1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 2001, 2002 Sistina Software (UK) Limited. 4 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved. 5 * 6 * This file is released under the GPL. 7 */ 8 9 #include "dm-core.h" 10 #include "dm-rq.h" 11 #include "dm-uevent.h" 12 #include "dm-ima.h" 13 14 #include <linux/bio-integrity.h> 15 #include <linux/init.h> 16 #include <linux/module.h> 17 #include <linux/mutex.h> 18 #include <linux/sched/mm.h> 19 #include <linux/sched/signal.h> 20 #include <linux/blkpg.h> 21 #include <linux/bio.h> 22 #include <linux/mempool.h> 23 #include <linux/dax.h> 24 #include <linux/slab.h> 25 #include <linux/idr.h> 26 #include <linux/uio.h> 27 #include <linux/hdreg.h> 28 #include <linux/delay.h> 29 #include <linux/wait.h> 30 #include <linux/pr.h> 31 #include <linux/refcount.h> 32 #include <linux/part_stat.h> 33 #include <linux/blk-crypto.h> 34 #include <linux/blk-crypto-profile.h> 35 36 #define DM_MSG_PREFIX "core" 37 38 /* 39 * Cookies are numeric values sent with CHANGE and REMOVE 40 * uevents while resuming, removing or renaming the device. 41 */ 42 #define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE" 43 #define DM_COOKIE_LENGTH 24 44 45 /* 46 * For REQ_POLLED fs bio, this flag is set if we link mapped underlying 47 * dm_io into one list, and reuse bio->bi_private as the list head. Before 48 * ending this fs bio, we will recover its ->bi_private. 49 */ 50 #define REQ_DM_POLL_LIST REQ_DRV 51 52 static const char *_name = DM_NAME; 53 54 static unsigned int major; 55 static unsigned int _major; 56 57 static DEFINE_IDR(_minor_idr); 58 59 static DEFINE_SPINLOCK(_minor_lock); 60 61 static void do_deferred_remove(struct work_struct *w); 62 63 static DECLARE_WORK(deferred_remove_work, do_deferred_remove); 64 65 static struct workqueue_struct *deferred_remove_workqueue; 66 67 atomic_t dm_global_event_nr = ATOMIC_INIT(0); 68 DECLARE_WAIT_QUEUE_HEAD(dm_global_eventq); 69 70 void dm_issue_global_event(void) 71 { 72 atomic_inc(&dm_global_event_nr); 73 wake_up(&dm_global_eventq); 74 } 75 76 DEFINE_STATIC_KEY_FALSE(stats_enabled); 77 DEFINE_STATIC_KEY_FALSE(swap_bios_enabled); 78 DEFINE_STATIC_KEY_FALSE(zoned_enabled); 79 80 /* 81 * One of these is allocated (on-stack) per original bio. 82 */ 83 struct clone_info { 84 struct dm_table *map; 85 struct bio *bio; 86 struct dm_io *io; 87 sector_t sector; 88 unsigned int sector_count; 89 bool is_abnormal_io:1; 90 bool submit_as_polled:1; 91 }; 92 93 static inline struct dm_target_io *clone_to_tio(struct bio *clone) 94 { 95 return container_of(clone, struct dm_target_io, clone); 96 } 97 98 void *dm_per_bio_data(struct bio *bio, size_t data_size) 99 { 100 if (!dm_tio_flagged(clone_to_tio(bio), DM_TIO_INSIDE_DM_IO)) 101 return (char *)bio - DM_TARGET_IO_BIO_OFFSET - data_size; 102 return (char *)bio - DM_IO_BIO_OFFSET - data_size; 103 } 104 EXPORT_SYMBOL_GPL(dm_per_bio_data); 105 106 struct bio *dm_bio_from_per_bio_data(void *data, size_t data_size) 107 { 108 struct dm_io *io = (struct dm_io *)((char *)data + data_size); 109 110 if (io->magic == DM_IO_MAGIC) 111 return (struct bio *)((char *)io + DM_IO_BIO_OFFSET); 112 BUG_ON(io->magic != DM_TIO_MAGIC); 113 return (struct bio *)((char *)io + DM_TARGET_IO_BIO_OFFSET); 114 } 115 EXPORT_SYMBOL_GPL(dm_bio_from_per_bio_data); 116 117 unsigned int dm_bio_get_target_bio_nr(const struct bio *bio) 118 { 119 return container_of(bio, struct dm_target_io, clone)->target_bio_nr; 120 } 121 EXPORT_SYMBOL_GPL(dm_bio_get_target_bio_nr); 122 123 #define MINOR_ALLOCED ((void *)-1) 124 125 #define DM_NUMA_NODE NUMA_NO_NODE 126 static int dm_numa_node = DM_NUMA_NODE; 127 128 #define DEFAULT_SWAP_BIOS (8 * 1048576 / PAGE_SIZE) 129 static int swap_bios = DEFAULT_SWAP_BIOS; 130 static int get_swap_bios(void) 131 { 132 int latch = READ_ONCE(swap_bios); 133 134 if (unlikely(latch <= 0)) 135 latch = DEFAULT_SWAP_BIOS; 136 return latch; 137 } 138 139 struct table_device { 140 struct list_head list; 141 refcount_t count; 142 struct dm_dev dm_dev; 143 }; 144 145 /* 146 * Bio-based DM's mempools' reserved IOs set by the user. 147 */ 148 #define RESERVED_BIO_BASED_IOS 16 149 static unsigned int reserved_bio_based_ios = RESERVED_BIO_BASED_IOS; 150 151 static int __dm_get_module_param_int(int *module_param, int min, int max) 152 { 153 int param = READ_ONCE(*module_param); 154 int modified_param = 0; 155 bool modified = true; 156 157 if (param < min) 158 modified_param = min; 159 else if (param > max) 160 modified_param = max; 161 else 162 modified = false; 163 164 if (modified) { 165 (void)cmpxchg(module_param, param, modified_param); 166 param = modified_param; 167 } 168 169 return param; 170 } 171 172 unsigned int __dm_get_module_param(unsigned int *module_param, unsigned int def, unsigned int max) 173 { 174 unsigned int param = READ_ONCE(*module_param); 175 unsigned int modified_param = 0; 176 177 if (!param) 178 modified_param = def; 179 else if (param > max) 180 modified_param = max; 181 182 if (modified_param) { 183 (void)cmpxchg(module_param, param, modified_param); 184 param = modified_param; 185 } 186 187 return param; 188 } 189 190 unsigned int dm_get_reserved_bio_based_ios(void) 191 { 192 return __dm_get_module_param(&reserved_bio_based_ios, 193 RESERVED_BIO_BASED_IOS, DM_RESERVED_MAX_IOS); 194 } 195 EXPORT_SYMBOL_GPL(dm_get_reserved_bio_based_ios); 196 197 static unsigned int dm_get_numa_node(void) 198 { 199 return __dm_get_module_param_int(&dm_numa_node, 200 DM_NUMA_NODE, num_online_nodes() - 1); 201 } 202 203 static int __init local_init(void) 204 { 205 int r; 206 207 r = dm_uevent_init(); 208 if (r) 209 return r; 210 211 deferred_remove_workqueue = alloc_ordered_workqueue("kdmremove", 0); 212 if (!deferred_remove_workqueue) { 213 r = -ENOMEM; 214 goto out_uevent_exit; 215 } 216 217 _major = major; 218 r = register_blkdev(_major, _name); 219 if (r < 0) 220 goto out_free_workqueue; 221 222 if (!_major) 223 _major = r; 224 225 return 0; 226 227 out_free_workqueue: 228 destroy_workqueue(deferred_remove_workqueue); 229 out_uevent_exit: 230 dm_uevent_exit(); 231 232 return r; 233 } 234 235 static void local_exit(void) 236 { 237 destroy_workqueue(deferred_remove_workqueue); 238 239 unregister_blkdev(_major, _name); 240 dm_uevent_exit(); 241 242 _major = 0; 243 244 DMINFO("cleaned up"); 245 } 246 247 static int (*_inits[])(void) __initdata = { 248 local_init, 249 dm_target_init, 250 dm_linear_init, 251 dm_stripe_init, 252 dm_io_init, 253 dm_kcopyd_init, 254 dm_interface_init, 255 dm_statistics_init, 256 }; 257 258 static void (*_exits[])(void) = { 259 local_exit, 260 dm_target_exit, 261 dm_linear_exit, 262 dm_stripe_exit, 263 dm_io_exit, 264 dm_kcopyd_exit, 265 dm_interface_exit, 266 dm_statistics_exit, 267 }; 268 269 static int __init dm_init(void) 270 { 271 const int count = ARRAY_SIZE(_inits); 272 int r, i; 273 274 #if (IS_ENABLED(CONFIG_IMA) && !IS_ENABLED(CONFIG_IMA_DISABLE_HTABLE)) 275 DMWARN("CONFIG_IMA_DISABLE_HTABLE is disabled." 276 " Duplicate IMA measurements will not be recorded in the IMA log."); 277 #endif 278 279 for (i = 0; i < count; i++) { 280 r = _inits[i](); 281 if (r) 282 goto bad; 283 } 284 285 return 0; 286 bad: 287 while (i--) 288 _exits[i](); 289 290 return r; 291 } 292 293 static void __exit dm_exit(void) 294 { 295 int i = ARRAY_SIZE(_exits); 296 297 while (i--) 298 _exits[i](); 299 300 /* 301 * Should be empty by this point. 302 */ 303 idr_destroy(&_minor_idr); 304 } 305 306 /* 307 * Block device functions 308 */ 309 int dm_deleting_md(struct mapped_device *md) 310 { 311 return test_bit(DMF_DELETING, &md->flags); 312 } 313 314 static int dm_blk_open(struct gendisk *disk, blk_mode_t mode) 315 { 316 struct mapped_device *md; 317 318 spin_lock(&_minor_lock); 319 320 md = disk->private_data; 321 if (!md) 322 goto out; 323 324 if (test_bit(DMF_FREEING, &md->flags) || 325 dm_deleting_md(md)) { 326 md = NULL; 327 goto out; 328 } 329 330 dm_get(md); 331 atomic_inc(&md->open_count); 332 out: 333 spin_unlock(&_minor_lock); 334 335 return md ? 0 : -ENXIO; 336 } 337 338 static void dm_blk_close(struct gendisk *disk) 339 { 340 struct mapped_device *md; 341 342 spin_lock(&_minor_lock); 343 344 md = disk->private_data; 345 if (WARN_ON(!md)) 346 goto out; 347 348 if (atomic_dec_and_test(&md->open_count) && 349 (test_bit(DMF_DEFERRED_REMOVE, &md->flags))) 350 queue_work(deferred_remove_workqueue, &deferred_remove_work); 351 352 dm_put(md); 353 out: 354 spin_unlock(&_minor_lock); 355 } 356 357 int dm_open_count(struct mapped_device *md) 358 { 359 return atomic_read(&md->open_count); 360 } 361 362 /* 363 * Guarantees nothing is using the device before it's deleted. 364 */ 365 int dm_lock_for_deletion(struct mapped_device *md, bool mark_deferred, bool only_deferred) 366 { 367 int r = 0; 368 369 spin_lock(&_minor_lock); 370 371 if (dm_open_count(md)) { 372 r = -EBUSY; 373 if (mark_deferred) 374 set_bit(DMF_DEFERRED_REMOVE, &md->flags); 375 } else if (only_deferred && !test_bit(DMF_DEFERRED_REMOVE, &md->flags)) 376 r = -EEXIST; 377 else 378 set_bit(DMF_DELETING, &md->flags); 379 380 spin_unlock(&_minor_lock); 381 382 return r; 383 } 384 385 int dm_cancel_deferred_remove(struct mapped_device *md) 386 { 387 int r = 0; 388 389 spin_lock(&_minor_lock); 390 391 if (test_bit(DMF_DELETING, &md->flags)) 392 r = -EBUSY; 393 else 394 clear_bit(DMF_DEFERRED_REMOVE, &md->flags); 395 396 spin_unlock(&_minor_lock); 397 398 return r; 399 } 400 401 static void do_deferred_remove(struct work_struct *w) 402 { 403 dm_deferred_remove(); 404 } 405 406 static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo) 407 { 408 struct mapped_device *md = bdev->bd_disk->private_data; 409 410 return dm_get_geometry(md, geo); 411 } 412 413 static int dm_prepare_ioctl(struct mapped_device *md, int *srcu_idx, 414 struct block_device **bdev, unsigned int cmd, 415 unsigned long arg, bool *forward) 416 { 417 struct dm_target *ti; 418 struct dm_table *map; 419 int r; 420 421 retry: 422 r = -ENOTTY; 423 map = dm_get_live_table(md, srcu_idx); 424 if (!map || !dm_table_get_size(map)) 425 return r; 426 427 /* We only support devices that have a single target */ 428 if (map->num_targets != 1) 429 return r; 430 431 ti = dm_table_get_target(map, 0); 432 if (!ti->type->prepare_ioctl) 433 return r; 434 435 if (dm_suspended_md(md)) 436 return -EAGAIN; 437 438 r = ti->type->prepare_ioctl(ti, bdev, cmd, arg, forward); 439 if (r == -ENOTCONN && *forward && !fatal_signal_pending(current)) { 440 dm_put_live_table(md, *srcu_idx); 441 fsleep(10000); 442 goto retry; 443 } 444 445 return r; 446 } 447 448 static void dm_unprepare_ioctl(struct mapped_device *md, int srcu_idx) 449 { 450 dm_put_live_table(md, srcu_idx); 451 } 452 453 static int dm_blk_ioctl(struct block_device *bdev, blk_mode_t mode, 454 unsigned int cmd, unsigned long arg) 455 { 456 struct mapped_device *md = bdev->bd_disk->private_data; 457 int r, srcu_idx; 458 bool forward = true; 459 460 r = dm_prepare_ioctl(md, &srcu_idx, &bdev, cmd, arg, &forward); 461 if (!forward || r < 0) 462 goto out; 463 464 if (r > 0) { 465 /* 466 * Target determined this ioctl is being issued against a 467 * subset of the parent bdev; require extra privileges. 468 */ 469 if (!capable(CAP_SYS_RAWIO)) { 470 DMDEBUG_LIMIT( 471 "%s: sending ioctl %x to DM device without required privilege.", 472 current->comm, cmd); 473 r = -ENOIOCTLCMD; 474 goto out; 475 } 476 } 477 478 if (!bdev->bd_disk->fops->ioctl) 479 r = -ENOTTY; 480 else 481 r = bdev->bd_disk->fops->ioctl(bdev, mode, cmd, arg); 482 out: 483 dm_unprepare_ioctl(md, srcu_idx); 484 return r; 485 } 486 487 u64 dm_start_time_ns_from_clone(struct bio *bio) 488 { 489 return jiffies_to_nsecs(clone_to_tio(bio)->io->start_time); 490 } 491 EXPORT_SYMBOL_GPL(dm_start_time_ns_from_clone); 492 493 static inline bool bio_is_flush_with_data(struct bio *bio) 494 { 495 return ((bio->bi_opf & REQ_PREFLUSH) && bio->bi_iter.bi_size); 496 } 497 498 static inline unsigned int dm_io_sectors(struct dm_io *io, struct bio *bio) 499 { 500 /* 501 * If REQ_PREFLUSH set, don't account payload, it will be 502 * submitted (and accounted) after this flush completes. 