1 /* 2 * Copyright (C) 2001, 2002 Sistina Software (UK) Limited. 3 * Copyright (C) 2004-2006 Red Hat, Inc. All rights reserved. 4 * 5 * This file is released under the GPL. 6 */ 7 8 #include "dm.h" 9 #include "dm-bio-list.h" 10 #include "dm-uevent.h" 11 12 #include <linux/init.h> 13 #include <linux/module.h> 14 #include <linux/mutex.h> 15 #include <linux/moduleparam.h> 16 #include <linux/blkpg.h> 17 #include <linux/bio.h> 18 #include <linux/buffer_head.h> 19 #include <linux/mempool.h> 20 #include <linux/slab.h> 21 #include <linux/idr.h> 22 #include <linux/hdreg.h> 23 #include <linux/blktrace_api.h> 24 #include <linux/smp_lock.h> 25 26 #define DM_MSG_PREFIX "core" 27 28 static const char *_name = DM_NAME; 29 30 static unsigned int major = 0; 31 static unsigned int _major = 0; 32 33 static DEFINE_SPINLOCK(_minor_lock); 34 /* 35 * One of these is allocated per bio. 36 */ 37 struct dm_io { 38 struct mapped_device *md; 39 int error; 40 atomic_t io_count; 41 struct bio *bio; 42 unsigned long start_time; 43 }; 44 45 /* 46 * One of these is allocated per target within a bio. Hopefully 47 * this will be simplified out one day. 48 */ 49 struct dm_target_io { 50 struct dm_io *io; 51 struct dm_target *ti; 52 union map_info info; 53 }; 54 55 union map_info *dm_get_mapinfo(struct bio *bio) 56 { 57 if (bio && bio->bi_private) 58 return &((struct dm_target_io *)bio->bi_private)->info; 59 return NULL; 60 } 61 62 #define MINOR_ALLOCED ((void *)-1) 63 64 /* 65 * Bits for the md->flags field. 66 */ 67 #define DMF_BLOCK_IO 0 68 #define DMF_SUSPENDED 1 69 #define DMF_FROZEN 2 70 #define DMF_FREEING 3 71 #define DMF_DELETING 4 72 #define DMF_NOFLUSH_SUSPENDING 5 73 74 /* 75 * Work processed by per-device workqueue. 76 */ 77 struct dm_wq_req { 78 enum { 79 DM_WQ_FLUSH_ALL, 80 DM_WQ_FLUSH_DEFERRED, 81 } type; 82 struct work_struct work; 83 struct mapped_device *md; 84 void *context; 85 }; 86 87 struct mapped_device { 88 struct rw_semaphore io_lock; 89 struct mutex suspend_lock; 90 spinlock_t pushback_lock; 91 rwlock_t map_lock; 92 atomic_t holders; 93 atomic_t open_count; 94 95 unsigned long flags; 96 97 struct request_queue *queue; 98 struct gendisk *disk; 99 char name[16]; 100 101 void *interface_ptr; 102 103 /* 104 * A list of ios that arrived while we were suspended. 105 */ 106 atomic_t pending; 107 wait_queue_head_t wait; 108 struct bio_list deferred; 109 struct bio_list pushback; 110 111 /* 112 * Processing queue (flush/barriers) 113 */ 114 struct workqueue_struct *wq; 115 116 /* 117 * The current mapping. 118 */ 119 struct dm_table *map; 120 121 /* 122 * io objects are allocated from here. 123 */ 124 mempool_t *io_pool; 125 mempool_t *tio_pool; 126 127 struct bio_set *bs; 128 129 /* 130 * Event handling. 131 */ 132 atomic_t event_nr; 133 wait_queue_head_t eventq; 134 atomic_t uevent_seq; 135 struct list_head uevent_list; 136 spinlock_t uevent_lock; /* Protect access to uevent_list */ 137 138 /* 139 * freeze/thaw support require holding onto a super block 140 */ 141 struct super_block *frozen_sb; 142 struct block_device *suspended_bdev; 143 144 /* forced geometry settings */ 145 struct hd_geometry geometry; 146 }; 147 148 #define MIN_IOS 256 149 static struct kmem_cache *_io_cache; 150 static struct kmem_cache *_tio_cache; 151 152 static int __init local_init(void) 153 { 154 int r; 155 156 /* allocate a slab for the dm_ios */ 157 _io_cache = KMEM_CACHE(dm_io, 0); 158 if (!