xref: /linux/drivers/md/dm.c (revision 26b433d0da062d6e19d75350c0171d3cf8ff560d)
1 /*
2  * Copyright (C) 2001, 2002 Sistina Software (UK) Limited.
3  * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
4  *
5  * This file is released under the GPL.
6  */
7 
8 #include "dm-core.h"
9 #include "dm-rq.h"
10 #include "dm-uevent.h"
11 
12 #include <linux/init.h>
13 #include <linux/module.h>
14 #include <linux/mutex.h>
15 #include <linux/sched/signal.h>
16 #include <linux/blkpg.h>
17 #include <linux/bio.h>
18 #include <linux/mempool.h>
19 #include <linux/dax.h>
20 #include <linux/slab.h>
21 #include <linux/idr.h>
22 #include <linux/uio.h>
23 #include <linux/hdreg.h>
24 #include <linux/delay.h>
25 #include <linux/wait.h>
26 #include <linux/pr.h>
27 
28 #define DM_MSG_PREFIX "core"
29 
30 /*
31  * Cookies are numeric values sent with CHANGE and REMOVE
32  * uevents while resuming, removing or renaming the device.
33  */
34 #define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE"
35 #define DM_COOKIE_LENGTH 24
36 
37 static const char *_name = DM_NAME;
38 
39 static unsigned int major = 0;
40 static unsigned int _major = 0;
41 
42 static DEFINE_IDR(_minor_idr);
43 
44 static DEFINE_SPINLOCK(_minor_lock);
45 
46 static void do_deferred_remove(struct work_struct *w);
47 
48 static DECLARE_WORK(deferred_remove_work, do_deferred_remove);
49 
50 static struct workqueue_struct *deferred_remove_workqueue;
51 
52 atomic_t dm_global_event_nr = ATOMIC_INIT(0);
53 DECLARE_WAIT_QUEUE_HEAD(dm_global_eventq);
54 
55 /*
56  * One of these is allocated per bio.
57  */
58 struct dm_io {
59 	struct mapped_device *md;
60 	blk_status_t status;
61 	atomic_t io_count;
62 	struct bio *bio;
63 	unsigned long start_time;
64 	spinlock_t endio_lock;
65 	struct dm_stats_aux stats_aux;
66 };
67 
68 #define MINOR_ALLOCED ((void *)-1)
69 
70 /*
71  * Bits for the md->flags field.
72  */
73 #define DMF_BLOCK_IO_FOR_SUSPEND 0
74 #define DMF_SUSPENDED 1
75 #define DMF_FROZEN 2
76 #define DMF_FREEING 3
77 #define DMF_DELETING 4
78 #define DMF_NOFLUSH_SUSPENDING 5
79 #define DMF_DEFERRED_REMOVE 6
80 #define DMF_SUSPENDED_INTERNALLY 7
81 
82 #define DM_NUMA_NODE NUMA_NO_NODE
83 static int dm_numa_node = DM_NUMA_NODE;
84 
85 /*
86  * For mempools pre-allocation at the table loading time.
87  */
88 struct dm_md_mempools {
89 	mempool_t *io_pool;
90 	struct bio_set *bs;
91 };
92 
93 struct table_device {
94 	struct list_head list;
95 	atomic_t count;
96 	struct dm_dev dm_dev;
97 };
98 
99 static struct kmem_cache *_io_cache;
100 static struct kmem_cache *_rq_tio_cache;
101 static struct kmem_cache *_rq_cache;
102 
103 /*
104  * Bio-based DM's mempools' reserved IOs set by the user.
105  */
106 #define RESERVED_BIO_BASED_IOS		16
107 static unsigned reserved_bio_based_ios = RESERVED_BIO_BASED_IOS;
108 
109 static int __dm_get_module_param_int(int *module_param, int min, int max)
110 {
111 	int param = ACCESS_ONCE(*module_param);
112 	int modified_param = 0;
113 	bool modified = true;
114 
115 	if (param < min)
116 		modified_param = min;
117 	else if (param > max)
118 		modified_param = max;
119 	else
120 		modified = false;
121 
122 	if (modified) {
123 		(void)cmpxchg(module_param, param, modified_param);
124 		param = modified_param;
125 	}
126 
127 	return param;
128 }
129 
130 unsigned __dm_get_module_param(unsigned *module_param,
131 			       unsigned def, unsigned max)
132 {
133 	unsigned param = ACCESS_ONCE(*module_param);
134 	unsigned modified_param = 0;
135 
136 	if (!param)
137 		modified_param = def;
138 	else if (param > max)
139 		modified_param = max;
140 
141 	if (modified_param) {
142 		(void)cmpxchg(module_param, param, modified_param);
143 		param = modified_param;
144 	}
145 
146 	return param;
147 }
148 
149 unsigned dm_get_reserved_bio_based_ios(void)
150 {
151 	return __dm_get_module_param(&reserved_bio_based_ios,
152 				     RESERVED_BIO_BASED_IOS, DM_RESERVED_MAX_IOS);
153 }
154 EXPORT_SYMBOL_GPL(dm_get_reserved_bio_based_ios);
155 
156 static unsigned dm_get_numa_node(void)
157 {
158 	return __dm_get_module_param_int(&dm_numa_node,
159 					 DM_NUMA_NODE, num_online_nodes() - 1);
160 }
161 
162 static int __init local_init(void)
163 {
164 	int r = -ENOMEM;
165 
166 	/* allocate a slab for the dm_ios */
167 	_io_cache = KMEM_CACHE(dm_io, 0);
168 	if (!_io_cache)
169 		return r;
170 
171 	_rq_tio_cache = KMEM_CACHE(dm_rq_target_io, 0);
172 	if (!_rq_tio_cache)
173 		goto out_free_io_cache;
174 
175 	_rq_cache = kmem_cache_create("dm_old_clone_request", sizeof(struct request),
176 				      __alignof__(struct request), 0, NULL);
177 	if (!_rq_cache)
178 		goto out_free_rq_tio_cache;
179 
180 	r = dm_uevent_init();
181 	if (r)
182 		goto out_free_rq_cache;
183 
184 	deferred_remove_workqueue = alloc_workqueue("kdmremove", WQ_UNBOUND, 1);
185 	if (!deferred_remove_workqueue) {
186 		r = -ENOMEM;
187 		goto out_uevent_exit;
188 	}
189 
190 	_major = major;
191 	r = register_blkdev(_major, _name);
192 	if (r < 0)
193 		goto out_free_workqueue;
194 
195 	if (!_major)
196 		_major = r;
197 
198 	return 0;
199 
200 out_free_workqueue:
201 	destroy_workqueue(deferred_remove_workqueue);
202 out_uevent_exit:
203 	dm_uevent_exit();
204 out_free_rq_cache:
205 	kmem_cache_destroy(_rq_cache);
206 out_free_rq_tio_cache:
207 	kmem_cache_destroy(_rq_tio_cache);
208 out_free_io_cache:
209 	kmem_cache_destroy(_io_cache);
210 
211 	return r;
212 }
213 
214 static void local_exit(void)
215 {
216 	flush_scheduled_work();
217 	destroy_workqueue(deferred_remove_workqueue);
218 
219 	kmem_cache_destroy(_rq_cache);
220 	kmem_cache_destroy(_rq_tio_cache);
221 	kmem_cache_destroy(_io_cache);
222 	unregister_blkdev(_major, _name);
223 	dm_uevent_exit();
224 
225 	_major = 0;
226 
227 	DMINFO("cleaned up");
228 }
229 
230 static int (*_inits[])(void) __initdata = {
231 	local_init,
232 	dm_target_init,
233 	dm_linear_init,
234 	dm_stripe_init,
235 	dm_io_init,
236 	dm_kcopyd_init,
237 	dm_interface_init,
238 	dm_statistics_init,
239 };
240 
241 static void (*_exits[])(void) = {
242 	local_exit,
243 	dm_target_exit,
244 	dm_linear_exit,
245 	dm_stripe_exit,
246 	dm_io_exit,
247 	dm_kcopyd_exit,
248 	dm_interface_exit,
249 	dm_statistics_exit,
250 };
251 
252 static int __init dm_init(void)
253 {
254 	const int count = ARRAY_SIZE(_inits);
255 
256 	int r, i;
257 
258 	for (i = 0; i < count; i++) {
259 		r = _inits[i]();
260 		if (r)
261 			goto bad;
262 	}
263 
264 	return 0;
265 
266       bad:
267 	while (i--)
268 		_exits[i]();
269 
270 	return r;
271 }
272 
273 static void __exit dm_exit(void)
274 {
275 	int i = ARRAY_SIZE(_exits);
276 
277 	while (i--)
278 		_exits[i]();
279 
280 	/*
281 	 * Should be empty by this point.
282 	 */
283 	idr_destroy(&_minor_idr);
284 }
285 
286 /*
287  * Block device functions
288  */
289 int dm_deleting_md(struct mapped_device *md)
290 {
291 	return test_bit(DMF_DELETING, &md->flags);
292 }
293 
294 static int dm_blk_open(struct block_device *bdev, fmode_t mode)
295 {
296 	struct mapped_device *md;
297 
298 	spin_lock(&_minor_lock);
299 
300 	md = bdev->bd_disk->private_data;
301 	if (!md)
302 		goto out;
303 
304 	if (test_bit(DMF_FREEING, &md->flags) ||
305 	    dm_deleting_md(md)) {
306 		md = NULL;
307 		goto out;
308 	}
309 
310 	dm_get(md);
311 	atomic_inc(&md->open_count);
312 out:
313 	spin_unlock(&_minor_lock);
314 
315 	return md ? 0 : -ENXIO;
316 }
317 
318 static void dm_blk_close(struct gendisk *disk, fmode_t mode)
319 {
320 	struct mapped_device *md;
321 
322 	spin_lock(&_minor_lock);
323 
324 	md = disk->private_data;
325 	if (WARN_ON(!md))
326 		goto out;
327 
328 	if (atomic_dec_and_test(&md->open_count) &&
329 	    (test_bit(DMF_DEFERRED_REMOVE, &md->flags)))
330 		queue_work(deferred_remove_workqueue, &deferred_remove_work);
331 
332 	dm_put(md);
333 out:
334 	spin_unlock(&_minor_lock);
335 }
336 
337 int dm_open_count(struct mapped_device *md)
338 {
339 	return atomic_read(&md->open_count);
340 }
341 
342 /*
343  * Guarantees nothing is using the device before it's deleted.
344  */
345 int dm_lock_for_deletion(struct mapped_device *md, bool mark_deferred, bool only_deferred)
346 {
347 	int r = 0;
348 
349 	spin_lock(&_minor_lock);
350 
351 	if (dm_open_count(md)) {
352 		r = -EBUSY;
353 		if (mark_deferred)
354 			set_bit(DMF_DEFERRED_REMOVE, &md->flags);
355 	} else if (only_deferred && !test_bit(DMF_DEFERRED_REMOVE, &md->flags))
356 		r = -EEXIST;
357 	else
358 		set_bit(DMF_DELETING, &md->flags);
359 
360 	spin_unlock(&_minor_lock);
361 
362 	return r;
363 }
364 
365 int dm_cancel_deferred_remove(struct mapped_device *md)
366 {
367 	int r = 0;
368 
369 	spin_lock(&_minor_lock);
370 
371 	if (test_bit(DMF_DELETING, &md->flags))
372 		r = -EBUSY;
373 	else
374 		clear_bit(DMF_DEFERRED_REMOVE, &md->flags);
375 
376 	spin_unlock(&_minor_lock);
377 
378 	return r;
379 }
380 
381 static void do_deferred_remove(struct work_struct *w)
382 {
383 	dm_deferred_remove();
384 }
385 
386 sector_t dm_get_size(struct mapped_device *md)
387 {
388 	return get_capacity(md->disk);
389 }
390 
391 struct request_queue *dm_get_md_queue(struct mapped_device *md)
392 {
393 	return md->queue;
394 }
395 
396 struct dm_stats *dm_get_stats(struct mapped_device *md)
397 {
398 	return &md->stats;
399 }
400 
401 static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
402 {
403 	struct mapped_device *md = bdev->bd_disk->private_data;
404 
405 	return dm_get_geometry(md, geo);
406 }
407 
408 static int dm_grab_bdev_for_ioctl(struct mapped_device *md,
409 				  struct block_device **bdev,
410 				  fmode_t *mode)
411 {
412 	struct dm_target *tgt;
413 	struct dm_table *map;
414 	int srcu_idx, r;
415 
416 retry:
417 	r = -ENOTTY;
418 	map = dm_get_live_table(md, &srcu_idx);
419 	if (!map || !dm_table_get_size(map))
420 		goto out;
421 
422 	/* We only support devices that have a single target */
423 	if (dm_table_get_num_targets(map) != 1)
424 		goto out;
425 
426 	tgt = dm_table_get_target(map, 0);
427 	if (!tgt->type->prepare_ioctl)
428 		goto out;
429 
430 	if (dm_suspended_md(md)) {
431 		r = -EAGAIN;
432 		goto out;
433 	}
434 
435 	r = tgt->type->prepare_ioctl(tgt, bdev, mode);
436 	if (r < 0)
437 		goto out;
438 
439 	bdgrab(*bdev);
440 	dm_put_live_table(md, srcu_idx);
441 	return r;
442 
443 out:
444 	dm_put_live_table(md, srcu_idx);
445 	if (r == -ENOTCONN && !fatal_signal_pending(current)) {
446 		msleep(10);
447 		goto retry;
448 	}
449 	return r;
450 }
451 
452 static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode,
453 			unsigned int cmd, unsigned long arg)
454 {
455 	struct mapped_device *md = bdev->bd_disk->private_data;
456 	int r;
457 
458 	r = dm_grab_bdev_for_ioctl(md, &bdev, &mode);
459 	if (r < 0)
460 		return r;
461 
462 	if (r > 0) {
463 		/*
464 		 * Target determined this ioctl is being issued against a
465 		 * subset of the parent bdev; require extra privileges.
