xref: /linux/drivers/md/dm.c (revision 27258e448eb301cf89e351df87aa8cb916653bf2)
1 /*
2  * Copyright (C) 2001, 2002 Sistina Software (UK) Limited.
3  * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
4  *
5  * This file is released under the GPL.
6  */
7 
8 #include "dm.h"
9 #include "dm-uevent.h"
10 
11 #include <linux/init.h>
12 #include <linux/module.h>
13 #include <linux/mutex.h>
14 #include <linux/moduleparam.h>
15 #include <linux/blkpg.h>
16 #include <linux/bio.h>
17 #include <linux/buffer_head.h>
18 #include <linux/mempool.h>
19 #include <linux/slab.h>
20 #include <linux/idr.h>
21 #include <linux/hdreg.h>
22 
23 #include <trace/events/block.h>
24 
25 #define DM_MSG_PREFIX "core"
26 
27 /*
28  * Cookies are numeric values sent with CHANGE and REMOVE
29  * uevents while resuming, removing or renaming the device.
30  */
31 #define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE"
32 #define DM_COOKIE_LENGTH 24
33 
34 static const char *_name = DM_NAME;
35 
36 static unsigned int major = 0;
37 static unsigned int _major = 0;
38 
39 static DEFINE_SPINLOCK(_minor_lock);
40 /*
41  * For bio-based dm.
42  * One of these is allocated per bio.
43  */
44 struct dm_io {
45 	struct mapped_device *md;
46 	int error;
47 	atomic_t io_count;
48 	struct bio *bio;
49 	unsigned long start_time;
50 };
51 
52 /*
53  * For bio-based dm.
54  * One of these is allocated per target within a bio.  Hopefully
55  * this will be simplified out one day.
56  */
57 struct dm_target_io {
58 	struct dm_io *io;
59 	struct dm_target *ti;
60 	union map_info info;
61 };
62 
63 /*
64  * For request-based dm.
65  * One of these is allocated per request.
66  */
67 struct dm_rq_target_io {
68 	struct mapped_device *md;
69 	struct dm_target *ti;
70 	struct request *orig, clone;
71 	int error;
72 	union map_info info;
73 };
74 
75 /*
76  * For request-based dm.
77  * One of these is allocated per bio.
78  */
79 struct dm_rq_clone_bio_info {
80 	struct bio *orig;
81 	struct dm_rq_target_io *tio;
82 };
83 
84 union map_info *dm_get_mapinfo(struct bio *bio)
85 {
86 	if (bio && bio->bi_private)
87 		return &((struct dm_target_io *)bio->bi_private)->info;
88 	return NULL;
89 }
90 
91 union map_info *dm_get_rq_mapinfo(struct request *rq)
92 {
93 	if (rq && rq->end_io_data)
94 		return &((struct dm_rq_target_io *)rq->end_io_data)->info;
95 	return NULL;
96 }
97 EXPORT_SYMBOL_GPL(dm_get_rq_mapinfo);
98 
99 #define MINOR_ALLOCED ((void *)-1)
100 
101 /*
102  * Bits for the md->flags field.
103  */
104 #define DMF_BLOCK_IO_FOR_SUSPEND 0
105 #define DMF_SUSPENDED 1
106 #define DMF_FROZEN 2
107 #define DMF_FREEING 3
108 #define DMF_DELETING 4
109 #define DMF_NOFLUSH_SUSPENDING 5
110 #define DMF_QUEUE_IO_TO_THREAD 6
111 
112 /*
113  * Work processed by per-device workqueue.
114  */
115 struct mapped_device {
116 	struct rw_semaphore io_lock;
117 	struct mutex suspend_lock;
118 	rwlock_t map_lock;
119 	atomic_t holders;
120 	atomic_t open_count;
121 
122 	unsigned long flags;
123 
124 	struct request_queue *queue;
125 	struct gendisk *disk;
126 	char name[16];
127 
128 	void *interface_ptr;
129 
130 	/*
131 	 * A list of ios that arrived while we were suspended.
132 	 */
133 	atomic_t pending[2];
134 	wait_queue_head_t wait;
135 	struct work_struct work;
136 	struct bio_list deferred;
137 	spinlock_t deferred_lock;
138 
139 	/*
140 	 * An error from the barrier request currently being processed.
141 	 */
142 	int barrier_error;
143 
144 	/*
145 	 * Processing queue (flush/barriers)
146 	 */
147 	struct workqueue_struct *wq;
148 
149 	/*
150 	 * The current mapping.
151 	 */
152 	struct dm_table *map;
153 
154 	/*
155 	 * io objects are allocated from here.
156 	 */
157 	mempool_t *io_pool;
158 	mempool_t *tio_pool;
159 
160 	struct bio_set *bs;
161 
162 	/*
163 	 * Event handling.
164 	 */
165 	atomic_t event_nr;
166 	wait_queue_head_t eventq;
167 	atomic_t uevent_seq;
168 	struct list_head uevent_list;
169 	spinlock_t uevent_lock; /* Protect access to uevent_list */
170 
171 	/*
172 	 * freeze/thaw support require holding onto a super block
173 	 */
174 	struct super_block *frozen_sb;
175 	struct block_device *bdev;
176 
177 	/* forced geometry settings */
178 	struct hd_geometry geometry;
179 
180 	/* marker of flush suspend for request-based dm */
181 	struct request suspend_rq;
182 
183 	/* For saving the address of __make_request for request based dm */
184 	make_request_fn *saved_make_request_fn;
185 
186 	/* sysfs handle */
187 	struct kobject kobj;
188 
189 	/* zero-length barrier that will be cloned and submitted to targets */
190 	struct bio barrier_bio;
191 };
192 
193 /*
194  * For mempools pre-allocation at the table loading time.
195  */
196 struct dm_md_mempools {
197 	mempool_t *io_pool;
198 	mempool_t *tio_pool;
199 	struct bio_set *bs;
200 };
201 
202 #define MIN_IOS 256
203 static struct kmem_cache *_io_cache;
204 static struct kmem_cache *_tio_cache;
205 static struct kmem_cache *_rq_tio_cache;
206 static struct kmem_cache *_rq_bio_info_cache;
207 
208 static int __init local_init(void)
209 {
210 	int r = -ENOMEM;
211 
212 	/* allocate a slab for the dm_ios */
213 	_io_cache = KMEM_CACHE(dm_io, 0);
214 	if (!_io_cache)
215 		return r;
216 
217 	/* allocate a slab for the target ios */
218 	_tio_cache = KMEM_CACHE(dm_target_io, 0);
219 	if (!_tio_cache)
220 		goto out_free_io_cache;
221 
222 	_rq_tio_cache = KMEM_CACHE(dm_rq_target_io, 0);
223 	if (!_rq_tio_cache)
224 		goto out_free_tio_cache;
225 
226 	_rq_bio_info_cache = KMEM_CACHE(dm_rq_clone_bio_info, 0);
227 	if (!_rq_bio_info_cache)
228 		goto out_free_rq_tio_cache;
229 
230 	r = dm_uevent_init();
231 	if (r)
232 		goto out_free_rq_bio_info_cache;
233 
234 	_major = major;
235 	r = register_blkdev(_major, _name);
236 	if (r < 0)
237 		goto out_uevent_exit;
238 
239 	if (!_major)
240 		_major = r;
241 
242 	return 0;
243 
244 out_uevent_exit:
245 	dm_uevent_exit();
246 out_free_rq_bio_info_cache:
247 	kmem_cache_destroy(_rq_bio_info_cache);
248 out_free_rq_tio_cache:
249 	kmem_cache_destroy(_rq_tio_cache);
250 out_free_tio_cache:
251 	kmem_cache_destroy(_tio_cache);
252 out_free_io_cache:
253 	kmem_cache_destroy(_io_cache);
254 
255 	return r;
256 }
257 
258 static void local_exit(void)
259 {
260 	kmem_cache_destroy(_rq_bio_info_cache);
261 	kmem_cache_destroy(_rq_tio_cache);
262 	kmem_cache_destroy(_tio_cache);
263 	kmem_cache_destroy(_io_cache);
264 	unregister_blkdev(_major, _name);
265 	dm_uevent_exit();
266 
267 	_major = 0;
268 
269 	DMINFO("cleaned up");
270 }
271 
272 static int (*_inits[])(void) __initdata = {
273 	local_init,
274 	dm_target_init,
275 	dm_linear_init,
276 	dm_stripe_init,
277 	dm_kcopyd_init,
278 	dm_interface_init,
279 };
280 
281 static void (*_exits[])(void) = {
282 	local_exit,
283 	dm_target_exit,
284 	dm_linear_exit,
285 	dm_stripe_exit,
286 	dm_kcopyd_exit,
287 	dm_interface_exit,
288 };
289 
290 static int __init dm_init(void)
291 {
292 	const int count = ARRAY_SIZE(_inits);
293 
294 	int r, i;
295 
296 	for (i = 0; i < count; i++) {
297 		r = _inits[i]();
298 		if (r)
299 			goto bad;
300 	}
301 
302 	return 0;
303 
304       bad:
305 	while (i--)
306 		_exits[i]();
307 
308 	return r;
309 }
310 
311 static void __exit dm_exit(void)
312 {
313 	int i = ARRAY_SIZE(_exits);
314 
315 	while (i--)
316 		_exits[i]();
317 }
318 
319 /*
320  * Block device functions
321  */
322 static int dm_blk_open(struct block_device *bdev, fmode_t mode)
323 {
324 	struct mapped_device *md;
325 
326 	spin_lock(&_minor_lock);
327 
328 	md = bdev->bd_disk->private_data;
329 	if (!md)
330 		goto out;
331 
332 	if (test_bit(DMF_FREEING, &md->flags) ||
333 	    test_bit(DMF_DELETING, &md->flags)) {
334 		md = NULL;
335 		goto out;
336 	}
337 
338 	dm_get(md);
339 	atomic_inc(&md->open_count);
340 
341 out:
342 	spin_unlock(&_minor_lock);
343 
344 	return md ? 0 : -ENXIO;
345 }
346 
347 static int dm_blk_close(struct gendisk *disk, fmode_t mode)
348 {
349 	struct mapped_device *md = disk->private_data;
350 	atomic_dec(&md->open_count);
351 	dm_put(md);
352 	return 0;
353 }
354 
355 int dm_open_count(struct mapped_device *md)
356 {
357 	return atomic_read(&md->open_count);
358 }
359 
360 /*
361  * Guarantees nothing is using the device before it's deleted.
