_lock);
2101 
2102 	size = dm_table_get_size(t);
2103 
2104 	/*
2105 	 * Wipe any geometry if the size of the table changed.
2106 	 */
2107 	if (size != dm_get_size(md))
2108 		memset(&md->geometry, 0, sizeof(md->geometry));
2109 
2110 	__set_size(md, size);
2111 
2112 	dm_table_event_callback(t, event_callback, md);
2113 
2114 	/*
2115 	 * The queue hasn't been stopped yet, if the old table type wasn't
2116 	 * for request-based during suspension.  So stop it to prevent
2117 	 * I/O mapping before resume.
2118 	 * This must be done before setting the queue restrictions,
2119 	 * because request-based dm may be run just after the setting.
2120 	 */
2121 	if (request_based)
2122 		dm_stop_queue(q);
2123 
2124 	if (request_based || md->type == DM_TYPE_NVME_BIO_BASED) {
2125 		/*
2126 		 * Leverage the fact that request-based DM targets and
2127 		 * NVMe bio based targets are immutable singletons
2128 		 * - used to optimize both dm_request_fn and dm_mq_queue_rq;
2129 		 *   and __process_bio.
2130 		 */
2131 		md->immutable_target = dm_table_get_immutable_target(t);
2132 	}
2133 
2134 	ret = __bind_mempools(md, t);
2135 	if (ret) {
2136 		old_map = ERR_PTR(ret);
2137 		goto out;
2138 	}
2139 
2140 	old_map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2141 	rcu_assign_pointer(md->map, (void *)t);
2142 	md->immutable_target_type = dm_table_get_immutable_target_type(t);
2143 
2144 	dm_table_set_restrictions(t, q, limits);
2145 	if (old_map)
2146 		dm_sync_table(md);
2147 
2148 out:
2149 	return old_map;
2150 }
2151 
2152 /*
2153  * Returns unbound table for the caller to free.
2154  */
2155 static struct dm_table *__unbind(struct mapped_device *md)
2156 {
2157 	struct dm_table *map = rcu_dereference_protected(md->map, 1);
2158 
2159 	if (!map)
2160 		return NULL;
2161 
2162 	dm_table_event_callback(map, NULL, NULL);
2163 	RCU_INIT_POINTER(md->map, NULL);
2164 	dm_sync_table(md);
2165 
2166 	return map;
2167 }
2168 
2169 /*
2170  * Constructor for a new device.
2171  */
2172 int dm_create(int minor, struct mapped_device **result)
2173 {
2174 	int r;
2175 	struct mapped_device *md;
2176 
2177 	md = alloc_dev(minor);
2178 	if (!md)
2179 		return -ENXIO;
2180 
2181 	r = dm_sysfs_init(md);
2182 	if (r) {
2183 		free_dev(md);
2184 		return r;
2185 	}
2186 
2187 	*result = md;
2188 	return 0;
2189 }
2190 
2191 /*
2192  * Functions to manage md->type.
2193  * All are required to hold md->type_lock.
2194  */
2195 void dm_lock_md_type(struct mapped_device *md)
2196 {
2197 	mutex_lock(&md->type_lock);
2198 }
2199 
2200 void dm_unlock_md_type(struct mapped_device *md)
2201 {
2202 	mutex_unlock(&md->type_lock);
2203 }
2204 
2205 void dm_set_md_type(struct mapped_device *md, enum dm_queue_mode type)
2206 {
2207 	BUG_ON(!mutex_is_locked(&md->type_lock));
2208 	md->type = type;
2209 }
2210 
2211 enum dm_queue_mode dm_get_md_type(struct mapped_device *md)
2212 {
2213 	return md->type;
2214 }
2215 
2216 struct target_type *dm_get_immutable_target_type(struct mapped_device *md)
2217 {
2218 	return md->immutable_target_type;
2219 }
2220 
2221 /*
2222  * The queue_limits are only valid as long as you have a reference
2223  * count on 'md'.
