xref: /linux/drivers/md/dm.c (revision 2dbf708448c836754d25fe6108c5bfe1f5697c95)
1 /*
2  * Copyright (C) 2001, 2002 Sistina Software (UK) Limited.
3  * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
4  *
5  * This file is released under the GPL.
6  */
7 
8 #include "dm.h"
9 #include "dm-uevent.h"
10 
11 #include <linux/init.h>
12 #include <linux/module.h>
13 #include <linux/mutex.h>
14 #include <linux/moduleparam.h>
15 #include <linux/blkpg.h>
16 #include <linux/bio.h>
17 #include <linux/mempool.h>
18 #include <linux/slab.h>
19 #include <linux/idr.h>
20 #include <linux/hdreg.h>
21 #include <linux/delay.h>
22 
23 #include <trace/events/block.h>
24 
25 #define DM_MSG_PREFIX "core"
26 
27 #ifdef CONFIG_PRINTK
28 /*
29  * ratelimit state to be used in DMXXX_LIMIT().
30  */
31 DEFINE_RATELIMIT_STATE(dm_ratelimit_state,
32 		       DEFAULT_RATELIMIT_INTERVAL,
33 		       DEFAULT_RATELIMIT_BURST);
34 EXPORT_SYMBOL(dm_ratelimit_state);
35 #endif
36 
37 /*
38  * Cookies are numeric values sent with CHANGE and REMOVE
39  * uevents while resuming, removing or renaming the device.
40  */
41 #define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE"
42 #define DM_COOKIE_LENGTH 24
43 
44 static const char *_name = DM_NAME;
45 
46 static unsigned int major = 0;
47 static unsigned int _major = 0;
48 
49 static DEFINE_IDR(_minor_idr);
50 
51 static DEFINE_SPINLOCK(_minor_lock);
52 /*
53  * For bio-based dm.
54  * One of these is allocated per bio.
55  */
56 struct dm_io {
57 	struct mapped_device *md;
58 	int error;
59 	atomic_t io_count;
60 	struct bio *bio;
61 	unsigned long start_time;
62 	spinlock_t endio_lock;
63 };
64 
65 /*
66  * For bio-based dm.
67  * One of these is allocated per target within a bio.  Hopefully
68  * this will be simplified out one day.
69  */
70 struct dm_target_io {
71 	struct dm_io *io;
72 	struct dm_target *ti;
73 	union map_info info;
74 };
75 
76 /*
77  * For request-based dm.
78  * One of these is allocated per request.
79  */
80 struct dm_rq_target_io {
81 	struct mapped_device *md;
82 	struct dm_target *ti;
83 	struct request *orig, clone;
84 	int error;
85 	union map_info info;
86 };
87 
88 /*
89  * For request-based dm.
90  * One of these is allocated per bio.
91  */
92 struct dm_rq_clone_bio_info {
93 	struct bio *orig;
94 	struct dm_rq_target_io *tio;
95 };
96 
97 union map_info *dm_get_mapinfo(struct bio *bio)
98 {
99 	if (bio && bio->bi_private)
100 		return &((struct dm_target_io *)bio->bi_private)->info;
101 	return NULL;
102 }
103 
104 union map_info *dm_get_rq_mapinfo(struct request *rq)
105 {
106 	if (rq && rq->end_io_data)
107 		return &((struct dm_rq_target_io *)rq->end_io_data)->info;
108 	return NULL;
109 }
110 EXPORT_SYMBOL_GPL(dm_get_rq_mapinfo);
111 
112 #define MINOR_ALLOCED ((void *)-1)
113 
114 /*
115  * Bits for the md->flags field.
116  */
117 #define DMF_BLOCK_IO_FOR_SUSPEND 0
118 #define DMF_SUSPENDED 1
119 #define DMF_FROZEN 2
120 #define DMF_FREEING 3
121 #define DMF_DELETING 4
122 #define DMF_NOFLUSH_SUSPENDING 5
123 #define DMF_MERGE_IS_OPTIONAL 6
124 
125 /*
126  * Work processed by per-device workqueue.
127  */
128 struct mapped_device {
129 	struct rw_semaphore io_lock;
130 	struct mutex suspend_lock;
131 	rwlock_t map_lock;
132 	atomic_t holders;
133 	atomic_t open_count;
134 
135 	unsigned long flags;
136 
137 	struct request_queue *queue;
138 	unsigned type;
139 	/* Protect queue and type against concurrent access. */
140 	struct mutex type_lock;
141 
142 	struct target_type *immutable_target_type;
143 
144 	struct gendisk *disk;
145 	char name[16];
146 
147 	void *interface_ptr;
148 
149 	/*
150 	 * A list of ios that arrived while we were suspended.
151 	 */
152 	atomic_t pending[2];
153 	wait_queue_head_t wait;
154 	struct work_struct work;
155 	struct bio_list deferred;
156 	spinlock_t deferred_lock;
157 
158 	/*
159 	 * Processing queue (flush)
160 	 */
161 	struct workqueue_struct *wq;
162 
163 	/*
164 	 * The current mapping.
165 	 */
166 	struct dm_table *map;
167 
168 	/*
169 	 * io objects are allocated from here.
170 	 */
171 	mempool_t *io_pool;
172 	mempool_t *tio_pool;
173 
174 	struct bio_set *bs;
175 
176 	/*
177 	 * Event handling.
178 	 */
179 	atomic_t event_nr;
180 	wait_queue_head_t eventq;
181 	atomic_t uevent_seq;
182 	struct list_head uevent_list;
183 	spinlock_t uevent_lock; /* Protect access to uevent_list */
184 
185 	/*
186 	 * freeze/thaw support require holding onto a super block
187 	 */
188 	struct super_block *frozen_sb;
189 	struct block_device *bdev;
190 
191 	/* forced geometry settings */
192 	struct hd_geometry geometry;
193 
194 	/* sysfs handle */
195 	struct kobject kobj;
196 
197 	/* zero-length flush that will be cloned and submitted to targets */
198 	struct bio flush_bio;
199 };
200 
201 /*
202  * For mempools pre-allocation at the table loading time.
203  */
204 struct dm_md_mempools {
205 	mempool_t *io_pool;
206 	mempool_t *tio_pool;
207 	struct bio_set *bs;
208 };
209 
210 #define MIN_IOS 256
211 static struct kmem_cache *_io_cache;
212 static struct kmem_cache *_tio_cache;
213 static struct kmem_cache *_rq_tio_cache;
214 static struct kmem_cache *_rq_bio_info_cache;
215 
216 static int __init local_init(void)
217 {
218 	int r = -ENOMEM;
219 
220 	/* allocate a slab for the dm_ios */
221 	_io_cache = KMEM_CACHE(dm_io, 0);
222 	if (!_io_cache)
223 		return r;
224 
225 	/* allocate a slab for the target ios */
226 	_tio_cache = KMEM_CACHE(dm_target_io, 0);
227 	if (!_tio_cache)
228 		goto out_free_io_cache;
229 
230 	_rq_tio_cache = KMEM_CACHE(dm_rq_target_io, 0);
231 	if (!_rq_tio_cache)
232 		goto out_free_tio_cache;
233 
234 	_rq_bio_info_cache = KMEM_CACHE(dm_rq_clone_bio_info, 0);
235 	if (!_rq_bio_info_cache)
236 		goto out_free_rq_tio_cache;
237 
238 	r = dm_uevent_init();
239 	if (r)
240 		goto out_free_rq_bio_info_cache;
241 
242 	_major = major;
243 	r = register_blkdev(_major, _name);
244 	if (r < 0)
245 		goto out_uevent_exit;
246 
247 	if (!_major)
248 		_major = r;
249 
250 	return 0;
251 
252 out_uevent_exit:
253 	dm_uevent_exit();
254 out_free_rq_bio_info_cache:
255 	kmem_cache_destroy(_rq_bio_info_cache);
256 out_free_rq_tio_cache:
257 	kmem_cache_destroy(_rq_tio_cache);
258 out_free_tio_cache:
259 	kmem_cache_destroy(_tio_cache);
260 out_free_io_cache:
261 	kmem_cache_destroy(_io_cache);
262 
263 	return r;
264 }
265 
266 static void local_exit(void)
267 {
268 	kmem_cache_destroy(_rq_bio_info_cache);
269 	kmem_cache_destroy(_rq_tio_cache);
270 	kmem_cache_destroy(_tio_cache);
271 	kmem_cache_destroy(_io_cache);
272 	unregister_blkdev(_major, _name);
273 	dm_uevent_exit();
274 
275 	_major = 0;
276 
277 	DMINFO("cleaned up");
278 }
279 
280 static int (*_inits[])(void) __initdata = {
281 	local_init,
282 	dm_target_init,
283 	dm_linear_init,
284 	dm_stripe_init,
285 	dm_io_init,
286 	dm_kcopyd_init,
287 	dm_interface_init,
288 };
289 
290 static void (*_exits[])(void) = {
291 	local_exit,
292 	dm_target_exit,
293 	dm_linear_exit,
294 	dm_stripe_exit,
295 	dm_io_exit,
296 	dm_kcopyd_exit,
297 	dm_interface_exit,
298 };
299 
300 static int __init dm_init(void)
301 {
302 	const int count = ARRAY_SIZE(_inits);
303 
304 	int r, i;
305 
306 	for (i = 0; i < count; i++) {
307 		r = _inits[i]();
308 		if (r)
309 			goto bad;
310 	}
311 
312 	return 0;
313 
314       bad:
315 	while (i--)
316 		_exits[i]();
317 
318 	return r;
319 }
320 
321 static void __exit dm_exit(void)
322 {
323 	int i = ARRAY_SIZE(_exits);
324 
325 	while (i--)
326 		_exits[i]();
327 
328 	/*
329 	 * Should be empty by this point.
330 	 */
331 	idr_remove_all(&_minor_idr);
332 	idr_destroy(&_minor_idr);
333 }
334 
335 /*
336  * Block device functions
337  */
338 int dm_deleting_md(struct mapped_device *md)
339 {
340 	return test_bit(DMF_DELETING, &md->flags);
341 }
342 
343 static int dm_blk_open(struct block_device *bdev, fmode_t mode)
344 {
345 	struct mapped_device *md;
346 
347 	spin_lock(&_minor_lock);
348 
349 	md = bdev->bd_disk->private_data;
350 	if (!md)
351 		goto out;
352 
353 	if (test_bit(DMF_FREEING, &md->flags) ||
354 	    dm_deleting_md(md)) {
355 		md = NULL;
356 		goto out;
357 	}
358 
359 	dm_get(md);
360 	atomic_inc(&md->open_count);
361 
362 out:
363 	spin_unlock(&_minor_lock);
364 
365 	return md ? 0 : -ENXIO;
366 }
367 
368 static int dm_blk_close(struct gendisk *disk, fmode_t mode)
369 {
370 	struct mapped_device *md = disk->private_data;
371 
372 	spin_lock(&_minor_lock);
373 
374 	atomic_dec(&md->open_count);
375 	dm_put(md);
376 
377 	spin_unlock(&_minor_lock);
378 
379 	return 0;
380 }
381 
382 int dm_open_count(struct mapped_device *md)
383 {
384 	return atomic_read(&md->open_count);
385 }
386 
387 /*
388  * Guarantees nothing is using the device before it's deleted.