466 		 */
467 		if (!capable(CAP_SYS_RAWIO)) {
468 			DMWARN_LIMIT(
469 	"%s: sending ioctl %x to DM device without required privilege.",
470 				current->comm, cmd);
471 			r = -ENOIOCTLCMD;
472 			goto out;
473 		}
474 	}
475 
476 	r =  __blkdev_driver_ioctl(bdev, mode, cmd, arg);
477 out:
478 	bdput(bdev);
479 	return r;
480 }
481 
482 static struct dm_io *alloc_io(struct mapped_device *md)
483 {
484 	return mempool_alloc(md->io_pool, GFP_NOIO);
485 }
486 
487 static void free_io(struct mapped_device *md, struct dm_io *io)
488 {
489 	mempool_free(io, md->io_pool);
490 }
491 
492 static void free_tio(struct dm_target_io *tio)
493 {
494 	bio_put(&tio->clone);
495 }
496 
497 int md_in_flight(struct mapped_device *md)
498 {
499 	return atomic_read(&md->pending[READ]) +
500 	       atomic_read(&md->pending[WRITE]);
501 }
502 
503 static void start_io_acct(struct dm_io *io)
504 {
505 	struct mapped_device *md = io->md;
506 	struct bio *bio = io->bio;
507 	int cpu;
508 	int rw = bio_data_dir(bio);
509 
510 	io->start_time = jiffies;
511 
512 	cpu = part_stat_lock();
513 	part_round_stats(cpu, &dm_disk(md)->part0);
514 	part_stat_unlock();
515 	atomic_set(&dm_disk(md)->part0.in_flight[rw],
516 		atomic_inc_return(&md->pending[rw]));
517 
518 	if (unlikely(dm_stats_used(&md->stats)))
519 		dm_stats_account_io(&md->stats, bio_data_dir(bio),
520 				    bio->bi_iter.bi_sector, bio_sectors(bio),
521 				    false, 0, &io->stats_aux);
522 }
523 
524 static void end_io_acct(struct dm_io *io)
525 {
526 	struct mapped_device *md = io->md;
527 	struct bio *bio = io->bio;
528 	unsigned long duration = jiffies - io->start_time;
529 	int pending;
530 	int rw = bio_data_dir(bio);
531 
532 	generic_end_io_acct(rw, &dm_disk(md)->part0, io->start_time);
533 
534 	if (unlikely(dm_stats_used(&md->stats)))
535 		dm_stats_account_io(&md->stats, bio_data_dir(bio),
536 				    bio->bi_iter.bi_sector, bio_sectors(bio),
537 				    true, duration, &io->stats_aux);
538 
539 	/*
540 	 * After this is decremented the bio must not be touched if it is
541 	 * a flush.
542 	 */
543 	pending = atomic_dec_return(&md->pending[rw]);
544 	atomic_set(&dm_disk(md)->part0.in_flight[rw], pending);
545 	pending += atomic_read(&md->pending[rw^0x1]);
546 
547 	/* nudge anyone waiting on suspend queue */
548 	if (!pending)
549 		wake_up(&md->wait);
550 }
551 
552 /*
553  * Add the bio to the list of deferred io.
554  */
555 static void queue_io(struct mapped_device *md, struct bio *bio)
556 {
557 	unsigned long flags;
558 
559 	spin_lock_irqsave(&md->deferred_lock, flags);
560 	bio_list_add(&md->deferred, bio);
561 	spin_unlock_irqrestore(&md->deferred_lock, flags);
562 	queue_work(md->wq, &md->work);
563 }
564 
565 /*
566  * Everyone (including functions in this file), should use this
567  * function to access the md->map field, and make sure they call
568  * dm_put_live_table() when finished.
569  */
570 struct dm_table *dm_get_live_table(struct mapped_device *md, int *srcu_idx) __acquires(md->io_barrier)
571 {
572 	*srcu_idx = srcu_read_lock(&md->io_barrier);
573 
574 	return srcu_dereference(md->map, &md->io_barrier);
575 }
576 
577 void dm_put_live_table(struct mapped_device *md, int srcu_idx) __releases(md->io_barrier)
578 {
579 	srcu_read_unlock(&md->io_barrier, srcu_idx);
580 }
581 
582 void dm_sync_table(struct mapped_device *md)
583 {
584 	synchronize_srcu(&md->io_barrier);
585 	synchronize_rcu_expedited();
586 }
587 
588 /*
589  * A fast alternative to dm_get_live_table/dm_put_live_table.
590  * The caller must not block between these two functions.
591  */
592 static struct dm_table *dm_get_live_table_fast(struct mapped_device *md) __acquires(RCU)
593 {
594 	rcu_read_lock();
595 	return rcu_dereference(md->map);
596 }
597 
598 static void dm_put_live_table_fast(struct mapped_device *md) __releases(RCU)
599 {
600 	rcu_read_unlock();
601 }
602 
603 /*
604  * Open a table device so we can use it as a map destination.
605  */
606 static int open_table_device(struct table_device *td, dev_t dev,
607 			     struct mapped_device *md)
608 {
609 	static char *_claim_ptr = "I belong to device-mapper";
610 	struct block_device *bdev;
611 
612 	int r;
613 
614 	BUG_ON(td->dm_dev.bdev);
615 
616 	bdev = blkdev_get_by_dev(dev, td->dm_dev.mode | FMODE_EXCL, _claim_ptr);
617 	if (IS_ERR(bdev))
618 		return PTR_ERR(bdev);
619 
620 	r = bd_link_disk_holder(bdev, dm_disk(md));
621 	if (r) {
622 		blkdev_put(bdev, td->dm_dev.mode | FMODE_EXCL);
623 		return r;
624 	}
625 
626 	td->dm_dev.bdev = bdev;
627 	td->dm_dev.dax_dev = dax_get_by_host(bdev->bd_disk->disk_name);
628 	return 0;
629 }
630 
631 /*
632  * Close a table device that we've been using.
633  */
634 static void close_table_device(struct table_device *td, struct mapped_device *md)
635 {
636 	if (!td->dm_dev.bdev)
637 		return;
638 
639 	bd_unlink_disk_holder(td->dm_dev.bdev, dm_disk(md));
640 	blkdev_put(td->dm_dev.bdev, td->dm_dev.mode | FMODE_EXCL);
641 	put_dax(td->dm_dev.dax_dev);
642 	td->dm_dev.bdev = NULL;
643 	td->dm_dev.dax_dev = NULL;
644 }
645 
646 static struct table_device *find_table_device(struct list_head *l, dev_t dev,
647 					      fmode_t mode) {
648 	struct table_device *td;
649 
650 	list_for_each_entry(td, l, list)
651 		if (td->dm_dev.bdev->bd_dev == dev && td->dm_dev.mode == mode)
652 			return td;
653 
654 	return NULL;
655 }
656 
657 int dm_get_table_device(struct mapped_device *md, dev_t dev, fmode_t mode,
658 			struct dm_dev **result) {
659 	int r;
660 	struct table_device *td;
661 
662 	mutex_lock(&md->table_devices_lock);
663 	td = find_table_device(&md->table_devices, dev, mode);
664 	if (!td) {
665 		td = kmalloc_node(sizeof(*td), GFP_KERNEL, md->numa_node_id);
666 		if (!td) {
667 			mutex_unlock(&md->table_devices_lock);
668 			return -ENOMEM;
669 		}
670 
671 		td->dm_dev.mode = mode;
672 		td->dm_dev.bdev = NULL;
673 
674 		if ((r = open_table_device(td, dev, md))) {
675 			mutex_unlock(&md->table_devices_lock);
676 			kfree(td);
677 			return r;
678 		}
679 
680 		format_dev_t(td->dm_dev.name, dev);
681 
682 		atomic_set(&td->count, 0);
683 		list_add(&td->list, &md->table_devices);
684 	}
685 	atomic_inc(&td->count);
686 	mutex_unlock(&md->table_devices_lock);
687 
688 	*result = &td->dm_dev;
689 	return 0;
690 }
691 EXPORT_SYMBOL_GPL(dm_get_table_device);
692 
693 void dm_put_table_device(struct mapped_device *md, struct dm_dev *d)
694 {
695 	struct table_device *td = container_of(d, struct table_device, dm_dev);
696 
697 	mutex_lock(&md->table_devices_lock);
698 	if (atomic_dec_and_test(&td->count)) {
699 		close_table_device(td, md);
700 		list_del(&td->list);
701 		kfree(td);
702 	}
703 	mutex_unlock(&md->table_devices_lock);
704 }
705 EXPORT_SYMBOL(dm_put_table_device);
706 
707 static void free_table_devices(struct list_head *devices)
708 {
709 	struct list_head *tmp, *next;
710 
711 	list_for_each_safe(tmp, next, devices) {
712 		struct table_device *td = list_entry(tmp, struct table_device, list);
713 
714 		DMWARN("dm_destroy: %s still exists with %d references",
715 		       td->dm_dev.name, atomic_read(&td->count));
716 		kfree(td);
717 	}
718 }
719 
720 /*
721  * Get the geometry associated with a dm device
722  */
723 int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo)
724 {
725 	*geo = md->geometry;
726 
727 	return 0;
728 }
729 
730 /*
731  * Set the geometry of a device.
732  */
733 int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo)
734 {
735 	sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors;
736 
737 	if (geo->start > sz) {
738 		DMWARN("Start sector is beyond the geometry limits.");
739 		return -EINVAL;
740 	}
741 
742 	md->geometry = *geo;
743 
744 	return 0;
745 }
746 
747 /*-----------------------------------------------------------------
748  * CRUD START:
749  *   A more elegant soln is in the works that uses the queue
750  *   merge fn, unfortunately there are a couple of changes to
751  *   the block layer that I want to make for this.  So in the
752  *   interests of getting something for people to use I give
753  *   you this clearly demarcated crap.
754  *---------------------------------------------------------------*/
755 
756 static int __noflush_suspending(struct mapped_device *md)
757 {
758 	return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
759 }
760 
761 /*
762  * Decrements the number of outstanding ios that a bio has been
763  * cloned into, completing the original io if necc.
764  */
765 static void dec_pending(struct dm_io *io, blk_status_t error)
766 {
767 	unsigned long flags;
768 	blk_status_t io_error;
769 	struct bio *bio;
770 	struct mapped_device *md = io->md;
771 
772 	/* Push-back supersedes any I/O errors */
773 	if (unlikely(error)) {
774 		spin_lock_irqsave(&io->endio_lock, flags);
775 		if (!(io->status == BLK_STS_DM_REQUEUE &&
776 				__noflush_suspending(md)))
777 			io->status = error;
778 		spin_unlock_irqrestore(&io->endio_lock, flags);
779 	}
780 
781 	if (atomic_dec_and_test(&io->io_count)) {
782 		if (io->status == BLK_STS_DM_REQUEUE) {
783 			/*
784 			 * Target requested pushing back the I/O.
785 			 */
786 			spin_lock_irqsave(&md->deferred_lock, flags);
787 			if (__noflush_suspending(md))
788 				bio_list_add_head(&md->deferred, io->bio);
789 			else
790 				/* noflush suspend was interrupted. */
791 				io->status = BLK_STS_IOERR;
792 			spin_unlock_irqrestore(&md->deferred_lock, flags);
793 		}
794 
795 		io_error = io->status;
796 		bio = io->bio;
797 		end_io_acct(io);
798 		free_io(md, io);
799 
800 		if (io_error == BLK_STS_DM_REQUEUE)
801 			return;
802 
803 		if ((bio->bi_opf & REQ_PREFLUSH) && bio->bi_iter.bi_size) {
804 			/*
805 			 * Preflush done for flush with data, reissue
806 			 * without REQ_PREFLUSH.
