1 /* 2 * Copyright (C) 2001, 2002 Sistina Software (UK) Limited. 3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved. 4 * 5 * This file is released under the GPL. 6 */ 7 8 #include "dm.h" 9 #include "dm-uevent.h" 10 11 #include <linux/init.h> 12 #include <linux/module.h> 13 #include <linux/mutex.h> 14 #include <linux/moduleparam.h> 15 #include <linux/blkpg.h> 16 #include <linux/bio.h> 17 #include <linux/mempool.h> 18 #include <linux/slab.h> 19 #include <linux/idr.h> 20 #include <linux/hdreg.h> 21 #include <linux/delay.h> 22 23 #include <trace/events/block.h> 24 25 #define DM_MSG_PREFIX "core" 26 27 #ifdef CONFIG_PRINTK 28 /* 29 * ratelimit state to be used in DMXXX_LIMIT(). 30 */ 31 DEFINE_RATELIMIT_STATE(dm_ratelimit_state, 32 DEFAULT_RATELIMIT_INTERVAL, 33 DEFAULT_RATELIMIT_BURST); 34 EXPORT_SYMBOL(dm_ratelimit_state); 35 #endif 36 37 /* 38 * Cookies are numeric values sent with CHANGE and REMOVE 39 * uevents while resuming, removing or renaming the device. 40 */ 41 #define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE" 42 #define DM_COOKIE_LENGTH 24 43 44 static const char *_name = DM_NAME; 45 46 static unsigned int major = 0; 47 static unsigned int _major = 0; 48 49 static DEFINE_IDR(_minor_idr); 50 51 static DEFINE_SPINLOCK(_minor_lock); 52 /* 53 * For bio-based dm. 54 * One of these is allocated per bio. 55 */ 56 struct dm_io { 57 struct mapped_device *md; 58 int error; 59 atomic_t io_count; 60 struct bio *bio; 61 unsigned long start_time; 62 spinlock_t endio_lock; 63 }; 64 65 /* 66 * For bio-based dm. 67 * One of these is allocated per target within a bio. Hopefully 68 * this will be simplified out one day. 69 */ 70 struct dm_target_io { 71 struct dm_io *io; 72 struct dm_target *ti; 73 union map_info info; 74 }; 75 76 /* 77 * For request-based dm. 78 * One of these is allocated per request. 79 */ 80 struct dm_rq_target_io { 81 struct mapped_device *md; 82 struct dm_target *ti; 83 struct request *orig, clone; 84 int error; 85 union map_info info; 86 }; 87 88 /* 89 * For request-based dm. 90 * One of these is allocated per bio. 91 */ 92 struct dm_rq_clone_bio_info { 93 struct bio *orig; 94 struct dm_rq_target_io *tio; 95 }; 96 97 union map_info *dm_get_mapinfo(struct bio *bio) 98 { 99 if (bio && bio->bi_private) 100 return &((struct dm_target_io *)bio->bi_private)->info; 101 return NULL; 102 } 103 104 union map_info *dm_get_rq_mapinfo(struct request *rq) 105 { 106 if (rq && rq->end_io_data) 107 return &((struct dm_rq_target_io *)rq->end_io_data)->info; 108 return NULL; 109 } 110 EXPORT_SYMBOL_GPL(dm_get_rq_mapinfo); 111 112 #define MINOR_ALLOCED ((void *)-1) 113 114 /* 115 * Bits for the md->flags field. 116 */ 117 #define DMF_BLOCK_IO_FOR_SUSPEND 0 118 #define DMF_SUSPENDED 1 119 #define DMF_FROZEN 2 120 #define DMF_FREEING 3 121 #define DMF_DELETING 4 122 #define DMF_NOFLUSH_SUSPENDING 5 123 #define DMF_MERGE_IS_OPTIONAL 6 124 125 /* 126 * Work processed by per-device workqueue. 127 */ 128 struct mapped_device { 129 struct rw_semaphore io_lock; 130 struct mutex suspend_lock; 131 rwlock_t map_lock; 132 atomic_t holders; 133 atomic_t open_count; 134 135 unsigned long flags; 136 137 struct request_queue *queue; 138 unsigned type; 139 /* Protect queue and type against concurrent access. */ 140 struct mutex type_lock; 141 142 struct target_type *immutable_target_type; 143 144 struct gendisk *disk; 145 char name[16]; 146 147 void *interface_ptr; 148 149 /* 150 * A list of ios that arrived while we were suspended. 151 */ 152 atomic_t pending[2]; 153 wait_queue_head_t wait; 154 struct work_struct work; 155 struct bio_list deferred; 156 spinlock_t deferred_lock; 157 158 /* 159 * Processing queue (flush) 160 */ 161 struct workqueue_struct *wq; 162 163 /* 164 * The current mapping. 165 */ 166 struct dm_table *map; 167 168 /* 169 * io objects are allocated from here. 170 */ 171 mempool_t *io_pool; 172 mempool_t *tio_pool; 173 174 struct bio_set *bs; 175 176 /* 177 * Event handling. 178 */ 179 atomic_t event_nr; 180 wait_queue_head_t eventq; 181 atomic_t uevent_seq; 182 struct list_head uevent_list; 183 spinlock_t uevent_lock; /* Protect access to uevent_list */ 184 185 /* 186 * freeze/thaw support require holding onto a super block 187 */ 188 struct super_block *frozen_sb; 189 struct block_device *bdev; 190 191 /* forced geometry settings */ 192 struct hd_geometry geometry; 193 194 /* sysfs handle */ 195 struct kobject kobj; 196 197 /* zero-length flush that will be cloned and submitted to targets */ 198 struct bio flush_bio; 199 }; 200 201 /* 202 * For mempools pre-allocation at the table loading time. 203 */ 204 struct dm_md_mempools { 205 mempool_t *io_pool; 206 mempool_t *tio_pool; 207 struct bio_set *bs; 208 }; 209 210 #define MIN_IOS 256 211 static struct kmem_cache *_io_cache; 212 static struct kmem_cache *_tio_cache; 213 static struct kmem_cache *_rq_tio_cache; 214 static struct kmem_cache *_rq_bio_info_cache; 215 216 static int __init local_init(void) 217 { 218 int r = -ENOMEM; 219 220 /* allocate a slab for the dm_ios */ 221 _io_cache = KMEM_CACHE(dm_io, 0); 222 if (!_io_cache) 223 return r; 224 225 /* allocate a slab for the target ios */ 226 _tio_cache = KMEM_CACHE(dm_target_io, 0); 227 if (!_tio_cache) 228 goto out_free_io_cache; 229 230 _rq_tio_cache = KMEM_CACHE(dm_rq_target_io, 0); 231 if (!_rq_tio_cache) 232 goto out_free_tio_cache; 233 234 _rq_bio_info_cache = KMEM_CACHE(dm_rq_clone_bio_info, 0); 235 if (!_rq_bio_info_cache) 236 goto out_free_rq_tio_cache; 237 238 r = dm_uevent_init(); 239 if (r) 240 goto out_free_rq_bio_info_cache; 241 242 _major = major; 243 r = register_blkdev(_major, _name); 244 if (r < 0) 245 goto out_uevent_exit; 246 247 if (!_major) 248 _major = r; 249 250 return 0; 251 252 out_uevent_exit: 253 dm_uevent_exit(); 254 out_free_rq_bio_info_cache: 255 kmem_cache_destroy(_rq_bio_info_cache); 256 out_free_rq_tio_cache: 257 kmem_cache_destroy(_rq_tio_cache); 258 out_free_tio_cache: 259 kmem_cache_destroy(_tio_cache); 260 out_free_io_cache: 261 kmem_cache_destroy(_io_cache); 262 263 return r; 264 } 265 266 static void local_exit(void) 267 { 268 kmem_cache_destroy(_rq_bio_info_cache); 269 kmem_cache_destroy(_rq_tio_cache); 270 kmem_cache_destroy(_tio_cache); 271 kmem_cache_destroy(_io_cache); 272 unregister_blkdev(_major, _name); 273 dm_uevent_exit(); 274 275 _major = 0; 276 277 DMINFO("cleaned up"); 278 } 279 280 static int (*_inits[])(void) __initdata = { 281 local_init, 282 dm_target_init, 283 dm_linear_init, 284 dm_stripe_init, 285 dm_io_init, 286 dm_kcopyd_init, 287 dm_interface_init, 288 }; 289 290 static void (*_exits[])(void) = { 291 local_exit, 292 dm_target_exit, 293 dm_linear_exit, 294 dm_stripe_exit, 295 dm_io_exit, 296 dm_kcopyd_exit, 297 dm_interface_exit, 298 }; 299 300 static int __init dm_init(void) 301 { 302 const int count = ARRAY_SIZE(_inits); 303 304 int r, i; 305 306 for (i = 0; i < count; i++) { 307 r = _inits[i](); 308 if (r) 309 goto bad; 310 } 311 312 return 0; 313 314 bad: 315 while (i--) 316 _exits[i](); 317 318 return r; 319 } 320 321 static void __exit dm_exit(void) 322 { 323 int i = ARRAY_SIZE(_exits); 324 325 while (i--) 326 _exits[i](); 327 328 /* 329 * Should be empty by this point. 330 */ 331 idr_remove_all(&_minor_idr); 332 idr_destroy(&_minor_idr); 333 } 334 335 /* 336 * Block device functions 337 */ 338 int dm_deleting_md(struct mapped_device *md) 339 { 340 return test_bit(DMF_DELETING, &md->flags); 341 } 342 343 static int dm_blk_open(struct block_device *bdev, fmode_t mode) 344 { 345 struct mapped_device *md; 346 347 spin_lock(&_minor_lock); 348 349 md = bdev->bd_disk->private_data; 350 if (!md) 351 goto out; 352 353 if (test_bit(DMF_FREEING, &md->flags) || 354 dm_deleting_md(md)) { 355 md = NULL; 356 goto out; 357 } 358 359 dm_get(md); 360 atomic_inc(&md->open_count); 361 362 out: 363 spin_unlock(&_minor_lock); 364 365 return md ? 0 : -ENXIO; 366 } 367 368 static int dm_blk_close(struct gendisk *disk, fmode_t mode) 369 { 370 struct mapped_device *md = disk->private_data; 371 372 spin_lock(&_minor_lock); 373 374 atomic_dec(&md->open_count); 375 dm_put(md); 376 377 spin_unlock(&_minor_lock); 378 379 return 0; 380 } 381 382 int dm_open_count(struct mapped_device *md) 383 { 384 return atomic_read(&md->open_count); 385 } 386 387 /* 388 * Guarantees nothing is using the device before it's deleted. 