xref: /linux/drivers/md/dm.c (revision 25aee3debe0464f6c680173041fa3de30ec9ff54)
1 /*
2  * Copyright (C) 2001, 2002 Sistina Software (UK) Limited.
3  * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
4  *
5  * This file is released under the GPL.
6  */
7 
8 #include "dm.h"
9 #include "dm-uevent.h"
10 
11 #include <linux/init.h>
12 #include <linux/module.h>
13 #include <linux/mutex.h>
14 #include <linux/moduleparam.h>
15 #include <linux/blkpg.h>
16 #include <linux/bio.h>
17 #include <linux/mempool.h>
18 #include <linux/slab.h>
19 #include <linux/idr.h>
20 #include <linux/hdreg.h>
21 #include <linux/delay.h>
22 
23 #include <trace/events/block.h>
24 
25 #define DM_MSG_PREFIX "core"
26 
27 #ifdef CONFIG_PRINTK
28 /*
29  * ratelimit state to be used in DMXXX_LIMIT().
30  */
31 DEFINE_RATELIMIT_STATE(dm_ratelimit_state,
32 		       DEFAULT_RATELIMIT_INTERVAL,
33 		       DEFAULT_RATELIMIT_BURST);
34 EXPORT_SYMBOL(dm_ratelimit_state);
35 #endif
36 
37 /*
38  * Cookies are numeric values sent with CHANGE and REMOVE
39  * uevents while resuming, removing or renaming the device.
40  */
41 #define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE"
42 #define DM_COOKIE_LENGTH 24
43 
44 static const char *_name = DM_NAME;
45 
46 static unsigned int major = 0;
47 static unsigned int _major = 0;
48 
49 static DEFINE_IDR(_minor_idr);
50 
51 static DEFINE_SPINLOCK(_minor_lock);
52 /*
53  * For bio-based dm.
54  * One of these is allocated per bio.
55  */
56 struct dm_io {
57 	struct mapped_device *md;
58 	int error;
59 	atomic_t io_count;
60 	struct bio *bio;
61 	unsigned long start_time;
62 	spinlock_t endio_lock;
63 };
64 
65 /*
66  * For bio-based dm.
67  * One of these is allocated per target within a bio.  Hopefully
68  * this will be simplified out one day.
69  */
70 struct dm_target_io {
71 	struct dm_io *io;
72 	struct dm_target *ti;
73 	union map_info info;
74 };
75 
76 /*
77  * For request-based dm.
78  * One of these is allocated per request.
79  */
80 struct dm_rq_target_io {
81 	struct mapped_device *md;
82 	struct dm_target *ti;
83 	struct request *orig, clone;
84 	int error;
85 	union map_info info;
86 };
87 
88 /*
89  * For request-based dm.
90  * One of these is allocated per bio.
91  */
92 struct dm_rq_clone_bio_info {
93 	struct bio *orig;
94 	struct dm_rq_target_io *tio;
95 };
96 
97 union map_info *dm_get_mapinfo(struct bio *bio)
98 {
99 	if (bio && bio->bi_private)
100 		return &((struct dm_target_io *)bio->bi_private)->info;
101 	return NULL;
102 }
103 
104 union map_info *dm_get_rq_mapinfo(struct request *rq)
105 {
106 	if (rq && rq->end_io_data)
107 		return &((struct dm_rq_target_io *)rq->end_io_data)->info;
108 	return NULL;
109 }
110 EXPORT_SYMBOL_GPL(dm_get_rq_mapinfo);
111 
112 #define MINOR_ALLOCED ((void *)-1)
113 
114 /*
115  * Bits for the md->flags field.
116  */
117 #define DMF_BLOCK_IO_FOR_SUSPEND 0
118 #define DMF_SUSPENDED 1
119 #define DMF_FROZEN 2
120 #define DMF_FREEING 3
121 #define DMF_DELETING 4
122 #define DMF_NOFLUSH_SUSPENDING 5
123 #define DMF_MERGE_IS_OPTIONAL 6
124 
125 /*
126  * Work processed by per-device workqueue.
127  */
128 struct mapped_device {
129 	struct rw_semaphore io_lock;
130 	struct mutex suspend_lock;
131 	rwlock_t map_lock;
132 	atomic_t holders;
133 	atomic_t open_count;
134 
135 	unsigned long flags;
136 
137 	struct request_queue *queue;
138 	unsigned type;
139 	/* Protect queue and type against concurrent access. */
140 	struct mutex type_lock;
141 
142 	struct target_type *immutable_target_type;
143 
144 	struct gendisk *disk;
145 	char name[16];
146 
147 	void *interface_ptr;
148 
149 	/*
150 	 * A list of ios that arrived while we were suspended.
151 	 */
152 	atomic_t pending[2];
153 	wait_queue_head_t wait;
154 	struct work_struct work;
155 	struct bio_list deferred;
156 	spinlock_t deferred_lock;
157 
158 	/*
159 	 * Processing queue (flush)
160 	 */
161 	struct workqueue_struct *wq;
162 
163 	/*
164 	 * The current mapping.
165 	 */
166 	struct dm_table *map;
167 
168 	/*
169 	 * io objects are allocated from here.
170 	 */
171 	mempool_t *io_pool;
172 	mempool_t *tio_pool;
173 
174 	struct bio_set *bs;
175 
176 	/*
177 	 * Event handling.
178 	 */
179 	atomic_t event_nr;
180 	wait_queue_head_t eventq;
181 	atomic_t uevent_seq;
182 	struct list_head uevent_list;
183 	spinlock_t uevent_lock; /* Protect access to uevent_list */
184 
185 	/*
186 	 * freeze/thaw support require holding onto a super block
187 	 */
188 	struct super_block *frozen_sb;
189 	struct block_device *bdev;
190 
191 	/* forced geometry settings */
192 	struct hd_geometry geometry;
193 
194 	/* sysfs handle */
195 	struct kobject kobj;
196 
197 	/* zero-length flush that will be cloned and submitted to targets */
198 	struct bio flush_bio;
199 };
200 
201 /*
202  * For mempools pre-allocation at the table loading time.
203  */
204 struct dm_md_mempools {
205 	mempool_t *io_pool;
206 	mempool_t *tio_pool;
207 	struct bio_set *bs;
208 };
209 
210 #define MIN_IOS 256
211 static struct kmem_cache *_io_cache;
212 static struct kmem_cache *_tio_cache;
213 static struct kmem_cache *_rq_tio_cache;
214 static struct kmem_cache *_rq_bio_info_cache;
215 
216 static int __init local_init(void)
217 {
218 	int r = -ENOMEM;
219 
220 	/* allocate a slab for the dm_ios */
221 	_io_cache = KMEM_CACHE(dm_io, 0);
222 	if (!_io_cache)
223 		return r;
224 
225 	/* allocate a slab for the target ios */
226 	_tio_cache = KMEM_CACHE(dm_target_io, 0);
227 	if (!_tio_cache)
228 		goto out_free_io_cache;
229 
230 	_rq_tio_cache = KMEM_CACHE(dm_rq_target_io, 0);
231 	if (!_rq_tio_cache)
232 		goto out_free_tio_cache;
233 
234 	_rq_bio_info_cache = KMEM_CACHE(dm_rq_clone_bio_info, 0);
235 	if (!_rq_bio_info_cache)
236 		goto out_free_rq_tio_cache;
237 
238 	r = dm_uevent_init();
239 	if (r)
240 		goto out_free_rq_bio_info_cache;
241 
242 	_major = major;
243 	r = register_blkdev(_major, _name);
244 	if (r < 0)
245 		goto out_uevent_exit;
246 
247 	if (!_major)
248 		_major = r;
249 
250 	return 0;
251 
252 out_uevent_exit:
253 	dm_uevent_exit();
254 out_free_rq_bio_info_cache:
255 	kmem_cache_destroy(_rq_bio_info_cache);
256 out_free_rq_tio_cache:
257 	kmem_cache_destroy(_rq_tio_cache);
258 out_free_tio_cache:
259 	kmem_cache_destroy(_tio_cache);
260 out_free_io_cache:
261 	kmem_cache_destroy(_io_cache);
262 
263 	return r;
264 }
265 
266 static void local_exit(void)
267 {
268 	kmem_cache_destroy(_rq_bio_info_cache);
269 	kmem_cache_destroy(_rq_tio_cache);
270 	kmem_cache_destroy(_tio_cache);
271 	kmem_cache_destroy(_io_cache);
272 	unregister_blkdev(_major, _name);
273 	dm_uevent_exit();
274 
275 	_major = 0;
276 
277 	DMINFO("cleaned up");
278 }
279 
280 static int (*_inits[])(void) __initdata = {
281 	local_init,
282 	dm_target_init,
283 	dm_linear_init,
284 	dm_stripe_init,
285 	dm_io_init,
286 	dm_kcopyd_init,
287 	dm_interface_init,
288 };
289 
290 static void (*_exits[])(void) = {
291 	local_exit,
292 	dm_target_exit,
293 	dm_linear_exit,
294 	dm_stripe_exit,
295 	dm_io_exit,
296 	dm_kcopyd_exit,
297 	dm_interface_exit,
298 };
299 
300 static int __init dm_init(void)
301 {
302 	const int count = ARRAY_SIZE(_inits);
303 
304 	int r, i;
305 
306 	for (i = 0; i < count; i++) {
307 		r = _inits[i]();
308 		if (r)
309 			goto bad;
310 	}
311 
312 	return 0;
313 
314       bad:
315 	while (i--)
316 		_exits[i]();
317 
318 	return r;
319 }
320 
321 static void __exit dm_exit(void)
322 {
323 	int i = ARRAY_SIZE(_exits);
324 
325 	while (i--)
326 		_exits[i]();
327 
328 	/*
329 	 * Should be empty by this point.
330 	 */
331 	idr_remove_all(&_minor_idr);
332 	idr_destroy(&_minor_idr);
333 }
334 
335 /*
336  * Block device functions
337  */
338 int dm_deleting_md(struct mapped_device *md)
339 {
340 	return test_bit(DMF_DELETING, &md->flags);
341 }
342 
343 static int dm_blk_open(struct block_device *bdev, fmode_t mode)
344 {
345 	struct mapped_device *md;
346 
347 	spin_lock(&_minor_lock);
348 
349 	md = bdev->bd_disk->private_data;
350 	if (!md)
351 		goto out;
352 
353 	if (test_bit(DMF_FREEING, &md->flags) ||
354 	    dm_deleting_md(md)) {
355 		md = NULL;
356 		goto out;
357 	}
358 
359 	dm_get(md);
360 	atomic_inc(&md->open_count);
361 
362 out:
363 	spin_unlock(&_minor_lock);
364 
365 	return md ? 0 : -ENXIO;
366 }
367 
368 static int dm_blk_close(struct gendisk *disk, fmode_t mode)
369 {
370 	struct mapped_device *md = disk->private_data;
371 
372 	spin_lock(&_minor_lock);
373 
374 	atomic_dec(&md->open_count);
375 	dm_put(md);
376 
377 	spin_unlock(&_minor_lock);
378 
379 	return 0;
380 }
381 
382 int dm_open_count(struct mapped_device *md)
383 {
384 	return atomic_read(&md->open_count);
385 }
386 
387 /*
388  * Guarantees nothing is using the device before it's deleted.