503 */ 504 if (bio_is_flush_with_data(bio)) 505 return 0; 506 if (unlikely(dm_io_flagged(io, DM_IO_WAS_SPLIT))) 507 return io->sectors; 508 return bio_sectors(bio); 509 } 510 511 static void dm_io_acct(struct dm_io *io, bool end) 512 { 513 struct bio *bio = io->orig_bio; 514 515 if (dm_io_flagged(io, DM_IO_BLK_STAT)) { 516 if (!end) 517 bdev_start_io_acct(bio->bi_bdev, bio_op(bio), 518 io->start_time); 519 else 520 bdev_end_io_acct(bio->bi_bdev, bio_op(bio), 521 dm_io_sectors(io, bio), 522 io->start_time); 523 } 524 525 if (static_branch_unlikely(&stats_enabled) && 526 unlikely(dm_stats_used(&io->md->stats))) { 527 sector_t sector; 528 529 if (unlikely(dm_io_flagged(io, DM_IO_WAS_SPLIT))) 530 sector = bio_end_sector(bio) - io->sector_offset; 531 else 532 sector = bio->bi_iter.bi_sector; 533 534 dm_stats_account_io(&io->md->stats, bio_data_dir(bio), 535 sector, dm_io_sectors(io, bio), 536 end, io->start_time, &io->stats_aux); 537 } 538 } 539 540 static void __dm_start_io_acct(struct dm_io *io) 541 { 542 dm_io_acct(io, false); 543 } 544 545 static void dm_start_io_acct(struct dm_io *io, struct bio *clone) 546 { 547 /* 548 * Ensure IO accounting is only ever started once. 549 */ 550 if (dm_io_flagged(io, DM_IO_ACCOUNTED)) 551 return; 552 553 /* Expect no possibility for race unless DM_TIO_IS_DUPLICATE_BIO. */ 554 if (!clone || likely(dm_tio_is_normal(clone_to_tio(clone)))) { 555 dm_io_set_flag(io, DM_IO_ACCOUNTED); 556 } else { 557 unsigned long flags; 558 /* Can afford locking given DM_TIO_IS_DUPLICATE_BIO */ 559 spin_lock_irqsave(&io->lock, flags); 560 if (dm_io_flagged(io, DM_IO_ACCOUNTED)) { 561 spin_unlock_irqrestore(&io->lock, flags); 562 return; 563 } 564 dm_io_set_flag(io, DM_IO_ACCOUNTED); 565 spin_unlock_irqrestore(&io->lock, flags); 566 } 567 568 __dm_start_io_acct(io); 569 } 570 571 static void dm_end_io_acct(struct dm_io *io) 572 { 573 dm_io_acct(io, true); 574 } 575 576 static struct dm_io *alloc_io(struct mapped_device *md, struct bio *bio, gfp_t gfp_mask) 577 { 578 struct dm_io *io; 579 struct dm_target_io *tio; 580 struct bio *clone; 581 582 clone = bio_alloc_clone(NULL, bio, gfp_mask, &md->mempools->io_bs); 583 if (unlikely(!clone)) 584 return NULL; 585 tio = clone_to_tio(clone); 586 tio->flags = 0; 587 dm_tio_set_flag(tio, DM_TIO_INSIDE_DM_IO); 588 tio->io = NULL; 589 590 io = container_of(tio, struct dm_io, tio); 591 io->magic = DM_IO_MAGIC; 592 io->status = BLK_STS_OK; 593 594 /* one ref is for submission, the other is for completion */ 595 atomic_set(&io->io_count, 2); 596 this_cpu_inc(*md->pending_io); 597 io->orig_bio = bio; 598 io->md = md; 599 spin_lock_init(&io->lock); 600 io->start_time = jiffies; 601 io->flags = 0; 602 if (blk_queue_io_stat(md->queue)) 603 dm_io_set_flag(io, DM_IO_BLK_STAT); 604 605 if (static_branch_unlikely(&stats_enabled) && 606 unlikely(dm_stats_used(&md->stats))) 607 dm_stats_record_start(&md->stats, &io->stats_aux); 608 609 return io; 610 } 611 612 static void free_io(struct dm_io *io) 613 { 614 bio_put(&io->tio.clone); 615 } 616 617 static struct bio *alloc_tio(struct clone_info *ci, struct dm_target *ti, 618 unsigned int target_bio_nr, unsigned int *len, gfp_t gfp_mask) 619 { 620 struct mapped_device *md = ci->io->md; 621 struct dm_target_io *tio; 622 struct bio *clone; 623 624 if (!ci->io->tio.io) { 625 /* the dm_target_io embedded in ci->io is available */ 626 tio = &ci->io->tio; 627 /* alloc_io() already initialized embedded clone */ 628 clone = &tio->clone; 629 } else { 630 clone = bio_alloc_clone(NULL, ci->bio, gfp_mask, 631 &md->mempools->bs); 632 if (!clone) 633 return NULL; 634 635 /* REQ_DM_POLL_LIST shouldn't be inherited */ 636 clone->bi_opf &= ~REQ_DM_POLL_LIST; 637 638 tio = clone_to_tio(clone); 639 tio->flags = 0; /* also clears DM_TIO_INSIDE_DM_IO */ 640 } 641 642 tio->magic = DM_TIO_MAGIC; 643 tio->io = ci->io; 644 tio->ti = ti; 645 tio->target_bio_nr = target_bio_nr; 646 tio->len_ptr = len; 647 tio->old_sector = 0; 648 649 /* Set default bdev, but target must bio_set_dev() before issuing IO */ 650 clone->bi_bdev = md->disk->part0; 651 if (likely(ti != NULL) && unlikely(ti->needs_bio_set_dev)) 652 bio_set_dev(clone, md->disk->part0); 653 654 if (len) { 655 clone->bi_iter.bi_size = to_bytes(*len); 656 if (bio_integrity(clone)) 657 bio_integrity_trim(clone); 658 } 659 660 return clone; 661 } 662 663 static void free_tio(struct bio *clone) 664 { 665 if (dm_tio_flagged(clone_to_tio(clone), DM_TIO_INSIDE_DM_IO)) 666 return; 667 bio_put(clone); 668 } 669 670 /* 671 * Add the bio to the list of deferred io. 672 */ 673 static void queue_io(struct mapped_device *md, struct bio *bio) 674 { 675 unsigned long flags; 676 677 spin_lock_irqsave(&md->deferred_lock, flags); 678 bio_list_add(&md->deferred, bio); 679 spin_unlock_irqrestore(&md->deferred_lock, flags); 680 queue_work(md->wq, &md->work); 681 } 682 683 /* 684 * Everyone (including functions in this file), should use this 685 * function to access the md->map field, and make sure they call 686 * dm_put_live_table() when finished. 687 */ 688 struct dm_table *dm_get_live_table(struct mapped_device *md, 689 int *srcu_idx) __acquires(md->io_barrier) 690 { 691 *srcu_idx = srcu_read_lock(&md->io_barrier); 692 693 return srcu_dereference(md->map, &md->io_barrier); 694 } 695 696 void dm_put_live_table(struct mapped_device *md, 697 int srcu_idx) __releases(md->io_barrier) 698 { 699 srcu_read_unlock(&md->io_barrier, srcu_idx); 700 } 701 702 void dm_sync_table(struct mapped_device *md) 703 { 704 synchronize_srcu(&md->io_barrier); 705 synchronize_rcu_expedited(); 706 } 707 708 /* 709 * A fast alternative to dm_get_live_table/dm_put_live_table. 710 * The caller must not block between these two functions. 711 */ 712 static struct dm_table *dm_get_live_table_fast(struct mapped_device *md) __acquires(RCU) 713 { 714 rcu_read_lock(); 715 return rcu_dereference(md->map); 716 } 717 718 static void dm_put_live_table_fast(struct mapped_device *md) __releases(RCU) 719 { 720 rcu_read_unlock(); 721 } 722 723 static char *_dm_claim_ptr = "I belong to device-mapper"; 724 725 /* 726 * Open a table device so we can use it as a map destination. 727 */ 728 static struct table_device *open_table_device(struct mapped_device *md, 729 dev_t dev, blk_mode_t mode) 730 { 731 struct table_device *td; 732 struct file *bdev_file; 733 struct block_device *bdev; 734 u64 part_off; 735 int r; 736 737 td = kmalloc_node(sizeof(*td), GFP_KERNEL, md->numa_node_id); 738 if (!td) 739 return ERR_PTR(-ENOMEM); 740 refcount_set(&td->count, 1); 741 742 bdev_file = bdev_file_open_by_dev(dev, mode, _dm_claim_ptr, NULL); 743 if (IS_ERR(bdev_file)) { 744 r = PTR_ERR(bdev_file); 745 goto out_free_td; 746 } 747 748 bdev = file_bdev(bdev_file); 749 750 /* 751 * We can be called before the dm disk is added. In that case we can't 752 * register the holder relation here. It will be done once add_disk was 753 * called. 754 */ 755 if (md->disk->slave_dir) { 756 r = bd_link_disk_holder(bdev, md->disk); 757 if (r) 758 goto out_blkdev_put; 759 } 760 761 td->dm_dev.mode = mode; 762 td->dm_dev.bdev = bdev; 763 td->dm_dev.bdev_file = bdev_file; 764 td->dm_dev.dax_dev = fs_dax_get_by_bdev(bdev, &part_off, 765 NULL, NULL); 766 format_dev_t(td->dm_dev.name, dev); 767 list_add(&td->list, &md->table_devices); 768 return td; 769 770 out_blkdev_put: 771 __fput_sync(bdev_file); 772 out_free_td: 773 kfree(td); 774 return ERR_PTR(r); 775 } 776 777 /* 778 * Close a table device that we've been using. 779 */ 780 static void close_table_device(struct table_device *td, struct mapped_device *md) 781 { 782 if (md->disk->slave_dir) 783 bd_unlink_disk_holder(td->dm_dev.bdev, md->disk); 784 785 /* Leverage async fput() if DMF_DEFERRED_REMOVE set */ 786 if (unlikely(test_bit(DMF_DEFERRED_REMOVE, &md->flags))) 787 fput(td->dm_dev.bdev_file); 788 else 789 __fput_sync(td->dm_dev.bdev_file); 790 791 put_dax(td->dm_dev.dax_dev); 792 list_del(&td->list); 793 kfree(td); 794 } 795 796 static struct table_device *find_table_device(struct list_head *l, dev_t dev, 797 blk_mode_t mode) 798 { 799 struct table_device *td; 800 801 list_for_each_entry(td, l, list) 802 if (td->dm_dev.bdev->bd_dev == dev && td->dm_dev.mode == mode) 803 return td; 804 805 return NULL; 806 } 807 808 int dm_get_table_device(struct mapped_device *md, dev_t dev, blk_mode_t mode, 809 struct dm_dev **result) 810 { 811 struct table_device *td; 812 813 mutex_lock(&md->table_devices_lock); 814 td = find_table_device(&md->table_devices, dev, mode); 815 if (!td) { 816 td = open_table_device(md, dev, mode); 817 if (IS_ERR(td)) { 818 mutex_unlock(&md->table_devices_lock); 819 return PTR_ERR(td); 820 } 821 } else { 822 refcount_inc(&td->count); 823 } 824 mutex_unlock(&md->table_devices_lock); 825 826 *result = &td->dm_dev; 827 return 0; 828 } 829 830 void dm_put_table_device(struct mapped_device *md, struct dm_dev *d) 831 { 832 struct table_device *td = container_of(d, struct table_device, dm_dev); 833 834 mutex_lock(&md->table_devices_lock); 835 if (refcount_dec_and_test(&td->count)) 836 close_table_device(td, md); 837 mutex_unlock(&md->table_devices_lock); 838 } 839 840 /* 841 * Get the geometry associated with a dm device 842 */ 843 int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo) 844 { 845 *geo = md->geometry; 846 847 return 0; 848 } 849 850 /* 851 * Set the geometry of a device. 852 */ 853 int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo) 854 { 855 sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors; 856 857 if (geo->start > sz) { 858 DMERR("Start sector is beyond the geometry limits."); 859 return -EINVAL; 860 } 861 862 md->geometry = *geo; 863 864 return 0; 865 } 866 867 static int __noflush_suspending(struct mapped_device *md) 868 { 869 return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags); 870 } 871 872 static void dm_requeue_add_io(struct dm_io *io, bool first_stage) 873 { 874 struct mapped_device *md = io->md; 875 876 if (first_stage) { 877 struct dm_io *next = md->requeue_list; 878 879 md->requeue_list = io; 880 io->next = next; 881 } else { 882 bio_list_add_head(&md->deferred, io->orig_bio); 883 } 884 } 885 886 static void dm_kick_requeue(struct mapped_device *md, bool first_stage) 887 { 888 if (first_stage) 889 queue_work(md->wq, &md->requeue_work); 890 else 891 queue_work(md->wq, &md->work); 892 } 893 894 /* 895 * Return true if the dm_io's original bio is requeued. 896 * io->status is updated with error if requeue disallowed. 897 */ 898 static bool dm_handle_requeue(struct dm_io *io, bool first_stage) 899 { 900 struct bio *bio = io->orig_bio; 901 bool handle_requeue = (io->status == BLK_STS_DM_REQUEUE); 902 bool handle_polled_eagain = ((io->status == BLK_STS_AGAIN) && 903 (bio->bi_opf & REQ_POLLED)); 904 struct mapped_device *md = io->md; 905 bool requeued = false; 906 907 if (handle_requeue || handle_polled_eagain) { 908 unsigned long flags; 909 910 if (bio->bi_opf & REQ_POLLED) { 911 /* 912 * Upper layer won't help us poll split bio 913 * (io->orig_bio may only reflect a subset of the 914 * pre-split original) so clear REQ_POLLED. 915 */ 916 bio_clear_polled(bio); 917 } 918 919 /* 920 * Target requested pushing back the I/O or 921 * polled IO hit BLK_STS_AGAIN. 922 */ 923 spin_lock_irqsave(&md->deferred_lock, flags); 924 if ((__noflush_suspending(md) && 925 !WARN_ON_ONCE(dm_is_zone_write(md, bio))) || 926 handle_polled_eagain || first_stage) { 927 dm_requeue_add_io(io, first_stage); 928 requeued = true; 929 } else { 930 /* 931 * noflush suspend was interrupted or this is 932 * a write to a zoned target. 933 */ 934 io->status = BLK_STS_IOERR; 935 } 936 spin_unlock_irqrestore(&md->deferred_lock, flags); 937 } 938 939 if (requeued) 940 dm_kick_requeue(md, first_stage); 941 942 return requeued; 943 } 944 945 static void __dm_io_complete(struct dm_io *io, bool first_stage) 946 { 947 struct bio *bio = io->orig_bio; 948 struct mapped_device *md = io->md; 949 blk_status_t io_error; 950 bool requeued; 951 952 requeued = dm_handle_requeue(io, first_stage); 953 if (requeued && first_stage) 954 return; 955 956 io_error = io->status; 957 if (dm_io_flagged(io, DM_IO_ACCOUNTED)) 958 dm_end_io_acct(io); 959 else if (!io_error) { 960 /* 961 * Must handle target that DM_MAPIO_SUBMITTED only to 962 * then bio_endio() rather than dm_submit_bio_remap() 963 */ 964 __dm_start_io_acct(io); 965 dm_end_io_acct(io); 966 } 967 free_io(io); 968 smp_wmb(); 969 this_cpu_dec(*md->pending_io); 970 971 /* nudge anyone waiting on suspend queue */ 972 if (unlikely(wq_has_sleeper(&md->wait))) 973 wake_up(&md->wait); 974 975 /* Return early if the original bio was requeued */ 976 if (requeued) 977 return; 978 979 if (bio_is_flush_with_data(bio)) { 980 /* 981 * Preflush done for flush with data, reissue 982 * without REQ_PREFLUSH. 983 */ 984 bio->bi_opf &= ~REQ_PREFLUSH; 985 queue_io(md, bio); 986 } else { 987 /* done with normal IO or empty flush */ 988 if (io_error) 989 bio->bi_status = io_error; 990 bio_endio(bio); 991 } 992 } 993 994 static void dm_wq_requeue_work(struct work_struct *work) 995 { 996 struct mapped_device *md = container_of(work, struct mapped_device, 997 requeue_work); 998 unsigned long flags; 999 struct dm_io *io; 1000 1001 /* reuse deferred lock to simplify dm_handle_requeue */ 1002 spin_lock_irqsave(&md->deferred_lock, flags); 1003 io = md->requeue_list; 1004 md->requeue_list = NULL; 1005 spin_unlock_irqrestore(&md->deferred_lock, flags); 1006 1007 while (io) { 1008 struct dm_io *next = io->next; 1009 1010 dm_io_rewind(io, &md->disk->bio_split); 1011 1012 io->next = NULL; 1013 __dm_io_complete(io, false); 1014 io = next; 1015 cond_resched(); 1016 } 1017 } 1018 1019 /* 1020 * Two staged requeue: 1021 * 1022 * 1) io->orig_bio points to the real original bio, and the part mapped to 1023 * this io must be requeued, instead of other parts of the original bio. 1024 * 1025 * 2) io->orig_bio points to new cloned bio which matches the requeued dm_io. 1026 */ 1027 static inline void dm_io_complete(struct dm_io *io) 1028 { 1029 /* 1030 * Only dm_io that has been split needs two stage requeue, otherwise 1031 * we may run into long bio clone chain during suspend and OOM could 1032 * be triggered. 