2224  */
2225 struct queue_limits *dm_get_queue_limits(struct mapped_device *md)
2226 {
2227 	BUG_ON(!atomic_read(&md->holders));
2228 	return &md->queue->limits;
2229 }
2230 EXPORT_SYMBOL_GPL(dm_get_queue_limits);
2231 
2232 /*
2233  * Setup the DM device's queue based on md's type
2234  */
2235 int dm_setup_md_queue(struct mapped_device *md, struct dm_table *t)
2236 {
2237 	int r;
2238 	struct queue_limits limits;
2239 	enum dm_queue_mode type = dm_get_md_type(md);
2240 
2241 	switch (type) {
2242 	case DM_TYPE_REQUEST_BASED:
2243 		r = dm_mq_init_request_queue(md, t);
2244 		if (r) {
2245 			DMERR("Cannot initialize queue for request-based dm-mq mapped device");
2246 			return r;
2247 		}
2248 		break;
2249 	case DM_TYPE_BIO_BASED:
2250 	case DM_TYPE_DAX_BIO_BASED:
2251 	case DM_TYPE_NVME_BIO_BASED:
2252 		dm_init_normal_md_queue(md);
2253 		blk_queue_make_request(md->queue, dm_make_request);
2254 		break;
2255 	case DM_TYPE_NONE:
2256 		WARN_ON_ONCE(true);
2257 		break;
2258 	}
2259 
2260 	r = dm_calculate_queue_limits(t, &limits);
2261 	if (r) {
2262 		DMERR("Cannot calculate initial queue limits");
2263 		return r;
2264 	}
2265 	dm_table_set_restrictions(t, md->queue, &limits);
2266 	blk_register_queue(md->disk);
2267 
2268 	return 0;
2269 }
2270 
2271 struct mapped_device *dm_get_md(dev_t dev)
2272 {
2273 	struct mapped_device *md;
2274 	unsigned minor = MINOR(dev);
2275 
2276 	if (MAJOR(dev) != _major || minor >= (1 << MINORBITS))
2277 		return NULL;
2278 
2279 	spin_lock(&_minor_lock);
2280 
2281 	md = idr_find(&_minor_idr, minor);
2282 	if (!md || md == MINOR_ALLOCED || (MINOR(disk_devt(dm_disk(md))) != minor) ||
2283 	    test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) {
2284 		md = NULL;
2285 		goto out;
2286 	}
2287 	dm_get(md);
2288 out:
2289 	spin_unlock(&_minor_lock);
2290 
2291 	return md;
2292 }
2293 EXPORT_SYMBOL_GPL(dm_get_md);
2294 
2295 void *dm_get_mdptr(struct mapped_device *md)
2296 {
2297 	return md->interface_ptr;
2298 }
2299 
2300 void dm_set_mdptr(struct mapped_device *md, void *ptr)
2301 {
2302 	md->interface_ptr = ptr;
2303 }
2304 
2305 void dm_get(struct mapped_device *md)
2306 {
2307 	atomic_inc(&md->holders);
2308 	BUG_ON(test_bit(DMF_FREEING, &md->flags));
2309 }
2310 
2311 int dm_hold(struct mapped_device *md)
2312 {
2313 	spin_lock(&_minor_lock);
2314 	if (test_bit(DMF_FREEING, &md->flags)) {
2315 		spin_unlock(&_minor_lock);
2316 		return -EBUSY;
2317 	}
2318 	dm_get(md);
2319 	spin_unlock(&_minor_lock);
2320 	return 0;
2321 }
2322 EXPORT_SYMBOL_GPL(dm_hold);
2323 
2324 const char *dm_device_name(struct mapped_device *md)
2325 {
2326 	return md->name;
2327 }
2328 EXPORT_SYMBOL_GPL(dm_device_name);
2329 
2330 static void __dm_destroy(struct mapped_device *md, bool wait)
2331 {
2332 	struct dm_table *map;
2333 	int srcu_idx;
2334 
2335 	might_sleep();
2336 
2337 	spin_lock(&_minor_lock);
2338 	idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md))));
2339 	set_bit(DMF_FREEING, &md->flags);
2340 	spin_unlock(&_minor_lock);
2341 
2342 	blk_set_queue_dying(md->queue);
2343 
2344 	/*
2345 	 * Take suspend_lock so that presuspend and postsuspend methods
2346 	 * do not race with internal suspend.
2347 	 */
2348 	mutex_lock(&md->suspend_lock);
2349 	map = dm_get_live_table(md, &srcu_idx);
2350 	if (!dm_suspended_md(md)) {
2351 		dm_table_presuspend_targets(map);
2352 		dm_table_postsuspend_targets(map);
2353 	}
2354 	/* dm_put_live_table must be before msleep, otherwise deadlock is possible */
2355 	dm_put_live_table(md, srcu_idx);
2356 	mutex_unlock(&md->suspend_lock);
2357 
2358 	/*
2359 	 * Rare, but there may be I/O requests still going to complete,
2360 	 * for example.  Wait for all references to disappear.
2361 	 * No one should increment the reference count of the mapped_device,
2362 	 * after the mapped_device state becomes DMF_FREEING.