362  */
363 int dm_lock_for_deletion(struct mapped_device *md)
364 {
365 	int r = 0;
366 
367 	spin_lock(&_minor_lock);
368 
369 	if (dm_open_count(md))
370 		r = -EBUSY;
371 	else
372 		set_bit(DMF_DELETING, &md->flags);
373 
374 	spin_unlock(&_minor_lock);
375 
376 	return r;
377 }
378 
379 static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
380 {
381 	struct mapped_device *md = bdev->bd_disk->private_data;
382 
383 	return dm_get_geometry(md, geo);
384 }
385 
386 static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode,
387 			unsigned int cmd, unsigned long arg)
388 {
389 	struct mapped_device *md = bdev->bd_disk->private_data;
390 	struct dm_table *map = dm_get_table(md);
391 	struct dm_target *tgt;
392 	int r = -ENOTTY;
393 
394 	if (!map || !dm_table_get_size(map))
395 		goto out;
396 
397 	/* We only support devices that have a single target */
398 	if (dm_table_get_num_targets(map) != 1)
399 		goto out;
400 
401 	tgt = dm_table_get_target(map, 0);
402 
403 	if (dm_suspended(md)) {
404 		r = -EAGAIN;
405 		goto out;
406 	}
407 
408 	if (tgt->type->ioctl)
409 		r = tgt->type->ioctl(tgt, cmd, arg);
410 
411 out:
412 	dm_table_put(map);
413 
414 	return r;
415 }
416 
417 static struct dm_io *alloc_io(struct mapped_device *md)
418 {
419 	return mempool_alloc(md->io_pool, GFP_NOIO);
420 }
421 
422 static void free_io(struct mapped_device *md, struct dm_io *io)
423 {
424 	mempool_free(io, md->io_pool);
425 }
426 
427 static void free_tio(struct mapped_device *md, struct dm_target_io *tio)
428 {
429 	mempool_free(tio, md->tio_pool);
430 }
431 
432 static struct dm_rq_target_io *alloc_rq_tio(struct mapped_device *md)
433 {
434 	return mempool_alloc(md->tio_pool, GFP_ATOMIC);
435 }
436 
437 static void free_rq_tio(struct dm_rq_target_io *tio)
438 {
439 	mempool_free(tio, tio->md->tio_pool);
440 }
441 
442 static struct dm_rq_clone_bio_info *alloc_bio_info(struct mapped_device *md)
443 {
444 	return mempool_alloc(md->io_pool, GFP_ATOMIC);
445 }
446 
447 static void free_bio_info(struct dm_rq_clone_bio_info *info)
448 {
449 	mempool_free(info, info->tio->md->io_pool);
450 }
451 
452 static void start_io_acct(struct dm_io *io)
453 {
454 	struct mapped_device *md = io->md;
455 	int cpu;
456 	int rw = bio_data_dir(io->bio);
457 
458 	io->start_time = jiffies;
459 
460 	cpu = part_stat_lock();
461 	part_round_stats(cpu, &dm_disk(md)->part0);
462 	part_stat_unlock();
463 	dm_disk(md)->part0.in_flight[rw] = atomic_inc_return(&md->pending[rw]);
464 }
465 
466 static void end_io_acct(struct dm_io *io)
467 {
468 	struct mapped_device *md = io->md;
469 	struct bio *bio = io->bio;
470 	unsigned long duration = jiffies - io->start_time;
471 	int pending, cpu;
472 	int rw = bio_data_dir(bio);
473 
474 	cpu = part_stat_lock();
475 	part_round_stats(cpu, &dm_disk(md)->part0);
476 	part_stat_add(cpu, &dm_disk(md)->part0, ticks[rw], duration);
477 	part_stat_unlock();
478 
479 	/*
480 	 * After this is decremented the bio must not be touched if it is
481 	 * a barrier.
482 	 */
483 	dm_disk(md)->part0.in_flight[rw] = pending =
484 		atomic_dec_return(&md->pending[rw]);
485 	pending += atomic_read(&md->pending[rw^0x1]);
486 
487 	/* nudge anyone waiting on suspend queue */
488 	if (!pending)
489 		wake_up(&md->wait);
490 }
491 
492 /*
493  * Add the bio to the list of deferred io.
494  */
495 static void queue_io(struct mapped_device *md, struct bio *bio)
496 {
497 	down_write(&md->io_lock);
498 
499 	spin_lock_irq(&md->deferred_lock);
500 	bio_list_add(&md->deferred, bio);
501 	spin_unlock_irq(&md->deferred_lock);
502 
503 	if (!test_and_set_bit(DMF_QUEUE_IO_TO_THREAD, &md->flags))
504 		queue_work(md->wq, &md->work);
505 
506 	up_write(&md->io_lock);
507 }
508 
509 /*
510  * Everyone (including functions in this file), should use this
511  * function to access the md->map field, and make sure they call
512  * dm_table_put() when finished.
513  */
514 struct dm_table *dm_get_table(struct mapped_device *md)
515 {
516 	struct dm_table *t;
517 	unsigned long flags;
518 
519 	read_lock_irqsave(&md->map_lock, flags);
520 	t = md->map;
521 	if (t)
522 		dm_table_get(t);
523 	read_unlock_irqrestore(&md->map_lock, flags);
524 
525 	return t;
526 }
527 
528 /*
529  * Get the geometry associated with a dm device
530  */
531 int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo)
532 {
533 	*geo = md->geometry;
534 
535 	return 0;
536 }
537 
538 /*
539  * Set the geometry of a device.
540  */
541 int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo)
542 {
543 	sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors;
544 
545 	if (geo->start > sz) {
546 		DMWARN("Start sector is beyond the geometry limits.");
547 		return -EINVAL;
548 	}
549 
550 	md->geometry = *geo;
551 
552 	return 0;
553 }
554 
555 /*-----------------------------------------------------------------
556  * CRUD START:
557  *   A more elegant soln is in the works that uses the queue
558  *   merge fn, unfortunately there are a couple of changes to
559  *   the block layer that I want to make for this.  So in the
560  *   interests of getting something for people to use I give
561  *   you this clearly demarcated crap.
562  *---------------------------------------------------------------*/
563 
564 static int __noflush_suspending(struct mapped_device *md)
565 {
566 	return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
567 }
568 
569 /*
570  * Decrements the number of outstanding ios that a bio has been
571  * cloned into, completing the original io if necc.
572  */
573 static void dec_pending(struct dm_io *io, int error)
574 {
575 	unsigned long flags;
576 	int io_error;
577 	struct bio *bio;
578 	struct mapped_device *md = io->md;
579 
580 	/* Push-back supersedes any I/O errors */
581 	if (error && !(io->error > 0 && __noflush_suspending(md)))
582 		io->error = error;
583 
584 	if (atomic_dec_and_test(&io->io_count)) {
585 		if (io->error == DM_ENDIO_REQUEUE) {
586 			/*
587 			 * Target requested pushing back the I/O.
588 			 */
589 			spin_lock_irqsave(&md->deferred_lock, flags);
590 			if (__noflush_suspending(md)) {
591 				if (!bio_rw_flagged(io->bio, BIO_RW_BARRIER))
592 					bio_list_add_head(&md->deferred,
593 							  io->bio);
594 			} else
595 				/* noflush suspend was interrupted. */
596 				io->error = -EIO;
597 			spin_unlock_irqrestore(&md->deferred_lock, flags);
598 		}
599 
600 		io_error = io->error;
601 		bio = io->bio;
602 
603 		if (bio_rw_flagged(bio, BIO_RW_BARRIER)) {
604 			/*
605 			 * There can be just one barrier request so we use
606 			 * a per-device variable for error reporting.
607 			 * Note that you can't touch the bio after end_io_acct
608 			 */
609 			if (!md->barrier_error && io_error != -EOPNOTSUPP)
610 				md->barrier_error = io_error;
611 			end_io_acct(io);
612 		} else {
613 			end_io_acct(io);
614 
615 			if (io_error != DM_ENDIO_REQUEUE) {
616 				trace_block_bio_complete(md->queue, bio);
617 
618 				bio_endio(bio, io_error);
619 			}
620 		}
621 
622 		free_io(md, io);
623 	}
624 }
625 
626 static void clone_endio(struct bio *bio, int error)
627 {
628 	int r = 0;
629 	struct dm_target_io *tio = bio->bi_private;
630 	struct dm_io *io = tio->io;
631 	struct mapped_device *md = tio->io->md;
632 	dm_endio_fn endio = tio->ti->type->end_io;
633 
634 	if (!bio_flagged(bio, BIO_UPTODATE) && !error)
635 		error = -EIO;
636 
637 	if (endio) {
638 		r = endio(tio->ti, bio, error, &tio->info);
639 		if (r < 0 || r == DM_ENDIO_REQUEUE)
640 			/*
641 			 * error and requeue request are handled
642 			 * in dec_pending().
643 			 */
644 			error = r;
645 		else if (r == DM_ENDIO_INCOMPLETE)
646 			/* The target will handle the io */
647 			return;
648 		else if (r) {
649 			DMWARN("unimplemented target endio return value: %d", r);
650 			BUG();
651 		}
652 	}
653 
654 	/*
655 	 * Store md for cleanup instead of tio which is about to get freed.
656 	 */
657 	bio->bi_private = md->bs;
658 
659 	free_tio(md, tio);
660 	bio_put(bio);
661 	dec_pending(io, error);
662 }
663 
664 /*
665  * Partial completion handling for request-based dm
666  */
667 static void end_clone_bio(struct bio *clone, int error)
668 {
669 	struct dm_rq_clone_bio_info *info = clone->bi_private;
670 	struct dm_rq_target_io *tio = info->tio;
671 	struct bio *bio = info->orig;
672 	unsigned int nr_bytes = info->orig->bi_size;
673 
674 	bio_put(clone);
675 
676 	if (tio->error)
677 		/*
678 		 * An error has already been detected on the request.
679 		 * Once error occurred, just let clone->end_io() handle
680 		 * the remainder.
681 		 */
682 		return;
683 	else if (error) {
684 		/*
685 		 * Don't notice the error to the upper layer yet.
686 		 * The error handling decision is made by the target driver,
687 		 * when the request is completed.
688 		 */
689 		tio->error = error;
690 		return;
691 	}
692 
693 	/*
694 	 * I/O for the bio successfully completed.
695 	 * Notice the data completion to the upper layer.
696 	 */
697 
698 	/*
699 	 * bios are processed from the head of the list.
700 	 * So the completing bio should always be rq->bio.
701 	 * If it's not, something wrong is happening.
702 	 */
703 	if (tio->orig->bio != bio)
704 		DMERR("bio completion is going in the middle of the request");
705 
706 	/*
707 	 * Update the original request.
708 	 * Do not use blk_end_request() here, because it may complete
709 	 * the original request before the clone, and break the ordering.
710 	 */
711 	blk_update_request(tio->orig, 0, nr_bytes);
712 }
713 
714 /*
715  * Don't touch any member of the md after calling this function because
716  * the md may be freed in dm_put() at the end of this function.
717  * Or do dm_get() before calling this function and dm_put() later.
718  */
719 static void rq_completed(struct mapped_device *md, int run_queue)
720 {
721 	int wakeup_waiters = 0;
722 	struct request_queue *q = md->queue;
723 	unsigned long flags;
724 
725 	spin_lock_irqsave(q->queue_lock, flags);
726 	if (!queue_in_flight(q))
727 		wakeup_waiters = 1;
728 	spin_unlock_irqrestore(q->queue_lock, flags);
729 
730 	/* nudge anyone waiting on suspend queue */
731 	if (wakeup_waiters)
732 		wake_up(&md->wait);
733 
734 	if (run_queue)
735 		blk_run_queue(q);
736 
737 	/*
738 	 * dm_put() must be at the end of this function. See the comment above
739 	 */
740 	dm_put(md);
741 }
742 
743 static void free_rq_clone(struct request *clone)
744 {
745 	struct dm_rq_target_io *tio = clone->end_io_data;
746 
747 	blk_rq_unprep_clone(clone);
748 	free_rq_tio(tio);
749 }
750 
751 static void dm_unprep_request(struct request *rq)
752 {
753 	struct request *clone = rq->special;
754 
755 	rq->special = NULL;
756 	rq->cmd_flags &= ~REQ_DONTPREP;
757 
758 	free_rq_clone(clone);
759 }
760 
761 /*
762  * Requeue the original request of a clone.