1033 * 1034 * Also flush data dm_io won't be marked as DM_IO_WAS_SPLIT, so they 1035 * also aren't handled via the first stage requeue. 1036 */ 1037 __dm_io_complete(io, dm_io_flagged(io, DM_IO_WAS_SPLIT)); 1038 } 1039 1040 /* 1041 * Decrements the number of outstanding ios that a bio has been 1042 * cloned into, completing the original io if necc. 1043 */ 1044 static inline void __dm_io_dec_pending(struct dm_io *io) 1045 { 1046 if (atomic_dec_and_test(&io->io_count)) 1047 dm_io_complete(io); 1048 } 1049 1050 static void dm_io_set_error(struct dm_io *io, blk_status_t error) 1051 { 1052 unsigned long flags; 1053 1054 /* Push-back supersedes any I/O errors */ 1055 spin_lock_irqsave(&io->lock, flags); 1056 if (!(io->status == BLK_STS_DM_REQUEUE && 1057 __noflush_suspending(io->md))) { 1058 io->status = error; 1059 } 1060 spin_unlock_irqrestore(&io->lock, flags); 1061 } 1062 1063 static void dm_io_dec_pending(struct dm_io *io, blk_status_t error) 1064 { 1065 if (unlikely(error)) 1066 dm_io_set_error(io, error); 1067 1068 __dm_io_dec_pending(io); 1069 } 1070 1071 /* 1072 * The queue_limits are only valid as long as you have a reference 1073 * count on 'md'. But _not_ imposing verification to avoid atomic_read(), 1074 */ 1075 static inline struct queue_limits *dm_get_queue_limits(struct mapped_device *md) 1076 { 1077 return &md->queue->limits; 1078 } 1079 1080 static bool swap_bios_limit(struct dm_target *ti, struct bio *bio) 1081 { 1082 return unlikely((bio->bi_opf & REQ_SWAP) != 0) && unlikely(ti->limit_swap_bios); 1083 } 1084 1085 static void clone_endio(struct bio *bio) 1086 { 1087 blk_status_t error = bio->bi_status; 1088 struct dm_target_io *tio = clone_to_tio(bio); 1089 struct dm_target *ti = tio->ti; 1090 dm_endio_fn endio = likely(ti != NULL) ? ti->type->end_io : NULL; 1091 struct dm_io *io = tio->io; 1092 struct mapped_device *md = io->md; 1093 1094 if (unlikely(error == BLK_STS_TARGET)) { 1095 if (bio_op(bio) == REQ_OP_DISCARD && 1096 !bdev_max_discard_sectors(bio->bi_bdev)) 1097 blk_queue_disable_discard(md->queue); 1098 else if (bio_op(bio) == REQ_OP_WRITE_ZEROES && 1099 !bdev_write_zeroes_sectors(bio->bi_bdev)) 1100 blk_queue_disable_write_zeroes(md->queue); 1101 } 1102 1103 if (static_branch_unlikely(&zoned_enabled) && 1104 unlikely(bdev_is_zoned(bio->bi_bdev))) 1105 dm_zone_endio(io, bio); 1106 1107 if (endio) { 1108 int r = endio(ti, bio, &error); 1109 1110 switch (r) { 1111 case DM_ENDIO_REQUEUE: 1112 if (static_branch_unlikely(&zoned_enabled)) { 1113 /* 1114 * Requeuing writes to a sequential zone of a zoned 1115 * target will break the sequential write pattern: 1116 * fail such IO. 1117 */ 1118 if (WARN_ON_ONCE(dm_is_zone_write(md, bio))) 1119 error = BLK_STS_IOERR; 1120 else 1121 error = BLK_STS_DM_REQUEUE; 1122 } else 1123 error = BLK_STS_DM_REQUEUE; 1124 fallthrough; 1125 case DM_ENDIO_DONE: 1126 break; 1127 case DM_ENDIO_INCOMPLETE: 1128 /* The target will handle the io */ 1129 return; 1130 default: 1131 DMCRIT("unimplemented target endio return value: %d", r); 1132 BUG(); 1133 } 1134 } 1135 1136 if (static_branch_unlikely(&swap_bios_enabled) && 1137 likely(ti != NULL) && unlikely(swap_bios_limit(ti, bio))) 1138 up(&md->swap_bios_semaphore); 1139 1140 free_tio(bio); 1141 dm_io_dec_pending(io, error); 1142 } 1143 1144 /* 1145 * Return maximum size of I/O possible at the supplied sector up to the current 1146 * target boundary. 1147 */ 1148 static inline sector_t max_io_len_target_boundary(struct dm_target *ti, 1149 sector_t target_offset) 1150 { 1151 return ti->len - target_offset; 1152 } 1153 1154 static sector_t __max_io_len(struct dm_target *ti, sector_t sector, 1155 unsigned int max_granularity, 1156 unsigned int max_sectors) 1157 { 1158 sector_t target_offset = dm_target_offset(ti, sector); 1159 sector_t len = max_io_len_target_boundary(ti, target_offset); 1160 1161 /* 1162 * Does the target need to split IO even further? 1163 * - varied (per target) IO splitting is a tenet of DM; this 1164 * explains why stacked chunk_sectors based splitting via 1165 * bio_split_to_limits() isn't possible here. 1166 */ 1167 if (!max_granularity) 1168 return len; 1169 return min_t(sector_t, len, 1170 min(max_sectors ? : queue_max_sectors(ti->table->md->queue), 1171 blk_boundary_sectors_left(target_offset, max_granularity))); 1172 } 1173 1174 static inline sector_t max_io_len(struct dm_target *ti, sector_t sector) 1175 { 1176 return __max_io_len(ti, sector, ti->max_io_len, 0); 1177 } 1178 1179 int dm_set_target_max_io_len(struct dm_target *ti, sector_t len) 1180 { 1181 if (len > UINT_MAX) { 1182 DMERR("Specified maximum size of target IO (%llu) exceeds limit (%u)", 1183 (unsigned long long)len, UINT_MAX); 1184 ti->error = "Maximum size of target IO is too large"; 1185 return -EINVAL; 1186 } 1187 1188 ti->max_io_len = (uint32_t) len; 1189 1190 return 0; 1191 } 1192 EXPORT_SYMBOL_GPL(dm_set_target_max_io_len); 1193 1194 static struct dm_target *dm_dax_get_live_target(struct mapped_device *md, 1195 sector_t sector, int *srcu_idx) 1196 __acquires(md->io_barrier) 1197 { 1198 struct dm_table *map; 1199 struct dm_target *ti; 1200 1201 map = dm_get_live_table(md, srcu_idx); 1202 if (!map) 1203 return NULL; 1204 1205 ti = dm_table_find_target(map, sector); 1206 if (!ti) 1207 return NULL; 1208 1209 return ti; 1210 } 1211 1212 static long dm_dax_direct_access(struct dax_device *dax_dev, pgoff_t pgoff, 1213 long nr_pages, enum dax_access_mode mode, void **kaddr, 1214 unsigned long *pfn) 1215 { 1216 struct mapped_device *md = dax_get_private(dax_dev); 1217 sector_t sector = pgoff * PAGE_SECTORS; 1218 struct dm_target *ti; 1219 long len, ret = -EIO; 1220 int srcu_idx; 1221 1222 ti = dm_dax_get_live_target(md, sector, &srcu_idx); 1223 1224 if (!ti) 1225 goto out; 1226 if (!ti->type->direct_access) 1227 goto out; 1228 len = max_io_len(ti, sector) / PAGE_SECTORS; 1229 if (len < 1) 1230 goto out; 1231 nr_pages = min(len, nr_pages); 1232 ret = ti->type->direct_access(ti, pgoff, nr_pages, mode, kaddr, pfn); 1233 1234 out: 1235 dm_put_live_table(md, srcu_idx); 1236 1237 return ret; 1238 } 1239 1240 static int dm_dax_zero_page_range(struct dax_device *dax_dev, pgoff_t pgoff, 1241 size_t nr_pages) 1242 { 1243 struct mapped_device *md = dax_get_private(dax_dev); 1244 sector_t sector = pgoff * PAGE_SECTORS; 1245 struct dm_target *ti; 1246 int ret = -EIO; 1247 int srcu_idx; 1248 1249 ti = dm_dax_get_live_target(md, sector, &srcu_idx); 1250 1251 if (!ti) 1252 goto out; 1253 if (WARN_ON(!ti->type->dax_zero_page_range)) { 1254 /* 1255 * ->zero_page_range() is mandatory dax operation. If we are 1256 * here, something is wrong. 1257 */ 1258 goto out; 1259 } 1260 ret = ti->type->dax_zero_page_range(ti, pgoff, nr_pages); 1261 out: 1262 dm_put_live_table(md, srcu_idx); 1263 1264 return ret; 1265 } 1266 1267 static size_t dm_dax_recovery_write(struct dax_device *dax_dev, pgoff_t pgoff, 1268 void *addr, size_t bytes, struct iov_iter *i) 1269 { 1270 struct mapped_device *md = dax_get_private(dax_dev); 1271 sector_t sector = pgoff * PAGE_SECTORS; 1272 struct dm_target *ti; 1273 int srcu_idx; 1274 long ret = 0; 1275 1276 ti = dm_dax_get_live_target(md, sector, &srcu_idx); 1277 if (!ti || !ti->type->dax_recovery_write) 1278 goto out; 1279 1280 ret = ti->type->dax_recovery_write(ti, pgoff, addr, bytes, i); 1281 out: 1282 dm_put_live_table(md, srcu_idx); 1283 return ret; 1284 } 1285 1286 /* 1287 * A target may call dm_accept_partial_bio only from the map routine. It is 1288 * allowed for all bio types except REQ_PREFLUSH, REQ_OP_ZONE_* zone management 1289 * operations, zone append writes (native with REQ_OP_ZONE_APPEND or emulated 1290 * with write BIOs flagged with BIO_EMULATES_ZONE_APPEND) and any bio serviced 1291 * by __send_duplicate_bios(). 1292 * 1293 * dm_accept_partial_bio informs the dm that the target only wants to process 1294 * additional n_sectors sectors of the bio and the rest of the data should be 1295 * sent in a next bio. 1296 * 1297 * A diagram that explains the arithmetics: 1298 * +--------------------+---------------+-------+ 1299 * | 1 | 2 | 3 | 1300 * +--------------------+---------------+-------+ 1301 * 1302 * <-------------- *tio->len_ptr ---------------> 1303 * <----- bio_sectors -----> 1304 * <-- n_sectors --> 1305 * 1306 * Region 1 was already iterated over with bio_advance or similar function. 1307 * (it may be empty if the target doesn't use bio_advance) 1308 * Region 2 is the remaining bio size that the target wants to process. 1309 * (it may be empty if region 1 is non-empty, although there is no reason 1310 * to make it empty) 1311 * The target requires that region 3 is to be sent in the next bio. 1312 * 1313 * If the target wants to receive multiple copies of the bio (via num_*bios, etc), 1314 * the partially processed part (the sum of regions 1+2) must be the same for all 1315 * copies of the bio. 1316 */ 1317 void dm_accept_partial_bio(struct bio *bio, unsigned int n_sectors) 1318 { 1319 struct dm_target_io *tio = clone_to_tio(bio); 1320 struct dm_io *io = tio->io; 1321 unsigned int bio_sectors = bio_sectors(bio); 1322 1323 BUG_ON(dm_tio_flagged(tio, DM_TIO_IS_DUPLICATE_BIO)); 1324 BUG_ON(bio_sectors > *tio->len_ptr); 1325 BUG_ON(n_sectors > bio_sectors); 1326 1327 if (static_branch_unlikely(&zoned_enabled) && 1328 unlikely(bdev_is_zoned(bio->bi_bdev))) { 1329 enum req_op op = bio_op(bio); 1330 1331 BUG_ON(op_is_zone_mgmt(op)); 1332 BUG_ON(op == REQ_OP_WRITE); 1333 BUG_ON(op == REQ_OP_WRITE_ZEROES); 1334 BUG_ON(op == REQ_OP_ZONE_APPEND); 1335 } 1336 1337 *tio->len_ptr -= bio_sectors - n_sectors; 1338 bio->bi_iter.bi_size = n_sectors << SECTOR_SHIFT; 1339 1340 /* 1341 * __split_and_process_bio() may have already saved mapped part 1342 * for accounting but it is being reduced so update accordingly. 1343 */ 1344 dm_io_set_flag(io, DM_IO_WAS_SPLIT); 1345 io->sectors = n_sectors; 1346 io->sector_offset = bio_sectors(io->orig_bio); 1347 } 1348 EXPORT_SYMBOL_GPL(dm_accept_partial_bio); 1349 1350 /* 1351 * @clone: clone bio that DM core passed to target's .map function 1352 * @tgt_clone: clone of @clone bio that target needs submitted 1353 * 1354 * Targets should use this interface to submit bios they take 1355 * ownership of when returning DM_MAPIO_SUBMITTED. 1356 * 1357 * Target should also enable ti->accounts_remapped_io 1358 */ 1359 void dm_submit_bio_remap(struct bio *clone, struct bio *tgt_clone) 1360 { 1361 struct dm_target_io *tio = clone_to_tio(clone); 1362 struct dm_io *io = tio->io; 1363 1364 /* establish bio that will get submitted */ 1365 if (!tgt_clone) 1366 tgt_clone = clone; 1367 1368 /* 1369 * Account io->origin_bio to DM dev on behalf of target 1370 * that took ownership of IO with DM_MAPIO_SUBMITTED. 1371 */ 1372 dm_start_io_acct(io, clone); 1373 1374 trace_block_bio_remap(tgt_clone, disk_devt(io->md->disk), 1375 tio->old_sector); 1376 submit_bio_noacct(tgt_clone); 1377 } 1378 EXPORT_SYMBOL_GPL(dm_submit_bio_remap); 1379 1380 static noinline void __set_swap_bios_limit(struct mapped_device *md, int latch) 1381 { 1382 mutex_lock(&md->swap_bios_lock); 1383 while (latch < md->swap_bios) { 1384 cond_resched(); 1385 down(&md->swap_bios_semaphore); 1386 md->swap_bios--; 1387 } 1388 while (latch > md->swap_bios) { 1389 cond_resched(); 1390 up(&md->swap_bios_semaphore); 1391 md->swap_bios++; 1392 } 1393 mutex_unlock(&md->swap_bios_lock); 1394 } 1395 1396 static void __map_bio(struct bio *clone) 1397 { 1398 struct dm_target_io *tio = clone_to_tio(clone); 1399 struct dm_target *ti = tio->ti; 1400 struct dm_io *io = tio->io; 1401 struct mapped_device *md = io->md; 1402 int r; 1403 1404 clone->bi_end_io = clone_endio; 1405 1406 /* 1407 * Map the clone. 1408 */ 1409 tio->old_sector = clone->bi_iter.bi_sector; 1410 1411 if (static_branch_unlikely(&swap_bios_enabled) && 1412 unlikely(swap_bios_limit(ti, clone))) { 1413 int latch = get_swap_bios(); 1414 1415 if (unlikely(latch != md->swap_bios)) 1416 __set_swap_bios_limit(md, latch); 1417 down(&md->swap_bios_semaphore); 1418 } 1419 1420 if (likely(ti->type->map == linear_map)) 1421 r = linear_map(ti, clone); 1422 else if (ti->type->map == stripe_map) 1423 r = stripe_map(ti, clone); 1424 else 1425 r = ti->type->map(ti, clone); 1426 1427 switch (r) { 1428 case DM_MAPIO_SUBMITTED: 1429 /* target has assumed ownership of this io */ 1430 if (!ti->accounts_remapped_io) 1431 dm_start_io_acct(io, clone); 1432 break; 1433 case DM_MAPIO_REMAPPED: 1434 dm_submit_bio_remap(clone, NULL); 1435 break; 1436 case DM_MAPIO_KILL: 1437 case DM_MAPIO_REQUEUE: 1438 if (static_branch_unlikely(&swap_bios_enabled) && 1439 unlikely(swap_bios_limit(ti, clone))) 1440 up(&md->swap_bios_semaphore); 1441 free_tio(clone); 1442 if (r == DM_MAPIO_KILL) 1443 dm_io_dec_pending(io, BLK_STS_IOERR); 1444 else 1445 dm_io_dec_pending(io, BLK_STS_DM_REQUEUE); 1446 break; 1447 default: 1448 DMCRIT("unimplemented target map return value: %d", r); 1449 BUG(); 1450 } 1451 } 1452 1453 static void setup_split_accounting(struct clone_info *ci, unsigned int len) 1454 { 1455 struct dm_io *io = ci->io; 1456 1457 if (ci->sector_count > len) { 1458 /* 1459 * Split needed, save the mapped part for accounting. 