389  */
390 int dm_lock_for_deletion(struct mapped_device *md)
391 {
392 	int r = 0;
393 
394 	spin_lock(&_minor_lock);
395 
396 	if (dm_open_count(md))
397 		r = -EBUSY;
398 	else
399 		set_bit(DMF_DELETING, &md->flags);
400 
401 	spin_unlock(&_minor_lock);
402 
403 	return r;
404 }
405 
406 static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
407 {
408 	struct mapped_device *md = bdev->bd_disk->private_data;
409 
410 	return dm_get_geometry(md, geo);
411 }
412 
413 static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode,
414 			unsigned int cmd, unsigned long arg)
415 {
416 	struct mapped_device *md = bdev->bd_disk->private_data;
417 	struct dm_table *map = dm_get_live_table(md);
418 	struct dm_target *tgt;
419 	int r = -ENOTTY;
420 
421 	if (!map || !dm_table_get_size(map))
422 		goto out;
423 
424 	/* We only support devices that have a single target */
425 	if (dm_table_get_num_targets(map) != 1)
426 		goto out;
427 
428 	tgt = dm_table_get_target(map, 0);
429 
430 	if (dm_suspended_md(md)) {
431 		r = -EAGAIN;
432 		goto out;
433 	}
434 
435 	if (tgt->type->ioctl)
436 		r = tgt->type->ioctl(tgt, cmd, arg);
437 
438 out:
439 	dm_table_put(map);
440 
441 	return r;
442 }
443 
444 static struct dm_io *alloc_io(struct mapped_device *md)
445 {
446 	return mempool_alloc(md->io_pool, GFP_NOIO);
447 }
448 
449 static void free_io(struct mapped_device *md, struct dm_io *io)
450 {
451 	mempool_free(io, md->io_pool);
452 }
453 
454 static void free_tio(struct mapped_device *md, struct dm_target_io *tio)
455 {
456 	mempool_free(tio, md->tio_pool);
457 }
458 
459 static struct dm_rq_target_io *alloc_rq_tio(struct mapped_device *md,
460 					    gfp_t gfp_mask)
461 {
462 	return mempool_alloc(md->tio_pool, gfp_mask);
463 }
464 
465 static void free_rq_tio(struct dm_rq_target_io *tio)
466 {
467 	mempool_free(tio, tio->md->tio_pool);
468 }
469 
470 static struct dm_rq_clone_bio_info *alloc_bio_info(struct mapped_device *md)
471 {
472 	return mempool_alloc(md->io_pool, GFP_ATOMIC);
473 }
474 
475 static void free_bio_info(struct dm_rq_clone_bio_info *info)
476 {
477 	mempool_free(info, info->tio->md->io_pool);
478 }
479 
480 static int md_in_flight(struct mapped_device *md)
481 {
482 	return atomic_read(&md->pending[READ]) +
483 	       atomic_read(&md->pending[WRITE]);
484 }
485 
486 static void start_io_acct(struct dm_io *io)
487 {
488 	struct mapped_device *md = io->md;
489 	int cpu;
490 	int rw = bio_data_dir(io->bio);
491 
492 	io->start_time = jiffies;
493 
494 	cpu = part_stat_lock();
495 	part_round_stats(cpu, &dm_disk(md)->part0);
496 	part_stat_unlock();
497 	atomic_set(&dm_disk(md)->part0.in_flight[rw],
498 		atomic_inc_return(&md->pending[rw]));
499 }
500 
501 static void end_io_acct(struct dm_io *io)
502 {
503 	struct mapped_device *md = io->md;
504 	struct bio *bio = io->bio;
505 	unsigned long duration = jiffies - io->start_time;
506 	int pending, cpu;
507 	int rw = bio_data_dir(bio);
508 
509 	cpu = part_stat_lock();
510 	part_round_stats(cpu, &dm_disk(md)->part0);
511 	part_stat_add(cpu, &dm_disk(md)->part0, ticks[rw], duration);
512 	part_stat_unlock();
513 
514 	/*
515 	 * After this is decremented the bio must not be touched if it is
516 	 * a flush.
517 	 */
518 	pending = atomic_dec_return(&md->pending[rw]);
519 	atomic_set(&dm_disk(md)->part0.in_flight[rw], pending);
520 	pending += atomic_read(&md->pending[rw^0x1]);
521 
522 	/* nudge anyone waiting on suspend queue */
523 	if (!pending)
524 		wake_up(&md->wait);
525 }
526 
527 /*
528  * Add the bio to the list of deferred io.
529  */
530 static void queue_io(struct mapped_device *md, struct bio *bio)
531 {
532 	unsigned long flags;
533 
534 	spin_lock_irqsave(&md->deferred_lock, flags);
535 	bio_list_add(&md->deferred, bio);
536 	spin_unlock_irqrestore(&md->deferred_lock, flags);
537 	queue_work(md->wq, &md->work);
538 }
539 
540 /*
541  * Everyone (including functions in this file), should use this
542  * function to access the md->map field, and make sure they call
543  * dm_table_put() when finished.
544  */
545 struct dm_table *dm_get_live_table(struct mapped_device *md)
546 {
547 	struct dm_table *t;
548 	unsigned long flags;
549 
550 	read_lock_irqsave(&md->map_lock, flags);
551 	t = md->map;
552 	if (t)
553 		dm_table_get(t);
554 	read_unlock_irqrestore(&md->map_lock, flags);
555 
556 	return t;
557 }
558 
559 /*
560  * Get the geometry associated with a dm device
561  */
562 int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo)
563 {
564 	*geo = md->geometry;
565 
566 	return 0;
567 }
568 
569 /*
570  * Set the geometry of a device.
571  */
572 int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo)
573 {
574 	sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors;
575 
576 	if (geo->start > sz) {
577 		DMWARN("Start sector is beyond the geometry limits.");
578 		return -EINVAL;
579 	}
580 
581 	md->geometry = *geo;
582 
583 	return 0;
584 }
585 
586 /*-----------------------------------------------------------------
587  * CRUD START:
588  *   A more elegant soln is in the works that uses the queue
589  *   merge fn, unfortunately there are a couple of changes to
590  *   the block layer that I want to make for this.  So in the
591  *   interests of getting something for people to use I give
592  *   you this clearly demarcated crap.
593  *---------------------------------------------------------------*/
594 
595 static int __noflush_suspending(struct mapped_device *md)
596 {
597 	return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
598 }
599 
600 /*
601  * Decrements the number of outstanding ios that a bio has been
602  * cloned into, completing the original io if necc.
603  */
604 static void dec_pending(struct dm_io *io, int error)
605 {
606 	unsigned long flags;
607 	int io_error;
608 	struct bio *bio;
609 	struct mapped_device *md = io->md;
610 
611 	/* Push-back supersedes any I/O errors */
612 	if (unlikely(error)) {
613 		spin_lock_irqsave(&io->endio_lock, flags);
614 		if (!(io->error > 0 && __noflush_suspending(md)))
615 			io->error = error;
616 		spin_unlock_irqrestore(&io->endio_lock, flags);
617 	}
618 
619 	if (atomic_dec_and_test(&io->io_count)) {
620 		if (io->error == DM_ENDIO_REQUEUE) {
621 			/*
622 			 * Target requested pushing back the I/O.
623 			 */
624 			spin_lock_irqsave(&md->deferred_lock, flags);
625 			if (__noflush_suspending(md))
626 				bio_list_add_head(&md->deferred, io->bio);
627 			else
628 				/* noflush suspend was interrupted. */
629 				io->error = -EIO;
630 			spin_unlock_irqrestore(&md->deferred_lock, flags);
631 		}
632 
633 		io_error = io->error;
634 		bio = io->bio;
635 		end_io_acct(io);
636 		free_io(md, io);
637 
638 		if (io_error == DM_ENDIO_REQUEUE)
639 			return;
640 
641 		if ((bio->bi_rw & REQ_FLUSH) && bio->bi_size) {
642 			/*
643 			 * Preflush done for flush with data, reissue
644 			 * without REQ_FLUSH.
645 			 */
646 			bio->bi_rw &= ~REQ_FLUSH;
647 			queue_io(md, bio);
648 		} else {
649 			/* done with normal IO or empty flush */
650 			trace_block_bio_complete(md->queue, bio, io_error);
651 			bio_endio(bio, io_error);
652 		}
653 	}
654 }
655 
656 static void clone_endio(struct bio *bio, int error)
657 {
658 	int r = 0;
659 	struct dm_target_io *tio = bio->bi_private;
660 	struct dm_io *io = tio->io;
661 	struct mapped_device *md = tio->io->md;
662 	dm_endio_fn endio = tio->ti->type->end_io;
663 
664 	if (!bio_flagged(bio, BIO_UPTODATE) && !error)
665 		error = -EIO;
666 
667 	if (endio) {
668 		r = endio(tio->ti, bio, error, &tio->info);
669 		if (r < 0 || r == DM_ENDIO_REQUEUE)
670 			/*
671 			 * error and requeue request are handled
672 			 * in dec_pending().
673 			 */
674 			error = r;
675 		else if (r == DM_ENDIO_INCOMPLETE)
676 			/* The target will handle the io */
677 			return;
678 		else if (r) {
679 			DMWARN("unimplemented target endio return value: %d", r);
680 			BUG();
681 		}
682 	}
683 
684 	/*
685 	 * Store md for cleanup instead of tio which is about to get freed.
686 	 */
687 	bio->bi_private = md->bs;
688 
689 	free_tio(md, tio);
690 	bio_put(bio);
691 	dec_pending(io, error);
692 }
693 
694 /*
695  * Partial completion handling for request-based dm
696  */
697 static void end_clone_bio(struct bio *clone, int error)
698 {
699 	struct dm_rq_clone_bio_info *info = clone->bi_private;
700 	struct dm_rq_target_io *tio = info->tio;
701 	struct bio *bio = info->orig;
702 	unsigned int nr_bytes = info->orig->bi_size;
703 
704 	bio_put(clone);
705 
706 	if (tio->error)
707 		/*
708 		 * An error has already been detected on the request.
709 		 * Once error occurred, just let clone->end_io() handle
710 		 * the remainder.
711 		 */
712 		return;
713 	else if (error) {
714 		/*
715 		 * Don't notice the error to the upper layer yet.
716 		 * The error handling decision is made by the target driver,
717 		 * when the request is completed.
718 		 */
719 		tio->error = error;
720 		return;
721 	}
722 
723 	/*
724 	 * I/O for the bio successfully completed.
725 	 * Notice the data completion to the upper layer.
726 	 */
727 
728 	/*
729 	 * bios are processed from the head of the list.
730 	 * So the completing bio should always be rq->bio.
731 	 * If it's not, something wrong is happening.
732 	 */
733 	if (tio->orig->bio != bio)
734 		DMERR("bio completion is going in the middle of the request");
735 
736 	/*
737 	 * Update the original request.
738 	 * Do not use blk_end_request() here, because it may complete
739 	 * the original request before the clone, and break the ordering.
740 	 */
741 	blk_update_request(tio->orig, 0, nr_bytes);
742 }
743 
744 /*
745  * Don't touch any member of the md after calling this function because
746  * the md may be freed in dm_put() at the end of this function.
747  * Or do dm_get() before calling this function and dm_put() later.
748  */
749 static void rq_completed(struct mapped_device *md, int rw, int run_queue)
750 {
751 	atomic_dec(&md->pending[rw]);
752 
753 	/* nudge anyone waiting on suspend queue */
754 	if (!md_in_flight(md))
755 		wake_up(&md->wait);
756 
757 	if (run_queue)
758 		blk_run_queue(md->queue);
759 
760 	/*
761 	 * dm_put() must be at the end of this function. See the comment above
762 	 */
763 	dm_put(md);
764 }
765 
766 static void free_rq_clone(struct request *clone)
767 {
768 	struct dm_rq_target_io *tio = clone->end_io_data;
769 
770 	blk_rq_unprep_clone(clone);
771 	free_rq_tio(tio);
772 }
773 
774 /*
775  * Complete the clone and the original request.
776  * Must be called without queue lock.
