1 /* 2 * Copyright (C) 2001, 2002 Sistina Software (UK) Limited. 3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved. 4 * 5 * This file is released under the GPL. 6 */ 7 8 #include "dm-core.h" 9 #include "dm-rq.h" 10 #include "dm-uevent.h" 11 12 #include <linux/init.h> 13 #include <linux/module.h> 14 #include <linux/mutex.h> 15 #include <linux/sched/mm.h> 16 #include <linux/sched/signal.h> 17 #include <linux/blkpg.h> 18 #include <linux/bio.h> 19 #include <linux/mempool.h> 20 #include <linux/dax.h> 21 #include <linux/slab.h> 22 #include <linux/idr.h> 23 #include <linux/uio.h> 24 #include <linux/hdreg.h> 25 #include <linux/delay.h> 26 #include <linux/wait.h> 27 #include <linux/pr.h> 28 #include <linux/refcount.h> 29 #include <linux/part_stat.h> 30 #include <linux/blk-crypto.h> 31 32 #define DM_MSG_PREFIX "core" 33 34 /* 35 * Cookies are numeric values sent with CHANGE and REMOVE 36 * uevents while resuming, removing or renaming the device. 37 */ 38 #define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE" 39 #define DM_COOKIE_LENGTH 24 40 41 static const char *_name = DM_NAME; 42 43 static unsigned int major = 0; 44 static unsigned int _major = 0; 45 46 static DEFINE_IDR(_minor_idr); 47 48 static DEFINE_SPINLOCK(_minor_lock); 49 50 static void do_deferred_remove(struct work_struct *w); 51 52 static DECLARE_WORK(deferred_remove_work, do_deferred_remove); 53 54 static struct workqueue_struct *deferred_remove_workqueue; 55 56 atomic_t dm_global_event_nr = ATOMIC_INIT(0); 57 DECLARE_WAIT_QUEUE_HEAD(dm_global_eventq); 58 59 void dm_issue_global_event(void) 60 { 61 atomic_inc(&dm_global_event_nr); 62 wake_up(&dm_global_eventq); 63 } 64 65 /* 66 * One of these is allocated (on-stack) per original bio. 67 */ 68 struct clone_info { 69 struct dm_table *map; 70 struct bio *bio; 71 struct dm_io *io; 72 sector_t sector; 73 unsigned sector_count; 74 }; 75 76 /* 77 * One of these is allocated per clone bio. 78 */ 79 #define DM_TIO_MAGIC 7282014 80 struct dm_target_io { 81 unsigned magic; 82 struct dm_io *io; 83 struct dm_target *ti; 84 unsigned target_bio_nr; 85 unsigned *len_ptr; 86 bool inside_dm_io; 87 struct bio clone; 88 }; 89 90 /* 91 * One of these is allocated per original bio. 92 * It contains the first clone used for that original. 93 */ 94 #define DM_IO_MAGIC 5191977 95 struct dm_io { 96 unsigned magic; 97 struct mapped_device *md; 98 blk_status_t status; 99 atomic_t io_count; 100 struct bio *orig_bio; 101 unsigned long start_time; 102 spinlock_t endio_lock; 103 struct dm_stats_aux stats_aux; 104 /* last member of dm_target_io is 'struct bio' */ 105 struct dm_target_io tio; 106 }; 107 108 void *dm_per_bio_data(struct bio *bio, size_t data_size) 109 { 110 struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone); 111 if (!tio->inside_dm_io) 112 return (char *)bio - offsetof(struct dm_target_io, clone) - data_size; 113 return (char *)bio - offsetof(struct dm_target_io, clone) - offsetof(struct dm_io, tio) - data_size; 114 } 115 EXPORT_SYMBOL_GPL(dm_per_bio_data); 116 117 struct bio *dm_bio_from_per_bio_data(void *data, size_t data_size) 118 { 119 struct dm_io *io = (struct dm_io *)((char *)data + data_size); 120 if (io->magic == DM_IO_MAGIC) 121 return (struct bio *)((char *)io + offsetof(struct dm_io, tio) + offsetof(struct dm_target_io, clone)); 122 BUG_ON(io->magic != DM_TIO_MAGIC); 123 return (struct bio *)((char *)io + offsetof(struct dm_target_io, clone)); 124 } 125 EXPORT_SYMBOL_GPL(dm_bio_from_per_bio_data); 126 127 unsigned dm_bio_get_target_bio_nr(const struct bio *bio) 128 { 129 return container_of(bio, struct dm_target_io, clone)->target_bio_nr; 130 } 131 EXPORT_SYMBOL_GPL(dm_bio_get_target_bio_nr); 132 133 #define MINOR_ALLOCED ((void *)-1) 134 135 /* 136 * Bits for the md->flags field. 137 */ 138 #define DMF_BLOCK_IO_FOR_SUSPEND 0 139 #define DMF_SUSPENDED 1 140 #define DMF_FROZEN 2 141 #define DMF_FREEING 3 142 #define DMF_DELETING 4 143 #define DMF_NOFLUSH_SUSPENDING 5 144 #define DMF_DEFERRED_REMOVE 6 145 #define DMF_SUSPENDED_INTERNALLY 7 146 #define DMF_POST_SUSPENDING 8 147 148 #define DM_NUMA_NODE NUMA_NO_NODE 149 static int dm_numa_node = DM_NUMA_NODE; 150 151 /* 152 * For mempools pre-allocation at the table loading time. 153 */ 154 struct dm_md_mempools { 155 struct bio_set bs; 156 struct bio_set io_bs; 157 }; 158 159 struct table_device { 160 struct list_head list; 161 refcount_t count; 162 struct dm_dev dm_dev; 163 }; 164 165 /* 166 * Bio-based DM's mempools' reserved IOs set by the user. 167 */ 168 #define RESERVED_BIO_BASED_IOS 16 169 static unsigned reserved_bio_based_ios = RESERVED_BIO_BASED_IOS; 170 171 static int __dm_get_module_param_int(int *module_param, int min, int max) 172 { 173 int param = READ_ONCE(*module_param); 174 int modified_param = 0; 175 bool modified = true; 176 177 if (param < min) 178 modified_param = min; 179 else if (param > max) 180 modified_param = max; 181 else 182 modified = false; 183 184 if (modified) { 185 (void)cmpxchg(module_param, param, modified_param); 186 param = modified_param; 187 } 188 189 return param; 190 } 191 192 unsigned __dm_get_module_param(unsigned *module_param, 193 unsigned def, unsigned max) 194 { 195 unsigned param = READ_ONCE(*module_param); 196 unsigned modified_param = 0; 197 198 if (!param) 199 modified_param = def; 200 else if (param > max) 201 modified_param = max; 202 203 if (modified_param) { 204 (void)cmpxchg(module_param, param, modified_param); 205 param = modified_param; 206 } 207 208 return param; 209 } 210 211 unsigned dm_get_reserved_bio_based_ios(void) 212 { 213 return __dm_get_module_param(&reserved_bio_based_ios, 214 RESERVED_BIO_BASED_IOS, DM_RESERVED_MAX_IOS); 215 } 216 EXPORT_SYMBOL_GPL(dm_get_reserved_bio_based_ios); 217 218 static unsigned dm_get_numa_node(void) 219 { 220 return __dm_get_module_param_int(&dm_numa_node, 221 DM_NUMA_NODE, num_online_nodes() - 1); 222 } 223 224 static int __init local_init(void) 225 { 226 int r; 227 228 r = dm_uevent_init(); 229 if (r) 230 return r; 231 232 deferred_remove_workqueue = alloc_workqueue("kdmremove", WQ_UNBOUND, 1); 233 if (!deferred_remove_workqueue) { 234 r = -ENOMEM; 235 goto out_uevent_exit; 236 } 237 238 _major = major; 239 r = register_blkdev(_major, _name); 240 if (r < 0) 241 goto out_free_workqueue; 242 243 if (!_major) 244 _major = r; 245 246 return 0; 247 248 out_free_workqueue: 249 destroy_workqueue(deferred_remove_workqueue); 250 out_uevent_exit: 251 dm_uevent_exit(); 252 253 return r; 254 } 255 256 static void local_exit(void) 257 { 258 flush_scheduled_work(); 259 destroy_workqueue(deferred_remove_workqueue); 260 261 unregister_blkdev(_major, _name); 262 dm_uevent_exit(); 263 264 _major = 0; 265 266 DMINFO("cleaned up"); 267 } 268 269 static int (*_inits[])(void) __initdata = { 270 local_init, 271 dm_target_init, 272 dm_linear_init, 273 dm_stripe_init, 274 dm_io_init, 275 dm_kcopyd_init, 276 dm_interface_init, 277 dm_statistics_init, 278 }; 279 280 static void (*_exits[])(void) = { 281 local_exit, 282 dm_target_exit, 283 dm_linear_exit, 284 dm_stripe_exit, 285 dm_io_exit, 286 dm_kcopyd_exit, 287 dm_interface_exit, 288 dm_statistics_exit, 289 }; 290 291 static int __init dm_init(void) 292 { 293 const int count = ARRAY_SIZE(_inits); 294 295 int r, i; 296 297 for (i = 0; i < count; i++) { 298 r = _inits[i](); 299 if (r) 300 goto bad; 301 } 302 303 return 0; 304 305 bad: 306 while (i--) 307 _exits[i](); 308 309 return r; 310 } 311 312 static void __exit dm_exit(void) 313 { 314 int i = ARRAY_SIZE(_exits); 315 316 while (i--) 317 _exits[i](); 318 319 /* 320 * Should be empty by this point. 321 */ 322 idr_destroy(&_minor_idr); 323 } 324 325 /* 326 * Block device functions 327 */ 328 int dm_deleting_md(struct mapped_device *md) 329 { 330 return test_bit(DMF_DELETING, &md->flags); 331 } 332 333 static int dm_blk_open(struct block_device *bdev, fmode_t mode) 334 { 335 struct mapped_device *md; 336 337 spin_lock(&_minor_lock); 338 339 md = bdev->bd_disk->private_data; 340 if (!md) 341 goto out; 342 343 if (test_bit(DMF_FREEING, &md->flags) || 344 dm_deleting_md(md)) { 345 md = NULL; 346 goto out; 347 } 348 349 dm_get(md); 350 atomic_inc(&md->open_count); 351 out: 352 spin_unlock(&_minor_lock); 353 354 return md ? 0 : -ENXIO; 355 } 356 357 static void dm_blk_close(struct gendisk *disk, fmode_t mode) 358 { 359 struct mapped_device *md; 360 361 spin_lock(&_minor_lock); 362 363 md = disk->private_data; 364 if (WARN_ON(!md)) 365 goto out; 366 367 if (atomic_dec_and_test(&md->open_count) && 368 (test_bit(DMF_DEFERRED_REMOVE, &md->flags))) 369 queue_work(deferred_remove_workqueue, &deferred_remove_work); 370 371 dm_put(md); 372 out: 373 spin_unlock(&_minor_lock); 374 } 375 376 int dm_open_count(struct mapped_device *md) 377 { 378 return atomic_read(&md->open_count); 379 } 380 381 /* 382 * Guarantees nothing is using the device before it's deleted. 383 */ 384 int dm_lock_for_deletion(struct mapped_device *md, bool mark_deferred, bool only_deferred) 385 { 386 int r = 0; 387 388 spin_lock(&_minor_lock); 389 390 if (dm_open_count(md)) { 391 r = -EBUSY; 392 if (mark_deferred) 393 set_bit(DMF_DEFERRED_REMOVE, &md->flags); 394 } else if (only_deferred && !test_bit(DMF_DEFERRED_REMOVE, &md->flags)) 395 r = -EEXIST; 396 else 397 set_bit(DMF_DELETING, &md->flags); 398 399 spin_unlock(&_minor_lock); 400 401 return r; 402 } 403 404 int dm_cancel_deferred_remove(struct mapped_device *md) 405 { 406 int r = 0; 407 408 spin_lock(&_minor_lock); 409 410 if (test_bit(DMF_DELETING, &md->flags)) 411 r = -EBUSY; 412 else 413 clear_bit(DMF_DEFERRED_REMOVE, &md->flags); 414 415 spin_unlock(&_minor_lock); 416 417 return r; 418 } 419 420 static void do_deferred_remove(struct work_struct *w) 421 { 422 dm_deferred_remove(); 423 } 424 425 sector_t dm_get_size(struct mapped_device *md) 426 { 427 return get_capacity(md->disk); 428 } 429 430 struct request_queue *dm_get_md_queue(struct mapped_device *md) 431 { 432 return md->queue; 433 } 434 435 struct dm_stats *dm_get_stats(struct mapped_device *md) 436 { 437 return &md->stats; 438 } 439 440 static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo) 441 { 442 struct mapped_device *md = bdev->bd_disk->private_data; 443 444 return dm_get_geometry(md, geo); 445 } 446 447 #ifdef CONFIG_BLK_DEV_ZONED 448 int dm_report_zones_cb(struct blk_zone *zone, unsigned int idx, void *data) 449 { 450 struct dm_report_zones_args *args = data; 451 sector_t sector_diff = args->tgt->begin - args->start; 452 453 /* 454 * Ignore zones beyond the target range. 455 */ 456 if (zone->start >= args->start + args->tgt->len) 457 return 0; 458 459 /* 460 * Remap the start sector and write pointer position of the zone 461 * to match its position in the target range. 