389 */ 390 int dm_lock_for_deletion(struct mapped_device *md) 391 { 392 int r = 0; 393 394 spin_lock(&_minor_lock); 395 396 if (dm_open_count(md)) 397 r = -EBUSY; 398 else 399 set_bit(DMF_DELETING, &md->flags); 400 401 spin_unlock(&_minor_lock); 402 403 return r; 404 } 405 406 static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo) 407 { 408 struct mapped_device *md = bdev->bd_disk->private_data; 409 410 return dm_get_geometry(md, geo); 411 } 412 413 static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode, 414 unsigned int cmd, unsigned long arg) 415 { 416 struct mapped_device *md = bdev->bd_disk->private_data; 417 struct dm_table *map = dm_get_live_table(md); 418 struct dm_target *tgt; 419 int r = -ENOTTY; 420 421 if (!map || !dm_table_get_size(map)) 422 goto out; 423 424 /* We only support devices that have a single target */ 425 if (dm_table_get_num_targets(map) != 1) 426 goto out; 427 428 tgt = dm_table_get_target(map, 0); 429 430 if (dm_suspended_md(md)) { 431 r = -EAGAIN; 432 goto out; 433 } 434 435 if (tgt->type->ioctl) 436 r = tgt->type->ioctl(tgt, cmd, arg); 437 438 out: 439 dm_table_put(map); 440 441 return r; 442 } 443 444 static struct dm_io *alloc_io(struct mapped_device *md) 445 { 446 return mempool_alloc(md->io_pool, GFP_NOIO); 447 } 448 449 static void free_io(struct mapped_device *md, struct dm_io *io) 450 { 451 mempool_free(io, md->io_pool); 452 } 453 454 static void free_tio(struct mapped_device *md, struct dm_target_io *tio) 455 { 456 mempool_free(tio, md->tio_pool); 457 } 458 459 static struct dm_rq_target_io *alloc_rq_tio(struct mapped_device *md, 460 gfp_t gfp_mask) 461 { 462 return mempool_alloc(md->tio_pool, gfp_mask); 463 } 464 465 static void free_rq_tio(struct dm_rq_target_io *tio) 466 { 467 mempool_free(tio, tio->md->tio_pool); 468 } 469 470 static struct dm_rq_clone_bio_info *alloc_bio_info(struct mapped_device *md) 471 { 472 return mempool_alloc(md->io_pool, GFP_ATOMIC); 473 } 474 475 static void free_bio_info(struct dm_rq_clone_bio_info *info) 476 { 477 mempool_free(info, info->tio->md->io_pool); 478 } 479 480 static int md_in_flight(struct mapped_device *md) 481 { 482 return atomic_read(&md->pending[READ]) + 483 atomic_read(&md->pending[WRITE]); 484 } 485 486 static void start_io_acct(struct dm_io *io) 487 { 488 struct mapped_device *md = io->md; 489 int cpu; 490 int rw = bio_data_dir(io->bio); 491 492 io->start_time = jiffies; 493 494 cpu = part_stat_lock(); 495 part_round_stats(cpu, &dm_disk(md)->part0); 496 part_stat_unlock(); 497 atomic_set(&dm_disk(md)->part0.in_flight[rw], 498 atomic_inc_return(&md->pending[rw])); 499 } 500 501 static void end_io_acct(struct dm_io *io) 502 { 503 struct mapped_device *md = io->md; 504 struct bio *bio = io->bio; 505 unsigned long duration = jiffies - io->start_time; 506 int pending, cpu; 507 int rw = bio_data_dir(bio); 508 509 cpu = part_stat_lock(); 510 part_round_stats(cpu, &dm_disk(md)->part0); 511 part_stat_add(cpu, &dm_disk(md)->part0, ticks[rw], duration); 512 part_stat_unlock(); 513 514 /* 515 * After this is decremented the bio must not be touched if it is 516 * a flush. 517 */ 518 pending = atomic_dec_return(&md->pending[rw]); 519 atomic_set(&dm_disk(md)->part0.in_flight[rw], pending); 520 pending += atomic_read(&md->pending[rw^0x1]); 521 522 /* nudge anyone waiting on suspend queue */ 523 if (!pending) 524 wake_up(&md->wait); 525 } 526 527 /* 528 * Add the bio to the list of deferred io. 529 */ 530 static void queue_io(struct mapped_device *md, struct bio *bio) 531 { 532 unsigned long flags; 533 534 spin_lock_irqsave(&md->deferred_lock, flags); 535 bio_list_add(&md->deferred, bio); 536 spin_unlock_irqrestore(&md->deferred_lock, flags); 537 queue_work(md->wq, &md->work); 538 } 539 540 /* 541 * Everyone (including functions in this file), should use this 542 * function to access the md->map field, and make sure they call 543 * dm_table_put() when finished. 544 */ 545 struct dm_table *dm_get_live_table(struct mapped_device *md) 546 { 547 struct dm_table *t; 548 unsigned long flags; 549 550 read_lock_irqsave(&md->map_lock, flags); 551 t = md->map; 552 if (t) 553 dm_table_get(t); 554 read_unlock_irqrestore(&md->map_lock, flags); 555 556 return t; 557 } 558 559 /* 560 * Get the geometry associated with a dm device 561 */ 562 int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo) 563 { 564 *geo = md->geometry; 565 566 return 0; 567 } 568 569 /* 570 * Set the geometry of a device. 571 */ 572 int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo) 573 { 574 sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors; 575 576 if (geo->start > sz) { 577 DMWARN("Start sector is beyond the geometry limits."); 578 return -EINVAL; 579 } 580 581 md->geometry = *geo; 582 583 return 0; 584 } 585 586 /*----------------------------------------------------------------- 587 * CRUD START: 588 * A more elegant soln is in the works that uses the queue 589 * merge fn, unfortunately there are a couple of changes to 590 * the block layer that I want to make for this. So in the 591 * interests of getting something for people to use I give 592 * you this clearly demarcated crap. 593 *---------------------------------------------------------------*/ 594 595 static int __noflush_suspending(struct mapped_device *md) 596 { 597 return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags); 598 } 599 600 /* 601 * Decrements the number of outstanding ios that a bio has been 602 * cloned into, completing the original io if necc. 603 */ 604 static void dec_pending(struct dm_io *io, int error) 605 { 606 unsigned long flags; 607 int io_error; 608 struct bio *bio; 609 struct mapped_device *md = io->md; 610 611 /* Push-back supersedes any I/O errors */ 612 if (unlikely(error)) { 613 spin_lock_irqsave(&io->endio_lock, flags); 614 if (!(io->error > 0 && __noflush_suspending(md))) 615 io->error = error; 616 spin_unlock_irqrestore(&io->endio_lock, flags); 617 } 618 619 if (atomic_dec_and_test(&io->io_count)) { 620 if (io->error == DM_ENDIO_REQUEUE) { 621 /* 622 * Target requested pushing back the I/O. 623 */ 624 spin_lock_irqsave(&md->deferred_lock, flags); 625 if (__noflush_suspending(md)) 626 bio_list_add_head(&md->deferred, io->bio); 627 else 628 /* noflush suspend was interrupted. */ 629 io->error = -EIO; 630 spin_unlock_irqrestore(&md->deferred_lock, flags); 631 } 632 633 io_error = io->error; 634 bio = io->bio; 635 end_io_acct(io); 636 free_io(md, io); 637 638 if (io_error == DM_ENDIO_REQUEUE) 639 return; 640 641 if ((bio->bi_rw & REQ_FLUSH) && bio->bi_size) { 642 /* 643 * Preflush done for flush with data, reissue 644 * without REQ_FLUSH. 645 */ 646 bio->bi_rw &= ~REQ_FLUSH; 647 queue_io(md, bio); 648 } else { 649 /* done with normal IO or empty flush */ 650 trace_block_bio_complete(md->queue, bio, io_error); 651 bio_endio(bio, io_error); 652 } 653 } 654 } 655 656 static void clone_endio(struct bio *bio, int error) 657 { 658 int r = 0; 659 struct dm_target_io *tio = bio->bi_private; 660 struct dm_io *io = tio->io; 661 struct mapped_device *md = tio->io->md; 662 dm_endio_fn endio = tio->ti->type->end_io; 663 664 if (!bio_flagged(bio, BIO_UPTODATE) && !error) 665 error = -EIO; 666 667 if (endio) { 668 r = endio(tio->ti, bio, error, &tio->info); 669 if (r < 0 || r == DM_ENDIO_REQUEUE) 670 /* 671 * error and requeue request are handled 672 * in dec_pending(). 673 */ 674 error = r; 675 else if (r == DM_ENDIO_INCOMPLETE) 676 /* The target will handle the io */ 677 return; 678 else if (r) { 679 DMWARN("unimplemented target endio return value: %d", r); 680 BUG(); 681 } 682 } 683 684 /* 685 * Store md for cleanup instead of tio which is about to get freed. 686 */ 687 bio->bi_private = md->bs; 688 689 free_tio(md, tio); 690 bio_put(bio); 691 dec_pending(io, error); 692 } 693 694 /* 695 * Partial completion handling for request-based dm 696 */ 697 static void end_clone_bio(struct bio *clone, int error) 698 { 699 struct dm_rq_clone_bio_info *info = clone->bi_private; 700 struct dm_rq_target_io *tio = info->tio; 701 struct bio *bio = info->orig; 702 unsigned int nr_bytes = info->orig->bi_size; 703 704 bio_put(clone); 705 706 if (tio->error) 707 /* 708 * An error has already been detected on the request. 709 * Once error occurred, just let clone->end_io() handle 710 * the remainder. 711 */ 712 return; 713 else if (error) { 714 /* 715 * Don't notice the error to the upper layer yet. 716 * The error handling decision is made by the target driver, 717 * when the request is completed. 718 */ 719 tio->error = error; 720 return; 721 } 722 723 /* 724 * I/O for the bio successfully completed. 725 * Notice the data completion to the upper layer. 726 */ 727 728 /* 729 * bios are processed from the head of the list. 730 * So the completing bio should always be rq->bio. 731 * If it's not, something wrong is happening. 732 */ 733 if (tio->orig->bio != bio) 734 DMERR("bio completion is going in the middle of the request"); 735 736 /* 737 * Update the original request. 738 * Do not use blk_end_request() here, because it may complete 739 * the original request before the clone, and break the ordering. 740 */ 741 blk_update_request(tio->orig, 0, nr_bytes); 742 } 743 744 /* 745 * Don't touch any member of the md after calling this function because 746 * the md may be freed in dm_put() at the end of this function. 747 * Or do dm_get() before calling this function and dm_put() later. 