_io_cache) 159 return -ENOMEM; 160 161 /* allocate a slab for the target ios */ 162 _tio_cache = KMEM_CACHE(dm_target_io, 0); 163 if (!_tio_cache) { 164 kmem_cache_destroy(_io_cache); 165 return -ENOMEM; 166 } 167 168 r = dm_uevent_init(); 169 if (r) { 170 kmem_cache_destroy(_tio_cache); 171 kmem_cache_destroy(_io_cache); 172 return r; 173 } 174 175 _major = major; 176 r = register_blkdev(_major, _name); 177 if (r < 0) { 178 kmem_cache_destroy(_tio_cache); 179 kmem_cache_destroy(_io_cache); 180 dm_uevent_exit(); 181 return r; 182 } 183 184 if (!_major) 185 _major = r; 186 187 return 0; 188 } 189 190 static void local_exit(void) 191 { 192 kmem_cache_destroy(_tio_cache); 193 kmem_cache_destroy(_io_cache); 194 unregister_blkdev(_major, _name); 195 dm_uevent_exit(); 196 197 _major = 0; 198 199 DMINFO("cleaned up"); 200 } 201 202 static int (*_inits[])(void) __initdata = { 203 local_init, 204 dm_target_init, 205 dm_linear_init, 206 dm_stripe_init, 207 dm_kcopyd_init, 208 dm_interface_init, 209 }; 210 211 static void (*_exits[])(void) = { 212 local_exit, 213 dm_target_exit, 214 dm_linear_exit, 215 dm_stripe_exit, 216 dm_kcopyd_exit, 217 dm_interface_exit, 218 }; 219 220 static int __init dm_init(void) 221 { 222 const int count = ARRAY_SIZE(_inits); 223 224 int r, i; 225 226 for (i = 0; i < count; i++) { 227 r = _inits[i](); 228 if (r) 229 goto bad; 230 } 231 232 return 0; 233 234 bad: 235 while (i--) 236 _exits[i](); 237 238 return r; 239 } 240 241 static void __exit dm_exit(void) 242 { 243 int i = ARRAY_SIZE(_exits); 244 245 while (i--) 246 _exits[i](); 247 } 248 249 /* 250 * Block device functions 251 */ 252 static int dm_blk_open(struct inode *inode, struct file *file) 253 { 254 struct mapped_device *md; 255 256 spin_lock(&_minor_lock); 257 258 md = inode->i_bdev->bd_disk->private_data; 259 if (!md) 260 goto out; 261 262 if (test_bit(DMF_FREEING, &md->flags) || 263 test_bit(DMF_DELETING, &md->flags)) { 264 md = NULL; 265 goto out; 266 } 267 268 dm_get(md); 269 atomic_inc(&md->open_count); 270 271 out: 272 spin_unlock(&_minor_lock); 273 274 return md ? 0 : -ENXIO; 275 } 276 277 static int dm_blk_close(struct inode *inode, struct file *file) 278 { 279 struct mapped_device *md; 280 281 md = inode->i_bdev->bd_disk->private_data; 282 atomic_dec(&md->open_count); 283 dm_put(md); 284 return 0; 285 } 286 287 int dm_open_count(struct mapped_device *md) 288 { 289 return atomic_read(&md->open_count); 290 } 291 292 /* 293 * Guarantees nothing is using the device before it's deleted. 294 */ 295 int dm_lock_for_deletion(struct mapped_device *md) 296 { 297 int r = 0; 298 299 spin_lock(&_minor_lock); 300 301 if (dm_open_count(md)) 302 r = -EBUSY; 303 else 304 set_bit(DMF_DELETING, &md->flags); 305 306 spin_unlock(&_minor_lock); 307 308 return r; 309 } 310 311 static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo) 312 { 313 struct mapped_device *md = bdev->bd_disk->private_data; 314 315 return dm_get_geometry(md, geo); 316 } 317 318 static int dm_blk_ioctl(struct inode *inode, struct file *file, 319 unsigned int cmd, unsigned long arg) 320 { 321 struct mapped_device *md; 322 struct dm_table *map; 323 struct dm_target *tgt; 324 int r = -ENOTTY; 325 326 /* We don't really need this lock, but