462 */ 463 zone->start += sector_diff; 464 if (zone->type != BLK_ZONE_TYPE_CONVENTIONAL) { 465 if (zone->cond == BLK_ZONE_COND_FULL) 466 zone->wp = zone->start + zone->len; 467 else if (zone->cond == BLK_ZONE_COND_EMPTY) 468 zone->wp = zone->start; 469 else 470 zone->wp += sector_diff; 471 } 472 473 args->next_sector = zone->start + zone->len; 474 return args->orig_cb(zone, args->zone_idx++, args->orig_data); 475 } 476 EXPORT_SYMBOL_GPL(dm_report_zones_cb); 477 478 static int dm_blk_report_zones(struct gendisk *disk, sector_t sector, 479 unsigned int nr_zones, report_zones_cb cb, void *data) 480 { 481 struct mapped_device *md = disk->private_data; 482 struct dm_table *map; 483 int srcu_idx, ret; 484 struct dm_report_zones_args args = { 485 .next_sector = sector, 486 .orig_data = data, 487 .orig_cb = cb, 488 }; 489 490 if (dm_suspended_md(md)) 491 return -EAGAIN; 492 493 map = dm_get_live_table(md, &srcu_idx); 494 if (!map) 495 return -EIO; 496 497 do { 498 struct dm_target *tgt; 499 500 tgt = dm_table_find_target(map, args.next_sector); 501 if (WARN_ON_ONCE(!tgt->type->report_zones)) { 502 ret = -EIO; 503 goto out; 504 } 505 506 args.tgt = tgt; 507 ret = tgt->type->report_zones(tgt, &args, 508 nr_zones - args.zone_idx); 509 if (ret < 0) 510 goto out; 511 } while (args.zone_idx < nr_zones && 512 args.next_sector < get_capacity(disk)); 513 514 ret = args.zone_idx; 515 out: 516 dm_put_live_table(md, srcu_idx); 517 return ret; 518 } 519 #else 520 #define dm_blk_report_zones NULL 521 #endif /* CONFIG_BLK_DEV_ZONED */ 522 523 static int dm_prepare_ioctl(struct mapped_device *md, int *srcu_idx, 524 struct block_device **bdev) 525 __acquires(md->io_barrier) 526 { 527 struct dm_target *tgt; 528 struct dm_table *map; 529 int r; 530 531 retry: 532 r = -ENOTTY; 533 map = dm_get_live_table(md, srcu_idx); 534 if (!map || !dm_table_get_size(map)) 535 return r; 536 537 /* We only support devices that have a single target */ 538 if (dm_table_get_num_targets(map) != 1) 539 return r; 540 541 tgt = dm_table_get_target(map, 0); 542 if (!tgt->type->prepare_ioctl) 543 return r; 544 545 if (dm_suspended_md(md)) 546 return -EAGAIN; 547 548 r = tgt->type->prepare_ioctl(tgt, bdev); 549 if (r == -ENOTCONN && !fatal_signal_pending(current)) { 550 dm_put_live_table(md, *srcu_idx); 551 msleep(10); 552 goto retry; 553 } 554 555 return r; 556 } 557 558 static void dm_unprepare_ioctl(struct mapped_device *md, int srcu_idx) 559 __releases(md->io_barrier) 560 { 561 dm_put_live_table(md, srcu_idx); 562 } 563 564 static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode, 565 unsigned int cmd, unsigned long arg) 566 { 567 struct mapped_device *md = bdev->bd_disk->private_data; 568 int r, srcu_idx; 569 570 r = dm_prepare_ioctl(md, &srcu_idx, &bdev); 571 if (r < 0) 572 goto out; 573 574 if (r > 0) { 575 /* 576 * Target determined this ioctl is being issued against a 577 * subset of the parent bdev; require extra privileges. 578 */ 579 if (!capable(CAP_SYS_RAWIO)) { 580 DMWARN_LIMIT( 581 "%s: sending ioctl %x to DM device without required privilege.", 582 current->comm, cmd); 583 r = -ENOIOCTLCMD; 584 goto out; 585 } 586 } 587 588 r = __blkdev_driver_ioctl(bdev, mode, cmd, arg); 589 out: 590 dm_unprepare_ioctl(md, srcu_idx); 591 return r; 592 } 593 594 static void start_io_acct(struct dm_io *io); 595 596 static struct dm_io *alloc_io(struct mapped_device *md, struct bio *bio) 597 { 598 struct dm_io *io; 599 struct dm_target_io *tio; 600 struct bio *clone; 601 602 clone = bio_alloc_bioset(GFP_NOIO, 0, &md->io_bs); 603 if (!clone) 604 return NULL; 605 606 tio = container_of(clone, struct dm_target_io, clone); 607 tio->inside_dm_io = true; 608 tio->io = NULL; 609 610 io = container_of(tio, struct dm_io, tio); 611 io->magic = DM_IO_MAGIC; 612 io->status = 0; 613 atomic_set(&io->io_count, 1); 614 io->orig_bio = bio; 615 io->md = md; 616 spin_lock_init(&io->endio_lock); 617 618 start_io_acct(io); 619 620 return io; 621 } 622 623 static void free_io(struct mapped_device *md, struct dm_io *io) 624 { 625 bio_put(&io->tio.clone); 626 } 627 628 static struct dm_target_io *alloc_tio(struct clone_info *ci, struct dm_target *ti, 629 unsigned target_bio_nr, gfp_t gfp_mask) 630 { 631 struct dm_target_io *tio; 632 633 if (!ci->io->tio.io) { 634 /* the dm_target_io embedded in ci->io is available */ 635 tio = &ci->io->tio; 636 } else { 637 struct bio *clone = bio_alloc_bioset(gfp_mask, 0, &ci->io->md->bs); 638 if (!clone) 639 return NULL; 640 641 tio = container_of(clone, struct dm_target_io, clone); 642 tio->inside_dm_io = false; 643 } 644 645 tio->magic = DM_TIO_MAGIC; 646 tio->io = ci->io; 647 tio->ti = ti; 648 tio->target_bio_nr = target_bio_nr; 649 650 return tio; 651 } 652 653 static void free_tio(struct dm_target_io *tio) 654 { 655 if (tio->inside_dm_io) 656 return; 657 bio_put(&tio->clone); 658 } 659 660 u64 dm_start_time_ns_from_clone(struct bio *bio) 661 { 662 struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone); 663 struct dm_io *io = tio->io; 664 665 return jiffies_to_nsecs(io->start_time); 666 } 667 EXPORT_SYMBOL_GPL(dm_start_time_ns_from_clone); 668 669 static void start_io_acct(struct dm_io *io) 670 { 671 struct mapped_device *md = io->md; 672 struct bio *bio = io->orig_bio; 673 674 io->start_time = bio_start_io_acct(bio); 675 if (unlikely(dm_stats_used(&md->stats))) 676 dm_stats_account_io(&md->stats, bio_data_dir(bio), 677 bio->bi_iter.bi_sector, bio_sectors(bio), 678 false, 0, &io->stats_aux); 679 } 680 681 static void end_io_acct(struct dm_io *io) 682 { 683 struct mapped_device *md = io->md; 684 struct bio *bio = io->orig_bio; 685 unsigned long duration = jiffies - io->start_time; 686 687 bio_end_io_acct(bio, io->start_time); 688 689 if (unlikely(dm_stats_used(&md->stats))) 690 dm_stats_account_io(&md->stats, bio_data_dir(bio), 691 bio->bi_iter.bi_sector, bio_sectors(bio), 692 true, duration, &io->stats_aux); 693 694 /* nudge anyone waiting on suspend queue */ 695 if (unlikely(wq_has_sleeper(&md->wait))) 696 wake_up(&md->wait); 697 } 698 699 /* 700 * Add the bio to the list of deferred io. 701 */ 702 static void queue_io(struct mapped_device *md, struct bio *bio) 703 { 704 unsigned long flags; 705 706 spin_lock_irqsave(&md->deferred_lock, flags); 707 bio_list_add(&md->deferred, bio); 708 spin_unlock_irqrestore(&md->deferred_lock, flags); 709 queue_work(md->wq, &md->work); 710 } 711 712 /* 713 * Everyone (including functions in this file), should use this 714 * function to access the md->map field, and make sure they call 715 * dm_put_live_table() when finished. 716 */ 717 struct dm_table *dm_get_live_table(struct mapped_device *md, int *srcu_idx) __acquires(md->io_barrier) 718 { 719 *srcu_idx = srcu_read_lock(&md->io_barrier); 720 721 return srcu_dereference(md->map, &md->io_barrier); 722 } 723 724 void dm_put_live_table(struct mapped_device *md, int srcu_idx) __releases(md->io_barrier) 725 { 726 srcu_read_unlock(&md->io_barrier, srcu_idx); 727 } 728 729 void dm_sync_table(struct mapped_device *md) 730 { 731 synchronize_srcu(&md->io_barrier); 732 synchronize_rcu_expedited(); 733 } 734 735 /* 736 * A fast alternative to dm_get_live_table/dm_put_live_table. 737 * The caller must not block between these two functions. 738 */ 739 static struct dm_table *dm_get_live_table_fast(struct mapped_device *md) __acquires(RCU) 740 { 741 rcu_read_lock(); 742 return rcu_dereference(md->map); 743 } 744 745 static void dm_put_live_table_fast(struct mapped_device *md) __releases(RCU) 746 { 747 rcu_read_unlock(); 748 } 749 750 static char *_dm_claim_ptr = "I belong to device-mapper"; 751 752 /* 753 * Open a table device so we can use it as a map destination. 754 */ 755 static int open_table_device(struct table_device *td, dev_t dev, 756 struct mapped_device *md) 757 { 758 struct block_device *bdev; 759 760 int r; 761 762 BUG_ON(td->dm_dev.bdev); 763 764 bdev = blkdev_get_by_dev(dev, td->dm_dev.mode | FMODE_EXCL, _dm_claim_ptr); 765 if (IS_ERR(bdev)) 766 return PTR_ERR(bdev); 767 768 r = bd_link_disk_holder(bdev, dm_disk(md)); 769 if (r) { 770 blkdev_put(bdev, td->dm_dev.mode | FMODE_EXCL); 771 return r; 772 } 773 774 td->dm_dev.bdev = bdev; 775 td->dm_dev.dax_dev = dax_get_by_host(bdev->bd_disk->disk_name); 776 return 0; 777 } 778 779 /* 780 * Close a table device that we've been using. 781 */ 782 static void close_table_device(struct table_device *td, struct mapped_device *md) 783 { 784 if (!td->dm_dev.bdev) 785 return; 786 787 bd_unlink_disk_holder(td->dm_dev.bdev, dm_disk(md)); 788 blkdev_put(td->dm_dev.bdev, td->dm_dev.mode | FMODE_EXCL); 789 put_dax(td->dm_dev.dax_dev); 790 td->dm_dev.bdev = NULL; 791 td->dm_dev.dax_dev = NULL; 792 } 793 794 static struct table_device *find_table_device(struct list_head *l, dev_t dev, 795 fmode_t mode) 796 { 797 struct table_device *td; 798 799 list_for_each_entry(td, l, list) 800 if (td->dm_dev.bdev->bd_dev == dev && td->dm_dev.mode == mode) 801 return td; 802 803 return NULL; 804 } 805 806 int dm_get_table_device(struct mapped_device *md, dev_t dev, fmode_t mode, 807 struct dm_dev **result) 808 { 809 int r; 810 struct table_device *td; 811 812 mutex_lock(&md->table_devices_lock); 813 td = find_table_device(&md->table_devices, dev, mode); 814 if (!td) { 815 td = kmalloc_node(sizeof(*td), GFP_KERNEL, md->numa_node_id); 816 if (!td) { 817 mutex_unlock(&md->table_devices_lock); 818 return -ENOMEM; 819 } 820 821 td->dm_dev.mode = mode; 822 td->dm_dev.bdev = NULL; 823 824 if ((r = open_table_device(td, dev, md))) { 825 mutex_unlock(&md->table_devices_lock); 826 kfree(td); 827 return r; 828 } 829 830 format_dev_t(td->dm_dev.name, dev); 831 832 refcount_set(&td->count, 1); 833 list_add(&td->list, &md->table_devices); 834 } else { 835 refcount_inc(&td->count); 836 } 837 mutex_unlock(&md->table_devices_lock); 838 839 *result = &td->dm_dev; 840 return 0; 841 } 842 EXPORT_SYMBOL_GPL(dm_get_table_device); 843 844 void dm_put_table_device(struct mapped_device *md, struct dm_dev *d) 845 { 846 struct table_device *td = container_of(d, struct table_device, dm_dev); 847 848 mutex_lock(&md->table_devices_lock); 849 if (refcount_dec_and_test(&td->count)) { 850 close_table_device(td, md); 851 list_del(&td->list); 852 kfree(td); 853 } 854 mutex_unlock(&md->table_devices_lock); 855 } 856 EXPORT_SYMBOL(dm_put_table_device); 857 858 static void free_table_devices(struct list_head *devices) 859 { 860 struct list_head *tmp, *next; 861 862 list_for_each_safe(tmp, next, devices) { 863 struct table_device *td = list_entry(tmp, struct table_device, list); 864 865 DMWARN("dm_destroy: %s still exists with %d references", 866 td->dm_dev.name, refcount_read(&td->count)); 867 kfree(td); 868 } 869 } 870 871 /* 872 * Get the geometry associated with a dm device 873 */ 874 int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo) 875 { 876 *geo = md->geometry; 877 878 return 0; 879 } 880 881 /* 882 * Set the geometry of a device. 