748 */ 749 static void rq_completed(struct mapped_device *md, int rw, int run_queue) 750 { 751 atomic_dec(&md->pending[rw]); 752 753 /* nudge anyone waiting on suspend queue */ 754 if (!md_in_flight(md)) 755 wake_up(&md->wait); 756 757 if (run_queue) 758 blk_run_queue(md->queue); 759 760 /* 761 * dm_put() must be at the end of this function. See the comment above 762 */ 763 dm_put(md); 764 } 765 766 static void free_rq_clone(struct request *clone) 767 { 768 struct dm_rq_target_io *tio = clone->end_io_data; 769 770 blk_rq_unprep_clone(clone); 771 free_rq_tio(tio); 772 } 773 774 /* 775 * Complete the clone and the original request. 776 * Must be called without queue lock. 777 */ 778 static void dm_end_request(struct request *clone, int error) 779 { 780 int rw = rq_data_dir(clone); 781 struct dm_rq_target_io *tio = clone->end_io_data; 782 struct mapped_device *md = tio->md; 783 struct request *rq = tio->orig; 784 785 if (rq->cmd_type == REQ_TYPE_BLOCK_PC) { 786 rq->errors = clone->errors; 787 rq->resid_len = clone->resid_len; 788 789 if (rq->sense) 790 /* 791 * We are using the sense buffer of the original 792 * request. 793 * So setting the length of the sense data is enough. 794 */ 795 rq->sense_len = clone->sense_len; 796 } 797 798 free_rq_clone(clone); 799 blk_end_request_all(rq, error); 800 rq_completed(md, rw, true); 801 } 802 803 static void dm_unprep_request(struct request *rq) 804 { 805 struct request *clone = rq->special; 806 807 rq->special = NULL; 808 rq->cmd_flags &= ~REQ_DONTPREP; 809 810 free_rq_clone(clone); 811 } 812 813 /* 814 * Requeue the original request of a clone. 815 */ 816 void dm_requeue_unmapped_request(struct request *clone) 817 { 818 int rw = rq_data_dir(clone); 819 struct dm_rq_target_io *tio = clone->end_io_data; 820 struct mapped_device *md = tio->md; 821 struct request *rq = tio->orig; 822 struct request_queue *q = rq->q; 823 unsigned long flags; 824 825 dm_unprep_request(rq); 826 827 spin_lock_irqsave(q->queue_lock, flags); 828 blk_requeue_request(q, rq); 829 spin_unlock_irqrestore(q->queue_lock, flags); 830 831 rq_completed(md, rw, 0); 832 } 833 EXPORT_SYMBOL_GPL(dm_requeue_unmapped_request); 834 835 static void __stop_queue(struct request_queue *q) 836 { 837 blk_stop_queue(q); 838 } 839 840 static void stop_queue(struct request_queue *q) 841 { 842 unsigned long flags; 843 844 spin_lock_irqsave(q->queue_lock, flags); 845 __stop_queue(q); 846 spin_unlock_irqrestore(q->queue_lock, flags); 847 } 848 849 static void __start_queue(struct request_queue *q) 850 { 851 if (blk_queue_stopped(q)) 852 blk_start_queue(q); 853 } 854 855 static void start_queue(struct request_queue *q) 856 { 857 unsigned long flags; 858 859 spin_lock_irqsave(q->queue_lock, flags); 860 __start_queue(q); 861 spin_unlock_irqrestore(q->queue_lock, flags); 862 } 863 864 static void dm_done(struct request *clone, int error, bool mapped) 865 { 866 int r = error; 867 struct dm_rq_target_io *tio = clone->end_io_data; 868 dm_request_endio_fn rq_end_io = tio->ti->type->rq_end_io; 869 870 if (mapped && rq_end_io) 871 r = rq_end_io(tio->ti, clone, error, &tio->info); 872 873 if (r <= 0) 874 /* The target wants to complete the I/O */ 875 dm_end_request(clone, r); 876 else if (r == DM_ENDIO_INCOMPLETE) 877 /* The target will handle the I/O */ 878 return; 879 else if (r == DM_ENDIO_REQUEUE) 880 /* The target wants to requeue the I/O */ 881 dm_requeue_unmapped_request(clone); 882 else { 883 DMWARN("unimplemented target endio return value: %d", r); 884 BUG(); 885 } 886 } 887 888 /* 889 * Request completion handler for request-based dm 890 */ 891 static void dm_softirq_done(struct request *rq) 892 { 893 bool mapped = true; 894 struct request *clone = rq->completion_data; 895 struct dm_rq_target_io *tio = clone->end_io_data; 896 897 if (rq->cmd_flags & REQ_FAILED) 898 mapped = false; 899 900 dm_done(clone, tio->error, mapped); 901 } 902 903 /* 904 * Complete the clone and the original request with the error status 905 * through softirq context. 906 */ 907 static void dm_complete_request(struct request *clone, int error) 908 { 909 struct dm_rq_target_io *tio = clone->end_io_data; 910 struct request *rq = tio->orig; 911 912 tio->error = error; 913 rq->completion_data = clone; 914 blk_complete_request(rq); 915 } 916 917 /* 918 * Complete the not-mapped clone and the original request with the error status 919 * through softirq context. 920 * Target's rq_end_io() function isn't called. 921 * This may be used when the target's map_rq() function fails. 922 */ 923 void dm_kill_unmapped_request(struct request *clone, int error) 924 { 925 struct dm_rq_target_io *tio = clone->end_io_data; 926 struct request *rq = tio->orig; 927 928 rq->cmd_flags |= REQ_FAILED; 929 dm_complete_request(clone, error); 930 } 931 EXPORT_SYMBOL_GPL(dm_kill_unmapped_request); 932 933 /* 934 * Called with the queue lock held 935 */ 936 static void end_clone_request(struct request *clone, int error) 937 { 938 /* 939 * For just cleaning up the information of the queue in which 940 * the clone was dispatched. 941 * The clone is *NOT* freed actually here because it is alloced from 942 * dm own mempool and REQ_ALLOCED isn't set in clone->cmd_flags. 943 */ 944 __blk_put_request(clone->q, clone); 945 946 /* 947 * Actual request completion is done in a softirq context which doesn't 948 * hold the queue lock. Otherwise, deadlock could occur because: 949 * - another request may be submitted by the upper level driver 950 * of the stacking during the completion 951 * - the submission which requires queue lock may be done 952 * against this queue 953 */ 954 dm_complete_request(clone, error); 955 } 956 957 /* 958 * Return maximum size of I/O possible at the supplied sector up to the current 959 * target boundary. 960 */ 961 static sector_t max_io_len_target_boundary(sector_t sector, struct dm_target *ti) 962 { 963 sector_t target_offset = dm_target_offset(ti, sector); 964 965 return ti->len - target_offset; 966 } 967 968 static sector_t max_io_len(sector_t sector, struct dm_target *ti) 969 { 970 sector_t len = max_io_len_target_boundary(sector, ti); 971 972 /* 973 * Does the target need to split even further ? 974 */ 975 if (ti->split_io) { 976 sector_t boundary; 977 sector_t offset = dm_target_offset(ti, sector); 978 boundary = ((offset + ti->split_io) & ~(ti->split_io - 1)) 979 - offset; 980 if (len > boundary) 981 len = boundary; 982 } 983 984 return len; 985 } 986 987 static void __map_bio(struct dm_target *ti, struct bio *clone, 988 struct dm_target_io *tio) 989 { 990 int r; 991 sector_t sector; 992 struct mapped_device *md; 993 994 clone->bi_end_io = clone_endio; 995 clone->bi_private = tio; 996 997 /* 998 * Map the clone. If r == 0 we don't need to do 999 * anything, the target has assumed ownership of 1000 * this io. 1001 */ 1002 atomic_inc(&tio->io->io_count); 1003 sector = clone->bi_sector; 1004 r = ti->type->map(ti, clone, &tio->info); 1005 if (r == DM_MAPIO_REMAPPED) { 1006 /* the bio has been remapped so dispatch it */ 1007 1008 trace_block_bio_remap(bdev_get_queue(clone->bi_bdev), clone, 1009 tio->io->bio->bi_bdev->bd_dev, sector); 1010 1011 generic_make_request(clone); 1012 } else if (r < 0 || r == DM_MAPIO_REQUEUE) { 1013 /* error the io and bail out, or requeue it if needed */ 1014 md = tio->io->md; 1015 dec_pending(tio->io, r); 1016 /* 1017 * Store bio_set for cleanup. 1018 */ 1019 clone->bi_end_io = NULL; 1020 clone->bi_private = md->bs; 1021 bio_put(clone); 1022 free_tio(md, tio); 1023 } else if (r) { 1024 DMWARN("unimplemented target map return value: %d", r); 1025 BUG(); 1026 } 1027 } 1028 1029 struct clone_info { 1030 struct mapped_device *md; 1031 struct dm_table *map; 1032 struct bio *bio; 1033 struct dm_io *io; 1034 sector_t sector; 1035 sector_t sector_count; 1036 unsigned short idx; 1037 }; 1038 1039 static void dm_bio_destructor(struct bio *bio) 1040 { 1041 struct bio_set *bs = bio->bi_private; 1042 1043 bio_free(bio, bs); 1044 } 1045 1046 /* 1047 * Creates a little bio that just does part of a bvec. 1048 */ 1049 static struct bio *split_bvec(struct bio *bio, sector_t sector, 1050 unsigned short idx, unsigned int offset, 1051 unsigned int len, struct bio_set *bs) 1052 { 1053 struct bio *clone; 1054 struct bio_vec *bv = bio->bi_io_vec + idx; 1055 1056 clone = bio_alloc_bioset(GFP_NOIO, 1, bs); 1057 clone->bi_destructor = dm_bio_destructor; 1058 *clone->bi_io_vec = *bv; 1059 1060 clone->bi_sector = sector; 1061 clone->bi_bdev = bio->bi_bdev; 1062 clone->bi_rw = bio->bi_rw; 1063 clone->bi_vcnt = 1; 1064 clone->bi_size = to_bytes(len); 1065 clone->bi_io_vec->bv_offset = offset; 1066 clone->bi_io_vec->bv_len = clone->bi_size; 1067 clone->bi_flags |= 1 << BIO_CLONED; 1068 1069 if (bio_integrity(bio)) { 1070 bio_integrity_clone(clone, bio, GFP_NOIO, bs); 1071 bio_integrity_trim(clone, 1072 bio_sector_offset(bio, idx, offset), len); 1073 } 1074 1075 return clone; 1076 } 1077 1078 /* 1079 * Creates a bio that consists of range of complete bvecs. 