389  */
390 int dm_lock_for_deletion(struct mapped_device *md)
391 {
392 	int r = 0;
393 
394 	spin_lock(&_minor_lock);
395 
396 	if (dm_open_count(md))
397 		r = -EBUSY;
398 	else
399 		set_bit(DMF_DELETING, &md->flags);
400 
401 	spin_unlock(&_minor_lock);
402 
403 	return r;
404 }
405 
406 static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
407 {
408 	struct mapped_device *md = bdev->bd_disk->private_data;
409 
410 	return dm_get_geometry(md, geo);
411 }
412 
413 static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode,
414 			unsigned int cmd, unsigned long arg)
415 {
416 	struct mapped_device *md = bdev->bd_disk->private_data;
417 	struct dm_table *map = dm_get_live_table(md);
418 	struct dm_target *tgt;
419 	int r = -ENOTTY;
420 
421 	if (!map || !dm_table_get_size(map))
422 		goto out;
423 
424 	/* We only support devices that have a single target */
425 	if (dm_table_get_num_targets(map) != 1)
426 		goto out;
427 
428 	tgt = dm_table_get_target(map, 0);
429 
430 	if (dm_suspended_md(md)) {
431 		r = -EAGAIN;
432 		goto out;
433 	}
434 
435 	if (tgt->type->ioctl)
436 		r = tgt->type->ioctl(tgt, cmd, arg);
437 
438 out:
439 	dm_table_put(map);
440 
441 	return r;
442 }
443 
444 static struct dm_io *alloc_io(struct mapped_device *md)
445 {
446 	return mempool_alloc(md->io_pool, GFP_NOIO);
447 }
448 
449 static void free_io(struct mapped_device *md, struct dm_io *io)
450 {
451 	mempool_free(io, md->io_pool);
452 }
453 
454 static void free_tio(struct mapped_device *md, struct dm_target_io *tio)
455 {
456 	mempool_free(tio, md->tio_pool);
457 }
458 
459 static struct dm_rq_target_io *alloc_rq_tio(struct mapped_device *md,
460 					    gfp_t gfp_mask)
461 {
462 	return mempool_alloc(md->tio_pool, gfp_mask);
463 }
464 
465 static void free_rq_tio(struct dm_rq_target_io *tio)
466 {
467 	mempool_free(tio, tio->md->tio_pool);
468 }
469 
470 static struct dm_rq_clone_bio_info *alloc_bio_info(struct mapped_device *md)
471 {
472 	return mempool_alloc(md->io_pool, GFP_ATOMIC);
473 }
474 
475 static void free_bio_info(struct dm_rq_clone_bio_info *info)
476 {
477 	mempool_free(info, info->tio->md->io_pool);
478 }
479 
480 static int md_in_flight(struct mapped_device *md)
481 {
482 	return atomic_read(&md->pending[READ]) +
483 	       atomic_read(&md->pending[WRITE]);
484 }
485 
486 static void start_io_acct(struct dm_io *io)
487 {
488 	struct mapped_device *md = io->md;
489 	int cpu;
490 	int rw = bio_data_dir(io->bio);
491 
492 	io->start_time = jiffies;
493 
494 	cpu = part_stat_lock();
495 	part_round_stats(cpu, &dm_disk(md)->part0);
496 	part_stat_unlock();
497 	atomic_set(&dm_disk(md)->part0.in_flight[rw],
498 		atomic_inc_return(&md->pending[rw]));
499 }
500 
501 static void end_io_acct(struct dm_io *io)
502 {
503 	struct mapped_device *md = io->md;
504 	struct bio *bio = io->bio;
505 	unsigned long duration = jiffies - io->start_time;
506 	int pending, cpu;
507 	int rw = bio_data_dir(bio);
508 
509 	cpu = part_stat_lock();
510 	part_round_stats(cpu, &dm_disk(md)->part0);
511 	part_stat_add(cpu, &dm_disk(md)->part0, ticks[rw], duration);
512 	part_stat_unlock();
513 
514 	/*
515 	 * After this is decremented the bio must not be touched if it is
516 	 * a flush.
517 	 */
518 	pending = atomic_dec_return(&md->pending[rw]);
519 	atomic_set(&dm_disk(md)->part0.in_flight[rw], pending);
520 	pending += atomic_read(&md->pending[rw^0x1]);
521 
522 	/* nudge anyone waiting on suspend queue */
523 	if (!pending)
524 		wake_up(&md->wait);
525 }
526 
527 /*
528  * Add the bio to the list of deferred io.
529  */
530 static void queue_io(struct mapped_device *md, struct bio *bio)
531 {
532 	unsigned long flags;
533 
534 	spin_lock_irqsave(&md->deferred_lock, flags);
535 	bio_list_add(&md->deferred, bio);
536 	spin_unlock_irqrestore(&md->deferred_lock, flags);
537 	queue_work(md->wq, &md->work);
538 }
539 
540 /*
541  * Everyone (including functions in this file), should use this
542  * function to access the md->map field, and make sure they call
543  * dm_table_put() when finished.
544  */
545 struct dm_table *dm_get_live_table(struct mapped_device *md)
546 {
547 	struct dm_table *t;
548 	unsigned long flags;
549 
550 	read_lock_irqsave(&md->map_lock, flags);
551 	t = md->map;
552 	if (t)
553 		dm_table_get(t);
554 	read_unlock_irqrestore(&md->map_lock, flags);
555 
556 	return t;
557 }
558 
559 /*
560  * Get the geometry associated with a dm device
561  */
562 int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo)
563 {
564 	*geo = md->geometry;
565 
566 	return 0;
567 }
568 
569 /*
570  * Set the geometry of a device.
571  */
572 int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo)
573 {
574 	sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors;
575 
576 	if (geo->start > sz) {
577 		DMWARN("Start sector is beyond the geometry limits.");
578 		return -EINVAL;
579 	}
580 
581 	md->geometry = *geo;
582 
583 	return 0;
584 }
585 
586 /*-----------------------------------------------------------------
587  * CRUD START:
588  *   A more elegant soln is in the works that uses the queue
589  *   merge fn, unfortunately there are a couple of changes to
590  *   the block layer that I want to make for this.  So in the
591  *   interests of getting something for people to use I give
592  *   you this clearly demarcated crap.
593  *---------------------------------------------------------------*/
594 
595 static int __noflush_suspending(struct mapped_device *md)
596 {
597 	return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
598 }
599 
600 /*
601  * Decrements the number of outstanding ios that a bio has been
602  * cloned into, completing the original io if necc.
603  */
604 static void dec_pending(struct dm_io *io, int error)
605 {
606 	unsigned long flags;
607 	int io_error;
608 	struct bio *bio;
609 	struct mapped_device *md = io->md;
610 
611 	/* Push-back supersedes any I/O errors */
612 	if (unlikely(error)) {
613 		spin_lock_irqsave(&io->endio_lock, flags);
614 		if (!(io->error > 0 && __noflush_suspending(md)))
615 			io->error = error;
616 		spin_unlock_irqrestore(&io->endio_lock, flags);
617 	}
618 
619 	if (atomic_dec_and_test(&io->io_count)) {
620 		if (io->error == DM_ENDIO_REQUEUE) {
621 			/*
622 			 * Target requested pushing back the I/O.
623 			 */
624 			spin_lock_irqsave(&md->deferred_lock, flags);
625 			if (__noflush_suspending(md))
626 				bio_list_add_head(&md->deferred, io->bio);
627 			else
628 				/* noflush suspend was interrupted. */
629 				io->error = -EIO;
630 			spin_unlock_irqrestore(&md->deferred_lock, flags);
631 		}
632 
633 		io_error = io->error;
634 		bio = io->bio;
635 		end_io_acct(io);
636 		free_io(md, io);
637 
638 		if (io_error == DM_ENDIO_REQUEUE)
639 			return;
640 
641 		if ((bio->bi_rw & REQ_FLUSH) && bio->bi_size) {
642 			/*
643 			 * Preflush done for flush with data, reissue
644 			 * without REQ_FLUSH.
645 			 */
646 			bio->bi_rw &= ~REQ_FLUSH;
647 			queue_io(md, bio);
648 		} else {
649 			/* done with normal IO or empty flush */
650 			trace_block_bio_complete(md->queue, bio, io_error);
651 			bio_endio(bio, io_error);
652 		}
653 	}
654 }
655 
656 static void clone_endio(struct bio *bio, int error)
657 {
658 	int r = 0;
659 	struct dm_target_io *tio = bio->bi_private;
660 	struct dm_io *io = tio->io;
661 	struct mapped_device *md = tio->io->md;
662 	dm_endio_fn endio = tio->ti->type->end_io;
663 
664 	if (!bio_flagged(bio, BIO_UPTODATE) && !error)
665 		error = -EIO;
666 
667 	if (endio) {
668 		r = endio(tio->ti, bio, error, &tio->info);
669 		if (r < 0 || r == DM_ENDIO_REQUEUE)
670 			/*
671 			 * error and requeue request are handled
672 			 * in dec_pending().
673 			 */
674 			error = r;
675 		else if (r == DM_ENDIO_INCOMPLETE)
676 			/* The target will handle the io */
677 			return;
678 		else if (r) {
679 			DMWARN("unimplemented target endio return value: %d", r);
680 			BUG();
681 		}
682 	}
683 
684 	/*
685 	 * Store md for cleanup instead of tio which is about to get freed.
686 	 */
687 	bio->bi_private = md->bs;
688 
689 	free_tio(md, tio);
690 	bio_put(bio);
691 	dec_pending(io, error);
692 }
693 
694 /*
695  * Partial completion handling for request-based dm
696  */
697 static void end_clone_bio(struct bio *clone, int error)
698 {
699 	struct dm_rq_clone_bio_info *info = clone->bi_private;
700 	struct dm_rq_target_io *tio = info->tio;
701 	struct bio *bio = info->orig;
702 	unsigned int nr_bytes = info->orig->bi_size;
703 
704 	bio_put(clone);
705 
706 	if (tio->error)
707 		/*
708 		 * An error has already been detected on the request.
709 		 * Once error occurred, just let clone->end_io() handle
710 		 * the remainder.
711 		 */
712 		return;
713 	else if (error) {
714 		/*
715 		 * Don't notice the error to the upper layer yet.
716 		 * The error handling decision is made by the target driver,
717 		 * when the request is completed.
718 		 */
719 		tio->error = error;
720 		return;
721 	}
722 
723 	/*
724 	 * I/O for the bio successfully completed.
725 	 * Notice the data completion to the upper layer.
726 	 */
727 
728 	/*
729 	 * bios are processed from the head of the list.
730 	 * So the completing bio should always be rq->bio.
731 	 * If it's not, something wrong is happening.
732 	 */
733 	if (tio->orig->bio != bio)
734 		DMERR("bio completion is going in the middle of the request");
735 
736 	/*
737 	 * Update the original request.
738 	 * Do not use blk_end_request() here, because it may complete
739 	 * the original request before the clone, and break the ordering.
740 	 */
741 	blk_update_request(tio->orig, 0, nr_bytes);
742 }
743 
744 /*
745  * Don't touch any member of the md after calling this function because
746  * the md may be freed in dm_put() at the end of this function.
747  * Or do dm_get() before calling this function and dm_put() later.
748  */
749 static void rq_completed(struct mapped_device *md, int rw, int run_queue)
750 {
751 	atomic_dec(&md->pending[rw]);
752 
753 	/* nudge anyone waiting on suspend queue */
754 	if (!md_in_flight(md))
755 		wake_up(&md->wait);
756 
757 	if (run_queue)
758 		blk_run_queue(md->queue);
759 
760 	/*
761 	 * dm_put() must be at the end of this function. See the comment above
762 	 */
763 	dm_put(md);
764 }
765 
766 static void free_rq_clone(struct request *clone)
767 {
768 	struct dm_rq_target_io *tio = clone->end_io_data;
769 
770 	blk_rq_unprep_clone(clone);
771 	free_rq_tio(tio);
772 }
773 
774 /*
775  * Complete the clone and the original request.