we do need 'inode'. */ 327 unlock_kernel(); 328 329 md = inode->i_bdev->bd_disk->private_data; 330 331 map = dm_get_table(md); 332 333 if (!map || !dm_table_get_size(map)) 334 goto out; 335 336 /* We only support devices that have a single target */ 337 if (dm_table_get_num_targets(map) != 1) 338 goto out; 339 340 tgt = dm_table_get_target(map, 0); 341 342 if (dm_suspended(md)) { 343 r = -EAGAIN; 344 goto out; 345 } 346 347 if (tgt->type->ioctl) 348 r = tgt->type->ioctl(tgt, inode, file, cmd, arg); 349 350 out: 351 dm_table_put(map); 352 353 lock_kernel(); 354 return r; 355 } 356 357 static struct dm_io *alloc_io(struct mapped_device *md) 358 { 359 return mempool_alloc(md->io_pool, GFP_NOIO); 360 } 361 362 static void free_io(struct mapped_device *md, struct dm_io *io) 363 { 364 mempool_free(io, md->io_pool); 365 } 366 367 static struct dm_target_io *alloc_tio(struct mapped_device *md) 368 { 369 return mempool_alloc(md->tio_pool, GFP_NOIO); 370 } 371 372 static void free_tio(struct mapped_device *md, struct dm_target_io *tio) 373 { 374 mempool_free(tio, md->tio_pool); 375 } 376 377 static void start_io_acct(struct dm_io *io) 378 { 379 struct mapped_device *md = io->md; 380 381 io->start_time = jiffies; 382 383 preempt_disable(); 384 disk_round_stats(dm_disk(md)); 385 preempt_enable(); 386 dm_disk(md)->in_flight = atomic_inc_return(&md->pending); 387 } 388 389 static int end_io_acct(struct dm_io *io) 390 { 391 struct mapped_device *md = io->md; 392 struct bio *bio = io->bio; 393 unsigned long duration = jiffies - io->start_time; 394 int pending; 395 int rw = bio_data_dir(bio); 396 397 preempt_disable(); 398 disk_round_stats(dm_disk(md)); 399 preempt_enable(); 400 dm_disk(md)->in_flight = pending = atomic_dec_return(&md->pending); 401 402 disk_stat_add(dm_disk(md), ticks[rw], duration); 403 404 return !pending; 405 } 406 407 /* 408 * Add the bio to the list of deferred io. 409 */ 410 static int queue_io(struct mapped_device *md, struct bio *bio) 411 { 412 down_write(&md->io_lock); 413 414 if (!test_bit(DMF_BLOCK_IO, &md->flags)) { 415 up_write(&md->io_lock); 416 return 1; 417 } 418 419 bio_list_add(&md->deferred, bio); 420 421 up_write(&md->io_lock); 422 return 0; /* deferred successfully */ 423 } 424 425 /* 426 * Everyone (including functions in this file), should use this 427 * function to access the md->map field, and make sure they call 428 * dm_table_put() when finished. 429 */ 430 struct dm_table *dm_get_table(struct mapped_device *md) 431 { 432 struct dm_table *t; 433 434 read_lock(&md->map_lock); 435 t = md->map; 436 if (t) 437 dm_table_get(t); 438 read_unlock(&md->map_lock); 439 440 return t; 441 } 442 443 /* 444 * Get the geometry associated with a dm device 445 */ 446 int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo) 447 { 448 *geo = md->geometry; 449 450 return 0; 451 } 452 453 /* 454 * Set the geometry of a device. 