xref: /linux/drivers/md/dm.c (revision 1795cf48b322b4d19230a40dbe7181acedd34a94)
1 /*
2  * Copyright (C) 2001, 2002 Sistina Software (UK) Limited.
3  * Copyright (C) 2004-2006 Red Hat, Inc. All rights reserved.
4  *
5  * This file is released under the GPL.
6  */
7 
8 #include "dm.h"
9 #include "dm-bio-list.h"
10 #include "dm-uevent.h"
11 
12 #include <linux/init.h>
13 #include <linux/module.h>
14 #include <linux/mutex.h>
15 #include <linux/moduleparam.h>
16 #include <linux/blkpg.h>
17 #include <linux/bio.h>
18 #include <linux/buffer_head.h>
19 #include <linux/mempool.h>
20 #include <linux/slab.h>
21 #include <linux/idr.h>
22 #include <linux/hdreg.h>
23 #include <linux/blktrace_api.h>
24 #include <linux/smp_lock.h>
25 
26 #define DM_MSG_PREFIX "core"
27 
28 static const char *_name = DM_NAME;
29 
30 static unsigned int major = 0;
31 static unsigned int _major = 0;
32 
33 static DEFINE_SPINLOCK(_minor_lock);
34 /*
35  * One of these is allocated per bio.
36  */
37 struct dm_io {
38 	struct mapped_device *md;
39 	int error;
40 	atomic_t io_count;
41 	struct bio *bio;
42 	unsigned long start_time;
43 };
44 
45 /*
46  * One of these is allocated per target within a bio.  Hopefully
47  * this will be simplified out one day.
48  */
49 struct dm_target_io {
50 	struct dm_io *io;
51 	struct dm_target *ti;
52 	union map_info info;
53 };
54 
55 union map_info *dm_get_mapinfo(struct bio *bio)
56 {
57 	if (bio && bio->bi_private)
58 		return &((struct dm_target_io *)bio->bi_private)->info;
59 	return NULL;
60 }
61 
62 #define MINOR_ALLOCED ((void *)-1)
63 
64 /*
65  * Bits for the md->flags field.
66  */
67 #define DMF_BLOCK_IO 0
68 #define DMF_SUSPENDED 1
69 #define DMF_FROZEN 2
70 #define DMF_FREEING 3
71 #define DMF_DELETING 4
72 #define DMF_NOFLUSH_SUSPENDING 5
73 
74 /*
75  * Work processed by per-device workqueue.
76  */
77 struct dm_wq_req {
78 	enum {
79 		DM_WQ_FLUSH_ALL,
80 		DM_WQ_FLUSH_DEFERRED,
81 	} type;
82 	struct work_struct work;
83 	struct mapped_device *md;
84 	void *context;
85 };
86 
87 struct mapped_device {
88 	struct rw_semaphore io_lock;
89 	struct mutex suspend_lock;
90 	spinlock_t pushback_lock;
91 	rwlock_t map_lock;
92 	atomic_t holders;
93 	atomic_t open_count;
94 
95 	unsigned long flags;
96 
97 	struct request_queue *queue;
98 	struct gendisk *disk;
99 	char name[16];
100 
101 	void *interface_ptr;
102 
103 	/*
104 	 * A list of ios that arrived while we were suspended.
105 	 */
106 	atomic_t pending;
107 	wait_queue_head_t wait;
108 	struct bio_list deferred;
109 	struct bio_list pushback;
110 
111 	/*
112 	 * Processing queue (flush/barriers)
113 	 */
114 	struct workqueue_struct *wq;
115 
116 	/*
117 	 * The current mapping.
118 	 */
119 	struct dm_table *map;
120 
121 	/*
122 	 * io objects are allocated from here.
123 	 */
124 	mempool_t *io_pool;
125 	mempool_t *tio_pool;
126 
127 	struct bio_set *bs;
128 
129 	/*
130 	 * Event handling.
131 	 */
132 	atomic_t event_nr;
133 	wait_queue_head_t eventq;
134 	atomic_t uevent_seq;
135 	struct list_head uevent_list;
136 	spinlock_t uevent_lock; /* Protect access to uevent_list */
137 
138 	/*
139 	 * freeze/thaw support require holding onto a super block
140 	 */
141 	struct super_block *frozen_sb;
142 	struct block_device *suspended_bdev;
143 
144 	/* forced geometry settings */
145 	struct hd_geometry geometry;
146 };
147 
148 #define MIN_IOS 256
149 static struct kmem_cache *_io_cache;
150 static struct kmem_cache *_tio_cache;
151 
152 static int __init local_init(void)
153 {
154 	int r;
155 
156 	/* allocate a slab for the dm_ios */
157 	_io_cache = KMEM_CACHE(dm_io, 0);
158 	if (!_io_cache)
159 		return -ENOMEM;
160 
161 	/* allocate a slab for the target ios */
162 	_tio_cache = KMEM_CACHE(dm_target_io, 0);
163 	if (!_tio_cache) {
164 		kmem_cache_destroy(_io_cache);
165 		return -ENOMEM;
166 	}
167 
168 	r = dm_uevent_init();
169 	if (r) {
170 		kmem_cache_destroy(_tio_cache);
171 		kmem_cache_destroy(_io_cache);
172 		return r;
173 	}
174 
175 	_major = major;
176 	r = register_blkdev(_major, _name);
177 	if (r < 0) {
178 		kmem_cache_destroy(_tio_cache);
179 		kmem_cache_destroy(_io_cache);
180 		dm_uevent_exit();
181 		return r;
182 	}
183 
184 	if (!_major)
185 		_major = r;
186 
187 	return 0;
188 }
189 
190 static void local_exit(void)
191 {
192 	kmem_cache_destroy(_tio_cache);
193 	kmem_cache_destroy(_io_cache);
194 	unregister_blkdev(_major, _name);
195 	dm_uevent_exit();
196 
197 	_major = 0;
198 
199 	DMINFO("cleaned up");
200 }
201 
202 static int (*_inits[])(void) __initdata = {
203 	local_init,
204 	dm_target_init,
205 	dm_linear_init,
206 	dm_stripe_init,
207 	dm_kcopyd_init,
208 	dm_interface_init,
209 };
210 
211 static void (*_exits[])(void) = {
212 	local_exit,
213 	dm_target_exit,
214 	dm_linear_exit,
215 	dm_stripe_exit,
216 	dm_kcopyd_exit,
217 	dm_interface_exit,
218 };
219 
220 static int __init dm_init(void)
221 {
222 	const int count = ARRAY_SIZE(_inits);
223 
224 	int r, i;
225 
226 	for (i = 0; i < count; i++) {
227 		r = _inits[i]();
228 		if (r)
229 			goto bad;
230 	}
231 
232 	return 0;
233 
234       bad:
235 	while (i--)
236 		_exits[i]();
237 
238 	return r;
239 }
240 
241 static void __exit dm_exit(void)
242 {
243 	int i = ARRAY_SIZE(_exits);
244 
245 	while (i--)
246 		_exits[i]();
247 }
248 
249 /*
250  * Block device functions
251  */
252 static int dm_blk_open(struct inode *inode, struct file *file)
253 {
254 	struct mapped_device *md;
255 
256 	spin_lock(&_minor_lock);
257 
258 	md = inode->i_bdev->bd_disk->private_data;
259 	if (!md)
260 		goto out;
261 
262 	if (test_bit(DMF_FREEING, &md->flags) ||
263 	    test_bit(DMF_DELETING, &md->flags)) {
264 		md = NULL;
265 		goto out;
266 	}
267 
268 	dm_get(md);
269 	atomic_inc(&md->open_count);
270 
271 out:
272 	spin_unlock(&_minor_lock);
273 
274 	return md ? 0 : -ENXIO;
275 }
276 
277 static int dm_blk_close(struct inode *inode, struct file *file)
278 {
279 	struct mapped_device *md;
280 
281 	md = inode->i_bdev->bd_disk->private_data;
282 	atomic_dec(&md->open_count);
283 	dm_put(md);
284 	return 0;
285 }
286 
287 int dm_open_count(struct mapped_device *md)
288 {
289 	return atomic_read(&md->open_count);
290 }
291 
292 /*
293  * Guarantees nothing is using the device before it's deleted.