763  */
764 void dm_requeue_unmapped_request(struct request *clone)
765 {
766 	struct dm_rq_target_io *tio = clone->end_io_data;
767 	struct mapped_device *md = tio->md;
768 	struct request *rq = tio->orig;
769 	struct request_queue *q = rq->q;
770 	unsigned long flags;
771 
772 	dm_unprep_request(rq);
773 
774 	spin_lock_irqsave(q->queue_lock, flags);
775 	if (elv_queue_empty(q))
776 		blk_plug_device(q);
777 	blk_requeue_request(q, rq);
778 	spin_unlock_irqrestore(q->queue_lock, flags);
779 
780 	rq_completed(md, 0);
781 }
782 EXPORT_SYMBOL_GPL(dm_requeue_unmapped_request);
783 
784 static void __stop_queue(struct request_queue *q)
785 {
786 	blk_stop_queue(q);
787 }
788 
789 static void stop_queue(struct request_queue *q)
790 {
791 	unsigned long flags;
792 
793 	spin_lock_irqsave(q->queue_lock, flags);
794 	__stop_queue(q);
795 	spin_unlock_irqrestore(q->queue_lock, flags);
796 }
797 
798 static void __start_queue(struct request_queue *q)
799 {
800 	if (blk_queue_stopped(q))
801 		blk_start_queue(q);
802 }
803 
804 static void start_queue(struct request_queue *q)
805 {
806 	unsigned long flags;
807 
808 	spin_lock_irqsave(q->queue_lock, flags);
809 	__start_queue(q);
810 	spin_unlock_irqrestore(q->queue_lock, flags);
811 }
812 
813 /*
814  * Complete the clone and the original request.
815  * Must be called without queue lock.
816  */
817 static void dm_end_request(struct request *clone, int error)
818 {
819 	struct dm_rq_target_io *tio = clone->end_io_data;
820 	struct mapped_device *md = tio->md;
821 	struct request *rq = tio->orig;
822 
823 	if (blk_pc_request(rq)) {
824 		rq->errors = clone->errors;
825 		rq->resid_len = clone->resid_len;
826 
827 		if (rq->sense)
828 			/*
829 			 * We are using the sense buffer of the original
830 			 * request.
831 			 * So setting the length of the sense data is enough.
832 			 */
833 			rq->sense_len = clone->sense_len;
834 	}
835 
836 	free_rq_clone(clone);
837 
838 	blk_end_request_all(rq, error);
839 
840 	rq_completed(md, 1);
841 }
842 
843 /*
844  * Request completion handler for request-based dm
845  */
846 static void dm_softirq_done(struct request *rq)
847 {
848 	struct request *clone = rq->completion_data;
849 	struct dm_rq_target_io *tio = clone->end_io_data;
850 	dm_request_endio_fn rq_end_io = tio->ti->type->rq_end_io;
851 	int error = tio->error;
852 
853 	if (!(rq->cmd_flags & REQ_FAILED) && rq_end_io)
854 		error = rq_end_io(tio->ti, clone, error, &tio->info);
855 
856 	if (error <= 0)
857 		/* The target wants to complete the I/O */
858 		dm_end_request(clone, error);
859 	else if (error == DM_ENDIO_INCOMPLETE)
860 		/* The target will handle the I/O */
861 		return;
862 	else if (error == DM_ENDIO_REQUEUE)
863 		/* The target wants to requeue the I/O */
864 		dm_requeue_unmapped_request(clone);
865 	else {
866 		DMWARN("unimplemented target endio return value: %d", error);
867 		BUG();
868 	}
869 }
870 
871 /*
872  * Complete the clone and the original request with the error status
873  * through softirq context.
874  */
875 static void dm_complete_request(struct request *clone, int error)
876 {
877 	struct dm_rq_target_io *tio = clone->end_io_data;
878 	struct request *rq = tio->orig;
879 
880 	tio->error = error;
881 	rq->completion_data = clone;
882 	blk_complete_request(rq);
883 }
884 
885 /*
886  * Complete the not-mapped clone and the original request with the error status
887  * through softirq context.
888  * Target's rq_end_io() function isn't called.
889  * This may be used when the target's map_rq() function fails.
890  */
891 void dm_kill_unmapped_request(struct request *clone, int error)
892 {
893 	struct dm_rq_target_io *tio = clone->end_io_data;
894 	struct request *rq = tio->orig;
895 
896 	rq->cmd_flags |= REQ_FAILED;
897 	dm_complete_request(clone, error);
898 }
899 EXPORT_SYMBOL_GPL(dm_kill_unmapped_request);
900 
901 /*
902  * Called with the queue lock held
903  */
904 static void end_clone_request(struct request *clone, int error)
905 {
906 	/*
907 	 * For just cleaning up the information of the queue in which
908 	 * the clone was dispatched.
909 	 * The clone is *NOT* freed actually here because it is alloced from
910 	 * dm own mempool and REQ_ALLOCED isn't set in clone->cmd_flags.
911 	 */
912 	__blk_put_request(clone->q, clone);
913 
914 	/*
915 	 * Actual request completion is done in a softirq context which doesn't
916 	 * hold the queue lock.  Otherwise, deadlock could occur because:
917 	 *     - another request may be submitted by the upper level driver
918 	 *       of the stacking during the completion
919 	 *     - the submission which requires queue lock may be done
920 	 *       against this queue
921 	 */
922 	dm_complete_request(clone, error);
923 }
924 
925 static sector_t max_io_len(struct mapped_device *md,
926 			   sector_t sector, struct dm_target *ti)
927 {
928 	sector_t offset = sector - ti->begin;
929 	sector_t len = ti->len - offset;
930 
931 	/*
932 	 * Does the target need to split even further ?
933 	 */
934 	if (ti->split_io) {
935 		sector_t boundary;
936 		boundary = ((offset + ti->split_io) & ~(ti->split_io - 1))
937 			   - offset;
938 		if (len > boundary)
939 			len = boundary;
940 	}
941 
942 	return len;
943 }
944 
945 static void __map_bio(struct dm_target *ti, struct bio *clone,
946 		      struct dm_target_io *tio)
947 {
948 	int r;
949 	sector_t sector;
950 	struct mapped_device *md;
951 
952 	clone->bi_end_io = clone_endio;
953 	clone->bi_private = tio;
954 
955 	/*
956 	 * Map the clone.  If r == 0 we don't need to do
957 	 * anything, the target has assumed ownership of
958 	 * this io.
959 	 */
960 	atomic_inc(&tio->io->io_count);
961 	sector = clone->bi_sector;
962 	r = ti->type->map(ti, clone, &tio->info);
963 	if (r == DM_MAPIO_REMAPPED) {
964 		/* the bio has been remapped so dispatch it */
965 
966 		trace_block_remap(bdev_get_queue(clone->bi_bdev), clone,
967 				    tio->io->bio->bi_bdev->bd_dev, sector);
968 
969 		generic_make_request(clone);
970 	} else if (r < 0 || r == DM_MAPIO_REQUEUE) {
971 		/* error the io and bail out, or requeue it if needed */
972 		md = tio->io->md;
973 		dec_pending(tio->io, r);
974 		/*
975 		 * Store bio_set for cleanup.
976 		 */
977 		clone->bi_private = md->bs;
978 		bio_put(clone);
979 		free_tio(md, tio);
980 	} else if (r) {
981 		DMWARN("unimplemented target map return value: %d", r);
982 		BUG();
983 	}
984 }
985 
986 struct clone_info {
987 	struct mapped_device *md;
988 	struct dm_table *map;
989 	struct bio *bio;
990 	struct dm_io *io;
991 	sector_t sector;
992 	sector_t sector_count;
993 	unsigned short idx;
994 };
995 
996 static void dm_bio_destructor(struct bio *bio)
997 {
998 	struct bio_set *bs = bio->bi_private;
999 
1000 	bio_free(bio, bs);
1001 }
1002 
1003 /*
1004  * Creates a little bio that is just does part of a bvec.
1005  */
1006 static struct bio *split_bvec(struct bio *bio, sector_t sector,
1007 			      unsigned short idx, unsigned int offset,
1008 			      unsigned int len, struct bio_set *bs)
1009 {
1010 	struct bio *clone;
1011 	struct bio_vec *bv = bio->bi_io_vec + idx;
1012 
1013 	clone = bio_alloc_bioset(GFP_NOIO, 1, bs);
1014 	clone->bi_destructor = dm_bio_destructor;
1015 	*clone->bi_io_vec = *bv;
1016 
1017 	clone->bi_sector = sector;
1018 	clone->bi_bdev = bio->bi_bdev;
1019 	clone->bi_rw = bio->bi_rw & ~(1 << BIO_RW_BARRIER);
1020 	clone->bi_vcnt = 1;
1021 	clone->bi_size = to_bytes(len);
1022 	clone->bi_io_vec->bv_offset = offset;
1023 	clone->bi_io_vec->bv_len = clone->bi_size;
1024 	clone->bi_flags |= 1 << BIO_CLONED;
1025 
1026 	if (bio_integrity(bio)) {
1027 		bio_integrity_clone(clone, bio, GFP_NOIO, bs);
1028 		bio_integrity_trim(clone,
1029 				   bio_sector_offset(bio, idx, offset), len);
1030 	}
1031 
1032 	return clone;
1033 }
1034 
1035 /*
1036  * Creates a bio that consists of range of complete bvecs.
1037  */
1038 static struct bio *clone_bio(struct bio *bio, sector_t sector,
1039 			     unsigned short idx, unsigned short bv_count,
1040 			     unsigned int len, struct bio_set *bs)
1041 {
1042 	struct bio *clone;
1043 
1044 	clone = bio_alloc_bioset(GFP_NOIO, bio->bi_max_vecs, bs);
1045 	__bio_clone(clone, bio);
1046 	clone->bi_rw &= ~(1 << BIO_RW_BARRIER);
1047 	clone->bi_destructor = dm_bio_destructor;
1048 	clone->bi_sector = sector;
1049 	clone->bi_idx = idx;
1050 	clone->bi_vcnt = idx + bv_count;
1051 	clone->bi_size = to_bytes(len);
1052 	clone->bi_flags &= ~(1 << BIO_SEG_VALID);
1053 
1054 	if (bio_integrity(bio)) {
1055 		bio_integrity_clone(clone, bio, GFP_NOIO, bs);
1056 
1057 		if (idx != bio->bi_idx || clone->bi_size < bio->bi_size)
1058 			bio_integrity_trim(clone,
1059 					   bio_sector_offset(bio, idx, 0), len);
1060 	}
1061 
1062 	return clone;
1063 }
1064 
1065 static struct dm_target_io *alloc_tio(struct clone_info *ci,
1066 				      struct dm_target *ti)
1067 {
1068 	struct dm_target_io *tio = mempool_alloc(ci->md->tio_pool, GFP_NOIO);
1069 
1070 	tio->io = ci->io;
1071 	tio->ti = ti;
1072 	memset(&tio->info, 0, sizeof(tio->info));
1073 
1074 	return tio;
1075 }
1076 
1077 static void __flush_target(struct clone_info *ci, struct dm_target *ti,
1078 			  unsigned flush_nr)
1079 {
1080 	struct dm_target_io *tio = alloc_tio(ci, ti);
1081 	struct bio *clone;
1082 
1083 	tio->info.flush_request = flush_nr;
1084 
1085 	clone = bio_alloc_bioset(GFP_NOIO, 0, ci->md->bs);
1086 	__bio_clone(clone, ci->bio);
1087 	clone->bi_destructor = dm_bio_destructor;
1088 
1089 	__map_bio(ti, clone, tio);
1090 }
1091 
1092 static int __clone_and_map_empty_barrier(struct clone_info *ci)
1093 {
1094 	unsigned target_nr = 0, flush_nr;
1095 	struct dm_target *ti;
1096 
1097 	while ((ti = dm_table_get_target(ci->map, target_nr++)))
1098 		for (flush_nr = 0; flush_nr < ti->num_flush_requests;
1099 		     flush_nr++)
1100 			__flush_target(ci, ti, flush_nr);
1101 
1102 	ci->sector_count = 0;
1103 
1104 	return 0;
1105 }
1106 
1107 static int __clone_and_map(struct clone_info *ci)
1108 {
1109 	struct bio *clone, *bio = ci->bio;
1110 	struct dm_target *ti;
1111 	sector_t len = 0, max;
1112 	struct dm_target_io *tio;
1113 
1114 	if (unlikely(bio_empty_barrier(bio)))
1115 		return __clone_and_map_empty_barrier(ci);
1116 
1117 	ti = dm_table_find_target(ci->map, ci->sector);
1118 	if (!dm_target_is_valid(ti))
1119 		return -EIO;
1120 
1121 	max = max_io_len(ci->md, ci->sector, ti);
1122 
1123 	/*
1124 	 * Allocate a target io object.