1080 */ 1081 static struct bio *clone_bio(struct bio *bio, sector_t sector, 1082 unsigned short idx, unsigned short bv_count, 1083 unsigned int len, struct bio_set *bs) 1084 { 1085 struct bio *clone; 1086 1087 clone = bio_alloc_bioset(GFP_NOIO, bio->bi_max_vecs, bs); 1088 __bio_clone(clone, bio); 1089 clone->bi_destructor = dm_bio_destructor; 1090 clone->bi_sector = sector; 1091 clone->bi_idx = idx; 1092 clone->bi_vcnt = idx + bv_count; 1093 clone->bi_size = to_bytes(len); 1094 clone->bi_flags &= ~(1 << BIO_SEG_VALID); 1095 1096 if (bio_integrity(bio)) { 1097 bio_integrity_clone(clone, bio, GFP_NOIO, bs); 1098 1099 if (idx != bio->bi_idx || clone->bi_size < bio->bi_size) 1100 bio_integrity_trim(clone, 1101 bio_sector_offset(bio, idx, 0), len); 1102 } 1103 1104 return clone; 1105 } 1106 1107 static struct dm_target_io *alloc_tio(struct clone_info *ci, 1108 struct dm_target *ti) 1109 { 1110 struct dm_target_io *tio = mempool_alloc(ci->md->tio_pool, GFP_NOIO); 1111 1112 tio->io = ci->io; 1113 tio->ti = ti; 1114 memset(&tio->info, 0, sizeof(tio->info)); 1115 1116 return tio; 1117 } 1118 1119 static void __issue_target_request(struct clone_info *ci, struct dm_target *ti, 1120 unsigned request_nr, sector_t len) 1121 { 1122 struct dm_target_io *tio = alloc_tio(ci, ti); 1123 struct bio *clone; 1124 1125 tio->info.target_request_nr = request_nr; 1126 1127 /* 1128 * Discard requests require the bio's inline iovecs be initialized. 1129 * ci->bio->bi_max_vecs is BIO_INLINE_VECS anyway, for both flush 1130 * and discard, so no need for concern about wasted bvec allocations. 1131 */ 1132 clone = bio_alloc_bioset(GFP_NOIO, ci->bio->bi_max_vecs, ci->md->bs); 1133 __bio_clone(clone, ci->bio); 1134 clone->bi_destructor = dm_bio_destructor; 1135 if (len) { 1136 clone->bi_sector = ci->sector; 1137 clone->bi_size = to_bytes(len); 1138 } 1139 1140 __map_bio(ti, clone, tio); 1141 } 1142 1143 static void __issue_target_requests(struct clone_info *ci, struct dm_target *ti, 1144 unsigned num_requests, sector_t len) 1145 { 1146 unsigned request_nr; 1147 1148 for (request_nr = 0; request_nr < num_requests; request_nr++) 1149 __issue_target_request(ci, ti, request_nr, len); 1150 } 1151 1152 static int __clone_and_map_empty_flush(struct clone_info *ci) 1153 { 1154 unsigned target_nr = 0; 1155 struct dm_target *ti; 1156 1157 BUG_ON(bio_has_data(ci->bio)); 1158 while ((ti = dm_table_get_target(ci->map, target_nr++))) 1159 __issue_target_requests(ci, ti, ti->num_flush_requests, 0); 1160 1161 return 0; 1162 } 1163 1164 /* 1165 * Perform all io with a single clone. 1166 */ 1167 static void __clone_and_map_simple(struct clone_info *ci, struct dm_target *ti) 1168 { 1169 struct bio *clone, *bio = ci->bio; 1170 struct dm_target_io *tio; 1171 1172 tio = alloc_tio(ci, ti); 1173 clone = clone_bio(bio, ci->sector, ci->idx, 1174 bio->bi_vcnt - ci->idx, ci->sector_count, 1175 ci->md->bs); 1176 __map_bio(ti, clone, tio); 1177 ci->sector_count = 0; 1178 } 1179 1180 static int __clone_and_map_discard(struct clone_info *ci) 1181 { 1182 struct dm_target *ti; 1183 sector_t len; 1184 1185 do { 1186 ti = dm_table_find_target(ci->map, ci->sector); 1187 if (!dm_target_is_valid(ti)) 1188 return -EIO; 1189 1190 /* 1191 * Even though the device advertised discard support, 1192 * that does not mean every target supports it, and 1193 * reconfiguration might also have changed that since the 1194 * check was performed. 1195 */ 1196 if (!ti->num_discard_requests) 1197 return -EOPNOTSUPP; 1198 1199 len = min(ci->sector_count, max_io_len_target_boundary(ci->sector, ti)); 1200 1201 __issue_target_requests(ci, ti, ti->num_discard_requests, len); 1202 1203 ci->sector += len; 1204 } while (ci->sector_count -= len); 1205 1206 return 0; 1207 } 1208 1209 static int __clone_and_map(struct clone_info *ci) 1210 { 1211 struct bio *clone, *bio = ci->bio; 1212 struct dm_target *ti; 1213 sector_t len = 0, max; 1214 struct dm_target_io *tio; 1215 1216 if (unlikely(bio->bi_rw & REQ_DISCARD)) 1217 return __clone_and_map_discard(ci); 1218 1219 ti = dm_table_find_target(ci->map, ci->sector); 1220 if (!dm_target_is_valid(ti)) 1221 return -EIO; 1222 1223 max = max_io_len(ci->sector, ti); 1224 1225 if (ci->sector_count <= max) { 1226 /* 1227 * Optimise for the simple case where we can do all of 1228 * the remaining io with a single clone. 1229 */ 1230 __clone_and_map_simple(ci, ti); 1231 1232 } else if (to_sector(bio->bi_io_vec[ci->idx].bv_len) <= max) { 1233 /* 1234 * There are some bvecs that don't span targets. 1235 * Do as many of these as possible. 1236 */ 1237 int i; 1238 sector_t remaining = max; 1239 sector_t bv_len; 1240 1241 for (i = ci->idx; remaining && (i < bio->bi_vcnt); i++) { 1242 bv_len = to_sector(bio->bi_io_vec[i].bv_len); 1243 1244 if (bv_len > remaining) 1245 break; 1246 1247 remaining -= bv_len; 1248 len += bv_len; 1249 } 1250 1251 tio = alloc_tio(ci, ti); 1252 clone = clone_bio(bio, ci->sector, ci->idx, i - ci->idx, len, 1253 ci->md->bs); 1254 __map_bio(ti, clone, tio); 1255 1256 ci->sector += len; 1257 ci->sector_count -= len; 1258 ci->idx = i; 1259 1260 } else { 1261 /* 1262 * Handle a bvec that must be split between two or more targets. 1263 */ 1264 struct bio_vec *bv = bio->bi_io_vec + ci->idx; 1265 sector_t remaining = to_sector(bv->bv_len); 1266 unsigned int offset = 0; 1267 1268 do { 1269 if (offset) { 1270 ti = dm_table_find_target(ci->map, ci->sector); 1271 if (!dm_target_is_valid(ti)) 1272 return -EIO; 1273 1274 max = max_io_len(ci->sector, ti); 1275 } 1276 1277 len = min(remaining, max); 1278 1279 tio = alloc_tio(ci, ti); 1280 clone = split_bvec(bio, ci->sector, ci->idx, 1281 bv->bv_offset + offset, len, 1282 ci->md->bs); 1283 1284 __map_bio(ti, clone, tio); 1285 1286 ci->sector += len; 1287 ci->sector_count -= len; 1288 offset += to_bytes(len); 1289 } while (remaining -= len); 1290 1291 ci->idx++; 1292 } 1293 1294 return 0; 1295 } 1296 1297 /* 1298 * Split the bio into several clones and submit it to targets. 1299 */ 1300 static void __split_and_process_bio(struct mapped_device *md, struct bio *bio) 1301 { 1302 struct clone_info ci; 1303 int error = 0; 1304 1305 ci.map = dm_get_live_table(md); 1306 if (unlikely(!ci.map)) { 1307 bio_io_error(bio); 1308 return; 1309 } 1310 1311 ci.md = md; 1312 ci.io = alloc_io(md); 1313 ci.io->error = 0; 1314 atomic_set(&ci.io->io_count, 1); 1315 ci.io->bio = bio; 1316 ci.io->md = md; 1317 spin_lock_init(&ci.io->endio_lock); 1318 ci.sector = bio->bi_sector; 1319 ci.idx = bio->bi_idx; 1320 1321 start_io_acct(ci.io); 1322 if (bio->bi_rw & REQ_FLUSH) { 1323 ci.bio = &ci.md->flush_bio; 1324 ci.sector_count = 0; 1325 error = __clone_and_map_empty_flush(&ci); 1326 /* dec_pending submits any data associated with flush */ 1327 } else { 1328 ci.bio = bio; 1329 ci.sector_count = bio_sectors(bio); 1330 while (ci.sector_count && !error) 1331 error = __clone_and_map(&ci); 1332 } 1333 1334 /* drop the extra reference count */ 1335 dec_pending(ci.io, error); 1336 dm_table_put(ci.map); 1337 } 1338 /*----------------------------------------------------------------- 1339 * CRUD END 1340 *---------------------------------------------------------------*/ 1341 1342 static int dm_merge_bvec(struct request_queue *q, 1343 struct bvec_merge_data *bvm, 1344 struct bio_vec *biovec) 1345 { 1346 struct mapped_device *md = q->queuedata; 1347 struct dm_table *map = dm_get_live_table(md); 1348 struct dm_target *ti; 1349 sector_t max_sectors; 1350 int max_size = 0; 1351 1352 if (unlikely(!map)) 1353 goto out; 1354 1355 ti = dm_table_find_target(map, bvm->bi_sector); 1356 if (!dm_target_is_valid(ti)) 1357 goto out_table; 1358 1359 /* 1360 * Find maximum amount of I/O that won't need splitting 1361 */ 1362 max_sectors = min(max_io_len(bvm->bi_sector, ti), 1363 (sector_t) BIO_MAX_SECTORS); 1364 max_size = (max_sectors << SECTOR_SHIFT) - bvm->bi_size; 1365 if (max_size < 0) 1366 max_size = 0; 1367 1368 /* 1369 * merge_bvec_fn() returns number of bytes 1370 * it can accept at this offset 1371 * max is precomputed maximal io size 1372 */ 1373 if (max_size && ti->type->merge) 1374 max_size = ti->type->merge(ti, bvm, biovec, max_size); 1375 /* 1376 * If the target doesn't support merge method and some of the devices 1377 * provided their merge_bvec method (we know this by looking at 1378 * queue_max_hw_sectors), then we can't allow bios with multiple vector 1379 * entries. So always set max_size to 0, and the code below allows 1380 * just one page. 1381 */ 1382 else if (queue_max_hw_sectors(q) <= PAGE_SIZE >> 9) 1383 1384 max_size = 0; 1385 1386 out_table: 1387 dm_table_put(map); 1388 1389 out: 1390 /* 1391 * Always allow an entire first page 1392 */ 1393 if (max_size <= biovec->bv_len && !