294  */
295 int dm_lock_for_deletion(struct mapped_device *md)
296 {
297 	int r = 0;
298 
299 	spin_lock(&_minor_lock);
300 
301 	if (dm_open_count(md))
302 		r = -EBUSY;
303 	else
304 		set_bit(DMF_DELETING, &md->flags);
305 
306 	spin_unlock(&_minor_lock);
307 
308 	return r;
309 }
310 
311 static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
312 {
313 	struct mapped_device *md = bdev->bd_disk->private_data;
314 
315 	return dm_get_geometry(md, geo);
316 }
317 
318 static int dm_blk_ioctl(struct inode *inode, struct file *file,
319 			unsigned int cmd, unsigned long arg)
320 {
321 	struct mapped_device *md;
322 	struct dm_table *map;
323 	struct dm_target *tgt;
324 	int r = -ENOTTY;
325 
326 	/* We don't really need this lock, but we do need 'inode'. */
327 	unlock_kernel();
328 
329 	md = inode->i_bdev->bd_disk->private_data;
330 
331 	map = dm_get_table(md);
332 
333 	if (!map || !dm_table_get_size(map))
334 		goto out;
335 
336 	/* We only support devices that have a single target */
337 	if (dm_table_get_num_targets(map) != 1)
338 		goto out;
339 
340 	tgt = dm_table_get_target(map, 0);
341 
342 	if (dm_suspended(md)) {
343 		r = -EAGAIN;
344 		goto out;
345 	}
346 
347 	if (tgt->type->ioctl)
348 		r = tgt->type->ioctl(tgt, inode, file, cmd, arg);
349 
350 out:
351 	dm_table_put(map);
352 
353 	lock_kernel();
354 	return r;
355 }
356 
357 static struct dm_io *alloc_io(struct mapped_device *md)
358 {
359 	return mempool_alloc(md->io_pool, GFP_NOIO);
360 }
361 
362 static void free_io(struct mapped_device *md, struct dm_io *io)
363 {
364 	mempool_free(io, md->io_pool);
365 }
366 
367 static struct dm_target_io *alloc_tio(struct mapped_device *md)
368 {
369 	return mempool_alloc(md->tio_pool, GFP_NOIO);
370 }
371 
372 static void free_tio(struct mapped_device *md, struct dm_target_io *tio)
373 {
374 	mempool_free(tio, md->tio_pool);
375 }
376 
377 static void start_io_acct(struct dm_io *io)
378 {
379 	struct mapped_device *md = io->md;
380 
381 	io->start_time = jiffies;
382 
383 	preempt_disable();
384 	disk_round_stats(dm_disk(md));
385 	preempt_enable();
386 	dm_disk(md)->in_flight = atomic_inc_return(&md->pending);
387 }
388 
389 static int end_io_acct(struct dm_io *io)
390 {
391 	struct mapped_device *md = io->md;
392 	struct bio *bio = io->bio;
393 	unsigned long duration = jiffies - io->start_time;
394 	int pending;
395 	int rw = bio_data_dir(bio);
396 
397 	preempt_disable();
398 	disk_round_stats(dm_disk(md));
399 	preempt_enable();
400 	dm_disk(md)->in_flight = pending = atomic_dec_return(&md->pending);
401 
402 	disk_stat_add(dm_disk(md), ticks[rw], duration);
403 
404 	return !pending;
405 }
406 
407 /*
408  * Add the bio to the list of deferred io.
409  */
410 static int queue_io(struct mapped_device *md, struct bio *bio)
411 {
412 	down_write(&md->io_lock);
413 
414 	if (!test_bit(DMF_BLOCK_IO, &md->flags)) {
415 		up_write(&md->io_lock);
416 		return 1;
417 	}
418 
419 	bio_list_add(&md->deferred, bio);
420 
421 	up_write(&md->io_lock);
422 	return 0;		/* deferred successfully */
423 }
424 
425 /*
426  * Everyone (including functions in this file), should use this
427  * function to access the md->map field, and make sure they call
428  * dm_table_put() when finished.
429  */
430 struct dm_table *dm_get_table(struct mapped_device *md)
431 {
432 	struct dm_table *t;
433 
434 	read_lock(&md->map_lock);
435 	t = md->map;
436 	if (t)
437 		dm_table_get(t);
438 	read_unlock(&md->map_lock);
439 
440 	return t;
441 }
442 
443 /*
444  * Get the geometry associated with a dm device
445  */
446 int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo)
447 {
448 	*geo = md->geometry;
449 
450 	return 0;
451 }
452 
453 /*
454  * Set the geometry of a device.
455  */
456 int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo)
457 {
458 	sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors;
459 
460 	if (geo->start > sz) {
461 		DMWARN("Start sector is beyond the geometry limits.");
462 		return -EINVAL;
463 	}
464 
465 	md->geometry = *geo;
466 
467 	return 0;
468 }
469 
470 /*-----------------------------------------------------------------
471  * CRUD START:
472  *   A more elegant soln is in the works that uses the queue
473  *   merge fn, unfortunately there are a couple of changes to
474  *   the block layer that I want to make for this.  So in the
475  *   interests of getting something for people to use I give
476  *   you this clearly demarcated crap.
477  *---------------------------------------------------------------*/
478 
479 static int __noflush_suspending(struct mapped_device *md)
480 {
481 	return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
482 }
483 
484 /*
485  * Decrements the number of outstanding ios that a bio has been
486  * cloned into, completing the original io if necc.