2363 	 */
2364 	if (wait)
2365 		while (atomic_read(&md->holders))
2366 			msleep(1);
2367 	else if (atomic_read(&md->holders))
2368 		DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)",
2369 		       dm_device_name(md), atomic_read(&md->holders));
2370 
2371 	dm_sysfs_exit(md);
2372 	dm_table_destroy(__unbind(md));
2373 	free_dev(md);
2374 }
2375 
2376 void dm_destroy(struct mapped_device *md)
2377 {
2378 	__dm_destroy(md, true);
2379 }
2380 
2381 void dm_destroy_immediate(struct mapped_device *md)
2382 {
2383 	__dm_destroy(md, false);
2384 }
2385 
2386 void dm_put(struct mapped_device *md)
2387 {
2388 	atomic_dec(&md->holders);
2389 }
2390 EXPORT_SYMBOL_GPL(dm_put);
2391 
2392 static int dm_wait_for_completion(struct mapped_device *md, long task_state)
2393 {
2394 	int r = 0;
2395 	DEFINE_WAIT(wait);
2396 
2397 	while (1) {
2398 		prepare_to_wait(&md->wait, &wait, task_state);
2399 
2400 		if (!md_in_flight(md))
2401 			break;
2402 
2403 		if (signal_pending_state(task_state, current)) {
2404 			r = -EINTR;
2405 			break;
2406 		}
2407 
2408 		io_schedule();
2409 	}
2410 	finish_wait(&md->wait, &wait);
2411 
2412 	return r;
2413 }
2414 
2415 /*
2416  * Process the deferred bios
2417  */
2418 static void dm_wq_work(struct work_struct *work)
2419 {
2420 	struct mapped_device *md = container_of(work, struct mapped_device,
2421 						work);
2422 	struct bio *c;
2423 	int srcu_idx;
2424 	struct dm_table *map;
2425 
2426 	map = dm_get_live_table(md, &srcu_idx);
2427 
2428 	while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
2429 		spin_lock_irq(&md->deferred_lock);
2430 		c = bio_list_pop(&md->deferred);
2431 		spin_unlock_irq(&md->deferred_lock);
2432 
2433 		if (!c)
2434 			break;
2435 
2436 		if (dm_request_based(md))
2437 			(void) generic_make_request(c);
2438 		else
2439 			(void) dm_process_bio(md, map, c);
2440 	}
2441 
2442 	dm_put_live_table(md, srcu_idx);
2443 }
2444 
2445 static void dm_queue_flush(struct mapped_device *md)
2446 {
2447 	clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2448 	smp_mb__after_atomic();
2449 	queue_work(md->wq, &md->work);
2450 }
2451 
2452 /*
2453  * Swap in a new table, returning the old one for the caller to destroy.
2454  */
2455 struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table)
2456 {
2457 	struct dm_table *live_map = NULL, *map = ERR_PTR(-EINVAL);
2458 	struct queue_limits limits;
2459 	int r;
2460 
2461 	mutex_lock(&md->suspend_lock);
2462 
2463 	/* device must be suspended */
2464 	if (!dm_suspended_md(md))
2465 		goto out;
2466 
2467 	/*
2468 	 * If the new table has no data devices, retain the existing limits.
2469 	 * This helps multipath with queue_if_no_path if all paths disappear,
2470 	 * then new I/O is queued based on these limits, and then some paths
2471 	 * reappear.
2472 	 */
2473 	if (dm_table_has_no_data_devices(table)) {
2474 		live_map = dm_get_live_table_fast(md);
2475 		if (live_map)
2476 			limits = md->queue->limits;
2477 		dm_put_live_table_fast(md);
2478 	}
2479 
2480 	if (!live_map) {
2481 		r = dm_calculate_queue_limits(table, &limits);
2482 		if (r) {
2483 			map = ERR_PTR(r);
2484 			goto out;
2485 		}
2486 	}
2487 
2488 	map = __bind(md, table, &limits);
2489 	dm_issue_global_event();
2490 
2491 out:
2492 	mutex_unlock(&md->suspend_lock);
2493 	return map;
2494 }
2495 
2496 /*
2497  * Functions to lock and unlock any filesystem running on the
2498  * device.
2499  */
2500 static int lock_fs(struct mapped_device *md)
2501 {
2502 	int r;
2503 
2504 	WARN_ON(md->frozen_sb);
2505 
2506 	md->frozen_sb = freeze_bdev(md->bdev);
2507 	if (IS_ERR(md->frozen_sb)) {
2508 		r = PTR_ERR(md->frozen_sb);
2509 		md->frozen_sb = NULL;
2510 		return r;
2511 	}
2512 
2513 	set_bit(DMF_FROZEN, &md->flags);
2514 
2515 	return 0;
2516 }
2517 
2518 static void unlock_fs(struct mapped_device *md)
2519 {
2520 	if (!test_bit(DMF_FROZEN, &md->flags))
2521 		return;
2522 
2523 	thaw_bdev(md->bdev, md->frozen_sb);
2524 	md->frozen_sb = NULL;
2525 	clear_bit(DMF_FROZEN, &md->flags);
2526 }
2527 
2528 /*
2529  * @suspend_flags: DM_SUSPEND_LOCKFS_FLAG and/or DM_SUSPEND_NOFLUSH_FLAG
2530  * @task_state: e.g. TASK_INTERRUPTIBLE or TASK_UNINTERRUPTIBLE
2531  * @dmf_suspended_flag: DMF_SUSPENDED or DMF_SUSPENDED_INTERNALLY
2532  *
2533  * If __dm_suspend returns 0, the device is completely quiescent
2534  * now. There is no request-processing activity. All new requests
2535  * are being added to md->deferred list.