1125 	 */
1126 	tio = alloc_tio(ci, ti);
1127 
1128 	if (ci->sector_count <= max) {
1129 		/*
1130 		 * Optimise for the simple case where we can do all of
1131 		 * the remaining io with a single clone.
1132 		 */
1133 		clone = clone_bio(bio, ci->sector, ci->idx,
1134 				  bio->bi_vcnt - ci->idx, ci->sector_count,
1135 				  ci->md->bs);
1136 		__map_bio(ti, clone, tio);
1137 		ci->sector_count = 0;
1138 
1139 	} else if (to_sector(bio->bi_io_vec[ci->idx].bv_len) <= max) {
1140 		/*
1141 		 * There are some bvecs that don't span targets.
1142 		 * Do as many of these as possible.
1143 		 */
1144 		int i;
1145 		sector_t remaining = max;
1146 		sector_t bv_len;
1147 
1148 		for (i = ci->idx; remaining && (i < bio->bi_vcnt); i++) {
1149 			bv_len = to_sector(bio->bi_io_vec[i].bv_len);
1150 
1151 			if (bv_len > remaining)
1152 				break;
1153 
1154 			remaining -= bv_len;
1155 			len += bv_len;
1156 		}
1157 
1158 		clone = clone_bio(bio, ci->sector, ci->idx, i - ci->idx, len,
1159 				  ci->md->bs);
1160 		__map_bio(ti, clone, tio);
1161 
1162 		ci->sector += len;
1163 		ci->sector_count -= len;
1164 		ci->idx = i;
1165 
1166 	} else {
1167 		/*
1168 		 * Handle a bvec that must be split between two or more targets.
1169 		 */
1170 		struct bio_vec *bv = bio->bi_io_vec + ci->idx;
1171 		sector_t remaining = to_sector(bv->bv_len);
1172 		unsigned int offset = 0;
1173 
1174 		do {
1175 			if (offset) {
1176 				ti = dm_table_find_target(ci->map, ci->sector);
1177 				if (!dm_target_is_valid(ti))
1178 					return -EIO;
1179 
1180 				max = max_io_len(ci->md, ci->sector, ti);
1181 
1182 				tio = alloc_tio(ci, ti);
1183 			}
1184 
1185 			len = min(remaining, max);
1186 
1187 			clone = split_bvec(bio, ci->sector, ci->idx,
1188 					   bv->bv_offset + offset, len,
1189 					   ci->md->bs);
1190 
1191 			__map_bio(ti, clone, tio);
1192 
1193 			ci->sector += len;
1194 			ci->sector_count -= len;
1195 			offset += to_bytes(len);
1196 		} while (remaining -= len);
1197 
1198 		ci->idx++;
1199 	}
1200 
1201 	return 0;
1202 }
1203 
1204 /*
1205  * Split the bio into several clones and submit it to targets.
1206  */
1207 static void __split_and_process_bio(struct mapped_device *md, struct bio *bio)
1208 {
1209 	struct clone_info ci;
1210 	int error = 0;
1211 
1212 	ci.map = dm_get_table(md);
1213 	if (unlikely(!ci.map)) {
1214 		if (!bio_rw_flagged(bio, BIO_RW_BARRIER))
1215 			bio_io_error(bio);
1216 		else
1217 			if (!md->barrier_error)
1218 				md->barrier_error = -EIO;
1219 		return;
1220 	}
1221 
1222 	ci.md = md;
1223 	ci.bio = bio;
1224 	ci.io = alloc_io(md);
1225 	ci.io->error = 0;
1226 	atomic_set(&ci.io->io_count, 1);
1227 	ci.io->bio = bio;
1228 	ci.io->md = md;
1229 	ci.sector = bio->bi_sector;
1230 	ci.sector_count = bio_sectors(bio);
1231 	if (unlikely(bio_empty_barrier(bio)))
1232 		ci.sector_count = 1;
1233 	ci.idx = bio->bi_idx;
1234 
1235 	start_io_acct(ci.io);
1236 	while (ci.sector_count && !error)
1237 		error = __clone_and_map(&ci);
1238 
1239 	/* drop the extra reference count */
1240 	dec_pending(ci.io, error);
1241 	dm_table_put(ci.map);
1242 }
1243 /*-----------------------------------------------------------------
1244  * CRUD END
1245  *---------------------------------------------------------------*/
1246 
1247 static int dm_merge_bvec(struct request_queue *q,
1248 			 struct bvec_merge_data *bvm,
1249 			 struct bio_vec *biovec)
1250 {
1251 	struct mapped_device *md = q->queuedata;
1252 	struct dm_table *map = dm_get_table(md);
1253 	struct dm_target *ti;
1254 	sector_t max_sectors;
1255 	int max_size = 0;
1256 
1257 	if (unlikely(!map))
1258 		goto out;
1259 
1260 	ti = dm_table_find_target(map, bvm->bi_sector);
1261 	if (!dm_target_is_valid(ti))
1262 		goto out_table;
1263 
1264 	/*
1265 	 * Find maximum amount of I/O that won't need splitting
1266 	 */
1267 	max_sectors = min(max_io_len(md, bvm->bi_sector, ti),
1268 			  (sector_t) BIO_MAX_SECTORS);
1269 	max_size = (max_sectors << SECTOR_SHIFT) - bvm->bi_size;
1270 	if (max_size < 0)
1271 		max_size = 0;
1272 
1273 	/*
1274 	 * merge_bvec_fn() returns number of bytes
1275 	 * it can accept at this offset
1276 	 * max is precomputed maximal io size
1277 	 */
1278 	if (max_size && ti->type->merge)
1279 		max_size = ti->type->merge(ti, bvm, biovec, max_size);
1280 	/*
1281 	 * If the target doesn't support merge method and some of the devices
1282 	 * provided their merge_bvec method (we know this by looking at
1283 	 * queue_max_hw_sectors), then we can't allow bios with multiple vector
1284 	 * entries.  So always set max_size to 0, and the code below allows
1285 	 * just one page.
1286 	 */
1287 	else if (queue_max_hw_sectors(q) <= PAGE_SIZE >> 9)
1288 
1289 		max_size = 0;
1290 
1291 out_table:
1292 	dm_table_put(map);
1293 
1294 out:
1295 	/*
1296 	 * Always allow an entire first page
1297 	 */
1298 	if (max_size <= biovec->bv_len && !(bvm->bi_size >> SECTOR_SHIFT))
1299 		max_size = biovec->bv_len;
1300 
1301 	return max_size;
1302 }
1303 
1304 /*
1305  * The request function that just remaps the bio built up by
1306  * dm_merge_bvec.
1307  */
1308 static int _dm_request(struct request_queue *q, struct bio *bio)
1309 {
1310 	int rw = bio_data_dir(bio);
1311 	struct mapped_device *md = q->queuedata;
1312 	int cpu;
1313 
1314 	down_read(&md->io_lock);
1315 
1316 	cpu = part_stat_lock();
1317 	part_stat_inc(cpu, &dm_disk(md)->part0, ios[rw]);
1318 	part_stat_add(cpu, &dm_disk(md)->part0, sectors[rw], bio_sectors(bio));
1319 	part_stat_unlock();
1320 
1321 	/*
1322 	 * If we're suspended or the thread is processing barriers
1323 	 * we have to queue this io for later.
1324 	 */
1325 	if (unlikely(test_bit(DMF_QUEUE_IO_TO_THREAD, &md->flags)) ||
1326 	    unlikely(bio_rw_flagged(bio, BIO_RW_BARRIER))) {
1327 		up_read(&md->io_lock);
1328 
1329 		if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) &&
1330 		    bio_rw(bio) == READA) {
1331 			bio_io_error(bio);
1332 			return 0;
1333 		}
1334 
1335 		queue_io(md, bio);
1336 
1337 		return 0;
1338 	}
1339 
1340 	__split_and_process_bio(md, bio);
1341 	up_read(&md->io_lock);
1342 	return 0;
1343 }
1344 
1345 static int dm_make_request(struct request_queue *q, struct bio *bio)
1346 {
1347 	struct mapped_device *md = q->queuedata;
1348 
1349 	if (unlikely(bio_rw_flagged(bio, BIO_RW_BARRIER))) {
1350 		bio_endio(bio, -EOPNOTSUPP);
1351 		return 0;
1352 	}
1353 
1354 	return md->saved_make_request_fn(q, bio); /* call __make_request() */
1355 }
1356 
1357 static int dm_request_based(struct mapped_device *md)
1358 {
1359 	return blk_queue_stackable(md->queue);
1360 }
1361 
1362 static int dm_request(struct request_queue *q, struct bio *bio)
1363 {
1364 	struct mapped_device *md = q->queuedata;
1365 
1366 	if (dm_request_based(md))
1367 		return dm_make_request(q, bio);
1368 
1369 	return _dm_request(q, bio);
1370 }
1371 
1372 void dm_dispatch_request(struct request *rq)
1373 {
1374 	int r;
1375 
1376 	if (blk_queue_io_stat(rq->q))
1377 		rq->cmd_flags |= REQ_IO_STAT;
1378 
1379 	rq->start_time = jiffies;
1380 	r = blk_insert_cloned_request(rq->q, rq);
1381 	if (r)
1382 		dm_complete_request(rq, r);
1383 }
1384 EXPORT_SYMBOL_GPL(dm_dispatch_request);
1385 
1386 static void dm_rq_bio_destructor(struct bio *bio)
1387 {
1388 	struct dm_rq_clone_bio_info *info = bio->bi_private;
1389 	struct mapped_device *md = info->tio->md;
1390 
1391 	free_bio_info(info);
1392 	bio_free(bio, md->bs);
1393 }
1394 
1395 static int dm_rq_bio_constructor(struct bio *bio, struct bio *bio_orig,
1396 				 void *data)
1397 {
1398 	struct dm_rq_target_io *tio = data;
1399 	struct mapped_device *md = tio->md;
1400 	struct dm_rq_clone_bio_info *info = alloc_bio_info(md);
1401 
1402 	if (!info)
1403 		return -ENOMEM;
1404 
1405 	info->orig = bio_orig;
1406 	info->tio = tio;
1407 	bio->bi_end_io = end_clone_bio;
1408 	bio->bi_private = info;
1409 	bio->bi_destructor = dm_rq_bio_destructor;
1410 
1411 	return 0;
1412 }
1413 
1414 static int setup_clone(struct request *clone, struct request *rq,
1415 		       struct dm_rq_target_io *tio)
1416 {
1417 	int r = blk_rq_prep_clone(clone, rq, tio->md->bs, GFP_ATOMIC,
1418 				  dm_rq_bio_constructor, tio);
1419 
1420 	if (r)
1421 		return r;
1422 
1423 	clone->cmd = rq->cmd;
1424 	clone->cmd_len = rq->cmd_len;
1425 	clone->sense = rq->sense;
1426 	clone->buffer = rq->buffer;
1427 	clone->end_io = end_clone_request;
1428 	clone->end_io_data = tio;
1429 
1430 	return 0;
1431 }
1432 
1433 static int dm_rq_flush_suspending(struct mapped_device *md)
1434 {
1435 	return !md->suspend_rq.special;
1436 }
1437 
1438 /*
1439  * Called with the queue lock held.