487  */
488 static void dec_pending(struct dm_io *io, int error)
489 {
490 	unsigned long flags;
491 
492 	/* Push-back supersedes any I/O errors */
493 	if (error && !(io->error > 0 && __noflush_suspending(io->md)))
494 		io->error = error;
495 
496 	if (atomic_dec_and_test(&io->io_count)) {
497 		if (io->error == DM_ENDIO_REQUEUE) {
498 			/*
499 			 * Target requested pushing back the I/O.
500 			 * This must be handled before the sleeper on
501 			 * suspend queue merges the pushback list.
502 			 */
503 			spin_lock_irqsave(&io->md->pushback_lock, flags);
504 			if (__noflush_suspending(io->md))
505 				bio_list_add(&io->md->pushback, io->bio);
506 			else
507 				/* noflush suspend was interrupted. */
508 				io->error = -EIO;
509 			spin_unlock_irqrestore(&io->md->pushback_lock, flags);
510 		}
511 
512 		if (end_io_acct(io))
513 			/* nudge anyone waiting on suspend queue */
514 			wake_up(&io->md->wait);
515 
516 		if (io->error != DM_ENDIO_REQUEUE) {
517 			blk_add_trace_bio(io->md->queue, io->bio,
518 					  BLK_TA_COMPLETE);
519 
520 			bio_endio(io->bio, io->error);
521 		}
522 
523 		free_io(io->md, io);
524 	}
525 }
526 
527 static void clone_endio(struct bio *bio, int error)
528 {
529 	int r = 0;
530 	struct dm_target_io *tio = bio->bi_private;
531 	struct mapped_device *md = tio->io->md;
532 	dm_endio_fn endio = tio->ti->type->end_io;
533 
534 	if (!bio_flagged(bio, BIO_UPTODATE) && !error)
535 		error = -EIO;
536 
537 	if (endio) {
538 		r = endio(tio->ti, bio, error, &tio->info);
539 		if (r < 0 || r == DM_ENDIO_REQUEUE)
540 			/*
541 			 * error and requeue request are handled
542 			 * in dec_pending().
543 			 */
544 			error = r;
545 		else if (r == DM_ENDIO_INCOMPLETE)
546 			/* The target will handle the io */
547 			return;
548 		else if (r) {
549 			DMWARN("unimplemented target endio return value: %d", r);
550 			BUG();
551 		}
552 	}
553 
554 	dec_pending(tio->io, error);
555 
556 	/*
557 	 * Store md for cleanup instead of tio which is about to get freed.
558 	 */
559 	bio->bi_private = md->bs;
560 
561 	bio_put(bio);
562 	free_tio(md, tio);
563 }
564 
565 static sector_t max_io_len(struct mapped_device *md,
566 			   sector_t sector, struct dm_target *ti)
567 {
568 	sector_t offset = sector - ti->begin;
569 	sector_t len = ti->len - offset;
570 
571 	/*
572 	 * Does the target need to split even further ?
573 	 */
574 	if (ti->split_io) {
575 		sector_t boundary;
576 		boundary = ((offset + ti->split_io) & ~(ti->split_io - 1))
577 			   - offset;
578 		if (len > boundary)
579 			len = boundary;
580 	}
581 
582 	return len;
583 }
584 
585 static void __map_bio(struct dm_target *ti, struct bio *clone,
586 		      struct dm_target_io *tio)
587 {
588 	int r;
589 	sector_t sector;
590 	struct mapped_device *md;
591 
592 	/*
593 	 * Sanity checks.
594 	 */
595 	BUG_ON(!clone->bi_size);
596 
597 	clone->bi_end_io = clone_endio;
598 	clone->bi_private = tio;
599 
600 	/*
601 	 * Map the clone.  If r == 0 we don't need to do
602 	 * anything, the target has assumed ownership of
603 	 * this io.
604 	 */
605 	atomic_inc(&tio->io->io_count);
606 	sector = clone->bi_sector;
607 	r = ti->type->map(ti, clone, &tio->info);
608 	if (r == DM_MAPIO_REMAPPED) {
609 		/* the bio has been remapped so dispatch it */
610 
611 		blk_add_trace_remap(bdev_get_queue(clone->bi_bdev), clone,
612 				    tio->io->bio->bi_bdev->bd_dev,
613 				    clone->bi_sector, sector);
614 
615 		generic_make_request(clone);
616 	} else if (r < 0 || r == DM_MAPIO_REQUEUE) {
617 		/* error the io and bail out, or requeue it if needed */
618 		md = tio->io->md;
619 		dec_pending(tio->io, r);
620 		/*
621 		 * Store bio_set for cleanup.
622 		 */
623 		clone->bi_private = md->bs;
624 		bio_put(clone);
625 		free_tio(md, tio);
626 	} else if (r) {
627 		DMWARN("unimplemented target map return value: %d", r);
628 		BUG();
629 	}
630 }
631 
632 struct clone_info {
633 	struct mapped_device *md;
634 	struct dm_table *map;
635 	struct bio *bio;
636 	struct dm_io *io;
637 	sector_t sector;
638 	sector_t sector_count;
639 	unsigned short idx;
640 };
641 
642 static void dm_bio_destructor(struct bio *bio)
643 {
644 	struct bio_set *bs = bio->bi_private;
645 
646 	bio_free(bio, bs);
647 }
648 
649 /*
650  * Creates a little bio that is just does part of a bvec.
651  */
652 static struct bio *split_bvec(struct bio *bio, sector_t sector,
653 			      unsigned short idx, unsigned int offset,
654 			      unsigned int len, struct bio_set *bs)
655 {
656 	struct bio *clone;
657 	struct bio_vec *bv = bio->bi_io_vec + idx;
658 
659 	clone = bio_alloc_bioset(GFP_NOIO, 1, bs);
660 	clone->bi_destructor = dm_bio_destructor;
661 	*clone->bi_io_vec = *bv;
662 
663 	clone->bi_sector = sector;
664 	clone->bi_bdev = bio->bi_bdev;
665 	clone->bi_rw = bio->bi_rw;
666 	clone->bi_vcnt = 1;
667 	clone->bi_size = to_bytes(len);
668 	clone->bi_io_vec->bv_offset = offset;
669 	clone->bi_io_vec->bv_len = clone->bi_size;
670 
671 	return clone;
672 }
673 
674 /*
675  * Creates a bio that consists of range of complete bvecs.