1460 * NOTE: dm_accept_partial_bio() will update accordingly. 1461 */ 1462 dm_io_set_flag(io, DM_IO_WAS_SPLIT); 1463 io->sectors = len; 1464 io->sector_offset = bio_sectors(ci->bio); 1465 } 1466 } 1467 1468 static void alloc_multiple_bios(struct bio_list *blist, struct clone_info *ci, 1469 struct dm_target *ti, unsigned int num_bios, 1470 unsigned *len) 1471 { 1472 struct bio *bio; 1473 int try; 1474 1475 for (try = 0; try < 2; try++) { 1476 int bio_nr; 1477 1478 if (try && num_bios > 1) 1479 mutex_lock(&ci->io->md->table_devices_lock); 1480 for (bio_nr = 0; bio_nr < num_bios; bio_nr++) { 1481 bio = alloc_tio(ci, ti, bio_nr, len, 1482 try ? GFP_NOIO : GFP_NOWAIT); 1483 if (!bio) 1484 break; 1485 1486 bio_list_add(blist, bio); 1487 } 1488 if (try && num_bios > 1) 1489 mutex_unlock(&ci->io->md->table_devices_lock); 1490 if (bio_nr == num_bios) 1491 return; 1492 1493 while ((bio = bio_list_pop(blist))) 1494 free_tio(bio); 1495 } 1496 } 1497 1498 static unsigned int __send_duplicate_bios(struct clone_info *ci, struct dm_target *ti, 1499 unsigned int num_bios, unsigned int *len) 1500 { 1501 struct bio_list blist = BIO_EMPTY_LIST; 1502 struct bio *clone; 1503 unsigned int ret = 0; 1504 1505 if (WARN_ON_ONCE(num_bios == 0)) /* num_bios = 0 is a bug in caller */ 1506 return 0; 1507 1508 /* dm_accept_partial_bio() is not supported with shared tio->len_ptr */ 1509 if (len) 1510 setup_split_accounting(ci, *len); 1511 1512 /* 1513 * Using alloc_multiple_bios(), even if num_bios is 1, to consistently 1514 * support allocating using GFP_NOWAIT with GFP_NOIO fallback. 1515 */ 1516 alloc_multiple_bios(&blist, ci, ti, num_bios, len); 1517 while ((clone = bio_list_pop(&blist))) { 1518 if (num_bios > 1) 1519 dm_tio_set_flag(clone_to_tio(clone), DM_TIO_IS_DUPLICATE_BIO); 1520 __map_bio(clone); 1521 ret += 1; 1522 } 1523 1524 return ret; 1525 } 1526 1527 static void __send_empty_flush(struct clone_info *ci) 1528 { 1529 struct dm_table *t = ci->map; 1530 struct bio flush_bio; 1531 blk_opf_t opf = REQ_OP_WRITE | REQ_PREFLUSH | REQ_SYNC; 1532 1533 if ((ci->io->orig_bio->bi_opf & (REQ_IDLE | REQ_SYNC)) == 1534 (REQ_IDLE | REQ_SYNC)) 1535 opf |= REQ_IDLE; 1536 1537 /* 1538 * Use an on-stack bio for this, it's safe since we don't 1539 * need to reference it after submit. It's just used as 1540 * the basis for the clone(s). 1541 */ 1542 bio_init(&flush_bio, ci->io->md->disk->part0, NULL, 0, opf); 1543 1544 ci->bio = &flush_bio; 1545 ci->sector_count = 0; 1546 ci->io->tio.clone.bi_iter.bi_size = 0; 1547 1548 if (!t->flush_bypasses_map) { 1549 for (unsigned int i = 0; i < t->num_targets; i++) { 1550 unsigned int bios; 1551 struct dm_target *ti = dm_table_get_target(t, i); 1552 1553 if (unlikely(ti->num_flush_bios == 0)) 1554 continue; 1555 1556 atomic_add(ti->num_flush_bios, &ci->io->io_count); 1557 bios = __send_duplicate_bios(ci, ti, ti->num_flush_bios, 1558 NULL); 1559 atomic_sub(ti->num_flush_bios - bios, &ci->io->io_count); 1560 } 1561 } else { 1562 /* 1563 * Note that there's no need to grab t->devices_lock here 1564 * because the targets that support flush optimization don't 1565 * modify the list of devices. 1566 */ 1567 struct list_head *devices = dm_table_get_devices(t); 1568 unsigned int len = 0; 1569 struct dm_dev_internal *dd; 1570 list_for_each_entry(dd, devices, list) { 1571 struct bio *clone; 1572 /* 1573 * Note that the structure dm_target_io is not 1574 * associated with any target (because the device may be 1575 * used by multiple targets), so we set tio->ti = NULL. 1576 * We must check for NULL in the I/O processing path, to 1577 * avoid NULL pointer dereference. 1578 */ 1579 clone = alloc_tio(ci, NULL, 0, &len, GFP_NOIO); 1580 atomic_add(1, &ci->io->io_count); 1581 bio_set_dev(clone, dd->dm_dev->bdev); 1582 clone->bi_end_io = clone_endio; 1583 dm_submit_bio_remap(clone, NULL); 1584 } 1585 } 1586 1587 /* 1588 * alloc_io() takes one extra reference for submission, so the 1589 * reference won't reach 0 without the following subtraction 1590 */ 1591 atomic_sub(1, &ci->io->io_count); 1592 1593 bio_uninit(ci->bio); 1594 } 1595 1596 static void __send_abnormal_io(struct clone_info *ci, struct dm_target *ti, 1597 unsigned int num_bios, unsigned int max_granularity, 1598 unsigned int max_sectors) 1599 { 1600 unsigned int len, bios; 1601 1602 len = min_t(sector_t, ci->sector_count, 1603 __max_io_len(ti, ci->sector, max_granularity, max_sectors)); 1604 1605 atomic_add(num_bios, &ci->io->io_count); 1606 bios = __send_duplicate_bios(ci, ti, num_bios, &len); 1607 /* 1608 * alloc_io() takes one extra reference for submission, so the 1609 * reference won't reach 0 without the following (+1) subtraction 1610 */ 1611 atomic_sub(num_bios - bios + 1, &ci->io->io_count); 1612 1613 ci->sector += len; 1614 ci->sector_count -= len; 1615 } 1616 1617 static bool is_abnormal_io(struct bio *bio) 1618 { 1619 switch (bio_op(bio)) { 1620 case REQ_OP_READ: 1621 case REQ_OP_WRITE: 1622 case REQ_OP_FLUSH: 1623 return false; 1624 case REQ_OP_DISCARD: 1625 case REQ_OP_SECURE_ERASE: 1626 case REQ_OP_WRITE_ZEROES: 1627 case REQ_OP_ZONE_RESET_ALL: 1628 return true; 1629 default: 1630 return false; 1631 } 1632 } 1633 1634 static blk_status_t __process_abnormal_io(struct clone_info *ci, 1635 struct dm_target *ti) 1636 { 1637 unsigned int num_bios = 0; 1638 unsigned int max_granularity = 0; 1639 unsigned int max_sectors = 0; 1640 struct queue_limits *limits = dm_get_queue_limits(ti->table->md); 1641 1642 switch (bio_op(ci->bio)) { 1643 case REQ_OP_DISCARD: 1644 num_bios = ti->num_discard_bios; 1645 max_sectors = limits->max_discard_sectors; 1646 if (ti->max_discard_granularity) 1647 max_granularity = max_sectors; 1648 break; 1649 case REQ_OP_SECURE_ERASE: 1650 num_bios = ti->num_secure_erase_bios; 1651 max_sectors = limits->max_secure_erase_sectors; 1652 break; 1653 case REQ_OP_WRITE_ZEROES: 1654 num_bios = ti->num_write_zeroes_bios; 1655 max_sectors = limits->max_write_zeroes_sectors; 1656 break; 1657 default: 1658 break; 1659 } 1660 1661 /* 1662 * Even though the device advertised support for this type of 1663 * request, that does not mean every target supports it, and 1664 * reconfiguration might also have changed that since the 1665 * check was performed. 1666 */ 1667 if (unlikely(!num_bios)) 1668 return BLK_STS_NOTSUPP; 1669 1670 __send_abnormal_io(ci, ti, num_bios, max_granularity, max_sectors); 1671 1672 return BLK_STS_OK; 1673 } 1674 1675 /* 1676 * Reuse ->bi_private as dm_io list head for storing all dm_io instances 1677 * associated with this bio, and this bio's bi_private needs to be 1678 * stored in dm_io->data before the reuse. 1679 * 1680 * bio->bi_private is owned by fs or upper layer, so block layer won't 1681 * touch it after splitting. Meantime it won't be changed by anyone after 1682 * bio is submitted. So this reuse is safe. 1683 */ 1684 static inline struct dm_io **dm_poll_list_head(struct bio *bio) 1685 { 1686 return (struct dm_io **)&bio->bi_private; 1687 } 1688 1689 static void dm_queue_poll_io(struct bio *bio, struct dm_io *io) 1690 { 1691 struct dm_io **head = dm_poll_list_head(bio); 1692 1693 if (!(bio->bi_opf & REQ_DM_POLL_LIST)) { 1694 bio->bi_opf |= REQ_DM_POLL_LIST; 1695 /* 1696 * Save .bi_private into dm_io, so that we can reuse 1697 * .bi_private as dm_io list head for storing dm_io list 1698 */ 1699 io->data = bio->bi_private; 1700 1701 /* tell block layer to poll for completion */ 1702 bio->bi_cookie = ~BLK_QC_T_NONE; 1703 1704 io->next = NULL; 1705 } else { 1706 /* 1707 * bio recursed due to split, reuse original poll list, 1708 * and save bio->bi_private too. 1709 */ 1710 io->data = (*head)->data; 1711 io->next = *head; 1712 } 1713 1714 *head = io; 1715 } 1716 1717 /* 1718 * Select the correct strategy for processing a non-flush bio. 1719 */ 1720 static blk_status_t __split_and_process_bio(struct clone_info *ci) 1721 { 1722 struct bio *clone; 1723 struct dm_target *ti; 1724 unsigned int len; 1725 1726 ti = dm_table_find_target(ci->map, ci->sector); 1727 if (unlikely(!ti)) 1728 return BLK_STS_IOERR; 1729 1730 if (unlikely(ci->is_abnormal_io)) 1731 return __process_abnormal_io(ci, ti); 1732 1733 /* 1734 * Only support bio polling for normal IO, and the target io is 1735 * exactly inside the dm_io instance (verified in dm_poll_dm_io) 1736 */ 1737 ci->submit_as_polled = !!(ci->bio->bi_opf & REQ_POLLED); 1738 1739 len = min_t(sector_t, max_io_len(ti, ci->sector), ci->sector_count); 1740 if (ci->bio->bi_opf & REQ_ATOMIC && len != ci->sector_count) 1741 return BLK_STS_IOERR; 1742 1743 setup_split_accounting(ci, len); 1744 1745 if (unlikely(ci->bio->bi_opf & REQ_NOWAIT)) { 1746 if (unlikely(!dm_target_supports_nowait(ti->type))) 1747 return BLK_STS_NOTSUPP; 1748 1749 clone = alloc_tio(ci, ti, 0, &len, GFP_NOWAIT); 1750 if (unlikely(!clone)) 1751 return BLK_STS_AGAIN; 1752 } else { 1753 clone = alloc_tio(ci, ti, 0, &len, GFP_NOIO); 1754 } 1755 __map_bio(clone); 1756 1757 ci->sector += len; 1758 ci->sector_count -= len; 1759 1760 return BLK_STS_OK; 1761 } 1762 1763 static void init_clone_info(struct clone_info *ci, struct dm_io *io, 1764 struct dm_table *map, struct bio *bio, bool is_abnormal) 1765 { 1766 ci->map = map; 1767 ci->io = io; 1768 ci->bio = bio; 1769 ci->is_abnormal_io = is_abnormal; 1770 ci->submit_as_polled = false; 1771 ci->sector = bio->bi_iter.bi_sector; 1772 ci->sector_count = bio_sectors(bio); 1773 1774 /* Shouldn't happen but sector_count was being set to 0 so... */ 1775 if (static_branch_unlikely(&zoned_enabled) && 1776 WARN_ON_ONCE(op_is_zone_mgmt(bio_op(bio)) && ci->sector_count)) 1777 ci->sector_count = 0; 1778 } 1779 1780 #ifdef CONFIG_BLK_DEV_ZONED 1781 static inline bool dm_zone_bio_needs_split(struct bio *bio) 1782 { 1783 /* 1784 * Special case the zone operations that cannot or should not be split. 1785 */ 1786 switch (bio_op(bio)) { 1787 case REQ_OP_ZONE_APPEND: 1788 case REQ_OP_ZONE_FINISH: 1789 case REQ_OP_ZONE_RESET: 1790 case REQ_OP_ZONE_RESET_ALL: 1791 return false; 1792 default: 1793 break; 1794 } 1795 1796 /* 1797 * When mapped devices use the block layer zone write plugging, we must 1798 * split any large BIO to the mapped device limits to not submit BIOs 1799 * that span zone boundaries and to avoid potential deadlocks with 1800 * queue freeze operations. 1801 */ 1802 return bio_needs_zone_write_plugging(bio) || bio_straddles_zones(bio); 1803 } 1804 1805 static inline bool dm_zone_plug_bio(struct mapped_device *md, struct bio *bio) 1806 { 1807 if (!bio_needs_zone_write_plugging(bio)) 1808 return false; 1809 return blk_zone_plug_bio(bio, 0); 1810 } 1811 1812 static blk_status_t __send_zone_reset_all_emulated(struct clone_info *ci, 1813 struct dm_target *ti) 1814 { 1815 struct bio_list blist = BIO_EMPTY_LIST; 1816 struct mapped_device *md = ci->io->md; 1817 unsigned int zone_sectors = md->disk->queue->limits.chunk_sectors; 1818 unsigned long *need_reset; 1819 unsigned int i, nr_zones, nr_reset; 1820 unsigned int num_bios = 0; 1821 blk_status_t sts = BLK_STS_OK; 1822 sector_t sector = ti->begin; 1823 struct bio *clone; 1824 int ret; 1825 1826 nr_zones = ti->len >> ilog2(zone_sectors); 1827 need_reset = bitmap_zalloc(nr_zones, GFP_NOIO); 1828 if (!need_reset) 1829 return BLK_STS_RESOURCE; 1830 1831 ret = dm_zone_get_reset_bitmap(md, ci->map, ti->begin, 1832 nr_zones, need_reset); 1833 if (ret) { 1834 sts = BLK_STS_IOERR; 1835 goto free_bitmap; 1836 } 1837 1838 /* If we have no zone to reset, we are done. */ 1839 nr_reset = bitmap_weight(need_reset, nr_zones); 1840 if (!nr_reset) 1841 goto free_bitmap; 1842 1843 atomic_add(nr_zones, &ci->io->io_count); 1844 1845 for (i = 0; i < nr_zones; i++) { 1846 1847 if (!test_bit(i, need_reset)) { 1848 sector += zone_sectors; 1849 continue; 1850 } 1851 1852 if (bio_list_empty(&blist)) { 1853 /* This may take a while, so be nice to others */ 1854 if (num_bios) 1855 cond_resched(); 1856 1857 /* 1858 * We may need to reset thousands of zones, so let's 1859 * not go crazy with the clone allocation. 