883 */ 884 int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo) 885 { 886 sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors; 887 888 if (geo->start > sz) { 889 DMWARN("Start sector is beyond the geometry limits."); 890 return -EINVAL; 891 } 892 893 md->geometry = *geo; 894 895 return 0; 896 } 897 898 static int __noflush_suspending(struct mapped_device *md) 899 { 900 return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags); 901 } 902 903 /* 904 * Decrements the number of outstanding ios that a bio has been 905 * cloned into, completing the original io if necc. 906 */ 907 static void dec_pending(struct dm_io *io, blk_status_t error) 908 { 909 unsigned long flags; 910 blk_status_t io_error; 911 struct bio *bio; 912 struct mapped_device *md = io->md; 913 914 /* Push-back supersedes any I/O errors */ 915 if (unlikely(error)) { 916 spin_lock_irqsave(&io->endio_lock, flags); 917 if (!(io->status == BLK_STS_DM_REQUEUE && __noflush_suspending(md))) 918 io->status = error; 919 spin_unlock_irqrestore(&io->endio_lock, flags); 920 } 921 922 if (atomic_dec_and_test(&io->io_count)) { 923 if (io->status == BLK_STS_DM_REQUEUE) { 924 /* 925 * Target requested pushing back the I/O. 926 */ 927 spin_lock_irqsave(&md->deferred_lock, flags); 928 if (__noflush_suspending(md)) 929 /* NOTE early return due to BLK_STS_DM_REQUEUE below */ 930 bio_list_add_head(&md->deferred, io->orig_bio); 931 else 932 /* noflush suspend was interrupted. */ 933 io->status = BLK_STS_IOERR; 934 spin_unlock_irqrestore(&md->deferred_lock, flags); 935 } 936 937 io_error = io->status; 938 bio = io->orig_bio; 939 end_io_acct(io); 940 free_io(md, io); 941 942 if (io_error == BLK_STS_DM_REQUEUE) 943 return; 944 945 if ((bio->bi_opf & REQ_PREFLUSH) && bio->bi_iter.bi_size) { 946 /* 947 * Preflush done for flush with data, reissue 948 * without REQ_PREFLUSH. 949 */ 950 bio->bi_opf &= ~REQ_PREFLUSH; 951 queue_io(md, bio); 952 } else { 953 /* done with normal IO or empty flush */ 954 if (io_error) 955 bio->bi_status = io_error; 956 bio_endio(bio); 957 } 958 } 959 } 960 961 void disable_discard(struct mapped_device *md) 962 { 963 struct queue_limits *limits = dm_get_queue_limits(md); 964 965 /* device doesn't really support DISCARD, disable it */ 966 limits->max_discard_sectors = 0; 967 blk_queue_flag_clear(QUEUE_FLAG_DISCARD, md->queue); 968 } 969 970 void disable_write_same(struct mapped_device *md) 971 { 972 struct queue_limits *limits = dm_get_queue_limits(md); 973 974 /* device doesn't really support WRITE SAME, disable it */ 975 limits->max_write_same_sectors = 0; 976 } 977 978 void disable_write_zeroes(struct mapped_device *md) 979 { 980 struct queue_limits *limits = dm_get_queue_limits(md); 981 982 /* device doesn't really support WRITE ZEROES, disable it */ 983 limits->max_write_zeroes_sectors = 0; 984 } 985 986 static void clone_endio(struct bio *bio) 987 { 988 blk_status_t error = bio->bi_status; 989 struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone); 990 struct dm_io *io = tio->io; 991 struct mapped_device *md = tio->io->md; 992 dm_endio_fn endio = tio->ti->type->end_io; 993 struct bio *orig_bio = io->orig_bio; 994 995 if (unlikely(error == BLK_STS_TARGET) && md->type != DM_TYPE_NVME_BIO_BASED) { 996 if (bio_op(bio) == REQ_OP_DISCARD && 997 !bio->bi_disk->queue->limits.max_discard_sectors) 998 disable_discard(md); 999 else if (bio_op(bio) == REQ_OP_WRITE_SAME && 1000 !bio->bi_disk->queue->limits.max_write_same_sectors) 1001 disable_write_same(md); 1002 else if (bio_op(bio) == REQ_OP_WRITE_ZEROES && 1003 !bio->bi_disk->queue->limits.max_write_zeroes_sectors) 1004 disable_write_zeroes(md); 1005 } 1006 1007 /* 1008 * For zone-append bios get offset in zone of the written 1009 * sector and add that to the original bio sector pos. 1010 */ 1011 if (bio_op(orig_bio) == REQ_OP_ZONE_APPEND) { 1012 sector_t written_sector = bio->bi_iter.bi_sector; 1013 struct request_queue *q = orig_bio->bi_disk->queue; 1014 u64 mask = (u64)blk_queue_zone_sectors(q) - 1; 1015 1016 orig_bio->bi_iter.bi_sector += written_sector & mask; 1017 } 1018 1019 if (endio) { 1020 int r = endio(tio->ti, bio, &error); 1021 switch (r) { 1022 case DM_ENDIO_REQUEUE: 1023 error = BLK_STS_DM_REQUEUE; 1024 fallthrough; 1025 case DM_ENDIO_DONE: 1026 break; 1027 case DM_ENDIO_INCOMPLETE: 1028 /* The target will handle the io */ 1029 return; 1030 default: 1031 DMWARN("unimplemented target endio return value: %d", r); 1032 BUG(); 1033 } 1034 } 1035 1036 free_tio(tio); 1037 dec_pending(io, error); 1038 } 1039 1040 /* 1041 * Return maximum size of I/O possible at the supplied sector up to the current 1042 * target boundary. 1043 */ 1044 static sector_t max_io_len_target_boundary(sector_t sector, struct dm_target *ti) 1045 { 1046 sector_t target_offset = dm_target_offset(ti, sector); 1047 1048 return ti->len - target_offset; 1049 } 1050 1051 static sector_t max_io_len(sector_t sector, struct dm_target *ti) 1052 { 1053 sector_t len = max_io_len_target_boundary(sector, ti); 1054 sector_t offset, max_len; 1055 1056 /* 1057 * Does the target need to split even further? 1058 */ 1059 if (ti->max_io_len) { 1060 offset = dm_target_offset(ti, sector); 1061 if (unlikely(ti->max_io_len & (ti->max_io_len - 1))) 1062 max_len = sector_div(offset, ti->max_io_len); 1063 else 1064 max_len = offset & (ti->max_io_len - 1); 1065 max_len = ti->max_io_len - max_len; 1066 1067 if (len > max_len) 1068 len = max_len; 1069 } 1070 1071 return len; 1072 } 1073 1074 int dm_set_target_max_io_len(struct dm_target *ti, sector_t len) 1075 { 1076 if (len > UINT_MAX) { 1077 DMERR("Specified maximum size of target IO (%llu) exceeds limit (%u)", 1078 (unsigned long long)len, UINT_MAX); 1079 ti->error = "Maximum size of target IO is too large"; 1080 return -EINVAL; 1081 } 1082 1083 ti->max_io_len = (uint32_t) len; 1084 1085 return 0; 1086 } 1087 EXPORT_SYMBOL_GPL(dm_set_target_max_io_len); 1088 1089 static struct dm_target *dm_dax_get_live_target(struct mapped_device *md, 1090 sector_t sector, int *srcu_idx) 1091 __acquires(md->io_barrier) 1092 { 1093 struct dm_table *map; 1094 struct dm_target *ti; 1095 1096 map = dm_get_live_table(md, srcu_idx); 1097 if (!map) 1098 return NULL; 1099 1100 ti = dm_table_find_target(map, sector); 1101 if (!ti) 1102 return NULL; 1103 1104 return ti; 1105 } 1106 1107 static long dm_dax_direct_access(struct dax_device *dax_dev, pgoff_t pgoff, 1108 long nr_pages, void **kaddr, pfn_t *pfn) 1109 { 1110 struct mapped_device *md = dax_get_private(dax_dev); 1111 sector_t sector = pgoff * PAGE_SECTORS; 1112 struct dm_target *ti; 1113 long len, ret = -EIO; 1114 int srcu_idx; 1115 1116 ti = dm_dax_get_live_target(md, sector, &srcu_idx); 1117 1118 if (!ti) 1119 goto out; 1120 if (!ti->type->direct_access) 1121 goto out; 1122 len = max_io_len(sector, ti) / PAGE_SECTORS; 1123 if (len < 1) 1124 goto out; 1125 nr_pages = min(len, nr_pages); 1126 ret = ti->type->direct_access(ti, pgoff, nr_pages, kaddr, pfn); 1127 1128 out: 1129 dm_put_live_table(md, srcu_idx); 1130 1131 return ret; 1132 } 1133 1134 static bool dm_dax_supported(struct dax_device *dax_dev, struct block_device *bdev, 1135 int blocksize, sector_t start, sector_t len) 1136 { 1137 struct mapped_device *md = dax_get_private(dax_dev); 1138 struct dm_table *map; 1139 bool ret = false; 1140 int srcu_idx; 1141 1142 map = dm_get_live_table(md, &srcu_idx); 1143 if (!map) 1144 goto out; 1145 1146 ret = dm_table_supports_dax(map, device_supports_dax, &blocksize); 1147 1148 out: 1149 dm_put_live_table(md, srcu_idx); 1150 1151 return ret; 1152 } 1153 1154 static size_t dm_dax_copy_from_iter(struct dax_device *dax_dev, pgoff_t pgoff, 1155 void *addr, size_t bytes, struct iov_iter *i) 1156 { 1157 struct mapped_device *md = dax_get_private(dax_dev); 1158 sector_t sector = pgoff * PAGE_SECTORS; 1159 struct dm_target *ti; 1160 long ret = 0; 1161 int srcu_idx; 1162 1163 ti = dm_dax_get_live_target(md, sector, &srcu_idx); 1164 1165 if (!ti) 1166 goto out; 1167 if (!ti->type->dax_copy_from_iter) { 1168 ret = copy_from_iter(addr, bytes, i); 1169 goto out; 1170 } 1171 ret = ti->type->dax_copy_from_iter(ti, pgoff, addr, bytes, i); 1172 out: 1173 dm_put_live_table(md, srcu_idx); 1174 1175 return ret; 1176 } 1177 1178 static size_t dm_dax_copy_to_iter(struct dax_device *dax_dev, pgoff_t pgoff, 1179 void *addr, size_t bytes, struct iov_iter *i) 1180 { 1181 struct mapped_device *md = dax_get_private(dax_dev); 1182 sector_t sector = pgoff * PAGE_SECTORS; 1183 struct dm_target *ti; 1184 long ret = 0; 1185 int srcu_idx; 1186 1187 ti = dm_dax_get_live_target(md, sector, &srcu_idx); 1188 1189 if (!ti) 1190 goto out; 1191 if (!ti->type->dax_copy_to_iter) { 1192 ret = copy_to_iter(addr, bytes, i); 1193 goto out; 1194 } 1195 ret = ti->type->dax_copy_to_iter(ti, pgoff, addr, bytes, i); 1196 out: 1197 dm_put_live_table(md, srcu_idx); 1198 1199 return ret; 1200 } 1201 1202 static int dm_dax_zero_page_range(struct dax_device *dax_dev, pgoff_t pgoff, 1203 size_t nr_pages) 1204 { 1205 struct mapped_device *md = dax_get_private(dax_dev); 1206 sector_t sector = pgoff * PAGE_SECTORS; 1207 struct dm_target *ti; 1208 int ret = -EIO; 1209 int srcu_idx; 1210 1211 ti = dm_dax_get_live_target(md, sector, &srcu_idx); 1212 1213 if (!ti) 1214 goto out; 1215 if (WARN_ON(!ti->type->dax_zero_page_range)) { 1216 /* 1217 * ->zero_page_range() is mandatory dax operation. If we are 1218 * here, something is wrong. 1219 */ 1220 dm_put_live_table(md, srcu_idx); 1221 goto out; 1222 } 1223 ret = ti->type->dax_zero_page_range(ti, pgoff, nr_pages); 1224 1225 out: 1226 dm_put_live_table(md, srcu_idx); 1227 1228 return ret; 1229 } 1230 1231 /* 1232 * A target may call dm_accept_partial_bio only from the map routine. It is 1233 * allowed for all bio types except REQ_PREFLUSH, REQ_OP_ZONE_RESET, 1234 * REQ_OP_ZONE_OPEN, REQ_OP_ZONE_CLOSE and REQ_OP_ZONE_FINISH. 1235 * 1236 * dm_accept_partial_bio informs the dm that the target only wants to process 1237 * additional n_sectors sectors of the bio and the rest of the data should be 1238 * sent in a next bio. 1239 * 1240 * A diagram that explains the arithmetics: 1241 * +--------------------+---------------+-------+ 1242 * | 1 | 2 | 3 | 1243 * +--------------------+---------------+-------+ 1244 * 1245 * <-------------- *tio->len_ptr ---------------> 1246 * <------- bi_size -------> 1247 * <-- n_sectors --> 1248 * 1249 * Region 1 was already iterated over with bio_advance or similar function. 1250 * (it may be empty if the target doesn't use bio_advance) 1251 * Region 2 is the remaining bio size that the target wants to process. 