676  */
677 static struct bio *clone_bio(struct bio *bio, sector_t sector,
678 			     unsigned short idx, unsigned short bv_count,
679 			     unsigned int len, struct bio_set *bs)
680 {
681 	struct bio *clone;
682 
683 	clone = bio_alloc_bioset(GFP_NOIO, bio->bi_max_vecs, bs);
684 	__bio_clone(clone, bio);
685 	clone->bi_destructor = dm_bio_destructor;
686 	clone->bi_sector = sector;
687 	clone->bi_idx = idx;
688 	clone->bi_vcnt = idx + bv_count;
689 	clone->bi_size = to_bytes(len);
690 	clone->bi_flags &= ~(1 << BIO_SEG_VALID);
691 
692 	return clone;
693 }
694 
695 static int __clone_and_map(struct clone_info *ci)
696 {
697 	struct bio *clone, *bio = ci->bio;
698 	struct dm_target *ti;
699 	sector_t len = 0, max;
700 	struct dm_target_io *tio;
701 
702 	ti = dm_table_find_target(ci->map, ci->sector);
703 	if (!dm_target_is_valid(ti))
704 		return -EIO;
705 
706 	max = max_io_len(ci->md, ci->sector, ti);
707 
708 	/*
709 	 * Allocate a target io object.
710 	 */
711 	tio = alloc_tio(ci->md);
712 	tio->io = ci->io;
713 	tio->ti = ti;
714 	memset(&tio->info, 0, sizeof(tio->info));
715 
716 	if (ci->sector_count <= max) {
717 		/*
718 		 * Optimise for the simple case where we can do all of
719 		 * the remaining io with a single clone.
720 		 */
721 		clone = clone_bio(bio, ci->sector, ci->idx,
722 				  bio->bi_vcnt - ci->idx, ci->sector_count,
723 				  ci->md->bs);
724 		__map_bio(ti, clone, tio);
725 		ci->sector_count = 0;
726 
727 	} else if (to_sector(bio->bi_io_vec[ci->idx].bv_len) <= max) {
728 		/*
729 		 * There are some bvecs that don't span targets.
730 		 * Do as many of these as possible.
731 		 */
732 		int i;
733 		sector_t remaining = max;
734 		sector_t bv_len;
735 
736 		for (i = ci->idx; remaining && (i < bio->bi_vcnt); i++) {
737 			bv_len = to_sector(bio->bi_io_vec[i].bv_len);
738 
739 			if (bv_len > remaining)
740 				break;
741 
742 			remaining -= bv_len;
743 			len += bv_len;
744 		}
745 
746 		clone = clone_bio(bio, ci->sector, ci->idx, i - ci->idx, len,
747 				  ci->md->bs);
748 		__map_bio(ti, clone, tio);
749 
750 		ci->sector += len;
751 		ci->sector_count -= len;
752 		ci->idx = i;
753 
754 	} else {
755 		/*
756 		 * Handle a bvec that must be split between two or more targets.
757 		 */
758 		struct bio_vec *bv = bio->bi_io_vec + ci->idx;
759 		sector_t remaining = to_sector(bv->bv_len);
760 		unsigned int offset = 0;
761 
762 		do {
763 			if (offset) {
764 				ti = dm_table_find_target(ci->map, ci->sector);
765 				if (!dm_target_is_valid(ti))
766 					return -EIO;
767 
768 				max = max_io_len(ci->md, ci->sector, ti);
769 
770 				tio = alloc_tio(ci->md);
771 				tio->io = ci->io;
772 				tio->ti = ti;
773 				memset(&tio->info, 0, sizeof(tio->info));
774 			}
775 
776 			len = min(remaining, max);
777 
778 			clone = split_bvec(bio, ci->sector, ci->idx,
779 					   bv->bv_offset + offset, len,
780 					   ci->md->bs);
781 
782 			__map_bio(ti, clone, tio);
783 
784 			ci->sector += len;
785 			ci->sector_count -= len;
786 			offset += to_bytes(len);
787 		} while (remaining -= len);
788 
789 		ci->idx++;
790 	}
791 
792 	return 0;
793 }
794 
795 /*
796  * Split the bio into several clones.
797  */
798 static int __split_bio(struct mapped_device *md, struct bio *bio)
799 {
800 	struct clone_info ci;
801 	int error = 0;
802 
803 	ci.map = dm_get_table(md);
804 	if (unlikely(!ci.map))
805 		return -EIO;
806 
807 	ci.md = md;
808 	ci.bio = bio;
809 	ci.io = alloc_io(md);
810 	ci.io->error = 0;
811 	atomic_set(&ci.io->io_count, 1);
812 	ci.io->bio = bio;
813 	ci.io->md = md;
814 	ci.sector = bio->bi_sector;
815 	ci.sector_count = bio_sectors(bio);
816 	ci.idx = bio->bi_idx;
817 
818 	start_io_acct(ci.io);
819 	while (ci.sector_count && !error)
820 		error = __clone_and_map(&ci);
821 
822 	/* drop the extra reference count */
823 	dec_pending(ci.io, error);
824 	dm_table_put(ci.map);
825 
826 	return 0;
827 }
828 /*-----------------------------------------------------------------
829  * CRUD END
830  *---------------------------------------------------------------*/
831 
832 static int dm_merge_bvec(struct request_queue *q,
833 			 struct bvec_merge_data *bvm,
834 			 struct bio_vec *biovec)
835 {
836 	struct mapped_device *md = q->queuedata;
837 	struct dm_table *map = dm_get_table(md);
838 	struct dm_target *ti;
839 	sector_t max_sectors;
840 	int max_size;
841 
842 	if (unlikely(!map))
843 		return 0;
844 
845 	ti = dm_table_find_target(map, bvm->bi_sector);
846 
847 	/*
848 	 * Find maximum amount of I/O that won't need splitting
849 	 */
850 	max_sectors = min(max_io_len(md, bvm->bi_sector, ti),
851 			  (sector_t) BIO_MAX_SECTORS);
852 	max_size = (max_sectors << SECTOR_SHIFT) - bvm->bi_size;
853 	if (max_size < 0)
854 		max_size = 0;
855 
856 	/*
857 	 * merge_bvec_fn() returns number of bytes
858 	 * it can accept at this offset
859 	 * max is precomputed maximal io size
860 	 */
861 	if (max_size && ti->type->merge)
862 		max_size = ti->type->merge(ti, bvm, biovec, max_size);
863 
864 	/*
865 	 * Always allow an entire first page
866 	 */
867 	if (max_size <= biovec->bv_len && !(bvm->bi_size >> SECTOR_SHIFT))
868 		max_size = biovec->bv_len;
869 
870 	dm_table_put(map);
871 
872 	return max_size;
873 }
874 
875 /*
876  * The request function that just remaps the bio built up by
877  * dm_merge_bvec.
878  */
879 static int dm_request(struct request_queue *q, struct bio *bio)
880 {
881 	int r = -EIO;
882 	int rw = bio_data_dir(bio);
883 	struct mapped_device *md = q->queuedata;
884 
885 	/*
886 	 * There is no use in forwarding any barrier request since we can't
887 	 * guarantee it is (or can be) handled by the targets correctly.