777  */
778 static void dm_end_request(struct request *clone, int error)
779 {
780 	int rw = rq_data_dir(clone);
781 	struct dm_rq_target_io *tio = clone->end_io_data;
782 	struct mapped_device *md = tio->md;
783 	struct request *rq = tio->orig;
784 
785 	if (rq->cmd_type == REQ_TYPE_BLOCK_PC) {
786 		rq->errors = clone->errors;
787 		rq->resid_len = clone->resid_len;
788 
789 		if (rq->sense)
790 			/*
791 			 * We are using the sense buffer of the original
792 			 * request.
793 			 * So setting the length of the sense data is enough.
794 			 */
795 			rq->sense_len = clone->sense_len;
796 	}
797 
798 	free_rq_clone(clone);
799 	blk_end_request_all(rq, error);
800 	rq_completed(md, rw, true);
801 }
802 
803 static void dm_unprep_request(struct request *rq)
804 {
805 	struct request *clone = rq->special;
806 
807 	rq->special = NULL;
808 	rq->cmd_flags &= ~REQ_DONTPREP;
809 
810 	free_rq_clone(clone);
811 }
812 
813 /*
814  * Requeue the original request of a clone.
815  */
816 void dm_requeue_unmapped_request(struct request *clone)
817 {
818 	int rw = rq_data_dir(clone);
819 	struct dm_rq_target_io *tio = clone->end_io_data;
820 	struct mapped_device *md = tio->md;
821 	struct request *rq = tio->orig;
822 	struct request_queue *q = rq->q;
823 	unsigned long flags;
824 
825 	dm_unprep_request(rq);
826 
827 	spin_lock_irqsave(q->queue_lock, flags);
828 	blk_requeue_request(q, rq);
829 	spin_unlock_irqrestore(q->queue_lock, flags);
830 
831 	rq_completed(md, rw, 0);
832 }
833 EXPORT_SYMBOL_GPL(dm_requeue_unmapped_request);
834 
835 static void __stop_queue(struct request_queue *q)
836 {
837 	blk_stop_queue(q);
838 }
839 
840 static void stop_queue(struct request_queue *q)
841 {
842 	unsigned long flags;
843 
844 	spin_lock_irqsave(q->queue_lock, flags);
845 	__stop_queue(q);
846 	spin_unlock_irqrestore(q->queue_lock, flags);
847 }
848 
849 static void __start_queue(struct request_queue *q)
850 {
851 	if (blk_queue_stopped(q))
852 		blk_start_queue(q);
853 }
854 
855 static void start_queue(struct request_queue *q)
856 {
857 	unsigned long flags;
858 
859 	spin_lock_irqsave(q->queue_lock, flags);
860 	__start_queue(q);
861 	spin_unlock_irqrestore(q->queue_lock, flags);
862 }
863 
864 static void dm_done(struct request *clone, int error, bool mapped)
865 {
866 	int r = error;
867 	struct dm_rq_target_io *tio = clone->end_io_data;
868 	dm_request_endio_fn rq_end_io = tio->ti->type->rq_end_io;
869 
870 	if (mapped && rq_end_io)
871 		r = rq_end_io(tio->ti, clone, error, &tio->info);
872 
873 	if (r <= 0)
874 		/* The target wants to complete the I/O */
875 		dm_end_request(clone, r);
876 	else if (r == DM_ENDIO_INCOMPLETE)
877 		/* The target will handle the I/O */
878 		return;
879 	else if (r == DM_ENDIO_REQUEUE)
880 		/* The target wants to requeue the I/O */
881 		dm_requeue_unmapped_request(clone);
882 	else {
883 		DMWARN("unimplemented target endio return value: %d", r);
884 		BUG();
885 	}
886 }
887 
888 /*
889  * Request completion handler for request-based dm
890  */
891 static void dm_softirq_done(struct request *rq)
892 {
893 	bool mapped = true;
894 	struct request *clone = rq->completion_data;
895 	struct dm_rq_target_io *tio = clone->end_io_data;
896 
897 	if (rq->cmd_flags & REQ_FAILED)
898 		mapped = false;
899 
900 	dm_done(clone, tio->error, mapped);
901 }
902 
903 /*
904  * Complete the clone and the original request with the error status
905  * through softirq context.
906  */
907 static void dm_complete_request(struct request *clone, int error)
908 {
909 	struct dm_rq_target_io *tio = clone->end_io_data;
910 	struct request *rq = tio->orig;
911 
912 	tio->error = error;
913 	rq->completion_data = clone;
914 	blk_complete_request(rq);
915 }
916 
917 /*
918  * Complete the not-mapped clone and the original request with the error status
919  * through softirq context.
920  * Target's rq_end_io() function isn't called.
921  * This may be used when the target's map_rq() function fails.
922  */
923 void dm_kill_unmapped_request(struct request *clone, int error)
924 {
925 	struct dm_rq_target_io *tio = clone->end_io_data;
926 	struct request *rq = tio->orig;
927 
928 	rq->cmd_flags |= REQ_FAILED;
929 	dm_complete_request(clone, error);
930 }
931 EXPORT_SYMBOL_GPL(dm_kill_unmapped_request);
932 
933 /*
934  * Called with the queue lock held
935  */
936 static void end_clone_request(struct request *clone, int error)
937 {
938 	/*
939 	 * For just cleaning up the information of the queue in which
940 	 * the clone was dispatched.
941 	 * The clone is *NOT* freed actually here because it is alloced from
942 	 * dm own mempool and REQ_ALLOCED isn't set in clone->cmd_flags.
943 	 */
944 	__blk_put_request(clone->q, clone);
945 
946 	/*
947 	 * Actual request completion is done in a softirq context which doesn't
948 	 * hold the queue lock.  Otherwise, deadlock could occur because:
949 	 *     - another request may be submitted by the upper level driver
950 	 *       of the stacking during the completion
951 	 *     - the submission which requires queue lock may be done
952 	 *       against this queue
953 	 */
954 	dm_complete_request(clone, error);
955 }
956 
957 /*
958  * Return maximum size of I/O possible at the supplied sector up to the current
959  * target boundary.
960  */
961 static sector_t max_io_len_target_boundary(sector_t sector, struct dm_target *ti)
962 {
963 	sector_t target_offset = dm_target_offset(ti, sector);
964 
965 	return ti->len - target_offset;
966 }
967 
968 static sector_t max_io_len(sector_t sector, struct dm_target *ti)
969 {
970 	sector_t len = max_io_len_target_boundary(sector, ti);
971 	sector_t offset, max_len;
972 
973 	/*
974 	 * Does the target need to split even further?
975 	 */
976 	if (ti->max_io_len) {
977 		offset = dm_target_offset(ti, sector);
978 		if (unlikely(ti->max_io_len & (ti->max_io_len - 1)))
979 			max_len = sector_div(offset, ti->max_io_len);
980 		else
981 			max_len = offset & (ti->max_io_len - 1);
982 		max_len = ti->max_io_len - max_len;
983 
984 		if (len > max_len)
985 			len = max_len;
986 	}
987 
988 	return len;
989 }
990 
991 int dm_set_target_max_io_len(struct dm_target *ti, sector_t len)
992 {
993 	if (len > UINT_MAX) {
994 		DMERR("Specified maximum size of target IO (%llu) exceeds limit (%u)",
995 		      (unsigned long long)len, UINT_MAX);
996 		ti->error = "Maximum size of target IO is too large";
997 		return -EINVAL;
998 	}
999 
1000 	ti->max_io_len = (uint32_t) len;
1001 
1002 	return 0;
1003 }
1004 EXPORT_SYMBOL_GPL(dm_set_target_max_io_len);
1005 
1006 static void __map_bio(struct dm_target *ti, struct bio *clone,
1007 		      struct dm_target_io *tio)
1008 {
1009 	int r;
1010 	sector_t sector;
1011 	struct mapped_device *md;
1012 
1013 	clone->bi_end_io = clone_endio;
1014 	clone->bi_private = tio;
1015 
1016 	/*
1017 	 * Map the clone.  If r == 0 we don't need to do
1018 	 * anything, the target has assumed ownership of
1019 	 * this io.
1020 	 */
1021 	atomic_inc(&tio->io->io_count);
1022 	sector = clone->bi_sector;
1023 	r = ti->type->map(ti, clone, &tio->info);
1024 	if (r == DM_MAPIO_REMAPPED) {
1025 		/* the bio has been remapped so dispatch it */
1026 
1027 		trace_block_bio_remap(bdev_get_queue(clone->bi_bdev), clone,
1028 				      tio->io->bio->bi_bdev->bd_dev, sector);
1029 
1030 		generic_make_request(clone);
1031 	} else if (r < 0 || r == DM_MAPIO_REQUEUE) {
1032 		/* error the io and bail out, or requeue it if needed */
1033 		md = tio->io->md;
1034 		dec_pending(tio->io, r);
1035 		/*
1036 		 * Store bio_set for cleanup.
1037 		 */
1038 		clone->bi_end_io = NULL;
1039 		clone->bi_private = md->bs;
1040 		bio_put(clone);
1041 		free_tio(md, tio);
1042 	} else if (r) {
1043 		DMWARN("unimplemented target map return value: %d", r);
1044 		BUG();
1045 	}
1046 }
1047 
1048 struct clone_info {
1049 	struct mapped_device *md;
1050 	struct dm_table *map;
1051 	struct bio *bio;
1052 	struct dm_io *io;
1053 	sector_t sector;
1054 	sector_t sector_count;
1055 	unsigned short idx;
1056 };
1057 
1058 static void dm_bio_destructor(struct bio *bio)
1059 {
1060 	struct bio_set *bs = bio->bi_private;
1061 
1062 	bio_free(bio, bs);
1063 }
1064 
1065 /*
1066  * Creates a little bio that just does part of a bvec.
1067  */
1068 static struct bio *split_bvec(struct bio *bio, sector_t sector,
1069 			      unsigned short idx, unsigned int offset,
1070 			      unsigned int len, struct bio_set *bs)
1071 {
1072 	struct bio *clone;
1073 	struct bio_vec *bv = bio->bi_io_vec + idx;
1074 
1075 	clone = bio_alloc_bioset(GFP_NOIO, 1, bs);
1076 	clone->bi_destructor = dm_bio_destructor;
1077 	*clone->bi_io_vec = *bv;
1078 
1079 	clone->bi_sector = sector;
1080 	clone->bi_bdev = bio->bi_bdev;
1081 	clone->bi_rw = bio->bi_rw;
1082 	clone->bi_vcnt = 1;
1083 	clone->bi_size = to_bytes(len);
1084 	clone->bi_io_vec->bv_offset = offset;
1085 	clone->bi_io_vec->bv_len = clone->bi_size;
1086 	clone->bi_flags |= 1 << BIO_CLONED;
1087 
1088 	if (bio_integrity(bio)) {
1089 		bio_integrity_clone(clone, bio, GFP_NOIO, bs);
1090 		bio_integrity_trim(clone,
1091 				   bio_sector_offset(bio, idx, offset), len);
1092 	}
1093 
1094 	return clone;
1095 }
1096 
1097 /*
1098  * Creates a bio that consists of range of complete bvecs.