(bvm->bi_size >> SECTOR_SHIFT)) 1394 max_size = biovec->bv_len; 1395 1396 return max_size; 1397 } 1398 1399 /* 1400 * The request function that just remaps the bio built up by 1401 * dm_merge_bvec. 1402 */ 1403 static void _dm_request(struct request_queue *q, struct bio *bio) 1404 { 1405 int rw = bio_data_dir(bio); 1406 struct mapped_device *md = q->queuedata; 1407 int cpu; 1408 1409 down_read(&md->io_lock); 1410 1411 cpu = part_stat_lock(); 1412 part_stat_inc(cpu, &dm_disk(md)->part0, ios[rw]); 1413 part_stat_add(cpu, &dm_disk(md)->part0, sectors[rw], bio_sectors(bio)); 1414 part_stat_unlock(); 1415 1416 /* if we're suspended, we have to queue this io for later */ 1417 if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))) { 1418 up_read(&md->io_lock); 1419 1420 if (bio_rw(bio) != READA) 1421 queue_io(md, bio); 1422 else 1423 bio_io_error(bio); 1424 return; 1425 } 1426 1427 __split_and_process_bio(md, bio); 1428 up_read(&md->io_lock); 1429 return; 1430 } 1431 1432 static int dm_request_based(struct mapped_device *md) 1433 { 1434 return blk_queue_stackable(md->queue); 1435 } 1436 1437 static void dm_request(struct request_queue *q, struct bio *bio) 1438 { 1439 struct mapped_device *md = q->queuedata; 1440 1441 if (dm_request_based(md)) 1442 blk_queue_bio(q, bio); 1443 else 1444 _dm_request(q, bio); 1445 } 1446 1447 void dm_dispatch_request(struct request *rq) 1448 { 1449 int r; 1450 1451 if (blk_queue_io_stat(rq->q)) 1452 rq->cmd_flags |= REQ_IO_STAT; 1453 1454 rq->start_time = jiffies; 1455 r = blk_insert_cloned_request(rq->q, rq); 1456 if (r) 1457 dm_complete_request(rq, r); 1458 } 1459 EXPORT_SYMBOL_GPL(dm_dispatch_request); 1460 1461 static void dm_rq_bio_destructor(struct bio *bio) 1462 { 1463 struct dm_rq_clone_bio_info *info = bio->bi_private; 1464 struct mapped_device *md = info->tio->md; 1465 1466 free_bio_info(info); 1467 bio_free(bio, md->bs); 1468 } 1469 1470 static int dm_rq_bio_constructor(struct bio *bio, struct bio *bio_orig, 1471 void *data) 1472 { 1473 struct dm_rq_target_io *tio = data; 1474 struct mapped_device *md = tio->md; 1475 struct dm_rq_clone_bio_info *info = alloc_bio_info(md); 1476 1477 if (!info) 1478 return -ENOMEM; 1479 1480 info->orig = bio_orig; 1481 info->tio = tio; 1482 bio->bi_end_io = end_clone_bio; 1483 bio->bi_private = info; 1484 bio->bi_destructor = dm_rq_bio_destructor; 1485 1486 return 0; 1487 } 1488 1489 static int setup_clone(struct request *clone, struct request *rq, 1490 struct dm_rq_target_io *tio) 1491 { 1492 int r; 1493 1494 r = blk_rq_prep_clone(clone, rq, tio->md->bs, GFP_ATOMIC, 1495 dm_rq_bio_constructor, tio); 1496 if (r) 1497 return r; 1498 1499 clone->cmd = rq->cmd; 1500 clone->cmd_len = rq->cmd_len; 1501 clone->sense = rq->sense; 1502 clone->buffer = rq->buffer; 1503 clone->end_io = end_clone_request; 1504 clone->end_io_data = tio; 1505 1506 return 0; 1507 } 1508 1509 static struct request *clone_rq(struct request *rq, struct mapped_device *md, 1510 gfp_t gfp_mask) 1511 { 1512 struct request *clone; 1513 struct dm_rq_target_io *tio; 1514 1515 tio = alloc_rq_tio(md, gfp_mask); 1516 if (!tio) 1517 return NULL; 1518 1519 tio->md = md; 1520 tio->ti = NULL; 1521 tio->orig = rq; 1522 tio->error = 0; 1523 memset(&tio->info, 0, sizeof(tio->info)); 1524 1525 clone = &tio->clone; 1526 if (setup_clone(clone, rq, tio)) { 1527 /* -ENOMEM */ 1528 free_rq_tio(tio); 1529 return NULL; 1530 } 1531 1532 return clone; 1533 } 1534 1535 /* 1536 * Called with the queue lock held. 1537 */ 1538 static int dm_prep_fn(struct request_queue *q, struct request *rq) 1539 { 1540 struct mapped_device *md = q->queuedata; 1541 struct request *clone; 1542 1543 if (unlikely(rq->special)) { 1544 DMWARN("Already has something in rq->special."); 1545 return BLKPREP_KILL; 1546 } 1547 1548 clone = clone_rq(rq, md, GFP_ATOMIC); 1549 if (!clone) 1550 return BLKPREP_DEFER; 1551 1552 rq->special = clone; 1553 rq->cmd_flags |= REQ_DONTPREP; 1554 1555 return BLKPREP_OK; 1556 } 1557 1558 /* 1559 * Returns: 1560 * 0 : the request has been processed (not requeued) 1561 * !0 : the request has been requeued 1562 */ 1563 static int map_request(struct dm_target *ti, struct request *clone, 1564 struct mapped_device *md) 1565 { 1566 int r, requeued = 0; 1567 struct dm_rq_target_io *tio = clone->end_io_data; 1568 1569 /* 1570 * Hold the md reference here for the in-flight I/O. 1571 * We can't rely on the reference count by device opener, 1572 * because the device may be closed during the request completion 1573 * when all bios are completed. 1574 * See the comment in rq_completed() too. 1575 */ 1576 dm_get(md); 1577 1578 tio->ti = ti; 1579 r = ti->type->map_rq(ti, clone, &tio->info); 1580 switch (r) { 1581 case DM_MAPIO_SUBMITTED: 1582 /* The target has taken the I/O to submit by itself later */ 1583 break; 1584 case DM_MAPIO_REMAPPED: 1585 /* The target has remapped the I/O so dispatch it */ 1586 trace_block_rq_remap(clone->q, clone, disk_devt(dm_disk(md)), 1587 blk_rq_pos(tio->orig)); 1588 dm_dispatch_request(clone); 1589 break; 1590 case DM_MAPIO_REQUEUE: 1591 /* The target wants to requeue the I/O */ 1592 dm_requeue_unmapped_request(clone); 1593 requeued = 1; 1594 break; 1595 default: 1596 if (r > 0) { 1597 DMWARN("unimplemented target map return value: %d", r); 1598 BUG(); 1599 } 1600 1601 /* The target wants to complete the I/O */ 1602 dm_kill_unmapped_request(clone, r); 1603 break; 1604 } 1605 1606 return requeued; 1607 } 1608 1609 /* 1610 * q->request_fn for request-based dm. 1611 * Called with the queue lock held. 1612 */ 1613 static void dm_request_fn(struct request_queue *q) 1614 { 1615 struct mapped_device *md = q->queuedata; 1616 struct dm_table *map = dm_get_live_table(md); 1617 struct dm_target *ti; 1618 struct request *rq, *clone; 1619 sector_t pos; 1620 1621 /* 1622 * For suspend, check blk_queue_stopped() and increment 1623 * ->pending within a single queue_lock not to increment the 1624 * number of in-flight I/Os after the queue is stopped in 1625 * dm_suspend(). 1626 */ 1627 while (!blk_queue_stopped(q)) { 1628 rq = blk_peek_request(q); 1629 if (!rq) 1630 goto delay_and_out; 1631 1632 /* always use block 0 to find the target for flushes for now */ 1633 pos = 0; 1634 if (!(rq->cmd_flags & REQ_FLUSH)) 1635 pos = blk_rq_pos(rq); 1636 1637 ti = dm_table_find_target(map, pos); 1638 BUG_ON(!dm_target_is_valid(ti)); 1639 1640 if (ti->type->busy && ti->type->busy(ti)) 1641 goto delay_and_out; 1642 1643 blk_start_request(rq); 1644 clone = rq->special; 1645 atomic_inc(&md->pending[rq_data_dir(clone)]); 1646 1647 spin_unlock(q->queue_lock); 1648 if (map_request(ti, clone, md)) 1649 goto requeued; 1650 1651 BUG_ON(!irqs_disabled()); 1652 spin_lock(q->queue_lock); 1653 } 1654 1655 goto out; 1656 1657 requeued: 1658 BUG_ON(!irqs_disabled()); 1659 spin_lock(q->queue_lock); 1660 1661 delay_and_out: 1662 blk_delay_queue(q, HZ / 10); 1663 out: 1664 dm_table_put(map); 1665 1666 return; 1667 } 1668 1669 int dm_underlying_device_busy(struct request_queue *q) 1670 { 1671 return blk_lld_busy(q); 1672 } 1673 EXPORT_SYMBOL_GPL(dm_underlying_device_busy); 1674 1675 static int dm_lld_busy(struct request_queue *q) 1676 { 1677 int r; 1678 struct mapped_device *md = q->queuedata; 1679 struct dm_table *map = dm_get_live_table(md); 1680 1681 if (!map || test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) 1682 r = 1; 1683 else 1684 r = dm_table_any_busy_target(map); 1685 1686 dm_table_put(map); 1687 1688 return r; 1689 } 1690 1691 static int dm_any_congested(void *congested_data, int bdi_bits) 1692 { 1693 int r = bdi_bits; 1694 struct mapped_device *md = congested_data; 1695 struct dm_table *map; 1696 1697 if (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) { 1698 map = dm_get_live_table(md); 1699 if (map) { 1700 /* 1701 * Request-based dm cares about only own queue for 1702 * the query about congestion status of request_queue 1703 */ 1704 if (dm_request_based(md)) 1705 r = md->queue->backing_dev_info.state & 1706 bdi_bits; 1707 else 1708 r = dm_table_any_congested(map, bdi_bits); 1709 1710 dm_table_put(map); 1711 } 1712 } 1713 1714 return r; 1715 } 1716 1717 /*----------------------------------------------------------------- 1718 * An IDR is used to keep track of allocated minor numbers. 