455 */ 456 int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo) 457 { 458 sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors; 459 460 if (geo->start > sz) { 461 DMWARN("Start sector is beyond the geometry limits."); 462 return -EINVAL; 463 } 464 465 md->geometry = *geo; 466 467 return 0; 468 } 469 470 /*----------------------------------------------------------------- 471 * CRUD START: 472 * A more elegant soln is in the works that uses the queue 473 * merge fn, unfortunately there are a couple of changes to 474 * the block layer that I want to make for this. So in the 475 * interests of getting something for people to use I give 476 * you this clearly demarcated crap. 477 *---------------------------------------------------------------*/ 478 479 static int __noflush_suspending(struct mapped_device *md) 480 { 481 return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags); 482 } 483 484 /* 485 * Decrements the number of outstanding ios that a bio has been 486 * cloned into, completing the original io if necc. 487 */ 488 static void dec_pending(struct dm_io *io, int error) 489 { 490 unsigned long flags; 491 492 /* Push-back supersedes any I/O errors */ 493 if (error && !(io->error > 0 && __noflush_suspending(io->md))) 494 io->error = error; 495 496 if (atomic_dec_and_test(&io->io_count)) { 497 if (io->error == DM_ENDIO_REQUEUE) { 498 /* 499 * Target requested pushing back the I/O. 500 * This must be handled before the sleeper on 501 * suspend queue merges the pushback list. 502 */ 503 spin_lock_irqsave(&io->md->pushback_lock, flags); 504 if (__noflush_suspending(io->md)) 505 bio_list_add(&io->md->pushback, io->bio); 506 else 507 /* noflush suspend was interrupted. */ 508 io->error = -EIO; 509 spin_unlock_irqrestore(&io->md->pushback_lock, flags); 510 } 511 512 if (end_io_acct(io)) 513 /* nudge anyone waiting on suspend queue */ 514 wake_up(&io->md->wait); 515 516 if (io->error != DM_ENDIO_REQUEUE) { 517 blk_add_trace_bio(io->md->queue, io->bio, 518 BLK_TA_COMPLETE); 519 520 bio_endio(io->bio, io->error); 521 } 522 523 free_io(io->md, io); 524 } 525 } 526 527 static void clone_endio(struct bio *bio, int error) 528 { 529 int r = 0; 530 struct dm_target_io *tio = bio->bi_private; 531 struct mapped_device *md = tio->io->md; 532 dm_endio_fn endio = tio->ti->type->end_io; 533 534 if (!bio_flagged(bio, BIO_UPTODATE) && !error) 535 error = -EIO; 536 537 if (endio) { 538 r = endio(tio->ti, bio, error, &tio->info); 539 if (r < 0 || r == DM_ENDIO_REQUEUE) 540 /* 541 * error and requeue request are handled 542 * in dec_pending(). 543 */ 544 error = r; 545 else if (r == DM_ENDIO_INCOMPLETE) 546 /* The target will handle the io */ 547 return; 548 else if (r) { 549 DMWARN("unimplemented target endio return value: %d", r); 550 BUG(); 551 } 552 } 553 554 dec_pending(tio->io, error); 555 556 /* 557 * Store md for cleanup instead of tio which is about to get freed. 558 */ 559 bio->bi_private = md->bs; 560 561 bio_put(bio); 562 free_tio(md, tio); 563 } 564 565 static sector_t max_io_len(struct mapped_device *md, 566 sector_t sector, struct dm_target *ti) 567 { 568 sector_t offset = sector - ti->begin; 569 sector_t len = ti->len - offset; 570 571 /* 572 * Does the target need to split even further ? 573 */ 574 if (ti->split_io) { 575 sector_t boundary; 576 boundary = ((offset + ti->split_io) & ~(ti->split_io - 1)) 577 - offset; 578 if (len > boundary) 579 len = boundary; 580 } 581 582 return len; 583 } 584 585 static void __map_bio(struct dm_target *ti, struct bio *clone, 586 struct dm_target_io *tio) 587 { 588 int r; 589 sector_t sector; 590 struct mapped_device *md; 591 592 /* 593 * Sanity checks. 