1099  */
1100 static struct bio *clone_bio(struct bio *bio, sector_t sector,
1101 			     unsigned short idx, unsigned short bv_count,
1102 			     unsigned int len, struct bio_set *bs)
1103 {
1104 	struct bio *clone;
1105 
1106 	clone = bio_alloc_bioset(GFP_NOIO, bio->bi_max_vecs, bs);
1107 	__bio_clone(clone, bio);
1108 	clone->bi_destructor = dm_bio_destructor;
1109 	clone->bi_sector = sector;
1110 	clone->bi_idx = idx;
1111 	clone->bi_vcnt = idx + bv_count;
1112 	clone->bi_size = to_bytes(len);
1113 	clone->bi_flags &= ~(1 << BIO_SEG_VALID);
1114 
1115 	if (bio_integrity(bio)) {
1116 		bio_integrity_clone(clone, bio, GFP_NOIO, bs);
1117 
1118 		if (idx != bio->bi_idx || clone->bi_size < bio->bi_size)
1119 			bio_integrity_trim(clone,
1120 					   bio_sector_offset(bio, idx, 0), len);
1121 	}
1122 
1123 	return clone;
1124 }
1125 
1126 static struct dm_target_io *alloc_tio(struct clone_info *ci,
1127 				      struct dm_target *ti)
1128 {
1129 	struct dm_target_io *tio = mempool_alloc(ci->md->tio_pool, GFP_NOIO);
1130 
1131 	tio->io = ci->io;
1132 	tio->ti = ti;
1133 	memset(&tio->info, 0, sizeof(tio->info));
1134 
1135 	return tio;
1136 }
1137 
1138 static void __issue_target_request(struct clone_info *ci, struct dm_target *ti,
1139 				   unsigned request_nr, sector_t len)
1140 {
1141 	struct dm_target_io *tio = alloc_tio(ci, ti);
1142 	struct bio *clone;
1143 
1144 	tio->info.target_request_nr = request_nr;
1145 
1146 	/*
1147 	 * Discard requests require the bio's inline iovecs be initialized.
1148 	 * ci->bio->bi_max_vecs is BIO_INLINE_VECS anyway, for both flush
1149 	 * and discard, so no need for concern about wasted bvec allocations.
1150 	 */
1151 	clone = bio_alloc_bioset(GFP_NOIO, ci->bio->bi_max_vecs, ci->md->bs);
1152 	__bio_clone(clone, ci->bio);
1153 	clone->bi_destructor = dm_bio_destructor;
1154 	if (len) {
1155 		clone->bi_sector = ci->sector;
1156 		clone->bi_size = to_bytes(len);
1157 	}
1158 
1159 	__map_bio(ti, clone, tio);
1160 }
1161 
1162 static void __issue_target_requests(struct clone_info *ci, struct dm_target *ti,
1163 				    unsigned num_requests, sector_t len)
1164 {
1165 	unsigned request_nr;
1166 
1167 	for (request_nr = 0; request_nr < num_requests; request_nr++)
1168 		__issue_target_request(ci, ti, request_nr, len);
1169 }
1170 
1171 static int __clone_and_map_empty_flush(struct clone_info *ci)
1172 {
1173 	unsigned target_nr = 0;
1174 	struct dm_target *ti;
1175 
1176 	BUG_ON(bio_has_data(ci->bio));
1177 	while ((ti = dm_table_get_target(ci->map, target_nr++)))
1178 		__issue_target_requests(ci, ti, ti->num_flush_requests, 0);
1179 
1180 	return 0;
1181 }
1182 
1183 /*
1184  * Perform all io with a single clone.
1185  */
1186 static void __clone_and_map_simple(struct clone_info *ci, struct dm_target *ti)
1187 {
1188 	struct bio *clone, *bio = ci->bio;
1189 	struct dm_target_io *tio;
1190 
1191 	tio = alloc_tio(ci, ti);
1192 	clone = clone_bio(bio, ci->sector, ci->idx,
1193 			  bio->bi_vcnt - ci->idx, ci->sector_count,
1194 			  ci->md->bs);
1195 	__map_bio(ti, clone, tio);
1196 	ci->sector_count = 0;
1197 }
1198 
1199 static int __clone_and_map_discard(struct clone_info *ci)
1200 {
1201 	struct dm_target *ti;
1202 	sector_t len;
1203 
1204 	do {
1205 		ti = dm_table_find_target(ci->map, ci->sector);
1206 		if (!dm_target_is_valid(ti))
1207 			return -EIO;
1208 
1209 		/*
1210 		 * Even though the device advertised discard support,
1211 		 * that does not mean every target supports it, and
1212 		 * reconfiguration might also have changed that since the
1213 		 * check was performed.
1214 		 */
1215 		if (!ti->num_discard_requests)
1216 			return -EOPNOTSUPP;
1217 
1218 		if (!ti->split_discard_requests)
1219 			len = min(ci->sector_count, max_io_len_target_boundary(ci->sector, ti));
1220 		else
1221 			len = min(ci->sector_count, max_io_len(ci->sector, ti));
1222 
1223 		__issue_target_requests(ci, ti, ti->num_discard_requests, len);
1224 
1225 		ci->sector += len;
1226 	} while (ci->sector_count -= len);
1227 
1228 	return 0;
1229 }
1230 
1231 static int __clone_and_map(struct clone_info *ci)
1232 {
1233 	struct bio *clone, *bio = ci->bio;
1234 	struct dm_target *ti;
1235 	sector_t len = 0, max;
1236 	struct dm_target_io *tio;
1237 
1238 	if (unlikely(bio->bi_rw & REQ_DISCARD))
1239 		return __clone_and_map_discard(ci);
1240 
1241 	ti = dm_table_find_target(ci->map, ci->sector);
1242 	if (!dm_target_is_valid(ti))
1243 		return -EIO;
1244 
1245 	max = max_io_len(ci->sector, ti);
1246 
1247 	if (ci->sector_count <= max) {
1248 		/*
1249 		 * Optimise for the simple case where we can do all of
1250 		 * the remaining io with a single clone.
1251 		 */
1252 		__clone_and_map_simple(ci, ti);
1253 
1254 	} else if (to_sector(bio->bi_io_vec[ci->idx].bv_len) <= max) {
1255 		/*
1256 		 * There are some bvecs that don't span targets.
1257 		 * Do as many of these as possible.
1258 		 */
1259 		int i;
1260 		sector_t remaining = max;
1261 		sector_t bv_len;
1262 
1263 		for (i = ci->idx; remaining && (i < bio->bi_vcnt); i++) {
1264 			bv_len = to_sector(bio->bi_io_vec[i].bv_len);
1265 
1266 			if (bv_len > remaining)
1267 				break;
1268 
1269 			remaining -= bv_len;
1270 			len += bv_len;
1271 		}
1272 
1273 		tio = alloc_tio(ci, ti);
1274 		clone = clone_bio(bio, ci->sector, ci->idx, i - ci->idx, len,
1275 				  ci->md->bs);
1276 		__map_bio(ti, clone, tio);
1277 
1278 		ci->sector += len;
1279 		ci->sector_count -= len;
1280 		ci->idx = i;
1281 
1282 	} else {
1283 		/*
1284 		 * Handle a bvec that must be split between two or more targets.
1285 		 */
1286 		struct bio_vec *bv = bio->bi_io_vec + ci->idx;
1287 		sector_t remaining = to_sector(bv->bv_len);
1288 		unsigned int offset = 0;
1289 
1290 		do {
1291 			if (offset) {
1292 				ti = dm_table_find_target(ci->map, ci->sector);
1293 				if (!dm_target_is_valid(ti))
1294 					return -EIO;
1295 
1296 				max = max_io_len(ci->sector, ti);
1297 			}
1298 
1299 			len = min(remaining, max);
1300 
1301 			tio = alloc_tio(ci, ti);
1302 			clone = split_bvec(bio, ci->sector, ci->idx,
1303 					   bv->bv_offset + offset, len,
1304 					   ci->md->bs);
1305 
1306 			__map_bio(ti, clone, tio);
1307 
1308 			ci->sector += len;
1309 			ci->sector_count -= len;
1310 			offset += to_bytes(len);
1311 		} while (remaining -= len);
1312 
1313 		ci->idx++;
1314 	}
1315 
1316 	return 0;
1317 }
1318 
1319 /*
1320  * Split the bio into several clones and submit it to targets.
1321  */
1322 static void __split_and_process_bio(struct mapped_device *md, struct bio *bio)
1323 {
1324 	struct clone_info ci;
1325 	int error = 0;
1326 
1327 	ci.map = dm_get_live_table(md);
1328 	if (unlikely(!ci.map)) {
1329 		bio_io_error(bio);
1330 		return;
1331 	}
1332 
1333 	ci.md = md;
1334 	ci.io = alloc_io(md);
1335 	ci.io->error = 0;
1336 	atomic_set(&ci.io->io_count, 1);
1337 	ci.io->bio = bio;
1338 	ci.io->md = md;
1339 	spin_lock_init(&ci.io->endio_lock);
1340 	ci.sector = bio->bi_sector;
1341 	ci.idx = bio->bi_idx;
1342 
1343 	start_io_acct(ci.io);
1344 	if (bio->bi_rw & REQ_FLUSH) {
1345 		ci.bio = &ci.md->flush_bio;
1346 		ci.sector_count = 0;
1347 		error = __clone_and_map_empty_flush(&ci);
1348 		/* dec_pending submits any data associated with flush */
1349 	} else {
1350 		ci.bio = bio;
1351 		ci.sector_count = bio_sectors(bio);
1352 		while (ci.sector_count && !error)
1353 			error = __clone_and_map(&ci);
1354 	}
1355 
1356 	/* drop the extra reference count */
1357 	dec_pending(ci.io, error);
1358 	dm_table_put(ci.map);
1359 }
1360 /*-----------------------------------------------------------------
1361  * CRUD END
1362  *---------------------------------------------------------------*/
1363 
1364 static int dm_merge_bvec(struct request_queue *q,
1365 			 struct bvec_merge_data *bvm,
1366 			 struct bio_vec *biovec)
1367 {
1368 	struct mapped_device *md = q->queuedata;
1369 	struct dm_table *map = dm_get_live_table(md);
1370 	struct dm_target *ti;
1371 	sector_t max_sectors;
1372 	int max_size = 0;
1373 
1374 	if (unlikely(!map))
1375 		goto out;
1376 
1377 	ti = dm_table_find_target(map, bvm->bi_sector);
1378 	if (!dm_target_is_valid(ti))
1379 		goto out_table;
1380 
1381 	/*
1382 	 * Find maximum amount of I/O that won't need splitting
1383 	 */
1384 	max_sectors = min(max_io_len(bvm->bi_sector, ti),
1385 			  (sector_t) BIO_MAX_SECTORS);
1386 	max_size = (max_sectors << SECTOR_SHIFT) - bvm->bi_size;
1387 	if (max_size < 0)
1388 		max_size = 0;
1389 
1390 	/*
1391 	 * merge_bvec_fn() returns number of bytes
1392 	 * it can accept at this offset
1393 	 * max is precomputed maximal io size
1394 	 */
1395 	if (max_size && ti->type->merge)
1396 		max_size = ti->type->merge(ti, bvm, biovec, max_size);
1397 	/*
1398 	 * If the target doesn't support merge method and some of the devices
1399 	 * provided their merge_bvec method (we know this by looking at
1400 	 * queue_max_hw_sectors), then we can't allow bios with multiple vector
1401 	 * entries.  So always set max_size to 0, and the code below allows
1402 	 * just one page.
1403 	 */
1404 	else if (queue_max_hw_sectors(q) <= PAGE_SIZE >> 9)
1405 
1406 		max_size = 0;
1407 
1408 out_table:
1409 	dm_table_put(map);
1410 
1411 out:
1412 	/*
1413 	 * Always allow an entire first page
1414 	 */
1415 	if (max_size <= biovec->bv_len && !(bvm->bi_size >> SECTOR_SHIFT))
1416 		max_size = biovec->bv_len;
1417 
1418 	return max_size;
1419 }
1420 
1421 /*
1422  * The request function that just remaps the bio built up by
1423  * dm_merge_bvec.