1252 * (it may be empty if region 1 is non-empty, although there is no reason 1253 * to make it empty) 1254 * The target requires that region 3 is to be sent in the next bio. 1255 * 1256 * If the target wants to receive multiple copies of the bio (via num_*bios, etc), 1257 * the partially processed part (the sum of regions 1+2) must be the same for all 1258 * copies of the bio. 1259 */ 1260 void dm_accept_partial_bio(struct bio *bio, unsigned n_sectors) 1261 { 1262 struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone); 1263 unsigned bi_size = bio->bi_iter.bi_size >> SECTOR_SHIFT; 1264 BUG_ON(bio->bi_opf & REQ_PREFLUSH); 1265 BUG_ON(bi_size > *tio->len_ptr); 1266 BUG_ON(n_sectors > bi_size); 1267 *tio->len_ptr -= bi_size - n_sectors; 1268 bio->bi_iter.bi_size = n_sectors << SECTOR_SHIFT; 1269 } 1270 EXPORT_SYMBOL_GPL(dm_accept_partial_bio); 1271 1272 static blk_qc_t __map_bio(struct dm_target_io *tio) 1273 { 1274 int r; 1275 sector_t sector; 1276 struct bio *clone = &tio->clone; 1277 struct dm_io *io = tio->io; 1278 struct dm_target *ti = tio->ti; 1279 blk_qc_t ret = BLK_QC_T_NONE; 1280 1281 clone->bi_end_io = clone_endio; 1282 1283 /* 1284 * Map the clone. If r == 0 we don't need to do 1285 * anything, the target has assumed ownership of 1286 * this io. 1287 */ 1288 atomic_inc(&io->io_count); 1289 sector = clone->bi_iter.bi_sector; 1290 1291 r = ti->type->map(ti, clone); 1292 switch (r) { 1293 case DM_MAPIO_SUBMITTED: 1294 break; 1295 case DM_MAPIO_REMAPPED: 1296 /* the bio has been remapped so dispatch it */ 1297 trace_block_bio_remap(clone->bi_disk->queue, clone, 1298 bio_dev(io->orig_bio), sector); 1299 ret = submit_bio_noacct(clone); 1300 break; 1301 case DM_MAPIO_KILL: 1302 free_tio(tio); 1303 dec_pending(io, BLK_STS_IOERR); 1304 break; 1305 case DM_MAPIO_REQUEUE: 1306 free_tio(tio); 1307 dec_pending(io, BLK_STS_DM_REQUEUE); 1308 break; 1309 default: 1310 DMWARN("unimplemented target map return value: %d", r); 1311 BUG(); 1312 } 1313 1314 return ret; 1315 } 1316 1317 static void bio_setup_sector(struct bio *bio, sector_t sector, unsigned len) 1318 { 1319 bio->bi_iter.bi_sector = sector; 1320 bio->bi_iter.bi_size = to_bytes(len); 1321 } 1322 1323 /* 1324 * Creates a bio that consists of range of complete bvecs. 1325 */ 1326 static int clone_bio(struct dm_target_io *tio, struct bio *bio, 1327 sector_t sector, unsigned len) 1328 { 1329 struct bio *clone = &tio->clone; 1330 int r; 1331 1332 __bio_clone_fast(clone, bio); 1333 1334 r = bio_crypt_clone(clone, bio, GFP_NOIO); 1335 if (r < 0) 1336 return r; 1337 1338 if (bio_integrity(bio)) { 1339 if (unlikely(!dm_target_has_integrity(tio->ti->type) && 1340 !dm_target_passes_integrity(tio->ti->type))) { 1341 DMWARN("%s: the target %s doesn't support integrity data.", 1342 dm_device_name(tio->io->md), 1343 tio->ti->type->name); 1344 return -EIO; 1345 } 1346 1347 r = bio_integrity_clone(clone, bio, GFP_NOIO); 1348 if (r < 0) 1349 return r; 1350 } 1351 1352 bio_advance(clone, to_bytes(sector - clone->bi_iter.bi_sector)); 1353 clone->bi_iter.bi_size = to_bytes(len); 1354 1355 if (bio_integrity(bio)) 1356 bio_integrity_trim(clone); 1357 1358 return 0; 1359 } 1360 1361 static void alloc_multiple_bios(struct bio_list *blist, struct clone_info *ci, 1362 struct dm_target *ti, unsigned num_bios) 1363 { 1364 struct dm_target_io *tio; 1365 int try; 1366 1367 if (!num_bios) 1368 return; 1369 1370 if (num_bios == 1) { 1371 tio = alloc_tio(ci, ti, 0, GFP_NOIO); 1372 bio_list_add(blist, &tio->clone); 1373 return; 1374 } 1375 1376 for (try = 0; try < 2; try++) { 1377 int bio_nr; 1378 struct bio *bio; 1379 1380 if (try) 1381 mutex_lock(&ci->io->md->table_devices_lock); 1382 for (bio_nr = 0; bio_nr < num_bios; bio_nr++) { 1383 tio = alloc_tio(ci, ti, bio_nr, try ? GFP_NOIO : GFP_NOWAIT); 1384 if (!tio) 1385 break; 1386 1387 bio_list_add(blist, &tio->clone); 1388 } 1389 if (try) 1390 mutex_unlock(&ci->io->md->table_devices_lock); 1391 if (bio_nr == num_bios) 1392 return; 1393 1394 while ((bio = bio_list_pop(blist))) { 1395 tio = container_of(bio, struct dm_target_io, clone); 1396 free_tio(tio); 1397 } 1398 } 1399 } 1400 1401 static blk_qc_t __clone_and_map_simple_bio(struct clone_info *ci, 1402 struct dm_target_io *tio, unsigned *len) 1403 { 1404 struct bio *clone = &tio->clone; 1405 1406 tio->len_ptr = len; 1407 1408 __bio_clone_fast(clone, ci->bio); 1409 if (len) 1410 bio_setup_sector(clone, ci->sector, *len); 1411 1412 return __map_bio(tio); 1413 } 1414 1415 static void __send_duplicate_bios(struct clone_info *ci, struct dm_target *ti, 1416 unsigned num_bios, unsigned *len) 1417 { 1418 struct bio_list blist = BIO_EMPTY_LIST; 1419 struct bio *bio; 1420 struct dm_target_io *tio; 1421 1422 alloc_multiple_bios(&blist, ci, ti, num_bios); 1423 1424 while ((bio = bio_list_pop(&blist))) { 1425 tio = container_of(bio, struct dm_target_io, clone); 1426 (void) __clone_and_map_simple_bio(ci, tio, len); 1427 } 1428 } 1429 1430 static int __send_empty_flush(struct clone_info *ci) 1431 { 1432 unsigned target_nr = 0; 1433 struct dm_target *ti; 1434 1435 /* 1436 * Empty flush uses a statically initialized bio, as the base for 1437 * cloning. However, blkg association requires that a bdev is 1438 * associated with a gendisk, which doesn't happen until the bdev is 1439 * opened. So, blkg association is done at issue time of the flush 1440 * rather than when the device is created in alloc_dev(). 1441 */ 1442 bio_set_dev(ci->bio, ci->io->md->bdev); 1443 1444 BUG_ON(bio_has_data(ci->bio)); 1445 while ((ti = dm_table_get_target(ci->map, target_nr++))) 1446 __send_duplicate_bios(ci, ti, ti->num_flush_bios, NULL); 1447 return 0; 1448 } 1449 1450 static int __clone_and_map_data_bio(struct clone_info *ci, struct dm_target *ti, 1451 sector_t sector, unsigned *len) 1452 { 1453 struct bio *bio = ci->bio; 1454 struct dm_target_io *tio; 1455 int r; 1456 1457 tio = alloc_tio(ci, ti, 0, GFP_NOIO); 1458 tio->len_ptr = len; 1459 r = clone_bio(tio, bio, sector, *len); 1460 if (r < 0) { 1461 free_tio(tio); 1462 return r; 1463 } 1464 (void) __map_bio(tio); 1465 1466 return 0; 1467 } 1468 1469 typedef unsigned (*get_num_bios_fn)(struct dm_target *ti); 1470 1471 static unsigned get_num_discard_bios(struct dm_target *ti) 1472 { 1473 return ti->num_discard_bios; 1474 } 1475 1476 static unsigned get_num_secure_erase_bios(struct dm_target *ti) 1477 { 1478 return ti->num_secure_erase_bios; 1479 } 1480 1481 static unsigned get_num_write_same_bios(struct dm_target *ti) 1482 { 1483 return ti->num_write_same_bios; 1484 } 1485 1486 static unsigned get_num_write_zeroes_bios(struct dm_target *ti) 1487 { 1488 return ti->num_write_zeroes_bios; 1489 } 1490 1491 static int __send_changing_extent_only(struct clone_info *ci, struct dm_target *ti, 1492 unsigned num_bios) 1493 { 1494 unsigned len; 1495 1496 /* 1497 * Even though the device advertised support for this type of 1498 * request, that does not mean every target supports it, and 1499 * reconfiguration might also have changed that since the 1500 * check was performed. 1501 */ 1502 if (!num_bios) 1503 return -EOPNOTSUPP; 1504 1505 len = min((sector_t)ci->sector_count, max_io_len_target_boundary(ci->sector, ti)); 1506 1507 __send_duplicate_bios(ci, ti, num_bios, &len); 1508 1509 ci->sector += len; 1510 ci->sector_count -= len; 1511 1512 return 0; 1513 } 1514 1515 static int __send_discard(struct clone_info *ci, struct dm_target *ti) 1516 { 1517 return __send_changing_extent_only(ci, ti, get_num_discard_bios(ti)); 1518 } 1519 1520 static int __send_secure_erase(struct clone_info *ci, struct dm_target *ti) 1521 { 1522 return __send_changing_extent_only(ci, ti, get_num_secure_erase_bios(ti)); 1523 } 1524 1525 static int __send_write_same(struct clone_info *ci, struct dm_target *ti) 1526 { 1527 return __send_changing_extent_only(ci, ti, get_num_write_same_bios(ti)); 1528 } 1529 1530 static int __send_write_zeroes(struct clone_info *ci, struct dm_target *ti) 1531 { 1532 return __send_changing_extent_only(ci, ti, get_num_write_zeroes_bios(ti)); 1533 } 1534 1535 static bool is_abnormal_io(struct bio *bio) 1536 { 1537 bool r = false; 1538 1539 switch (bio_op(bio)) { 1540 case REQ_OP_DISCARD: 1541 case REQ_OP_SECURE_ERASE: 1542 case REQ_OP_WRITE_SAME: 1543 case REQ_OP_WRITE_ZEROES: 1544 r = true; 1545 break; 1546 } 1547 1548 return r; 1549 } 1550 1551 static bool __process_abnormal_io(struct clone_info *ci, struct dm_target *ti, 1552 int *result) 1553 { 1554 struct bio *bio = ci->bio; 1555 1556 if (bio_op(bio) == REQ_OP_DISCARD) 1557 *result = __send_discard(ci, ti); 1558 else if (bio_op(bio) == REQ_OP_SECURE_ERASE) 1559 *result = __send_secure_erase(ci, ti); 1560 else if (bio_op(bio) == REQ_OP_WRITE_SAME) 1561 *result = __send_write_same(ci, ti); 1562 else if (bio_op(bio) == REQ_OP_WRITE_ZEROES) 1563 *result = __send_write_zeroes(ci, ti); 1564 else 1565 return false; 1566 1567 return true; 1568 } 1569 1570 /* 1571 * Select the correct strategy for processing a non-flush bio. 1572 */ 1573 static int __split_and_process_non_flush(struct clone_info *ci) 1574 { 1575 struct dm_target *ti; 1576 unsigned len; 1577 int r; 1578 1579 ti = dm_table_find_target(ci->map, ci->sector); 1580 if (!ti) 1581 return -EIO; 1582 1583 if (__process_abnormal_io(ci, ti, &r)) 1584 return r; 1585 1586 len = min_t(sector_t, max_io_len(ci->sector, ti), ci->sector_count); 1587 1588 r = __clone_and_map_data_bio(ci, ti, ci->sector, &len); 1589 if (r < 0) 1590 return r; 1591 1592 ci->sector += len; 1593 ci->sector_count -= len; 1594 1595 return 0; 1596 } 1597 1598 static void init_clone_info(struct clone_info *ci, struct mapped_device *md, 1599 struct dm_table *map, struct bio *bio) 1600 { 1601 ci->map = map; 1602 ci->io = alloc_io(md, bio); 1603 ci->sector = bio->bi_iter.bi_sector; 1604 } 1605 1606 #define __dm_part_stat_sub(part, field, subnd) \ 1607 (part_stat_get(part, field) -= (subnd)) 1608 1609 /* 1610 * Entry point to split a bio into clones and submit them to the targets. 1611 */ 1612 static blk_qc_t __split_and_process_bio(struct mapped_device *md, 1613 struct dm_table *map, struct bio *bio) 1614 { 1615 struct clone_info ci; 1616 blk_qc_t ret = BLK_QC_T_NONE; 1617 int error = 0; 1618 1619 init_clone_info(&ci, md, map, bio); 1620 1621 if (bio->bi_opf & REQ_PREFLUSH) { 1622 struct bio flush_bio; 1623 1624 /* 1625 * Use an on-stack bio for this, it's safe since we don't 1626 * need to reference it after submit. It's just used as 1627 * the basis for the clone(s). 1628 */ 1629 bio_init(&flush_bio, NULL, 0); 1630 flush_bio.bi_opf = REQ_OP_WRITE | REQ_PREFLUSH | REQ_SYNC; 1631 ci.bio = &flush_bio; 1632 ci.sector_count = 0; 1633 error = __send_empty_flush(&ci); 1634 bio_uninit(ci.bio); 1635 /* dec_pending submits any data associated with flush */ 1636 } else if (op_is_zone_mgmt(bio_op(bio))) { 1637 ci.bio = bio; 1638 ci.sector_count = 0; 1639 error = __split_and_process_non_flush(&ci); 1640 } else { 1641 ci.bio = bio; 1642 ci.sector_count = bio_sectors(bio); 1643 while (ci.sector_count && !error) { 1644 error = __split_and_process_non_flush(&ci); 1645 if (current->bio_list && ci.sector_count && !error) { 1646 /* 1647 * Remainder must be passed to submit_bio_noacct() 1648 * so that it gets handled *after* bios already submitted 1649 * have been completely processed. 1650 * We take a clone of the original to store in 1651 * ci.io->orig_bio to be used by end_io_acct() and 1652 * for dec_pending to use for completion handling. 1653 */ 1654 struct bio *b = bio_split(bio, bio_sectors(bio) - ci.sector_count, 1655 GFP_NOIO, &md->queue->bio_split); 1656 ci.io->orig_bio = b; 1657 1658 /* 1659 * Adjust IO stats for each split, otherwise upon queue 1660 * reentry there will be redundant IO accounting. 