776  * Must be called without queue lock.
777  */
778 static void dm_end_request(struct request *clone, int error)
779 {
780 	int rw = rq_data_dir(clone);
781 	struct dm_rq_target_io *tio = clone->end_io_data;
782 	struct mapped_device *md = tio->md;
783 	struct request *rq = tio->orig;
784 
785 	if (rq->cmd_type == REQ_TYPE_BLOCK_PC) {
786 		rq->errors = clone->errors;
787 		rq->resid_len = clone->resid_len;
788 
789 		if (rq->sense)
790 			/*
791 			 * We are using the sense buffer of the original
792 			 * request.
793 			 * So setting the length of the sense data is enough.
794 			 */
795 			rq->sense_len = clone->sense_len;
796 	}
797 
798 	free_rq_clone(clone);
799 	blk_end_request_all(rq, error);
800 	rq_completed(md, rw, true);
801 }
802 
803 static void dm_unprep_request(struct request *rq)
804 {
805 	struct request *clone = rq->special;
806 
807 	rq->special = NULL;
808 	rq->cmd_flags &= ~REQ_DONTPREP;
809 
810 	free_rq_clone(clone);
811 }
812 
813 /*
814  * Requeue the original request of a clone.
815  */
816 void dm_requeue_unmapped_request(struct request *clone)
817 {
818 	int rw = rq_data_dir(clone);
819 	struct dm_rq_target_io *tio = clone->end_io_data;
820 	struct mapped_device *md = tio->md;
821 	struct request *rq = tio->orig;
822 	struct request_queue *q = rq->q;
823 	unsigned long flags;
824 
825 	dm_unprep_request(rq);
826 
827 	spin_lock_irqsave(q->queue_lock, flags);
828 	blk_requeue_request(q, rq);
829 	spin_unlock_irqrestore(q->queue_lock, flags);
830 
831 	rq_completed(md, rw, 0);
832 }
833 EXPORT_SYMBOL_GPL(dm_requeue_unmapped_request);
834 
835 static void __stop_queue(struct request_queue *q)
836 {
837 	blk_stop_queue(q);
838 }
839 
840 static void stop_queue(struct request_queue *q)
841 {
842 	unsigned long flags;
843 
844 	spin_lock_irqsave(q->queue_lock, flags);
845 	__stop_queue(q);
846 	spin_unlock_irqrestore(q->queue_lock, flags);
847 }
848 
849 static void __start_queue(struct request_queue *q)
850 {
851 	if (blk_queue_stopped(q))
852 		blk_start_queue(q);
853 }
854 
855 static void start_queue(struct request_queue *q)
856 {
857 	unsigned long flags;
858 
859 	spin_lock_irqsave(q->queue_lock, flags);
860 	__start_queue(q);
861 	spin_unlock_irqrestore(q->queue_lock, flags);
862 }
863 
864 static void dm_done(struct request *clone, int error, bool mapped)
865 {
866 	int r = error;
867 	struct dm_rq_target_io *tio = clone->end_io_data;
868 	dm_request_endio_fn rq_end_io = tio->ti->type->rq_end_io;
869 
870 	if (mapped && rq_end_io)
871 		r = rq_end_io(tio->ti, clone, error, &tio->info);
872 
873 	if (r <= 0)
874 		/* The target wants to complete the I/O */
875 		dm_end_request(clone, r);
876 	else if (r == DM_ENDIO_INCOMPLETE)
877 		/* The target will handle the I/O */
878 		return;
879 	else if (r == DM_ENDIO_REQUEUE)
880 		/* The target wants to requeue the I/O */
881 		dm_requeue_unmapped_request(clone);
882 	else {
883 		DMWARN("unimplemented target endio return value: %d", r);
884 		BUG();
885 	}
886 }
887 
888 /*
889  * Request completion handler for request-based dm
890  */
891 static void dm_softirq_done(struct request *rq)
892 {
893 	bool mapped = true;
894 	struct request *clone = rq->completion_data;
895 	struct dm_rq_target_io *tio = clone->end_io_data;
896 
897 	if (rq->cmd_flags & REQ_FAILED)
898 		mapped = false;
899 
900 	dm_done(clone, tio->error, mapped);
901 }
902 
903 /*
904  * Complete the clone and the original request with the error status
905  * through softirq context.
906  */
907 static void dm_complete_request(struct request *clone, int error)
908 {
909 	struct dm_rq_target_io *tio = clone->end_io_data;
910 	struct request *rq = tio->orig;
911 
912 	tio->error = error;
913 	rq->completion_data = clone;
914 	blk_complete_request(rq);
915 }
916 
917 /*
918  * Complete the not-mapped clone and the original request with the error status
919  * through softirq context.
920  * Target's rq_end_io() function isn't called.
921  * This may be used when the target's map_rq() function fails.
922  */
923 void dm_kill_unmapped_request(struct request *clone, int error)
924 {
925 	struct dm_rq_target_io *tio = clone->end_io_data;
926 	struct request *rq = tio->orig;
927 
928 	rq->cmd_flags |= REQ_FAILED;
929 	dm_complete_request(clone, error);
930 }
931 EXPORT_SYMBOL_GPL(dm_kill_unmapped_request);
932 
933 /*
934  * Called with the queue lock held
935  */
936 static void end_clone_request(struct request *clone, int error)
937 {
938 	/*
939 	 * For just cleaning up the information of the queue in which
940 	 * the clone was dispatched.
941 	 * The clone is *NOT* freed actually here because it is alloced from
942 	 * dm own mempool and REQ_ALLOCED isn't set in clone->cmd_flags.
943 	 */
944 	__blk_put_request(clone->q, clone);
945 
946 	/*
947 	 * Actual request completion is done in a softirq context which doesn't
948 	 * hold the queue lock.  Otherwise, deadlock could occur because:
949 	 *     - another request may be submitted by the upper level driver
950 	 *       of the stacking during the completion
951 	 *     - the submission which requires queue lock may be done
952 	 *       against this queue
953 	 */
954 	dm_complete_request(clone, error);
955 }
956 
957 /*
958  * Return maximum size of I/O possible at the supplied sector up to the current
959  * target boundary.
960  */
961 static sector_t max_io_len_target_boundary(sector_t sector, struct dm_target *ti)
962 {
963 	sector_t target_offset = dm_target_offset(ti, sector);
964 
965 	return ti->len - target_offset;
966 }
967 
968 static sector_t max_io_len(sector_t sector, struct dm_target *ti)
969 {
970 	sector_t len = max_io_len_target_boundary(sector, ti);
971 
972 	/*
973 	 * Does the target need to split even further ?
974 	 */
975 	if (ti->split_io) {
976 		sector_t boundary;
977 		sector_t offset = dm_target_offset(ti, sector);
978 		boundary = ((offset + ti->split_io) & ~(ti->split_io - 1))
979 			   - offset;
980 		if (len > boundary)
981 			len = boundary;
982 	}
983 
984 	return len;
985 }
986 
987 static void __map_bio(struct dm_target *ti, struct bio *clone,
988 		      struct dm_target_io *tio)
989 {
990 	int r;
991 	sector_t sector;
992 	struct mapped_device *md;
993 
994 	clone->bi_end_io = clone_endio;
995 	clone->bi_private = tio;
996 
997 	/*
998 	 * Map the clone.  If r == 0 we don't need to do
999 	 * anything, the target has assumed ownership of
1000 	 * this io.
1001 	 */
1002 	atomic_inc(&tio->io->io_count);
1003 	sector = clone->bi_sector;
1004 	r = ti->type->map(ti, clone, &tio->info);
1005 	if (r == DM_MAPIO_REMAPPED) {
1006 		/* the bio has been remapped so dispatch it */
1007 
1008 		trace_block_bio_remap(bdev_get_queue(clone->bi_bdev), clone,
1009 				      tio->io->bio->bi_bdev->bd_dev, sector);
1010 
1011 		generic_make_request(clone);
1012 	} else if (r < 0 || r == DM_MAPIO_REQUEUE) {
1013 		/* error the io and bail out, or requeue it if needed */
1014 		md = tio->io->md;
1015 		dec_pending(tio->io, r);
1016 		/*
1017 		 * Store bio_set for cleanup.
1018 		 */
1019 		clone->bi_end_io = NULL;
1020 		clone->bi_private = md->bs;
1021 		bio_put(clone);
1022 		free_tio(md, tio);
1023 	} else if (r) {
1024 		DMWARN("unimplemented target map return value: %d", r);
1025 		BUG();
1026 	}
1027 }
1028 
1029 struct clone_info {
1030 	struct mapped_device *md;
1031 	struct dm_table *map;
1032 	struct bio *bio;
1033 	struct dm_io *io;
1034 	sector_t sector;
1035 	sector_t sector_count;
1036 	unsigned short idx;
1037 };
1038 
1039 static void dm_bio_destructor(struct bio *bio)
1040 {
1041 	struct bio_set *bs = bio->bi_private;
1042 
1043 	bio_free(bio, bs);
1044 }
1045 
1046 /*
1047  * Creates a little bio that just does part of a bvec.
1048  */
1049 static struct bio *split_bvec(struct bio *bio, sector_t sector,
1050 			      unsigned short idx, unsigned int offset,
1051 			      unsigned int len, struct bio_set *bs)
1052 {
1053 	struct bio *clone;
1054 	struct bio_vec *bv = bio->bi_io_vec + idx;
1055 
1056 	clone = bio_alloc_bioset(GFP_NOIO, 1, bs);
1057 	clone->bi_destructor = dm_bio_destructor;
1058 	*clone->bi_io_vec = *bv;
1059 
1060 	clone->bi_sector = sector;
1061 	clone->bi_bdev = bio->bi_bdev;
1062 	clone->bi_rw = bio->bi_rw;
1063 	clone->bi_vcnt = 1;
1064 	clone->bi_size = to_bytes(len);
1065 	clone->bi_io_vec->bv_offset = offset;
1066 	clone->bi_io_vec->bv_len = clone->bi_size;
1067 	clone->bi_flags |= 1 << BIO_CLONED;
1068 
1069 	if (bio_integrity(bio)) {
1070 		bio_integrity_clone(clone, bio, GFP_NOIO, bs);
1071 		bio_integrity_trim(clone,
1072 				   bio_sector_offset(bio, idx, offset), len);
1073 	}
1074 
1075 	return clone;
1076 }
1077 
1078 /*
1079  * Creates a bio that consists of range of complete bvecs.
1080  */
1081 static struct bio *clone_bio(struct bio *bio, sector_t sector,
1082 			     unsigned short idx, unsigned short bv_count,
1083 			     unsigned int len, struct bio_set *bs)
1084 {
1085 	struct bio *clone;
1086 
1087 	clone = bio_alloc_bioset(GFP_NOIO, bio->bi_max_vecs, bs);
1088 	__bio_clone(clone, bio);
1089 	clone->bi_destructor = dm_bio_destructor;
1090 	clone->bi_sector = sector;
1091 	clone->bi_idx = idx;
1092 	clone->bi_vcnt = idx + bv_count;
1093 	clone->bi_size = to_bytes(len);
1094 	clone->bi_flags &= ~(1 << BIO_SEG_VALID);
1095 
1096 	if (bio_integrity(bio)) {
1097 		bio_integrity_clone(clone, bio, GFP_NOIO, bs);
1098 
1099 		if (idx != bio->bi_idx || clone->bi_size < bio->bi_size)
1100 			bio_integrity_trim(clone,
1101 					   bio_sector_offset(bio, idx, 0), len);
1102 	}
1103 
1104 	return clone;
1105 }
1106 
1107 static struct dm_target_io *alloc_tio(struct clone_info *ci,
1108 				      struct dm_target *ti)
1109 {
1110 	struct dm_target_io *tio = mempool_alloc(ci->md->tio_pool, GFP_NOIO);
1111 
1112 	tio->io = ci->io;
1113 	tio->ti = ti;
1114 	memset(&tio->info, 0, sizeof(tio->info));
1115 
1116 	return tio;
1117 }
1118 
1119 static void __issue_target_request(struct clone_info *ci, struct dm_target *ti,
1120 				   unsigned request_nr, sector_t len)
1121 {
1122 	struct dm_target_io *tio = alloc_tio(ci, ti);
1123 	struct bio *clone;
1124 
1125 	tio->info.target_request_nr = request_nr;
1126 
1127 	/*
1128 	 * Discard requests require the bio's inline iovecs be initialized.