1424  */
1425 static void _dm_request(struct request_queue *q, struct bio *bio)
1426 {
1427 	int rw = bio_data_dir(bio);
1428 	struct mapped_device *md = q->queuedata;
1429 	int cpu;
1430 
1431 	down_read(&md->io_lock);
1432 
1433 	cpu = part_stat_lock();
1434 	part_stat_inc(cpu, &dm_disk(md)->part0, ios[rw]);
1435 	part_stat_add(cpu, &dm_disk(md)->part0, sectors[rw], bio_sectors(bio));
1436 	part_stat_unlock();
1437 
1438 	/* if we're suspended, we have to queue this io for later */
1439 	if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))) {
1440 		up_read(&md->io_lock);
1441 
1442 		if (bio_rw(bio) != READA)
1443 			queue_io(md, bio);
1444 		else
1445 			bio_io_error(bio);
1446 		return;
1447 	}
1448 
1449 	__split_and_process_bio(md, bio);
1450 	up_read(&md->io_lock);
1451 	return;
1452 }
1453 
1454 static int dm_request_based(struct mapped_device *md)
1455 {
1456 	return blk_queue_stackable(md->queue);
1457 }
1458 
1459 static void dm_request(struct request_queue *q, struct bio *bio)
1460 {
1461 	struct mapped_device *md = q->queuedata;
1462 
1463 	if (dm_request_based(md))
1464 		blk_queue_bio(q, bio);
1465 	else
1466 		_dm_request(q, bio);
1467 }
1468 
1469 void dm_dispatch_request(struct request *rq)
1470 {
1471 	int r;
1472 
1473 	if (blk_queue_io_stat(rq->q))
1474 		rq->cmd_flags |= REQ_IO_STAT;
1475 
1476 	rq->start_time = jiffies;
1477 	r = blk_insert_cloned_request(rq->q, rq);
1478 	if (r)
1479 		dm_complete_request(rq, r);
1480 }
1481 EXPORT_SYMBOL_GPL(dm_dispatch_request);
1482 
1483 static void dm_rq_bio_destructor(struct bio *bio)
1484 {
1485 	struct dm_rq_clone_bio_info *info = bio->bi_private;
1486 	struct mapped_device *md = info->tio->md;
1487 
1488 	free_bio_info(info);
1489 	bio_free(bio, md->bs);
1490 }
1491 
1492 static int dm_rq_bio_constructor(struct bio *bio, struct bio *bio_orig,
1493 				 void *data)
1494 {
1495 	struct dm_rq_target_io *tio = data;
1496 	struct mapped_device *md = tio->md;
1497 	struct dm_rq_clone_bio_info *info = alloc_bio_info(md);
1498 
1499 	if (!info)
1500 		return -ENOMEM;
1501 
1502 	info->orig = bio_orig;
1503 	info->tio = tio;
1504 	bio->bi_end_io = end_clone_bio;
1505 	bio->bi_private = info;
1506 	bio->bi_destructor = dm_rq_bio_destructor;
1507 
1508 	return 0;
1509 }
1510 
1511 static int setup_clone(struct request *clone, struct request *rq,
1512 		       struct dm_rq_target_io *tio)
1513 {
1514 	int r;
1515 
1516 	r = blk_rq_prep_clone(clone, rq, tio->md->bs, GFP_ATOMIC,
1517 			      dm_rq_bio_constructor, tio);
1518 	if (r)
1519 		return r;
1520 
1521 	clone->cmd = rq->cmd;
1522 	clone->cmd_len = rq->cmd_len;
1523 	clone->sense = rq->sense;
1524 	clone->buffer = rq->buffer;
1525 	clone->end_io = end_clone_request;
1526 	clone->end_io_data = tio;
1527 
1528 	return 0;
1529 }
1530 
1531 static struct request *clone_rq(struct request *rq, struct mapped_device *md,
1532 				gfp_t gfp_mask)
1533 {
1534 	struct request *clone;
1535 	struct dm_rq_target_io *tio;
1536 
1537 	tio = alloc_rq_tio(md, gfp_mask);
1538 	if (!tio)
1539 		return NULL;
1540 
1541 	tio->md = md;
1542 	tio->ti = NULL;
1543 	tio->orig = rq;
1544 	tio->error = 0;
1545 	memset(&tio->info, 0, sizeof(tio->info));
1546 
1547 	clone = &tio->clone;
1548 	if (setup_clone(clone, rq, tio)) {
1549 		/* -ENOMEM */
1550 		free_rq_tio(tio);
1551 		return NULL;
1552 	}
1553 
1554 	return clone;
1555 }
1556 
1557 /*
1558  * Called with the queue lock held.
1559  */
1560 static int dm_prep_fn(struct request_queue *q, struct request *rq)
1561 {
1562 	struct mapped_device *md = q->queuedata;
1563 	struct request *clone;
1564 
1565 	if (unlikely(rq->special)) {
1566 		DMWARN("Already has something in rq->special.");
1567 		return BLKPREP_KILL;
1568 	}
1569 
1570 	clone = clone_rq(rq, md, GFP_ATOMIC);
1571 	if (!clone)
1572 		return BLKPREP_DEFER;
1573 
1574 	rq->special = clone;
1575 	rq->cmd_flags |= REQ_DONTPREP;
1576 
1577 	return BLKPREP_OK;
1578 }
1579 
1580 /*
1581  * Returns:
1582  * 0  : the request has been processed (not requeued)
1583  * !0 : the request has been requeued
1584  */
1585 static int map_request(struct dm_target *ti, struct request *clone,
1586 		       struct mapped_device *md)
1587 {
1588 	int r, requeued = 0;
1589 	struct dm_rq_target_io *tio = clone->end_io_data;
1590 
1591 	/*
1592 	 * Hold the md reference here for the in-flight I/O.
1593 	 * We can't rely on the reference count by device opener,
1594 	 * because the device may be closed during the request completion
1595 	 * when all bios are completed.
1596 	 * See the comment in rq_completed() too.
1597 	 */
1598 	dm_get(md);
1599 
1600 	tio->ti = ti;
1601 	r = ti->type->map_rq(ti, clone, &tio->info);
1602 	switch (r) {
1603 	case DM_MAPIO_SUBMITTED:
1604 		/* The target has taken the I/O to submit by itself later */
1605 		break;
1606 	case DM_MAPIO_REMAPPED:
1607 		/* The target has remapped the I/O so dispatch it */
1608 		trace_block_rq_remap(clone->q, clone, disk_devt(dm_disk(md)),
1609 				     blk_rq_pos(tio->orig));
1610 		dm_dispatch_request(clone);
1611 		break;
1612 	case DM_MAPIO_REQUEUE:
1613 		/* The target wants to requeue the I/O */
1614 		dm_requeue_unmapped_request(clone);
1615 		requeued = 1;
1616 		break;
1617 	default:
1618 		if (r > 0) {
1619 			DMWARN("unimplemented target map return value: %d", r);
1620 			BUG();
1621 		}
1622 
1623 		/* The target wants to complete the I/O */
1624 		dm_kill_unmapped_request(clone, r);
1625 		break;
1626 	}
1627 
1628 	return requeued;
1629 }
1630 
1631 /*
1632  * q->request_fn for request-based dm.
1633  * Called with the queue lock held.
1634  */
1635 static void dm_request_fn(struct request_queue *q)
1636 {
1637 	struct mapped_device *md = q->queuedata;
1638 	struct dm_table *map = dm_get_live_table(md);
1639 	struct dm_target *ti;
1640 	struct request *rq, *clone;
1641 	sector_t pos;
1642 
1643 	/*
1644 	 * For suspend, check blk_queue_stopped() and increment
1645 	 * ->pending within a single queue_lock not to increment the
1646 	 * number of in-flight I/Os after the queue is stopped in
1647 	 * dm_suspend().
1648 	 */
1649 	while (!blk_queue_stopped(q)) {
1650 		rq = blk_peek_request(q);
1651 		if (!rq)
1652 			goto delay_and_out;
1653 
1654 		/* always use block 0 to find the target for flushes for now */
1655 		pos = 0;
1656 		if (!(rq->cmd_flags & REQ_FLUSH))
1657 			pos = blk_rq_pos(rq);
1658 
1659 		ti = dm_table_find_target(map, pos);
1660 		BUG_ON(!dm_target_is_valid(ti));
1661 
1662 		if (ti->type->busy && ti->type->busy(ti))
1663 			goto delay_and_out;
1664 
1665 		blk_start_request(rq);
1666 		clone = rq->special;
1667 		atomic_inc(&md->pending[rq_data_dir(clone)]);
1668 
1669 		spin_unlock(q->queue_lock);
1670 		if (map_request(ti, clone, md))
1671 			goto requeued;
1672 
1673 		BUG_ON(!irqs_disabled());
1674 		spin_lock(q->queue_lock);
1675 	}
1676 
1677 	goto out;
1678 
1679 requeued:
1680 	BUG_ON(!irqs_disabled());
1681 	spin_lock(q->queue_lock);
1682 
1683 delay_and_out:
1684 	blk_delay_queue(q, HZ / 10);
1685 out:
1686 	dm_table_put(map);
1687 
1688 	return;
1689 }
1690 
1691 int dm_underlying_device_busy(struct request_queue *q)
1692 {
1693 	return blk_lld_busy(q);
1694 }
1695 EXPORT_SYMBOL_GPL(dm_underlying_device_busy);
1696 
1697 static int dm_lld_busy(struct request_queue *q)
1698 {
1699 	int r;
1700 	struct mapped_device *md = q->queuedata;
1701 	struct dm_table *map = dm_get_live_table(md);
1702 
1703 	if (!map || test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))
1704 		r = 1;
1705 	else
1706 		r = dm_table_any_busy_target(map);
1707 
1708 	dm_table_put(map);
1709 
1710 	return r;
1711 }
1712 
1713 static int dm_any_congested(void *congested_data, int bdi_bits)
1714 {
1715 	int r = bdi_bits;
1716 	struct mapped_device *md = congested_data;
1717 	struct dm_table *map;
1718 
1719 	if (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
1720 		map = dm_get_live_table(md);
1721 		if (map) {
1722 			/*
1723 			 * Request-based dm cares about only own queue for
1724 			 * the query about congestion status of request_queue
1725 			 */
1726 			if (dm_request_based(md))
1727 				r = md->queue->backing_dev_info.state &
1728 				    bdi_bits;
1729 			else
1730 				r = dm_table_any_congested(map, bdi_bits);
1731 
1732 			dm_table_put(map);
1733 		}
1734 	}
1735 
1736 	return r;
1737 }
1738 
1739 /*-----------------------------------------------------------------
1740  * An IDR is used to keep track of allocated minor numbers.
1741  *---------------------------------------------------------------*/
1742 static void free_minor(int minor)
1743 {
1744 	spin_lock(&_minor_lock);
1745 	idr_remove(&_minor_idr, minor);
1746 	spin_unlock(&_minor_lock);
1747 }
1748 
1749 /*
1750  * See if the device with a specific minor # is free.