888 	 */
889 	if (unlikely(bio_barrier(bio))) {
890 		bio_endio(bio, -EOPNOTSUPP);
891 		return 0;
892 	}
893 
894 	down_read(&md->io_lock);
895 
896 	disk_stat_inc(dm_disk(md), ios[rw]);
897 	disk_stat_add(dm_disk(md), sectors[rw], bio_sectors(bio));
898 
899 	/*
900 	 * If we're suspended we have to queue
901 	 * this io for later.
902 	 */
903 	while (test_bit(DMF_BLOCK_IO, &md->flags)) {
904 		up_read(&md->io_lock);
905 
906 		if (bio_rw(bio) != READA)
907 			r = queue_io(md, bio);
908 
909 		if (r <= 0)
910 			goto out_req;
911 
912 		/*
913 		 * We're in a while loop, because someone could suspend
914 		 * before we get to the following read lock.
915 		 */
916 		down_read(&md->io_lock);
917 	}
918 
919 	r = __split_bio(md, bio);
920 	up_read(&md->io_lock);
921 
922 out_req:
923 	if (r < 0)
924 		bio_io_error(bio);
925 
926 	return 0;
927 }
928 
929 static void dm_unplug_all(struct request_queue *q)
930 {
931 	struct mapped_device *md = q->queuedata;
932 	struct dm_table *map = dm_get_table(md);
933 
934 	if (map) {
935 		dm_table_unplug_all(map);
936 		dm_table_put(map);
937 	}
938 }
939 
940 static int dm_any_congested(void *congested_data, int bdi_bits)
941 {
942 	int r;
943 	struct mapped_device *md = (struct mapped_device *) congested_data;
944 	struct dm_table *map = dm_get_table(md);
945 
946 	if (!map || test_bit(DMF_BLOCK_IO, &md->flags))
947 		r = bdi_bits;
948 	else
949 		r = dm_table_any_congested(map, bdi_bits);
950 
951 	dm_table_put(map);
952 	return r;
953 }
954 
955 /*-----------------------------------------------------------------
956  * An IDR is used to keep track of allocated minor numbers.
957  *---------------------------------------------------------------*/
958 static DEFINE_IDR(_minor_idr);
959 
960 static void free_minor(int minor)
961 {
962 	spin_lock(&_minor_lock);
963 	idr_remove(&_minor_idr, minor);
964 	spin_unlock(&_minor_lock);
965 }
966 
967 /*
968  * See if the device with a specific minor # is free.
969  */
970 static int specific_minor(int minor)
971 {
972 	int r, m;
973 
974 	if (minor >= (1 << MINORBITS))
975 		return -EINVAL;
976 
977 	r = idr_pre_get(&_minor_idr, GFP_KERNEL);
978 	if (!r)
979 		return -ENOMEM;
980 
981 	spin_lock(&_minor_lock);
982 
983 	if (idr_find(&_minor_idr, minor)) {
984 		r = -EBUSY;
985 		goto out;
986 	}
987 
988 	r = idr_get_new_above(&_minor_idr, MINOR_ALLOCED, minor, &m);
989 	if (r)
990 		goto out;
991 
992 	if (m != minor) {
993 		idr_remove(&_minor_idr, m);
994 		r = -EBUSY;
995 		goto out;
996 	}
997 
998 out:
999 	spin_unlock(&_minor_lock);
1000 	return r;
1001 }
1002 
1003 static int next_free_minor(int *minor)
1004 {
1005 	int r, m;
1006 
1007 	r = idr_pre_get(&_minor_idr, GFP_KERNEL);
1008 	if (!r)
1009 		return -ENOMEM;
1010 
1011 	spin_lock(&_minor_lock);
1012 
1013 	r = idr_get_new(&_minor_idr, MINOR_ALLOCED, &m);
1014 	if (r)
1015 		goto out;
1016 
1017 	if (m >= (1 << MINORBITS)) {
1018 		idr_remove(&_minor_idr, m);
1019 		r = -ENOSPC;
1020 		goto out;
1021 	}
1022 
1023 	*minor = m;
1024 
1025 out:
1026 	spin_unlock(&_minor_lock);
1027 	return r;
1028 }
1029 
1030 static struct block_device_operations dm_blk_dops;
1031 
1032 /*
1033  * Allocate and initialise a blank device with a given minor.
1034  */
1035 static struct mapped_device *alloc_dev(int minor)
1036 {
1037 	int r;
1038 	struct mapped_device *md = kzalloc(sizeof(*md), GFP_KERNEL);
1039 	void *old_md;
1040 
1041 	if (!md) {
1042 		DMWARN("unable to allocate device, out of memory.");
1043 		return NULL;
1044 	}
1045 
1046 	if (!try_module_get(THIS_MODULE))
1047 		goto bad_module_get;
1048 
1049 	/* get a minor number for the dev */
1050 	if (minor == DM_ANY_MINOR)
1051 		r = next_free_minor(&minor);
1052 	else
1053 		r = specific_minor(minor);
1054 	if (r < 0)
1055 		goto bad_minor;
1056 
1057 	init_rwsem(&md->io_lock);
1058 	mutex_init(&md->suspend_lock);
1059 	spin_lock_init(&md->pushback_lock);
1060 	rwlock_init(&md->map_lock);
1061 	atomic_set(&md->holders, 1);
1062 	atomic_set(&md->open_count, 0);
1063 	atomic_set(&md->event_nr, 0);
1064 	atomic_set(&md->uevent_seq, 0);
1065 	INIT_LIST_HEAD(&md->uevent_list);
1066 	spin_lock_init(&md->uevent_lock);
1067 
1068 	md->queue = blk_alloc_queue(GFP_KERNEL);
1069 	if (!md->queue)
1070 		goto bad_queue;
1071 
1072 	md->queue->queuedata = md;
1073 	md->queue->backing_dev_info.congested_fn = dm_any_congested;
1074 	md->queue->backing_dev_info.congested_data = md;