1440  */
1441 static int dm_prep_fn(struct request_queue *q, struct request *rq)
1442 {
1443 	struct mapped_device *md = q->queuedata;
1444 	struct dm_rq_target_io *tio;
1445 	struct request *clone;
1446 
1447 	if (unlikely(rq == &md->suspend_rq)) {
1448 		if (dm_rq_flush_suspending(md))
1449 			return BLKPREP_OK;
1450 		else
1451 			/* The flush suspend was interrupted */
1452 			return BLKPREP_KILL;
1453 	}
1454 
1455 	if (unlikely(rq->special)) {
1456 		DMWARN("Already has something in rq->special.");
1457 		return BLKPREP_KILL;
1458 	}
1459 
1460 	tio = alloc_rq_tio(md); /* Only one for each original request */
1461 	if (!tio)
1462 		/* -ENOMEM */
1463 		return BLKPREP_DEFER;
1464 
1465 	tio->md = md;
1466 	tio->ti = NULL;
1467 	tio->orig = rq;
1468 	tio->error = 0;
1469 	memset(&tio->info, 0, sizeof(tio->info));
1470 
1471 	clone = &tio->clone;
1472 	if (setup_clone(clone, rq, tio)) {
1473 		/* -ENOMEM */
1474 		free_rq_tio(tio);
1475 		return BLKPREP_DEFER;
1476 	}
1477 
1478 	rq->special = clone;
1479 	rq->cmd_flags |= REQ_DONTPREP;
1480 
1481 	return BLKPREP_OK;
1482 }
1483 
1484 static void map_request(struct dm_target *ti, struct request *rq,
1485 			struct mapped_device *md)
1486 {
1487 	int r;
1488 	struct request *clone = rq->special;
1489 	struct dm_rq_target_io *tio = clone->end_io_data;
1490 
1491 	/*
1492 	 * Hold the md reference here for the in-flight I/O.
1493 	 * We can't rely on the reference count by device opener,
1494 	 * because the device may be closed during the request completion
1495 	 * when all bios are completed.
1496 	 * See the comment in rq_completed() too.
1497 	 */
1498 	dm_get(md);
1499 
1500 	tio->ti = ti;
1501 	r = ti->type->map_rq(ti, clone, &tio->info);
1502 	switch (r) {
1503 	case DM_MAPIO_SUBMITTED:
1504 		/* The target has taken the I/O to submit by itself later */
1505 		break;
1506 	case DM_MAPIO_REMAPPED:
1507 		/* The target has remapped the I/O so dispatch it */
1508 		dm_dispatch_request(clone);
1509 		break;
1510 	case DM_MAPIO_REQUEUE:
1511 		/* The target wants to requeue the I/O */
1512 		dm_requeue_unmapped_request(clone);
1513 		break;
1514 	default:
1515 		if (r > 0) {
1516 			DMWARN("unimplemented target map return value: %d", r);
1517 			BUG();
1518 		}
1519 
1520 		/* The target wants to complete the I/O */
1521 		dm_kill_unmapped_request(clone, r);
1522 		break;
1523 	}
1524 }
1525 
1526 /*
1527  * q->request_fn for request-based dm.
1528  * Called with the queue lock held.
1529  */
1530 static void dm_request_fn(struct request_queue *q)
1531 {
1532 	struct mapped_device *md = q->queuedata;
1533 	struct dm_table *map = dm_get_table(md);
1534 	struct dm_target *ti;
1535 	struct request *rq;
1536 
1537 	/*
1538 	 * For noflush suspend, check blk_queue_stopped() to immediately
1539 	 * quit I/O dispatching.
1540 	 */
1541 	while (!blk_queue_plugged(q) && !blk_queue_stopped(q)) {
1542 		rq = blk_peek_request(q);
1543 		if (!rq)
1544 			goto plug_and_out;
1545 
1546 		if (unlikely(rq == &md->suspend_rq)) { /* Flush suspend maker */
1547 			if (queue_in_flight(q))
1548 				/* Not quiet yet.  Wait more */
1549 				goto plug_and_out;
1550 
1551 			/* This device should be quiet now */
1552 			__stop_queue(q);
1553 			blk_start_request(rq);
1554 			__blk_end_request_all(rq, 0);
1555 			wake_up(&md->wait);
1556 			goto out;
1557 		}
1558 
1559 		ti = dm_table_find_target(map, blk_rq_pos(rq));
1560 		if (ti->type->busy && ti->type->busy(ti))
1561 			goto plug_and_out;
1562 
1563 		blk_start_request(rq);
1564 		spin_unlock(q->queue_lock);
1565 		map_request(ti, rq, md);
1566 		spin_lock_irq(q->queue_lock);
1567 	}
1568 
1569 	goto out;
1570 
1571 plug_and_out:
1572 	if (!elv_queue_empty(q))
1573 		/* Some requests still remain, retry later */
1574 		blk_plug_device(q);
1575 
1576 out:
1577 	dm_table_put(map);
1578 
1579 	return;
1580 }
1581 
1582 int dm_underlying_device_busy(struct request_queue *q)
1583 {
1584 	return blk_lld_busy(q);
1585 }
1586 EXPORT_SYMBOL_GPL(dm_underlying_device_busy);
1587 
1588 static int dm_lld_busy(struct request_queue *q)
1589 {
1590 	int r;
1591 	struct mapped_device *md = q->queuedata;
1592 	struct dm_table *map = dm_get_table(md);
1593 
1594 	if (!map || test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))
1595 		r = 1;
1596 	else
1597 		r = dm_table_any_busy_target(map);
1598 
1599 	dm_table_put(map);
1600 
1601 	return r;
1602 }
1603 
1604 static void dm_unplug_all(struct request_queue *q)
1605 {
1606 	struct mapped_device *md = q->queuedata;
1607 	struct dm_table *map = dm_get_table(md);
1608 
1609 	if (map) {
1610 		if (dm_request_based(md))
1611 			generic_unplug_device(q);
1612 
1613 		dm_table_unplug_all(map);
1614 		dm_table_put(map);
1615 	}
1616 }
1617 
1618 static int dm_any_congested(void *congested_data, int bdi_bits)
1619 {
1620 	int r = bdi_bits;
1621 	struct mapped_device *md = congested_data;
1622 	struct dm_table *map;
1623 
1624 	if (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
1625 		map = dm_get_table(md);
1626 		if (map) {
1627 			/*
1628 			 * Request-based dm cares about only own queue for
1629 			 * the query about congestion status of request_queue
1630 			 */
1631 			if (dm_request_based(md))
1632 				r = md->queue->backing_dev_info.state &
1633 				    bdi_bits;
1634 			else
1635 				r = dm_table_any_congested(map, bdi_bits);
1636 
1637 			dm_table_put(map);
1638 		}
1639 	}
1640 
1641 	return r;
1642 }
1643 
1644 /*-----------------------------------------------------------------
1645  * An IDR is used to keep track of allocated minor numbers.
1646  *---------------------------------------------------------------*/
1647 static DEFINE_IDR(_minor_idr);
1648 
1649 static void free_minor(int minor)
1650 {
1651 	spin_lock(&_minor_lock);
1652 	idr_remove(&_minor_idr, minor);
1653 	spin_unlock(&_minor_lock);
1654 }
1655 
1656 /*
1657  * See if the device with a specific minor # is free.
1658  */
1659 static int specific_minor(int minor)
1660 {
1661 	int r, m;
1662 
1663 	if (minor >= (1 << MINORBITS))
1664 		return -EINVAL;
1665 
1666 	r = idr_pre_get(&_minor_idr, GFP_KERNEL);
1667 	if (!r)
1668 		return -ENOMEM;
1669 
1670 	spin_lock(&_minor_lock);
1671 
1672 	if (idr_find(&_minor_idr, minor)) {
1673 		r = -EBUSY;
1674 		goto out;
1675 	}
1676 
1677 	r = idr_get_new_above(&_minor_idr, MINOR_ALLOCED, minor, &m);
1678 	if (r)
1679 		goto out;
1680 
1681 	if (m != minor) {
1682 		idr_remove(&_minor_idr, m);
1683 		r = -EBUSY;
1684 		goto out;
1685 	}
1686 
1687 out:
1688 	spin_unlock(&_minor_lock);
1689 	return r;
1690 }
1691 
1692 static int next_free_minor(int *minor)
1693 {
1694 	int r, m;
1695 
1696 	r = idr_pre_get(&_minor_idr, GFP_KERNEL);
1697 	if (!r)
1698 		return -ENOMEM;
1699 
1700 	spin_lock(&_minor_lock);
1701 
1702 	r = idr_get_new(&_minor_idr, MINOR_ALLOCED, &m);
1703 	if (r)
1704 		goto out;
1705 
1706 	if (m >= (1 << MINORBITS)) {
1707 		idr_remove(&_minor_idr, m);
1708 		r = -ENOSPC;
1709 		goto out;
1710 	}
1711 
1712 	*minor = m;
1713 
1714 out:
1715 	spin_unlock(&_minor_lock);
1716 	return r;
1717 }
1718 
1719 static const struct block_device_operations dm_blk_dops;
1720 
1721 static void dm_wq_work(struct work_struct *work);
1722 
1723 /*
1724  * Allocate and initialise a blank device with a given minor.