807 			 */
808 			bio->bi_opf &= ~REQ_PREFLUSH;
809 			queue_io(md, bio);
810 		} else {
811 			/* done with normal IO or empty flush */
812 			bio->bi_status = io_error;
813 			bio_endio(bio);
814 		}
815 	}
816 }
817 
818 void disable_write_same(struct mapped_device *md)
819 {
820 	struct queue_limits *limits = dm_get_queue_limits(md);
821 
822 	/* device doesn't really support WRITE SAME, disable it */
823 	limits->max_write_same_sectors = 0;
824 }
825 
826 void disable_write_zeroes(struct mapped_device *md)
827 {
828 	struct queue_limits *limits = dm_get_queue_limits(md);
829 
830 	/* device doesn't really support WRITE ZEROES, disable it */
831 	limits->max_write_zeroes_sectors = 0;
832 }
833 
834 static void clone_endio(struct bio *bio)
835 {
836 	blk_status_t error = bio->bi_status;
837 	struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
838 	struct dm_io *io = tio->io;
839 	struct mapped_device *md = tio->io->md;
840 	dm_endio_fn endio = tio->ti->type->end_io;
841 
842 	if (unlikely(error == BLK_STS_TARGET)) {
843 		if (bio_op(bio) == REQ_OP_WRITE_SAME &&
844 		    !bdev_get_queue(bio->bi_bdev)->limits.max_write_same_sectors)
845 			disable_write_same(md);
846 		if (bio_op(bio) == REQ_OP_WRITE_ZEROES &&
847 		    !bdev_get_queue(bio->bi_bdev)->limits.max_write_zeroes_sectors)
848 			disable_write_zeroes(md);
849 	}
850 
851 	if (endio) {
852 		int r = endio(tio->ti, bio, &error);
853 		switch (r) {
854 		case DM_ENDIO_REQUEUE:
855 			error = BLK_STS_DM_REQUEUE;
856 			/*FALLTHRU*/
857 		case DM_ENDIO_DONE:
858 			break;
859 		case DM_ENDIO_INCOMPLETE:
860 			/* The target will handle the io */
861 			return;
862 		default:
863 			DMWARN("unimplemented target endio return value: %d", r);
864 			BUG();
865 		}
866 	}
867 
868 	free_tio(tio);
869 	dec_pending(io, error);
870 }
871 
872 /*
873  * Return maximum size of I/O possible at the supplied sector up to the current
874  * target boundary.
875  */
876 static sector_t max_io_len_target_boundary(sector_t sector, struct dm_target *ti)
877 {
878 	sector_t target_offset = dm_target_offset(ti, sector);
879 
880 	return ti->len - target_offset;
881 }
882 
883 static sector_t max_io_len(sector_t sector, struct dm_target *ti)
884 {
885 	sector_t len = max_io_len_target_boundary(sector, ti);
886 	sector_t offset, max_len;
887 
888 	/*
889 	 * Does the target need to split even further?
890 	 */
891 	if (ti->max_io_len) {
892 		offset = dm_target_offset(ti, sector);
893 		if (unlikely(ti->max_io_len & (ti->max_io_len - 1)))
894 			max_len = sector_div(offset, ti->max_io_len);
895 		else
896 			max_len = offset & (ti->max_io_len - 1);
897 		max_len = ti->max_io_len - max_len;
898 
899 		if (len > max_len)
900 			len = max_len;
901 	}
902 
903 	return len;
904 }
905 
906 int dm_set_target_max_io_len(struct dm_target *ti, sector_t len)
907 {
908 	if (len > UINT_MAX) {
909 		DMERR("Specified maximum size of target IO (%llu) exceeds limit (%u)",
910 		      (unsigned long long)len, UINT_MAX);
911 		ti->error = "Maximum size of target IO is too large";
912 		return -EINVAL;
913 	}
914 
915 	ti->max_io_len = (uint32_t) len;
916 
917 	return 0;
918 }
919 EXPORT_SYMBOL_GPL(dm_set_target_max_io_len);
920 
921 static struct dm_target *dm_dax_get_live_target(struct mapped_device *md,
922 		sector_t sector, int *srcu_idx)
923 {
924 	struct dm_table *map;
925 	struct dm_target *ti;
926 
927 	map = dm_get_live_table(md, srcu_idx);
928 	if (!map)
929 		return NULL;
930 
931 	ti = dm_table_find_target(map, sector);
932 	if (!dm_target_is_valid(ti))
933 		return NULL;
934 
935 	return ti;
936 }
937 
938 static long dm_dax_direct_access(struct dax_device *dax_dev, pgoff_t pgoff,
939 		long nr_pages, void **kaddr, pfn_t *pfn)
940 {
941 	struct mapped_device *md = dax_get_private(dax_dev);
942 	sector_t sector = pgoff * PAGE_SECTORS;
943 	struct dm_target *ti;
944 	long len, ret = -EIO;
945 	int srcu_idx;
946 
947 	ti = dm_dax_get_live_target(md, sector, &srcu_idx);
948 
949 	if (!ti)
950 		goto out;
951 	if (!ti->type->direct_access)
952 		goto out;
953 	len = max_io_len(sector, ti) / PAGE_SECTORS;
954 	if (len < 1)
955 		goto out;
956 	nr_pages = min(len, nr_pages);
957 	if (ti->type->direct_access)
958 		ret = ti->type->direct_access(ti, pgoff, nr_pages, kaddr, pfn);
959 
960  out:
961 	dm_put_live_table(md, srcu_idx);
962 
963 	return ret;
964 }
965 
966 static size_t dm_dax_copy_from_iter(struct dax_device *dax_dev, pgoff_t pgoff,
967 		void *addr, size_t bytes, struct iov_iter *i)
968 {
969 	struct mapped_device *md = dax_get_private(dax_dev);
970 	sector_t sector = pgoff * PAGE_SECTORS;
971 	struct dm_target *ti;
972 	long ret = 0;
973 	int srcu_idx;
974 
975 	ti = dm_dax_get_live_target(md, sector, &srcu_idx);
976 
977 	if (!ti)
978 		goto out;
979 	if (!ti->type->dax_copy_from_iter) {
980 		ret = copy_from_iter(addr, bytes, i);
981 		goto out;
982 	}
983 	ret = ti->type->dax_copy_from_iter(ti, pgoff, addr, bytes, i);
984  out:
985 	dm_put_live_table(md, srcu_idx);
986 
987 	return ret;
988 }
989 
990 static void dm_dax_flush(struct dax_device *dax_dev, pgoff_t pgoff, void *addr,
991 		size_t size)
992 {
993 	struct mapped_device *md = dax_get_private(dax_dev);
994 	sector_t sector = pgoff * PAGE_SECTORS;
995 	struct dm_target *ti;
996 	int srcu_idx;
997 
998 	ti = dm_dax_get_live_target(md, sector, &srcu_idx);
999 
1000 	if (!ti)
1001 		goto out;
1002 	if (ti->type->dax_flush)
1003 		ti->type->dax_flush(ti, pgoff, addr, size);
1004  out:
1005 	dm_put_live_table(md, srcu_idx);
1006 }
1007 
1008 /*
1009  * A target may call dm_accept_partial_bio only from the map routine.  It is
1010  * allowed for all bio types except REQ_PREFLUSH.
1011  *
1012  * dm_accept_partial_bio informs the dm that the target only wants to process
1013  * additional n_sectors sectors of the bio and the rest of the data should be
1014  * sent in a next bio.
1015  *
1016  * A diagram that explains the arithmetics:
1017  * +--------------------+---------------+-------+
1018  * |         1          |       2       |   3   |
1019  * +--------------------+---------------+-------+
1020  *
1021  * <-------------- *tio->len_ptr --------------->
1022  *                      <------- bi_size ------->
1023  *                      <-- n_sectors -->
1024  *
1025  * Region 1 was already iterated over with bio_advance or similar function.
1026  *	(it may be empty if the target doesn't use bio_advance)
1027  * Region 2 is the remaining bio size that the target wants to process.
1028  *	(it may be empty if region 1 is non-empty, although there is no reason
1029  *	 to make it empty)
1030  * The target requires that region 3 is to be sent in the next bio.
1031  *
1032  * If the target wants to receive multiple copies of the bio (via num_*bios, etc),
1033  * the partially processed part (the sum of regions 1+2) must be the same for all
1034  * copies of the bio.
1035  */
1036 void dm_accept_partial_bio(struct bio *bio, unsigned n_sectors)
1037 {
1038 	struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
1039 	unsigned bi_size = bio->bi_iter.bi_size >> SECTOR_SHIFT;
1040 	BUG_ON(bio->bi_opf & REQ_PREFLUSH);
1041 	BUG_ON(bi_size > *tio->len_ptr);
1042 	BUG_ON(n_sectors > bi_size);
1043 	*tio->len_ptr -= bi_size - n_sectors;
1044 	bio->bi_iter.bi_size = n_sectors << SECTOR_SHIFT;
1045 }
1046 EXPORT_SYMBOL_GPL(dm_accept_partial_bio);
1047 
1048 /*
1049  * The zone descriptors obtained with a zone report indicate
1050  * zone positions within the target device. The zone descriptors
1051  * must be remapped to match their position within the dm device.
1052  * A target may call dm_remap_zone_report after completion of a
1053  * REQ_OP_ZONE_REPORT bio to remap the zone descriptors obtained
1054  * from the target device mapping to the dm device.
1055  */
1056 void dm_remap_zone_report(struct dm_target *ti, struct bio *bio, sector_t start)
1057 {
1058 #ifdef CONFIG_BLK_DEV_ZONED
1059 	struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
1060 	struct bio *report_bio = tio->io->bio;
1061 	struct blk_zone_report_hdr *hdr = NULL;
1062 	struct blk_zone *zone;
1063 	unsigned int nr_rep = 0;
1064 	unsigned int ofst;
1065 	struct bio_vec bvec;
1066 	struct bvec_iter iter;
1067 	void *addr;
1068 
1069 	if (bio->bi_status)
1070 		return;
1071 
1072 	/*
1073 	 * Remap the start sector of the reported zones. For sequential zones,
1074 	 * also remap the write pointer position.
1075 	 */
1076 	bio_for_each_segment(bvec, report_bio, iter) {
1077 		addr = kmap_atomic(bvec.bv_page);
1078 
1079 		/* Remember the report header in the first page */
1080 		if (!hdr) {
1081 			hdr = addr;
1082 			ofst = sizeof(struct blk_zone_report_hdr);
1083 		} else
1084 			ofst = 0;
1085 
1086 		/* Set zones start sector */
1087 		while (hdr->nr_zones && ofst < bvec.bv_len) {
1088 			zone = addr + ofst;
1089 			if (zone->start >= start + ti->len) {
1090 				hdr->nr_zones = 0;
1091 				break;
1092 			}
1093 			zone->start = zone->start + ti->begin - start;
1094 			if (zone->type != BLK_ZONE_TYPE_CONVENTIONAL) {
1095 				if (zone->cond == BLK_ZONE_COND_FULL)
1096 					zone->wp = zone->start + zone->len;
1097 				else if (zone->cond == BLK_ZONE_COND_EMPTY)
1098 					zone->wp = zone->start;
1099 				else
1100 					zone->wp = zone->wp + ti->begin - start;
1101 			}
1102 			ofst += sizeof(struct blk_zone);
1103 			hdr->nr_zones--;
1104 			nr_rep++;
1105 		}
1106 
1107 		if (addr != hdr)
1108 			kunmap_atomic(addr);
1109 
1110 		if (!hdr->nr_zones)
1111 			break;
1112 	}
1113 
1114 	if (hdr) {
1115 		hdr->nr_zones = nr_rep;
1116 		kunmap_atomic(hdr);
1117 	}
1118 
1119 	bio_advance(report_bio, report_bio->bi_iter.bi_size);
1120 
1121 #else /* !CONFIG_BLK_DEV_ZONED */
1122 	bio->bi_status = BLK_STS_NOTSUPP;
1123 #endif
1124 }
1125 EXPORT_SYMBOL_GPL(dm_remap_zone_report);
1126 
1127 /*
1128  * Flush current->bio_list when the target map method blocks.
1129  * This fixes deadlocks in snapshot and possibly in other targets.
1130  */
1131 struct dm_offload {
1132 	struct blk_plug plug;
1133 	struct blk_plug_cb cb;
1134 };
1135 
1136 static void flush_current_bio_list(struct blk_plug_cb *cb, bool from_schedule)
1137 {
1138 	struct dm_offload *o = container_of(cb, struct dm_offload, cb);
1139 	struct bio_list list;
1140 	struct bio *bio;
1141 	int i;
1142 
1143 	INIT_LIST_HEAD(&o->cb.list);
1144 
1145 	if (unlikely(!current->bio_list))
1146 		return;
1147 
1148 	for (i = 0; i < 2; i++) {
1149 		list = current->bio_list[i];
1150 		bio_list_init(&current->bio_list[i]);
1151 
1152 		while ((bio = bio_list_pop(&list))) {
1153 			struct bio_set *bs = bio->bi_pool;
1154 			if (unlikely(!bs) || bs == fs_bio_set ||
1155 			    !bs->rescue_workqueue) {
1156 				bio_list_add(&current->bio_list[i], bio);
1157 				continue;
1158 			}
1159 
1160 			spin_lock(&bs->rescue_lock);
1161 			bio_list_add(&bs->rescue_list, bio);
1162 			queue_work(bs->rescue_workqueue, &bs->rescue_work);
1163 			spin_unlock(&bs->rescue_lock);
1164 		}
1165 	}
1166 }
1167 
1168 static void dm_offload_start(struct dm_offload *o)
1169 {
1170 	blk_start_plug(&o->plug);
1171 	o->cb.callback = flush_current_bio_list;
1172 	list_add(&o->cb.list, &current->plug->cb_list);
1173 }
1174 
1175 static void dm_offload_end(struct dm_offload *o)
1176 {
1177 	list_del(&o->cb.list);
1178 	blk_finish_plug(&o->plug);
1179 }
1180 
1181 static void __map_bio(struct dm_target_io *tio)
1182 {
1183 	int r;
1184 	sector_t sector;
1185 	struct dm_offload o;
1186 	struct bio *clone = &tio->clone;
1187 	struct dm_target *ti = tio->ti;
1188 
1189 	clone->bi_end_io = clone_endio;
1190 
1191 	/*
1192 	 * Map the clone.  If r == 0 we don't need to do
1193 	 * anything, the target has assumed ownership of
1194 	 * this io.