1129 	 * ci->bio->bi_max_vecs is BIO_INLINE_VECS anyway, for both flush
1130 	 * and discard, so no need for concern about wasted bvec allocations.
1131 	 */
1132 	clone = bio_alloc_bioset(GFP_NOIO, ci->bio->bi_max_vecs, ci->md->bs);
1133 	__bio_clone(clone, ci->bio);
1134 	clone->bi_destructor = dm_bio_destructor;
1135 	if (len) {
1136 		clone->bi_sector = ci->sector;
1137 		clone->bi_size = to_bytes(len);
1138 	}
1139 
1140 	__map_bio(ti, clone, tio);
1141 }
1142 
1143 static void __issue_target_requests(struct clone_info *ci, struct dm_target *ti,
1144 				    unsigned num_requests, sector_t len)
1145 {
1146 	unsigned request_nr;
1147 
1148 	for (request_nr = 0; request_nr < num_requests; request_nr++)
1149 		__issue_target_request(ci, ti, request_nr, len);
1150 }
1151 
1152 static int __clone_and_map_empty_flush(struct clone_info *ci)
1153 {
1154 	unsigned target_nr = 0;
1155 	struct dm_target *ti;
1156 
1157 	BUG_ON(bio_has_data(ci->bio));
1158 	while ((ti = dm_table_get_target(ci->map, target_nr++)))
1159 		__issue_target_requests(ci, ti, ti->num_flush_requests, 0);
1160 
1161 	return 0;
1162 }
1163 
1164 /*
1165  * Perform all io with a single clone.
1166  */
1167 static void __clone_and_map_simple(struct clone_info *ci, struct dm_target *ti)
1168 {
1169 	struct bio *clone, *bio = ci->bio;
1170 	struct dm_target_io *tio;
1171 
1172 	tio = alloc_tio(ci, ti);
1173 	clone = clone_bio(bio, ci->sector, ci->idx,
1174 			  bio->bi_vcnt - ci->idx, ci->sector_count,
1175 			  ci->md->bs);
1176 	__map_bio(ti, clone, tio);
1177 	ci->sector_count = 0;
1178 }
1179 
1180 static int __clone_and_map_discard(struct clone_info *ci)
1181 {
1182 	struct dm_target *ti;
1183 	sector_t len;
1184 
1185 	do {
1186 		ti = dm_table_find_target(ci->map, ci->sector);
1187 		if (!dm_target_is_valid(ti))
1188 			return -EIO;
1189 
1190 		/*
1191 		 * Even though the device advertised discard support,
1192 		 * that does not mean every target supports it, and
1193 		 * reconfiguration might also have changed that since the
1194 		 * check was performed.
1195 		 */
1196 		if (!ti->num_discard_requests)
1197 			return -EOPNOTSUPP;
1198 
1199 		len = min(ci->sector_count, max_io_len_target_boundary(ci->sector, ti));
1200 
1201 		__issue_target_requests(ci, ti, ti->num_discard_requests, len);
1202 
1203 		ci->sector += len;
1204 	} while (ci->sector_count -= len);
1205 
1206 	return 0;
1207 }
1208 
1209 static int __clone_and_map(struct clone_info *ci)
1210 {
1211 	struct bio *clone, *bio = ci->bio;
1212 	struct dm_target *ti;
1213 	sector_t len = 0, max;
1214 	struct dm_target_io *tio;
1215 
1216 	if (unlikely(bio->bi_rw & REQ_DISCARD))
1217 		return __clone_and_map_discard(ci);
1218 
1219 	ti = dm_table_find_target(ci->map, ci->sector);
1220 	if (!dm_target_is_valid(ti))
1221 		return -EIO;
1222 
1223 	max = max_io_len(ci->sector, ti);
1224 
1225 	if (ci->sector_count <= max) {
1226 		/*
1227 		 * Optimise for the simple case where we can do all of
1228 		 * the remaining io with a single clone.
1229 		 */
1230 		__clone_and_map_simple(ci, ti);
1231 
1232 	} else if (to_sector(bio->bi_io_vec[ci->idx].bv_len) <= max) {
1233 		/*
1234 		 * There are some bvecs that don't span targets.
1235 		 * Do as many of these as possible.
1236 		 */
1237 		int i;
1238 		sector_t remaining = max;
1239 		sector_t bv_len;
1240 
1241 		for (i = ci->idx; remaining && (i < bio->bi_vcnt); i++) {
1242 			bv_len = to_sector(bio->bi_io_vec[i].bv_len);
1243 
1244 			if (bv_len > remaining)
1245 				break;
1246 
1247 			remaining -= bv_len;
1248 			len += bv_len;
1249 		}
1250 
1251 		tio = alloc_tio(ci, ti);
1252 		clone = clone_bio(bio, ci->sector, ci->idx, i - ci->idx, len,
1253 				  ci->md->bs);
1254 		__map_bio(ti, clone, tio);
1255 
1256 		ci->sector += len;
1257 		ci->sector_count -= len;
1258 		ci->idx = i;
1259 
1260 	} else {
1261 		/*
1262 		 * Handle a bvec that must be split between two or more targets.
1263 		 */
1264 		struct bio_vec *bv = bio->bi_io_vec + ci->idx;
1265 		sector_t remaining = to_sector(bv->bv_len);
1266 		unsigned int offset = 0;
1267 
1268 		do {
1269 			if (offset) {
1270 				ti = dm_table_find_target(ci->map, ci->sector);
1271 				if (!dm_target_is_valid(ti))
1272 					return -EIO;
1273 
1274 				max = max_io_len(ci->sector, ti);
1275 			}
1276 
1277 			len = min(remaining, max);
1278 
1279 			tio = alloc_tio(ci, ti);
1280 			clone = split_bvec(bio, ci->sector, ci->idx,
1281 					   bv->bv_offset + offset, len,
1282 					   ci->md->bs);
1283 
1284 			__map_bio(ti, clone, tio);
1285 
1286 			ci->sector += len;
1287 			ci->sector_count -= len;
1288 			offset += to_bytes(len);
1289 		} while (remaining -= len);
1290 
1291 		ci->idx++;
1292 	}
1293 
1294 	return 0;
1295 }
1296 
1297 /*
1298  * Split the bio into several clones and submit it to targets.
1299  */
1300 static void __split_and_process_bio(struct mapped_device *md, struct bio *bio)
1301 {
1302 	struct clone_info ci;
1303 	int error = 0;
1304 
1305 	ci.map = dm_get_live_table(md);
1306 	if (unlikely(!ci.map)) {
1307 		bio_io_error(bio);
1308 		return;
1309 	}
1310 
1311 	ci.md = md;
1312 	ci.io = alloc_io(md);
1313 	ci.io->error = 0;
1314 	atomic_set(&ci.io->io_count, 1);
1315 	ci.io->bio = bio;
1316 	ci.io->md = md;
1317 	spin_lock_init(&ci.io->endio_lock);
1318 	ci.sector = bio->bi_sector;
1319 	ci.idx = bio->bi_idx;
1320 
1321 	start_io_acct(ci.io);
1322 	if (bio->bi_rw & REQ_FLUSH) {
1323 		ci.bio = &ci.md->flush_bio;
1324 		ci.sector_count = 0;
1325 		error = __clone_and_map_empty_flush(&ci);
1326 		/* dec_pending submits any data associated with flush */
1327 	} else {
1328 		ci.bio = bio;
1329 		ci.sector_count = bio_sectors(bio);
1330 		while (ci.sector_count && !error)
1331 			error = __clone_and_map(&ci);
1332 	}
1333 
1334 	/* drop the extra reference count */
1335 	dec_pending(ci.io, error);
1336 	dm_table_put(ci.map);
1337 }
1338 /*-----------------------------------------------------------------
1339  * CRUD END
1340  *---------------------------------------------------------------*/
1341 
1342 static int dm_merge_bvec(struct request_queue *q,
1343 			 struct bvec_merge_data *bvm,
1344 			 struct bio_vec *biovec)
1345 {
1346 	struct mapped_device *md = q->queuedata;
1347 	struct dm_table *map = dm_get_live_table(md);
1348 	struct dm_target *ti;
1349 	sector_t max_sectors;
1350 	int max_size = 0;
1351 
1352 	if (unlikely(!map))
1353 		goto out;
1354 
1355 	ti = dm_table_find_target(map, bvm->bi_sector);
1356 	if (!dm_target_is_valid(ti))
1357 		goto out_table;
1358 
1359 	/*
1360 	 * Find maximum amount of I/O that won't need splitting
1361 	 */
1362 	max_sectors = min(max_io_len(bvm->bi_sector, ti),
1363 			  (sector_t) BIO_MAX_SECTORS);
1364 	max_size = (max_sectors << SECTOR_SHIFT) - bvm->bi_size;
1365 	if (max_size < 0)
1366 		max_size = 0;
1367 
1368 	/*
1369 	 * merge_bvec_fn() returns number of bytes
1370 	 * it can accept at this offset
1371 	 * max is precomputed maximal io size
1372 	 */
1373 	if (max_size && ti->type->merge)
1374 		max_size = ti->type->merge(ti, bvm, biovec, max_size);
1375 	/*
1376 	 * If the target doesn't support merge method and some of the devices
1377 	 * provided their merge_bvec method (we know this by looking at
1378 	 * queue_max_hw_sectors), then we can't allow bios with multiple vector
1379 	 * entries.  So always set max_size to 0, and the code below allows
1380 	 * just one page.
1381 	 */
1382 	else if (queue_max_hw_sectors(q) <= PAGE_SIZE >> 9)
1383 
1384 		max_size = 0;
1385 
1386 out_table:
1387 	dm_table_put(map);
1388 
1389 out:
1390 	/*
1391 	 * Always allow an entire first page
1392 	 */
1393 	if (max_size <= biovec->bv_len && !(bvm->bi_size >> SECTOR_SHIFT))
1394 		max_size = biovec->bv_len;
1395 
1396 	return max_size;
1397 }
1398 
1399 /*
1400  * The request function that just remaps the bio built up by
1401  * dm_merge_bvec.