1719 *---------------------------------------------------------------*/ 1720 static void free_minor(int minor) 1721 { 1722 spin_lock(&_minor_lock); 1723 idr_remove(&_minor_idr, minor); 1724 spin_unlock(&_minor_lock); 1725 } 1726 1727 /* 1728 * See if the device with a specific minor # is free. 1729 */ 1730 static int specific_minor(int minor) 1731 { 1732 int r, m; 1733 1734 if (minor >= (1 << MINORBITS)) 1735 return -EINVAL; 1736 1737 r = idr_pre_get(&_minor_idr, GFP_KERNEL); 1738 if (!r) 1739 return -ENOMEM; 1740 1741 spin_lock(&_minor_lock); 1742 1743 if (idr_find(&_minor_idr, minor)) { 1744 r = -EBUSY; 1745 goto out; 1746 } 1747 1748 r = idr_get_new_above(&_minor_idr, MINOR_ALLOCED, minor, &m); 1749 if (r) 1750 goto out; 1751 1752 if (m != minor) { 1753 idr_remove(&_minor_idr, m); 1754 r = -EBUSY; 1755 goto out; 1756 } 1757 1758 out: 1759 spin_unlock(&_minor_lock); 1760 return r; 1761 } 1762 1763 static int next_free_minor(int *minor) 1764 { 1765 int r, m; 1766 1767 r = idr_pre_get(&_minor_idr, GFP_KERNEL); 1768 if (!r) 1769 return -ENOMEM; 1770 1771 spin_lock(&_minor_lock); 1772 1773 r = idr_get_new(&_minor_idr, MINOR_ALLOCED, &m); 1774 if (r) 1775 goto out; 1776 1777 if (m >= (1 << MINORBITS)) { 1778 idr_remove(&_minor_idr, m); 1779 r = -ENOSPC; 1780 goto out; 1781 } 1782 1783 *minor = m; 1784 1785 out: 1786 spin_unlock(&_minor_lock); 1787 return r; 1788 } 1789 1790 static const struct block_device_operations dm_blk_dops; 1791 1792 static void dm_wq_work(struct work_struct *work); 1793 1794 static void dm_init_md_queue(struct mapped_device *md) 1795 { 1796 /* 1797 * Request-based dm devices cannot be stacked on top of bio-based dm 1798 * devices. The type of this dm device has not been decided yet. 1799 * The type is decided at the first table loading time. 1800 * To prevent problematic device stacking, clear the queue flag 1801 * for request stacking support until then. 1802 * 1803 * This queue is new, so no concurrency on the queue_flags. 1804 */ 1805 queue_flag_clear_unlocked(QUEUE_FLAG_STACKABLE, md->queue); 1806 1807 md->queue->queuedata = md; 1808 md->queue->backing_dev_info.congested_fn = dm_any_congested; 1809 md->queue->backing_dev_info.congested_data = md; 1810 blk_queue_make_request(md->queue, dm_request); 1811 blk_queue_bounce_limit(md->queue, BLK_BOUNCE_ANY); 1812 blk_queue_merge_bvec(md->queue, dm_merge_bvec); 1813 } 1814 1815 /* 1816 * Allocate and initialise a blank device with a given minor. 1817 */ 1818 static struct mapped_device *alloc_dev(int minor) 1819 { 1820 int r; 1821 struct mapped_device *md = kzalloc(sizeof(*md), GFP_KERNEL); 1822 void *old_md; 1823 1824 if (!md) { 1825 DMWARN("unable to allocate device, out of memory."); 1826 return NULL; 1827 } 1828 1829 if (!try_module_get(THIS_MODULE)) 1830 goto bad_module_get; 1831 1832 /* get a minor number for the dev */ 1833 if (minor == DM_ANY_MINOR) 1834 r = next_free_minor(&minor); 1835 else 1836 r = specific_minor(minor); 1837 if (r < 0) 1838 goto bad_minor; 1839 1840 md->type = DM_TYPE_NONE; 1841 init_rwsem(&md->io_lock); 1842 mutex_init(&md->suspend_lock); 1843 mutex_init(&md->type_lock); 1844 spin_lock_init(&md->deferred_lock); 1845 rwlock_init(&md->map_lock); 1846 atomic_set(&md->holders, 1); 1847 atomic_set(&md->open_count, 0); 1848 atomic_set(&md->event_nr, 0); 1849 atomic_set(&md->uevent_seq, 0); 1850 INIT_LIST_HEAD(&md->uevent_list); 1851 spin_lock_init(&md->uevent_lock); 1852 1853 md->queue = blk_alloc_queue(GFP_KERNEL); 1854 if (!md->queue) 1855 goto bad_queue; 1856 1857 dm_init_md_queue(md); 1858 1859 md->disk = alloc_disk(1); 1860 if (!md->disk) 1861 goto bad_disk; 1862 1863 atomic_set(&md->pending[0], 0); 1864 atomic_set(&md->pending[1], 0); 1865 init_waitqueue_head(&md->wait); 1866 INIT_WORK(&md->work, dm_wq_work); 1867 init_waitqueue_head(&md->eventq); 1868 1869 md->disk->major = _major; 1870 md->disk->first_minor = minor; 1871 md->disk->fops = &dm_blk_dops; 1872 md->disk->queue = md->queue; 1873 md->disk->private_data = md; 1874 sprintf(md->disk->disk_name, "dm-%d", minor); 1875 add_disk(md->disk); 1876 format_dev_t(md->name, MKDEV(_major, minor)); 1877 1878 md->wq = alloc_workqueue("kdmflush", 1879 WQ_NON_REENTRANT | WQ_MEM_RECLAIM, 0); 1880 if (!md->wq) 1881 goto bad_thread; 1882 1883 md->bdev = bdget_disk(md->disk, 0); 1884 if (!md->bdev) 1885 goto bad_bdev; 1886 1887 bio_init(&md->flush_bio); 1888 md->flush_bio.bi_bdev = md->bdev; 1889 md->flush_bio.bi_rw = WRITE_FLUSH; 1890 1891 /* Populate the mapping, nobody knows we exist yet */ 1892 spin_lock(&_minor_lock); 1893 old_md = idr_replace(&_minor_idr, md, minor); 1894 spin_unlock(&_minor_lock); 1895 1896 BUG_ON(old_md != MINOR_ALLOCED); 1897 1898 return md; 1899 1900 bad_bdev: 1901 destroy_workqueue(md->wq); 1902 bad_thread: 1903 del_gendisk(md->disk); 1904 put_disk(md->disk); 1905 bad_disk: 1906 blk_cleanup_queue(md->queue); 1907 bad_queue: 1908 free_minor(minor); 1909 bad_minor: 1910 module_put(THIS_MODULE); 1911 bad_module_get: 1912 kfree(md); 1913 return NULL; 1914 } 1915 1916 static void unlock_fs(struct mapped_device *md); 1917 1918 static void free_dev(struct mapped_device *md) 1919 { 1920 int minor = MINOR(disk_devt(md->disk)); 1921 1922 unlock_fs(md); 1923 bdput(md->bdev); 1924 destroy_workqueue(md->wq); 1925 if (md->tio_pool) 1926 mempool_destroy(md->tio_pool); 1927 if (md->io_pool) 1928 mempool_destroy(md->io_pool); 1929 if (md->bs) 1930 bioset_free(md->bs); 1931 blk_integrity_unregister(md->disk); 1932 del_gendisk(md->disk); 1933 free_minor(minor); 1934 1935 spin_lock(&_minor_lock); 1936 md->disk->private_data = NULL; 1937 spin_unlock(&_minor_lock); 1938 1939 put_disk(md->disk); 1940 blk_cleanup_queue(md->queue); 1941 module_put(THIS_MODULE); 1942 kfree(md); 1943 } 1944 1945 static void __bind_mempools(struct mapped_device *md, struct dm_table *t) 1946 { 1947 struct dm_md_mempools *p; 1948 1949 if (md->io_pool && md->tio_pool && md->bs) 1950 /* the md already has necessary mempools */ 1951 goto out; 1952 1953 p = dm_table_get_md_mempools(t); 1954 BUG_ON(!p || md->io_pool || md->tio_pool || md->bs); 1955 1956 md->io_pool = p->io_pool; 1957 p->io_pool = NULL; 1958 md->tio_pool = p->tio_pool; 1959 p->tio_pool = NULL; 1960 md->bs = p->bs; 1961 p->bs = NULL; 1962 1963 out: 1964 /* mempool bind completed, now no need any mempools in the table */ 1965 dm_table_free_md_mempools(t); 1966 } 1967 1968 /* 1969 * Bind a table to the device. 1970 */ 1971 static void event_callback(void *context) 1972 { 1973 unsigned long flags; 1974 LIST_HEAD(uevents); 1975 struct mapped_device *md = (struct mapped_device *) context; 1976 1977 spin_lock_irqsave(&md->uevent_lock, flags); 1978 list_splice_init(&md->uevent_list, &uevents); 1979 spin_unlock_irqrestore(&md->uevent_lock, flags); 1980 1981 dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj); 1982 1983 atomic_inc(&md->event_nr); 1984 wake_up(&md->eventq); 1985 } 1986 1987 /* 1988 * Protected by md->suspend_lock obtained by dm_swap_table(). 1989 */ 1990 static void __set_size(struct mapped_device *md, sector_t size) 1991 { 1992 set_capacity(md->disk, size); 1993 1994 i_size_write(md->bdev->bd_inode, (loff_t)size << SECTOR_SHIFT); 1995 } 1996 1997 /* 1998 * Return 1 if the queue has a compulsory merge_bvec_fn function. 1999 * 2000 * If this function returns 0, then the device is either a non-dm 2001 * device without a merge_bvec_fn, or it is a dm device that is 2002 * able to split any bios it receives that are too big. 2003 */ 2004 int dm_queue_merge_is_compulsory(struct request_queue *q) 2005 { 2006 struct mapped_device *dev_md; 2007 2008 if (!q->merge_bvec_fn) 2009 return 0; 2010 2011 if (q->make_request_fn == dm_request) { 2012 dev_md = q->queuedata; 2013 if (test_bit(DMF_MERGE_IS_OPTIONAL, &dev_md->flags)) 2014 return 0; 2015 } 2016 2017 return 1; 2018 } 2019 2020 static int dm_device_merge_is_compulsory(struct dm_target *ti, 2021 struct dm_dev *dev, sector_t start, 2022 sector_t len, void *data) 2023 { 2024 struct block_device *bdev = dev->bdev; 2025 struct request_queue *q = bdev_get_queue(bdev); 2026 2027 return dm_queue_merge_is_compulsory(q); 2028 } 2029 2030 /* 2031 * Return 1 if it is acceptable to ignore merge_bvec_fn based 2032 * on the properties of the underlying devices. 2033 */ 2034 static int dm_table_merge_is_optional(struct dm_table *table) 2035 { 2036 unsigned i = 0; 2037 struct dm_target *ti; 2038 2039 while (i < dm_table_get_num_targets(table)) { 2040 ti = dm_table_get_target(table, i++); 2041 2042 if (ti->type->iterate_devices && 2043 ti->type->iterate_devices(ti, dm_device_merge_is_compulsory, NULL)) 2044 return 0; 2045 } 2046 2047 return 1; 2048 } 2049 2050 /* 2051 * Returns old map, which caller must destroy. 2052 */ 2053 static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t, 2054 struct queue_limits *limits) 2055 { 2056 struct dm_table *old_map; 2057 struct request_queue *q = md->queue; 2058 sector_t size; 2059 unsigned long flags; 2060 int merge_is_optional; 2061 2062 size = dm_table_get_size(t); 2063 2064 /* 2065 * Wipe any geometry if the size of the table changed. 2066 */ 2067 if (size != get_capacity(md->disk)) 2068 memset(&md->geometry, 0, sizeof(md->geometry)); 2069 2070 __set_size(md, size); 2071 2072 dm_table_event_callback(t, event_callback, md); 2073 2074 /* 2075 * The queue hasn't been stopped yet, if the old table type wasn't 2076 * for request-based during suspension. So stop it to prevent 2077 * I/O mapping before resume. 2078 * This must be done before setting the queue restrictions, 2079 * because request-based dm may be run just after the setting. 