1195 	 */
1196 	atomic_inc(&tio->io->io_count);
1197 	sector = clone->bi_iter.bi_sector;
1198 
1199 	dm_offload_start(&o);
1200 	r = ti->type->map(ti, clone);
1201 	dm_offload_end(&o);
1202 
1203 	switch (r) {
1204 	case DM_MAPIO_SUBMITTED:
1205 		break;
1206 	case DM_MAPIO_REMAPPED:
1207 		/* the bio has been remapped so dispatch it */
1208 		trace_block_bio_remap(bdev_get_queue(clone->bi_bdev), clone,
1209 				      tio->io->bio->bi_bdev->bd_dev, sector);
1210 		generic_make_request(clone);
1211 		break;
1212 	case DM_MAPIO_KILL:
1213 		dec_pending(tio->io, BLK_STS_IOERR);
1214 		free_tio(tio);
1215 		break;
1216 	case DM_MAPIO_REQUEUE:
1217 		dec_pending(tio->io, BLK_STS_DM_REQUEUE);
1218 		free_tio(tio);
1219 		break;
1220 	default:
1221 		DMWARN("unimplemented target map return value: %d", r);
1222 		BUG();
1223 	}
1224 }
1225 
1226 struct clone_info {
1227 	struct mapped_device *md;
1228 	struct dm_table *map;
1229 	struct bio *bio;
1230 	struct dm_io *io;
1231 	sector_t sector;
1232 	unsigned sector_count;
1233 };
1234 
1235 static void bio_setup_sector(struct bio *bio, sector_t sector, unsigned len)
1236 {
1237 	bio->bi_iter.bi_sector = sector;
1238 	bio->bi_iter.bi_size = to_bytes(len);
1239 }
1240 
1241 /*
1242  * Creates a bio that consists of range of complete bvecs.
1243  */
1244 static int clone_bio(struct dm_target_io *tio, struct bio *bio,
1245 		     sector_t sector, unsigned len)
1246 {
1247 	struct bio *clone = &tio->clone;
1248 
1249 	__bio_clone_fast(clone, bio);
1250 
1251 	if (unlikely(bio_integrity(bio) != NULL)) {
1252 		int r;
1253 
1254 		if (unlikely(!dm_target_has_integrity(tio->ti->type) &&
1255 			     !dm_target_passes_integrity(tio->ti->type))) {
1256 			DMWARN("%s: the target %s doesn't support integrity data.",
1257 				dm_device_name(tio->io->md),
1258 				tio->ti->type->name);
1259 			return -EIO;
1260 		}
1261 
1262 		r = bio_integrity_clone(clone, bio, GFP_NOIO);
1263 		if (r < 0)
1264 			return r;
1265 	}
1266 
1267 	if (bio_op(bio) != REQ_OP_ZONE_REPORT)
1268 		bio_advance(clone, to_bytes(sector - clone->bi_iter.bi_sector));
1269 	clone->bi_iter.bi_size = to_bytes(len);
1270 
1271 	if (unlikely(bio_integrity(bio) != NULL))
1272 		bio_integrity_trim(clone);
1273 
1274 	return 0;
1275 }
1276 
1277 static struct dm_target_io *alloc_tio(struct clone_info *ci,
1278 				      struct dm_target *ti,
1279 				      unsigned target_bio_nr)
1280 {
1281 	struct dm_target_io *tio;
1282 	struct bio *clone;
1283 
1284 	clone = bio_alloc_bioset(GFP_NOIO, 0, ci->md->bs);
1285 	tio = container_of(clone, struct dm_target_io, clone);
1286 
1287 	tio->io = ci->io;
1288 	tio->ti = ti;
1289 	tio->target_bio_nr = target_bio_nr;
1290 
1291 	return tio;
1292 }
1293 
1294 static void __clone_and_map_simple_bio(struct clone_info *ci,
1295 				       struct dm_target *ti,
1296 				       unsigned target_bio_nr, unsigned *len)
1297 {
1298 	struct dm_target_io *tio = alloc_tio(ci, ti, target_bio_nr);
1299 	struct bio *clone = &tio->clone;
1300 
1301 	tio->len_ptr = len;
1302 
1303 	__bio_clone_fast(clone, ci->bio);
1304 	if (len)
1305 		bio_setup_sector(clone, ci->sector, *len);
1306 
1307 	__map_bio(tio);
1308 }
1309 
1310 static void __send_duplicate_bios(struct clone_info *ci, struct dm_target *ti,
1311 				  unsigned num_bios, unsigned *len)
1312 {
1313 	unsigned target_bio_nr;
1314 
1315 	for (target_bio_nr = 0; target_bio_nr < num_bios; target_bio_nr++)
1316 		__clone_and_map_simple_bio(ci, ti, target_bio_nr, len);
1317 }
1318 
1319 static int __send_empty_flush(struct clone_info *ci)
1320 {
1321 	unsigned target_nr = 0;
1322 	struct dm_target *ti;
1323 
1324 	BUG_ON(bio_has_data(ci->bio));
1325 	while ((ti = dm_table_get_target(ci->map, target_nr++)))
1326 		__send_duplicate_bios(ci, ti, ti->num_flush_bios, NULL);
1327 
1328 	return 0;
1329 }
1330 
1331 static int __clone_and_map_data_bio(struct clone_info *ci, struct dm_target *ti,
1332 				     sector_t sector, unsigned *len)
1333 {
1334 	struct bio *bio = ci->bio;
1335 	struct dm_target_io *tio;
1336 	unsigned target_bio_nr;
1337 	unsigned num_target_bios = 1;
1338 	int r = 0;
1339 
1340 	/*
1341 	 * Does the target want to receive duplicate copies of the bio?
1342 	 */
1343 	if (bio_data_dir(bio) == WRITE && ti->num_write_bios)
1344 		num_target_bios = ti->num_write_bios(ti, bio);
1345 
1346 	for (target_bio_nr = 0; target_bio_nr < num_target_bios; target_bio_nr++) {
1347 		tio = alloc_tio(ci, ti, target_bio_nr);
1348 		tio->len_ptr = len;
1349 		r = clone_bio(tio, bio, sector, *len);
1350 		if (r < 0) {
1351 			free_tio(tio);
1352 			break;
1353 		}
1354 		__map_bio(tio);
1355 	}
1356 
1357 	return r;
1358 }
1359 
1360 typedef unsigned (*get_num_bios_fn)(struct dm_target *ti);
1361 
1362 static unsigned get_num_discard_bios(struct dm_target *ti)
1363 {
1364 	return ti->num_discard_bios;
1365 }
1366 
1367 static unsigned get_num_write_same_bios(struct dm_target *ti)
1368 {
1369 	return ti->num_write_same_bios;
1370 }
1371 
1372 static unsigned get_num_write_zeroes_bios(struct dm_target *ti)
1373 {
1374 	return ti->num_write_zeroes_bios;
1375 }
1376 
1377 typedef bool (*is_split_required_fn)(struct dm_target *ti);
1378 
1379 static bool is_split_required_for_discard(struct dm_target *ti)
1380 {
1381 	return ti->split_discard_bios;
1382 }
1383 
1384 static int __send_changing_extent_only(struct clone_info *ci,
1385 				       get_num_bios_fn get_num_bios,
1386 				       is_split_required_fn is_split_required)
1387 {
1388 	struct dm_target *ti;
1389 	unsigned len;
1390 	unsigned num_bios;
1391 
1392 	do {
1393 		ti = dm_table_find_target(ci->map, ci->sector);
1394 		if (!dm_target_is_valid(ti))
1395 			return -EIO;
1396 
1397 		/*
1398 		 * Even though the device advertised support for this type of
1399 		 * request, that does not mean every target supports it, and
1400 		 * reconfiguration might also have changed that since the
1401 		 * check was performed.
1402 		 */
1403 		num_bios = get_num_bios ? get_num_bios(ti) : 0;
1404 		if (!num_bios)
1405 			return -EOPNOTSUPP;
1406 
1407 		if (is_split_required && !is_split_required(ti))
1408 			len = min((sector_t)ci->sector_count, max_io_len_target_boundary(ci->sector, ti));
1409 		else
1410 			len = min((sector_t)ci->sector_count, max_io_len(ci->sector, ti));
1411 
1412 		__send_duplicate_bios(ci, ti, num_bios, &len);
1413 
1414 		ci->sector += len;
1415 	} while (ci->sector_count -= len);
1416 
1417 	return 0;
1418 }
1419 
1420 static int __send_discard(struct clone_info *ci)
1421 {
1422 	return __send_changing_extent_only(ci, get_num_discard_bios,
1423 					   is_split_required_for_discard);
1424 }
1425 
1426 static int __send_write_same(struct clone_info *ci)
1427 {
1428 	return __send_changing_extent_only(ci, get_num_write_same_bios, NULL);
1429 }
1430 
1431 static int __send_write_zeroes(struct clone_info *ci)
1432 {
1433 	return __send_changing_extent_only(ci, get_num_write_zeroes_bios, NULL);
1434 }
1435 
1436 /*
1437  * Select the correct strategy for processing a non-flush bio.
1438  */
1439 static int __split_and_process_non_flush(struct clone_info *ci)
1440 {
1441 	struct bio *bio = ci->bio;
1442 	struct dm_target *ti;
1443 	unsigned len;
1444 	int r;
1445 
1446 	if (unlikely(bio_op(bio) == REQ_OP_DISCARD))
1447 		return __send_discard(ci);
1448 	else if (unlikely(bio_op(bio) == REQ_OP_WRITE_SAME))
1449 		return __send_write_same(ci);
1450 	else if (unlikely(bio_op(bio) == REQ_OP_WRITE_ZEROES))
1451 		return __send_write_zeroes(ci);
1452 
1453 	ti = dm_table_find_target(ci->map, ci->sector);
1454 	if (!dm_target_is_valid(ti))
1455 		return -EIO;
1456 
1457 	if (bio_op(bio) == REQ_OP_ZONE_REPORT)
1458 		len = ci->sector_count;
1459 	else
1460 		len = min_t(sector_t, max_io_len(ci->sector, ti),
1461 			    ci->sector_count);
1462 
1463 	r = __clone_and_map_data_bio(ci, ti, ci->sector, &len);
1464 	if (r < 0)
1465 		return r;
1466 
1467 	ci->sector += len;
1468 	ci->sector_count -= len;
1469 
1470 	return 0;
1471 }
1472 
1473 /*
1474  * Entry point to split a bio into clones and submit them to the targets.
1475  */
1476 static void __split_and_process_bio(struct mapped_device *md,
1477 				    struct dm_table *map, struct bio *bio)
1478 {
1479 	struct clone_info ci;
1480 	int error = 0;
1481 
1482 	if (unlikely(!map)) {
1483 		bio_io_error(bio);
1484 		return;
1485 	}
1486 
1487 	ci.map = map;
1488 	ci.md = md;
1489 	ci.io = alloc_io(md);
1490 	ci.io->status = 0;
1491 	atomic_set(&ci.io->io_count, 1);
1492 	ci.io->bio = bio;
1493 	ci.io->md = md;
1494 	spin_lock_init(&ci.io->endio_lock);
1495 	ci.sector = bio->bi_iter.bi_sector;
1496 
1497 	start_io_acct(ci.io);
1498 
1499 	if (bio->bi_opf & REQ_PREFLUSH) {
1500 		ci.bio = &ci.md->flush_bio;
1501 		ci.sector_count = 0;
1502 		error = __send_empty_flush(&ci);
1503 		/* dec_pending submits any data associated with flush */
1504 	} else if (bio_op(bio) == REQ_OP_ZONE_RESET) {
1505 		ci.bio = bio;
1506 		ci.sector_count = 0;
1507 		error = __split_and_process_non_flush(&ci);
1508 	} else {
1509 		ci.bio = bio;
1510 		ci.sector_count = bio_sectors(bio);
1511 		while (ci.sector_count && !error)
1512 			error = __split_and_process_non_flush(&ci);
1513 	}
1514 
1515 	/* drop the extra reference count */
1516 	dec_pending(ci.io, errno_to_blk_status(error));
1517 }
1518 /*-----------------------------------------------------------------
1519  * CRUD END
1520  *---------------------------------------------------------------*/
1521 
1522 /*
1523  * The request function that just remaps the bio built up by
1524  * dm_merge_bvec.