1860 */ 1861 alloc_multiple_bios(&blist, ci, ti, min(nr_reset, 32), 1862 NULL); 1863 } 1864 1865 /* Get a clone and change it to a regular reset operation. */ 1866 clone = bio_list_pop(&blist); 1867 clone->bi_opf &= ~REQ_OP_MASK; 1868 clone->bi_opf |= REQ_OP_ZONE_RESET | REQ_SYNC; 1869 clone->bi_iter.bi_sector = sector; 1870 clone->bi_iter.bi_size = 0; 1871 __map_bio(clone); 1872 1873 sector += zone_sectors; 1874 num_bios++; 1875 nr_reset--; 1876 } 1877 1878 WARN_ON_ONCE(!bio_list_empty(&blist)); 1879 atomic_sub(nr_zones - num_bios, &ci->io->io_count); 1880 ci->sector_count = 0; 1881 1882 free_bitmap: 1883 bitmap_free(need_reset); 1884 1885 return sts; 1886 } 1887 1888 static void __send_zone_reset_all_native(struct clone_info *ci, 1889 struct dm_target *ti) 1890 { 1891 unsigned int bios; 1892 1893 atomic_add(1, &ci->io->io_count); 1894 bios = __send_duplicate_bios(ci, ti, 1, NULL); 1895 atomic_sub(1 - bios, &ci->io->io_count); 1896 1897 ci->sector_count = 0; 1898 } 1899 1900 static blk_status_t __send_zone_reset_all(struct clone_info *ci) 1901 { 1902 struct dm_table *t = ci->map; 1903 blk_status_t sts = BLK_STS_OK; 1904 1905 for (unsigned int i = 0; i < t->num_targets; i++) { 1906 struct dm_target *ti = dm_table_get_target(t, i); 1907 1908 if (ti->zone_reset_all_supported) { 1909 __send_zone_reset_all_native(ci, ti); 1910 continue; 1911 } 1912 1913 sts = __send_zone_reset_all_emulated(ci, ti); 1914 if (sts != BLK_STS_OK) 1915 break; 1916 } 1917 1918 /* Release the reference that alloc_io() took for submission. */ 1919 atomic_sub(1, &ci->io->io_count); 1920 1921 return sts; 1922 } 1923 1924 #else 1925 static inline bool dm_zone_bio_needs_split(struct bio *bio) 1926 { 1927 return false; 1928 } 1929 static inline bool dm_zone_plug_bio(struct mapped_device *md, struct bio *bio) 1930 { 1931 return false; 1932 } 1933 static blk_status_t __send_zone_reset_all(struct clone_info *ci) 1934 { 1935 return BLK_STS_NOTSUPP; 1936 } 1937 #endif 1938 1939 /* 1940 * Entry point to split a bio into clones and submit them to the targets. 1941 */ 1942 static void dm_split_and_process_bio(struct mapped_device *md, 1943 struct dm_table *map, struct bio *bio) 1944 { 1945 struct clone_info ci; 1946 struct dm_io *io; 1947 blk_status_t error = BLK_STS_OK; 1948 bool is_abnormal, need_split; 1949 1950 is_abnormal = is_abnormal_io(bio); 1951 if (static_branch_unlikely(&zoned_enabled)) { 1952 need_split = is_abnormal || dm_zone_bio_needs_split(bio); 1953 } else { 1954 need_split = is_abnormal; 1955 } 1956 1957 if (unlikely(need_split)) { 1958 /* 1959 * Use bio_split_to_limits() for abnormal IO (e.g. discard, etc) 1960 * otherwise associated queue_limits won't be imposed. 1961 * Also split the BIO for mapped devices needing zone append 1962 * emulation to ensure that the BIO does not cross zone 1963 * boundaries. 1964 */ 1965 bio = bio_split_to_limits(bio); 1966 if (!bio) 1967 return; 1968 } 1969 1970 /* 1971 * Use the block layer zone write plugging for mapped devices that 1972 * need zone append emulation (e.g. dm-crypt). 1973 */ 1974 if (static_branch_unlikely(&zoned_enabled) && dm_zone_plug_bio(md, bio)) 1975 return; 1976 1977 /* Only support nowait for normal IO */ 1978 if (unlikely(bio->bi_opf & REQ_NOWAIT) && !is_abnormal) { 1979 /* 1980 * Don't support NOWAIT for FLUSH because it may allocate 1981 * multiple bios and there's no easy way how to undo the 1982 * allocations. 1983 */ 1984 if (bio->bi_opf & REQ_PREFLUSH) { 1985 bio_wouldblock_error(bio); 1986 return; 1987 } 1988 io = alloc_io(md, bio, GFP_NOWAIT); 1989 if (unlikely(!io)) { 1990 /* Unable to do anything without dm_io. */ 1991 bio_wouldblock_error(bio); 1992 return; 1993 } 1994 } else { 1995 io = alloc_io(md, bio, GFP_NOIO); 1996 } 1997 init_clone_info(&ci, io, map, bio, is_abnormal); 1998 1999 if (bio->bi_opf & REQ_PREFLUSH) { 2000 __send_empty_flush(&ci); 2001 /* dm_io_complete submits any data associated with flush */ 2002 goto out; 2003 } 2004 2005 if (static_branch_unlikely(&zoned_enabled) && 2006 (bio_op(bio) == REQ_OP_ZONE_RESET_ALL)) { 2007 error = __send_zone_reset_all(&ci); 2008 goto out; 2009 } 2010 2011 error = __split_and_process_bio(&ci); 2012 if (error || !ci.sector_count) 2013 goto out; 2014 /* 2015 * Remainder must be passed to submit_bio_noacct() so it gets handled 2016 * *after* bios already submitted have been completely processed. 2017 */ 2018 bio_trim(bio, io->sectors, ci.sector_count); 2019 trace_block_split(bio, bio->bi_iter.bi_sector); 2020 bio_inc_remaining(bio); 2021 submit_bio_noacct(bio); 2022 out: 2023 /* 2024 * Drop the extra reference count for non-POLLED bio, and hold one 2025 * reference for POLLED bio, which will be released in dm_poll_bio 2026 * 2027 * Add every dm_io instance into the dm_io list head which is stored 2028 * in bio->bi_private, so that dm_poll_bio can poll them all. 2029 */ 2030 if (error || !ci.submit_as_polled) { 2031 /* 2032 * In case of submission failure, the extra reference for 2033 * submitting io isn't consumed yet 2034 */ 2035 if (error) 2036 atomic_dec(&io->io_count); 2037 dm_io_dec_pending(io, error); 2038 } else 2039 dm_queue_poll_io(bio, io); 2040 } 2041 2042 static void dm_submit_bio(struct bio *bio) 2043 { 2044 struct mapped_device *md = bio->bi_bdev->bd_disk->private_data; 2045 int srcu_idx; 2046 struct dm_table *map; 2047 2048 map = dm_get_live_table(md, &srcu_idx); 2049 if (unlikely(!map)) { 2050 DMERR_LIMIT("%s: mapping table unavailable, erroring io", 2051 dm_device_name(md)); 2052 bio_io_error(bio); 2053 goto out; 2054 } 2055 2056 /* If suspended, queue this IO for later */ 2057 if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))) { 2058 if (bio->bi_opf & REQ_NOWAIT) 2059 bio_wouldblock_error(bio); 2060 else if (bio->bi_opf & REQ_RAHEAD) 2061 bio_io_error(bio); 2062 else 2063 queue_io(md, bio); 2064 goto out; 2065 } 2066 2067 dm_split_and_process_bio(md, map, bio); 2068 out: 2069 dm_put_live_table(md, srcu_idx); 2070 } 2071 2072 static bool dm_poll_dm_io(struct dm_io *io, struct io_comp_batch *iob, 2073 unsigned int flags) 2074 { 2075 WARN_ON_ONCE(!dm_tio_is_normal(&io->tio)); 2076 2077 /* don't poll if the mapped io is done */ 2078 if (atomic_read(&io->io_count) > 1) 2079 bio_poll(&io->tio.clone, iob, flags); 2080 2081 /* bio_poll holds the last reference */ 2082 return atomic_read(&io->io_count) == 1; 2083 } 2084 2085 static int dm_poll_bio(struct bio *bio, struct io_comp_batch *iob, 2086 unsigned int flags) 2087 { 2088 struct dm_io **head = dm_poll_list_head(bio); 2089 struct dm_io *list = *head; 2090 struct dm_io *tmp = NULL; 2091 struct dm_io *curr, *next; 2092 2093 /* Only poll normal bio which was marked as REQ_DM_POLL_LIST */ 2094 if (!(bio->bi_opf & REQ_DM_POLL_LIST)) 2095 return 0; 2096 2097 WARN_ON_ONCE(!list); 2098 2099 /* 2100 * Restore .bi_private before possibly completing dm_io. 2101 * 2102 * bio_poll() is only possible once @bio has been completely 2103 * submitted via submit_bio_noacct()'s depth-first submission. 2104 * So there is no dm_queue_poll_io() race associated with 2105 * clearing REQ_DM_POLL_LIST here. 2106 */ 2107 bio->bi_opf &= ~REQ_DM_POLL_LIST; 2108 bio->bi_private = list->data; 2109 2110 for (curr = list, next = curr->next; curr; curr = next, next = 2111 curr ? curr->next : NULL) { 2112 if (dm_poll_dm_io(curr, iob, flags)) { 2113 /* 2114 * clone_endio() has already occurred, so no 2115 * error handling is needed here. 2116 */ 2117 __dm_io_dec_pending(curr); 2118 } else { 2119 curr->next = tmp; 2120 tmp = curr; 2121 } 2122 } 2123 2124 /* Not done? */ 2125 if (tmp) { 2126 bio->bi_opf |= REQ_DM_POLL_LIST; 2127 /* Reset bio->bi_private to dm_io list head */ 2128 *head = tmp; 2129 return 0; 2130 } 2131 return 1; 2132 } 2133 2134 /* 2135 *--------------------------------------------------------------- 2136 * An IDR is used to keep track of allocated minor numbers. 2137 *--------------------------------------------------------------- 2138 */ 2139 static void free_minor(int minor) 2140 { 2141 spin_lock(&_minor_lock); 2142 idr_remove(&_minor_idr, minor); 2143 spin_unlock(&_minor_lock); 2144 } 2145 2146 /* 2147 * See if the device with a specific minor # is free. 2148 */ 2149 static int specific_minor(int minor) 2150 { 2151 int r; 2152 2153 if (minor >= (1 << MINORBITS)) 2154 return -EINVAL; 2155 2156 idr_preload(GFP_KERNEL); 2157 spin_lock(&_minor_lock); 2158 2159 r = idr_alloc(&_minor_idr, MINOR_ALLOCED, minor, minor + 1, GFP_NOWAIT); 2160 2161 spin_unlock(&_minor_lock); 2162 idr_preload_end(); 2163 if (r < 0) 2164 return r == -ENOSPC ? -EBUSY : r; 2165 return 0; 2166 } 2167 2168 static int next_free_minor(int *minor) 2169 { 2170 int r; 2171 2172 idr_preload(GFP_KERNEL); 2173 spin_lock(&_minor_lock); 2174 2175 r = idr_alloc(&_minor_idr, MINOR_ALLOCED, 0, 1 << MINORBITS, GFP_NOWAIT); 2176 2177 spin_unlock(&_minor_lock); 2178 idr_preload_end(); 2179 if (r < 0) 2180 return r; 2181 *minor = r; 2182 return 0; 2183 } 2184 2185 static const struct block_device_operations dm_blk_dops; 2186 static const struct block_device_operations dm_rq_blk_dops; 2187 static const struct dax_operations dm_dax_ops; 2188 2189 static void dm_wq_work(struct work_struct *work); 2190 2191 #ifdef CONFIG_BLK_INLINE_ENCRYPTION 2192 static void dm_queue_destroy_crypto_profile(struct request_queue *q) 2193 { 2194 dm_destroy_crypto_profile(q->crypto_profile); 2195 } 2196 2197 #else /* CONFIG_BLK_INLINE_ENCRYPTION */ 2198 2199 static inline void dm_queue_destroy_crypto_profile(struct request_queue *q) 2200 { 2201 } 2202 #endif /* !CONFIG_BLK_INLINE_ENCRYPTION */ 2203 2204 static void cleanup_mapped_device(struct mapped_device *md) 2205 { 2206 if (md->wq) 2207 destroy_workqueue(md->wq); 2208 dm_free_md_mempools(md->mempools); 2209 2210 if (md->dax_dev) { 2211 dax_remove_host(md->disk); 2212 kill_dax(md->dax_dev); 2213 put_dax(md->dax_dev); 2214 md->dax_dev = NULL; 2215 } 2216 2217 if (md->disk) { 2218 spin_lock(&_minor_lock); 2219 md->disk->private_data = NULL; 2220 spin_unlock(&_minor_lock); 2221 if (dm_get_md_type(md) != DM_TYPE_NONE) { 2222 struct table_device *td; 2223 2224 dm_sysfs_exit(md); 2225 list_for_each_entry(td, &md->table_devices, list) { 2226 bd_unlink_disk_holder(td->dm_dev.bdev, 2227 md->disk); 2228 } 2229 2230 /* 2231 * Hold lock to make sure del_gendisk() won't concurrent 2232 * with open/close_table_device(). 2233 */ 2234 mutex_lock(&md->table_devices_lock); 2235 del_gendisk(md->disk); 2236 mutex_unlock(&md->table_devices_lock); 2237 } 2238 dm_queue_destroy_crypto_profile(md->queue); 2239 put_disk(md->disk); 2240 } 2241 2242 if (md->pending_io) { 2243 free_percpu(md->pending_io); 2244 md->pending_io = NULL; 2245 } 2246 2247 cleanup_srcu_struct(&md->io_barrier); 2248 2249 mutex_destroy(&md->suspend_lock); 2250 mutex_destroy(&md->type_lock); 2251 mutex_destroy(&md->table_devices_lock); 2252 mutex_destroy(&md->swap_bios_lock); 2253 2254 dm_mq_cleanup_mapped_device(md); 2255 } 2256 2257 /* 2258 * Allocate and initialise a blank device with a given minor. 2259 */ 2260 static struct mapped_device *alloc_dev(int minor) 2261 { 2262 int r, numa_node_id = dm_get_numa_node(); 2263 struct dax_device *dax_dev; 2264 struct mapped_device *md; 2265 void *old_md; 2266 2267 md = kvzalloc_node(sizeof(*md), GFP_KERNEL, numa_node_id); 2268 if (!md) { 2269 DMERR("unable to allocate device, out of memory."); 2270 return NULL; 2271 } 2272 2273 if (!try_module_get(THIS_MODULE)) 2274 goto bad_module_get; 2275 2276 /* get a minor number for the dev */ 2277 if (minor == DM_ANY_MINOR) 2278 r = next_free_minor(&minor); 2279 else 2280 r = specific_minor(minor); 2281 if (r < 0) 2282 goto bad_minor; 2283 2284 r = init_srcu_struct(&md->io_barrier); 2285 if (r < 0) 2286 goto bad_io_barrier; 2287 2288 md->numa_node_id = numa_node_id; 2289 md->init_tio_pdu = false; 2290 md->type = DM_TYPE_NONE; 2291 mutex_init(&md->suspend_lock); 2292 mutex_init(&md->type_lock); 2293 mutex_init(&md->table_devices_lock); 2294 spin_lock_init(&md->deferred_lock); 2295 atomic_set(&md->holders, 1); 2296 atomic_set(&md->open_count, 0); 2297 atomic_set(&md->event_nr, 0); 2298 atomic_set(&md->uevent_seq, 0); 2299 INIT_LIST_HEAD(&md->uevent_list); 2300 INIT_LIST_HEAD(&md->table_devices); 2301 spin_lock_init(&md->uevent_lock); 2302 2303 /* 2304 * default to bio-based until DM table is loaded and md->type 2305 * established. If request-based table is loaded: blk-mq will 2306 * override accordingly. 