1751  */
1752 static int specific_minor(int minor)
1753 {
1754 	int r, m;
1755 
1756 	if (minor >= (1 << MINORBITS))
1757 		return -EINVAL;
1758 
1759 	r = idr_pre_get(&_minor_idr, GFP_KERNEL);
1760 	if (!r)
1761 		return -ENOMEM;
1762 
1763 	spin_lock(&_minor_lock);
1764 
1765 	if (idr_find(&_minor_idr, minor)) {
1766 		r = -EBUSY;
1767 		goto out;
1768 	}
1769 
1770 	r = idr_get_new_above(&_minor_idr, MINOR_ALLOCED, minor, &m);
1771 	if (r)
1772 		goto out;
1773 
1774 	if (m != minor) {
1775 		idr_remove(&_minor_idr, m);
1776 		r = -EBUSY;
1777 		goto out;
1778 	}
1779 
1780 out:
1781 	spin_unlock(&_minor_lock);
1782 	return r;
1783 }
1784 
1785 static int next_free_minor(int *minor)
1786 {
1787 	int r, m;
1788 
1789 	r = idr_pre_get(&_minor_idr, GFP_KERNEL);
1790 	if (!r)
1791 		return -ENOMEM;
1792 
1793 	spin_lock(&_minor_lock);
1794 
1795 	r = idr_get_new(&_minor_idr, MINOR_ALLOCED, &m);
1796 	if (r)
1797 		goto out;
1798 
1799 	if (m >= (1 << MINORBITS)) {
1800 		idr_remove(&_minor_idr, m);
1801 		r = -ENOSPC;
1802 		goto out;
1803 	}
1804 
1805 	*minor = m;
1806 
1807 out:
1808 	spin_unlock(&_minor_lock);
1809 	return r;
1810 }
1811 
1812 static const struct block_device_operations dm_blk_dops;
1813 
1814 static void dm_wq_work(struct work_struct *work);
1815 
1816 static void dm_init_md_queue(struct mapped_device *md)
1817 {
1818 	/*
1819 	 * Request-based dm devices cannot be stacked on top of bio-based dm
1820 	 * devices.  The type of this dm device has not been decided yet.
1821 	 * The type is decided at the first table loading time.
1822 	 * To prevent problematic device stacking, clear the queue flag
1823 	 * for request stacking support until then.
1824 	 *
1825 	 * This queue is new, so no concurrency on the queue_flags.
1826 	 */
1827 	queue_flag_clear_unlocked(QUEUE_FLAG_STACKABLE, md->queue);
1828 
1829 	md->queue->queuedata = md;
1830 	md->queue->backing_dev_info.congested_fn = dm_any_congested;
1831 	md->queue->backing_dev_info.congested_data = md;
1832 	blk_queue_make_request(md->queue, dm_request);
1833 	blk_queue_bounce_limit(md->queue, BLK_BOUNCE_ANY);
1834 	blk_queue_merge_bvec(md->queue, dm_merge_bvec);
1835 }
1836 
1837 /*
1838  * Allocate and initialise a blank device with a given minor.
1839  */
1840 static struct mapped_device *alloc_dev(int minor)
1841 {
1842 	int r;
1843 	struct mapped_device *md = kzalloc(sizeof(*md), GFP_KERNEL);
1844 	void *old_md;
1845 
1846 	if (!md) {
1847 		DMWARN("unable to allocate device, out of memory.");
1848 		return NULL;
1849 	}
1850 
1851 	if (!try_module_get(THIS_MODULE))
1852 		goto bad_module_get;
1853 
1854 	/* get a minor number for the dev */
1855 	if (minor == DM_ANY_MINOR)
1856 		r = next_free_minor(&minor);
1857 	else
1858 		r = specific_minor(minor);
1859 	if (r < 0)
1860 		goto bad_minor;
1861 
1862 	md->type = DM_TYPE_NONE;
1863 	init_rwsem(&md->io_lock);
1864 	mutex_init(&md->suspend_lock);
1865 	mutex_init(&md->type_lock);
1866 	spin_lock_init(&md->deferred_lock);
1867 	rwlock_init(&md->map_lock);
1868 	atomic_set(&md->holders, 1);
1869 	atomic_set(&md->open_count, 0);
1870 	atomic_set(&md->event_nr, 0);
1871 	atomic_set(&md->uevent_seq, 0);
1872 	INIT_LIST_HEAD(&md->uevent_list);
1873 	spin_lock_init(&md->uevent_lock);
1874 
1875 	md->queue = blk_alloc_queue(GFP_KERNEL);
1876 	if (!md->queue)
1877 		goto bad_queue;
1878 
1879 	dm_init_md_queue(md);
1880 
1881 	md->disk = alloc_disk(1);
1882 	if (!md->disk)
1883 		goto bad_disk;
1884 
1885 	atomic_set(&md->pending[0], 0);
1886 	atomic_set(&md->pending[1], 0);
1887 	init_waitqueue_head(&md->wait);
1888 	INIT_WORK(&md->work, dm_wq_work);
1889 	init_waitqueue_head(&md->eventq);
1890 
1891 	md->disk->major = _major;
1892 	md->disk->first_minor = minor;
1893 	md->disk->fops = &dm_blk_dops;
1894 	md->disk->queue = md->queue;
1895 	md->disk->private_data = md;
1896 	sprintf(md->disk->disk_name, "dm-%d", minor);
1897 	add_disk(md->disk);
1898 	format_dev_t(md->name, MKDEV(_major, minor));
1899 
1900 	md->wq = alloc_workqueue("kdmflush",
1901 				 WQ_NON_REENTRANT | WQ_MEM_RECLAIM, 0);
1902 	if (!md->wq)
1903 		goto bad_thread;
1904 
1905 	md->bdev = bdget_disk(md->disk, 0);
1906 	if (!md->bdev)
1907 		goto bad_bdev;
1908 
1909 	bio_init(&md->flush_bio);
1910 	md->flush_bio.bi_bdev = md->bdev;
1911 	md->flush_bio.bi_rw = WRITE_FLUSH;
1912 
1913 	/* Populate the mapping, nobody knows we exist yet */
1914 	spin_lock(&_minor_lock);
1915 	old_md = idr_replace(&_minor_idr, md, minor);
1916 	spin_unlock(&_minor_lock);
1917 
1918 	BUG_ON(old_md != MINOR_ALLOCED);
1919 
1920 	return md;
1921 
1922 bad_bdev:
1923 	destroy_workqueue(md->wq);
1924 bad_thread:
1925 	del_gendisk(md->disk);
1926 	put_disk(md->disk);
1927 bad_disk:
1928 	blk_cleanup_queue(md->queue);
1929 bad_queue:
1930 	free_minor(minor);
1931 bad_minor:
1932 	module_put(THIS_MODULE);
1933 bad_module_get:
1934 	kfree(md);
1935 	return NULL;
1936 }
1937 
1938 static void unlock_fs(struct mapped_device *md);
1939 
1940 static void free_dev(struct mapped_device *md)
1941 {
1942 	int minor = MINOR(disk_devt(md->disk));
1943 
1944 	unlock_fs(md);
1945 	bdput(md->bdev);
1946 	destroy_workqueue(md->wq);
1947 	if (md->tio_pool)
1948 		mempool_destroy(md->tio_pool);
1949 	if (md->io_pool)
1950 		mempool_destroy(md->io_pool);
1951 	if (md->bs)
1952 		bioset_free(md->bs);
1953 	blk_integrity_unregister(md->disk);
1954 	del_gendisk(md->disk);
1955 	free_minor(minor);
1956 
1957 	spin_lock(&_minor_lock);
1958 	md->disk->private_data = NULL;
1959 	spin_unlock(&_minor_lock);
1960 
1961 	put_disk(md->disk);
1962 	blk_cleanup_queue(md->queue);
1963 	module_put(THIS_MODULE);
1964 	kfree(md);
1965 }
1966 
1967 static void __bind_mempools(struct mapped_device *md, struct dm_table *t)
1968 {
1969 	struct dm_md_mempools *p;
1970 
1971 	if (md->io_pool && md->tio_pool && md->bs)
1972 		/* the md already has necessary mempools */
1973 		goto out;
1974 
1975 	p = dm_table_get_md_mempools(t);
1976 	BUG_ON(!p || md->io_pool || md->tio_pool || md->bs);
1977 
1978 	md->io_pool = p->io_pool;
1979 	p->io_pool = NULL;
1980 	md->tio_pool = p->tio_pool;
1981 	p->tio_pool = NULL;
1982 	md->bs = p->bs;
1983 	p->bs = NULL;
1984 
1985 out:
1986 	/* mempool bind completed, now no need any mempools in the table */
1987 	dm_table_free_md_mempools(t);
1988 }
1989 
1990 /*
1991  * Bind a table to the device.
1992  */
1993 static void event_callback(void *context)
1994 {
1995 	unsigned long flags;
1996 	LIST_HEAD(uevents);
1997 	struct mapped_device *md = (struct mapped_device *) context;
1998 
1999 	spin_lock_irqsave(&md->uevent_lock, flags);
2000 	list_splice_init(&md->uevent_list, &uevents);
2001 	spin_unlock_irqrestore(&md->uevent_lock, flags);
2002 
2003 	dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj);
2004 
2005 	atomic_inc(&md->event_nr);
2006 	wake_up(&md->eventq);
2007 }
2008 
2009 /*
2010  * Protected by md->suspend_lock obtained by dm_swap_table().
2011  */
2012 static void __set_size(struct mapped_device *md, sector_t size)
2013 {
2014 	set_capacity(md->disk, size);
2015 
2016 	i_size_write(md->bdev->bd_inode, (loff_t)size << SECTOR_SHIFT);
2017 }
2018 
2019 /*
2020  * Return 1 if the queue has a compulsory merge_bvec_fn function.
2021  *
2022  * If this function returns 0, then the device is either a non-dm
2023  * device without a merge_bvec_fn, or it is a dm device that is
2024  * able to split any bios it receives that are too big.
2025  */
2026 int dm_queue_merge_is_compulsory(struct request_queue *q)
2027 {
2028 	struct mapped_device *dev_md;
2029 
2030 	if (!q->merge_bvec_fn)
2031 		return 0;
2032 
2033 	if (q->make_request_fn == dm_request) {
2034 		dev_md = q->queuedata;
2035 		if (test_bit(DMF_MERGE_IS_OPTIONAL, &dev_md->flags))
2036 			return 0;
2037 	}
2038 
2039 	return 1;
2040 }
2041 
2042 static int dm_device_merge_is_compulsory(struct dm_target *ti,
2043 					 struct dm_dev *dev, sector_t start,
2044 					 sector_t len, void *data)
2045 {
2046 	struct block_device *bdev = dev->bdev;
2047 	struct request_queue *q = bdev_get_queue(bdev);
2048 
2049 	return dm_queue_merge_is_compulsory(q);
2050 }
2051 
2052 /*
2053  * Return 1 if it is acceptable to ignore merge_bvec_fn based
2054  * on the properties of the underlying devices.
2055  */
2056 static int dm_table_merge_is_optional(struct dm_table *table)
2057 {
2058 	unsigned i = 0;
2059 	struct dm_target *ti;
2060 
2061 	while (i < dm_table_get_num_targets(table)) {
2062 		ti = dm_table_get_target(table, i++);
2063 
2064 		if (ti->type->iterate_devices &&
2065 		    ti->type->iterate_devices(ti, dm_device_merge_is_compulsory, NULL))
2066 			return 0;
2067 	}
2068 
2069 	return 1;
2070 }
2071 
2072 /*
2073  * Returns old map, which caller must destroy.
2074  */
2075 static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t,
2076 			       struct queue_limits *limits)
2077 {
2078 	struct dm_table *old_map;
2079 	struct request_queue *q = md->queue;
2080 	sector_t size;
2081 	unsigned long flags;
2082 	int merge_is_optional;
2083 
2084 	size = dm_table_get_size(t);
2085 
2086 	/*
2087 	 * Wipe any geometry if the size of the table changed.
2088 	 */
2089 	if (size != get_capacity(md->disk))
2090 		memset(&md->geometry, 0, sizeof(md->geometry));
2091 
2092 	__set_size(md, size);
2093 
2094 	dm_table_event_callback(t, event_callback, md);
2095 
2096 	/*
2097 	 * The queue hasn't been stopped yet, if the old table type wasn't
2098 	 * for request-based during suspension.  So stop it to prevent
2099 	 * I/O mapping before resume.