1525  */
1526 static blk_qc_t dm_make_request(struct request_queue *q, struct bio *bio)
1527 {
1528 	int rw = bio_data_dir(bio);
1529 	struct mapped_device *md = q->queuedata;
1530 	int srcu_idx;
1531 	struct dm_table *map;
1532 
1533 	map = dm_get_live_table(md, &srcu_idx);
1534 
1535 	generic_start_io_acct(rw, bio_sectors(bio), &dm_disk(md)->part0);
1536 
1537 	/* if we're suspended, we have to queue this io for later */
1538 	if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))) {
1539 		dm_put_live_table(md, srcu_idx);
1540 
1541 		if (!(bio->bi_opf & REQ_RAHEAD))
1542 			queue_io(md, bio);
1543 		else
1544 			bio_io_error(bio);
1545 		return BLK_QC_T_NONE;
1546 	}
1547 
1548 	__split_and_process_bio(md, map, bio);
1549 	dm_put_live_table(md, srcu_idx);
1550 	return BLK_QC_T_NONE;
1551 }
1552 
1553 static int dm_any_congested(void *congested_data, int bdi_bits)
1554 {
1555 	int r = bdi_bits;
1556 	struct mapped_device *md = congested_data;
1557 	struct dm_table *map;
1558 
1559 	if (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
1560 		if (dm_request_based(md)) {
1561 			/*
1562 			 * With request-based DM we only need to check the
1563 			 * top-level queue for congestion.
1564 			 */
1565 			r = md->queue->backing_dev_info->wb.state & bdi_bits;
1566 		} else {
1567 			map = dm_get_live_table_fast(md);
1568 			if (map)
1569 				r = dm_table_any_congested(map, bdi_bits);
1570 			dm_put_live_table_fast(md);
1571 		}
1572 	}
1573 
1574 	return r;
1575 }
1576 
1577 /*-----------------------------------------------------------------
1578  * An IDR is used to keep track of allocated minor numbers.
1579  *---------------------------------------------------------------*/
1580 static void free_minor(int minor)
1581 {
1582 	spin_lock(&_minor_lock);
1583 	idr_remove(&_minor_idr, minor);
1584 	spin_unlock(&_minor_lock);
1585 }
1586 
1587 /*
1588  * See if the device with a specific minor # is free.
1589  */
1590 static int specific_minor(int minor)
1591 {
1592 	int r;
1593 
1594 	if (minor >= (1 << MINORBITS))
1595 		return -EINVAL;
1596 
1597 	idr_preload(GFP_KERNEL);
1598 	spin_lock(&_minor_lock);
1599 
1600 	r = idr_alloc(&_minor_idr, MINOR_ALLOCED, minor, minor + 1, GFP_NOWAIT);
1601 
1602 	spin_unlock(&_minor_lock);
1603 	idr_preload_end();
1604 	if (r < 0)
1605 		return r == -ENOSPC ? -EBUSY : r;
1606 	return 0;
1607 }
1608 
1609 static int next_free_minor(int *minor)
1610 {
1611 	int r;
1612 
1613 	idr_preload(GFP_KERNEL);
1614 	spin_lock(&_minor_lock);
1615 
1616 	r = idr_alloc(&_minor_idr, MINOR_ALLOCED, 0, 1 << MINORBITS, GFP_NOWAIT);
1617 
1618 	spin_unlock(&_minor_lock);
1619 	idr_preload_end();
1620 	if (r < 0)
1621 		return r;
1622 	*minor = r;
1623 	return 0;
1624 }
1625 
1626 static const struct block_device_operations dm_blk_dops;
1627 static const struct dax_operations dm_dax_ops;
1628 
1629 static void dm_wq_work(struct work_struct *work);
1630 
1631 void dm_init_md_queue(struct mapped_device *md)
1632 {
1633 	/*
1634 	 * Request-based dm devices cannot be stacked on top of bio-based dm
1635 	 * devices.  The type of this dm device may not have been decided yet.
1636 	 * The type is decided at the first table loading time.
1637 	 * To prevent problematic device stacking, clear the queue flag
1638 	 * for request stacking support until then.
1639 	 *
1640 	 * This queue is new, so no concurrency on the queue_flags.
1641 	 */
1642 	queue_flag_clear_unlocked(QUEUE_FLAG_STACKABLE, md->queue);
1643 
1644 	/*
1645 	 * Initialize data that will only be used by a non-blk-mq DM queue
1646 	 * - must do so here (in alloc_dev callchain) before queue is used
1647 	 */
1648 	md->queue->queuedata = md;
1649 	md->queue->backing_dev_info->congested_data = md;
1650 }
1651 
1652 void dm_init_normal_md_queue(struct mapped_device *md)
1653 {
1654 	md->use_blk_mq = false;
1655 	dm_init_md_queue(md);
1656 
1657 	/*
1658 	 * Initialize aspects of queue that aren't relevant for blk-mq
1659 	 */
1660 	md->queue->backing_dev_info->congested_fn = dm_any_congested;
1661 }
1662 
1663 static void cleanup_mapped_device(struct mapped_device *md)
1664 {
1665 	if (md->wq)
1666 		destroy_workqueue(md->wq);
1667 	if (md->kworker_task)
1668 		kthread_stop(md->kworker_task);
1669 	mempool_destroy(md->io_pool);
1670 	if (md->bs)
1671 		bioset_free(md->bs);
1672 
1673 	if (md->dax_dev) {
1674 		kill_dax(md->dax_dev);
1675 		put_dax(md->dax_dev);
1676 		md->dax_dev = NULL;
1677 	}
1678 
1679 	if (md->disk) {
1680 		spin_lock(&_minor_lock);
1681 		md->disk->private_data = NULL;
1682 		spin_unlock(&_minor_lock);
1683 		del_gendisk(md->disk);
1684 		put_disk(md->disk);
1685 	}
1686 
1687 	if (md->queue)
1688 		blk_cleanup_queue(md->queue);
1689 
1690 	cleanup_srcu_struct(&md->io_barrier);
1691 
1692 	if (md->bdev) {
1693 		bdput(md->bdev);
1694 		md->bdev = NULL;
1695 	}
1696 
1697 	dm_mq_cleanup_mapped_device(md);
1698 }
1699 
1700 /*
1701  * Allocate and initialise a blank device with a given minor.
1702  */
1703 static struct mapped_device *alloc_dev(int minor)
1704 {
1705 	int r, numa_node_id = dm_get_numa_node();
1706 	struct dax_device *dax_dev;
1707 	struct mapped_device *md;
1708 	void *old_md;
1709 
1710 	md = kzalloc_node(sizeof(*md), GFP_KERNEL, numa_node_id);
1711 	if (!md) {
1712 		DMWARN("unable to allocate device, out of memory.");
1713 		return NULL;
1714 	}
1715 
1716 	if (!try_module_get(THIS_MODULE))
1717 		goto bad_module_get;
1718 
1719 	/* get a minor number for the dev */
1720 	if (minor == DM_ANY_MINOR)
1721 		r = next_free_minor(&minor);
1722 	else
1723 		r = specific_minor(minor);
1724 	if (r < 0)
1725 		goto bad_minor;
1726 
1727 	r = init_srcu_struct(&md->io_barrier);
1728 	if (r < 0)
1729 		goto bad_io_barrier;
1730 
1731 	md->numa_node_id = numa_node_id;
1732 	md->use_blk_mq = dm_use_blk_mq_default();
1733 	md->init_tio_pdu = false;
1734 	md->type = DM_TYPE_NONE;
1735 	mutex_init(&md->suspend_lock);
1736 	mutex_init(&md->type_lock);
1737 	mutex_init(&md->table_devices_lock);
1738 	spin_lock_init(&md->deferred_lock);
1739 	atomic_set(&md->holders, 1);
1740 	atomic_set(&md->open_count, 0);
1741 	atomic_set(&md->event_nr, 0);
1742 	atomic_set(&md->uevent_seq, 0);
1743 	INIT_LIST_HEAD(&md->uevent_list);
1744 	INIT_LIST_HEAD(&md->table_devices);
1745 	spin_lock_init(&md->uevent_lock);
1746 
1747 	md->queue = blk_alloc_queue_node(GFP_KERNEL, numa_node_id);
1748 	if (!md->queue)
1749 		goto bad;
1750 
1751 	dm_init_md_queue(md);
1752 
1753 	md->disk = alloc_disk_node(1, numa_node_id);
1754 	if (!md->disk)
1755 		goto bad;
1756 
1757 	atomic_set(&md->pending[0], 0);
1758 	atomic_set(&md->pending[1], 0);
1759 	init_waitqueue_head(&md->wait);
1760 	INIT_WORK(&md->work, dm_wq_work);
1761 	init_waitqueue_head(&md->eventq);
1762 	init_completion(&md->kobj_holder.completion);
1763 	md->kworker_task = NULL;
1764 
1765 	md->disk->major = _major;
1766 	md->disk->first_minor = minor;
1767 	md->disk->fops = &dm_blk_dops;
1768 	md->disk->queue = md->queue;
1769 	md->disk->private_data = md;
1770 	sprintf(md->disk->disk_name, "dm-%d", minor);
1771 
1772 	dax_dev = alloc_dax(md, md->disk->disk_name, &dm_dax_ops);
1773 	if (!dax_dev)
1774 		goto bad;
1775 	md->dax_dev = dax_dev;
1776 
1777 	add_disk(md->disk);
1778 	format_dev_t(md->name, MKDEV(_major, minor));
1779 
1780 	md->wq = alloc_workqueue("kdmflush", WQ_MEM_RECLAIM, 0);
1781 	if (!md->wq)
1782 		goto bad;
1783 
1784 	md->bdev = bdget_disk(md->disk, 0);
1785 	if (!md->bdev)
1786 		goto bad;
1787 
1788 	bio_init(&md->flush_bio, NULL, 0);
1789 	md->flush_bio.bi_bdev = md->bdev;
1790 	md->flush_bio.bi_opf = REQ_OP_WRITE | REQ_PREFLUSH | REQ_SYNC;
1791 
1792 	dm_stats_init(&md->stats);
1793 
1794 	/* Populate the mapping, nobody knows we exist yet */
1795 	spin_lock(&_minor_lock);
1796 	old_md = idr_replace(&_minor_idr, md, minor);
1797 	spin_unlock(&_minor_lock);
1798 
1799 	BUG_ON(old_md != MINOR_ALLOCED);
1800 
1801 	return md;
1802 
1803 bad:
1804 	cleanup_mapped_device(md);
1805 bad_io_barrier:
1806 	free_minor(minor);
1807 bad_minor:
1808 	module_put(THIS_MODULE);
1809 bad_module_get:
1810 	kfree(md);
1811 	return NULL;
1812 }
1813 
1814 static void unlock_fs(struct mapped_device *md);
1815 
1816 static void free_dev(struct mapped_device *md)
1817 {
1818 	int minor = MINOR(disk_devt(md->disk));
1819 
1820 	unlock_fs(md);
1821 
1822 	cleanup_mapped_device(md);
1823 
1824 	free_table_devices(&md->table_devices);
1825 	dm_stats_cleanup(&md->stats);
1826 	free_minor(minor);
1827 
1828 	module_put(THIS_MODULE);
1829 	kfree(md);
1830 }
1831 
1832 static void __bind_mempools(struct mapped_device *md, struct dm_table *t)
1833 {
1834 	struct dm_md_mempools *p = dm_table_get_md_mempools(t);
1835 
1836 	if (md->bs) {
1837 		/* The md already has necessary mempools. */
1838 		if (dm_table_bio_based(t)) {
1839 			/*
1840 			 * Reload bioset because front_pad may have changed
1841 			 * because a different table was loaded.
1842 			 */
1843 			bioset_free(md->bs);
1844 			md->bs = p->bs;
1845 			p->bs = NULL;
1846 		}
1847 		/*
1848 		 * There's no need to reload with request-based dm
1849 		 * because the size of front_pad doesn't change.
1850 		 * Note for future: If you are to reload bioset,
1851 		 * prep-ed requests in the queue may refer
1852 		 * to bio from the old bioset, so you must walk
1853 		 * through the queue to unprep.
1854 		 */
1855 		goto out;
1856 	}
1857 
1858 	BUG_ON(!p || md->io_pool || md->bs);
1859 
1860 	md->io_pool = p->io_pool;
1861 	p->io_pool = NULL;
1862 	md->bs = p->bs;
1863 	p->bs = NULL;
1864 
1865 out:
1866 	/* mempool bind completed, no longer need any mempools in the table */
1867 	dm_table_free_md_mempools(t);
1868 }
1869 
1870 /*
1871  * Bind a table to the device.
1872  */
1873 static void event_callback(void *context)
1874 {
1875 	unsigned long flags;
1876 	LIST_HEAD(uevents);
1877 	struct mapped_device *md = (struct mapped_device *) context;
1878 
1879 	spin_lock_irqsave(&md->uevent_lock, flags);
1880 	list_splice_init(&md->uevent_list, &uevents);
1881 	spin_unlock_irqrestore(&md->uevent_lock, flags);
1882 
1883 	dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj);
1884 
1885 	atomic_inc(&md->event_nr);
1886 	atomic_inc(&dm_global_event_nr);
1887 	wake_up(&md->eventq);
1888 	wake_up(&dm_global_eventq);
1889 }
1890 
1891 /*
1892  * Protected by md->suspend_lock obtained by dm_swap_table().