1661 * NOTE: this is a stop-gap fix, a proper fix involves 1662 * significant refactoring of DM core's bio splitting 1663 * (by eliminating DM's splitting and just using bio_split) 1664 */ 1665 part_stat_lock(); 1666 __dm_part_stat_sub(&dm_disk(md)->part0, 1667 sectors[op_stat_group(bio_op(bio))], ci.sector_count); 1668 part_stat_unlock(); 1669 1670 bio_chain(b, bio); 1671 trace_block_split(md->queue, b, bio->bi_iter.bi_sector); 1672 ret = submit_bio_noacct(bio); 1673 break; 1674 } 1675 } 1676 } 1677 1678 /* drop the extra reference count */ 1679 dec_pending(ci.io, errno_to_blk_status(error)); 1680 return ret; 1681 } 1682 1683 /* 1684 * Optimized variant of __split_and_process_bio that leverages the 1685 * fact that targets that use it do _not_ have a need to split bios. 1686 */ 1687 static blk_qc_t __process_bio(struct mapped_device *md, struct dm_table *map, 1688 struct bio *bio, struct dm_target *ti) 1689 { 1690 struct clone_info ci; 1691 blk_qc_t ret = BLK_QC_T_NONE; 1692 int error = 0; 1693 1694 init_clone_info(&ci, md, map, bio); 1695 1696 if (bio->bi_opf & REQ_PREFLUSH) { 1697 struct bio flush_bio; 1698 1699 /* 1700 * Use an on-stack bio for this, it's safe since we don't 1701 * need to reference it after submit. It's just used as 1702 * the basis for the clone(s). 1703 */ 1704 bio_init(&flush_bio, NULL, 0); 1705 flush_bio.bi_opf = REQ_OP_WRITE | REQ_PREFLUSH | REQ_SYNC; 1706 ci.bio = &flush_bio; 1707 ci.sector_count = 0; 1708 error = __send_empty_flush(&ci); 1709 bio_uninit(ci.bio); 1710 /* dec_pending submits any data associated with flush */ 1711 } else { 1712 struct dm_target_io *tio; 1713 1714 ci.bio = bio; 1715 ci.sector_count = bio_sectors(bio); 1716 if (__process_abnormal_io(&ci, ti, &error)) 1717 goto out; 1718 1719 tio = alloc_tio(&ci, ti, 0, GFP_NOIO); 1720 ret = __clone_and_map_simple_bio(&ci, tio, NULL); 1721 } 1722 out: 1723 /* drop the extra reference count */ 1724 dec_pending(ci.io, errno_to_blk_status(error)); 1725 return ret; 1726 } 1727 1728 static blk_qc_t dm_process_bio(struct mapped_device *md, 1729 struct dm_table *map, struct bio *bio) 1730 { 1731 blk_qc_t ret = BLK_QC_T_NONE; 1732 struct dm_target *ti = md->immutable_target; 1733 1734 if (unlikely(!map)) { 1735 bio_io_error(bio); 1736 return ret; 1737 } 1738 1739 if (!ti) { 1740 ti = dm_table_find_target(map, bio->bi_iter.bi_sector); 1741 if (unlikely(!ti)) { 1742 bio_io_error(bio); 1743 return ret; 1744 } 1745 } 1746 1747 /* 1748 * If in ->submit_bio we need to use blk_queue_split(), otherwise 1749 * queue_limits for abnormal requests (e.g. discard, writesame, etc) 1750 * won't be imposed. 1751 * If called from dm_wq_work() for deferred bio processing, bio 1752 * was already handled by following code with previous ->submit_bio. 1753 */ 1754 if (current->bio_list) { 1755 if (is_abnormal_io(bio)) 1756 blk_queue_split(&bio); 1757 /* regular IO is split by __split_and_process_bio */ 1758 } 1759 1760 if (dm_get_md_type(md) == DM_TYPE_NVME_BIO_BASED) 1761 return __process_bio(md, map, bio, ti); 1762 return __split_and_process_bio(md, map, bio); 1763 } 1764 1765 static blk_qc_t dm_submit_bio(struct bio *bio) 1766 { 1767 struct mapped_device *md = bio->bi_disk->private_data; 1768 blk_qc_t ret = BLK_QC_T_NONE; 1769 int srcu_idx; 1770 struct dm_table *map; 1771 1772 if (dm_get_md_type(md) == DM_TYPE_REQUEST_BASED) { 1773 /* 1774 * We are called with a live reference on q_usage_counter, but 1775 * that one will be released as soon as we return. Grab an 1776 * extra one as blk_mq_submit_bio expects to be able to consume 1777 * a reference (which lives until the request is freed in case a 1778 * request is allocated). 1779 */ 1780 percpu_ref_get(&bio->bi_disk->queue->q_usage_counter); 1781 return blk_mq_submit_bio(bio); 1782 } 1783 1784 map = dm_get_live_table(md, &srcu_idx); 1785 1786 /* if we're suspended, we have to queue this io for later */ 1787 if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))) { 1788 dm_put_live_table(md, srcu_idx); 1789 1790 if (bio->bi_opf & REQ_NOWAIT) 1791 bio_wouldblock_error(bio); 1792 else if (!(bio->bi_opf & REQ_RAHEAD)) 1793 queue_io(md, bio); 1794 else 1795 bio_io_error(bio); 1796 return ret; 1797 } 1798 1799 ret = dm_process_bio(md, map, bio); 1800 1801 dm_put_live_table(md, srcu_idx); 1802 return ret; 1803 } 1804 1805 /*----------------------------------------------------------------- 1806 * An IDR is used to keep track of allocated minor numbers. 1807 *---------------------------------------------------------------*/ 1808 static void free_minor(int minor) 1809 { 1810 spin_lock(&_minor_lock); 1811 idr_remove(&_minor_idr, minor); 1812 spin_unlock(&_minor_lock); 1813 } 1814 1815 /* 1816 * See if the device with a specific minor # is free. 1817 */ 1818 static int specific_minor(int minor) 1819 { 1820 int r; 1821 1822 if (minor >= (1 << MINORBITS)) 1823 return -EINVAL; 1824 1825 idr_preload(GFP_KERNEL); 1826 spin_lock(&_minor_lock); 1827 1828 r = idr_alloc(&_minor_idr, MINOR_ALLOCED, minor, minor + 1, GFP_NOWAIT); 1829 1830 spin_unlock(&_minor_lock); 1831 idr_preload_end(); 1832 if (r < 0) 1833 return r == -ENOSPC ? -EBUSY : r; 1834 return 0; 1835 } 1836 1837 static int next_free_minor(int *minor) 1838 { 1839 int r; 1840 1841 idr_preload(GFP_KERNEL); 1842 spin_lock(&_minor_lock); 1843 1844 r = idr_alloc(&_minor_idr, MINOR_ALLOCED, 0, 1 << MINORBITS, GFP_NOWAIT); 1845 1846 spin_unlock(&_minor_lock); 1847 idr_preload_end(); 1848 if (r < 0) 1849 return r; 1850 *minor = r; 1851 return 0; 1852 } 1853 1854 static const struct block_device_operations dm_blk_dops; 1855 static const struct dax_operations dm_dax_ops; 1856 1857 static void dm_wq_work(struct work_struct *work); 1858 1859 static void cleanup_mapped_device(struct mapped_device *md) 1860 { 1861 if (md->wq) 1862 destroy_workqueue(md->wq); 1863 bioset_exit(&md->bs); 1864 bioset_exit(&md->io_bs); 1865 1866 if (md->dax_dev) { 1867 kill_dax(md->dax_dev); 1868 put_dax(md->dax_dev); 1869 md->dax_dev = NULL; 1870 } 1871 1872 if (md->disk) { 1873 spin_lock(&_minor_lock); 1874 md->disk->private_data = NULL; 1875 spin_unlock(&_minor_lock); 1876 del_gendisk(md->disk); 1877 put_disk(md->disk); 1878 } 1879 1880 if (md->queue) 1881 blk_cleanup_queue(md->queue); 1882 1883 cleanup_srcu_struct(&md->io_barrier); 1884 1885 if (md->bdev) { 1886 bdput(md->bdev); 1887 md->bdev = NULL; 1888 } 1889 1890 mutex_destroy(&md->suspend_lock); 1891 mutex_destroy(&md->type_lock); 1892 mutex_destroy(&md->table_devices_lock); 1893 1894 dm_mq_cleanup_mapped_device(md); 1895 } 1896 1897 /* 1898 * Allocate and initialise a blank device with a given minor. 1899 */ 1900 static struct mapped_device *alloc_dev(int minor) 1901 { 1902 int r, numa_node_id = dm_get_numa_node(); 1903 struct mapped_device *md; 1904 void *old_md; 1905 1906 md = kvzalloc_node(sizeof(*md), GFP_KERNEL, numa_node_id); 1907 if (!md) { 1908 DMWARN("unable to allocate device, out of memory."); 1909 return NULL; 1910 } 1911 1912 if (!try_module_get(THIS_MODULE)) 1913 goto bad_module_get; 1914 1915 /* get a minor number for the dev */ 1916 if (minor == DM_ANY_MINOR) 1917 r = next_free_minor(&minor); 1918 else 1919 r = specific_minor(minor); 1920 if (r < 0) 1921 goto bad_minor; 1922 1923 r = init_srcu_struct(&md->io_barrier); 1924 if (r < 0) 1925 goto bad_io_barrier; 1926 1927 md->numa_node_id = numa_node_id; 1928 md->init_tio_pdu = false; 1929 md->type = DM_TYPE_NONE; 1930 mutex_init(&md->suspend_lock); 1931 mutex_init(&md->type_lock); 1932 mutex_init(&md->table_devices_lock); 1933 spin_lock_init(&md->deferred_lock); 1934 atomic_set(&md->holders, 1); 1935 atomic_set(&md->open_count, 0); 1936 atomic_set(&md->event_nr, 0); 1937 atomic_set(&md->uevent_seq, 0); 1938 INIT_LIST_HEAD(&md->uevent_list); 1939 INIT_LIST_HEAD(&md->table_devices); 1940 spin_lock_init(&md->uevent_lock); 1941 1942 /* 1943 * default to bio-based until DM table is loaded and md->type 1944 * established. If request-based table is loaded: blk-mq will 1945 * override accordingly. 1946 */ 1947 md->queue = blk_alloc_queue(numa_node_id); 1948 if (!md->queue) 1949 goto bad; 1950 1951 md->disk = alloc_disk_node(1, md->numa_node_id); 1952 if (!md->disk) 1953 goto bad; 1954 1955 init_waitqueue_head(&md->wait); 1956 INIT_WORK(&md->work, dm_wq_work); 1957 init_waitqueue_head(&md->eventq); 1958 init_completion(&md->kobj_holder.completion); 1959 1960 md->disk->major = _major; 1961 md->disk->first_minor = minor; 1962 md->disk->fops = &dm_blk_dops; 1963 md->disk->queue = md->queue; 1964 md->disk->private_data = md; 1965 sprintf(md->disk->disk_name, "dm-%d", minor); 1966 1967 if (IS_ENABLED(CONFIG_DAX_DRIVER)) { 1968 md->dax_dev = alloc_dax(md, md->disk->disk_name, 1969 &dm_dax_ops, 0); 1970 if (IS_ERR(md->dax_dev)) 1971 goto bad; 1972 } 1973 1974 add_disk_no_queue_reg(md->disk); 1975 format_dev_t(md->name, MKDEV(_major, minor)); 1976 1977 md->wq = alloc_workqueue("kdmflush", WQ_MEM_RECLAIM, 0); 1978 if (!md->wq) 1979 goto bad; 1980 1981 md->bdev = bdget_disk(md->disk, 0); 1982 if (!md->bdev) 1983 goto bad; 1984 1985 dm_stats_init(&md->stats); 1986 1987 /* Populate the mapping, nobody knows we exist yet */ 1988 spin_lock(&_minor_lock); 1989 old_md = idr_replace(&_minor_idr, md, minor); 1990 spin_unlock(&_minor_lock); 1991 1992 BUG_ON(old_md != MINOR_ALLOCED); 1993 1994 return md; 1995 1996 bad: 1997 cleanup_mapped_device(md); 1998 bad_io_barrier: 1999 free_minor(minor); 2000 bad_minor: 2001 module_put(THIS_MODULE); 2002 bad_module_get: 2003 kvfree(md); 2004 return NULL; 2005 } 2006 2007 static void unlock_fs(struct mapped_device *md); 2008 2009 static void free_dev(struct mapped_device *md) 2010 { 2011 int minor = MINOR(disk_devt(md->disk)); 2012 2013 unlock_fs(md); 2014 2015 cleanup_mapped_device(md); 2016 2017 free_table_devices(&md->table_devices); 2018 dm_stats_cleanup(&md->stats); 2019 free_minor(minor); 2020 2021 module_put(THIS_MODULE); 2022 kvfree(md); 2023 } 2024 2025 static int __bind_mempools(struct mapped_device *md, struct dm_table *t) 2026 { 2027 struct dm_md_mempools *p = dm_table_get_md_mempools(t); 2028 int ret = 0; 2029 2030 if (dm_table_bio_based(t)) { 2031 /* 2032 * The md may already have mempools that need changing. 2033 * If so, reload bioset because front_pad may have changed 2034 * because a different table was loaded. 2035 */ 2036 bioset_exit(&md->bs); 2037 bioset_exit(&md->io_bs); 2038 2039 } else if (bioset_initialized(&md->bs)) { 2040 /* 2041 * There's no need to reload with request-based dm 2042 * because the size of front_pad doesn't change. 2043 * Note for future: If you are to reload bioset, 2044 * prep-ed requests in the queue may refer 2045 * to bio from the old bioset, so you must walk 2046 * through the queue to unprep. 