2536  */
2537 static int __dm_suspend(struct mapped_device *md, struct dm_table *map,
2538 			unsigned suspend_flags, long task_state,
2539 			int dmf_suspended_flag)
2540 {
2541 	bool do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG;
2542 	bool noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG;
2543 	int r;
2544 
2545 	lockdep_assert_held(&md->suspend_lock);
2546 
2547 	/*
2548 	 * DMF_NOFLUSH_SUSPENDING must be set before presuspend.
2549 	 * This flag is cleared before dm_suspend returns.
2550 	 */
2551 	if (noflush)
2552 		set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2553 	else
2554 		pr_debug("%s: suspending with flush\n", dm_device_name(md));
2555 
2556 	/*
2557 	 * This gets reverted if there's an error later and the targets
2558 	 * provide the .presuspend_undo hook.
2559 	 */
2560 	dm_table_presuspend_targets(map);
2561 
2562 	/*
2563 	 * Flush I/O to the device.
2564 	 * Any I/O submitted after lock_fs() may not be flushed.
2565 	 * noflush takes precedence over do_lockfs.
2566 	 * (lock_fs() flushes I/Os and waits for them to complete.)
2567 	 */
2568 	if (!noflush && do_lockfs) {
2569 		r = lock_fs(md);
2570 		if (r) {
2571 			dm_table_presuspend_undo_targets(map);
2572 			return r;
2573 		}
2574 	}
2575 
2576 	/*
2577 	 * Here we must make sure that no processes are submitting requests
2578 	 * to target drivers i.e. no one may be executing
2579 	 * __split_and_process_bio. This is called from dm_request and
2580 	 * dm_wq_work.
2581 	 *
2582 	 * To get all processes out of __split_and_process_bio in dm_request,
2583 	 * we take the write lock. To prevent any process from reentering
2584 	 * __split_and_process_bio from dm_request and quiesce the thread
2585 	 * (dm_wq_work), we set BMF_BLOCK_IO_FOR_SUSPEND and call
2586 	 * flush_workqueue(md->wq).
2587 	 */
2588 	set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2589 	if (map)
2590 		synchronize_srcu(&md->io_barrier);
2591 
2592 	/*
2593 	 * Stop md->queue before flushing md->wq in case request-based
2594 	 * dm defers requests to md->wq from md->queue.
2595 	 */
2596 	if (dm_request_based(md))
2597 		dm_stop_queue(md->queue);
2598 
2599 	flush_workqueue(md->wq);
2600 
2601 	/*
2602 	 * At this point no more requests are entering target request routines.
2603 	 * We call dm_wait_for_completion to wait for all existing requests
2604 	 * to finish.
2605 	 */
2606 	r = dm_wait_for_completion(md, task_state);
2607 	if (!r)
2608 		set_bit(dmf_suspended_flag, &md->flags);
2609 
2610 	if (noflush)
2611 		clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2612 	if (map)
2613 		synchronize_srcu(&md->io_barrier);
2614 
2615 	/* were we interrupted ? */
2616 	if (r < 0) {
2617 		dm_queue_flush(md);
2618 
2619 		if (dm_request_based(md))
2620 			dm_start_queue(md->queue);
2621 
2622 		unlock_fs(md);
2623 		dm_table_presuspend_undo_targets(map);
2624 		/* pushback list is already flushed, so skip flush */
2625 	}
2626 
2627 	return r;
2628 }
2629 
2630 /*
2631  * We need to be able to change a mapping table under a mounted
2632  * filesystem.  For example we might want to move some data in
2633  * the background.  Before the table can be swapped with
2634  * dm_bind_table, dm_suspend must be called to flush any in
2635  * flight bios and ensure that any further io gets deferred.
2636  */
2637 /*
2638  * Suspend mechanism in request-based dm.
2639  *
2640  * 1. Flush all I/Os by lock_fs() if needed.
2641  * 2. Stop dispatching any I/O by stopping the request_queue.
2642  * 3. Wait for all in-flight I/Os to be completed or requeued.
2643  *
2644  * To abort suspend, start the request_queue.