1725  */
1726 static struct mapped_device *alloc_dev(int minor)
1727 {
1728 	int r;
1729 	struct mapped_device *md = kzalloc(sizeof(*md), GFP_KERNEL);
1730 	void *old_md;
1731 
1732 	if (!md) {
1733 		DMWARN("unable to allocate device, out of memory.");
1734 		return NULL;
1735 	}
1736 
1737 	if (!try_module_get(THIS_MODULE))
1738 		goto bad_module_get;
1739 
1740 	/* get a minor number for the dev */
1741 	if (minor == DM_ANY_MINOR)
1742 		r = next_free_minor(&minor);
1743 	else
1744 		r = specific_minor(minor);
1745 	if (r < 0)
1746 		goto bad_minor;
1747 
1748 	init_rwsem(&md->io_lock);
1749 	mutex_init(&md->suspend_lock);
1750 	spin_lock_init(&md->deferred_lock);
1751 	rwlock_init(&md->map_lock);
1752 	atomic_set(&md->holders, 1);
1753 	atomic_set(&md->open_count, 0);
1754 	atomic_set(&md->event_nr, 0);
1755 	atomic_set(&md->uevent_seq, 0);
1756 	INIT_LIST_HEAD(&md->uevent_list);
1757 	spin_lock_init(&md->uevent_lock);
1758 
1759 	md->queue = blk_init_queue(dm_request_fn, NULL);
1760 	if (!md->queue)
1761 		goto bad_queue;
1762 
1763 	/*
1764 	 * Request-based dm devices cannot be stacked on top of bio-based dm
1765 	 * devices.  The type of this dm device has not been decided yet,
1766 	 * although we initialized the queue using blk_init_queue().
1767 	 * The type is decided at the first table loading time.
1768 	 * To prevent problematic device stacking, clear the queue flag
1769 	 * for request stacking support until then.
1770 	 *
1771 	 * This queue is new, so no concurrency on the queue_flags.
1772 	 */
1773 	queue_flag_clear_unlocked(QUEUE_FLAG_STACKABLE, md->queue);
1774 	md->saved_make_request_fn = md->queue->make_request_fn;
1775 	md->queue->queuedata = md;
1776 	md->queue->backing_dev_info.congested_fn = dm_any_congested;
1777 	md->queue->backing_dev_info.congested_data = md;
1778 	blk_queue_make_request(md->queue, dm_request);
1779 	blk_queue_bounce_limit(md->queue, BLK_BOUNCE_ANY);
1780 	md->queue->unplug_fn = dm_unplug_all;
1781 	blk_queue_merge_bvec(md->queue, dm_merge_bvec);
1782 	blk_queue_softirq_done(md->queue, dm_softirq_done);
1783 	blk_queue_prep_rq(md->queue, dm_prep_fn);
1784 	blk_queue_lld_busy(md->queue, dm_lld_busy);
1785 
1786 	md->disk = alloc_disk(1);
1787 	if (!md->disk)
1788 		goto bad_disk;
1789 
1790 	atomic_set(&md->pending[0], 0);
1791 	atomic_set(&md->pending[1], 0);
1792 	init_waitqueue_head(&md->wait);
1793 	INIT_WORK(&md->work, dm_wq_work);
1794 	init_waitqueue_head(&md->eventq);
1795 
1796 	md->disk->major = _major;
1797 	md->disk->first_minor = minor;
1798 	md->disk->fops = &dm_blk_dops;
1799 	md->disk->queue = md->queue;
1800 	md->disk->private_data = md;
1801 	sprintf(md->disk->disk_name, "dm-%d", minor);
1802 	add_disk(md->disk);
1803 	format_dev_t(md->name, MKDEV(_major, minor));
1804 
1805 	md->wq = create_singlethread_workqueue("kdmflush");
1806 	if (!md->wq)
1807 		goto bad_thread;
1808 
1809 	md->bdev = bdget_disk(md->disk, 0);
1810 	if (!md->bdev)
1811 		goto bad_bdev;
1812 
1813 	/* Populate the mapping, nobody knows we exist yet */
1814 	spin_lock(&_minor_lock);
1815 	old_md = idr_replace(&_minor_idr, md, minor);
1816 	spin_unlock(&_minor_lock);
1817 
1818 	BUG_ON(old_md != MINOR_ALLOCED);
1819 
1820 	return md;
1821 
1822 bad_bdev:
1823 	destroy_workqueue(md->wq);
1824 bad_thread:
1825 	put_disk(md->disk);
1826 bad_disk:
1827 	blk_cleanup_queue(md->queue);
1828 bad_queue:
1829 	free_minor(minor);
1830 bad_minor:
1831 	module_put(THIS_MODULE);
1832 bad_module_get:
1833 	kfree(md);
1834 	return NULL;
1835 }
1836 
1837 static void unlock_fs(struct mapped_device *md);
1838 
1839 static void free_dev(struct mapped_device *md)
1840 {
1841 	int minor = MINOR(disk_devt(md->disk));
1842 
1843 	unlock_fs(md);
1844 	bdput(md->bdev);
1845 	destroy_workqueue(md->wq);
1846 	if (md->tio_pool)
1847 		mempool_destroy(md->tio_pool);
1848 	if (md->io_pool)
1849 		mempool_destroy(md->io_pool);
1850 	if (md->bs)
1851 		bioset_free(md->bs);
1852 	blk_integrity_unregister(md->disk);
1853 	del_gendisk(md->disk);
1854 	free_minor(minor);
1855 
1856 	spin_lock(&_minor_lock);
1857 	md->disk->private_data = NULL;
1858 	spin_unlock(&_minor_lock);
1859 
1860 	put_disk(md->disk);
1861 	blk_cleanup_queue(md->queue);
1862 	module_put(THIS_MODULE);
1863 	kfree(md);
1864 }
1865 
1866 static void __bind_mempools(struct mapped_device *md, struct dm_table *t)
1867 {
1868 	struct dm_md_mempools *p;
1869 
1870 	if (md->io_pool && md->tio_pool && md->bs)
1871 		/* the md already has necessary mempools */
1872 		goto out;
1873 
1874 	p = dm_table_get_md_mempools(t);
1875 	BUG_ON(!p || md->io_pool || md->tio_pool || md->bs);
1876 
1877 	md->io_pool = p->io_pool;
1878 	p->io_pool = NULL;
1879 	md->tio_pool = p->tio_pool;
1880 	p->tio_pool = NULL;
1881 	md->bs = p->bs;
1882 	p->bs = NULL;
1883 
1884 out:
1885 	/* mempool bind completed, now no need any mempools in the table */
1886 	dm_table_free_md_mempools(t);
1887 }
1888 
1889 /*
1890  * Bind a table to the device.
1891  */
1892 static void event_callback(void *context)
1893 {
1894 	unsigned long flags;
1895 	LIST_HEAD(uevents);
1896 	struct mapped_device *md = (struct mapped_device *) context;
1897 
1898 	spin_lock_irqsave(&md->uevent_lock, flags);
1899 	list_splice_init(&md->uevent_list, &uevents);
1900 	spin_unlock_irqrestore(&md->uevent_lock, flags);
1901 
1902 	dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj);
1903 
1904 	atomic_inc(&md->event_nr);
1905 	wake_up(&md->eventq);
1906 }
1907 
1908 static void __set_size(struct mapped_device *md, sector_t size)
1909 {
1910 	set_capacity(md->disk, size);
1911 
1912 	mutex_lock(&md->bdev->bd_inode->i_mutex);
1913 	i_size_write(md->bdev->bd_inode, (loff_t)size << SECTOR_SHIFT);
1914 	mutex_unlock(&md->bdev->bd_inode->i_mutex);
1915 }
1916 
1917 static int __bind(struct mapped_device *md, struct dm_table *t,
1918 		  struct queue_limits *limits)
1919 {
1920 	struct request_queue *q = md->queue;
1921 	sector_t size;
1922 	unsigned long flags;
1923 
1924 	size = dm_table_get_size(t);
1925 
1926 	/*
1927 	 * Wipe any geometry if the size of the table changed.
1928 	 */
1929 	if (size != get_capacity(md->disk))
1930 		memset(&md->geometry, 0, sizeof(md->geometry));
1931 
1932 	__set_size(md, size);
1933 
1934 	if (!size) {
1935 		dm_table_destroy(t);
1936 		return 0;
1937 	}
1938 
1939 	dm_table_event_callback(t, event_callback, md);
1940 
1941 	/*
1942 	 * The queue hasn't been stopped yet, if the old table type wasn't
1943 	 * for request-based during suspension.  So stop it to prevent
1944 	 * I/O mapping before resume.
1945 	 * This must be done before setting the queue restrictions,
1946 	 * because request-based dm may be run just after the setting.
1947 	 */
1948 	if (dm_table_request_based(t) && !blk_queue_stopped(q))
1949 		stop_queue(q);
1950 
1951 	__bind_mempools(md, t);
1952 
1953 	write_lock_irqsave(&md->map_lock, flags);
1954 	md->map = t;
1955 	dm_table_set_restrictions(t, q, limits);
1956 	write_unlock_irqrestore(&md->map_lock, flags);
1957 
1958 	return 0;
1959 }
1960 
1961 static void __unbind(struct mapped_device *md)
1962 {
1963 	struct dm_table *map = md->map;
1964 	unsigned long flags;
1965 
1966 	if (!map)
1967 		return;
1968 
1969 	dm_table_event_callback(map, NULL, NULL);
1970 	write_lock_irqsave(&md->map_lock, flags);
1971 	md->map = NULL;
1972 	write_unlock_irqrestore(&md->map_lock, flags);
1973 	dm_table_destroy(map);
1974 }
1975 
1976 /*
1977  * Constructor for a new device.