594 */ 595 BUG_ON(!clone->bi_size); 596 597 clone->bi_end_io = clone_endio; 598 clone->bi_private = tio; 599 600 /* 601 * Map the clone. If r == 0 we don't need to do 602 * anything, the target has assumed ownership of 603 * this io. 604 */ 605 atomic_inc(&tio->io->io_count); 606 sector = clone->bi_sector; 607 r = ti->type->map(ti, clone, &tio->info); 608 if (r == DM_MAPIO_REMAPPED) { 609 /* the bio has been remapped so dispatch it */ 610 611 blk_add_trace_remap(bdev_get_queue(clone->bi_bdev), clone, 612 tio->io->bio->bi_bdev->bd_dev, 613 clone->bi_sector, sector); 614 615 generic_make_request(clone); 616 } else if (r < 0 || r == DM_MAPIO_REQUEUE) { 617 /* error the io and bail out, or requeue it if needed */ 618 md = tio->io->md; 619 dec_pending(tio->io, r); 620 /* 621 * Store bio_set for cleanup. 622 */ 623 clone->bi_private = md->bs; 624 bio_put(clone); 625 free_tio(md, tio); 626 } else if (r) { 627 DMWARN("unimplemented target map return value: %d", r); 628 BUG(); 629 } 630 } 631 632 struct clone_info { 633 struct mapped_device *md; 634 struct dm_table *map; 635 struct bio *bio; 636 struct dm_io *io; 637 sector_t sector; 638 sector_t sector_count; 639 unsigned short idx; 640 }; 641 642 static void dm_bio_destructor(struct bio *bio) 643 { 644 struct bio_set *bs = bio->bi_private; 645 646 bio_free(bio, bs); 647 } 648 649 /* 650 * Creates a little bio that is just does part of a bvec. 651 */ 652 static struct bio *split_bvec(struct bio *bio, sector_t sector, 653 unsigned short idx, unsigned int offset, 654 unsigned int len, struct bio_set *bs) 655 { 656 struct bio *clone; 657 struct bio_vec *bv = bio->bi_io_vec + idx; 658 659 clone = bio_alloc_bioset(GFP_NOIO, 1, bs); 660 clone->bi_destructor = dm_bio_destructor; 661 *clone->bi_io_vec = *bv; 662 663 clone->bi_sector = sector; 664 clone->bi_bdev = bio->bi_bdev; 665 clone->bi_rw = bio->bi_rw; 666 clone->bi_vcnt = 1; 667 clone->bi_size = to_bytes(len); 668 clone->bi_io_vec->bv_offset = offset; 669 clone->bi_io_vec->bv_len = clone->bi_size; 670 671 return clone; 672 } 673 674 /* 675 * Creates a bio that consists of range of complete bvecs. 676 */ 677 static struct bio *clone_bio(struct bio *bio, sector_t sector, 678 unsigned short idx, unsigned short bv_count, 679 unsigned int len, struct bio_set *bs) 680 { 681 struct bio *clone; 682 683 clone = bio_alloc_bioset(GFP_NOIO, bio->bi_max_vecs, bs); 684 __bio_clone(clone, bio); 685 clone->bi_destructor = dm_bio_destructor; 686 clone->bi_sector = sector; 687 clone->bi_idx = idx; 688 clone->bi_vcnt = idx + bv_count; 689 clone->bi_size = to_bytes(len); 690 clone->bi_flags &= ~(1 << BIO_SEG_VALID); 691 692 return clone; 693 } 694 695 static int __clone_and_map(struct clone_info *ci) 696 { 697 struct bio *clone, *bio = ci->bio; 698 struct dm_target *ti; 699 sector_t len = 0, max; 700 struct dm_target_io *tio; 701 702 ti = dm_table_find_target(ci->map, ci->sector); 703 if (!dm_target_is_valid(ti)) 704 return -EIO; 705 706 max = max_io_len(ci->md, ci->sector, ti); 707 708 /* 709 * Allocate a target io object. 710 */ 711 tio = alloc_tio(ci->md); 712 tio->io = ci->io; 713 tio->ti = ti; 714 memset(&tio->info, 0, sizeof(tio->info)); 715 716 if (ci->sector_count <= max) { 717 /* 718 * Optimise for the simple case where we can do all of 719 * the remaining io with a single clone. 