2100 	 * This must be done before setting the queue restrictions,
2101 	 * because request-based dm may be run just after the setting.
2102 	 */
2103 	if (dm_table_request_based(t) && !blk_queue_stopped(q))
2104 		stop_queue(q);
2105 
2106 	__bind_mempools(md, t);
2107 
2108 	merge_is_optional = dm_table_merge_is_optional(t);
2109 
2110 	write_lock_irqsave(&md->map_lock, flags);
2111 	old_map = md->map;
2112 	md->map = t;
2113 	md->immutable_target_type = dm_table_get_immutable_target_type(t);
2114 
2115 	dm_table_set_restrictions(t, q, limits);
2116 	if (merge_is_optional)
2117 		set_bit(DMF_MERGE_IS_OPTIONAL, &md->flags);
2118 	else
2119 		clear_bit(DMF_MERGE_IS_OPTIONAL, &md->flags);
2120 	write_unlock_irqrestore(&md->map_lock, flags);
2121 
2122 	return old_map;
2123 }
2124 
2125 /*
2126  * Returns unbound table for the caller to free.
2127  */
2128 static struct dm_table *__unbind(struct mapped_device *md)
2129 {
2130 	struct dm_table *map = md->map;
2131 	unsigned long flags;
2132 
2133 	if (!map)
2134 		return NULL;
2135 
2136 	dm_table_event_callback(map, NULL, NULL);
2137 	write_lock_irqsave(&md->map_lock, flags);
2138 	md->map = NULL;
2139 	write_unlock_irqrestore(&md->map_lock, flags);
2140 
2141 	return map;
2142 }
2143 
2144 /*
2145  * Constructor for a new device.
2146  */
2147 int dm_create(int minor, struct mapped_device **result)
2148 {
2149 	struct mapped_device *md;
2150 
2151 	md = alloc_dev(minor);
2152 	if (!md)
2153 		return -ENXIO;
2154 
2155 	dm_sysfs_init(md);
2156 
2157 	*result = md;
2158 	return 0;
2159 }
2160 
2161 /*
2162  * Functions to manage md->type.
2163  * All are required to hold md->type_lock.
2164  */
2165 void dm_lock_md_type(struct mapped_device *md)
2166 {
2167 	mutex_lock(&md->type_lock);
2168 }
2169 
2170 void dm_unlock_md_type(struct mapped_device *md)
2171 {
2172 	mutex_unlock(&md->type_lock);
2173 }
2174 
2175 void dm_set_md_type(struct mapped_device *md, unsigned type)
2176 {
2177 	md->type = type;
2178 }
2179 
2180 unsigned dm_get_md_type(struct mapped_device *md)
2181 {
2182 	return md->type;
2183 }
2184 
2185 struct target_type *dm_get_immutable_target_type(struct mapped_device *md)
2186 {
2187 	return md->immutable_target_type;
2188 }
2189 
2190 /*
2191  * Fully initialize a request-based queue (->elevator, ->request_fn, etc).
2192  */
2193 static int dm_init_request_based_queue(struct mapped_device *md)
2194 {
2195 	struct request_queue *q = NULL;
2196 
2197 	if (md->queue->elevator)
2198 		return 1;
2199 
2200 	/* Fully initialize the queue */
2201 	q = blk_init_allocated_queue(md->queue, dm_request_fn, NULL);
2202 	if (!q)
2203 		return 0;
2204 
2205 	md->queue = q;
2206 	dm_init_md_queue(md);
2207 	blk_queue_softirq_done(md->queue, dm_softirq_done);
2208 	blk_queue_prep_rq(md->queue, dm_prep_fn);
2209 	blk_queue_lld_busy(md->queue, dm_lld_busy);
2210 
2211 	elv_register_queue(md->queue);
2212 
2213 	return 1;
2214 }
2215 
2216 /*
2217  * Setup the DM device's queue based on md's type
2218  */
2219 int dm_setup_md_queue(struct mapped_device *md)
2220 {
2221 	if ((dm_get_md_type(md) == DM_TYPE_REQUEST_BASED) &&
2222 	    !dm_init_request_based_queue(md)) {
2223 		DMWARN("Cannot initialize queue for request-based mapped device");
2224 		return -EINVAL;
2225 	}
2226 
2227 	return 0;
2228 }
2229 
2230 static struct mapped_device *dm_find_md(dev_t dev)
2231 {
2232 	struct mapped_device *md;
2233 	unsigned minor = MINOR(dev);
2234 
2235 	if (MAJOR(dev) != _major || minor >= (1 << MINORBITS))
2236 		return NULL;
2237 
2238 	spin_lock(&_minor_lock);
2239 
2240 	md = idr_find(&_minor_idr, minor);
2241 	if (md && (md == MINOR_ALLOCED ||
2242 		   (MINOR(disk_devt(dm_disk(md))) != minor) ||
2243 		   dm_deleting_md(md) ||
2244 		   test_bit(DMF_FREEING, &md->flags))) {
2245 		md = NULL;
2246 		goto out;
2247 	}
2248 
2249 out:
2250 	spin_unlock(&_minor_lock);
2251 
2252 	return md;
2253 }
2254 
2255 struct mapped_device *dm_get_md(dev_t dev)
2256 {
2257 	struct mapped_device *md = dm_find_md(dev);
2258 
2259 	if (md)
2260 		dm_get(md);
2261 
2262 	return md;
2263 }
2264 EXPORT_SYMBOL_GPL(dm_get_md);
2265 
2266 void *dm_get_mdptr(struct mapped_device *md)
2267 {
2268 	return md->interface_ptr;
2269 }
2270 
2271 void dm_set_mdptr(struct mapped_device *md, void *ptr)
2272 {
2273 	md->interface_ptr = ptr;
2274 }
2275 
2276 void dm_get(struct mapped_device *md)
2277 {
2278 	atomic_inc(&md->holders);
2279 	BUG_ON(test_bit(DMF_FREEING, &md->flags));
2280 }
2281 
2282 const char *dm_device_name(struct mapped_device *md)
2283 {
2284 	return md->name;
2285 }
2286 EXPORT_SYMBOL_GPL(dm_device_name);
2287 
2288 static void __dm_destroy(struct mapped_device *md, bool wait)
2289 {
2290 	struct dm_table *map;
2291 
2292 	might_sleep();
2293 
2294 	spin_lock(&_minor_lock);
2295 	map = dm_get_live_table(md);
2296 	idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md))));
2297 	set_bit(DMF_FREEING, &md->flags);
2298 	spin_unlock(&_minor_lock);
2299 
2300 	if (!dm_suspended_md(md)) {
2301 		dm_table_presuspend_targets(map);
2302 		dm_table_postsuspend_targets(map);
2303 	}
2304 
2305 	/*
2306 	 * Rare, but there may be I/O requests still going to complete,
2307 	 * for example.  Wait for all references to disappear.
2308 	 * No one should increment the reference count of the mapped_device,
2309 	 * after the mapped_device state becomes DMF_FREEING.
2310 	 */
2311 	if (wait)
2312 		while (atomic_read(&md->holders))
2313 			msleep(1);
2314 	else if (atomic_read(&md->holders))
2315 		DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)",
2316 		       dm_device_name(md), atomic_read(&md->holders));
2317 
2318 	dm_sysfs_exit(md);
2319 	dm_table_put(map);
2320 	dm_table_destroy(__unbind(md));
2321 	free_dev(md);
2322 }
2323 
2324 void dm_destroy(struct mapped_device *md)
2325 {
2326 	__dm_destroy(md, true);
2327 }
2328 
2329 void dm_destroy_immediate(struct mapped_device *md)
2330 {
2331 	__dm_destroy(md, false);
2332 }
2333 
2334 void dm_put(struct mapped_device *md)
2335 {
2336 	atomic_dec(&md->holders);
2337 }
2338 EXPORT_SYMBOL_GPL(dm_put);
2339 
2340 static int dm_wait_for_completion(struct mapped_device *md, int interruptible)
2341 {
2342 	int r = 0;
2343 	DECLARE_WAITQUEUE(wait, current);
2344 
2345 	add_wait_queue(&md->wait, &wait);
2346 
2347 	while (1) {
2348 		set_current_state(interruptible);
2349 
2350 		if (!md_in_flight(md))
2351 			break;
2352 
2353 		if (interruptible == TASK_INTERRUPTIBLE &&
2354 		    signal_pending(current)) {
2355 			r = -EINTR;
2356 			break;
2357 		}
2358 
2359 		io_schedule();
2360 	}
2361 	set_current_state(TASK_RUNNING);
2362 
2363 	remove_wait_queue(&md->wait, &wait);
2364 
2365 	return r;
2366 }
2367 
2368 /*
2369  * Process the deferred bios
2370  */
2371 static void dm_wq_work(struct work_struct *work)
2372 {
2373 	struct mapped_device *md = container_of(work, struct mapped_device,
2374 						work);
2375 	struct bio *c;
2376 
2377 	down_read(&md->io_lock);
2378 
2379 	while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
2380 		spin_lock_irq(&md->deferred_lock);
2381 		c = bio_list_pop(&md->deferred);
2382 		spin_unlock_irq(&md->deferred_lock);
2383 
2384 		if (!c)
2385 			break;
2386 
2387 		up_read(&md->io_lock);
2388 
2389 		if (dm_request_based(md))
2390 			generic_make_request(c);
2391 		else
2392 			__split_and_process_bio(md, c);
2393 
2394 		down_read(&md->io_lock);
2395 	}
2396 
2397 	up_read(&md->io_lock);
2398 }
2399 
2400 static void dm_queue_flush(struct mapped_device *md)
2401 {
2402 	clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2403 	smp_mb__after_clear_bit();
2404 	queue_work(md->wq, &md->work);
2405 }
2406 
2407 /*
2408  * Swap in a new table, returning the old one for the caller to destroy.
2409  */
2410 struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table)
2411 {
2412 	struct dm_table *map = ERR_PTR(-EINVAL);
2413 	struct queue_limits limits;
2414 	int r;
2415 
2416 	mutex_lock(&md->suspend_lock);
2417 
2418 	/* device must be suspended */
2419 	if (!dm_suspended_md(md))
2420 		goto out;
2421 
2422 	r = dm_calculate_queue_limits(table, &limits);
2423 	if (r) {
2424 		map = ERR_PTR(r);
2425 		goto out;
2426 	}
2427 
2428 	map = __bind(md, table, &limits);
2429 
2430 out:
2431 	mutex_unlock(&md->suspend_lock);
2432 	return map;
2433 }
2434 
2435 /*
2436  * Functions to lock and unlock any filesystem running on the
2437  * device.
2438  */
2439 static int lock_fs(struct mapped_device *md)
2440 {
2441 	int r;
2442 
2443 	WARN_ON(md->frozen_sb);
2444 
2445 	md->frozen_sb = freeze_bdev(md->bdev);
2446 	if (IS_ERR(md->frozen_sb)) {
2447 		r = PTR_ERR(md->frozen_sb);
2448 		md->frozen_sb = NULL;
2449 		return r;
2450 	}
2451 
2452 	set_bit(DMF_FROZEN, &md->flags);
2453 
2454 	return 0;
2455 }
2456 
2457 static void unlock_fs(struct mapped_device *md)
2458 {
2459 	if (!test_bit(DMF_FROZEN, &md->flags))
2460 		return;
2461 
2462 	thaw_bdev(md->bdev, md->frozen_sb);
2463 	md->frozen_sb = NULL;
2464 	clear_bit(DMF_FROZEN, &md->flags);
2465 }
2466 
2467 /*
2468  * We need to be able to change a mapping table under a mounted
2469  * filesystem.  For example we might want to move some data in
2470  * the background.  Before the table can be swapped with
2471  * dm_bind_table, dm_suspend must be called to flush any in
2472  * flight bios and ensure that any further io gets deferred.