2307 */ 2308 md->disk = blk_alloc_disk(NULL, md->numa_node_id); 2309 if (IS_ERR(md->disk)) { 2310 md->disk = NULL; 2311 goto bad; 2312 } 2313 md->queue = md->disk->queue; 2314 2315 init_waitqueue_head(&md->wait); 2316 INIT_WORK(&md->work, dm_wq_work); 2317 INIT_WORK(&md->requeue_work, dm_wq_requeue_work); 2318 init_waitqueue_head(&md->eventq); 2319 init_completion(&md->kobj_holder.completion); 2320 2321 md->requeue_list = NULL; 2322 md->swap_bios = get_swap_bios(); 2323 sema_init(&md->swap_bios_semaphore, md->swap_bios); 2324 mutex_init(&md->swap_bios_lock); 2325 2326 md->disk->major = _major; 2327 md->disk->first_minor = minor; 2328 md->disk->minors = 1; 2329 md->disk->flags |= GENHD_FL_NO_PART; 2330 md->disk->fops = &dm_blk_dops; 2331 md->disk->private_data = md; 2332 sprintf(md->disk->disk_name, "dm-%d", minor); 2333 2334 dax_dev = alloc_dax(md, &dm_dax_ops); 2335 if (IS_ERR(dax_dev)) { 2336 if (PTR_ERR(dax_dev) != -EOPNOTSUPP) 2337 goto bad; 2338 } else { 2339 set_dax_nocache(dax_dev); 2340 set_dax_nomc(dax_dev); 2341 md->dax_dev = dax_dev; 2342 if (dax_add_host(dax_dev, md->disk)) 2343 goto bad; 2344 } 2345 2346 format_dev_t(md->name, MKDEV(_major, minor)); 2347 2348 md->wq = alloc_workqueue("kdmflush/%s", WQ_MEM_RECLAIM, 0, md->name); 2349 if (!md->wq) 2350 goto bad; 2351 2352 md->pending_io = alloc_percpu(unsigned long); 2353 if (!md->pending_io) 2354 goto bad; 2355 2356 r = dm_stats_init(&md->stats); 2357 if (r < 0) 2358 goto bad; 2359 2360 /* Populate the mapping, nobody knows we exist yet */ 2361 spin_lock(&_minor_lock); 2362 old_md = idr_replace(&_minor_idr, md, minor); 2363 spin_unlock(&_minor_lock); 2364 2365 BUG_ON(old_md != MINOR_ALLOCED); 2366 2367 return md; 2368 2369 bad: 2370 cleanup_mapped_device(md); 2371 bad_io_barrier: 2372 free_minor(minor); 2373 bad_minor: 2374 module_put(THIS_MODULE); 2375 bad_module_get: 2376 kvfree(md); 2377 return NULL; 2378 } 2379 2380 static void unlock_fs(struct mapped_device *md); 2381 2382 static void free_dev(struct mapped_device *md) 2383 { 2384 int minor = MINOR(disk_devt(md->disk)); 2385 2386 unlock_fs(md); 2387 2388 cleanup_mapped_device(md); 2389 2390 WARN_ON_ONCE(!list_empty(&md->table_devices)); 2391 dm_stats_cleanup(&md->stats); 2392 free_minor(minor); 2393 2394 module_put(THIS_MODULE); 2395 kvfree(md); 2396 } 2397 2398 /* 2399 * Bind a table to the device. 2400 */ 2401 static void event_callback(void *context) 2402 { 2403 unsigned long flags; 2404 LIST_HEAD(uevents); 2405 struct mapped_device *md = context; 2406 2407 spin_lock_irqsave(&md->uevent_lock, flags); 2408 list_splice_init(&md->uevent_list, &uevents); 2409 spin_unlock_irqrestore(&md->uevent_lock, flags); 2410 2411 dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj); 2412 2413 atomic_inc(&md->event_nr); 2414 wake_up(&md->eventq); 2415 dm_issue_global_event(); 2416 } 2417 2418 /* 2419 * Returns old map, which caller must destroy. 2420 */ 2421 static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t, 2422 struct queue_limits *limits) 2423 { 2424 struct dm_table *old_map; 2425 sector_t size, old_size; 2426 int ret; 2427 2428 lockdep_assert_held(&md->suspend_lock); 2429 2430 size = dm_table_get_size(t); 2431 2432 old_size = dm_get_size(md); 2433 2434 if (!dm_table_supports_size_change(t, old_size, size)) { 2435 old_map = ERR_PTR(-EINVAL); 2436 goto out; 2437 } 2438 2439 set_capacity(md->disk, size); 2440 2441 ret = dm_table_set_restrictions(t, md->queue, limits); 2442 if (ret) { 2443 set_capacity(md->disk, old_size); 2444 old_map = ERR_PTR(ret); 2445 goto out; 2446 } 2447 2448 /* 2449 * Wipe any geometry if the size of the table changed. 2450 */ 2451 if (size != old_size) 2452 memset(&md->geometry, 0, sizeof(md->geometry)); 2453 2454 dm_table_event_callback(t, event_callback, md); 2455 2456 if (dm_table_request_based(t)) { 2457 /* 2458 * Leverage the fact that request-based DM targets are 2459 * immutable singletons - used to optimize dm_mq_queue_rq. 2460 */ 2461 md->immutable_target = dm_table_get_immutable_target(t); 2462 2463 /* 2464 * There is no need to reload with request-based dm because the 2465 * size of front_pad doesn't change. 2466 * 2467 * Note for future: If you are to reload bioset, prep-ed 2468 * requests in the queue may refer to bio from the old bioset, 2469 * so you must walk through the queue to unprep. 2470 */ 2471 if (!md->mempools) 2472 md->mempools = t->mempools; 2473 else 2474 dm_free_md_mempools(t->mempools); 2475 } else { 2476 /* 2477 * The md may already have mempools that need changing. 2478 * If so, reload bioset because front_pad may have changed 2479 * because a different table was loaded. 2480 */ 2481 dm_free_md_mempools(md->mempools); 2482 md->mempools = t->mempools; 2483 } 2484 t->mempools = NULL; 2485 2486 old_map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock)); 2487 rcu_assign_pointer(md->map, (void *)t); 2488 md->immutable_target_type = dm_table_get_immutable_target_type(t); 2489 2490 if (old_map) 2491 dm_sync_table(md); 2492 out: 2493 return old_map; 2494 } 2495 2496 /* 2497 * Returns unbound table for the caller to free. 2498 */ 2499 static struct dm_table *__unbind(struct mapped_device *md) 2500 { 2501 struct dm_table *map = rcu_dereference_protected(md->map, 1); 2502 2503 if (!map) 2504 return NULL; 2505 2506 dm_table_event_callback(map, NULL, NULL); 2507 RCU_INIT_POINTER(md->map, NULL); 2508 dm_sync_table(md); 2509 2510 return map; 2511 } 2512 2513 /* 2514 * Constructor for a new device. 2515 */ 2516 int dm_create(int minor, struct mapped_device **result) 2517 { 2518 struct mapped_device *md; 2519 2520 md = alloc_dev(minor); 2521 if (!md) 2522 return -ENXIO; 2523 2524 dm_ima_reset_data(md); 2525 2526 *result = md; 2527 return 0; 2528 } 2529 2530 /* 2531 * Functions to manage md->type. 2532 * All are required to hold md->type_lock. 2533 */ 2534 void dm_lock_md_type(struct mapped_device *md) 2535 { 2536 mutex_lock(&md->type_lock); 2537 } 2538 2539 void dm_unlock_md_type(struct mapped_device *md) 2540 { 2541 mutex_unlock(&md->type_lock); 2542 } 2543 2544 enum dm_queue_mode dm_get_md_type(struct mapped_device *md) 2545 { 2546 return md->type; 2547 } 2548 2549 struct target_type *dm_get_immutable_target_type(struct mapped_device *md) 2550 { 2551 return md->immutable_target_type; 2552 } 2553 2554 /* 2555 * Setup the DM device's queue based on md's type 2556 */ 2557 int dm_setup_md_queue(struct mapped_device *md, struct dm_table *t) 2558 { 2559 enum dm_queue_mode type = dm_table_get_type(t); 2560 struct queue_limits limits; 2561 struct table_device *td; 2562 int r; 2563 2564 WARN_ON_ONCE(type == DM_TYPE_NONE); 2565 2566 if (type == DM_TYPE_REQUEST_BASED) { 2567 md->disk->fops = &dm_rq_blk_dops; 2568 r = dm_mq_init_request_queue(md, t); 2569 if (r) { 2570 DMERR("Cannot initialize queue for request-based dm mapped device"); 2571 return r; 2572 } 2573 } 2574 2575 r = dm_calculate_queue_limits(t, &limits); 2576 if (r) { 2577 DMERR("Cannot calculate initial queue limits"); 2578 return r; 2579 } 2580 r = dm_table_set_restrictions(t, md->queue, &limits); 2581 if (r) 2582 return r; 2583 2584 /* 2585 * Hold lock to make sure add_disk() and del_gendisk() won't concurrent 2586 * with open_table_device() and close_table_device(). 2587 */ 2588 mutex_lock(&md->table_devices_lock); 2589 r = add_disk(md->disk); 2590 mutex_unlock(&md->table_devices_lock); 2591 if (r) 2592 return r; 2593 2594 /* 2595 * Register the holder relationship for devices added before the disk 2596 * was live. 2597 */ 2598 list_for_each_entry(td, &md->table_devices, list) { 2599 r = bd_link_disk_holder(td->dm_dev.bdev, md->disk); 2600 if (r) 2601 goto out_undo_holders; 2602 } 2603 2604 r = dm_sysfs_init(md); 2605 if (r) 2606 goto out_undo_holders; 2607 2608 md->type = type; 2609 return 0; 2610 2611 out_undo_holders: 2612 list_for_each_entry_continue_reverse(td, &md->table_devices, list) 2613 bd_unlink_disk_holder(td->dm_dev.bdev, md->disk); 2614 mutex_lock(&md->table_devices_lock); 2615 del_gendisk(md->disk); 2616 mutex_unlock(&md->table_devices_lock); 2617 return r; 2618 } 2619 2620 struct mapped_device *dm_get_md(dev_t dev) 2621 { 2622 struct mapped_device *md; 2623 unsigned int minor = MINOR(dev); 2624 2625 if (MAJOR(dev) != _major || minor >= (1 << MINORBITS)) 2626 return NULL; 2627 2628 spin_lock(&_minor_lock); 2629 2630 md = idr_find(&_minor_idr, minor); 2631 if (!md || md == MINOR_ALLOCED || (MINOR(disk_devt(dm_disk(md))) != minor) || 2632 test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) { 2633 md = NULL; 2634 goto out; 2635 } 2636 dm_get(md); 2637 out: 2638 spin_unlock(&_minor_lock); 2639 2640 return md; 2641 } 2642 EXPORT_SYMBOL_GPL(dm_get_md); 2643 2644 void *dm_get_mdptr(struct mapped_device *md) 2645 { 2646 return md->interface_ptr; 2647 } 2648 2649 void dm_set_mdptr(struct mapped_device *md, void *ptr) 2650 { 2651 md->interface_ptr = ptr; 2652 } 2653 2654 void dm_get(struct mapped_device *md) 2655 { 2656 atomic_inc(&md->holders); 2657 BUG_ON(test_bit(DMF_FREEING, &md->flags)); 2658 } 2659 2660 int dm_hold(struct mapped_device *md) 2661 { 2662 spin_lock(&_minor_lock); 2663 if (test_bit(DMF_FREEING, &md->flags)) { 2664 spin_unlock(&_minor_lock); 2665 return -EBUSY; 2666 } 2667 dm_get(md); 2668 spin_unlock(&_minor_lock); 2669 return 0; 2670 } 2671 EXPORT_SYMBOL_GPL(dm_hold); 2672 2673 const char *dm_device_name(struct mapped_device *md) 2674 { 2675 return md->name; 2676 } 2677 EXPORT_SYMBOL_GPL(dm_device_name); 2678 2679 static void __dm_destroy(struct mapped_device *md, bool wait) 2680 { 2681 struct dm_table *map; 2682 int srcu_idx; 2683 2684 might_sleep(); 2685 2686 spin_lock(&_minor_lock); 2687 idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md)))); 2688 set_bit(DMF_FREEING, &md->flags); 2689 spin_unlock(&_minor_lock); 2690 2691 blk_mark_disk_dead(md->disk); 2692 2693 /* 2694 * Take suspend_lock so that presuspend and postsuspend methods 2695 * do not race with internal suspend. 2696 */ 2697 mutex_lock(&md->suspend_lock); 2698 map = dm_get_live_table(md, &srcu_idx); 2699 if (!dm_suspended_md(md)) { 2700 dm_table_presuspend_targets(map); 2701 set_bit(DMF_SUSPENDED, &md->flags); 2702 set_bit(DMF_POST_SUSPENDING, &md->flags); 2703 dm_table_postsuspend_targets(map); 2704 } 2705 /* dm_put_live_table must be before fsleep, otherwise deadlock is possible */ 2706 dm_put_live_table(md, srcu_idx); 2707 mutex_unlock(&md->suspend_lock); 2708 2709 /* 2710 * Rare, but there may be I/O requests still going to complete, 2711 * for example. Wait for all references to disappear. 2712 * No one should increment the reference count of the mapped_device, 2713 * after the mapped_device state becomes DMF_FREEING. 2714 */ 2715 if (wait) 2716 while (atomic_read(&md->holders)) 2717 fsleep(1000); 2718 else if (atomic_read(&md->holders)) 2719 DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)", 2720 dm_device_name(md), atomic_read(&md->holders)); 2721 2722 dm_table_destroy(__unbind(md)); 2723 free_dev(md); 2724 } 2725 2726 void dm_destroy(struct mapped_device *md) 2727 { 2728 __dm_destroy(md, true); 2729 } 2730 2731 void dm_destroy_immediate(struct mapped_device *md) 2732 { 2733 __dm_destroy(md, false); 2734 } 2735 2736 void dm_put(struct mapped_device *md) 2737 { 2738 atomic_dec(&md->holders); 2739 } 2740 EXPORT_SYMBOL_GPL(dm_put); 2741 2742 static bool dm_in_flight_bios(struct mapped_device *md) 2743 { 2744 int cpu; 2745 unsigned long sum = 0; 2746 2747 for_each_possible_cpu(cpu) 2748 sum += *per_cpu_ptr(md->pending_io, cpu); 2749 2750 return sum != 0; 2751 } 2752 2753 static int dm_wait_for_bios_completion(struct mapped_device *md, unsigned int task_state) 2754 { 2755 int r = 0; 2756 DEFINE_WAIT(wait); 2757 2758 while (true) { 2759 prepare_to_wait(&md->wait, &wait, task_state); 2760 2761 if (!dm_in_flight_bios(md)) 2762 break; 2763 2764 if (signal_pending_state(task_state, current)) { 2765 r = -ERESTARTSYS; 2766 break; 2767 } 2768 2769 io_schedule(); 2770 } 2771 finish_wait(&md->wait, &wait); 2772 2773 smp_rmb(); 2774 2775 return r; 2776 } 2777 2778 static int dm_wait_for_completion(struct mapped_device *md, unsigned int task_state) 2779 { 2780 int r = 0; 2781 2782 if (!queue_is_mq(md->queue)) 2783 return dm_wait_for_bios_completion(md, task_state); 2784 2785 while (true) { 2786 if (!blk_mq_queue_inflight(md->queue)) 2787 break; 2788 2789 if (signal_pending_state(task_state, current)) { 2790 r = -ERESTARTSYS; 2791 break; 2792 } 2793 2794 fsleep(5000); 2795 } 2796 2797 return r; 2798 } 2799 2800 /* 2801 * Process the deferred bios 2802 */ 2803 static void dm_wq_work(struct work_struct *work) 2804 { 2805 struct mapped_device *md = container_of(work, struct mapped_device, work); 2806 struct bio *bio; 2807 2808 while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) { 2809 spin_lock_irq(&md->deferred_lock); 2810 bio = bio_list_pop(&md->deferred); 2811 spin_unlock_irq(&md->deferred_lock); 2812 2813 if (!bio) 2814 break; 2815 2816 submit_bio_noacct(bio); 2817 cond_resched(); 2818 } 2819 } 2820 2821 static void dm_queue_flush(struct mapped_device *md) 2822 { 2823 clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags); 2824 smp_mb__after_atomic(); 2825 queue_work(md->wq, &md->work); 2826 } 2827 2828 /* 2829 * Swap in a new table, returning the old one for the caller to destroy. 2830 */ 2831 struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table) 2832 { 2833 struct dm_table *live_map = NULL, *map = ERR_PTR(-EINVAL); 2834 struct queue_limits limits; 2835 int r; 2836 2837 mutex_lock(&md->suspend_lock); 2838 2839 /* device must be suspended */ 2840 if (!dm_suspended_md(md)) 2841 goto out; 2842 2843 /* 2844 * If the new table has no data devices, retain the existing limits. 