2047 */ 2048 goto out; 2049 } 2050 2051 BUG_ON(!p || 2052 bioset_initialized(&md->bs) || 2053 bioset_initialized(&md->io_bs)); 2054 2055 ret = bioset_init_from_src(&md->bs, &p->bs); 2056 if (ret) 2057 goto out; 2058 ret = bioset_init_from_src(&md->io_bs, &p->io_bs); 2059 if (ret) 2060 bioset_exit(&md->bs); 2061 out: 2062 /* mempool bind completed, no longer need any mempools in the table */ 2063 dm_table_free_md_mempools(t); 2064 return ret; 2065 } 2066 2067 /* 2068 * Bind a table to the device. 2069 */ 2070 static void event_callback(void *context) 2071 { 2072 unsigned long flags; 2073 LIST_HEAD(uevents); 2074 struct mapped_device *md = (struct mapped_device *) context; 2075 2076 spin_lock_irqsave(&md->uevent_lock, flags); 2077 list_splice_init(&md->uevent_list, &uevents); 2078 spin_unlock_irqrestore(&md->uevent_lock, flags); 2079 2080 dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj); 2081 2082 atomic_inc(&md->event_nr); 2083 wake_up(&md->eventq); 2084 dm_issue_global_event(); 2085 } 2086 2087 /* 2088 * Returns old map, which caller must destroy. 2089 */ 2090 static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t, 2091 struct queue_limits *limits) 2092 { 2093 struct dm_table *old_map; 2094 struct request_queue *q = md->queue; 2095 bool request_based = dm_table_request_based(t); 2096 sector_t size; 2097 int ret; 2098 2099 lockdep_assert_held(&md->suspend_lock); 2100 2101 size = dm_table_get_size(t); 2102 2103 /* 2104 * Wipe any geometry if the size of the table changed. 2105 */ 2106 if (size != dm_get_size(md)) 2107 memset(&md->geometry, 0, sizeof(md->geometry)); 2108 2109 set_capacity(md->disk, size); 2110 bd_set_nr_sectors(md->bdev, size); 2111 2112 dm_table_event_callback(t, event_callback, md); 2113 2114 /* 2115 * The queue hasn't been stopped yet, if the old table type wasn't 2116 * for request-based during suspension. So stop it to prevent 2117 * I/O mapping before resume. 2118 * This must be done before setting the queue restrictions, 2119 * because request-based dm may be run just after the setting. 2120 */ 2121 if (request_based) 2122 dm_stop_queue(q); 2123 2124 if (request_based || md->type == DM_TYPE_NVME_BIO_BASED) { 2125 /* 2126 * Leverage the fact that request-based DM targets and 2127 * NVMe bio based targets are immutable singletons 2128 * - used to optimize both dm_request_fn and dm_mq_queue_rq; 2129 * and __process_bio. 2130 */ 2131 md->immutable_target = dm_table_get_immutable_target(t); 2132 } 2133 2134 ret = __bind_mempools(md, t); 2135 if (ret) { 2136 old_map = ERR_PTR(ret); 2137 goto out; 2138 } 2139 2140 old_map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock)); 2141 rcu_assign_pointer(md->map, (void *)t); 2142 md->immutable_target_type = dm_table_get_immutable_target_type(t); 2143 2144 dm_table_set_restrictions(t, q, limits); 2145 if (old_map) 2146 dm_sync_table(md); 2147 2148 out: 2149 return old_map; 2150 } 2151 2152 /* 2153 * Returns unbound table for the caller to free. 2154 */ 2155 static struct dm_table *__unbind(struct mapped_device *md) 2156 { 2157 struct dm_table *map = rcu_dereference_protected(md->map, 1); 2158 2159 if (!map) 2160 return NULL; 2161 2162 dm_table_event_callback(map, NULL, NULL); 2163 RCU_INIT_POINTER(md->map, NULL); 2164 dm_sync_table(md); 2165 2166 return map; 2167 } 2168 2169 /* 2170 * Constructor for a new device. 2171 */ 2172 int dm_create(int minor, struct mapped_device **result) 2173 { 2174 int r; 2175 struct mapped_device *md; 2176 2177 md = alloc_dev(minor); 2178 if (!md) 2179 return -ENXIO; 2180 2181 r = dm_sysfs_init(md); 2182 if (r) { 2183 free_dev(md); 2184 return r; 2185 } 2186 2187 *result = md; 2188 return 0; 2189 } 2190 2191 /* 2192 * Functions to manage md->type. 2193 * All are required to hold md->type_lock. 2194 */ 2195 void dm_lock_md_type(struct mapped_device *md) 2196 { 2197 mutex_lock(&md->type_lock); 2198 } 2199 2200 void dm_unlock_md_type(struct mapped_device *md) 2201 { 2202 mutex_unlock(&md->type_lock); 2203 } 2204 2205 void dm_set_md_type(struct mapped_device *md, enum dm_queue_mode type) 2206 { 2207 BUG_ON(!mutex_is_locked(&md->type_lock)); 2208 md->type = type; 2209 } 2210 2211 enum dm_queue_mode dm_get_md_type(struct mapped_device *md) 2212 { 2213 return md->type; 2214 } 2215 2216 struct target_type *dm_get_immutable_target_type(struct mapped_device *md) 2217 { 2218 return md->immutable_target_type; 2219 } 2220 2221 /* 2222 * The queue_limits are only valid as long as you have a reference 2223 * count on 'md'. 2224 */ 2225 struct queue_limits *dm_get_queue_limits(struct mapped_device *md) 2226 { 2227 BUG_ON(!atomic_read(&md->holders)); 2228 return &md->queue->limits; 2229 } 2230 EXPORT_SYMBOL_GPL(dm_get_queue_limits); 2231 2232 /* 2233 * Setup the DM device's queue based on md's type 2234 */ 2235 int dm_setup_md_queue(struct mapped_device *md, struct dm_table *t) 2236 { 2237 int r; 2238 struct queue_limits limits; 2239 enum dm_queue_mode type = dm_get_md_type(md); 2240 2241 switch (type) { 2242 case DM_TYPE_REQUEST_BASED: 2243 r = dm_mq_init_request_queue(md, t); 2244 if (r) { 2245 DMERR("Cannot initialize queue for request-based dm-mq mapped device"); 2246 return r; 2247 } 2248 break; 2249 case DM_TYPE_BIO_BASED: 2250 case DM_TYPE_DAX_BIO_BASED: 2251 case DM_TYPE_NVME_BIO_BASED: 2252 break; 2253 case DM_TYPE_NONE: 2254 WARN_ON_ONCE(true); 2255 break; 2256 } 2257 2258 r = dm_calculate_queue_limits(t, &limits); 2259 if (r) { 2260 DMERR("Cannot calculate initial queue limits"); 2261 return r; 2262 } 2263 dm_table_set_restrictions(t, md->queue, &limits); 2264 blk_register_queue(md->disk); 2265 2266 return 0; 2267 } 2268 2269 struct mapped_device *dm_get_md(dev_t dev) 2270 { 2271 struct mapped_device *md; 2272 unsigned minor = MINOR(dev); 2273 2274 if (MAJOR(dev) != _major || minor >= (1 << MINORBITS)) 2275 return NULL; 2276 2277 spin_lock(&_minor_lock); 2278 2279 md = idr_find(&_minor_idr, minor); 2280 if (!md || md == MINOR_ALLOCED || (MINOR(disk_devt(dm_disk(md))) != minor) || 2281 test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) { 2282 md = NULL; 2283 goto out; 2284 } 2285 dm_get(md); 2286 out: 2287 spin_unlock(&_minor_lock); 2288 2289 return md; 2290 } 2291 EXPORT_SYMBOL_GPL(dm_get_md); 2292 2293 void *dm_get_mdptr(struct mapped_device *md) 2294 { 2295 return md->interface_ptr; 2296 } 2297 2298 void dm_set_mdptr(struct mapped_device *md, void *ptr) 2299 { 2300 md->interface_ptr = ptr; 2301 } 2302 2303 void dm_get(struct mapped_device *md) 2304 { 2305 atomic_inc(&md->holders); 2306 BUG_ON(test_bit(DMF_FREEING, &md->flags)); 2307 } 2308 2309 int dm_hold(struct mapped_device *md) 2310 { 2311 spin_lock(&_minor_lock); 2312 if (test_bit(DMF_FREEING, &md->flags)) { 2313 spin_unlock(&_minor_lock); 2314 return -EBUSY; 2315 } 2316 dm_get(md); 2317 spin_unlock(&_minor_lock); 2318 return 0; 2319 } 2320 EXPORT_SYMBOL_GPL(dm_hold); 2321 2322 const char *dm_device_name(struct mapped_device *md) 2323 { 2324 return md->name; 2325 } 2326 EXPORT_SYMBOL_GPL(dm_device_name); 2327 2328 static void __dm_destroy(struct mapped_device *md, bool wait) 2329 { 2330 struct dm_table *map; 2331 int srcu_idx; 2332 2333 might_sleep(); 2334 2335 spin_lock(&_minor_lock); 2336 idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md)))); 2337 set_bit(DMF_FREEING, &md->flags); 2338 spin_unlock(&_minor_lock); 2339 2340 blk_set_queue_dying(md->queue); 2341 2342 /* 2343 * Take suspend_lock so that presuspend and postsuspend methods 2344 * do not race with internal suspend. 2345 */ 2346 mutex_lock(&md->suspend_lock); 2347 map = dm_get_live_table(md, &srcu_idx); 2348 if (!dm_suspended_md(md)) { 2349 dm_table_presuspend_targets(map); 2350 set_bit(DMF_SUSPENDED, &md->flags); 2351 set_bit(DMF_POST_SUSPENDING, &md->flags); 2352 dm_table_postsuspend_targets(map); 2353 } 2354 /* dm_put_live_table must be before msleep, otherwise deadlock is possible */ 2355 dm_put_live_table(md, srcu_idx); 2356 mutex_unlock(&md->suspend_lock); 2357 2358 /* 2359 * Rare, but there may be I/O requests still going to complete, 2360 * for example. Wait for all references to disappear. 2361 * No one should increment the reference count of the mapped_device, 2362 * after the mapped_device state becomes DMF_FREEING. 2363 */ 2364 if (wait) 2365 while (atomic_read(&md->holders)) 2366 msleep(1); 2367 else if (atomic_read(&md->holders)) 2368 DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)", 2369 dm_device_name(md), atomic_read(&md->holders)); 2370 2371 dm_sysfs_exit(md); 2372 dm_table_destroy(__unbind(md)); 2373 free_dev(md); 2374 } 2375 2376 void dm_destroy(struct mapped_device *md) 2377 { 2378 __dm_destroy(md, true); 2379 } 2380 2381 void dm_destroy_immediate(struct mapped_device *md) 2382 { 2383 __dm_destroy(md, false); 2384 } 2385 2386 void dm_put(struct mapped_device *md) 2387 { 2388 atomic_dec(&md->holders); 2389 } 2390 EXPORT_SYMBOL_GPL(dm_put); 2391 2392 static bool md_in_flight_bios(struct mapped_device *md) 2393 { 2394 int cpu; 2395 struct hd_struct *part = &dm_disk(md)->part0; 2396 long sum = 0; 2397 2398 for_each_possible_cpu(cpu) { 2399 sum += part_stat_local_read_cpu(part, in_flight[0], cpu); 2400 sum += part_stat_local_read_cpu(part, in_flight[1], cpu); 2401 } 2402 2403 return sum != 0; 2404 } 2405 2406 static int dm_wait_for_bios_completion(struct mapped_device *md, long task_state) 2407 { 2408 int r = 0; 2409 DEFINE_WAIT(wait); 2410 2411 while (true) { 2412 prepare_to_wait(&md->wait, &wait, task_state); 2413 2414 if (!md_in_flight_bios(md)) 2415 break; 2416 2417 if (signal_pending_state(task_state, current)) { 2418 r = -EINTR; 2419 break; 2420 } 2421 2422 io_schedule(); 2423 } 2424 finish_wait(&md->wait, &wait); 2425 2426 return r; 2427 } 2428 2429 static int dm_wait_for_completion(struct mapped_device *md, long task_state) 2430 { 2431 int r = 0; 2432 2433 if (!queue_is_mq(md->queue)) 2434 return dm_wait_for_bios_completion(md, task_state); 2435 2436 while (true) { 2437 if (!blk_mq_queue_inflight(md->queue)) 2438 break; 2439 2440 if (signal_pending_state(task_state, current)) { 2441 r = -EINTR; 2442 break; 2443 } 2444 2445 msleep(5); 2446 } 2447 2448 return r; 2449 } 2450 2451 /* 2452 * Process the deferred bios 2453 */ 2454 static void dm_wq_work(struct work_struct *work) 2455 { 2456 struct mapped_device *md = container_of(work, struct mapped_device, 2457 work); 2458 struct bio *c; 2459 int srcu_idx; 2460 struct dm_table *map; 2461 2462 map = dm_get_live_table(md, &srcu_idx); 2463 2464 while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) { 2465 spin_lock_irq(&md->deferred_lock); 2466 c = bio_list_pop(&md->deferred); 2467 spin_unlock_irq(&md->deferred_lock); 2468 2469 if (!c) 2470 break; 2471 2472 if (dm_request_based(md)) 2473 (void) submit_bio_noacct(c); 2474 else 2475 (void) dm_process_bio(md, map, c); 2476 } 2477 2478 dm_put_live_table(md, srcu_idx); 2479 } 2480 2481 static void dm_queue_flush(struct mapped_device *md) 2482 { 2483 clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags); 2484 smp_mb__after_atomic(); 2485 queue_work(md->wq, &md->work); 2486 } 2487 2488 /* 2489 * Swap in a new table, returning the old one for the caller to destroy. 