2645  */
2646 int dm_suspend(struct mapped_device *md, unsigned suspend_flags)
2647 {
2648 	struct dm_table *map = NULL;
2649 	int r = 0;
2650 
2651 retry:
2652 	mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
2653 
2654 	if (dm_suspended_md(md)) {
2655 		r = -EINVAL;
2656 		goto out_unlock;
2657 	}
2658 
2659 	if (dm_suspended_internally_md(md)) {
2660 		/* already internally suspended, wait for internal resume */
2661 		mutex_unlock(&md->suspend_lock);
2662 		r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
2663 		if (r)
2664 			return r;
2665 		goto retry;
2666 	}
2667 
2668 	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2669 
2670 	r = __dm_suspend(md, map, suspend_flags, TASK_INTERRUPTIBLE, DMF_SUSPENDED);
2671 	if (r)
2672 		goto out_unlock;
2673 
2674 	dm_table_postsuspend_targets(map);
2675 
2676 out_unlock:
2677 	mutex_unlock(&md->suspend_lock);
2678 	return r;
2679 }
2680 
2681 static int __dm_resume(struct mapped_device *md, struct dm_table *map)
2682 {
2683 	if (map) {
2684 		int r = dm_table_resume_targets(map);
2685 		if (r)
2686 			return r;
2687 	}
2688 
2689 	dm_queue_flush(md);
2690 
2691 	/*
2692 	 * Flushing deferred I/Os must be done after targets are resumed
2693 	 * so that mapping of targets can work correctly.
2694 	 * Request-based dm is queueing the deferred I/Os in its request_queue.
2695 	 */
2696 	if (dm_request_based(md))
2697 		dm_start_queue(md->queue);
2698 
2699 	unlock_fs(md);
2700 
2701 	return 0;
2702 }
2703 
2704 int dm_resume(struct mapped_device *md)
2705 {
2706 	int r;
2707 	struct dm_table *map = NULL;
2708 
2709 retry:
2710 	r = -EINVAL;
2711 	mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
2712 
2713 	if (!dm_suspended_md(md))
2714 		goto out;
2715 
2716 	if (dm_suspended_internally_md(md)) {
2717 		/* already internally suspended, wait for internal resume */
2718 		mutex_unlock(&md->suspend_lock);
2719 		r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
2720 		if (r)
2721 			return r;
2722 		goto retry;
2723 	}
2724 
2725 	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2726 	if (!map || !dm_table_get_size(map))
2727 		goto out;
2728 
2729 	r = __dm_resume(md, map);
2730 	if (r)
2731 		goto out;
2732 
2733 	clear_bit(DMF_SUSPENDED, &md->flags);
2734 out:
2735 	mutex_unlock(&md->suspend_lock);
2736 
2737 	return r;
2738 }
2739 
2740 /*
2741  * Internal suspend/resume works like userspace-driven suspend. It waits
2742  * until all bios finish and prevents issuing new bios to the target drivers.
2743  * It may be used only from the kernel.
2744  */
2745 
2746 static void __dm_internal_suspend(struct mapped_device *md, unsigned suspend_flags)
2747 {
2748 	struct dm_table *map = NULL;
2749 
2750 	lockdep_assert_held(&md->suspend_lock);
2751 
2752 	if (md->internal_suspend_count++)
2753 		return; /* nested internal suspend */
2754 
2755 	if (dm_suspended_md(md)) {
2756 		set_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2757 		return; /* nest suspend */
2758 	}
2759 
2760 	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2761 
2762 	/*
2763 	 * Using TASK_UNINTERRUPTIBLE because only NOFLUSH internal suspend is
2764 	 * supported.  Properly supporting a TASK_INTERRUPTIBLE internal suspend
2765 	 * would require changing .presuspend to return an error -- avoid this
2766 	 * until there is a need for more elaborate variants of internal suspend.
2767 	 */
2768 	(void) __dm_suspend(md, map, suspend_flags, TASK_UNINTERRUPTIBLE,
2769 			    DMF_SUSPENDED_INTERNALLY);
2770 
2771 	dm_table_postsuspend_targets(map);
2772 }
2773 
2774 static void __dm_internal_resume(struct mapped_device *md)
2775 {
2776 	BUG_ON(!md->internal_suspend_count);
2777 
2778 	if (--md->internal_suspend_count)
2779 		return; /* resume from nested internal suspend */
2780 
2781 	if (dm_suspended_md(md))
2782 		goto done; /* resume from nested suspend */
2783 
2784 	/*
2785 	 * NOTE: existing callers don't need to call dm_table_resume_targets
2786 	 * (which may fail -- so best to avoid it for now by passing NULL map)
2787 	 */
2788 	(void) __dm_resume(md, NULL);
2789 
2790 done:
2791 	clear_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2792 	smp_mb__after_atomic();
2793 	wake_up_bit(&md->flags, DMF_SUSPENDED_INTERNALLY);
2794 }
2795 
2796 void dm_internal_suspend_noflush(struct mapped_device *md)
2797 {
2798 	mutex_lock(&md->suspend_lock);
2799 	__dm_internal_suspend(md, DM_SUSPEND_NOFLUSH_FLAG);
2800 	mutex_unlock(&md->suspend_lock);
2801 }
2802 EXPORT_SYMBOL_GPL(dm_internal_suspend_noflush);
2803 
2804 void dm_internal_resume(struct mapped_device *md)
2805 {
2806 	mutex_lock(&md->suspend_lock);
2807 	__dm_internal_resume(md);
2808 	mutex_unlock(&md->suspend_lock);
2809 }
2810 EXPORT_SYMBOL_GPL(dm_internal_resume);
2811 
2812 /*
2813  * Fast variants of internal suspend/resume hold md->suspend_lock,
2814  * which prevents interaction with userspace-driven suspend.