2080 */ 2081 if (dm_table_request_based(t) && !blk_queue_stopped(q)) 2082 stop_queue(q); 2083 2084 __bind_mempools(md, t); 2085 2086 merge_is_optional = dm_table_merge_is_optional(t); 2087 2088 write_lock_irqsave(&md->map_lock, flags); 2089 old_map = md->map; 2090 md->map = t; 2091 md->immutable_target_type = dm_table_get_immutable_target_type(t); 2092 2093 dm_table_set_restrictions(t, q, limits); 2094 if (merge_is_optional) 2095 set_bit(DMF_MERGE_IS_OPTIONAL, &md->flags); 2096 else 2097 clear_bit(DMF_MERGE_IS_OPTIONAL, &md->flags); 2098 write_unlock_irqrestore(&md->map_lock, flags); 2099 2100 return old_map; 2101 } 2102 2103 /* 2104 * Returns unbound table for the caller to free. 2105 */ 2106 static struct dm_table *__unbind(struct mapped_device *md) 2107 { 2108 struct dm_table *map = md->map; 2109 unsigned long flags; 2110 2111 if (!map) 2112 return NULL; 2113 2114 dm_table_event_callback(map, NULL, NULL); 2115 write_lock_irqsave(&md->map_lock, flags); 2116 md->map = NULL; 2117 write_unlock_irqrestore(&md->map_lock, flags); 2118 2119 return map; 2120 } 2121 2122 /* 2123 * Constructor for a new device. 2124 */ 2125 int dm_create(int minor, struct mapped_device **result) 2126 { 2127 struct mapped_device *md; 2128 2129 md = alloc_dev(minor); 2130 if (!md) 2131 return -ENXIO; 2132 2133 dm_sysfs_init(md); 2134 2135 *result = md; 2136 return 0; 2137 } 2138 2139 /* 2140 * Functions to manage md->type. 2141 * All are required to hold md->type_lock. 2142 */ 2143 void dm_lock_md_type(struct mapped_device *md) 2144 { 2145 mutex_lock(&md->type_lock); 2146 } 2147 2148 void dm_unlock_md_type(struct mapped_device *md) 2149 { 2150 mutex_unlock(&md->type_lock); 2151 } 2152 2153 void dm_set_md_type(struct mapped_device *md, unsigned type) 2154 { 2155 md->type = type; 2156 } 2157 2158 unsigned dm_get_md_type(struct mapped_device *md) 2159 { 2160 return md->type; 2161 } 2162 2163 struct target_type *dm_get_immutable_target_type(struct mapped_device *md) 2164 { 2165 return md->immutable_target_type; 2166 } 2167 2168 /* 2169 * Fully initialize a request-based queue (->elevator, ->request_fn, etc). 2170 */ 2171 static int dm_init_request_based_queue(struct mapped_device *md) 2172 { 2173 struct request_queue *q = NULL; 2174 2175 if (md->queue->elevator) 2176 return 1; 2177 2178 /* Fully initialize the queue */ 2179 q = blk_init_allocated_queue(md->queue, dm_request_fn, NULL); 2180 if (!q) 2181 return 0; 2182 2183 md->queue = q; 2184 dm_init_md_queue(md); 2185 blk_queue_softirq_done(md->queue, dm_softirq_done); 2186 blk_queue_prep_rq(md->queue, dm_prep_fn); 2187 blk_queue_lld_busy(md->queue, dm_lld_busy); 2188 2189 elv_register_queue(md->queue); 2190 2191 return 1; 2192 } 2193 2194 /* 2195 * Setup the DM device's queue based on md's type 2196 */ 2197 int dm_setup_md_queue(struct mapped_device *md) 2198 { 2199 if ((dm_get_md_type(md) == DM_TYPE_REQUEST_BASED) && 2200 !dm_init_request_based_queue(md)) { 2201 DMWARN("Cannot initialize queue for request-based mapped device"); 2202 return -EINVAL; 2203 } 2204 2205 return 0; 2206 } 2207 2208 static struct mapped_device *dm_find_md(dev_t dev) 2209 { 2210 struct mapped_device *md; 2211 unsigned minor = MINOR(dev); 2212 2213 if (MAJOR(dev) != _major || minor >= (1 << MINORBITS)) 2214 return NULL; 2215 2216 spin_lock(&_minor_lock); 2217 2218 md = idr_find(&_minor_idr, minor); 2219 if (md && (md == MINOR_ALLOCED || 2220 (MINOR(disk_devt(dm_disk(md))) != minor) || 2221 dm_deleting_md(md) || 2222 test_bit(DMF_FREEING, &md->flags))) { 2223 md = NULL; 2224 goto out; 2225 } 2226 2227 out: 2228 spin_unlock(&_minor_lock); 2229 2230 return md; 2231 } 2232 2233 struct mapped_device *dm_get_md(dev_t dev) 2234 { 2235 struct mapped_device *md = dm_find_md(dev); 2236 2237 if (md) 2238 dm_get(md); 2239 2240 return md; 2241 } 2242 EXPORT_SYMBOL_GPL(dm_get_md); 2243 2244 void *dm_get_mdptr(struct mapped_device *md) 2245 { 2246 return md->interface_ptr; 2247 } 2248 2249 void dm_set_mdptr(struct mapped_device *md, void *ptr) 2250 { 2251 md->interface_ptr = ptr; 2252 } 2253 2254 void dm_get(struct mapped_device *md) 2255 { 2256 atomic_inc(&md->holders); 2257 BUG_ON(test_bit(DMF_FREEING, &md->flags)); 2258 } 2259 2260 const char *dm_device_name(struct mapped_device *md) 2261 { 2262 return md->name; 2263 } 2264 EXPORT_SYMBOL_GPL(dm_device_name); 2265 2266 static void __dm_destroy(struct mapped_device *md, bool wait) 2267 { 2268 struct dm_table *map; 2269 2270 might_sleep(); 2271 2272 spin_lock(&_minor_lock); 2273 map = dm_get_live_table(md); 2274 idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md)))); 2275 set_bit(DMF_FREEING, &md->flags); 2276 spin_unlock(&_minor_lock); 2277 2278 if (!dm_suspended_md(md)) { 2279 dm_table_presuspend_targets(map); 2280 dm_table_postsuspend_targets(map); 2281 } 2282 2283 /* 2284 * Rare, but there may be I/O requests still going to complete, 2285 * for example. Wait for all references to disappear. 2286 * No one should increment the reference count of the mapped_device, 2287 * after the mapped_device state becomes DMF_FREEING. 2288 */ 2289 if (wait) 2290 while (atomic_read(&md->holders)) 2291 msleep(1); 2292 else if (atomic_read(&md->holders)) 2293 DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)", 2294 dm_device_name(md), atomic_read(&md->holders)); 2295 2296 dm_sysfs_exit(md); 2297 dm_table_put(map); 2298 dm_table_destroy(__unbind(md)); 2299 free_dev(md); 2300 } 2301 2302 void dm_destroy(struct mapped_device *md) 2303 { 2304 __dm_destroy(md, true); 2305 } 2306 2307 void dm_destroy_immediate(struct mapped_device *md) 2308 { 2309 __dm_destroy(md, false); 2310 } 2311 2312 void dm_put(struct mapped_device *md) 2313 { 2314 atomic_dec(&md->holders); 2315 } 2316 EXPORT_SYMBOL_GPL(dm_put); 2317 2318 static int dm_wait_for_completion(struct mapped_device *md, int interruptible) 2319 { 2320 int r = 0; 2321 DECLARE_WAITQUEUE(wait, current); 2322 2323 add_wait_queue(&md->wait, &wait); 2324 2325 while (1) { 2326 set_current_state(interruptible); 2327 2328 if (!md_in_flight(md)) 2329 break; 2330 2331 if (interruptible == TASK_INTERRUPTIBLE && 2332 signal_pending(current)) { 2333 r = -EINTR; 2334 break; 2335 } 2336 2337 io_schedule(); 2338 } 2339 set_current_state(TASK_RUNNING); 2340 2341 remove_wait_queue(&md->wait, &wait); 2342 2343 return r; 2344 } 2345 2346 /* 2347 * Process the deferred bios 2348 */ 2349 static void dm_wq_work(struct work_struct *work) 2350 { 2351 struct mapped_device *md = container_of(work, struct mapped_device, 2352 work); 2353 struct bio *c; 2354 2355 down_read(&md->io_lock); 2356 2357 while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) { 2358 spin_lock_irq(&md->deferred_lock); 2359 c = bio_list_pop(&md->deferred); 2360 spin_unlock_irq(&md->deferred_lock); 2361 2362 if (!c) 2363 break; 2364 2365 up_read(&md->io_lock); 2366 2367 if (dm_request_based(md)) 2368 generic_make_request(c); 2369 else 2370 __split_and_process_bio(md, c); 2371 2372 down_read(&md->io_lock); 2373 } 2374 2375 up_read(&md->io_lock); 2376 } 2377 2378 static void dm_queue_flush(struct mapped_device *md) 2379 { 2380 clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags); 2381 smp_mb__after_clear_bit(); 2382 queue_work(md->wq, &md->work); 2383 } 2384 2385 /* 2386 * Swap in a new table, returning the old one for the caller to destroy. 2387 */ 2388 struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table) 2389 { 2390 struct dm_table *map = ERR_PTR(-EINVAL); 2391 struct queue_limits limits; 2392 int r; 2393 2394 mutex_lock(&md->suspend_lock); 2395 2396 /* device must be suspended */ 2397 if (!dm_suspended_md(md)) 2398 goto out; 2399 2400 r = dm_calculate_queue_limits(table, &limits); 2401 if (r) { 2402 map = ERR_PTR(r); 2403 goto out; 2404 } 2405 2406 map = __bind(md, table, &limits); 2407 2408 out: 2409 mutex_unlock(&md->suspend_lock); 2410 return map; 2411 } 2412 2413 /* 2414 * Functions to lock and unlock any filesystem running on the 2415 * device. 2416 */ 2417 static int lock_fs(struct mapped_device *md) 2418 { 2419 int r; 2420 2421 WARN_ON(md->frozen_sb); 2422 2423 md->frozen_sb = freeze_bdev(md->bdev); 2424 if (IS_ERR(md->frozen_sb)) { 2425 r = PTR_ERR(md->frozen_sb); 2426 md->frozen_sb = NULL; 2427 return r; 2428 } 2429 2430 set_bit(DMF_FROZEN, &md->flags); 2431 2432 return 0; 2433 } 2434 2435 static void unlock_fs(struct mapped_device *md) 2436 { 2437 if (!test_bit(DMF_FROZEN, &md->flags)) 2438 return; 2439 2440 thaw_bdev(md->bdev, md->frozen_sb); 2441 md->frozen_sb = NULL; 2442 clear_bit(DMF_FROZEN, &md->flags); 2443 } 2444 2445 /* 2446 * We need to be able to change a mapping table under a mounted 2447 * filesystem. For example we might want to move some data in 2448 * the background. Before the table can be swapped with 2449 * dm_bind_table, dm_suspend must be called to flush any in 2450 * flight bios and ensure that any further io gets deferred. 2451 */ 2452 /* 2453 * Suspend mechanism in request-based dm. 2454 * 2455 * 1. Flush all I/Os by lock_fs() if needed. 