2490 */ 2491 struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table) 2492 { 2493 struct dm_table *live_map = NULL, *map = ERR_PTR(-EINVAL); 2494 struct queue_limits limits; 2495 int r; 2496 2497 mutex_lock(&md->suspend_lock); 2498 2499 /* device must be suspended */ 2500 if (!dm_suspended_md(md)) 2501 goto out; 2502 2503 /* 2504 * If the new table has no data devices, retain the existing limits. 2505 * This helps multipath with queue_if_no_path if all paths disappear, 2506 * then new I/O is queued based on these limits, and then some paths 2507 * reappear. 2508 */ 2509 if (dm_table_has_no_data_devices(table)) { 2510 live_map = dm_get_live_table_fast(md); 2511 if (live_map) 2512 limits = md->queue->limits; 2513 dm_put_live_table_fast(md); 2514 } 2515 2516 if (!live_map) { 2517 r = dm_calculate_queue_limits(table, &limits); 2518 if (r) { 2519 map = ERR_PTR(r); 2520 goto out; 2521 } 2522 } 2523 2524 map = __bind(md, table, &limits); 2525 dm_issue_global_event(); 2526 2527 out: 2528 mutex_unlock(&md->suspend_lock); 2529 return map; 2530 } 2531 2532 /* 2533 * Functions to lock and unlock any filesystem running on the 2534 * device. 2535 */ 2536 static int lock_fs(struct mapped_device *md) 2537 { 2538 int r; 2539 2540 WARN_ON(md->frozen_sb); 2541 2542 md->frozen_sb = freeze_bdev(md->bdev); 2543 if (IS_ERR(md->frozen_sb)) { 2544 r = PTR_ERR(md->frozen_sb); 2545 md->frozen_sb = NULL; 2546 return r; 2547 } 2548 2549 set_bit(DMF_FROZEN, &md->flags); 2550 2551 return 0; 2552 } 2553 2554 static void unlock_fs(struct mapped_device *md) 2555 { 2556 if (!test_bit(DMF_FROZEN, &md->flags)) 2557 return; 2558 2559 thaw_bdev(md->bdev, md->frozen_sb); 2560 md->frozen_sb = NULL; 2561 clear_bit(DMF_FROZEN, &md->flags); 2562 } 2563 2564 /* 2565 * @suspend_flags: DM_SUSPEND_LOCKFS_FLAG and/or DM_SUSPEND_NOFLUSH_FLAG 2566 * @task_state: e.g. TASK_INTERRUPTIBLE or TASK_UNINTERRUPTIBLE 2567 * @dmf_suspended_flag: DMF_SUSPENDED or DMF_SUSPENDED_INTERNALLY 2568 * 2569 * If __dm_suspend returns 0, the device is completely quiescent 2570 * now. There is no request-processing activity. All new requests 2571 * are being added to md->deferred list. 2572 */ 2573 static int __dm_suspend(struct mapped_device *md, struct dm_table *map, 2574 unsigned suspend_flags, long task_state, 2575 int dmf_suspended_flag) 2576 { 2577 bool do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG; 2578 bool noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG; 2579 int r; 2580 2581 lockdep_assert_held(&md->suspend_lock); 2582 2583 /* 2584 * DMF_NOFLUSH_SUSPENDING must be set before presuspend. 2585 * This flag is cleared before dm_suspend returns. 2586 */ 2587 if (noflush) 2588 set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags); 2589 else 2590 DMDEBUG("%s: suspending with flush", dm_device_name(md)); 2591 2592 /* 2593 * This gets reverted if there's an error later and the targets 2594 * provide the .presuspend_undo hook. 2595 */ 2596 dm_table_presuspend_targets(map); 2597 2598 /* 2599 * Flush I/O to the device. 2600 * Any I/O submitted after lock_fs() may not be flushed. 2601 * noflush takes precedence over do_lockfs. 2602 * (lock_fs() flushes I/Os and waits for them to complete.) 2603 */ 2604 if (!noflush && do_lockfs) { 2605 r = lock_fs(md); 2606 if (r) { 2607 dm_table_presuspend_undo_targets(map); 2608 return r; 2609 } 2610 } 2611 2612 /* 2613 * Here we must make sure that no processes are submitting requests 2614 * to target drivers i.e. no one may be executing 2615 * __split_and_process_bio. This is called from dm_request and 2616 * dm_wq_work. 2617 * 2618 * To get all processes out of __split_and_process_bio in dm_request, 2619 * we take the write lock. To prevent any process from reentering 2620 * __split_and_process_bio from dm_request and quiesce the thread 2621 * (dm_wq_work), we set BMF_BLOCK_IO_FOR_SUSPEND and call 2622 * flush_workqueue(md->wq). 2623 */ 2624 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags); 2625 if (map) 2626 synchronize_srcu(&md->io_barrier); 2627 2628 /* 2629 * Stop md->queue before flushing md->wq in case request-based 2630 * dm defers requests to md->wq from md->queue. 2631 */ 2632 if (dm_request_based(md)) 2633 dm_stop_queue(md->queue); 2634 2635 flush_workqueue(md->wq); 2636 2637 /* 2638 * At this point no more requests are entering target request routines. 2639 * We call dm_wait_for_completion to wait for all existing requests 2640 * to finish. 2641 */ 2642 r = dm_wait_for_completion(md, task_state); 2643 if (!r) 2644 set_bit(dmf_suspended_flag, &md->flags); 2645 2646 if (noflush) 2647 clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags); 2648 if (map) 2649 synchronize_srcu(&md->io_barrier); 2650 2651 /* were we interrupted ? */ 2652 if (r < 0) { 2653 dm_queue_flush(md); 2654 2655 if (dm_request_based(md)) 2656 dm_start_queue(md->queue); 2657 2658 unlock_fs(md); 2659 dm_table_presuspend_undo_targets(map); 2660 /* pushback list is already flushed, so skip flush */ 2661 } 2662 2663 return r; 2664 } 2665 2666 /* 2667 * We need to be able to change a mapping table under a mounted 2668 * filesystem. For example we might want to move some data in 2669 * the background. Before the table can be swapped with 2670 * dm_bind_table, dm_suspend must be called to flush any in 2671 * flight bios and ensure that any further io gets deferred. 2672 */ 2673 /* 2674 * Suspend mechanism in request-based dm. 2675 * 2676 * 1. Flush all I/Os by lock_fs() if needed. 2677 * 2. Stop dispatching any I/O by stopping the request_queue. 2678 * 3. Wait for all in-flight I/Os to be completed or requeued. 2679 * 2680 * To abort suspend, start the request_queue. 2681 */ 2682 int dm_suspend(struct mapped_device *md, unsigned suspend_flags) 2683 { 2684 struct dm_table *map = NULL; 2685 int r = 0; 2686 2687 retry: 2688 mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING); 2689 2690 if (dm_suspended_md(md)) { 2691 r = -EINVAL; 2692 goto out_unlock; 2693 } 2694 2695 if (dm_suspended_internally_md(md)) { 2696 /* already internally suspended, wait for internal resume */ 2697 mutex_unlock(&md->suspend_lock); 2698 r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE); 2699 if (r) 2700 return r; 2701 goto retry; 2702 } 2703 2704 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock)); 2705 2706 r = __dm_suspend(md, map, suspend_flags, TASK_INTERRUPTIBLE, DMF_SUSPENDED); 2707 if (r) 2708 goto out_unlock; 2709 2710 set_bit(DMF_POST_SUSPENDING, &md->flags); 2711 dm_table_postsuspend_targets(map); 2712 clear_bit(DMF_POST_SUSPENDING, &md->flags); 2713 2714 out_unlock: 2715 mutex_unlock(&md->suspend_lock); 2716 return r; 2717 } 2718 2719 static int __dm_resume(struct mapped_device *md, struct dm_table *map) 2720 { 2721 if (map) { 2722 int r = dm_table_resume_targets(map); 2723 if (r) 2724 return r; 2725 } 2726 2727 dm_queue_flush(md); 2728 2729 /* 2730 * Flushing deferred I/Os must be done after targets are resumed 2731 * so that mapping of targets can work correctly. 2732 * Request-based dm is queueing the deferred I/Os in its request_queue. 2733 */ 2734 if (dm_request_based(md)) 2735 dm_start_queue(md->queue); 2736 2737 unlock_fs(md); 2738 2739 return 0; 2740 } 2741 2742 int dm_resume(struct mapped_device *md) 2743 { 2744 int r; 2745 struct dm_table *map = NULL; 2746 2747 retry: 2748 r = -EINVAL; 2749 mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING); 2750 2751 if (!dm_suspended_md(md)) 2752 goto out; 2753 2754 if (dm_suspended_internally_md(md)) { 2755 /* already internally suspended, wait for internal resume */ 2756 mutex_unlock(&md->suspend_lock); 2757 r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE); 2758 if (r) 2759 return r; 2760 goto retry; 2761 } 2762 2763 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock)); 2764 if (!map || !dm_table_get_size(map)) 2765 goto out; 2766 2767 r = __dm_resume(md, map); 2768 if (r) 2769 goto out; 2770 2771 clear_bit(DMF_SUSPENDED, &md->flags); 2772 out: 2773 mutex_unlock(&md->suspend_lock); 2774 2775 return r; 2776 } 2777 2778 /* 2779 * Internal suspend/resume works like userspace-driven suspend. It waits 2780 * until all bios finish and prevents issuing new bios to the target drivers. 2781 * It may be used only from the kernel. 2782 */ 2783 2784 static void __dm_internal_suspend(struct mapped_device *md, unsigned suspend_flags) 2785 { 2786 struct dm_table *map = NULL; 2787 2788 lockdep_assert_held(&md->suspend_lock); 2789 2790 if (md->internal_suspend_count++) 2791 return; /* nested internal suspend */ 2792 2793 if (dm_suspended_md(md)) { 2794 set_bit(DMF_SUSPENDED_INTERNALLY, &md->flags); 2795 return; /* nest suspend */ 2796 } 2797 2798 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock)); 2799 2800 /* 2801 * Using TASK_UNINTERRUPTIBLE because only NOFLUSH internal suspend is 2802 * supported. Properly supporting a TASK_INTERRUPTIBLE internal suspend 2803 * would require changing .presuspend to return an error -- avoid this 2804 * until there is a need for more elaborate variants of internal suspend. 2805 */ 2806 (void) __dm_suspend(md, map, suspend_flags, TASK_UNINTERRUPTIBLE, 2807 DMF_SUSPENDED_INTERNALLY); 2808 2809 set_bit(DMF_POST_SUSPENDING, &md->flags); 2810 dm_table_postsuspend_targets(map); 2811 clear_bit(DMF_POST_SUSPENDING, &md->flags); 2812 } 2813 2814 static void __dm_internal_resume(struct mapped_device *md) 2815 { 2816 BUG_ON(!md->internal_suspend_count); 2817 2818 if (--md->internal_suspend_count) 2819 return; /* resume from nested internal suspend */ 2820 2821 if (dm_suspended_md(md)) 2822 goto done; /* resume from nested suspend */ 2823 2824 /* 2825 * NOTE: existing callers don't need to call dm_table_resume_targets 2826 * (which may fail -- so best to avoid it for now by passing NULL map) 2827 */ 2828 (void) __dm_resume(md, NULL); 2829 2830 done: 2831 clear_bit(DMF_SUSPENDED_INTERNALLY, &md->flags); 2832 smp_mb__after_atomic(); 2833 wake_up_bit(&md->flags, DMF_SUSPENDED_INTERNALLY); 2834 } 2835 2836 void dm_internal_suspend_noflush(struct mapped_device *md) 2837 { 2838 mutex_lock(&md->suspend_lock); 2839 __dm_internal_suspend(md, DM_SUSPEND_NOFLUSH_FLAG); 2840 mutex_unlock(&md->suspend_lock); 2841 } 2842 EXPORT_SYMBOL_GPL(dm_internal_suspend_noflush); 2843 2844 void dm_internal_resume(struct mapped_device *md) 2845 { 2846 mutex_lock(&md->suspend_lock); 2847 __dm_internal_resume(md); 2848 mutex_unlock(&md->suspend_lock); 2849 } 2850 EXPORT_SYMBOL_GPL(dm_internal_resume); 2851 2852 /* 2853 * Fast variants of internal suspend/resume hold md->suspend_lock, 2854 * which prevents interaction with userspace-driven suspend. 