1075 	blk_queue_make_request(md->queue, dm_request);
1076 	blk_queue_bounce_limit(md->queue, BLK_BOUNCE_ANY);
1077 	md->queue->unplug_fn = dm_unplug_all;
1078 	blk_queue_merge_bvec(md->queue, dm_merge_bvec);
1079 
1080 	md->io_pool = mempool_create_slab_pool(MIN_IOS, _io_cache);
1081 	if (!md->io_pool)
1082 		goto bad_io_pool;
1083 
1084 	md->tio_pool = mempool_create_slab_pool(MIN_IOS, _tio_cache);
1085 	if (!md->tio_pool)
1086 		goto bad_tio_pool;
1087 
1088 	md->bs = bioset_create(16, 16);
1089 	if (!md->bs)
1090 		goto bad_no_bioset;
1091 
1092 	md->disk = alloc_disk(1);
1093 	if (!md->disk)
1094 		goto bad_disk;
1095 
1096 	atomic_set(&md->pending, 0);
1097 	init_waitqueue_head(&md->wait);
1098 	init_waitqueue_head(&md->eventq);
1099 
1100 	md->disk->major = _major;
1101 	md->disk->first_minor = minor;
1102 	md->disk->fops = &dm_blk_dops;
1103 	md->disk->queue = md->queue;
1104 	md->disk->private_data = md;
1105 	sprintf(md->disk->disk_name, "dm-%d", minor);
1106 	add_disk(md->disk);
1107 	format_dev_t(md->name, MKDEV(_major, minor));
1108 
1109 	md->wq = create_singlethread_workqueue("kdmflush");
1110 	if (!md->wq)
1111 		goto bad_thread;
1112 
1113 	/* Populate the mapping, nobody knows we exist yet */
1114 	spin_lock(&_minor_lock);
1115 	old_md = idr_replace(&_minor_idr, md, minor);
1116 	spin_unlock(&_minor_lock);
1117 
1118 	BUG_ON(old_md != MINOR_ALLOCED);
1119 
1120 	return md;
1121 
1122 bad_thread:
1123 	put_disk(md->disk);
1124 bad_disk:
1125 	bioset_free(md->bs);
1126 bad_no_bioset:
1127 	mempool_destroy(md->tio_pool);
1128 bad_tio_pool:
1129 	mempool_destroy(md->io_pool);
1130 bad_io_pool:
1131 	blk_cleanup_queue(md->queue);
1132 bad_queue:
1133 	free_minor(minor);
1134 bad_minor:
1135 	module_put(THIS_MODULE);
1136 bad_module_get:
1137 	kfree(md);
1138 	return NULL;
1139 }
1140 
1141 static void unlock_fs(struct mapped_device *md);
1142 
1143 static void free_dev(struct mapped_device *md)
1144 {
1145 	int minor = md->disk->first_minor;
1146 
1147 	if (md->suspended_bdev) {
1148 		unlock_fs(md);
1149 		bdput(md->suspended_bdev);
1150 	}
1151 	destroy_workqueue(md->wq);
1152 	mempool_destroy(md->tio_pool);
1153 	mempool_destroy(md->io_pool);
1154 	bioset_free(md->bs);
1155 	del_gendisk(md->disk);
1156 	free_minor(minor);
1157 
1158 	spin_lock(&_minor_lock);
1159 	md->disk->private_data = NULL;
1160 	spin_unlock(&_minor_lock);
1161 
1162 	put_disk(md->disk);
1163 	blk_cleanup_queue(md->queue);
1164 	module_put(THIS_MODULE);
1165 	kfree(md);
1166 }
1167 
1168 /*
1169  * Bind a table to the device.
1170  */
1171 static void event_callback(void *context)
1172 {
1173 	unsigned long flags;
1174 	LIST_HEAD(uevents);
1175 	struct mapped_device *md = (struct mapped_device *) context;
1176 
1177 	spin_lock_irqsave(&md->uevent_lock, flags);
1178 	list_splice_init(&md->uevent_list, &uevents);
1179 	spin_unlock_irqrestore(&md->uevent_lock, flags);
1180 
1181 	dm_send_uevents(&uevents, &md->disk->dev.kobj);
1182 
1183 	atomic_inc(&md->event_nr);
1184 	wake_up(&md->eventq);
1185 }
1186 
1187 static void __set_size(struct mapped_device *md, sector_t size)
1188 {
1189 	set_capacity(md->disk, size);
1190 
1191 	mutex_lock(&md->suspended_bdev->bd_inode->i_mutex);
1192 	i_size_write(md->suspended_bdev->bd_inode, (loff_t)size << SECTOR_SHIFT);
1193 	mutex_unlock(&md->suspended_bdev->bd_inode->i_mutex);
1194 }
1195 
1196 static int __bind(struct mapped_device *md, struct dm_table *t)
1197 {
1198 	struct request_queue *q = md->queue;
1199 	sector_t size;
1200 
1201 	size = dm_table_get_size(t);
1202 
1203 	/*
1204 	 * Wipe any geometry if the size of the table changed.
1205 	 */
1206 	if (size != get_capacity(md->disk))
1207 		memset(&md->geometry, 0, sizeof(md->geometry));
1208 
1209 	if (md->suspended_bdev)
1210 		__set_size(md, size);
1211 	if (size == 0)
1212 		return 0;
1213 
1214 	dm_table_get(t);
1215 	dm_table_event_callback(t, event_callback, md);
1216 
1217 	write_lock(&md->map_lock);
1218 	md->map = t;
1219 	dm_table_set_restrictions(t, q);
1220 	write_unlock(&md->map_lock);
1221 
1222 	return 0;
1223 }
1224 
1225 static void __unbind(struct mapped_device *md)
1226 {
1227 	struct dm_table *map = md->map;
1228 
1229 	if (!map)
1230 		return;
1231 
1232 	dm_table_event_callback(map, NULL, NULL);
1233 	write_lock(&md->map_lock);
1234 	md->map = NULL;
1235 	write_unlock(&md->map_lock);
1236 	dm_table_put(map);
1237 }
1238 
1239 /*
1240  * Constructor for a new device.