2815  */
2816 
2817 void dm_internal_suspend_fast(struct mapped_device *md)
2818 {
2819 	mutex_lock(&md->suspend_lock);
2820 	if (dm_suspended_md(md) || dm_suspended_internally_md(md))
2821 		return;
2822 
2823 	set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2824 	synchronize_srcu(&md->io_barrier);
2825 	flush_workqueue(md->wq);
2826 	dm_wait_for_completion(md, TASK_UNINTERRUPTIBLE);
2827 }
2828 EXPORT_SYMBOL_GPL(dm_internal_suspend_fast);
2829 
2830 void dm_internal_resume_fast(struct mapped_device *md)
2831 {
2832 	if (dm_suspended_md(md) || dm_suspended_internally_md(md))
2833 		goto done;
2834 
2835 	dm_queue_flush(md);
2836 
2837 done:
2838 	mutex_unlock(&md->suspend_lock);
2839 }
2840 EXPORT_SYMBOL_GPL(dm_internal_resume_fast);
2841 
2842 /*-----------------------------------------------------------------
2843  * Event notification.
2844  *---------------------------------------------------------------*/
2845 int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action,
2846 		       unsigned cookie)
2847 {
2848 	char udev_cookie[DM_COOKIE_LENGTH];
2849 	char *envp[] = { udev_cookie, NULL };
2850 
2851 	if (!cookie)
2852 		return kobject_uevent(&disk_to_dev(md->disk)->kobj, action);
2853 	else {
2854 		snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u",
2855 			 DM_COOKIE_ENV_VAR_NAME, cookie);
2856 		return kobject_uevent_env(&disk_to_dev(md->disk)->kobj,
2857 					  action, envp);
2858 	}
2859 }
2860 
2861 uint32_t dm_next_uevent_seq(struct mapped_device *md)
2862 {
2863 	return atomic_add_return(1, &md->uevent_seq);
2864 }
2865 
2866 uint32_t dm_get_event_nr(struct mapped_device *md)
2867 {
2868 	return atomic_read(&md->event_nr);
2869 }
2870 
2871 int dm_wait_event(struct mapped_device *md, int event_nr)
2872 {
2873 	return wait_event_interruptible(md->eventq,
2874 			(event_nr != atomic_read(&md->event_nr)));
2875 }
2876 
2877 void dm_uevent_add(struct mapped_device *md, struct list_head *elist)
2878 {
2879 	unsigned long flags;
2880 
2881 	spin_lock_irqsave(&md->uevent_lock, flags);
2882 	list_add(elist, &md->uevent_list);
2883 	spin_unlock_irqrestore(&md->uevent_lock, flags);
2884 }
2885 
2886 /*
2887  * The gendisk is only valid as long as you have a reference
2888  * count on 'md'.
2889  */
2890 struct gendisk *dm_disk(struct mapped_device *md)
2891 {
2892 	return md->disk;
2893 }
2894 EXPORT_SYMBOL_GPL(dm_disk);
2895 
2896 struct kobject *dm_kobject(struct mapped_device *md)
2897 {
2898 	return &md->kobj_holder.kobj;
2899 }
2900 
2901 struct mapped_device *dm_get_from_kobject(struct kobject *kobj)
2902 {
2903 	struct mapped_device *md;
2904 
2905 	md = container_of(kobj, struct mapped_device, kobj_holder.kobj);
2906 
2907 	spin_lock(&_minor_lock);
2908 	if (test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) {
2909 		md = NULL;
2910 		goto out;
2911 	}
2912 	dm_get(md);
2913 out:
2914 	spin_unlock(&_minor_lock);
2915 
2916 	return md;
2917 }
2918 
2919 int dm_suspended_md(struct mapped_device *md)
2920 {
2921 	return test_bit(DMF_SUSPENDED, &md->flags);
2922 }
2923 
2924 int dm_suspended_internally_md(struct mapped_device *md)
2925 {
2926 	return test_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2927 }
2928 
2929 int dm_test_deferred_remove_flag(struct mapped_device *md)