1402  */
1403 static void _dm_request(struct request_queue *q, struct bio *bio)
1404 {
1405 	int rw = bio_data_dir(bio);
1406 	struct mapped_device *md = q->queuedata;
1407 	int cpu;
1408 
1409 	down_read(&md->io_lock);
1410 
1411 	cpu = part_stat_lock();
1412 	part_stat_inc(cpu, &dm_disk(md)->part0, ios[rw]);
1413 	part_stat_add(cpu, &dm_disk(md)->part0, sectors[rw], bio_sectors(bio));
1414 	part_stat_unlock();
1415 
1416 	/* if we're suspended, we have to queue this io for later */
1417 	if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))) {
1418 		up_read(&md->io_lock);
1419 
1420 		if (bio_rw(bio) != READA)
1421 			queue_io(md, bio);
1422 		else
1423 			bio_io_error(bio);
1424 		return;
1425 	}
1426 
1427 	__split_and_process_bio(md, bio);
1428 	up_read(&md->io_lock);
1429 	return;
1430 }
1431 
1432 static int dm_request_based(struct mapped_device *md)
1433 {
1434 	return blk_queue_stackable(md->queue);
1435 }
1436 
1437 static void dm_request(struct request_queue *q, struct bio *bio)
1438 {
1439 	struct mapped_device *md = q->queuedata;
1440 
1441 	if (dm_request_based(md))
1442 		blk_queue_bio(q, bio);
1443 	else
1444 		_dm_request(q, bio);
1445 }
1446 
1447 void dm_dispatch_request(struct request *rq)
1448 {
1449 	int r;
1450 
1451 	if (blk_queue_io_stat(rq->q))
1452 		rq->cmd_flags |= REQ_IO_STAT;
1453 
1454 	rq->start_time = jiffies;
1455 	r = blk_insert_cloned_request(rq->q, rq);
1456 	if (r)
1457 		dm_complete_request(rq, r);
1458 }
1459 EXPORT_SYMBOL_GPL(dm_dispatch_request);
1460 
1461 static void dm_rq_bio_destructor(struct bio *bio)
1462 {
1463 	struct dm_rq_clone_bio_info *info = bio->bi_private;
1464 	struct mapped_device *md = info->tio->md;
1465 
1466 	free_bio_info(info);
1467 	bio_free(bio, md->bs);
1468 }
1469 
1470 static int dm_rq_bio_constructor(struct bio *bio, struct bio *bio_orig,
1471 				 void *data)
1472 {
1473 	struct dm_rq_target_io *tio = data;
1474 	struct mapped_device *md = tio->md;
1475 	struct dm_rq_clone_bio_info *info = alloc_bio_info(md);
1476 
1477 	if (!info)
1478 		return -ENOMEM;
1479 
1480 	info->orig = bio_orig;
1481 	info->tio = tio;
1482 	bio->bi_end_io = end_clone_bio;
1483 	bio->bi_private = info;
1484 	bio->bi_destructor = dm_rq_bio_destructor;
1485 
1486 	return 0;
1487 }
1488 
1489 static int setup_clone(struct request *clone, struct request *rq,
1490 		       struct dm_rq_target_io *tio)
1491 {
1492 	int r;
1493 
1494 	r = blk_rq_prep_clone(clone, rq, tio->md->bs, GFP_ATOMIC,
1495 			      dm_rq_bio_constructor, tio);
1496 	if (r)
1497 		return r;
1498 
1499 	clone->cmd = rq->cmd;
1500 	clone->cmd_len = rq->cmd_len;
1501 	clone->sense = rq->sense;
1502 	clone->buffer = rq->buffer;
1503 	clone->end_io = end_clone_request;
1504 	clone->end_io_data = tio;
1505 
1506 	return 0;
1507 }
1508 
1509 static struct request *clone_rq(struct request *rq, struct mapped_device *md,
1510 				gfp_t gfp_mask)
1511 {
1512 	struct request *clone;
1513 	struct dm_rq_target_io *tio;
1514 
1515 	tio = alloc_rq_tio(md, gfp_mask);
1516 	if (!tio)
1517 		return NULL;
1518 
1519 	tio->md = md;
1520 	tio->ti = NULL;
1521 	tio->orig = rq;
1522 	tio->error = 0;
1523 	memset(&tio->info, 0, sizeof(tio->info));
1524 
1525 	clone = &tio->clone;
1526 	if (setup_clone(clone, rq, tio)) {
1527 		/* -ENOMEM */
1528 		free_rq_tio(tio);
1529 		return NULL;
1530 	}
1531 
1532 	return clone;
1533 }
1534 
1535 /*
1536  * Called with the queue lock held.
1537  */
1538 static int dm_prep_fn(struct request_queue *q, struct request *rq)
1539 {
1540 	struct mapped_device *md = q->queuedata;
1541 	struct request *clone;
1542 
1543 	if (unlikely(rq->special)) {
1544 		DMWARN("Already has something in rq->special.");
1545 		return BLKPREP_KILL;
1546 	}
1547 
1548 	clone = clone_rq(rq, md, GFP_ATOMIC);
1549 	if (!clone)
1550 		return BLKPREP_DEFER;
1551 
1552 	rq->special = clone;
1553 	rq->cmd_flags |= REQ_DONTPREP;
1554 
1555 	return BLKPREP_OK;
1556 }
1557 
1558 /*
1559  * Returns:
1560  * 0  : the request has been processed (not requeued)
1561  * !0 : the request has been requeued
1562  */
1563 static int map_request(struct dm_target *ti, struct request *clone,
1564 		       struct mapped_device *md)
1565 {
1566 	int r, requeued = 0;
1567 	struct dm_rq_target_io *tio = clone->end_io_data;
1568 
1569 	/*
1570 	 * Hold the md reference here for the in-flight I/O.
1571 	 * We can't rely on the reference count by device opener,
1572 	 * because the device may be closed during the request completion
1573 	 * when all bios are completed.
1574 	 * See the comment in rq_completed() too.
1575 	 */
1576 	dm_get(md);
1577 
1578 	tio->ti = ti;
1579 	r = ti->type->map_rq(ti, clone, &tio->info);
1580 	switch (r) {
1581 	case DM_MAPIO_SUBMITTED:
1582 		/* The target has taken the I/O to submit by itself later */
1583 		break;
1584 	case DM_MAPIO_REMAPPED:
1585 		/* The target has remapped the I/O so dispatch it */
1586 		trace_block_rq_remap(clone->q, clone, disk_devt(dm_disk(md)),
1587 				     blk_rq_pos(tio->orig));
1588 		dm_dispatch_request(clone);
1589 		break;
1590 	case DM_MAPIO_REQUEUE:
1591 		/* The target wants to requeue the I/O */
1592 		dm_requeue_unmapped_request(clone);
1593 		requeued = 1;
1594 		break;
1595 	default:
1596 		if (r > 0) {
1597 			DMWARN("unimplemented target map return value: %d", r);
1598 			BUG();
1599 		}
1600 
1601 		/* The target wants to complete the I/O */
1602 		dm_kill_unmapped_request(clone, r);
1603 		break;
1604 	}
1605 
1606 	return requeued;
1607 }
1608 
1609 /*
1610  * q->request_fn for request-based dm.
1611  * Called with the queue lock held.
1612  */
1613 static void dm_request_fn(struct request_queue *q)
1614 {
1615 	struct mapped_device *md = q->queuedata;
1616 	struct dm_table *map = dm_get_live_table(md);
1617 	struct dm_target *ti;
1618 	struct request *rq, *clone;
1619 	sector_t pos;
1620 
1621 	/*
1622 	 * For suspend, check blk_queue_stopped() and increment
1623 	 * ->pending within a single queue_lock not to increment the
1624 	 * number of in-flight I/Os after the queue is stopped in
1625 	 * dm_suspend().
1626 	 */
1627 	while (!blk_queue_stopped(q)) {
1628 		rq = blk_peek_request(q);
1629 		if (!rq)
1630 			goto delay_and_out;
1631 
1632 		/* always use block 0 to find the target for flushes for now */
1633 		pos = 0;
1634 		if (!(rq->cmd_flags & REQ_FLUSH))
1635 			pos = blk_rq_pos(rq);
1636 
1637 		ti = dm_table_find_target(map, pos);
1638 		BUG_ON(!dm_target_is_valid(ti));
1639 
1640 		if (ti->type->busy && ti->type->busy(ti))
1641 			goto delay_and_out;
1642 
1643 		blk_start_request(rq);
1644 		clone = rq->special;
1645 		atomic_inc(&md->pending[rq_data_dir(clone)]);
1646 
1647 		spin_unlock(q->queue_lock);
1648 		if (map_request(ti, clone, md))
1649 			goto requeued;
1650 
1651 		BUG_ON(!irqs_disabled());
1652 		spin_lock(q->queue_lock);
1653 	}
1654 
1655 	goto out;
1656 
1657 requeued:
1658 	BUG_ON(!irqs_disabled());
1659 	spin_lock(q->queue_lock);
1660 
1661 delay_and_out:
1662 	blk_delay_queue(q, HZ / 10);
1663 out:
1664 	dm_table_put(map);
1665 
1666 	return;
1667 }
1668 
1669 int dm_underlying_device_busy(struct request_queue *q)
1670 {
1671 	return blk_lld_busy(q);
1672 }
1673 EXPORT_SYMBOL_GPL(dm_underlying_device_busy);
1674 
1675 static int dm_lld_busy(struct request_queue *q)
1676 {
1677 	int r;
1678 	struct mapped_device *md = q->queuedata;
1679 	struct dm_table *map = dm_get_live_table(md);
1680 
1681 	if (!map || test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))
1682 		r = 1;
1683 	else
1684 		r = dm_table_any_busy_target(map);
1685 
1686 	dm_table_put(map);
1687 
1688 	return r;
1689 }
1690 
1691 static int dm_any_congested(void *congested_data, int bdi_bits)
1692 {
1693 	int r = bdi_bits;
1694 	struct mapped_device *md = congested_data;
1695 	struct dm_table *map;
1696 
1697 	if (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
1698 		map = dm_get_live_table(md);
1699 		if (map) {
1700 			/*
1701 			 * Request-based dm cares about only own queue for
1702 			 * the query about congestion status of request_queue
1703 			 */
1704 			if (dm_request_based(md))
1705 				r = md->queue->backing_dev_info.state &
1706 				    bdi_bits;
1707 			else
1708 				r = dm_table_any_congested(map, bdi_bits);
1709 
1710 			dm_table_put(map);
1711 		}
1712 	}
1713 
1714 	return r;
1715 }
1716 
1717 /*-----------------------------------------------------------------
1718  * An IDR is used to keep track of allocated minor numbers.
1719  *---------------------------------------------------------------*/
1720 static void free_minor(int minor)
1721 {
1722 	spin_lock(&_minor_lock);
1723 	idr_remove(&_minor_idr, minor);
1724 	spin_unlock(&_minor_lock);
1725 }
1726 
1727 /*
1728  * See if the device with a specific minor # is free.
1729  */
1730 static int specific_minor(int minor)
1731 {
1732 	int r, m;
1733 
1734 	if (minor >= (1 << MINORBITS))
1735 		return -EINVAL;
1736 
1737 	r = idr_pre_get(&_minor_idr, GFP_KERNEL);
1738 	if (!r)
1739 		return -ENOMEM;
1740 
1741 	spin_lock(&_minor_lock);
1742 
1743 	if (idr_find(&_minor_idr, minor)) {
1744 		r = -EBUSY;
1745 		goto out;
1746 	}
1747 
1748 	r = idr_get_new_above(&_minor_idr, MINOR_ALLOCED, minor, &m);
1749 	if (r)
1750 		goto out;
1751 
1752 	if (m != minor) {
1753 		idr_remove(&_minor_idr, m);
1754 		r = -EBUSY;
1755 		goto out;
1756 	}
1757 
1758 out:
1759 	spin_unlock(&_minor_lock);
1760 	return r;
1761 }
1762 
1763 static int next_free_minor(int *minor)
1764 {
1765 	int r, m;
1766 
1767 	r = idr_pre_get(&_minor_idr, GFP_KERNEL);
1768 	if (!r)
1769 		return -ENOMEM;
1770 
1771 	spin_lock(&_minor_lock);
1772 
1773 	r = idr_get_new(&_minor_idr, MINOR_ALLOCED, &m);
1774 	if (r)
1775 		goto out;
1776 
1777 	if (m >= (1 << MINORBITS)) {
1778 		idr_remove(&_minor_idr, m);
1779 		r = -ENOSPC;
1780 		goto out;
1781 	}
1782 
1783 	*minor = m;
1784 
1785 out:
1786 	spin_unlock(&_minor_lock);
1787 	return r;
1788 }
1789 
1790 static const struct block_device_operations dm_blk_dops;
1791 
1792 static void dm_wq_work(struct work_struct *work);
1793 
1794 static void dm_init_md_queue(struct mapped_device *md)
1795 {
1796 	/*
1797 	 * Request-based dm devices cannot be stacked on top of bio-based dm
1798 	 * devices.  The type of this dm device has not been decided yet.