2855 */ 2856 2857 void dm_internal_suspend_fast(struct mapped_device *md) 2858 { 2859 mutex_lock(&md->suspend_lock); 2860 if (dm_suspended_md(md) || dm_suspended_internally_md(md)) 2861 return; 2862 2863 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags); 2864 synchronize_srcu(&md->io_barrier); 2865 flush_workqueue(md->wq); 2866 dm_wait_for_completion(md, TASK_UNINTERRUPTIBLE); 2867 } 2868 EXPORT_SYMBOL_GPL(dm_internal_suspend_fast); 2869 2870 void dm_internal_resume_fast(struct mapped_device *md) 2871 { 2872 if (dm_suspended_md(md) || dm_suspended_internally_md(md)) 2873 goto done; 2874 2875 dm_queue_flush(md); 2876 2877 done: 2878 mutex_unlock(&md->suspend_lock); 2879 } 2880 EXPORT_SYMBOL_GPL(dm_internal_resume_fast); 2881 2882 /*----------------------------------------------------------------- 2883 * Event notification. 2884 *---------------------------------------------------------------*/ 2885 int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action, 2886 unsigned cookie) 2887 { 2888 int r; 2889 unsigned noio_flag; 2890 char udev_cookie[DM_COOKIE_LENGTH]; 2891 char *envp[] = { udev_cookie, NULL }; 2892 2893 noio_flag = memalloc_noio_save(); 2894 2895 if (!cookie) 2896 r = kobject_uevent(&disk_to_dev(md->disk)->kobj, action); 2897 else { 2898 snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u", 2899 DM_COOKIE_ENV_VAR_NAME, cookie); 2900 r = kobject_uevent_env(&disk_to_dev(md->disk)->kobj, 2901 action, envp); 2902 } 2903 2904 memalloc_noio_restore(noio_flag); 2905 2906 return r; 2907 } 2908 2909 uint32_t dm_next_uevent_seq(struct mapped_device *md) 2910 { 2911 return atomic_add_return(1, &md->uevent_seq); 2912 } 2913 2914 uint32_t dm_get_event_nr(struct mapped_device *md) 2915 { 2916 return atomic_read(&md->event_nr); 2917 } 2918 2919 int dm_wait_event(struct mapped_device *md, int event_nr) 2920 { 2921 return wait_event_interruptible(md->eventq, 2922 (event_nr != atomic_read(&md->event_nr))); 2923 } 2924 2925 void dm_uevent_add(struct mapped_device *md, struct list_head *elist) 2926 { 2927 unsigned long flags; 2928 2929 spin_lock_irqsave(&md->uevent_lock, flags); 2930 list_add(elist, &md->uevent_list); 2931 spin_unlock_irqrestore(&md->uevent_lock, flags); 2932 } 2933 2934 /* 2935 * The gendisk is only valid as long as you have a reference 2936 * count on 'md'. 2937 */ 2938 struct gendisk *dm_disk(struct mapped_device *md) 2939 { 2940 return md->disk; 2941 } 2942 EXPORT_SYMBOL_GPL(dm_disk); 2943 2944 struct kobject *dm_kobject(struct mapped_device *md) 2945 { 2946 return &md->kobj_holder.kobj; 2947 } 2948 2949 struct mapped_device *dm_get_from_kobject(struct kobject *kobj) 2950 { 2951 struct mapped_device *md; 2952 2953 md = container_of(kobj, struct mapped_device, kobj_holder.kobj); 2954 2955 spin_lock(&_minor_lock); 2956 if (test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) { 2957 md = NULL; 2958 goto out; 2959 } 2960 dm_get(md); 2961 out: 2962 spin_unlock(&_minor_lock); 2963 2964 return md; 2965 } 2966 2967 int dm_suspended_md(struct mapped_device *md) 2968 { 2969 return test_bit(DMF_SUSPENDED, &md->flags); 2970 } 2971 2972 static int dm_post_suspending_md(struct mapped_device *md) 2973 { 2974 return test_bit(DMF_POST_SUSPENDING, &md->flags); 2975 } 2976 2977 int dm_suspended_internally_md(struct mapped_device *md) 2978 { 2979 return test_bit(DMF_SUSPENDED_INTERNALLY, &md->flags); 2980 } 2981 2982 int dm_test_deferred_remove_flag(struct mapped_device *md) 2983 { 2984 return test_bit(DMF_DEFERRED_REMOVE, &md->flags); 2985 } 2986 2987 int dm_suspended(struct dm_target *ti) 2988 { 2989 return dm_suspended_md(dm_table_get_md(ti->table)); 2990 } 2991 EXPORT_SYMBOL_GPL(dm_suspended); 2992 2993 int dm_post_suspending(struct dm_target *ti) 2994 { 2995 return dm_post_suspending_md(dm_table_get_md(ti->table)); 2996 } 2997 EXPORT_SYMBOL_GPL(dm_post_suspending); 2998 2999 int dm_noflush_suspending(struct dm_target *ti) 3000 { 3001 return __noflush_suspending(dm_table_get_md(ti->table)); 3002 } 3003 EXPORT_SYMBOL_GPL(dm_noflush_suspending); 3004 3005 struct dm_md_mempools *dm_alloc_md_mempools(struct mapped_device *md, enum dm_queue_mode type, 3006 unsigned integrity, unsigned per_io_data_size, 3007 unsigned min_pool_size) 3008 { 3009 struct dm_md_mempools *pools = kzalloc_node(sizeof(*pools), GFP_KERNEL, md->numa_node_id); 3010 unsigned int pool_size = 0; 3011 unsigned int front_pad, io_front_pad; 3012 int ret; 3013 3014 if (!pools) 3015 return NULL; 3016 3017 switch (type) { 3018 case DM_TYPE_BIO_BASED: 3019 case DM_TYPE_DAX_BIO_BASED: 3020 case DM_TYPE_NVME_BIO_BASED: 3021 pool_size = max(dm_get_reserved_bio_based_ios(), min_pool_size); 3022 front_pad = roundup(per_io_data_size, __alignof__(struct dm_target_io)) + offsetof(struct dm_target_io, clone); 3023 io_front_pad = roundup(front_pad, __alignof__(struct dm_io)) + offsetof(struct dm_io, tio); 3024 ret = bioset_init(&pools->io_bs, pool_size, io_front_pad, 0); 3025 if (ret) 3026 goto out; 3027 if (integrity && bioset_integrity_create(&pools->io_bs, pool_size)) 3028 goto out; 3029 break; 3030 case DM_TYPE_REQUEST_BASED: 3031 pool_size = max(dm_get_reserved_rq_based_ios(), min_pool_size); 3032 front_pad = offsetof(struct dm_rq_clone_bio_info, clone); 3033 /* per_io_data_size is used for blk-mq pdu at queue allocation */ 3034 break; 3035 default: 3036 BUG(); 3037 } 3038 3039 ret = bioset_init(&pools->bs, pool_size, front_pad, 0); 3040 if (ret) 3041 goto out; 3042 3043 if (integrity && bioset_integrity_create(&pools->bs, pool_size)) 3044 goto out; 3045 3046 return pools; 3047 3048 out: 3049 dm_free_md_mempools(pools); 3050 3051 return NULL; 3052 } 3053 3054 void dm_free_md_mempools(struct dm_md_mempools *pools) 3055 { 3056 if (!pools) 3057 return; 3058 3059 bioset_exit(&pools->bs); 3060 bioset_exit(&pools->io_bs); 3061 3062 kfree(pools); 3063 } 3064 3065 struct dm_pr { 3066 u64 old_key; 3067 u64 new_key; 3068 u32 flags; 3069 bool fail_early; 3070 }; 3071 3072 static int dm_call_pr(struct block_device *bdev, iterate_devices_callout_fn fn, 3073 void *data) 3074 { 3075 struct mapped_device *md = bdev->bd_disk->private_data; 3076 struct dm_table *table; 3077 struct dm_target *ti; 3078 int ret = -ENOTTY, srcu_idx; 3079 3080 table = dm_get_live_table(md, &srcu_idx); 3081 if (!table || !dm_table_get_size(table)) 3082 goto out; 3083 3084 /* We only support devices that have a single target */ 3085 if (dm_table_get_num_targets(table) != 1) 3086 goto out; 3087 ti = dm_table_get_target(table, 0); 3088 3089 ret = -EINVAL; 3090 if (!ti->type->iterate_devices) 3091 goto out; 3092 3093 ret = ti->type->iterate_devices(ti, fn, data); 3094 out: 3095 dm_put_live_table(md, srcu_idx); 3096 return ret; 3097 } 3098 3099 /* 3100 * For register / unregister we need to manually call out to every path. 3101 */ 3102 static int __dm_pr_register(struct dm_target *ti, struct dm_dev *dev, 3103 sector_t start, sector_t len, void *data) 3104 { 3105 struct dm_pr *pr = data; 3106 const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops; 3107 3108 if (!ops || !ops->pr_register) 3109 return -EOPNOTSUPP; 3110 return ops->pr_register(dev->bdev, pr->old_key, pr->new_key, pr->flags); 3111 } 3112 3113 static int dm_pr_register(struct block_device *bdev, u64 old_key, u64 new_key, 3114 u32 flags) 3115 { 3116 struct dm_pr pr = { 3117 .old_key = old_key, 3118 .new_key = new_key, 3119 .flags = flags, 3120 .fail_early = true, 3121 }; 3122 int ret; 3123 3124 ret = dm_call_pr(bdev, __dm_pr_register, &pr); 3125 if (ret && new_key) { 3126 /* unregister all paths if we failed to register any path */ 3127 pr.old_key = new_key; 3128 pr.new_key = 0; 3129 pr.flags = 0; 3130 pr.fail_early = false; 3131 dm_call_pr(bdev, __dm_pr_register, &pr); 3132 } 3133 3134 return ret; 3135 } 3136 3137 static int dm_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type, 3138 u32 flags) 3139 { 3140 struct mapped_device *md = bdev->bd_disk->private_data; 3141 const struct pr_ops *ops; 3142 int r, srcu_idx; 3143 3144 r = dm_prepare_ioctl(md, &srcu_idx, &bdev); 3145 if (r < 0) 3146 goto out; 3147 3148 ops = bdev->bd_disk->fops->pr_ops; 3149 if (ops && ops->pr_reserve) 3150 r = ops->pr_reserve(bdev, key, type, flags); 3151 else 3152 r = -EOPNOTSUPP; 3153 out: 3154 dm_unprepare_ioctl(md, srcu_idx); 3155 return r; 3156 } 3157 3158 static int dm_pr_release(struct block_device *bdev, u64 key, enum pr_type type) 3159 { 3160 struct mapped_device *md = bdev->bd_disk->private_data; 3161 const struct pr_ops *ops; 3162 int r, srcu_idx; 3163 3164 r = dm_prepare_ioctl(md, &srcu_idx, &bdev); 3165 if (r < 0) 3166 goto out; 3167 3168 ops = bdev->bd_disk->fops->pr_ops; 3169 if (ops && ops->pr_release) 3170 r = ops->pr_release(bdev, key, type); 3171 else 3172 r = -EOPNOTSUPP; 3173 out: 3174 dm_unprepare_ioctl(md, srcu_idx); 3175 return r; 3176 } 3177 3178 static int dm_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key, 3179 enum pr_type type, bool abort) 3180 { 3181 struct mapped_device *md = bdev->bd_disk->private_data; 3182 const struct pr_ops *ops; 3183 int r, srcu_idx; 3184 3185 r = dm_prepare_ioctl(md, &srcu_idx, &bdev); 3186 if (r < 0) 3187 goto out; 3188 3189 ops = bdev->bd_disk->fops->pr_ops; 3190 if (ops && ops->pr_preempt) 3191 r = ops->pr_preempt(bdev, old_key, new_key, type, abort); 3192 else 3193 r = -EOPNOTSUPP; 3194 out: 3195 dm_unprepare_ioctl(md, srcu_idx); 3196 return r; 3197 } 3198 3199 static int dm_pr_clear(struct block_device *bdev, u64 key) 3200 { 3201 struct mapped_device *md = bdev->bd_disk->private_data; 3202 const struct pr_ops *ops; 3203 int r, srcu_idx; 3204 3205 r = dm_prepare_ioctl(md, &srcu_idx, &bdev); 3206 if (r < 0) 3207 goto out; 3208 3209 ops = bdev->bd_disk->fops->pr_ops; 3210 if (ops && ops->pr_clear) 3211 r = ops->pr_clear(bdev, key); 3212 else 3213 r = -EOPNOTSUPP; 3214 out: 3215 dm_unprepare_ioctl(md, srcu_idx); 3216 return r; 3217 } 3218 3219 static const struct pr_ops dm_pr_ops = { 3220 .pr_register = dm_pr_register, 3221 .pr_reserve = dm_pr_reserve, 3222 .pr_release = dm_pr_release, 3223 .pr_preempt = dm_pr_preempt, 3224 .pr_clear = dm_pr_clear, 3225 }; 3226 3227 static const struct block_device_operations dm_blk_dops = { 3228 .submit_bio = dm_submit_bio, 3229 .open = dm_blk_open, 3230 .release = dm_blk_close, 3231 .ioctl = dm_blk_ioctl, 3232 .getgeo = dm_blk_getgeo, 3233 .report_zones = dm_blk_report_zones, 3234 .pr_ops = &dm_pr_ops, 3235 .owner = THIS_MODULE 3236 }; 3237 3238 static const struct dax_operations dm_dax_ops = { 3239 .direct_access = dm_dax_direct_access, 3240 .dax_supported = dm_dax_supported, 3241 .copy_from_iter = dm_dax_copy_from_iter, 3242 .copy_to_iter = dm_dax_copy_to_iter, 3243 .zero_page_range = dm_dax_zero_page_range, 3244 }; 3245 3246 /* 3247 * module hooks 3248 */ 3249 module_init(dm_init); 3250 module_exit(dm_exit); 3251 3252 module_param(major, uint, 0); 3253 MODULE_PARM_DESC(major, "The major number of the device mapper"); 3254 3255 module_param(reserved_bio_based_ios, uint, S_IRUGO | S_IWUSR); 3256 MODULE_PARM_DESC(reserved_bio_based_ios, "Reserved IOs in bio-based mempools"); 3257 3258 module_param(dm_numa_node, int, S_IRUGO | S_IWUSR); 3259 MODULE_PARM_DESC(dm_numa_node, "NUMA node for DM device memory allocations"); 3260 3261 MODULE_DESCRIPTION(DM_NAME " driver"); 3262 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>"); 3263 MODULE_LICENSE("GPL"); 3264