1978  */
1979 int dm_create(int minor, struct mapped_device **result)
1980 {
1981 	struct mapped_device *md;
1982 
1983 	md = alloc_dev(minor);
1984 	if (!md)
1985 		return -ENXIO;
1986 
1987 	dm_sysfs_init(md);
1988 
1989 	*result = md;
1990 	return 0;
1991 }
1992 
1993 static struct mapped_device *dm_find_md(dev_t dev)
1994 {
1995 	struct mapped_device *md;
1996 	unsigned minor = MINOR(dev);
1997 
1998 	if (MAJOR(dev) != _major || minor >= (1 << MINORBITS))
1999 		return NULL;
2000 
2001 	spin_lock(&_minor_lock);
2002 
2003 	md = idr_find(&_minor_idr, minor);
2004 	if (md && (md == MINOR_ALLOCED ||
2005 		   (MINOR(disk_devt(dm_disk(md))) != minor) ||
2006 		   test_bit(DMF_FREEING, &md->flags))) {
2007 		md = NULL;
2008 		goto out;
2009 	}
2010 
2011 out:
2012 	spin_unlock(&_minor_lock);
2013 
2014 	return md;
2015 }
2016 
2017 struct mapped_device *dm_get_md(dev_t dev)
2018 {
2019 	struct mapped_device *md = dm_find_md(dev);
2020 
2021 	if (md)
2022 		dm_get(md);
2023 
2024 	return md;
2025 }
2026 
2027 void *dm_get_mdptr(struct mapped_device *md)
2028 {
2029 	return md->interface_ptr;
2030 }
2031 
2032 void dm_set_mdptr(struct mapped_device *md, void *ptr)
2033 {
2034 	md->interface_ptr = ptr;
2035 }
2036 
2037 void dm_get(struct mapped_device *md)
2038 {
2039 	atomic_inc(&md->holders);
2040 }
2041 
2042 const char *dm_device_name(struct mapped_device *md)
2043 {
2044 	return md->name;
2045 }
2046 EXPORT_SYMBOL_GPL(dm_device_name);
2047 
2048 void dm_put(struct mapped_device *md)
2049 {
2050 	struct dm_table *map;
2051 
2052 	BUG_ON(test_bit(DMF_FREEING, &md->flags));
2053 
2054 	if (atomic_dec_and_lock(&md->holders, &_minor_lock)) {
2055 		map = dm_get_table(md);
2056 		idr_replace(&_minor_idr, MINOR_ALLOCED,
2057 			    MINOR(disk_devt(dm_disk(md))));
2058 		set_bit(DMF_FREEING, &md->flags);
2059 		spin_unlock(&_minor_lock);
2060 		if (!dm_suspended(md)) {
2061 			dm_table_presuspend_targets(map);
2062 			dm_table_postsuspend_targets(map);
2063 		}
2064 		dm_sysfs_exit(md);
2065 		dm_table_put(map);
2066 		__unbind(md);
2067 		free_dev(md);
2068 	}
2069 }
2070 EXPORT_SYMBOL_GPL(dm_put);
2071 
2072 static int dm_wait_for_completion(struct mapped_device *md, int interruptible)
2073 {
2074 	int r = 0;
2075 	DECLARE_WAITQUEUE(wait, current);
2076 	struct request_queue *q = md->queue;
2077 	unsigned long flags;
2078 
2079 	dm_unplug_all(md->queue);
2080 
2081 	add_wait_queue(&md->wait, &wait);
2082 
2083 	while (1) {
2084 		set_current_state(interruptible);
2085 
2086 		smp_mb();
2087 		if (dm_request_based(md)) {
2088 			spin_lock_irqsave(q->queue_lock, flags);
2089 			if (!queue_in_flight(q) && blk_queue_stopped(q)) {
2090 				spin_unlock_irqrestore(q->queue_lock, flags);
2091 				break;
2092 			}
2093 			spin_unlock_irqrestore(q->queue_lock, flags);
2094 		} else if (!atomic_read(&md->pending[0]) &&
2095 					!atomic_read(&md->pending[1]))
2096 			break;
2097 
2098 		if (interruptible == TASK_INTERRUPTIBLE &&
2099 		    signal_pending(current)) {
2100 			r = -EINTR;
2101 			break;
2102 		}
2103 
2104 		io_schedule();
2105 	}
2106 	set_current_state(TASK_RUNNING);
2107 
2108 	remove_wait_queue(&md->wait, &wait);
2109 
2110 	return r;
2111 }
2112 
2113 static void dm_flush(struct mapped_device *md)
2114 {
2115 	dm_wait_for_completion(md, TASK_UNINTERRUPTIBLE);
2116 
2117 	bio_init(&md->barrier_bio);
2118 	md->barrier_bio.bi_bdev = md->bdev;
2119 	md->barrier_bio.bi_rw = WRITE_BARRIER;
2120 	__split_and_process_bio(md, &md->barrier_bio);
2121 
2122 	dm_wait_for_completion(md, TASK_UNINTERRUPTIBLE);
2123 }
2124 
2125 static void process_barrier(struct mapped_device *md, struct bio *bio)
2126 {
2127 	md->barrier_error = 0;
2128 
2129 	dm_flush(md);
2130 
2131 	if (!bio_empty_barrier(bio)) {
2132 		__split_and_process_bio(md, bio);
2133 		dm_flush(md);
2134 	}
2135 
2136 	if (md->barrier_error != DM_ENDIO_REQUEUE)
2137 		bio_endio(bio, md->barrier_error);
2138 	else {
2139 		spin_lock_irq(&md->deferred_lock);
2140 		bio_list_add_head(&md->deferred, bio);
2141 		spin_unlock_irq(&md->deferred_lock);
2142 	}
2143 }
2144 
2145 /*
2146  * Process the deferred bios
2147  */
2148 static void dm_wq_work(struct work_struct *work)
2149 {
2150 	struct mapped_device *md = container_of(work, struct mapped_device,
2151 						work);
2152 	struct bio *c;
2153 
2154 	down_write(&md->io_lock);
2155 
2156 	while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
2157 		spin_lock_irq(&md->deferred_lock);
2158 		c = bio_list_pop(&md->deferred);
2159 		spin_unlock_irq(&md->deferred_lock);
2160 
2161 		if (!c) {
2162 			clear_bit(DMF_QUEUE_IO_TO_THREAD, &md->flags);
2163 			break;
2164 		}
2165 
2166 		up_write(&md->io_lock);
2167 
2168 		if (dm_request_based(md))
2169 			generic_make_request(c);
2170 		else {
2171 			if (bio_rw_flagged(c, BIO_RW_BARRIER))
2172 				process_barrier(md, c);
2173 			else
2174 				__split_and_process_bio(md, c);
2175 		}
2176 
2177 		down_write(&md->io_lock);
2178 	}
2179 
2180 	up_write(&md->io_lock);
2181 }
2182 
2183 static void dm_queue_flush(struct mapped_device *md)
2184 {
2185 	clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2186 	smp_mb__after_clear_bit();
2187 	queue_work(md->wq, &md->work);
2188 }
2189 
2190 /*
2191  * Swap in a new table (destroying old one).
2192  */
2193 int dm_swap_table(struct mapped_device *md, struct dm_table *table)
2194 {
2195 	struct queue_limits limits;
2196 	int r = -EINVAL;
2197 
2198 	mutex_lock(&md->suspend_lock);
2199 
2200 	/* device must be suspended */
2201 	if (!dm_suspended(md))
2202 		goto out;
2203 
2204 	r = dm_calculate_queue_limits(table, &limits);
2205 	if (r)
2206 		goto out;
2207 
2208 	/* cannot change the device type, once a table is bound */
2209 	if (md->map &&
2210 	    (dm_table_get_type(md->map) != dm_table_get_type(table))) {
2211 		DMWARN("can't change the device type after a table is bound");
2212 		goto out;
2213 	}
2214 
2215 	__unbind(md);
2216 	r = __bind(md, table, &limits);
2217 
2218 out:
2219 	mutex_unlock(&md->suspend_lock);
2220 	return r;
2221 }
2222 
2223 static void dm_rq_invalidate_suspend_marker(struct mapped_device *md)
2224 {
2225 	md->suspend_rq.special = (void *)0x1;
2226 }
2227 
2228 static void dm_rq_abort_suspend(struct mapped_device *md, int noflush)
2229 {
2230 	struct request_queue *q = md->queue;
2231 	unsigned long flags;
2232 
2233 	spin_lock_irqsave(q->queue_lock, flags);
2234 	if (!noflush)
2235 		dm_rq_invalidate_suspend_marker(md);
2236 	__start_queue(q);
2237 	spin_unlock_irqrestore(q->queue_lock, flags);
2238 }
2239 
2240 static void dm_rq_start_suspend(struct mapped_device *md, int noflush)
2241 {
2242 	struct request *rq = &md->suspend_rq;
2243 	struct request_queue *q = md->queue;
2244 
2245 	if (noflush)
2246 		stop_queue(q);
2247 	else {
2248 		blk_rq_init(q, rq);
2249 		blk_insert_request(q, rq, 0, NULL);
2250 	}
2251 }
2252 
2253 static int dm_rq_suspend_available(struct mapped_device *md, int noflush)
2254 {
2255 	int r = 1;
2256 	struct request *rq = &md->suspend_rq;
2257 	struct request_queue *q = md->queue;
2258 	unsigned long flags;
2259 
2260 	if (noflush)
2261 		return r;
2262 
2263 	/* The marker must be protected by queue lock if it is in use */
2264 	spin_lock_irqsave(q->queue_lock, flags);
2265 	if (unlikely(rq->ref_count)) {
2266 		/*
2267 		 * This can happen, when the previous flush suspend was
2268 		 * interrupted, the marker is still in the queue and
2269 		 * this flush suspend has been invoked, because we don't
2270 		 * remove the marker at the time of suspend interruption.
2271 		 * We have only one marker per mapped_device, so we can't
2272 		 * start another flush suspend while it is in use.
2273 		 */
2274 		BUG_ON(!rq->special); /* The marker should be invalidated */
2275 		DMWARN("Invalidating the previous flush suspend is still in"
2276 		       " progress.  Please retry later.");
2277 		r = 0;
2278 	}
2279 	spin_unlock_irqrestore(q->queue_lock, flags);
2280 
2281 	return r;
2282 }
2283 
2284 /*
2285  * Functions to lock and unlock any filesystem running on the
2286  * device.
2287  */
2288 static int lock_fs(struct mapped_device *md)
2289 {
2290 	int r;
2291 
2292 	WARN_ON(md->frozen_sb);
2293 
2294 	md->frozen_sb = freeze_bdev(md->bdev);
2295 	if (IS_ERR(md->frozen_sb)) {
2296 		r = PTR_ERR(md->frozen_sb);
2297 		md->frozen_sb = NULL;
2298 		return r;
2299 	}
2300 
2301 	set_bit(DMF_FROZEN, &md->flags);
2302 
2303 	return 0;
2304 }
2305 
2306 static void unlock_fs(struct mapped_device *md)
2307 {
2308 	if (!test_bit(DMF_FROZEN, &md->flags))
2309 		return;
2310 
2311 	thaw_bdev(md->bdev, md->frozen_sb);
2312 	md->frozen_sb = NULL;
2313 	clear_bit(DMF_FROZEN, &md->flags);
2314 }
2315 
2316 /*
2317  * We need to be able to change a mapping table under a mounted
2318  * filesystem.  For example we might want to move some data in
2319  * the background.  Before the table can be swapped with
2320  * dm_bind_table, dm_suspend must be called to flush any in
2321  * flight bios and ensure that any further io gets deferred.
2322  */
2323 /*
2324  * Suspend mechanism in request-based dm.
2325  *
2326  * After the suspend starts, further incoming requests are kept in
2327  * the request_queue and deferred.
2328  * Remaining requests in the request_queue at the start of suspend are flushed
2329  * if it is flush suspend.
2330  * The suspend completes when the following conditions have been satisfied,
2331  * so wait for it:
2332  *    1. q->in_flight is 0 (which means no in_flight request)
2333  *    2. queue has been stopped (which means no request dispatching)
2334  *
2335  *
2336  * Noflush suspend
2337  * ---------------
2338  * Noflush suspend doesn't need to dispatch remaining requests.
2339  * So stop the queue immediately.  Then, wait for all in_flight requests
2340  * to be completed or requeued.
2341  *
2342  * To abort noflush suspend, start the queue.
2343  *
2344  *
2345  * Flush suspend
2346  * -------------
2347  * Flush suspend needs to dispatch remaining requests.  So stop the queue
2348  * after the remaining requests are completed. (Requeued request must be also
2349  * re-dispatched and completed.  Until then, we can't stop the queue.)
2350  *
2351  * During flushing the remaining requests, further incoming requests are also
2352  * inserted to the same queue.  To distinguish which requests are to be
2353  * flushed, we insert a marker request to the queue at the time of starting
2354  * flush suspend, like a barrier.
2355  * The dispatching is blocked when the marker is found on the top of the queue.
2356  * And the queue is stopped when all in_flight requests are completed, since
2357  * that means the remaining requests are completely flushed.
2358  * Then, the marker is removed from the queue.
2359  *
2360  * To abort flush suspend, we also need to take care of the marker, not only
2361  * starting the queue.
2362  * We don't remove the marker forcibly from the queue since it's against
2363  * the block-layer manner.  Instead, we put a invalidated mark on the marker.
2364  * When the invalidated marker is found on the top of the queue, it is
2365  * immediately removed from the queue, so it doesn't block dispatching.
2366  * Because we have only one marker per mapped_device, we can't start another
2367  * flush suspend until the invalidated marker is removed from the queue.