720 */ 721 clone = clone_bio(bio, ci->sector, ci->idx, 722 bio->bi_vcnt - ci->idx, ci->sector_count, 723 ci->md->bs); 724 __map_bio(ti, clone, tio); 725 ci->sector_count = 0; 726 727 } else if (to_sector(bio->bi_io_vec[ci->idx].bv_len) <= max) { 728 /* 729 * There are some bvecs that don't span targets. 730 * Do as many of these as possible. 731 */ 732 int i; 733 sector_t remaining = max; 734 sector_t bv_len; 735 736 for (i = ci->idx; remaining && (i < bio->bi_vcnt); i++) { 737 bv_len = to_sector(bio->bi_io_vec[i].bv_len); 738 739 if (bv_len > remaining) 740 break; 741 742 remaining -= bv_len; 743 len += bv_len; 744 } 745 746 clone = clone_bio(bio, ci->sector, ci->idx, i - ci->idx, len, 747 ci->md->bs); 748 __map_bio(ti, clone, tio); 749 750 ci->sector += len; 751 ci->sector_count -= len; 752 ci->idx = i; 753 754 } else { 755 /* 756 * Handle a bvec that must be split between two or more targets. 757 */ 758 struct bio_vec *bv = bio->bi_io_vec + ci->idx; 759 sector_t remaining = to_sector(bv->bv_len); 760 unsigned int offset = 0; 761 762 do { 763 if (offset) { 764 ti = dm_table_find_target(ci->map, ci->sector); 765 if (!dm_target_is_valid(ti)) 766 return -EIO; 767 768 max = max_io_len(ci->md, ci->sector, ti); 769 770 tio = alloc_tio(ci->md); 771 tio->io = ci->io; 772 tio->ti = ti; 773 memset(&tio->info, 0, sizeof(tio->info)); 774 } 775 776 len = min(remaining, max); 777 778 clone = split_bvec(bio, ci->sector, ci->idx, 779 bv->bv_offset + offset, len, 780 ci->md->bs); 781 782 __map_bio(ti, clone, tio); 783 784 ci->sector += len; 785 ci->sector_count -= len; 786 offset += to_bytes(len); 787 } while (remaining -= len); 788 789 ci->idx++; 790 } 791 792 return 0; 793 } 794 795 /* 796 * Split the bio into several clones. 797 */ 798 static int __split_bio(struct mapped_device *md, struct bio *bio) 799 { 800 struct clone_info ci; 801 int error = 0; 802 803 ci.map = dm_get_table(md); 804 if (unlikely(!ci.map)) 805 return -EIO; 806 807 ci.md = md; 808 ci.bio = bio; 809 ci.io = alloc_io(md); 810 ci.io->error = 0; 811 atomic_set(&ci.io->io_count, 1); 812 ci.io->bio = bio; 813 ci.io->md = md; 814 ci.sector = bio->bi_sector; 815 ci.sector_count = bio_sectors(bio); 816 ci.idx = bio->bi_idx; 817 818 start_io_acct(ci.io); 819 while (ci.sector_count && !error) 820 error = __clone_and_map(&ci); 821 822 /* drop the extra reference count */ 823 dec_pending(ci.io, error); 824 dm_table_put(ci.map); 825 826 return 0; 827 } 828 /*----------------------------------------------------------------- 829 * CRUD END 830 *---------------------------------------------------------------*/ 831 832 static int dm_merge_bvec(struct request_queue *q, 833 struct bvec_merge_data *bvm, 834 struct bio_vec *biovec) 835 { 836 struct mapped_device *md = q->queuedata; 837 struct dm_table *map = dm_get_table(md); 838 struct dm_target *ti; 839 sector_t max_sectors; 840 int max_size; 841 842 if (unlikely(!map)) 843 return 0; 844 845 ti = dm_table_find_target(map, bvm->bi_sector); 846 847 /* 848 * Find maximum amount of I/O that won't need splitting 849 */ 850 max_sectors = min(max_io_len(md, bvm->bi_sector, ti), 851 (sector_t) BIO_MAX_SECTORS); 852 max_size = (max_sectors << SECTOR_SHIFT) - bvm->bi_size; 853 if (max_size < 0) 854 max_size = 0; 855 856 /* 857 * merge_bvec_fn() returns number of bytes 858 * it can accept at this offset 859 * max is precomputed maximal io size 860 */ 861 if (max_size && ti->type->merge) 862 max_size = ti->type->merge(ti, bvm, biovec, max_size); 863 864 /* 865 * Always allow an entire first page 866 */ 867 if (max_size <= biovec->bv_len && !