2930 {
2931 	return test_bit(DMF_DEFERRED_REMOVE, &md->flags);
2932 }
2933 
2934 int dm_suspended(struct dm_target *ti)
2935 {
2936 	return dm_suspended_md(dm_table_get_md(ti->table));
2937 }
2938 EXPORT_SYMBOL_GPL(dm_suspended);
2939 
2940 int dm_noflush_suspending(struct dm_target *ti)
2941 {
2942 	return __noflush_suspending(dm_table_get_md(ti->table));
2943 }
2944 EXPORT_SYMBOL_GPL(dm_noflush_suspending);
2945 
2946 struct dm_md_mempools *dm_alloc_md_mempools(struct mapped_device *md, enum dm_queue_mode type,
2947 					    unsigned integrity, unsigned per_io_data_size,
2948 					    unsigned min_pool_size)
2949 {
2950 	struct dm_md_mempools *pools = kzalloc_node(sizeof(*pools), GFP_KERNEL, md->numa_node_id);
2951 	unsigned int pool_size = 0;
2952 	unsigned int front_pad, io_front_pad;
2953 	int ret;
2954 
2955 	if (!pools)
2956 		return NULL;
2957 
2958 	switch (type) {
2959 	case DM_TYPE_BIO_BASED:
2960 	case DM_TYPE_DAX_BIO_BASED:
2961 	case DM_TYPE_NVME_BIO_BASED:
2962 		pool_size = max(dm_get_reserved_bio_based_ios(), min_pool_size);
2963 		front_pad = roundup(per_io_data_size, __alignof__(struct dm_target_io)) + offsetof(struct dm_target_io, clone);
2964 		io_front_pad = roundup(front_pad,  __alignof__(struct dm_io)) + offsetof(struct dm_io, tio);
2965 		ret = bioset_init(&pools->io_bs, pool_size, io_front_pad, 0);
2966 		if (ret)
2967 			goto out;
2968 		if (integrity && bioset_integrity_create(&pools->io_bs, pool_size))
2969 			goto out;
2970 		break;
2971 	case DM_TYPE_REQUEST_BASED:
2972 		pool_size = max(dm_get_reserved_rq_based_ios(), min_pool_size);
2973 		front_pad = offsetof(struct dm_rq_clone_bio_info, clone);
2974 		/* per_io_data_size is used for blk-mq pdu at queue allocation */
2975 		break;
2976 	default:
2977 		BUG();
2978 	}
2979 
2980 	ret = bioset_init(&pools->bs, pool_size, front_pad, 0);
2981 	if (ret)
2982 		goto out;
2983 
2984 	if (integrity && bioset_integrity_create(&pools->bs, pool_size))
2985 		goto out;
2986 
2987 	return pools;
2988 
2989 out:
2990 	dm_free_md_mempools(pools);
2991 
2992 	return NULL;
2993 }
2994 
2995 void dm_free_md_mempools(struct dm_md_mempools *pools)
2996 {
2997 	if (!pools)
2998 		return;
2999 
3000 	bioset_exit(&pools->bs);
3001 	bioset_exit(&pools->io_bs);
3002 
3003 	kfree(pools);
3004 }
3005 
3006 struct dm_pr {
3007 	u64	old_key;
3008 	u64	new_key;
3009 	u32	flags;
3010 	bool	fail_early;
3011 };
3012 
3013 static int dm_call_pr(struct block_device *bdev, iterate_devices_callout_fn fn,
3014 		      void *data)
3015 {
3016 	struct mapped_device *md = bdev->bd_disk->private_data;
3017 	struct dm_table *table;
3018 	struct dm_target *ti;
3019 	int ret = -ENOTTY, srcu_idx;
3020 
3021 	table = dm_get_live_table(md, &srcu_idx);
3022 	if (!table || !dm_table_get_size(table))
3023 		goto out;
3024 
3025 	/* We only support devices that have a single target */
3026 	if (dm_table_get_num_targets(table) != 1)
3027 		goto out;
3028 	ti = dm_table_get_target(table, 0);
3029 
3030 	ret = -EINVAL;
3031 	if (!ti->type->iterate_devices)
3032 		goto out;
3033 
3034 	ret = ti->type->iterate_devices(ti, fn, data);
3035 out:
3036 	dm_put_live_table(md, srcu_idx);
3037 	return ret;
3038 }
3039 
3040 /*
3041  * For register / unregister we need to manually call out to every path.