2845 * This helps multipath with queue_if_no_path if all paths disappear, 2846 * then new I/O is queued based on these limits, and then some paths 2847 * reappear. 2848 */ 2849 if (dm_table_has_no_data_devices(table)) { 2850 live_map = dm_get_live_table_fast(md); 2851 if (live_map) 2852 limits = md->queue->limits; 2853 dm_put_live_table_fast(md); 2854 } 2855 2856 if (!live_map) { 2857 r = dm_calculate_queue_limits(table, &limits); 2858 if (r) { 2859 map = ERR_PTR(r); 2860 goto out; 2861 } 2862 } 2863 2864 map = __bind(md, table, &limits); 2865 dm_issue_global_event(); 2866 2867 out: 2868 mutex_unlock(&md->suspend_lock); 2869 return map; 2870 } 2871 2872 /* 2873 * Functions to lock and unlock any filesystem running on the 2874 * device. 2875 */ 2876 static int lock_fs(struct mapped_device *md) 2877 { 2878 int r; 2879 2880 WARN_ON(test_bit(DMF_FROZEN, &md->flags)); 2881 2882 r = bdev_freeze(md->disk->part0); 2883 if (!r) 2884 set_bit(DMF_FROZEN, &md->flags); 2885 return r; 2886 } 2887 2888 static void unlock_fs(struct mapped_device *md) 2889 { 2890 if (!test_bit(DMF_FROZEN, &md->flags)) 2891 return; 2892 bdev_thaw(md->disk->part0); 2893 clear_bit(DMF_FROZEN, &md->flags); 2894 } 2895 2896 /* 2897 * @suspend_flags: DM_SUSPEND_LOCKFS_FLAG and/or DM_SUSPEND_NOFLUSH_FLAG 2898 * @task_state: e.g. TASK_INTERRUPTIBLE or TASK_UNINTERRUPTIBLE 2899 * @dmf_suspended_flag: DMF_SUSPENDED or DMF_SUSPENDED_INTERNALLY 2900 * 2901 * If __dm_suspend returns 0, the device is completely quiescent 2902 * now. There is no request-processing activity. All new requests 2903 * are being added to md->deferred list. 2904 */ 2905 static int __dm_suspend(struct mapped_device *md, struct dm_table *map, 2906 unsigned int suspend_flags, unsigned int task_state, 2907 int dmf_suspended_flag) 2908 { 2909 bool do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG; 2910 bool noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG; 2911 int r; 2912 2913 lockdep_assert_held(&md->suspend_lock); 2914 2915 /* 2916 * DMF_NOFLUSH_SUSPENDING must be set before presuspend. 2917 * This flag is cleared before dm_suspend returns. 2918 */ 2919 if (noflush) 2920 set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags); 2921 else 2922 DMDEBUG("%s: suspending with flush", dm_device_name(md)); 2923 2924 /* 2925 * This gets reverted if there's an error later and the targets 2926 * provide the .presuspend_undo hook. 2927 */ 2928 dm_table_presuspend_targets(map); 2929 2930 /* 2931 * Flush I/O to the device. 2932 * Any I/O submitted after lock_fs() may not be flushed. 2933 * noflush takes precedence over do_lockfs. 2934 * (lock_fs() flushes I/Os and waits for them to complete.) 2935 */ 2936 if (!noflush && do_lockfs) { 2937 r = lock_fs(md); 2938 if (r) { 2939 dm_table_presuspend_undo_targets(map); 2940 return r; 2941 } 2942 } 2943 2944 /* 2945 * Here we must make sure that no processes are submitting requests 2946 * to target drivers i.e. no one may be executing 2947 * dm_split_and_process_bio from dm_submit_bio. 2948 * 2949 * To get all processes out of dm_split_and_process_bio in dm_submit_bio, 2950 * we take the write lock. To prevent any process from reentering 2951 * dm_split_and_process_bio from dm_submit_bio and quiesce the thread 2952 * (dm_wq_work), we set DMF_BLOCK_IO_FOR_SUSPEND and call 2953 * flush_workqueue(md->wq). 2954 */ 2955 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags); 2956 if (map) 2957 synchronize_srcu(&md->io_barrier); 2958 2959 /* 2960 * Stop md->queue before flushing md->wq in case request-based 2961 * dm defers requests to md->wq from md->queue. 2962 */ 2963 if (dm_request_based(md)) 2964 dm_stop_queue(md->queue); 2965 2966 flush_workqueue(md->wq); 2967 2968 /* 2969 * At this point no more requests are entering target request routines. 2970 * We call dm_wait_for_completion to wait for all existing requests 2971 * to finish. 2972 */ 2973 r = dm_wait_for_completion(md, task_state); 2974 if (!r) 2975 set_bit(dmf_suspended_flag, &md->flags); 2976 2977 if (noflush) 2978 clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags); 2979 if (map) 2980 synchronize_srcu(&md->io_barrier); 2981 2982 /* were we interrupted ? */ 2983 if (r < 0) { 2984 dm_queue_flush(md); 2985 2986 if (dm_request_based(md)) 2987 dm_start_queue(md->queue); 2988 2989 unlock_fs(md); 2990 dm_table_presuspend_undo_targets(map); 2991 /* pushback list is already flushed, so skip flush */ 2992 } 2993 2994 return r; 2995 } 2996 2997 /* 2998 * We need to be able to change a mapping table under a mounted 2999 * filesystem. For example we might want to move some data in 3000 * the background. Before the table can be swapped with 3001 * dm_bind_table, dm_suspend must be called to flush any in 3002 * flight bios and ensure that any further io gets deferred. 3003 */ 3004 /* 3005 * Suspend mechanism in request-based dm. 3006 * 3007 * 1. Flush all I/Os by lock_fs() if needed. 3008 * 2. Stop dispatching any I/O by stopping the request_queue. 3009 * 3. Wait for all in-flight I/Os to be completed or requeued. 3010 * 3011 * To abort suspend, start the request_queue. 3012 */ 3013 int dm_suspend(struct mapped_device *md, unsigned int suspend_flags) 3014 { 3015 struct dm_table *map = NULL; 3016 int r = 0; 3017 3018 retry: 3019 mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING); 3020 3021 if (dm_suspended_md(md)) { 3022 r = -EINVAL; 3023 goto out_unlock; 3024 } 3025 3026 if (dm_suspended_internally_md(md)) { 3027 /* already internally suspended, wait for internal resume */ 3028 mutex_unlock(&md->suspend_lock); 3029 r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE); 3030 if (r) 3031 return r; 3032 goto retry; 3033 } 3034 3035 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock)); 3036 if (!map) { 3037 /* avoid deadlock with fs/namespace.c:do_mount() */ 3038 suspend_flags &= ~DM_SUSPEND_LOCKFS_FLAG; 3039 } 3040 3041 r = __dm_suspend(md, map, suspend_flags, TASK_INTERRUPTIBLE, DMF_SUSPENDED); 3042 if (r) 3043 goto out_unlock; 3044 3045 set_bit(DMF_POST_SUSPENDING, &md->flags); 3046 dm_table_postsuspend_targets(map); 3047 clear_bit(DMF_POST_SUSPENDING, &md->flags); 3048 3049 out_unlock: 3050 mutex_unlock(&md->suspend_lock); 3051 return r; 3052 } 3053 3054 static int __dm_resume(struct mapped_device *md, struct dm_table *map) 3055 { 3056 if (map) { 3057 int r = dm_table_resume_targets(map); 3058 3059 if (r) 3060 return r; 3061 } 3062 3063 dm_queue_flush(md); 3064 3065 /* 3066 * Flushing deferred I/Os must be done after targets are resumed 3067 * so that mapping of targets can work correctly. 3068 * Request-based dm is queueing the deferred I/Os in its request_queue. 3069 */ 3070 if (dm_request_based(md)) 3071 dm_start_queue(md->queue); 3072 3073 unlock_fs(md); 3074 3075 return 0; 3076 } 3077 3078 int dm_resume(struct mapped_device *md) 3079 { 3080 int r; 3081 struct dm_table *map = NULL; 3082 3083 retry: 3084 r = -EINVAL; 3085 mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING); 3086 3087 if (!dm_suspended_md(md)) 3088 goto out; 3089 3090 if (dm_suspended_internally_md(md)) { 3091 /* already internally suspended, wait for internal resume */ 3092 mutex_unlock(&md->suspend_lock); 3093 r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE); 3094 if (r) 3095 return r; 3096 goto retry; 3097 } 3098 3099 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock)); 3100 if (!map || !dm_table_get_size(map)) 3101 goto out; 3102 3103 r = __dm_resume(md, map); 3104 if (r) 3105 goto out; 3106 3107 clear_bit(DMF_SUSPENDED, &md->flags); 3108 out: 3109 mutex_unlock(&md->suspend_lock); 3110 3111 return r; 3112 } 3113 3114 /* 3115 * Internal suspend/resume works like userspace-driven suspend. It waits 3116 * until all bios finish and prevents issuing new bios to the target drivers. 3117 * It may be used only from the kernel. 3118 */ 3119 3120 static void __dm_internal_suspend(struct mapped_device *md, unsigned int suspend_flags) 3121 { 3122 struct dm_table *map = NULL; 3123 3124 lockdep_assert_held(&md->suspend_lock); 3125 3126 if (md->internal_suspend_count++) 3127 return; /* nested internal suspend */ 3128 3129 if (dm_suspended_md(md)) { 3130 set_bit(DMF_SUSPENDED_INTERNALLY, &md->flags); 3131 return; /* nest suspend */ 3132 } 3133 3134 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock)); 3135 3136 /* 3137 * Using TASK_UNINTERRUPTIBLE because only NOFLUSH internal suspend is 3138 * supported. Properly supporting a TASK_INTERRUPTIBLE internal suspend 3139 * would require changing .presuspend to return an error -- avoid this 3140 * until there is a need for more elaborate variants of internal suspend. 3141 */ 3142 (void) __dm_suspend(md, map, suspend_flags, TASK_UNINTERRUPTIBLE, 3143 DMF_SUSPENDED_INTERNALLY); 3144 3145 set_bit(DMF_POST_SUSPENDING, &md->flags); 3146 dm_table_postsuspend_targets(map); 3147 clear_bit(DMF_POST_SUSPENDING, &md->flags); 3148 } 3149 3150 static void __dm_internal_resume(struct mapped_device *md) 3151 { 3152 int r; 3153 struct dm_table *map; 3154 3155 BUG_ON(!md->internal_suspend_count); 3156 3157 if (--md->internal_suspend_count) 3158 return; /* resume from nested internal suspend */ 3159 3160 if (dm_suspended_md(md)) 3161 goto done; /* resume from nested suspend */ 3162 3163 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock)); 3164 r = __dm_resume(md, map); 3165 if (r) { 3166 /* 3167 * If a preresume method of some target failed, we are in a 3168 * tricky situation. We can't return an error to the caller. We 3169 * can't fake success because then the "resume" and 3170 * "postsuspend" methods would not be paired correctly, and it 3171 * would break various targets, for example it would cause list 3172 * corruption in the "origin" target. 3173 * 3174 * So, we fake normal suspend here, to make sure that the 3175 * "resume" and "postsuspend" methods will be paired correctly. 3176 */ 3177 DMERR("Preresume method failed: %d", r); 3178 set_bit(DMF_SUSPENDED, &md->flags); 3179 } 3180 done: 3181 clear_bit(DMF_SUSPENDED_INTERNALLY, &md->flags); 3182 smp_mb__after_atomic(); 3183 wake_up_bit(&md->flags, DMF_SUSPENDED_INTERNALLY); 3184 } 3185 3186 void dm_internal_suspend_noflush(struct mapped_device *md) 3187 { 3188 mutex_lock(&md->suspend_lock); 3189 __dm_internal_suspend(md, DM_SUSPEND_NOFLUSH_FLAG); 3190 mutex_unlock(&md->suspend_lock); 3191 } 3192 EXPORT_SYMBOL_GPL(dm_internal_suspend_noflush); 3193 3194 void dm_internal_resume(struct mapped_device *md) 3195 { 3196 mutex_lock(&md->suspend_lock); 3197 __dm_internal_resume(md); 3198 mutex_unlock(&md->suspend_lock); 3199 } 3200 EXPORT_SYMBOL_GPL(dm_internal_resume); 3201 3202 /* 3203 * Fast variants of internal suspend/resume hold md->suspend_lock, 3204 * which prevents interaction with userspace-driven suspend. 3205 */ 3206 3207 void dm_internal_suspend_fast(struct mapped_device *md) 3208 { 3209 mutex_lock(&md->suspend_lock); 3210 if (dm_suspended_md(md) || dm_suspended_internally_md(md)) 3211 return; 3212 3213 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags); 3214 synchronize_srcu(&md->io_barrier); 3215 flush_workqueue(md->wq); 3216 dm_wait_for_completion(md, TASK_UNINTERRUPTIBLE); 3217 } 3218 EXPORT_SYMBOL_GPL(dm_internal_suspend_fast); 3219 3220 void dm_internal_resume_fast(struct mapped_device *md) 3221 { 3222 if (dm_suspended_md(md) || dm_suspended_internally_md(md)) 3223 goto done; 3224 3225 dm_queue_flush(md); 3226 3227 done: 3228 mutex_unlock(&md->suspend_lock); 3229 } 3230 EXPORT_SYMBOL_GPL(dm_internal_resume_fast); 3231 3232 /* 3233 *--------------------------------------------------------------- 3234 * Event notification. 3235 *--------------------------------------------------------------- 3236 */ 3237 int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action, 3238 unsigned int cookie, bool need_resize_uevent) 3239 { 3240 int r; 3241 unsigned int noio_flag; 3242 char udev_cookie[DM_COOKIE_LENGTH]; 3243 char *envp[3] = { NULL, NULL, NULL }; 3244 char **envpp = envp; 3245 if (cookie) { 3246 snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u", 3247 DM_COOKIE_ENV_VAR_NAME, cookie); 3248 *envpp++ = udev_cookie; 3249 } 3250 if (need_resize_uevent) { 3251 *envpp++ = "RESIZE=1"; 3252 } 3253 3254 noio_flag = memalloc_noio_save(); 3255 3256 r = kobject_uevent_env(&disk_to_dev(md->disk)->kobj, action, envp); 3257 3258 memalloc_noio_restore(noio_flag); 3259 3260 return r; 3261 } 3262 3263 uint32_t dm_next_uevent_seq(struct mapped_device *md) 3264 { 3265 return atomic_add_return(1, &md->uevent_seq); 3266 } 3267 3268 uint32_t dm_get_event_nr(struct mapped_device *md) 3269 { 3270 return atomic_read(&md->event_nr); 3271 } 3272 3273 int dm_wait_event(struct mapped_device *md, int event_nr) 3274 { 3275 return wait_event_interruptible(md->eventq, 3276 (event_nr != atomic_read(&md->event_nr))); 3277 } 3278 3279 void dm_uevent_add(struct mapped_device *md, struct list_head *elist) 3280 { 3281 unsigned long flags; 3282 3283 spin_lock_irqsave(&md->uevent_lock, flags); 3284 list_add(elist, &md->uevent_list); 3285 spin_unlock_irqrestore(&md->uevent_lock, flags); 3286 } 3287 3288 /* 3289 * The gendisk is only valid as long as you have a reference 3290 * count on 'md'. 