1799 	 * The type is decided at the first table loading time.
1800 	 * To prevent problematic device stacking, clear the queue flag
1801 	 * for request stacking support until then.
1802 	 *
1803 	 * This queue is new, so no concurrency on the queue_flags.
1804 	 */
1805 	queue_flag_clear_unlocked(QUEUE_FLAG_STACKABLE, md->queue);
1806 
1807 	md->queue->queuedata = md;
1808 	md->queue->backing_dev_info.congested_fn = dm_any_congested;
1809 	md->queue->backing_dev_info.congested_data = md;
1810 	blk_queue_make_request(md->queue, dm_request);
1811 	blk_queue_bounce_limit(md->queue, BLK_BOUNCE_ANY);
1812 	blk_queue_merge_bvec(md->queue, dm_merge_bvec);
1813 }
1814 
1815 /*
1816  * Allocate and initialise a blank device with a given minor.
1817  */
1818 static struct mapped_device *alloc_dev(int minor)
1819 {
1820 	int r;
1821 	struct mapped_device *md = kzalloc(sizeof(*md), GFP_KERNEL);
1822 	void *old_md;
1823 
1824 	if (!md) {
1825 		DMWARN("unable to allocate device, out of memory.");
1826 		return NULL;
1827 	}
1828 
1829 	if (!try_module_get(THIS_MODULE))
1830 		goto bad_module_get;
1831 
1832 	/* get a minor number for the dev */
1833 	if (minor == DM_ANY_MINOR)
1834 		r = next_free_minor(&minor);
1835 	else
1836 		r = specific_minor(minor);
1837 	if (r < 0)
1838 		goto bad_minor;
1839 
1840 	md->type = DM_TYPE_NONE;
1841 	init_rwsem(&md->io_lock);
1842 	mutex_init(&md->suspend_lock);
1843 	mutex_init(&md->type_lock);
1844 	spin_lock_init(&md->deferred_lock);
1845 	rwlock_init(&md->map_lock);
1846 	atomic_set(&md->holders, 1);
1847 	atomic_set(&md->open_count, 0);
1848 	atomic_set(&md->event_nr, 0);
1849 	atomic_set(&md->uevent_seq, 0);
1850 	INIT_LIST_HEAD(&md->uevent_list);
1851 	spin_lock_init(&md->uevent_lock);
1852 
1853 	md->queue = blk_alloc_queue(GFP_KERNEL);
1854 	if (!md->queue)
1855 		goto bad_queue;
1856 
1857 	dm_init_md_queue(md);
1858 
1859 	md->disk = alloc_disk(1);
1860 	if (!md->disk)
1861 		goto bad_disk;
1862 
1863 	atomic_set(&md->pending[0], 0);
1864 	atomic_set(&md->pending[1], 0);
1865 	init_waitqueue_head(&md->wait);
1866 	INIT_WORK(&md->work, dm_wq_work);
1867 	init_waitqueue_head(&md->eventq);
1868 
1869 	md->disk->major = _major;
1870 	md->disk->first_minor = minor;
1871 	md->disk->fops = &dm_blk_dops;
1872 	md->disk->queue = md->queue;
1873 	md->disk->private_data = md;
1874 	sprintf(md->disk->disk_name, "dm-%d", minor);
1875 	add_disk(md->disk);
1876 	format_dev_t(md->name, MKDEV(_major, minor));
1877 
1878 	md->wq = alloc_workqueue("kdmflush",
1879 				 WQ_NON_REENTRANT | WQ_MEM_RECLAIM, 0);
1880 	if (!md->wq)
1881 		goto bad_thread;
1882 
1883 	md->bdev = bdget_disk(md->disk, 0);
1884 	if (!md->bdev)
1885 		goto bad_bdev;
1886 
1887 	bio_init(&md->flush_bio);
1888 	md->flush_bio.bi_bdev = md->bdev;
1889 	md->flush_bio.bi_rw = WRITE_FLUSH;
1890 
1891 	/* Populate the mapping, nobody knows we exist yet */
1892 	spin_lock(&_minor_lock);
1893 	old_md = idr_replace(&_minor_idr, md, minor);
1894 	spin_unlock(&_minor_lock);
1895 
1896 	BUG_ON(old_md != MINOR_ALLOCED);
1897 
1898 	return md;
1899 
1900 bad_bdev:
1901 	destroy_workqueue(md->wq);
1902 bad_thread:
1903 	del_gendisk(md->disk);
1904 	put_disk(md->disk);
1905 bad_disk:
1906 	blk_cleanup_queue(md->queue);
1907 bad_queue:
1908 	free_minor(minor);
1909 bad_minor:
1910 	module_put(THIS_MODULE);
1911 bad_module_get:
1912 	kfree(md);
1913 	return NULL;
1914 }
1915 
1916 static void unlock_fs(struct mapped_device *md);
1917 
1918 static void free_dev(struct mapped_device *md)
1919 {
1920 	int minor = MINOR(disk_devt(md->disk));
1921 
1922 	unlock_fs(md);
1923 	bdput(md->bdev);
1924 	destroy_workqueue(md->wq);
1925 	if (md->tio_pool)
1926 		mempool_destroy(md->tio_pool);
1927 	if (md->io_pool)
1928 		mempool_destroy(md->io_pool);
1929 	if (md->bs)
1930 		bioset_free(md->bs);
1931 	blk_integrity_unregister(md->disk);
1932 	del_gendisk(md->disk);
1933 	free_minor(minor);
1934 
1935 	spin_lock(&_minor_lock);
1936 	md->disk->private_data = NULL;
1937 	spin_unlock(&_minor_lock);
1938 
1939 	put_disk(md->disk);
1940 	blk_cleanup_queue(md->queue);
1941 	module_put(THIS_MODULE);
1942 	kfree(md);
1943 }
1944 
1945 static void __bind_mempools(struct mapped_device *md, struct dm_table *t)
1946 {
1947 	struct dm_md_mempools *p;
1948 
1949 	if (md->io_pool && md->tio_pool && md->bs)
1950 		/* the md already has necessary mempools */
1951 		goto out;
1952 
1953 	p = dm_table_get_md_mempools(t);
1954 	BUG_ON(!p || md->io_pool || md->tio_pool || md->bs);
1955 
1956 	md->io_pool = p->io_pool;
1957 	p->io_pool = NULL;
1958 	md->tio_pool = p->tio_pool;
1959 	p->tio_pool = NULL;
1960 	md->bs = p->bs;
1961 	p->bs = NULL;
1962 
1963 out:
1964 	/* mempool bind completed, now no need any mempools in the table */
1965 	dm_table_free_md_mempools(t);
1966 }
1967 
1968 /*
1969  * Bind a table to the device.
1970  */
1971 static void event_callback(void *context)
1972 {
1973 	unsigned long flags;
1974 	LIST_HEAD(uevents);
1975 	struct mapped_device *md = (struct mapped_device *) context;
1976 
1977 	spin_lock_irqsave(&md->uevent_lock, flags);
1978 	list_splice_init(&md->uevent_list, &uevents);
1979 	spin_unlock_irqrestore(&md->uevent_lock, flags);
1980 
1981 	dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj);
1982 
1983 	atomic_inc(&md->event_nr);
1984 	wake_up(&md->eventq);
1985 }
1986 
1987 /*
1988  * Protected by md->suspend_lock obtained by dm_swap_table().
1989  */
1990 static void __set_size(struct mapped_device *md, sector_t size)
1991 {
1992 	set_capacity(md->disk, size);
1993 
1994 	i_size_write(md->bdev->bd_inode, (loff_t)size << SECTOR_SHIFT);
1995 }
1996 
1997 /*
1998  * Return 1 if the queue has a compulsory merge_bvec_fn function.
1999  *
2000  * If this function returns 0, then the device is either a non-dm
2001  * device without a merge_bvec_fn, or it is a dm device that is
2002  * able to split any bios it receives that are too big.
2003  */
2004 int dm_queue_merge_is_compulsory(struct request_queue *q)
2005 {
2006 	struct mapped_device *dev_md;
2007 
2008 	if (!q->merge_bvec_fn)
2009 		return 0;
2010 
2011 	if (q->make_request_fn == dm_request) {
2012 		dev_md = q->queuedata;
2013 		if (test_bit(DMF_MERGE_IS_OPTIONAL, &dev_md->flags))
2014 			return 0;
2015 	}
2016 
2017 	return 1;
2018 }
2019 
2020 static int dm_device_merge_is_compulsory(struct dm_target *ti,
2021 					 struct dm_dev *dev, sector_t start,
2022 					 sector_t len, void *data)
2023 {
2024 	struct block_device *bdev = dev->bdev;
2025 	struct request_queue *q = bdev_get_queue(bdev);
2026 
2027 	return dm_queue_merge_is_compulsory(q);
2028 }
2029 
2030 /*
2031  * Return 1 if it is acceptable to ignore merge_bvec_fn based
2032  * on the properties of the underlying devices.
2033  */
2034 static int dm_table_merge_is_optional(struct dm_table *table)
2035 {
2036 	unsigned i = 0;
2037 	struct dm_target *ti;
2038 
2039 	while (i < dm_table_get_num_targets(table)) {
2040 		ti = dm_table_get_target(table, i++);
2041 
2042 		if (ti->type->iterate_devices &&
2043 		    ti->type->iterate_devices(ti, dm_device_merge_is_compulsory, NULL))
2044 			return 0;
2045 	}
2046 
2047 	return 1;
2048 }
2049 
2050 /*
2051  * Returns old map, which caller must destroy.
2052  */
2053 static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t,
2054 			       struct queue_limits *limits)
2055 {
2056 	struct dm_table *old_map;
2057 	struct request_queue *q = md->queue;
2058 	sector_t size;
2059 	unsigned long flags;
2060 	int merge_is_optional;
2061 
2062 	size = dm_table_get_size(t);
2063 
2064 	/*
2065 	 * Wipe any geometry if the size of the table changed.
2066 	 */
2067 	if (size != get_capacity(md->disk))
2068 		memset(&md->geometry, 0, sizeof(md->geometry));
2069 
2070 	__set_size(md, size);
2071 
2072 	dm_table_event_callback(t, event_callback, md);
2073 
2074 	/*
2075 	 * The queue hasn't been stopped yet, if the old table type wasn't
2076 	 * for request-based during suspension.  So stop it to prevent
2077 	 * I/O mapping before resume.
2078 	 * This must be done before setting the queue restrictions,
2079 	 * because request-based dm may be run just after the setting.