1241  */
1242 int dm_create(int minor, struct mapped_device **result)
1243 {
1244 	struct mapped_device *md;
1245 
1246 	md = alloc_dev(minor);
1247 	if (!md)
1248 		return -ENXIO;
1249 
1250 	*result = md;
1251 	return 0;
1252 }
1253 
1254 static struct mapped_device *dm_find_md(dev_t dev)
1255 {
1256 	struct mapped_device *md;
1257 	unsigned minor = MINOR(dev);
1258 
1259 	if (MAJOR(dev) != _major || minor >= (1 << MINORBITS))
1260 		return NULL;
1261 
1262 	spin_lock(&_minor_lock);
1263 
1264 	md = idr_find(&_minor_idr, minor);
1265 	if (md && (md == MINOR_ALLOCED ||
1266 		   (dm_disk(md)->first_minor != minor) ||
1267 		   test_bit(DMF_FREEING, &md->flags))) {
1268 		md = NULL;
1269 		goto out;
1270 	}
1271 
1272 out:
1273 	spin_unlock(&_minor_lock);
1274 
1275 	return md;
1276 }
1277 
1278 struct mapped_device *dm_get_md(dev_t dev)
1279 {
1280 	struct mapped_device *md = dm_find_md(dev);
1281 
1282 	if (md)
1283 		dm_get(md);
1284 
1285 	return md;
1286 }
1287 
1288 void *dm_get_mdptr(struct mapped_device *md)
1289 {
1290 	return md->interface_ptr;
1291 }
1292 
1293 void dm_set_mdptr(struct mapped_device *md, void *ptr)
1294 {
1295 	md->interface_ptr = ptr;
1296 }
1297 
1298 void dm_get(struct mapped_device *md)
1299 {
1300 	atomic_inc(&md->holders);
1301 }
1302 
1303 const char *dm_device_name(struct mapped_device *md)
1304 {
1305 	return md->name;
1306 }
1307 EXPORT_SYMBOL_GPL(dm_device_name);
1308 
1309 void dm_put(struct mapped_device *md)
1310 {
1311 	struct dm_table *map;
1312 
1313 	BUG_ON(test_bit(DMF_FREEING, &md->flags));
1314 
1315 	if (atomic_dec_and_lock(&md->holders, &_minor_lock)) {
1316 		map = dm_get_table(md);
1317 		idr_replace(&_minor_idr, MINOR_ALLOCED, dm_disk(md)->first_minor);
1318 		set_bit(DMF_FREEING, &md->flags);
1319 		spin_unlock(&_minor_lock);
1320 		if (!dm_suspended(md)) {
1321 			dm_table_presuspend_targets(map);
1322 			dm_table_postsuspend_targets(map);
1323 		}
1324 		__unbind(md);
1325 		dm_table_put(map);
1326 		free_dev(md);
1327 	}
1328 }
1329 EXPORT_SYMBOL_GPL(dm_put);
1330 
1331 static int dm_wait_for_completion(struct mapped_device *md)
1332 {
1333 	int r = 0;
1334 
1335 	while (1) {
1336 		set_current_state(TASK_INTERRUPTIBLE);
1337 
1338 		smp_mb();
1339 		if (!atomic_read(&md->pending))
1340 			break;
1341 
1342 		if (signal_pending(current)) {
1343 			r = -EINTR;
1344 			break;
1345 		}
1346 
1347 		io_schedule();
1348 	}
1349 	set_current_state(TASK_RUNNING);
1350 
1351 	return r;
1352 }
1353 
1354 /*
1355  * Process the deferred bios
1356  */
1357 static void __flush_deferred_io(struct mapped_device *md)
1358 {
1359 	struct bio *c;
1360 
1361 	while ((c = bio_list_pop(&md->deferred))) {
1362 		if (__split_bio(md, c))
1363 			bio_io_error(c);
1364 	}
1365 
1366 	clear_bit(DMF_BLOCK_IO, &md->flags);
1367 }
1368 
1369 static void __merge_pushback_list(struct mapped_device *md)
1370 {
1371 	unsigned long flags;
1372 
1373 	spin_lock_irqsave(&md->pushback_lock, flags);
1374 	clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
1375 	bio_list_merge_head(&md->deferred, &md->pushback);
1376 	bio_list_init(&md->pushback);
1377 	spin_unlock_irqrestore(&md->pushback_lock, flags);
1378 }
1379 
1380 static void dm_wq_work(struct work_struct *work)
1381 {
1382 	struct dm_wq_req *req = container_of(work, struct dm_wq_req, work);
1383 	struct mapped_device *md = req->md;
1384 
1385 	down_write(&md->io_lock);
1386 	switch (req->type) {
1387 	case DM_WQ_FLUSH_ALL:
1388 		__merge_pushback_list(md);
1389 		/* pass through */
1390 	case DM_WQ_FLUSH_DEFERRED:
1391 		__flush_deferred_io(md);
1392 		break;
1393 	default:
1394 		DMERR("dm_wq_work: unrecognised work type %d", req->type);
1395 		BUG();
1396 	}
1397 	up_write(&md->io_lock);
1398 }
1399 
1400 static void dm_wq_queue(struct mapped_device *md, int type, void *context,
1401 			struct dm_wq_req *req)
1402 {
1403 	req->type = type;
1404 	req->md = md;
1405 	req->context = context;
1406 	INIT_WORK(&req->work, dm_wq_work);
1407 	queue_work(md->wq, &req->work);
1408 }
1409 
1410 static void dm_queue_flush(struct mapped_device *md, int type, void *context)
1411 {
1412 	struct dm_wq_req req;
1413 
1414 	dm_wq_queue(md, type, context, &req);
1415 	flush_workqueue(md->wq);
1416 }
1417 
1418 /*
1419  * Swap in a new table (destroying old one).
1420  */
1421 int dm_swap_table(struct mapped_device *md, struct dm_table *table)
1422 {
1423 	int r = -EINVAL;
1424 
1425 	mutex_lock(&md->suspend_lock);
1426 
1427 	/* device must be suspended */
1428 	if (!dm_suspended(md))
1429 		goto out;
1430 
1431 	/* without bdev, the device size cannot be changed */
1432 	if (!md->suspended_bdev)
1433 		if (get_capacity(md->disk) != dm_table_get_size(table))
1434 			goto out;
1435 
1436 	__unbind(md);
1437 	r = __bind(md, table);
1438 
1439 out:
1440 	mutex_unlock(&md->suspend_lock);
1441 	return r;
1442 }
1443 
1444 /*
1445  * Functions to lock and unlock any filesystem running on the
1446  * device.
1447  */
1448 static int lock_fs(struct mapped_device *md)
1449 {
1450 	int r;
1451 
1452 	WARN_ON(md->frozen_sb);
1453 
1454 	md->frozen_sb = freeze_bdev(md->suspended_bdev);
1455 	if (IS_ERR(md->frozen_sb)) {
1456 		r = PTR_ERR(md->frozen_sb);
1457 		md->frozen_sb = NULL;
1458 		return r;
1459 	}
1460 
1461 	set_bit(DMF_FROZEN, &md->flags);
1462 
1463 	/* don't bdput right now, we don't want the bdev
1464 	 * to go away while it is locked.
1465 	 */
1466 	return 0;
1467 }
1468 
1469 static void unlock_fs(struct mapped_device *md)
1470 {
1471 	if (!test_bit(DMF_FROZEN, &md->flags))
1472 		return;
1473 
1474 	thaw_bdev(md->suspended_bdev, md->frozen_sb);
1475 	md->frozen_sb = NULL;
1476 	clear_bit(DMF_FROZEN, &md->flags);
1477 }
1478 
1479 /*
1480  * We need to be able to change a mapping table under a mounted
1481  * filesystem.  For example we might want to move some data in
1482  * the background.  Before the table can be swapped with
1483  * dm_bind_table, dm_suspend must be called to flush any in
1484  * flight bios and ensure that any further io gets deferred.
1485  */
1486 int dm_suspend(struct mapped_device *md, unsigned suspend_flags)
1487 {
1488 	struct dm_table *map = NULL;
1489 	DECLARE_WAITQUEUE(wait, current);
1490 	int r = 0;
1491 	int do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG ? 1 : 0;
1492 	int noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG ? 1 : 0;
1493 
1494 	mutex_lock(&md->suspend_lock);
1495 
1496 	if (dm_suspended(md)) {
1497 		r = -EINVAL;
1498 		goto out_unlock;
1499 	}
1500 
1501 	map = dm_get_table(md);
1502 
1503 	/*
1504 	 * DMF_NOFLUSH_SUSPENDING must be set before presuspend.
1505 	 * This flag is cleared before dm_suspend returns.