2368  * So fail and return with -EBUSY in such a case.
2369  */
2370 int dm_suspend(struct mapped_device *md, unsigned suspend_flags)
2371 {
2372 	struct dm_table *map = NULL;
2373 	int r = 0;
2374 	int do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG ? 1 : 0;
2375 	int noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG ? 1 : 0;
2376 
2377 	mutex_lock(&md->suspend_lock);
2378 
2379 	if (dm_suspended(md)) {
2380 		r = -EINVAL;
2381 		goto out_unlock;
2382 	}
2383 
2384 	if (dm_request_based(md) && !dm_rq_suspend_available(md, noflush)) {
2385 		r = -EBUSY;
2386 		goto out_unlock;
2387 	}
2388 
2389 	map = dm_get_table(md);
2390 
2391 	/*
2392 	 * DMF_NOFLUSH_SUSPENDING must be set before presuspend.
2393 	 * This flag is cleared before dm_suspend returns.
2394 	 */
2395 	if (noflush)
2396 		set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2397 
2398 	/* This does not get reverted if there's an error later. */
2399 	dm_table_presuspend_targets(map);
2400 
2401 	/*
2402 	 * Flush I/O to the device. noflush supersedes do_lockfs,
2403 	 * because lock_fs() needs to flush I/Os.
2404 	 */
2405 	if (!noflush && do_lockfs) {
2406 		r = lock_fs(md);
2407 		if (r)
2408 			goto out;
2409 	}
2410 
2411 	/*
2412 	 * Here we must make sure that no processes are submitting requests
2413 	 * to target drivers i.e. no one may be executing
2414 	 * __split_and_process_bio. This is called from dm_request and
2415 	 * dm_wq_work.
2416 	 *
2417 	 * To get all processes out of __split_and_process_bio in dm_request,
2418 	 * we take the write lock. To prevent any process from reentering
2419 	 * __split_and_process_bio from dm_request, we set
2420 	 * DMF_QUEUE_IO_TO_THREAD.
2421 	 *
2422 	 * To quiesce the thread (dm_wq_work), we set DMF_BLOCK_IO_FOR_SUSPEND
2423 	 * and call flush_workqueue(md->wq). flush_workqueue will wait until
2424 	 * dm_wq_work exits and DMF_BLOCK_IO_FOR_SUSPEND will prevent any
2425 	 * further calls to __split_and_process_bio from dm_wq_work.
2426 	 */
2427 	down_write(&md->io_lock);
2428 	set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2429 	set_bit(DMF_QUEUE_IO_TO_THREAD, &md->flags);
2430 	up_write(&md->io_lock);
2431 
2432 	flush_workqueue(md->wq);
2433 
2434 	if (dm_request_based(md))
2435 		dm_rq_start_suspend(md, noflush);
2436 
2437 	/*
2438 	 * At this point no more requests are entering target request routines.
2439 	 * We call dm_wait_for_completion to wait for all existing requests
2440 	 * to finish.
2441 	 */
2442 	r = dm_wait_for_completion(md, TASK_INTERRUPTIBLE);
2443 
2444 	down_write(&md->io_lock);
2445 	if (noflush)
2446 		clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2447 	up_write(&md->io_lock);
2448 
2449 	/* were we interrupted ? */
2450 	if (r < 0) {
2451 		dm_queue_flush(md);
2452 
2453 		if (dm_request_based(md))
2454 			dm_rq_abort_suspend(md, noflush);
2455 
2456 		unlock_fs(md);
2457 		goto out; /* pushback list is already flushed, so skip flush */
2458 	}
2459 
2460 	/*
2461 	 * If dm_wait_for_completion returned 0, the device is completely
2462 	 * quiescent now. There is no request-processing activity. All new
2463 	 * requests are being added to md->deferred list.
2464 	 */
2465 
2466 	dm_table_postsuspend_targets(map);
2467 
2468 	set_bit(DMF_SUSPENDED, &md->flags);
2469 
2470 out:
2471 	dm_table_put(map);
2472 
2473 out_unlock:
2474 	mutex_unlock(&md->suspend_lock);
2475 	return r;
2476 }
2477 
2478 int dm_resume(struct mapped_device *md)
2479 {
2480 	int r = -EINVAL;
2481 	struct dm_table *map = NULL;
2482 
2483 	mutex_lock(&md->suspend_lock);
2484 	if (!dm_suspended(md))
2485 		goto out;
2486 
2487 	map = dm_get_table(md);
2488 	if (!map || !dm_table_get_size(map))
2489 		goto out;
2490 
2491 	r = dm_table_resume_targets(map);
2492 	if (r)
2493 		goto out;
2494 
2495 	dm_queue_flush(md);
2496 
2497 	/*
2498 	 * Flushing deferred I/Os must be done after targets are resumed
2499 	 * so that mapping of targets can work correctly.
2500 	 * Request-based dm is queueing the deferred I/Os in its request_queue.
2501 	 */
2502 	if (dm_request_based(md))
2503 		start_queue(md->queue);
2504 
2505 	unlock_fs(md);
2506 
2507 	clear_bit(DMF_SUSPENDED, &md->flags);
2508 
2509 	dm_table_unplug_all(map);
2510 	r = 0;
2511 out:
2512 	dm_table_put(map);
2513 	mutex_unlock(&md->suspend_lock);
2514 
2515 	return r;
2516 }
2517 
2518 /*-----------------------------------------------------------------
2519  * Event notification.
2520  *---------------------------------------------------------------*/
2521 void dm_kobject_uevent(struct mapped_device *md, enum kobject_action action,
2522 		       unsigned cookie)
2523 {
2524 	char udev_cookie[DM_COOKIE_LENGTH];
2525 	char *envp[] = { udev_cookie, NULL };
2526 
2527 	if (!cookie)
2528 		kobject_uevent(&disk_to_dev(md->disk)->kobj, action);
2529 	else {
2530 		snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u",
2531 			 DM_COOKIE_ENV_VAR_NAME, cookie);
2532 		kobject_uevent_env(&disk_to_dev(md->disk)->kobj, action, envp);
2533 	}
2534 }
2535 
2536 uint32_t dm_next_uevent_seq(struct mapped_device *md)
2537 {
2538 	return atomic_add_return(1, &md->uevent_seq);
2539 }
2540 
2541 uint32_t dm_get_event_nr(struct mapped_device *md)
2542 {
2543 	return atomic_read(&md->event_nr);
2544 }
2545 
2546 int dm_wait_event(struct mapped_device *md, int event_nr)
2547 {
2548 	return wait_event_interruptible(md->eventq,
2549 			(event_nr != atomic_read(&md->event_nr)));
2550 }
2551 
2552 void dm_uevent_add(struct mapped_device *md, struct list_head *elist)
2553 {
2554 	unsigned long flags;
2555 
2556 	spin_lock_irqsave(&md->uevent_lock, flags);
2557 	list_add(elist, &md->uevent_list);
2558 	spin_unlock_irqrestore(&md->uevent_lock, flags);
2559 }
2560 
2561 /*
2562  * The gendisk is only valid as long as you have a reference
2563  * count on 'md'.
2564  */
2565 struct gendisk *dm_disk(struct mapped_device *md)
2566 {
2567 	return md->disk;
2568 }
2569 
2570 struct kobject *dm_kobject(struct mapped_device *md)
2571 {
2572 	return &md->kobj;
2573 }
2574 
2575 /*
2576  * struct mapped_device should not be exported outside of dm.c
2577  * so use this check to verify that kobj is part of md structure
2578  */
2579 struct mapped_device *dm_get_from_kobject(struct kobject *kobj)
2580 {
2581 	struct mapped_device *md;
2582 
2583 	md = container_of(kobj, struct mapped_device, kobj);
2584 	if (&md->kobj != kobj)
2585 		return NULL;
2586 
2587 	if (test_bit(DMF_FREEING, &md->flags) ||
2588 	    test_bit(DMF_DELETING, &md->flags))
2589 		return NULL;
2590 
2591 	dm_get(md);
2592 	return md;
2593 }
2594 
2595 int dm_suspended(struct mapped_device *md)
2596 {
2597 	return test_bit(DMF_SUSPENDED, &md->flags);
2598 }
2599 
2600 int dm_noflush_suspending(struct dm_target *ti)
2601 {
2602 	struct mapped_device *md = dm_table_get_md(ti->table);
2603 	int r = __noflush_suspending(md);
2604 
2605 	dm_put(md);
2606 
2607 	return r;
2608 }
2609 EXPORT_SYMBOL_GPL(dm_noflush_suspending);
2610 
2611 struct dm_md_mempools *dm_alloc_md_mempools(unsigned type)
2612 {
2613 	struct dm_md_mempools *pools = kmalloc(sizeof(*pools), GFP_KERNEL);
2614 
2615 	if (!pools)
2616 		return NULL;
2617 
2618 	pools->io_pool = (type == DM_TYPE_BIO_BASED) ?
2619 			 mempool_create_slab_pool(MIN_IOS, _io_cache) :
2620 			 mempool_create_slab_pool(MIN_IOS, _rq_bio_info_cache);
2621 	if (!pools->io_pool)
2622 		goto free_pools_and_out;
2623 
2624 	pools->tio_pool = (type == DM_TYPE_BIO_BASED) ?
2625 			  mempool_create_slab_pool(MIN_IOS, _tio_cache) :
2626 			  mempool_create_slab_pool(MIN_IOS, _rq_tio_cache);
2627 	if (!pools->tio_pool)
2628 		goto free_io_pool_and_out;
2629 
2630 	pools->bs = (type == DM_TYPE_BIO_BASED) ?
2631 		    bioset_create(16, 0) : bioset_create(MIN_IOS, 0);
2632 	if (!pools->bs)
2633 		goto free_tio_pool_and_out;
2634 
2635 	return pools;
2636 
2637 free_tio_pool_and_out:
2638 	mempool_destroy(pools->tio_pool);
2639 
2640 free_io_pool_and_out:
2641 	mempool_destroy(pools->io_pool);
2642 
2643 free_pools_and_out:
2644 	kfree(pools);
2645 
2646 	return NULL;
2647 }
2648 
2649 void dm_free_md_mempools(struct dm_md_mempools *pools)
2650 {
2651 	if (!pools)
2652 		return;
2653 
2654 	if (pools->io_pool)
2655 		mempool_destroy(pools->io_pool);
2656 
2657 	if (pools->tio_pool)
2658 		mempool_destroy(pools->tio_pool);
2659 
2660 	if (pools->bs)
2661 		bioset_free(pools->bs);
2662 
2663 	kfree(pools);
2664 }
2665 
2666 static const struct block_device_operations dm_blk_dops = {
2667 	.open = dm_blk_open,
2668 	.release = dm_blk_close,
2669 	.ioctl = dm_blk_ioctl,
2670 	.getgeo = dm_blk_getgeo,
2671 	.owner = THIS_MODULE
2672 };
2673 
2674 EXPORT_SYMBOL(dm_get_mapinfo);
2675 
2676 /*
2677  * module hooks
2678  */
2679 module_init(dm_init);
2680 module_exit(dm_exit);
2681 
2682 module_param(major, uint, 0);
2683 MODULE_PARM_DESC(major, "The major number of the device mapper");
2684 MODULE_DESCRIPTION(DM_NAME " driver");
2685 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
2686 MODULE_LICENSE("GPL");
2687