2080 	 */
2081 	if (dm_table_request_based(t) && !blk_queue_stopped(q))
2082 		stop_queue(q);
2083 
2084 	__bind_mempools(md, t);
2085 
2086 	merge_is_optional = dm_table_merge_is_optional(t);
2087 
2088 	write_lock_irqsave(&md->map_lock, flags);
2089 	old_map = md->map;
2090 	md->map = t;
2091 	md->immutable_target_type = dm_table_get_immutable_target_type(t);
2092 
2093 	dm_table_set_restrictions(t, q, limits);
2094 	if (merge_is_optional)
2095 		set_bit(DMF_MERGE_IS_OPTIONAL, &md->flags);
2096 	else
2097 		clear_bit(DMF_MERGE_IS_OPTIONAL, &md->flags);
2098 	write_unlock_irqrestore(&md->map_lock, flags);
2099 
2100 	return old_map;
2101 }
2102 
2103 /*
2104  * Returns unbound table for the caller to free.
2105  */
2106 static struct dm_table *__unbind(struct mapped_device *md)
2107 {
2108 	struct dm_table *map = md->map;
2109 	unsigned long flags;
2110 
2111 	if (!map)
2112 		return NULL;
2113 
2114 	dm_table_event_callback(map, NULL, NULL);
2115 	write_lock_irqsave(&md->map_lock, flags);
2116 	md->map = NULL;
2117 	write_unlock_irqrestore(&md->map_lock, flags);
2118 
2119 	return map;
2120 }
2121 
2122 /*
2123  * Constructor for a new device.
2124  */
2125 int dm_create(int minor, struct mapped_device **result)
2126 {
2127 	struct mapped_device *md;
2128 
2129 	md = alloc_dev(minor);
2130 	if (!md)
2131 		return -ENXIO;
2132 
2133 	dm_sysfs_init(md);
2134 
2135 	*result = md;
2136 	return 0;
2137 }
2138 
2139 /*
2140  * Functions to manage md->type.
2141  * All are required to hold md->type_lock.
2142  */
2143 void dm_lock_md_type(struct mapped_device *md)
2144 {
2145 	mutex_lock(&md->type_lock);
2146 }
2147 
2148 void dm_unlock_md_type(struct mapped_device *md)
2149 {
2150 	mutex_unlock(&md->type_lock);
2151 }
2152 
2153 void dm_set_md_type(struct mapped_device *md, unsigned type)
2154 {
2155 	md->type = type;
2156 }
2157 
2158 unsigned dm_get_md_type(struct mapped_device *md)
2159 {
2160 	return md->type;
2161 }
2162 
2163 struct target_type *dm_get_immutable_target_type(struct mapped_device *md)
2164 {
2165 	return md->immutable_target_type;
2166 }
2167 
2168 /*
2169  * Fully initialize a request-based queue (->elevator, ->request_fn, etc).
2170  */
2171 static int dm_init_request_based_queue(struct mapped_device *md)
2172 {
2173 	struct request_queue *q = NULL;
2174 
2175 	if (md->queue->elevator)
2176 		return 1;
2177 
2178 	/* Fully initialize the queue */
2179 	q = blk_init_allocated_queue(md->queue, dm_request_fn, NULL);
2180 	if (!q)
2181 		return 0;
2182 
2183 	md->queue = q;
2184 	dm_init_md_queue(md);
2185 	blk_queue_softirq_done(md->queue, dm_softirq_done);
2186 	blk_queue_prep_rq(md->queue, dm_prep_fn);
2187 	blk_queue_lld_busy(md->queue, dm_lld_busy);
2188 
2189 	elv_register_queue(md->queue);
2190 
2191 	return 1;
2192 }
2193 
2194 /*
2195  * Setup the DM device's queue based on md's type
2196  */
2197 int dm_setup_md_queue(struct mapped_device *md)
2198 {
2199 	if ((dm_get_md_type(md) == DM_TYPE_REQUEST_BASED) &&
2200 	    !dm_init_request_based_queue(md)) {
2201 		DMWARN("Cannot initialize queue for request-based mapped device");
2202 		return -EINVAL;
2203 	}
2204 
2205 	return 0;
2206 }
2207 
2208 static struct mapped_device *dm_find_md(dev_t dev)
2209 {
2210 	struct mapped_device *md;
2211 	unsigned minor = MINOR(dev);
2212 
2213 	if (MAJOR(dev) != _major || minor >= (1 << MINORBITS))
2214 		return NULL;
2215 
2216 	spin_lock(&_minor_lock);
2217 
2218 	md = idr_find(&_minor_idr, minor);
2219 	if (md && (md == MINOR_ALLOCED ||
2220 		   (MINOR(disk_devt(dm_disk(md))) != minor) ||
2221 		   dm_deleting_md(md) ||
2222 		   test_bit(DMF_FREEING, &md->flags))) {
2223 		md = NULL;
2224 		goto out;
2225 	}
2226 
2227 out:
2228 	spin_unlock(&_minor_lock);
2229 
2230 	return md;
2231 }
2232 
2233 struct mapped_device *dm_get_md(dev_t dev)
2234 {
2235 	struct mapped_device *md = dm_find_md(dev);
2236 
2237 	if (md)
2238 		dm_get(md);
2239 
2240 	return md;
2241 }
2242 EXPORT_SYMBOL_GPL(dm_get_md);
2243 
2244 void *dm_get_mdptr(struct mapped_device *md)
2245 {
2246 	return md->interface_ptr;
2247 }
2248 
2249 void dm_set_mdptr(struct mapped_device *md, void *ptr)
2250 {
2251 	md->interface_ptr = ptr;
2252 }
2253 
2254 void dm_get(struct mapped_device *md)
2255 {
2256 	atomic_inc(&md->holders);
2257 	BUG_ON(test_bit(DMF_FREEING, &md->flags));
2258 }
2259 
2260 const char *dm_device_name(struct mapped_device *md)
2261 {
2262 	return md->name;
2263 }
2264 EXPORT_SYMBOL_GPL(dm_device_name);
2265 
2266 static void __dm_destroy(struct mapped_device *md, bool wait)
2267 {
2268 	struct dm_table *map;
2269 
2270 	might_sleep();
2271 
2272 	spin_lock(&_minor_lock);
2273 	map = dm_get_live_table(md);
2274 	idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md))));
2275 	set_bit(DMF_FREEING, &md->flags);
2276 	spin_unlock(&_minor_lock);
2277 
2278 	if (!dm_suspended_md(md)) {
2279 		dm_table_presuspend_targets(map);
2280 		dm_table_postsuspend_targets(map);
2281 	}
2282 
2283 	/*
2284 	 * Rare, but there may be I/O requests still going to complete,
2285 	 * for example.  Wait for all references to disappear.
2286 	 * No one should increment the reference count of the mapped_device,
2287 	 * after the mapped_device state becomes DMF_FREEING.
2288 	 */
2289 	if (wait)
2290 		while (atomic_read(&md->holders))
2291 			msleep(1);
2292 	else if (atomic_read(&md->holders))
2293 		DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)",
2294 		       dm_device_name(md), atomic_read(&md->holders));
2295 
2296 	dm_sysfs_exit(md);
2297 	dm_table_put(map);
2298 	dm_table_destroy(__unbind(md));
2299 	free_dev(md);
2300 }
2301 
2302 void dm_destroy(struct mapped_device *md)
2303 {
2304 	__dm_destroy(md, true);
2305 }
2306 
2307 void dm_destroy_immediate(struct mapped_device *md)
2308 {
2309 	__dm_destroy(md, false);
2310 }
2311 
2312 void dm_put(struct mapped_device *md)
2313 {
2314 	atomic_dec(&md->holders);
2315 }
2316 EXPORT_SYMBOL_GPL(dm_put);
2317 
2318 static int dm_wait_for_completion(struct mapped_device *md, int interruptible)
2319 {
2320 	int r = 0;
2321 	DECLARE_WAITQUEUE(wait, current);
2322 
2323 	add_wait_queue(&md->wait, &wait);
2324 
2325 	while (1) {
2326 		set_current_state(interruptible);
2327 
2328 		if (!md_in_flight(md))
2329 			break;
2330 
2331 		if (interruptible == TASK_INTERRUPTIBLE &&
2332 		    signal_pending(current)) {
2333 			r = -EINTR;
2334 			break;
2335 		}
2336 
2337 		io_schedule();
2338 	}
2339 	set_current_state(TASK_RUNNING);
2340 
2341 	remove_wait_queue(&md->wait, &wait);
2342 
2343 	return r;
2344 }
2345 
2346 /*
2347  * Process the deferred bios
2348  */
2349 static void dm_wq_work(struct work_struct *work)
2350 {
2351 	struct mapped_device *md = container_of(work, struct mapped_device,
2352 						work);
2353 	struct bio *c;
2354 
2355 	down_read(&md->io_lock);
2356 
2357 	while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
2358 		spin_lock_irq(&md->deferred_lock);
2359 		c = bio_list_pop(&md->deferred);
2360 		spin_unlock_irq(&md->deferred_lock);
2361 
2362 		if (!c)
2363 			break;
2364 
2365 		up_read(&md->io_lock);
2366 
2367 		if (dm_request_based(md))
2368 			generic_make_request(c);
2369 		else
2370 			__split_and_process_bio(md, c);
2371 
2372 		down_read(&md->io_lock);
2373 	}
2374 
2375 	up_read(&md->io_lock);
2376 }
2377 
2378 static void dm_queue_flush(struct mapped_device *md)
2379 {
2380 	clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2381 	smp_mb__after_clear_bit();
2382 	queue_work(md->wq, &md->work);
2383 }
2384 
2385 /*
2386  * Swap in a new table, returning the old one for the caller to destroy.
2387  */
2388 struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table)
2389 {
2390 	struct dm_table *map = ERR_PTR(-EINVAL);
2391 	struct queue_limits limits;
2392 	int r;
2393 
2394 	mutex_lock(&md->suspend_lock);
2395 
2396 	/* device must be suspended */
2397 	if (!dm_suspended_md(md))
2398 		goto out;
2399 
2400 	r = dm_calculate_queue_limits(table, &limits);
2401 	if (r) {
2402 		map = ERR_PTR(r);
2403 		goto out;
2404 	}
2405 
2406 	map = __bind(md, table, &limits);
2407 
2408 out:
2409 	mutex_unlock(&md->suspend_lock);
2410 	return map;
2411 }
2412 
2413 /*
2414  * Functions to lock and unlock any filesystem running on the
2415  * device.
2416  */
2417 static int lock_fs(struct mapped_device *md)
2418 {
2419 	int r;
2420 
2421 	WARN_ON(md->frozen_sb);
2422 
2423 	md->frozen_sb = freeze_bdev(md->bdev);
2424 	if (IS_ERR(md->frozen_sb)) {
2425 		r = PTR_ERR(md->frozen_sb);
2426 		md->frozen_sb = NULL;
2427 		return r;
2428 	}
2429 
2430 	set_bit(DMF_FROZEN, &md->flags);
2431 
2432 	return 0;
2433 }
2434 
2435 static void unlock_fs(struct mapped_device *md)
2436 {
2437 	if (!test_bit(DMF_FROZEN, &md->flags))
2438 		return;
2439 
2440 	thaw_bdev(md->bdev, md->frozen_sb);
2441 	md->frozen_sb = NULL;
2442 	clear_bit(DMF_FROZEN, &md->flags);
2443 }
2444 
2445 /*
2446  * We need to be able to change a mapping table under a mounted
2447  * filesystem.  For example we might want to move some data in
2448  * the background.  Before the table can be swapped with
2449  * dm_bind_table, dm_suspend must be called to flush any in
2450  * flight bios and ensure that any further io gets deferred.