2456 * 2. Stop dispatching any I/O by stopping the request_queue. 2457 * 3. Wait for all in-flight I/Os to be completed or requeued. 2458 * 2459 * To abort suspend, start the request_queue. 2460 */ 2461 int dm_suspend(struct mapped_device *md, unsigned suspend_flags) 2462 { 2463 struct dm_table *map = NULL; 2464 int r = 0; 2465 int do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG ? 1 : 0; 2466 int noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG ? 1 : 0; 2467 2468 mutex_lock(&md->suspend_lock); 2469 2470 if (dm_suspended_md(md)) { 2471 r = -EINVAL; 2472 goto out_unlock; 2473 } 2474 2475 map = dm_get_live_table(md); 2476 2477 /* 2478 * DMF_NOFLUSH_SUSPENDING must be set before presuspend. 2479 * This flag is cleared before dm_suspend returns. 2480 */ 2481 if (noflush) 2482 set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags); 2483 2484 /* This does not get reverted if there's an error later. */ 2485 dm_table_presuspend_targets(map); 2486 2487 /* 2488 * Flush I/O to the device. 2489 * Any I/O submitted after lock_fs() may not be flushed. 2490 * noflush takes precedence over do_lockfs. 2491 * (lock_fs() flushes I/Os and waits for them to complete.) 2492 */ 2493 if (!noflush && do_lockfs) { 2494 r = lock_fs(md); 2495 if (r) 2496 goto out; 2497 } 2498 2499 /* 2500 * Here we must make sure that no processes are submitting requests 2501 * to target drivers i.e. no one may be executing 2502 * __split_and_process_bio. This is called from dm_request and 2503 * dm_wq_work. 2504 * 2505 * To get all processes out of __split_and_process_bio in dm_request, 2506 * we take the write lock. To prevent any process from reentering 2507 * __split_and_process_bio from dm_request and quiesce the thread 2508 * (dm_wq_work), we set BMF_BLOCK_IO_FOR_SUSPEND and call 2509 * flush_workqueue(md->wq). 2510 */ 2511 down_write(&md->io_lock); 2512 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags); 2513 up_write(&md->io_lock); 2514 2515 /* 2516 * Stop md->queue before flushing md->wq in case request-based 2517 * dm defers requests to md->wq from md->queue. 2518 */ 2519 if (dm_request_based(md)) 2520 stop_queue(md->queue); 2521 2522 flush_workqueue(md->wq); 2523 2524 /* 2525 * At this point no more requests are entering target request routines. 2526 * We call dm_wait_for_completion to wait for all existing requests 2527 * to finish. 2528 */ 2529 r = dm_wait_for_completion(md, TASK_INTERRUPTIBLE); 2530 2531 down_write(&md->io_lock); 2532 if (noflush) 2533 clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags); 2534 up_write(&md->io_lock); 2535 2536 /* were we interrupted ? */ 2537 if (r < 0) { 2538 dm_queue_flush(md); 2539 2540 if (dm_request_based(md)) 2541 start_queue(md->queue); 2542 2543 unlock_fs(md); 2544 goto out; /* pushback list is already flushed, so skip flush */ 2545 } 2546 2547 /* 2548 * If dm_wait_for_completion returned 0, the device is completely 2549 * quiescent now. There is no request-processing activity. All new 2550 * requests are being added to md->deferred list. 2551 */ 2552 2553 set_bit(DMF_SUSPENDED, &md->flags); 2554 2555 dm_table_postsuspend_targets(map); 2556 2557 out: 2558 dm_table_put(map); 2559 2560 out_unlock: 2561 mutex_unlock(&md->suspend_lock); 2562 return r; 2563 } 2564 2565 int dm_resume(struct mapped_device *md) 2566 { 2567 int r = -EINVAL; 2568 struct dm_table *map = NULL; 2569 2570 mutex_lock(&md->suspend_lock); 2571 if (!dm_suspended_md(md)) 2572 goto out; 2573 2574 map = dm_get_live_table(md); 2575 if (!map || !dm_table_get_size(map)) 2576 goto out; 2577 2578 r = dm_table_resume_targets(map); 2579 if (r) 2580 goto out; 2581 2582 dm_queue_flush(md); 2583 2584 /* 2585 * Flushing deferred I/Os must be done after targets are resumed 2586 * so that mapping of targets can work correctly. 2587 * Request-based dm is queueing the deferred I/Os in its request_queue. 2588 */ 2589 if (dm_request_based(md)) 2590 start_queue(md->queue); 2591 2592 unlock_fs(md); 2593 2594 clear_bit(DMF_SUSPENDED, &md->flags); 2595 2596 r = 0; 2597 out: 2598 dm_table_put(map); 2599 mutex_unlock(&md->suspend_lock); 2600 2601 return r; 2602 } 2603 2604 /*----------------------------------------------------------------- 2605 * Event notification. 2606 *---------------------------------------------------------------*/ 2607 int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action, 2608 unsigned cookie) 2609 { 2610 char udev_cookie[DM_COOKIE_LENGTH]; 2611 char *envp[] = { udev_cookie, NULL }; 2612 2613 if (!cookie) 2614 return kobject_uevent(&disk_to_dev(md->disk)->kobj, action); 2615 else { 2616 snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u", 2617 DM_COOKIE_ENV_VAR_NAME, cookie); 2618 return kobject_uevent_env(&disk_to_dev(md->disk)->kobj, 2619 action, envp); 2620 } 2621 } 2622 2623 uint32_t dm_next_uevent_seq(struct mapped_device *md) 2624 { 2625 return atomic_add_return(1, &md->uevent_seq); 2626 } 2627 2628 uint32_t dm_get_event_nr(struct mapped_device *md) 2629 { 2630 return atomic_read(&md->event_nr); 2631 } 2632 2633 int dm_wait_event(struct mapped_device *md, int event_nr) 2634 { 2635 return wait_event_interruptible(md->eventq, 2636 (event_nr != atomic_read(&md->event_nr))); 2637 } 2638 2639 void dm_uevent_add(struct mapped_device *md, struct list_head *elist) 2640 { 2641 unsigned long flags; 2642 2643 spin_lock_irqsave(&md->uevent_lock, flags); 2644 list_add(elist, &md->uevent_list); 2645 spin_unlock_irqrestore(&md->uevent_lock, flags); 2646 } 2647 2648 /* 2649 * The gendisk is only valid as long as you have a reference 2650 * count on 'md'. 2651 */ 2652 struct gendisk *dm_disk(struct mapped_device *md) 2653 { 2654 return md->disk; 2655 } 2656 2657 struct kobject *dm_kobject(struct mapped_device *md) 2658 { 2659 return &md->kobj; 2660 } 2661 2662 /* 2663 * struct mapped_device should not be exported outside of dm.c 2664 * so use this check to verify that kobj is part of md structure 2665 */ 2666 struct mapped_device *dm_get_from_kobject(struct kobject *kobj) 2667 { 2668 struct mapped_device *md; 2669 2670 md = container_of(kobj, struct mapped_device, kobj); 2671 if (&md->kobj != kobj) 2672 return NULL; 2673 2674 if (test_bit(DMF_FREEING, &md->flags) || 2675 dm_deleting_md(md)) 2676 return NULL; 2677 2678 dm_get(md); 2679 return md; 2680 } 2681 2682 int dm_suspended_md(struct mapped_device *md) 2683 { 2684 return test_bit(DMF_SUSPENDED, &md->flags); 2685 } 2686 2687 int dm_suspended(struct dm_target *ti) 2688 { 2689 return dm_suspended_md(dm_table_get_md(ti->table)); 2690 } 2691 EXPORT_SYMBOL_GPL(dm_suspended); 2692 2693 int dm_noflush_suspending(struct dm_target *ti) 2694 { 2695 return __noflush_suspending(dm_table_get_md(ti->table)); 2696 } 2697 EXPORT_SYMBOL_GPL(dm_noflush_suspending); 2698 2699 struct dm_md_mempools *dm_alloc_md_mempools(unsigned type, unsigned integrity) 2700 { 2701 struct dm_md_mempools *pools = kmalloc(sizeof(*pools), GFP_KERNEL); 2702 unsigned int pool_size = (type == DM_TYPE_BIO_BASED) ? 16 : MIN_IOS; 2703 2704 if (!pools) 2705 return NULL; 2706 2707 pools->io_pool = (type == DM_TYPE_BIO_BASED) ? 2708 mempool_create_slab_pool(MIN_IOS, _io_cache) : 2709 mempool_create_slab_pool(MIN_IOS, _rq_bio_info_cache); 2710 if (!pools->io_pool) 2711 goto free_pools_and_out; 2712 2713 pools->tio_pool = (type == DM_TYPE_BIO_BASED) ? 2714 mempool_create_slab_pool(MIN_IOS, _tio_cache) : 2715 mempool_create_slab_pool(MIN_IOS, _rq_tio_cache); 2716 if (!pools->tio_pool) 2717 goto free_io_pool_and_out; 2718 2719 pools->bs = bioset_create(pool_size, 0); 2720 if (!pools->bs) 2721 goto free_tio_pool_and_out; 2722 2723 if (integrity && bioset_integrity_create(pools->bs, pool_size)) 2724 goto free_bioset_and_out; 2725 2726 return pools; 2727 2728 free_bioset_and_out: 2729 bioset_free(pools->bs); 2730 2731 free_tio_pool_and_out: 2732 mempool_destroy(pools->tio_pool); 2733 2734 free_io_pool_and_out: 2735 mempool_destroy(pools->io_pool); 2736 2737 free_pools_and_out: 2738 kfree(pools); 2739 2740 return NULL; 2741 } 2742 2743 void dm_free_md_mempools(struct dm_md_mempools *pools) 2744 { 2745 if (!pools) 2746 return; 2747 2748 if (pools->io_pool) 2749 mempool_destroy(pools->io_pool); 2750 2751 if (pools->tio_pool) 2752 mempool_destroy(pools->tio_pool); 2753 2754 if (pools->bs) 2755 bioset_free(pools->bs); 2756 2757 kfree(pools); 2758 } 2759 2760 static const struct block_device_operations dm_blk_dops = { 2761 .open = dm_blk_open, 2762 .release = dm_blk_close, 2763 .ioctl = dm_blk_ioctl, 2764 .getgeo = dm_blk_getgeo, 2765 .owner = THIS_MODULE 2766 }; 2767 2768 EXPORT_SYMBOL(dm_get_mapinfo); 2769 2770 /* 2771 * module hooks 2772 */ 2773 module_init(dm_init); 2774 module_exit(dm_exit); 2775 2776 module_param(major, uint, 0); 2777 MODULE_PARM_DESC(major, "The major number of the device mapper"); 2778 MODULE_DESCRIPTION(DM_NAME " driver"); 2779 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>"); 2780 MODULE_LICENSE("GPL"); 2781