1893  */
1894 static void __set_size(struct mapped_device *md, sector_t size)
1895 {
1896 	lockdep_assert_held(&md->suspend_lock);
1897 
1898 	set_capacity(md->disk, size);
1899 
1900 	i_size_write(md->bdev->bd_inode, (loff_t)size << SECTOR_SHIFT);
1901 }
1902 
1903 /*
1904  * Returns old map, which caller must destroy.
1905  */
1906 static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t,
1907 			       struct queue_limits *limits)
1908 {
1909 	struct dm_table *old_map;
1910 	struct request_queue *q = md->queue;
1911 	sector_t size;
1912 
1913 	lockdep_assert_held(&md->suspend_lock);
1914 
1915 	size = dm_table_get_size(t);
1916 
1917 	/*
1918 	 * Wipe any geometry if the size of the table changed.
1919 	 */
1920 	if (size != dm_get_size(md))
1921 		memset(&md->geometry, 0, sizeof(md->geometry));
1922 
1923 	__set_size(md, size);
1924 
1925 	dm_table_event_callback(t, event_callback, md);
1926 
1927 	/*
1928 	 * The queue hasn't been stopped yet, if the old table type wasn't
1929 	 * for request-based during suspension.  So stop it to prevent
1930 	 * I/O mapping before resume.
1931 	 * This must be done before setting the queue restrictions,
1932 	 * because request-based dm may be run just after the setting.
1933 	 */
1934 	if (dm_table_request_based(t)) {
1935 		dm_stop_queue(q);
1936 		/*
1937 		 * Leverage the fact that request-based DM targets are
1938 		 * immutable singletons and establish md->immutable_target
1939 		 * - used to optimize both dm_request_fn and dm_mq_queue_rq
1940 		 */
1941 		md->immutable_target = dm_table_get_immutable_target(t);
1942 	}
1943 
1944 	__bind_mempools(md, t);
1945 
1946 	old_map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
1947 	rcu_assign_pointer(md->map, (void *)t);
1948 	md->immutable_target_type = dm_table_get_immutable_target_type(t);
1949 
1950 	dm_table_set_restrictions(t, q, limits);
1951 	if (old_map)
1952 		dm_sync_table(md);
1953 
1954 	return old_map;
1955 }
1956 
1957 /*
1958  * Returns unbound table for the caller to free.
1959  */
1960 static struct dm_table *__unbind(struct mapped_device *md)
1961 {
1962 	struct dm_table *map = rcu_dereference_protected(md->map, 1);
1963 
1964 	if (!map)
1965 		return NULL;
1966 
1967 	dm_table_event_callback(map, NULL, NULL);
1968 	RCU_INIT_POINTER(md->map, NULL);
1969 	dm_sync_table(md);
1970 
1971 	return map;
1972 }
1973 
1974 /*
1975  * Constructor for a new device.
1976  */
1977 int dm_create(int minor, struct mapped_device **result)
1978 {
1979 	struct mapped_device *md;
1980 
1981 	md = alloc_dev(minor);
1982 	if (!md)
1983 		return -ENXIO;
1984 
1985 	dm_sysfs_init(md);
1986 
1987 	*result = md;
1988 	return 0;
1989 }
1990 
1991 /*
1992  * Functions to manage md->type.
1993  * All are required to hold md->type_lock.
1994  */
1995 void dm_lock_md_type(struct mapped_device *md)
1996 {
1997 	mutex_lock(&md->type_lock);
1998 }
1999 
2000 void dm_unlock_md_type(struct mapped_device *md)
2001 {
2002 	mutex_unlock(&md->type_lock);
2003 }
2004 
2005 void dm_set_md_type(struct mapped_device *md, enum dm_queue_mode type)
2006 {
2007 	BUG_ON(!mutex_is_locked(&md->type_lock));
2008 	md->type = type;
2009 }
2010 
2011 enum dm_queue_mode dm_get_md_type(struct mapped_device *md)
2012 {
2013 	return md->type;
2014 }
2015 
2016 struct target_type *dm_get_immutable_target_type(struct mapped_device *md)
2017 {
2018 	return md->immutable_target_type;
2019 }
2020 
2021 /*
2022  * The queue_limits are only valid as long as you have a reference
2023  * count on 'md'.
2024  */
2025 struct queue_limits *dm_get_queue_limits(struct mapped_device *md)
2026 {
2027 	BUG_ON(!atomic_read(&md->holders));
2028 	return &md->queue->limits;
2029 }
2030 EXPORT_SYMBOL_GPL(dm_get_queue_limits);
2031 
2032 /*
2033  * Setup the DM device's queue based on md's type
2034  */
2035 int dm_setup_md_queue(struct mapped_device *md, struct dm_table *t)
2036 {
2037 	int r;
2038 	enum dm_queue_mode type = dm_get_md_type(md);
2039 
2040 	switch (type) {
2041 	case DM_TYPE_REQUEST_BASED:
2042 		r = dm_old_init_request_queue(md, t);
2043 		if (r) {
2044 			DMERR("Cannot initialize queue for request-based mapped device");
2045 			return r;
2046 		}
2047 		break;
2048 	case DM_TYPE_MQ_REQUEST_BASED:
2049 		r = dm_mq_init_request_queue(md, t);
2050 		if (r) {
2051 			DMERR("Cannot initialize queue for request-based dm-mq mapped device");
2052 			return r;
2053 		}
2054 		break;
2055 	case DM_TYPE_BIO_BASED:
2056 	case DM_TYPE_DAX_BIO_BASED:
2057 		dm_init_normal_md_queue(md);
2058 		blk_queue_make_request(md->queue, dm_make_request);
2059 		/*
2060 		 * DM handles splitting bios as needed.  Free the bio_split bioset
2061 		 * since it won't be used (saves 1 process per bio-based DM device).
2062 		 */
2063 		bioset_free(md->queue->bio_split);
2064 		md->queue->bio_split = NULL;
2065 
2066 		if (type == DM_TYPE_DAX_BIO_BASED)
2067 			queue_flag_set_unlocked(QUEUE_FLAG_DAX, md->queue);
2068 		break;
2069 	case DM_TYPE_NONE:
2070 		WARN_ON_ONCE(true);
2071 		break;
2072 	}
2073 
2074 	return 0;
2075 }
2076 
2077 struct mapped_device *dm_get_md(dev_t dev)
2078 {
2079 	struct mapped_device *md;
2080 	unsigned minor = MINOR(dev);
2081 
2082 	if (MAJOR(dev) != _major || minor >= (1 << MINORBITS))
2083 		return NULL;
2084 
2085 	spin_lock(&_minor_lock);
2086 
2087 	md = idr_find(&_minor_idr, minor);
2088 	if (md) {
2089 		if ((md == MINOR_ALLOCED ||
2090 		     (MINOR(disk_devt(dm_disk(md))) != minor) ||
2091 		     dm_deleting_md(md) ||
2092 		     test_bit(DMF_FREEING, &md->flags))) {
2093 			md = NULL;
2094 			goto out;
2095 		}
2096 		dm_get(md);
2097 	}
2098 
2099 out:
2100 	spin_unlock(&_minor_lock);
2101 
2102 	return md;
2103 }
2104 EXPORT_SYMBOL_GPL(dm_get_md);
2105 
2106 void *dm_get_mdptr(struct mapped_device *md)
2107 {
2108 	return md->interface_ptr;
2109 }
2110 
2111 void dm_set_mdptr(struct mapped_device *md, void *ptr)
2112 {
2113 	md->interface_ptr = ptr;
2114 }
2115 
2116 void dm_get(struct mapped_device *md)
2117 {
2118 	atomic_inc(&md->holders);
2119 	BUG_ON(test_bit(DMF_FREEING, &md->flags));
2120 }
2121 
2122 int dm_hold(struct mapped_device *md)
2123 {
2124 	spin_lock(&_minor_lock);
2125 	if (test_bit(DMF_FREEING, &md->flags)) {
2126 		spin_unlock(&_minor_lock);
2127 		return -EBUSY;
2128 	}
2129 	dm_get(md);
2130 	spin_unlock(&_minor_lock);
2131 	return 0;
2132 }
2133 EXPORT_SYMBOL_GPL(dm_hold);
2134 
2135 const char *dm_device_name(struct mapped_device *md)
2136 {
2137 	return md->name;
2138 }
2139 EXPORT_SYMBOL_GPL(dm_device_name);
2140 
2141 static void __dm_destroy(struct mapped_device *md, bool wait)
2142 {
2143 	struct request_queue *q = dm_get_md_queue(md);
2144 	struct dm_table *map;
2145 	int srcu_idx;
2146 
2147 	might_sleep();
2148 
2149 	spin_lock(&_minor_lock);
2150 	idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md))));
2151 	set_bit(DMF_FREEING, &md->flags);
2152 	spin_unlock(&_minor_lock);
2153 
2154 	blk_set_queue_dying(q);
2155 
2156 	if (dm_request_based(md) && md->kworker_task)
2157 		kthread_flush_worker(&md->kworker);
2158 
2159 	/*
2160 	 * Take suspend_lock so that presuspend and postsuspend methods
2161 	 * do not race with internal suspend.
2162 	 */
2163 	mutex_lock(&md->suspend_lock);
2164 	map = dm_get_live_table(md, &srcu_idx);
2165 	if (!dm_suspended_md(md)) {
2166 		dm_table_presuspend_targets(map);
2167 		dm_table_postsuspend_targets(map);
2168 	}
2169 	/* dm_put_live_table must be before msleep, otherwise deadlock is possible */
2170 	dm_put_live_table(md, srcu_idx);
2171 	mutex_unlock(&md->suspend_lock);
2172 
2173 	/*
2174 	 * Rare, but there may be I/O requests still going to complete,
2175 	 * for example.  Wait for all references to disappear.
2176 	 * No one should increment the reference count of the mapped_device,
2177 	 * after the mapped_device state becomes DMF_FREEING.
2178 	 */
2179 	if (wait)
2180 		while (atomic_read(&md->holders))
2181 			msleep(1);
2182 	else if (atomic_read(&md->holders))
2183 		DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)",
2184 		       dm_device_name(md), atomic_read(&md->holders));
2185 
2186 	dm_sysfs_exit(md);
2187 	dm_table_destroy(__unbind(md));
2188 	free_dev(md);
2189 }
2190 
2191 void dm_destroy(struct mapped_device *md)
2192 {
2193 	__dm_destroy(md, true);
2194 }
2195 
2196 void dm_destroy_immediate(struct mapped_device *md)
2197 {
2198 	__dm_destroy(md, false);
2199 }
2200 
2201 void dm_put(struct mapped_device *md)
2202 {
2203 	atomic_dec(&md->holders);
2204 }
2205 EXPORT_SYMBOL_GPL(dm_put);
2206 
2207 static int dm_wait_for_completion(struct mapped_device *md, long task_state)
2208 {
2209 	int r = 0;
2210 	DEFINE_WAIT(wait);
2211 
2212 	while (1) {
2213 		prepare_to_wait(&md->wait, &wait, task_state);
2214 
2215 		if (!md_in_flight(md))
2216 			break;
2217 
2218 		if (signal_pending_state(task_state, current)) {
2219 			r = -EINTR;
2220 			break;
2221 		}
2222 
2223 		io_schedule();
2224 	}
2225 	finish_wait(&md->wait, &wait);
2226 
2227 	return r;
2228 }
2229 
2230 /*
2231  * Process the deferred bios
2232  */
2233 static void dm_wq_work(struct work_struct *work)
2234 {
2235 	struct mapped_device *md = container_of(work, struct mapped_device,
2236 						work);
2237 	struct bio *c;
2238 	int srcu_idx;
2239 	struct dm_table *map;
2240 
2241 	map = dm_get_live_table(md, &srcu_idx);
2242 
2243 	while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
2244 		spin_lock_irq(&md->deferred_lock);
2245 		c = bio_list_pop(&md->deferred);
2246 		spin_unlock_irq(&md->deferred_lock);
2247 
2248 		if (!c)
2249 			break;
2250 
2251 		if (dm_request_based(md))
2252 			generic_make_request(c);
2253 		else
2254 			__split_and_process_bio(md, map, c);
2255 	}
2256 
2257 	dm_put_live_table(md, srcu_idx);
2258 }
2259 
2260 static void dm_queue_flush(struct mapped_device *md)
2261 {
2262 	clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2263 	smp_mb__after_atomic();
2264 	queue_work(md->wq, &md->work);
2265 }
2266 
2267 /*
2268  * Swap in a new table, returning the old one for the caller to destroy.
2269  */
2270 struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table)
2271 {
2272 	struct dm_table *live_map = NULL, *map = ERR_PTR(-EINVAL);
2273 	struct queue_limits limits;
2274 	int r;
2275 
2276 	mutex_lock(&md->suspend_lock);
2277 
2278 	/* device must be suspended */
2279 	if (!dm_suspended_md(md))
2280 		goto out;
2281 
2282 	/*
2283 	 * If the new table has no data devices, retain the existing limits.