3291 */ 3292 struct gendisk *dm_disk(struct mapped_device *md) 3293 { 3294 return md->disk; 3295 } 3296 EXPORT_SYMBOL_GPL(dm_disk); 3297 3298 struct kobject *dm_kobject(struct mapped_device *md) 3299 { 3300 return &md->kobj_holder.kobj; 3301 } 3302 3303 struct mapped_device *dm_get_from_kobject(struct kobject *kobj) 3304 { 3305 struct mapped_device *md; 3306 3307 md = container_of(kobj, struct mapped_device, kobj_holder.kobj); 3308 3309 spin_lock(&_minor_lock); 3310 if (test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) { 3311 md = NULL; 3312 goto out; 3313 } 3314 dm_get(md); 3315 out: 3316 spin_unlock(&_minor_lock); 3317 3318 return md; 3319 } 3320 3321 int dm_suspended_md(struct mapped_device *md) 3322 { 3323 return test_bit(DMF_SUSPENDED, &md->flags); 3324 } 3325 3326 static int dm_post_suspending_md(struct mapped_device *md) 3327 { 3328 return test_bit(DMF_POST_SUSPENDING, &md->flags); 3329 } 3330 3331 int dm_suspended_internally_md(struct mapped_device *md) 3332 { 3333 return test_bit(DMF_SUSPENDED_INTERNALLY, &md->flags); 3334 } 3335 3336 int dm_test_deferred_remove_flag(struct mapped_device *md) 3337 { 3338 return test_bit(DMF_DEFERRED_REMOVE, &md->flags); 3339 } 3340 3341 int dm_suspended(struct dm_target *ti) 3342 { 3343 return dm_suspended_md(ti->table->md); 3344 } 3345 EXPORT_SYMBOL_GPL(dm_suspended); 3346 3347 int dm_post_suspending(struct dm_target *ti) 3348 { 3349 return dm_post_suspending_md(ti->table->md); 3350 } 3351 EXPORT_SYMBOL_GPL(dm_post_suspending); 3352 3353 int dm_noflush_suspending(struct dm_target *ti) 3354 { 3355 return __noflush_suspending(ti->table->md); 3356 } 3357 EXPORT_SYMBOL_GPL(dm_noflush_suspending); 3358 3359 void dm_free_md_mempools(struct dm_md_mempools *pools) 3360 { 3361 if (!pools) 3362 return; 3363 3364 bioset_exit(&pools->bs); 3365 bioset_exit(&pools->io_bs); 3366 3367 kfree(pools); 3368 } 3369 3370 struct dm_blkdev_id { 3371 u8 *id; 3372 enum blk_unique_id type; 3373 }; 3374 3375 static int __dm_get_unique_id(struct dm_target *ti, struct dm_dev *dev, 3376 sector_t start, sector_t len, void *data) 3377 { 3378 struct dm_blkdev_id *dm_id = data; 3379 const struct block_device_operations *fops = dev->bdev->bd_disk->fops; 3380 3381 if (!fops->get_unique_id) 3382 return 0; 3383 3384 return fops->get_unique_id(dev->bdev->bd_disk, dm_id->id, dm_id->type); 3385 } 3386 3387 /* 3388 * Allow access to get_unique_id() for the first device returning a 3389 * non-zero result. Reasonable use expects all devices to have the 3390 * same unique id. 3391 */ 3392 static int dm_blk_get_unique_id(struct gendisk *disk, u8 *id, 3393 enum blk_unique_id type) 3394 { 3395 struct mapped_device *md = disk->private_data; 3396 struct dm_table *table; 3397 struct dm_target *ti; 3398 int ret = 0, srcu_idx; 3399 3400 struct dm_blkdev_id dm_id = { 3401 .id = id, 3402 .type = type, 3403 }; 3404 3405 table = dm_get_live_table(md, &srcu_idx); 3406 if (!table || !dm_table_get_size(table)) 3407 goto out; 3408 3409 /* We only support devices that have a single target */ 3410 if (table->num_targets != 1) 3411 goto out; 3412 ti = dm_table_get_target(table, 0); 3413 3414 if (!ti->type->iterate_devices) 3415 goto out; 3416 3417 ret = ti->type->iterate_devices(ti, __dm_get_unique_id, &dm_id); 3418 out: 3419 dm_put_live_table(md, srcu_idx); 3420 return ret; 3421 } 3422 3423 struct dm_pr { 3424 u64 old_key; 3425 u64 new_key; 3426 u32 flags; 3427 bool abort; 3428 bool fail_early; 3429 int ret; 3430 enum pr_type type; 3431 struct pr_keys *read_keys; 3432 struct pr_held_reservation *rsv; 3433 }; 3434 3435 static int dm_call_pr(struct block_device *bdev, iterate_devices_callout_fn fn, 3436 struct dm_pr *pr) 3437 { 3438 struct mapped_device *md = bdev->bd_disk->private_data; 3439 struct dm_table *table; 3440 struct dm_target *ti; 3441 int ret = -ENOTTY, srcu_idx; 3442 3443 table = dm_get_live_table(md, &srcu_idx); 3444 if (!table || !dm_table_get_size(table)) 3445 goto out; 3446 3447 /* We only support devices that have a single target */ 3448 if (table->num_targets != 1) 3449 goto out; 3450 ti = dm_table_get_target(table, 0); 3451 3452 if (dm_suspended_md(md)) { 3453 ret = -EAGAIN; 3454 goto out; 3455 } 3456 3457 ret = -EINVAL; 3458 if (!ti->type->iterate_devices) 3459 goto out; 3460 3461 ti->type->iterate_devices(ti, fn, pr); 3462 ret = 0; 3463 out: 3464 dm_put_live_table(md, srcu_idx); 3465 return ret; 3466 } 3467 3468 /* 3469 * For register / unregister we need to manually call out to every path. 3470 */ 3471 static int __dm_pr_register(struct dm_target *ti, struct dm_dev *dev, 3472 sector_t start, sector_t len, void *data) 3473 { 3474 struct dm_pr *pr = data; 3475 const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops; 3476 int ret; 3477 3478 if (!ops || !ops->pr_register) { 3479 pr->ret = -EOPNOTSUPP; 3480 return -1; 3481 } 3482 3483 ret = ops->pr_register(dev->bdev, pr->old_key, pr->new_key, pr->flags); 3484 if (!ret) 3485 return 0; 3486 3487 if (!pr->ret) 3488 pr->ret = ret; 3489 3490 if (pr->fail_early) 3491 return -1; 3492 3493 return 0; 3494 } 3495 3496 static int dm_pr_register(struct block_device *bdev, u64 old_key, u64 new_key, 3497 u32 flags) 3498 { 3499 struct dm_pr pr = { 3500 .old_key = old_key, 3501 .new_key = new_key, 3502 .flags = flags, 3503 .fail_early = true, 3504 .ret = 0, 3505 }; 3506 int ret; 3507 3508 ret = dm_call_pr(bdev, __dm_pr_register, &pr); 3509 if (ret) { 3510 /* Didn't even get to register a path */ 3511 return ret; 3512 } 3513 3514 if (!pr.ret) 3515 return 0; 3516 ret = pr.ret; 3517 3518 if (!new_key) 3519 return ret; 3520 3521 /* unregister all paths if we failed to register any path */ 3522 pr.old_key = new_key; 3523 pr.new_key = 0; 3524 pr.flags = 0; 3525 pr.fail_early = false; 3526 (void) dm_call_pr(bdev, __dm_pr_register, &pr); 3527 return ret; 3528 } 3529 3530 3531 static int __dm_pr_reserve(struct dm_target *ti, struct dm_dev *dev, 3532 sector_t start, sector_t len, void *data) 3533 { 3534 struct dm_pr *pr = data; 3535 const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops; 3536 3537 if (!ops || !ops->pr_reserve) { 3538 pr->ret = -EOPNOTSUPP; 3539 return -1; 3540 } 3541 3542 pr->ret = ops->pr_reserve(dev->bdev, pr->old_key, pr->type, pr->flags); 3543 if (!pr->ret) 3544 return -1; 3545 3546 return 0; 3547 } 3548 3549 static int dm_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type, 3550 u32 flags) 3551 { 3552 struct dm_pr pr = { 3553 .old_key = key, 3554 .flags = flags, 3555 .type = type, 3556 .fail_early = false, 3557 .ret = 0, 3558 }; 3559 int ret; 3560 3561 ret = dm_call_pr(bdev, __dm_pr_reserve, &pr); 3562 if (ret) 3563 return ret; 3564 3565 return pr.ret; 3566 } 3567 3568 /* 3569 * If there is a non-All Registrants type of reservation, the release must be 3570 * sent down the holding path. For the cases where there is no reservation or 3571 * the path is not the holder the device will also return success, so we must 3572 * try each path to make sure we got the correct path. 3573 */ 3574 static int __dm_pr_release(struct dm_target *ti, struct dm_dev *dev, 3575 sector_t start, sector_t len, void *data) 3576 { 3577 struct dm_pr *pr = data; 3578 const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops; 3579 3580 if (!ops || !ops->pr_release) { 3581 pr->ret = -EOPNOTSUPP; 3582 return -1; 3583 } 3584 3585 pr->ret = ops->pr_release(dev->bdev, pr->old_key, pr->type); 3586 if (pr->ret) 3587 return -1; 3588 3589 return 0; 3590 } 3591 3592 static int dm_pr_release(struct block_device *bdev, u64 key, enum pr_type type) 3593 { 3594 struct dm_pr pr = { 3595 .old_key = key, 3596 .type = type, 3597 .fail_early = false, 3598 }; 3599 int ret; 3600 3601 ret = dm_call_pr(bdev, __dm_pr_release, &pr); 3602 if (ret) 3603 return ret; 3604 3605 return pr.ret; 3606 } 3607 3608 static int __dm_pr_preempt(struct dm_target *ti, struct dm_dev *dev, 3609 sector_t start, sector_t len, void *data) 3610 { 3611 struct dm_pr *pr = data; 3612 const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops; 3613 3614 if (!ops || !ops->pr_preempt) { 3615 pr->ret = -EOPNOTSUPP; 3616 return -1; 3617 } 3618 3619 pr->ret = ops->pr_preempt(dev->bdev, pr->old_key, pr->new_key, pr->type, 3620 pr->abort); 3621 if (!pr->ret) 3622 return -1; 3623 3624 return 0; 3625 } 3626 3627 static int dm_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key, 3628 enum pr_type type, bool abort) 3629 { 3630 struct dm_pr pr = { 3631 .new_key = new_key, 3632 .old_key = old_key, 3633 .type = type, 3634 .fail_early = false, 3635 }; 3636 int ret; 3637 3638 ret = dm_call_pr(bdev, __dm_pr_preempt, &pr); 3639 if (ret) 3640 return ret; 3641 3642 return pr.ret; 3643 } 3644 3645 static int dm_pr_clear(struct block_device *bdev, u64 key) 3646 { 3647 struct mapped_device *md = bdev->bd_disk->private_data; 3648 const struct pr_ops *ops; 3649 int r, srcu_idx; 3650 bool forward = true; 3651 3652 /* Not a real ioctl, but targets must not interpret non-DM ioctls */ 3653 r = dm_prepare_ioctl(md, &srcu_idx, &bdev, 0, 0, &forward); 3654 if (r < 0) 3655 goto out; 3656 WARN_ON_ONCE(!forward); 3657 3658 ops = bdev->bd_disk->fops->pr_ops; 3659 if (ops && ops->pr_clear) 3660 r = ops->pr_clear(bdev, key); 3661 else 3662 r = -EOPNOTSUPP; 3663 out: 3664 dm_unprepare_ioctl(md, srcu_idx); 3665 return r; 3666 } 3667 3668 static int __dm_pr_read_keys(struct dm_target *ti, struct dm_dev *dev, 3669 sector_t start, sector_t len, void *data) 3670 { 3671 struct dm_pr *pr = data; 3672 const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops; 3673 3674 if (!ops || !ops->pr_read_keys) { 3675 pr->ret = -EOPNOTSUPP; 3676 return -1; 3677 } 3678 3679 pr->ret = ops->pr_read_keys(dev->bdev, pr->read_keys); 3680 if (!pr->ret) 3681 return -1; 3682 3683 return 0; 3684 } 3685 3686 static int dm_pr_read_keys(struct block_device *bdev, struct pr_keys *keys) 3687 { 3688 struct dm_pr pr = { 3689 .read_keys = keys, 3690 }; 3691 int ret; 3692 3693 ret = dm_call_pr(bdev, __dm_pr_read_keys, &pr); 3694 if (ret) 3695 return ret; 3696 3697 return pr.ret; 3698 } 3699 3700 static int __dm_pr_read_reservation(struct dm_target *ti, struct dm_dev *dev, 3701 sector_t start, sector_t len, void *data) 3702 { 3703 struct dm_pr *pr = data; 3704 const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops; 3705 3706 if (!ops || !ops->pr_read_reservation) { 3707 pr->ret = -EOPNOTSUPP; 3708 return -1; 3709 } 3710 3711 pr->ret = ops->pr_read_reservation(dev->bdev, pr->rsv); 3712 if (!pr->ret) 3713 return -1; 3714 3715 return 0; 3716 } 3717 3718 static int dm_pr_read_reservation(struct block_device *bdev, 3719 struct pr_held_reservation *rsv) 3720 { 3721 struct dm_pr pr = { 3722 .rsv = rsv, 3723 }; 3724 int ret; 3725 3726 ret = dm_call_pr(bdev, __dm_pr_read_reservation, &pr); 3727 if (ret) 3728 return ret; 3729 3730 return pr.ret; 3731 } 3732 3733 static const struct pr_ops dm_pr_ops = { 3734 .pr_register = dm_pr_register, 3735 .pr_reserve = dm_pr_reserve, 3736 .pr_release = dm_pr_release, 3737 .pr_preempt = dm_pr_preempt, 3738 .pr_clear = dm_pr_clear, 3739 .pr_read_keys = dm_pr_read_keys, 3740 .pr_read_reservation = dm_pr_read_reservation, 3741 }; 3742 3743 static const struct block_device_operations dm_blk_dops = { 3744 .submit_bio = dm_submit_bio, 3745 .poll_bio = dm_poll_bio, 3746 .open = dm_blk_open, 3747 .release = dm_blk_close, 3748 .ioctl = dm_blk_ioctl, 3749 .getgeo = dm_blk_getgeo, 3750 .report_zones = dm_blk_report_zones, 3751 .get_unique_id = dm_blk_get_unique_id, 3752 .pr_ops = &dm_pr_ops, 3753 .owner = THIS_MODULE 3754 }; 3755 3756 static const struct block_device_operations dm_rq_blk_dops = { 3757 .open = dm_blk_open, 3758 .release = dm_blk_close, 3759 .ioctl = dm_blk_ioctl, 3760 .getgeo = dm_blk_getgeo, 3761 .get_unique_id = dm_blk_get_unique_id, 3762 .pr_ops = &dm_pr_ops, 3763 .owner = THIS_MODULE 3764 }; 3765 3766 static const struct dax_operations dm_dax_ops = { 3767 .direct_access = dm_dax_direct_access, 3768 .zero_page_range = dm_dax_zero_page_range, 3769 .recovery_write = dm_dax_recovery_write, 3770 }; 3771 3772 /* 3773 * module hooks 3774 */ 3775 module_init(dm_init); 3776 module_exit(dm_exit); 3777 3778 module_param(major, uint, 0); 3779 MODULE_PARM_DESC(major, "The major number of the device mapper"); 3780 3781 module_param(reserved_bio_based_ios, uint, 0644); 3782 MODULE_PARM_DESC(reserved_bio_based_ios, "Reserved IOs in bio-based mempools"); 3783 3784 module_param(dm_numa_node, int, 0644); 3785 MODULE_PARM_DESC(dm_numa_node, "NUMA node for DM device memory allocations"); 3786 3787 module_param(swap_bios, int, 0644); 3788 MODULE_PARM_DESC(swap_bios, "Maximum allowed inflight swap IOs"); 3789 3790 MODULE_DESCRIPTION(DM_NAME " driver"); 3791 MODULE_AUTHOR("Joe Thornber <dm-devel@lists.linux.dev>"); 3792 MODULE_LICENSE("GPL"); 3793