2473  */
2474 /*
2475  * Suspend mechanism in request-based dm.
2476  *
2477  * 1. Flush all I/Os by lock_fs() if needed.
2478  * 2. Stop dispatching any I/O by stopping the request_queue.
2479  * 3. Wait for all in-flight I/Os to be completed or requeued.
2480  *
2481  * To abort suspend, start the request_queue.
2482  */
2483 int dm_suspend(struct mapped_device *md, unsigned suspend_flags)
2484 {
2485 	struct dm_table *map = NULL;
2486 	int r = 0;
2487 	int do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG ? 1 : 0;
2488 	int noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG ? 1 : 0;
2489 
2490 	mutex_lock(&md->suspend_lock);
2491 
2492 	if (dm_suspended_md(md)) {
2493 		r = -EINVAL;
2494 		goto out_unlock;
2495 	}
2496 
2497 	map = dm_get_live_table(md);
2498 
2499 	/*
2500 	 * DMF_NOFLUSH_SUSPENDING must be set before presuspend.
2501 	 * This flag is cleared before dm_suspend returns.
2502 	 */
2503 	if (noflush)
2504 		set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2505 
2506 	/* This does not get reverted if there's an error later. */
2507 	dm_table_presuspend_targets(map);
2508 
2509 	/*
2510 	 * Flush I/O to the device.
2511 	 * Any I/O submitted after lock_fs() may not be flushed.
2512 	 * noflush takes precedence over do_lockfs.
2513 	 * (lock_fs() flushes I/Os and waits for them to complete.)
2514 	 */
2515 	if (!noflush && do_lockfs) {
2516 		r = lock_fs(md);
2517 		if (r)
2518 			goto out;
2519 	}
2520 
2521 	/*
2522 	 * Here we must make sure that no processes are submitting requests
2523 	 * to target drivers i.e. no one may be executing
2524 	 * __split_and_process_bio. This is called from dm_request and
2525 	 * dm_wq_work.
2526 	 *
2527 	 * To get all processes out of __split_and_process_bio in dm_request,
2528 	 * we take the write lock. To prevent any process from reentering
2529 	 * __split_and_process_bio from dm_request and quiesce the thread
2530 	 * (dm_wq_work), we set BMF_BLOCK_IO_FOR_SUSPEND and call
2531 	 * flush_workqueue(md->wq).
2532 	 */
2533 	down_write(&md->io_lock);
2534 	set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2535 	up_write(&md->io_lock);
2536 
2537 	/*
2538 	 * Stop md->queue before flushing md->wq in case request-based
2539 	 * dm defers requests to md->wq from md->queue.
2540 	 */
2541 	if (dm_request_based(md))
2542 		stop_queue(md->queue);
2543 
2544 	flush_workqueue(md->wq);
2545 
2546 	/*
2547 	 * At this point no more requests are entering target request routines.
2548 	 * We call dm_wait_for_completion to wait for all existing requests
2549 	 * to finish.
2550 	 */
2551 	r = dm_wait_for_completion(md, TASK_INTERRUPTIBLE);
2552 
2553 	down_write(&md->io_lock);
2554 	if (noflush)
2555 		clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2556 	up_write(&md->io_lock);
2557 
2558 	/* were we interrupted ? */
2559 	if (r < 0) {
2560 		dm_queue_flush(md);
2561 
2562 		if (dm_request_based(md))
2563 			start_queue(md->queue);
2564 
2565 		unlock_fs(md);
2566 		goto out; /* pushback list is already flushed, so skip flush */
2567 	}
2568 
2569 	/*
2570 	 * If dm_wait_for_completion returned 0, the device is completely
2571 	 * quiescent now. There is no request-processing activity. All new
2572 	 * requests are being added to md->deferred list.
2573 	 */
2574 
2575 	set_bit(DMF_SUSPENDED, &md->flags);
2576 
2577 	dm_table_postsuspend_targets(map);
2578 
2579 out:
2580 	dm_table_put(map);
2581 
2582 out_unlock:
2583 	mutex_unlock(&md->suspend_lock);
2584 	return r;
2585 }
2586 
2587 int dm_resume(struct mapped_device *md)
2588 {
2589 	int r = -EINVAL;
2590 	struct dm_table *map = NULL;
2591 
2592 	mutex_lock(&md->suspend_lock);
2593 	if (!dm_suspended_md(md))
2594 		goto out;
2595 
2596 	map = dm_get_live_table(md);
2597 	if (!map || !dm_table_get_size(map))
2598 		goto out;
2599 
2600 	r = dm_table_resume_targets(map);
2601 	if (r)
2602 		goto out;
2603 
2604 	dm_queue_flush(md);
2605 
2606 	/*
2607 	 * Flushing deferred I/Os must be done after targets are resumed
2608 	 * so that mapping of targets can work correctly.
2609 	 * Request-based dm is queueing the deferred I/Os in its request_queue.
2610 	 */
2611 	if (dm_request_based(md))
2612 		start_queue(md->queue);
2613 
2614 	unlock_fs(md);
2615 
2616 	clear_bit(DMF_SUSPENDED, &md->flags);
2617 
2618 	r = 0;
2619 out:
2620 	dm_table_put(map);
2621 	mutex_unlock(&md->suspend_lock);
2622 
2623 	return r;
2624 }
2625 
2626 /*-----------------------------------------------------------------
2627  * Event notification.
2628  *---------------------------------------------------------------*/
2629 int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action,
2630 		       unsigned cookie)
2631 {
2632 	char udev_cookie[DM_COOKIE_LENGTH];
2633 	char *envp[] = { udev_cookie, NULL };
2634 
2635 	if (!cookie)
2636 		return kobject_uevent(&disk_to_dev(md->disk)->kobj, action);
2637 	else {
2638 		snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u",
2639 			 DM_COOKIE_ENV_VAR_NAME, cookie);
2640 		return kobject_uevent_env(&disk_to_dev(md->disk)->kobj,
2641 					  action, envp);
2642 	}
2643 }
2644 
2645 uint32_t dm_next_uevent_seq(struct mapped_device *md)
2646 {
2647 	return atomic_add_return(1, &md->uevent_seq);
2648 }
2649 
2650 uint32_t dm_get_event_nr(struct mapped_device *md)
2651 {
2652 	return atomic_read(&md->event_nr);
2653 }
2654 
2655 int dm_wait_event(struct mapped_device *md, int event_nr)
2656 {
2657 	return wait_event_interruptible(md->eventq,
2658 			(event_nr != atomic_read(&md->event_nr)));
2659 }
2660 
2661 void dm_uevent_add(struct mapped_device *md, struct list_head *elist)
2662 {
2663 	unsigned long flags;
2664 
2665 	spin_lock_irqsave(&md->uevent_lock, flags);
2666 	list_add(elist, &md->uevent_list);
2667 	spin_unlock_irqrestore(&md->uevent_lock, flags);
2668 }
2669 
2670 /*
2671  * The gendisk is only valid as long as you have a reference
2672  * count on 'md'.
2673  */
2674 struct gendisk *dm_disk(struct mapped_device *md)
2675 {
2676 	return md->disk;
2677 }
2678 
2679 struct kobject *dm_kobject(struct mapped_device *md)
2680 {
2681 	return &md->kobj;
2682 }
2683 
2684 /*
2685  * struct mapped_device should not be exported outside of dm.c
2686  * so use this check to verify that kobj is part of md structure
2687  */
2688 struct mapped_device *dm_get_from_kobject(struct kobject *kobj)
2689 {
2690 	struct mapped_device *md;
2691 
2692 	md = container_of(kobj, struct mapped_device, kobj);
2693 	if (&md->kobj != kobj)
2694 		return NULL;
2695 
2696 	if (test_bit(DMF_FREEING, &md->flags) ||
2697 	    dm_deleting_md(md))
2698 		return NULL;
2699 
2700 	dm_get(md);
2701 	return md;
2702 }
2703 
2704 int dm_suspended_md(struct mapped_device *md)
2705 {
2706 	return test_bit(DMF_SUSPENDED, &md->flags);
2707 }
2708 
2709 int dm_suspended(struct dm_target *ti)
2710 {
2711 	return dm_suspended_md(dm_table_get_md(ti->table));
2712 }
2713 EXPORT_SYMBOL_GPL(dm_suspended);
2714 
2715 int dm_noflush_suspending(struct dm_target *ti)
2716 {
2717 	return __noflush_suspending(dm_table_get_md(ti->table));
2718 }
2719 EXPORT_SYMBOL_GPL(dm_noflush_suspending);
2720 
2721 struct dm_md_mempools *dm_alloc_md_mempools(unsigned type, unsigned integrity)
2722 {
2723 	struct dm_md_mempools *pools = kmalloc(sizeof(*pools), GFP_KERNEL);
2724 	unsigned int pool_size = (type == DM_TYPE_BIO_BASED) ? 16 : MIN_IOS;
2725 
2726 	if (!pools)
2727 		return NULL;
2728 
2729 	pools->io_pool = (type == DM_TYPE_BIO_BASED) ?
2730 			 mempool_create_slab_pool(MIN_IOS, _io_cache) :
2731 			 mempool_create_slab_pool(MIN_IOS, _rq_bio_info_cache);
2732 	if (!pools->io_pool)
2733 		goto free_pools_and_out;
2734 
2735 	pools->tio_pool = (type == DM_TYPE_BIO_BASED) ?
2736 			  mempool_create_slab_pool(MIN_IOS, _tio_cache) :
2737 			  mempool_create_slab_pool(MIN_IOS, _rq_tio_cache);
2738 	if (!pools->tio_pool)
2739 		goto free_io_pool_and_out;
2740 
2741 	pools->bs = bioset_create(pool_size, 0);
2742 	if (!pools->bs)
2743 		goto free_tio_pool_and_out;
2744 
2745 	if (integrity && bioset_integrity_create(pools->bs, pool_size))
2746 		goto free_bioset_and_out;
2747 
2748 	return pools;
2749 
2750 free_bioset_and_out:
2751 	bioset_free(pools->bs);
2752 
2753 free_tio_pool_and_out:
2754 	mempool_destroy(pools->tio_pool);
2755 
2756 free_io_pool_and_out:
2757 	mempool_destroy(pools->io_pool);
2758 
2759 free_pools_and_out:
2760 	kfree(pools);
2761 
2762 	return NULL;
2763 }
2764 
2765 void dm_free_md_mempools(struct dm_md_mempools *pools)
2766 {
2767 	if (!pools)
2768 		return;
2769 
2770 	if (pools->io_pool)
2771 		mempool_destroy(pools->io_pool);
2772 
2773 	if (pools->tio_pool)
2774 		mempool_destroy(pools->tio_pool);
2775 
2776 	if (pools->bs)
2777 		bioset_free(pools->bs);
2778 
2779 	kfree(pools);
2780 }
2781 
2782 static const struct block_device_operations dm_blk_dops = {
2783 	.open = dm_blk_open,
2784 	.release = dm_blk_close,
2785 	.ioctl = dm_blk_ioctl,
2786 	.getgeo = dm_blk_getgeo,
2787 	.owner = THIS_MODULE
2788 };
2789 
2790 EXPORT_SYMBOL(dm_get_mapinfo);
2791 
2792 /*
2793  * module hooks
2794  */
2795 module_init(dm_init);
2796 module_exit(dm_exit);
2797 
2798 module_param(major, uint, 0);
2799 MODULE_PARM_DESC(major, "The major number of the device mapper");
2800 MODULE_DESCRIPTION(DM_NAME " driver");
2801 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
2802 MODULE_LICENSE("GPL");
2803