2284 	 * This helps multipath with queue_if_no_path if all paths disappear,
2285 	 * then new I/O is queued based on these limits, and then some paths
2286 	 * reappear.
2287 	 */
2288 	if (dm_table_has_no_data_devices(table)) {
2289 		live_map = dm_get_live_table_fast(md);
2290 		if (live_map)
2291 			limits = md->queue->limits;
2292 		dm_put_live_table_fast(md);
2293 	}
2294 
2295 	if (!live_map) {
2296 		r = dm_calculate_queue_limits(table, &limits);
2297 		if (r) {
2298 			map = ERR_PTR(r);
2299 			goto out;
2300 		}
2301 	}
2302 
2303 	map = __bind(md, table, &limits);
2304 
2305 out:
2306 	mutex_unlock(&md->suspend_lock);
2307 	return map;
2308 }
2309 
2310 /*
2311  * Functions to lock and unlock any filesystem running on the
2312  * device.
2313  */
2314 static int lock_fs(struct mapped_device *md)
2315 {
2316 	int r;
2317 
2318 	WARN_ON(md->frozen_sb);
2319 
2320 	md->frozen_sb = freeze_bdev(md->bdev);
2321 	if (IS_ERR(md->frozen_sb)) {
2322 		r = PTR_ERR(md->frozen_sb);
2323 		md->frozen_sb = NULL;
2324 		return r;
2325 	}
2326 
2327 	set_bit(DMF_FROZEN, &md->flags);
2328 
2329 	return 0;
2330 }
2331 
2332 static void unlock_fs(struct mapped_device *md)
2333 {
2334 	if (!test_bit(DMF_FROZEN, &md->flags))
2335 		return;
2336 
2337 	thaw_bdev(md->bdev, md->frozen_sb);
2338 	md->frozen_sb = NULL;
2339 	clear_bit(DMF_FROZEN, &md->flags);
2340 }
2341 
2342 /*
2343  * @suspend_flags: DM_SUSPEND_LOCKFS_FLAG and/or DM_SUSPEND_NOFLUSH_FLAG
2344  * @task_state: e.g. TASK_INTERRUPTIBLE or TASK_UNINTERRUPTIBLE
2345  * @dmf_suspended_flag: DMF_SUSPENDED or DMF_SUSPENDED_INTERNALLY
2346  *
2347  * If __dm_suspend returns 0, the device is completely quiescent
2348  * now. There is no request-processing activity. All new requests
2349  * are being added to md->deferred list.
2350  */
2351 static int __dm_suspend(struct mapped_device *md, struct dm_table *map,
2352 			unsigned suspend_flags, long task_state,
2353 			int dmf_suspended_flag)
2354 {
2355 	bool do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG;
2356 	bool noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG;
2357 	int r;
2358 
2359 	lockdep_assert_held(&md->suspend_lock);
2360 
2361 	/*
2362 	 * DMF_NOFLUSH_SUSPENDING must be set before presuspend.
2363 	 * This flag is cleared before dm_suspend returns.
2364 	 */
2365 	if (noflush)
2366 		set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2367 	else
2368 		pr_debug("%s: suspending with flush\n", dm_device_name(md));
2369 
2370 	/*
2371 	 * This gets reverted if there's an error later and the targets
2372 	 * provide the .presuspend_undo hook.
2373 	 */
2374 	dm_table_presuspend_targets(map);
2375 
2376 	/*
2377 	 * Flush I/O to the device.
2378 	 * Any I/O submitted after lock_fs() may not be flushed.
2379 	 * noflush takes precedence over do_lockfs.
2380 	 * (lock_fs() flushes I/Os and waits for them to complete.)
2381 	 */
2382 	if (!noflush && do_lockfs) {
2383 		r = lock_fs(md);
2384 		if (r) {
2385 			dm_table_presuspend_undo_targets(map);
2386 			return r;
2387 		}
2388 	}
2389 
2390 	/*
2391 	 * Here we must make sure that no processes are submitting requests
2392 	 * to target drivers i.e. no one may be executing
2393 	 * __split_and_process_bio. This is called from dm_request and
2394 	 * dm_wq_work.
2395 	 *
2396 	 * To get all processes out of __split_and_process_bio in dm_request,
2397 	 * we take the write lock. To prevent any process from reentering
2398 	 * __split_and_process_bio from dm_request and quiesce the thread
2399 	 * (dm_wq_work), we set BMF_BLOCK_IO_FOR_SUSPEND and call
2400 	 * flush_workqueue(md->wq).
2401 	 */
2402 	set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2403 	if (map)
2404 		synchronize_srcu(&md->io_barrier);
2405 
2406 	/*
2407 	 * Stop md->queue before flushing md->wq in case request-based
2408 	 * dm defers requests to md->wq from md->queue.
2409 	 */
2410 	if (dm_request_based(md)) {
2411 		dm_stop_queue(md->queue);
2412 		if (md->kworker_task)
2413 			kthread_flush_worker(&md->kworker);
2414 	}
2415 
2416 	flush_workqueue(md->wq);
2417 
2418 	/*
2419 	 * At this point no more requests are entering target request routines.
2420 	 * We call dm_wait_for_completion to wait for all existing requests
2421 	 * to finish.
2422 	 */
2423 	r = dm_wait_for_completion(md, task_state);
2424 	if (!r)
2425 		set_bit(dmf_suspended_flag, &md->flags);
2426 
2427 	if (noflush)
2428 		clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2429 	if (map)
2430 		synchronize_srcu(&md->io_barrier);
2431 
2432 	/* were we interrupted ? */
2433 	if (r < 0) {
2434 		dm_queue_flush(md);
2435 
2436 		if (dm_request_based(md))
2437 			dm_start_queue(md->queue);
2438 
2439 		unlock_fs(md);
2440 		dm_table_presuspend_undo_targets(map);
2441 		/* pushback list is already flushed, so skip flush */
2442 	}
2443 
2444 	return r;
2445 }
2446 
2447 /*
2448  * We need to be able to change a mapping table under a mounted
2449  * filesystem.  For example we might want to move some data in
2450  * the background.  Before the table can be swapped with
2451  * dm_bind_table, dm_suspend must be called to flush any in
2452  * flight bios and ensure that any further io gets deferred.
2453  */
2454 /*
2455  * Suspend mechanism in request-based dm.
2456  *
2457  * 1. Flush all I/Os by lock_fs() if needed.
2458  * 2. Stop dispatching any I/O by stopping the request_queue.
2459  * 3. Wait for all in-flight I/Os to be completed or requeued.
2460  *
2461  * To abort suspend, start the request_queue.
2462  */
2463 int dm_suspend(struct mapped_device *md, unsigned suspend_flags)
2464 {
2465 	struct dm_table *map = NULL;
2466 	int r = 0;
2467 
2468 retry:
2469 	mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
2470 
2471 	if (dm_suspended_md(md)) {
2472 		r = -EINVAL;
2473 		goto out_unlock;
2474 	}
2475 
2476 	if (dm_suspended_internally_md(md)) {
2477 		/* already internally suspended, wait for internal resume */
2478 		mutex_unlock(&md->suspend_lock);
2479 		r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
2480 		if (r)
2481 			return r;
2482 		goto retry;
2483 	}
2484 
2485 	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2486 
2487 	r = __dm_suspend(md, map, suspend_flags, TASK_INTERRUPTIBLE, DMF_SUSPENDED);
2488 	if (r)
2489 		goto out_unlock;
2490 
2491 	dm_table_postsuspend_targets(map);
2492 
2493 out_unlock:
2494 	mutex_unlock(&md->suspend_lock);
2495 	return r;
2496 }
2497 
2498 static int __dm_resume(struct mapped_device *md, struct dm_table *map)
2499 {
2500 	if (map) {
2501 		int r = dm_table_resume_targets(map);
2502 		if (r)
2503 			return r;
2504 	}
2505 
2506 	dm_queue_flush(md);
2507 
2508 	/*
2509 	 * Flushing deferred I/Os must be done after targets are resumed
2510 	 * so that mapping of targets can work correctly.
2511 	 * Request-based dm is queueing the deferred I/Os in its request_queue.
2512 	 */
2513 	if (dm_request_based(md))
2514 		dm_start_queue(md->queue);
2515 
2516 	unlock_fs(md);
2517 
2518 	return 0;
2519 }
2520 
2521 int dm_resume(struct mapped_device *md)
2522 {
2523 	int r;
2524 	struct dm_table *map = NULL;
2525 
2526 retry:
2527 	r = -EINVAL;
2528 	mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
2529 
2530 	if (!dm_suspended_md(md))
2531 		goto out;
2532 
2533 	if (dm_suspended_internally_md(md)) {
2534 		/* already internally suspended, wait for internal resume */
2535 		mutex_unlock(&md->suspend_lock);
2536 		r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
2537 		if (r)
2538 			return r;
2539 		goto retry;
2540 	}
2541 
2542 	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2543 	if (!map || !dm_table_get_size(map))
2544 		goto out;
2545 
2546 	r = __dm_resume(md, map);
2547 	if (r)
2548 		goto out;
2549 
2550 	clear_bit(DMF_SUSPENDED, &md->flags);
2551 out:
2552 	mutex_unlock(&md->suspend_lock);
2553 
2554 	return r;
2555 }
2556 
2557 /*
2558  * Internal suspend/resume works like userspace-driven suspend. It waits
2559  * until all bios finish and prevents issuing new bios to the target drivers.
2560  * It may be used only from the kernel.
2561  */
2562 
2563 static void __dm_internal_suspend(struct mapped_device *md, unsigned suspend_flags)
2564 {
2565 	struct dm_table *map = NULL;
2566 
2567 	lockdep_assert_held(&md->suspend_lock);
2568 
2569 	if (md->internal_suspend_count++)
2570 		return; /* nested internal suspend */
2571 
2572 	if (dm_suspended_md(md)) {
2573 		set_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2574 		return; /* nest suspend */
2575 	}
2576 
2577 	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2578 
2579 	/*
2580 	 * Using TASK_UNINTERRUPTIBLE because only NOFLUSH internal suspend is
2581 	 * supported.  Properly supporting a TASK_INTERRUPTIBLE internal suspend
2582 	 * would require changing .presuspend to return an error -- avoid this
2583 	 * until there is a need for more elaborate variants of internal suspend.
2584 	 */
2585 	(void) __dm_suspend(md, map, suspend_flags, TASK_UNINTERRUPTIBLE,
2586 			    DMF_SUSPENDED_INTERNALLY);
2587 
2588 	dm_table_postsuspend_targets(map);
2589 }
2590 
2591 static void __dm_internal_resume(struct mapped_device *md)
2592 {
2593 	BUG_ON(!md->internal_suspend_count);
2594 
2595 	if (--md->internal_suspend_count)
2596 		return; /* resume from nested internal suspend */
2597 
2598 	if (dm_suspended_md(md))
2599 		goto done; /* resume from nested suspend */
2600 
2601 	/*
2602 	 * NOTE: existing callers don't need to call dm_table_resume_targets
2603 	 * (which may fail -- so best to avoid it for now by passing NULL map)
2604 	 */
2605 	(void) __dm_resume(md, NULL);
2606 
2607 done:
2608 	clear_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2609 	smp_mb__after_atomic();
2610 	wake_up_bit(&md->flags, DMF_SUSPENDED_INTERNALLY);
2611 }
2612 
2613 void dm_internal_suspend_noflush(struct mapped_device *md)
2614 {
2615 	mutex_lock(&md->suspend_lock);
2616 	__dm_internal_suspend(md, DM_SUSPEND_NOFLUSH_FLAG);
2617 	mutex_unlock(&md->suspend_lock);
2618 }
2619 EXPORT_SYMBOL_GPL(dm_internal_suspend_noflush);
2620 
2621 void dm_internal_resume(struct mapped_device *md)
2622 {
2623 	mutex_lock(&md->suspend_lock);
2624 	__dm_internal_resume(md);
2625 	mutex_unlock(&md->suspend_lock);
2626 }
2627 EXPORT_SYMBOL_GPL(dm_internal_resume);
2628 
2629 /*
2630  * Fast variants of internal suspend/resume hold md->suspend_lock,
2631  * which prevents interaction with userspace-driven suspend.
2632  */
2633 
2634 void dm_internal_suspend_fast(struct mapped_device *md)
2635 {
2636 	mutex_lock(&md->suspend_lock);
2637 	if (dm_suspended_md(md) || dm_suspended_internally_md(md))
2638 		return;
2639 
2640 	set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2641 	synchronize_srcu(&md->io_barrier);
2642 	flush_workqueue(md->wq);
2643 	dm_wait_for_completion(md, TASK_UNINTERRUPTIBLE);
2644 }
2645 EXPORT_SYMBOL_GPL(dm_internal_suspend_fast);
2646 
2647 void dm_internal_resume_fast(struct mapped_device *md)
2648 {
2649 	if (dm_suspended_md(md) || dm_suspended_internally_md(md))
2650 		goto done;
2651 
2652 	dm_queue_flush(md);
2653 
2654 done:
2655 	mutex_unlock(&md->suspend_lock);
2656 }
2657 EXPORT_SYMBOL_GPL(dm_internal_resume_fast);
2658 
2659 /*-----------------------------------------------------------------
2660  * Event notification.