1506 	 */
1507 	if (noflush)
1508 		set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
1509 
1510 	/* This does not get reverted if there's an error later. */
1511 	dm_table_presuspend_targets(map);
1512 
1513 	/* bdget() can stall if the pending I/Os are not flushed */
1514 	if (!noflush) {
1515 		md->suspended_bdev = bdget_disk(md->disk, 0);
1516 		if (!md->suspended_bdev) {
1517 			DMWARN("bdget failed in dm_suspend");
1518 			r = -ENOMEM;
1519 			goto flush_and_out;
1520 		}
1521 
1522 		/*
1523 		 * Flush I/O to the device. noflush supersedes do_lockfs,
1524 		 * because lock_fs() needs to flush I/Os.
1525 		 */
1526 		if (do_lockfs) {
1527 			r = lock_fs(md);
1528 			if (r)
1529 				goto out;
1530 		}
1531 	}
1532 
1533 	/*
1534 	 * First we set the BLOCK_IO flag so no more ios will be mapped.
1535 	 */
1536 	down_write(&md->io_lock);
1537 	set_bit(DMF_BLOCK_IO, &md->flags);
1538 
1539 	add_wait_queue(&md->wait, &wait);
1540 	up_write(&md->io_lock);
1541 
1542 	/* unplug */
1543 	if (map)
1544 		dm_table_unplug_all(map);
1545 
1546 	/*
1547 	 * Wait for the already-mapped ios to complete.
1548 	 */
1549 	r = dm_wait_for_completion(md);
1550 
1551 	down_write(&md->io_lock);
1552 	remove_wait_queue(&md->wait, &wait);
1553 
1554 	if (noflush)
1555 		__merge_pushback_list(md);
1556 	up_write(&md->io_lock);
1557 
1558 	/* were we interrupted ? */
1559 	if (r < 0) {
1560 		dm_queue_flush(md, DM_WQ_FLUSH_DEFERRED, NULL);
1561 
1562 		unlock_fs(md);
1563 		goto out; /* pushback list is already flushed, so skip flush */
1564 	}
1565 
1566 	dm_table_postsuspend_targets(map);
1567 
1568 	set_bit(DMF_SUSPENDED, &md->flags);
1569 
1570 flush_and_out:
1571 	if (r && noflush)
1572 		/*
1573 		 * Because there may be already I/Os in the pushback list,
1574 		 * flush them before return.
1575 		 */
1576 		dm_queue_flush(md, DM_WQ_FLUSH_ALL, NULL);
1577 
1578 out:
1579 	if (r && md->suspended_bdev) {
1580 		bdput(md->suspended_bdev);
1581 		md->suspended_bdev = NULL;
1582 	}
1583 
1584 	dm_table_put(map);
1585 
1586 out_unlock:
1587 	mutex_unlock(&md->suspend_lock);
1588 	return r;
1589 }
1590 
1591 int dm_resume(struct mapped_device *md)
1592 {
1593 	int r = -EINVAL;
1594 	struct dm_table *map = NULL;
1595 
1596 	mutex_lock(&md->suspend_lock);
1597 	if (!dm_suspended(md))
1598 		goto out;
1599 
1600 	map = dm_get_table(md);
1601 	if (!map || !dm_table_get_size(map))
1602 		goto out;
1603 
1604 	r = dm_table_resume_targets(map);
1605 	if (r)
1606 		goto out;
1607 
1608 	dm_queue_flush(md, DM_WQ_FLUSH_DEFERRED, NULL);
1609 
1610 	unlock_fs(md);
1611 
1612 	if (md->suspended_bdev) {
1613 		bdput(md->suspended_bdev);
1614 		md->suspended_bdev = NULL;
1615 	}
1616 
1617 	clear_bit(DMF_SUSPENDED, &md->flags);
1618 
1619 	dm_table_unplug_all(map);
1620 
1621 	dm_kobject_uevent(md);
1622 
1623 	r = 0;
1624 
1625 out:
1626 	dm_table_put(map);
1627 	mutex_unlock(&md->suspend_lock);
1628 
1629 	return r;
1630 }
1631 
1632 /*-----------------------------------------------------------------
1633  * Event notification.
1634  *---------------------------------------------------------------*/
1635 void dm_kobject_uevent(struct mapped_device *md)
1636 {
1637 	kobject_uevent(&md->disk->dev.kobj, KOBJ_CHANGE);
1638 }
1639 
1640 uint32_t dm_next_uevent_seq(struct mapped_device *md)
1641 {
1642 	return atomic_add_return(1, &md->uevent_seq);
1643 }
1644 
1645 uint32_t dm_get_event_nr(struct mapped_device *md)
1646 {
1647 	return atomic_read(&md->event_nr);
1648 }
1649 
1650 int dm_wait_event(struct mapped_device *md, int event_nr)
1651 {
1652 	return wait_event_interruptible(md->eventq,
1653 			(event_nr != atomic_read(&md->event_nr)));
1654 }
1655 
1656 void dm_uevent_add(struct mapped_device *md, struct list_head *elist)
1657 {
1658 	unsigned long flags;
1659 
1660 	spin_lock_irqsave(&md->uevent_lock, flags);
1661 	list_add(elist, &md->uevent_list);
1662 	spin_unlock_irqrestore(&md->uevent_lock, flags);
1663 }
1664 
1665 /*
1666  * The gendisk is only valid as long as you have a reference
1667  * count on 'md'.
1668  */
1669 struct gendisk *dm_disk(struct mapped_device *md)
1670 {
1671 	return md->disk;
1672 }
1673 
1674 int dm_suspended(struct mapped_device *md)
1675 {
1676 	return test_bit(DMF_SUSPENDED, &md->flags);
1677 }
1678 
1679 int dm_noflush_suspending(struct dm_target *ti)
1680 {
1681 	struct mapped_device *md = dm_table_get_md(ti->table);
1682 	int r = __noflush_suspending(md);
1683 
1684 	dm_put(md);
1685 
1686 	return r;
1687 }
1688 EXPORT_SYMBOL_GPL(dm_noflush_suspending);
1689 
1690 static struct block_device_operations dm_blk_dops = {
1691 	.open = dm_blk_open,
1692 	.release = dm_blk_close,
1693 	.ioctl = dm_blk_ioctl,
1694 	.getgeo = dm_blk_getgeo,
1695 	.owner = THIS_MODULE
1696 };
1697 
1698 EXPORT_SYMBOL(dm_get_mapinfo);
1699 
1700 /*
1701  * module hooks
1702  */
1703 module_init(dm_init);
1704 module_exit(dm_exit);
1705 
1706 module_param(major, uint, 0);
1707 MODULE_PARM_DESC(major, "The major number of the device mapper");
1708 MODULE_DESCRIPTION(DM_NAME " driver");
1709 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
1710 MODULE_LICENSE("GPL");
1711