2451  */
2452 /*
2453  * Suspend mechanism in request-based dm.
2454  *
2455  * 1. Flush all I/Os by lock_fs() if needed.
2456  * 2. Stop dispatching any I/O by stopping the request_queue.
2457  * 3. Wait for all in-flight I/Os to be completed or requeued.
2458  *
2459  * To abort suspend, start the request_queue.
2460  */
2461 int dm_suspend(struct mapped_device *md, unsigned suspend_flags)
2462 {
2463 	struct dm_table *map = NULL;
2464 	int r = 0;
2465 	int do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG ? 1 : 0;
2466 	int noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG ? 1 : 0;
2467 
2468 	mutex_lock(&md->suspend_lock);
2469 
2470 	if (dm_suspended_md(md)) {
2471 		r = -EINVAL;
2472 		goto out_unlock;
2473 	}
2474 
2475 	map = dm_get_live_table(md);
2476 
2477 	/*
2478 	 * DMF_NOFLUSH_SUSPENDING must be set before presuspend.
2479 	 * This flag is cleared before dm_suspend returns.
2480 	 */
2481 	if (noflush)
2482 		set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2483 
2484 	/* This does not get reverted if there's an error later. */
2485 	dm_table_presuspend_targets(map);
2486 
2487 	/*
2488 	 * Flush I/O to the device.
2489 	 * Any I/O submitted after lock_fs() may not be flushed.
2490 	 * noflush takes precedence over do_lockfs.
2491 	 * (lock_fs() flushes I/Os and waits for them to complete.)
2492 	 */
2493 	if (!noflush && do_lockfs) {
2494 		r = lock_fs(md);
2495 		if (r)
2496 			goto out;
2497 	}
2498 
2499 	/*
2500 	 * Here we must make sure that no processes are submitting requests
2501 	 * to target drivers i.e. no one may be executing
2502 	 * __split_and_process_bio. This is called from dm_request and
2503 	 * dm_wq_work.
2504 	 *
2505 	 * To get all processes out of __split_and_process_bio in dm_request,
2506 	 * we take the write lock. To prevent any process from reentering
2507 	 * __split_and_process_bio from dm_request and quiesce the thread
2508 	 * (dm_wq_work), we set BMF_BLOCK_IO_FOR_SUSPEND and call
2509 	 * flush_workqueue(md->wq).
2510 	 */
2511 	down_write(&md->io_lock);
2512 	set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2513 	up_write(&md->io_lock);
2514 
2515 	/*
2516 	 * Stop md->queue before flushing md->wq in case request-based
2517 	 * dm defers requests to md->wq from md->queue.
2518 	 */
2519 	if (dm_request_based(md))
2520 		stop_queue(md->queue);
2521 
2522 	flush_workqueue(md->wq);
2523 
2524 	/*
2525 	 * At this point no more requests are entering target request routines.
2526 	 * We call dm_wait_for_completion to wait for all existing requests
2527 	 * to finish.
2528 	 */
2529 	r = dm_wait_for_completion(md, TASK_INTERRUPTIBLE);
2530 
2531 	down_write(&md->io_lock);
2532 	if (noflush)
2533 		clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2534 	up_write(&md->io_lock);
2535 
2536 	/* were we interrupted ? */
2537 	if (r < 0) {
2538 		dm_queue_flush(md);
2539 
2540 		if (dm_request_based(md))
2541 			start_queue(md->queue);
2542 
2543 		unlock_fs(md);
2544 		goto out; /* pushback list is already flushed, so skip flush */
2545 	}
2546 
2547 	/*
2548 	 * If dm_wait_for_completion returned 0, the device is completely
2549 	 * quiescent now. There is no request-processing activity. All new
2550 	 * requests are being added to md->deferred list.
2551 	 */
2552 
2553 	set_bit(DMF_SUSPENDED, &md->flags);
2554 
2555 	dm_table_postsuspend_targets(map);
2556 
2557 out:
2558 	dm_table_put(map);
2559 
2560 out_unlock:
2561 	mutex_unlock(&md->suspend_lock);
2562 	return r;
2563 }
2564 
2565 int dm_resume(struct mapped_device *md)
2566 {
2567 	int r = -EINVAL;
2568 	struct dm_table *map = NULL;
2569 
2570 	mutex_lock(&md->suspend_lock);
2571 	if (!dm_suspended_md(md))
2572 		goto out;
2573 
2574 	map = dm_get_live_table(md);
2575 	if (!map || !dm_table_get_size(map))
2576 		goto out;
2577 
2578 	r = dm_table_resume_targets(map);
2579 	if (r)
2580 		goto out;
2581 
2582 	dm_queue_flush(md);
2583 
2584 	/*
2585 	 * Flushing deferred I/Os must be done after targets are resumed
2586 	 * so that mapping of targets can work correctly.
2587 	 * Request-based dm is queueing the deferred I/Os in its request_queue.
2588 	 */
2589 	if (dm_request_based(md))
2590 		start_queue(md->queue);
2591 
2592 	unlock_fs(md);
2593 
2594 	clear_bit(DMF_SUSPENDED, &md->flags);
2595 
2596 	r = 0;
2597 out:
2598 	dm_table_put(map);
2599 	mutex_unlock(&md->suspend_lock);
2600 
2601 	return r;
2602 }
2603 
2604 /*-----------------------------------------------------------------
2605  * Event notification.
2606  *---------------------------------------------------------------*/
2607 int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action,
2608 		       unsigned cookie)
2609 {
2610 	char udev_cookie[DM_COOKIE_LENGTH];
2611 	char *envp[] = { udev_cookie, NULL };
2612 
2613 	if (!cookie)
2614 		return kobject_uevent(&disk_to_dev(md->disk)->kobj, action);
2615 	else {
2616 		snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u",
2617 			 DM_COOKIE_ENV_VAR_NAME, cookie);
2618 		return kobject_uevent_env(&disk_to_dev(md->disk)->kobj,
2619 					  action, envp);
2620 	}
2621 }
2622 
2623 uint32_t dm_next_uevent_seq(struct mapped_device *md)
2624 {
2625 	return atomic_add_return(1, &md->uevent_seq);
2626 }
2627 
2628 uint32_t dm_get_event_nr(struct mapped_device *md)
2629 {
2630 	return atomic_read(&md->event_nr);
2631 }
2632 
2633 int dm_wait_event(struct mapped_device *md, int event_nr)
2634 {
2635 	return wait_event_interruptible(md->eventq,
2636 			(event_nr != atomic_read(&md->event_nr)));
2637 }
2638 
2639 void dm_uevent_add(struct mapped_device *md, struct list_head *elist)
2640 {
2641 	unsigned long flags;
2642 
2643 	spin_lock_irqsave(&md->uevent_lock, flags);
2644 	list_add(elist, &md->uevent_list);
2645 	spin_unlock_irqrestore(&md->uevent_lock, flags);
2646 }
2647 
2648 /*
2649  * The gendisk is only valid as long as you have a reference
2650  * count on 'md'.
2651  */
2652 struct gendisk *dm_disk(struct mapped_device *md)
2653 {
2654 	return md->disk;
2655 }
2656 
2657 struct kobject *dm_kobject(struct mapped_device *md)
2658 {
2659 	return &md->kobj;
2660 }
2661 
2662 /*
2663  * struct mapped_device should not be exported outside of dm.c
2664  * so use this check to verify that kobj is part of md structure
2665  */
2666 struct mapped_device *dm_get_from_kobject(struct kobject *kobj)
2667 {
2668 	struct mapped_device *md;
2669 
2670 	md = container_of(kobj, struct mapped_device, kobj);
2671 	if (&md->kobj != kobj)
2672 		return NULL;
2673 
2674 	if (test_bit(DMF_FREEING, &md->flags) ||
2675 	    dm_deleting_md(md))
2676 		return NULL;
2677 
2678 	dm_get(md);
2679 	return md;
2680 }
2681 
2682 int dm_suspended_md(struct mapped_device *md)
2683 {
2684 	return test_bit(DMF_SUSPENDED, &md->flags);
2685 }
2686 
2687 int dm_suspended(struct dm_target *ti)
2688 {
2689 	return dm_suspended_md(dm_table_get_md(ti->table));
2690 }
2691 EXPORT_SYMBOL_GPL(dm_suspended);
2692 
2693 int dm_noflush_suspending(struct dm_target *ti)
2694 {
2695 	return __noflush_suspending(dm_table_get_md(ti->table));
2696 }
2697 EXPORT_SYMBOL_GPL(dm_noflush_suspending);
2698 
2699 struct dm_md_mempools *dm_alloc_md_mempools(unsigned type, unsigned integrity)
2700 {
2701 	struct dm_md_mempools *pools = kmalloc(sizeof(*pools), GFP_KERNEL);
2702 	unsigned int pool_size = (type == DM_TYPE_BIO_BASED) ? 16 : MIN_IOS;
2703 
2704 	if (!pools)
2705 		return NULL;
2706 
2707 	pools->io_pool = (type == DM_TYPE_BIO_BASED) ?
2708 			 mempool_create_slab_pool(MIN_IOS, _io_cache) :
2709 			 mempool_create_slab_pool(MIN_IOS, _rq_bio_info_cache);
2710 	if (!pools->io_pool)
2711 		goto free_pools_and_out;
2712 
2713 	pools->tio_pool = (type == DM_TYPE_BIO_BASED) ?
2714 			  mempool_create_slab_pool(MIN_IOS, _tio_cache) :
2715 			  mempool_create_slab_pool(MIN_IOS, _rq_tio_cache);
2716 	if (!pools->tio_pool)
2717 		goto free_io_pool_and_out;
2718 
2719 	pools->bs = bioset_create(pool_size, 0);
2720 	if (!pools->bs)
2721 		goto free_tio_pool_and_out;
2722 
2723 	if (integrity && bioset_integrity_create(pools->bs, pool_size))
2724 		goto free_bioset_and_out;
2725 
2726 	return pools;
2727 
2728 free_bioset_and_out:
2729 	bioset_free(pools->bs);
2730 
2731 free_tio_pool_and_out:
2732 	mempool_destroy(pools->tio_pool);
2733 
2734 free_io_pool_and_out:
2735 	mempool_destroy(pools->io_pool);
2736 
2737 free_pools_and_out:
2738 	kfree(pools);
2739 
2740 	return NULL;
2741 }
2742 
2743 void dm_free_md_mempools(struct dm_md_mempools *pools)
2744 {
2745 	if (!pools)
2746 		return;
2747 
2748 	if (pools->io_pool)
2749 		mempool_destroy(pools->io_pool);
2750 
2751 	if (pools->tio_pool)
2752 		mempool_destroy(pools->tio_pool);
2753 
2754 	if (pools->bs)
2755 		bioset_free(pools->bs);
2756 
2757 	kfree(pools);
2758 }
2759 
2760 static const struct block_device_operations dm_blk_dops = {
2761 	.open = dm_blk_open,
2762 	.release = dm_blk_close,
2763 	.ioctl = dm_blk_ioctl,
2764 	.getgeo = dm_blk_getgeo,
2765 	.owner = THIS_MODULE
2766 };
2767 
2768 EXPORT_SYMBOL(dm_get_mapinfo);
2769 
2770 /*
2771  * module hooks
2772  */
2773 module_init(dm_init);
2774 module_exit(dm_exit);
2775 
2776 module_param(major, uint, 0);
2777 MODULE_PARM_DESC(major, "The major number of the device mapper");
2778 MODULE_DESCRIPTION(DM_NAME " driver");
2779 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
2780 MODULE_LICENSE("GPL");
2781