2661  *---------------------------------------------------------------*/
2662 int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action,
2663 		       unsigned cookie)
2664 {
2665 	char udev_cookie[DM_COOKIE_LENGTH];
2666 	char *envp[] = { udev_cookie, NULL };
2667 
2668 	if (!cookie)
2669 		return kobject_uevent(&disk_to_dev(md->disk)->kobj, action);
2670 	else {
2671 		snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u",
2672 			 DM_COOKIE_ENV_VAR_NAME, cookie);
2673 		return kobject_uevent_env(&disk_to_dev(md->disk)->kobj,
2674 					  action, envp);
2675 	}
2676 }
2677 
2678 uint32_t dm_next_uevent_seq(struct mapped_device *md)
2679 {
2680 	return atomic_add_return(1, &md->uevent_seq);
2681 }
2682 
2683 uint32_t dm_get_event_nr(struct mapped_device *md)
2684 {
2685 	return atomic_read(&md->event_nr);
2686 }
2687 
2688 int dm_wait_event(struct mapped_device *md, int event_nr)
2689 {
2690 	return wait_event_interruptible(md->eventq,
2691 			(event_nr != atomic_read(&md->event_nr)));
2692 }
2693 
2694 void dm_uevent_add(struct mapped_device *md, struct list_head *elist)
2695 {
2696 	unsigned long flags;
2697 
2698 	spin_lock_irqsave(&md->uevent_lock, flags);
2699 	list_add(elist, &md->uevent_list);
2700 	spin_unlock_irqrestore(&md->uevent_lock, flags);
2701 }
2702 
2703 /*
2704  * The gendisk is only valid as long as you have a reference
2705  * count on 'md'.
2706  */
2707 struct gendisk *dm_disk(struct mapped_device *md)
2708 {
2709 	return md->disk;
2710 }
2711 EXPORT_SYMBOL_GPL(dm_disk);
2712 
2713 struct kobject *dm_kobject(struct mapped_device *md)
2714 {
2715 	return &md->kobj_holder.kobj;
2716 }
2717 
2718 struct mapped_device *dm_get_from_kobject(struct kobject *kobj)
2719 {
2720 	struct mapped_device *md;
2721 
2722 	md = container_of(kobj, struct mapped_device, kobj_holder.kobj);
2723 
2724 	if (test_bit(DMF_FREEING, &md->flags) ||
2725 	    dm_deleting_md(md))
2726 		return NULL;
2727 
2728 	dm_get(md);
2729 	return md;
2730 }
2731 
2732 int dm_suspended_md(struct mapped_device *md)
2733 {
2734 	return test_bit(DMF_SUSPENDED, &md->flags);
2735 }
2736 
2737 int dm_suspended_internally_md(struct mapped_device *md)
2738 {
2739 	return test_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2740 }
2741 
2742 int dm_test_deferred_remove_flag(struct mapped_device *md)
2743 {
2744 	return test_bit(DMF_DEFERRED_REMOVE, &md->flags);
2745 }
2746 
2747 int dm_suspended(struct dm_target *ti)
2748 {
2749 	return dm_suspended_md(dm_table_get_md(ti->table));
2750 }
2751 EXPORT_SYMBOL_GPL(dm_suspended);
2752 
2753 int dm_noflush_suspending(struct dm_target *ti)
2754 {
2755 	return __noflush_suspending(dm_table_get_md(ti->table));
2756 }
2757 EXPORT_SYMBOL_GPL(dm_noflush_suspending);
2758 
2759 struct dm_md_mempools *dm_alloc_md_mempools(struct mapped_device *md, enum dm_queue_mode type,
2760 					    unsigned integrity, unsigned per_io_data_size)
2761 {
2762 	struct dm_md_mempools *pools = kzalloc_node(sizeof(*pools), GFP_KERNEL, md->numa_node_id);
2763 	unsigned int pool_size = 0;
2764 	unsigned int front_pad;
2765 
2766 	if (!pools)
2767 		return NULL;
2768 
2769 	switch (type) {
2770 	case DM_TYPE_BIO_BASED:
2771 	case DM_TYPE_DAX_BIO_BASED:
2772 		pool_size = dm_get_reserved_bio_based_ios();
2773 		front_pad = roundup(per_io_data_size, __alignof__(struct dm_target_io)) + offsetof(struct dm_target_io, clone);
2774 
2775 		pools->io_pool = mempool_create_slab_pool(pool_size, _io_cache);
2776 		if (!pools->io_pool)
2777 			goto out;
2778 		break;
2779 	case DM_TYPE_REQUEST_BASED:
2780 	case DM_TYPE_MQ_REQUEST_BASED:
2781 		pool_size = dm_get_reserved_rq_based_ios();
2782 		front_pad = offsetof(struct dm_rq_clone_bio_info, clone);
2783 		/* per_io_data_size is used for blk-mq pdu at queue allocation */
2784 		break;
2785 	default:
2786 		BUG();
2787 	}
2788 
2789 	pools->bs = bioset_create(pool_size, front_pad, BIOSET_NEED_RESCUER);
2790 	if (!pools->bs)
2791 		goto out;
2792 
2793 	if (integrity && bioset_integrity_create(pools->bs, pool_size))
2794 		goto out;
2795 
2796 	return pools;
2797 
2798 out:
2799 	dm_free_md_mempools(pools);
2800 
2801 	return NULL;
2802 }
2803 
2804 void dm_free_md_mempools(struct dm_md_mempools *pools)
2805 {
2806 	if (!pools)
2807 		return;
2808 
2809 	mempool_destroy(pools->io_pool);
2810 
2811 	if (pools->bs)
2812 		bioset_free(pools->bs);
2813 
2814 	kfree(pools);
2815 }
2816 
2817 struct dm_pr {
2818 	u64	old_key;
2819 	u64	new_key;
2820 	u32	flags;
2821 	bool	fail_early;
2822 };
2823 
2824 static int dm_call_pr(struct block_device *bdev, iterate_devices_callout_fn fn,
2825 		      void *data)
2826 {
2827 	struct mapped_device *md = bdev->bd_disk->private_data;
2828 	struct dm_table *table;
2829 	struct dm_target *ti;
2830 	int ret = -ENOTTY, srcu_idx;
2831 
2832 	table = dm_get_live_table(md, &srcu_idx);
2833 	if (!table || !dm_table_get_size(table))
2834 		goto out;
2835 
2836 	/* We only support devices that have a single target */
2837 	if (dm_table_get_num_targets(table) != 1)
2838 		goto out;
2839 	ti = dm_table_get_target(table, 0);
2840 
2841 	ret = -EINVAL;
2842 	if (!ti->type->iterate_devices)
2843 		goto out;
2844 
2845 	ret = ti->type->iterate_devices(ti, fn, data);
2846 out:
2847 	dm_put_live_table(md, srcu_idx);
2848 	return ret;
2849 }
2850 
2851 /*
2852  * For register / unregister we need to manually call out to every path.
2853  */
2854 static int __dm_pr_register(struct dm_target *ti, struct dm_dev *dev,
2855 			    sector_t start, sector_t len, void *data)
2856 {
2857 	struct dm_pr *pr = data;
2858 	const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
2859 
2860 	if (!ops || !ops->pr_register)
2861 		return -EOPNOTSUPP;
2862 	return ops->pr_register(dev->bdev, pr->old_key, pr->new_key, pr->flags);
2863 }
2864 
2865 static int dm_pr_register(struct block_device *bdev, u64 old_key, u64 new_key,
2866 			  u32 flags)
2867 {
2868 	struct dm_pr pr = {
2869 		.old_key	= old_key,
2870 		.new_key	= new_key,
2871 		.flags		= flags,
2872 		.fail_early	= true,
2873 	};
2874 	int ret;
2875 
2876 	ret = dm_call_pr(bdev, __dm_pr_register, &pr);
2877 	if (ret && new_key) {
2878 		/* unregister all paths if we failed to register any path */
2879 		pr.old_key = new_key;
2880 		pr.new_key = 0;
2881 		pr.flags = 0;
2882 		pr.fail_early = false;
2883 		dm_call_pr(bdev, __dm_pr_register, &pr);
2884 	}
2885 
2886 	return ret;
2887 }
2888 
2889 static int dm_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type,
2890 			 u32 flags)
2891 {
2892 	struct mapped_device *md = bdev->bd_disk->private_data;
2893 	const struct pr_ops *ops;
2894 	fmode_t mode;
2895 	int r;
2896 
2897 	r = dm_grab_bdev_for_ioctl(md, &bdev, &mode);
2898 	if (r < 0)
2899 		return r;
2900 
2901 	ops = bdev->bd_disk->fops->pr_ops;
2902 	if (ops && ops->pr_reserve)
2903 		r = ops->pr_reserve(bdev, key, type, flags);
2904 	else
2905 		r = -EOPNOTSUPP;
2906 
2907 	bdput(bdev);
2908 	return r;
2909 }
2910 
2911 static int dm_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
2912 {
2913 	struct mapped_device *md = bdev->bd_disk->private_data;
2914 	const struct pr_ops *ops;
2915 	fmode_t mode;
2916 	int r;
2917 
2918 	r = dm_grab_bdev_for_ioctl(md, &bdev, &mode);
2919 	if (r < 0)
2920 		return r;
2921 
2922 	ops = bdev->bd_disk->fops->pr_ops;
2923 	if (ops && ops->pr_release)
2924 		r = ops->pr_release(bdev, key, type);
2925 	else
2926 		r = -EOPNOTSUPP;
2927 
2928 	bdput(bdev);
2929 	return r;
2930 }
2931 
2932 static int dm_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key,
2933 			 enum pr_type type, bool abort)
2934 {
2935 	struct mapped_device *md = bdev->bd_disk->private_data;
2936 	const struct pr_ops *ops;
2937 	fmode_t mode;
2938 	int r;
2939 
2940 	r = dm_grab_bdev_for_ioctl(md, &bdev, &mode);
2941 	if (r < 0)
2942 		return r;
2943 
2944 	ops = bdev->bd_disk->fops->pr_ops;
2945 	if (ops && ops->pr_preempt)
2946 		r = ops->pr_preempt(bdev, old_key, new_key, type, abort);
2947 	else
2948 		r = -EOPNOTSUPP;
2949 
2950 	bdput(bdev);
2951 	return r;
2952 }
2953 
2954 static int dm_pr_clear(struct block_device *bdev, u64 key)
2955 {
2956 	struct mapped_device *md = bdev->bd_disk->private_data;
2957 	const struct pr_ops *ops;
2958 	fmode_t mode;
2959 	int r;
2960 
2961 	r = dm_grab_bdev_for_ioctl(md, &bdev, &mode);
2962 	if (r < 0)
2963 		return r;
2964 
2965 	ops = bdev->bd_disk->fops->pr_ops;
2966 	if (ops && ops->pr_clear)
2967 		r = ops->pr_clear(bdev, key);
2968 	else
2969 		r = -EOPNOTSUPP;
2970 
2971 	bdput(bdev);
2972 	return r;
2973 }
2974 
2975 static const struct pr_ops dm_pr_ops = {
2976 	.pr_register	= dm_pr_register,
2977 	.pr_reserve	= dm_pr_reserve,
2978 	.pr_release	= dm_pr_release,
2979 	.pr_preempt	= dm_pr_preempt,
2980 	.pr_clear	= dm_pr_clear,
2981 };
2982 
2983 static const struct block_device_operations dm_blk_dops = {
2984 	.open = dm_blk_open,
2985 	.release = dm_blk_close,
2986 	.ioctl = dm_blk_ioctl,
2987 	.getgeo = dm_blk_getgeo,
2988 	.pr_ops = &dm_pr_ops,
2989 	.owner = THIS_MODULE
2990 };
2991 
2992 static const struct dax_operations dm_dax_ops = {
2993 	.direct_access = dm_dax_direct_access,
2994 	.copy_from_iter = dm_dax_copy_from_iter,
2995 	.flush = dm_dax_flush,
2996 };
2997 
2998 /*
2999  * module hooks
3000  */
3001 module_init(dm_init);
3002 module_exit(dm_exit);
3003 
3004 module_param(major, uint, 0);
3005 MODULE_PARM_DESC(major, "The major number of the device mapper");
3006 
3007 module_param(reserved_bio_based_ios, uint, S_IRUGO | S_IWUSR);
3008 MODULE_PARM_DESC(reserved_bio_based_ios, "Reserved IOs in bio-based mempools");
3009 
3010 module_param(dm_numa_node, int, S_IRUGO | S_IWUSR);
3011 MODULE_PARM_DESC(dm_numa_node, "NUMA node for DM device memory allocations");
3012 
3013 MODULE_DESCRIPTION(DM_NAME " driver");
3014 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
3015 MODULE_LICENSE("GPL");
3016