3042  */
3043 static int __dm_pr_register(struct dm_target *ti, struct dm_dev *dev,
3044 			    sector_t start, sector_t len, void *data)
3045 {
3046 	struct dm_pr *pr = data;
3047 	const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
3048 
3049 	if (!ops || !ops->pr_register)
3050 		return -EOPNOTSUPP;
3051 	return ops->pr_register(dev->bdev, pr->old_key, pr->new_key, pr->flags);
3052 }
3053 
3054 static int dm_pr_register(struct block_device *bdev, u64 old_key, u64 new_key,
3055 			  u32 flags)
3056 {
3057 	struct dm_pr pr = {
3058 		.old_key	= old_key,
3059 		.new_key	= new_key,
3060 		.flags		= flags,
3061 		.fail_early	= true,
3062 	};
3063 	int ret;
3064 
3065 	ret = dm_call_pr(bdev, __dm_pr_register, &pr);
3066 	if (ret && new_key) {
3067 		/* unregister all paths if we failed to register any path */
3068 		pr.old_key = new_key;
3069 		pr.new_key = 0;
3070 		pr.flags = 0;
3071 		pr.fail_early = false;
3072 		dm_call_pr(bdev, __dm_pr_register, &pr);
3073 	}
3074 
3075 	return ret;
3076 }
3077 
3078 static int dm_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type,
3079 			 u32 flags)
3080 {
3081 	struct mapped_device *md = bdev->bd_disk->private_data;
3082 	const struct pr_ops *ops;
3083 	int r, srcu_idx;
3084 
3085 	r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
3086 	if (r < 0)
3087 		goto out;
3088 
3089 	ops = bdev->bd_disk->fops->pr_ops;
3090 	if (ops && ops->pr_reserve)
3091 		r = ops->pr_reserve(bdev, key, type, flags);
3092 	else
3093 		r = -EOPNOTSUPP;
3094 out:
3095 	dm_unprepare_ioctl(md, srcu_idx);
3096 	return r;
3097 }
3098 
3099 static int dm_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
3100 {
3101 	struct mapped_device *md = bdev->bd_disk->private_data;
3102 	const struct pr_ops *ops;
3103 	int r, srcu_idx;
3104 
3105 	r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
3106 	if (r < 0)
3107 		goto out;
3108 
3109 	ops = bdev->bd_disk->fops->pr_ops;
3110 	if (ops && ops->pr_release)
3111 		r = ops->pr_release(bdev, key, type);
3112 	else
3113 		r = -EOPNOTSUPP;
3114 out:
3115 	dm_unprepare_ioctl(md, srcu_idx);
3116 	return r;
3117 }
3118 
3119 static int dm_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key,
3120 			 enum pr_type type, bool abort)
3121 {
3122 	struct mapped_device *md = bdev->bd_disk->private_data;
3123 	const struct pr_ops *ops;
3124 	int r, srcu_idx;
3125 
3126 	r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
3127 	if (r < 0)
3128 		goto out;
3129 
3130 	ops = bdev->bd_disk->fops->pr_ops;
3131 	if (ops && ops->pr_preempt)
3132 		r = ops->pr_preempt(bdev, old_key, new_key, type, abort);
3133 	else
3134 		r = -EOPNOTSUPP;
3135 out:
3136 	dm_unprepare_ioctl(md, srcu_idx);
3137 	return r;
3138 }
3139 
3140 static int dm_pr_clear(struct block_device *bdev, u64 key)
3141 {
3142 	struct mapped_device *md = bdev->bd_disk->private_data;
3143 	const struct pr_ops *ops;
3144 	int r, srcu_idx;
3145 
3146 	r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
3147 	if (r < 0)
3148 		goto out;
3149 
3150 	ops = bdev->bd_disk->fops->pr_ops;
3151 	if (ops && ops->pr_clear)
3152 		r = ops->pr_clear(bdev, key);
3153 	else
3154 		r = -EOPNOTSUPP;
3155 out:
3156 	dm_unprepare_ioctl(md, srcu_idx);
3157 	return r;
3158 }
3159 
3160 static const struct pr_ops dm_pr_ops = {
3161 	.pr_register	= dm_pr_register,
3162 	.pr_reserve	= dm_pr_reserve,
3163 	.pr_release	= dm_pr_release,
3164 	.pr_preempt	= dm_pr_preempt,
3165 	.pr_clear	= dm_pr_clear,
3166 };
3167 
3168 static const struct block_device_operations dm_blk_dops = {
3169 	.open = dm_blk_open,
3170 	.release = dm_blk_close,
3171 	.ioctl = dm_blk_ioctl,
3172 	.getgeo = dm_blk_getgeo,
3173 	.report_zones = dm_blk_report_zones,
3174 	.pr_ops = &dm_pr_ops,
3175 	.owner = THIS_MODULE
3176 };
3177 
3178 static const struct dax_operations dm_dax_ops = {
3179 	.direct_access = dm_dax_direct_access,
3180 	.copy_from_iter = dm_dax_copy_from_iter,
3181 	.copy_to_iter = dm_dax_copy_to_iter,
3182 };
3183 
3184 /*
3185  * module hooks
3186  */
3187 module_init(dm_init);
3188 module_exit(dm_exit);
3189 
3190 module_param(major, uint, 0);
3191 MODULE_PARM_DESC(major, "The major number of the device mapper");
3192 
3193 module_param(reserved_bio_based_ios, uint, S_IRUGO | S_IWUSR);
3194 MODULE_PARM_DESC(reserved_bio_based_ios, "Reserved IOs in bio-based mempools");
3195 
3196 module_param(dm_numa_node, int, S_IRUGO | S_IWUSR);
3197 MODULE_PARM_DESC(dm_numa_node, "NUMA node for DM device memory allocations");
3198 
3199 MODULE_DESCRIPTION(DM_NAME " driver");
3200 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
3201 MODULE_LICENSE("GPL");
3202