(bvm->bi_size >> SECTOR_SHIFT)) 868 max_size = biovec->bv_len; 869 870 dm_table_put(map); 871 872 return max_size; 873 } 874 875 /* 876 * The request function that just remaps the bio built up by 877 * dm_merge_bvec. 878 */ 879 static int dm_request(struct request_queue *q, struct bio *bio) 880 { 881 int r = -EIO; 882 int rw = bio_data_dir(bio); 883 struct mapped_device *md = q->queuedata; 884 885 /* 886 * There is no use in forwarding any barrier request since we can't 887 * guarantee it is (or can be) handled by the targets correctly. 888 */ 889 if (unlikely(bio_barrier(bio))) { 890 bio_endio(bio, -EOPNOTSUPP); 891 return 0; 892 } 893 894 down_read(&md->io_lock); 895 896 disk_stat_inc(dm_disk(md), ios[rw]); 897 disk_stat_add(dm_disk(md), sectors[rw], bio_sectors(bio)); 898 899 /* 900 * If we're suspended we have to queue 901 * this io for later. 902 */ 903 while (test_bit(DMF_BLOCK_IO, &md->flags)) { 904 up_read(&md->io_lock); 905 906 if (bio_rw(bio) != READA) 907 r = queue_io(md, bio); 908 909 if (r <= 0) 910 goto out_req; 911 912 /* 913 * We're in a while loop, because someone could suspend 914 * before we get to the following read lock. 915 */ 916 down_read(&md->io_lock); 917 } 918 919 r = __split_bio(md, bio); 920 up_read(&md->io_lock); 921 922 out_req: 923 if (r < 0) 924 bio_io_error(bio); 925 926 return 0; 927 } 928 929 static void dm_unplug_all(struct request_queue *q) 930 { 931 struct mapped_device *md = q->queuedata; 932 struct dm_table *map = dm_get_table(md); 933 934 if (map) { 935 dm_table_unplug_all(map); 936 dm_table_put(map); 937 } 938 } 939 940 static int dm_any_congested(void *congested_data, int bdi_bits) 941 { 942 int r; 943 struct mapped_device *md = (struct mapped_device *) congested_data; 944 struct dm_table *map = dm_get_table(md); 945 946 if (!map || test_bit(DMF_BLOCK_IO, &md->flags)) 947 r = bdi_bits; 948 else 949 r = dm_table_any_congested(map, bdi_bits); 950 951 dm_table_put(map); 952 return r; 953 } 954 955 /*----------------------------------------------------------------- 956 * An IDR is used to keep track of allocated minor numbers. 957 *---------------------------------------------------------------*/ 958 static DEFINE_IDR(_minor_idr); 959 960 static void free_minor(int minor) 961 { 962 spin_lock(&_minor_lock); 963 idr_remove(&_minor_idr, minor); 964 spin_unlock(&_minor_lock); 965 } 966 967 /* 968 * See if the device with a specific minor # is free. 969 */ 970 static int specific_minor(int minor) 971 { 972 int r, m; 973 974 if (minor >= (1 << MINORBITS)) 975 return -EINVAL; 976 977 r = idr_pre_get(&_minor_idr, GFP_KERNEL); 978 if (!r) 979 return -ENOMEM; 980 981 spin_lock(&_minor_lock); 982 983 if (idr_find(&_minor_idr, minor)) { 984 r = -EBUSY; 985 goto out; 986 } 987 988 r = idr_get_new_above(&_minor_idr, MINOR_ALLOCED, minor, &m); 989 if (r) 990 goto out; 991 992 if (m != minor) { 993 idr_remove(&_minor_idr, m); 994 r = -EBUSY; 995 goto out; 996 } 997 998 out: 999 spin_unlock(&_minor_lock); 1000 return r; 1001 } 1002 1003 static int next_free_minor(int *minor) 1004 { 1005 int r, m; 1006 1007 r = idr_pre_get(&_minor_idr, GFP_KERNEL); 1008 if (!r) 1009 return -ENOMEM; 1010 1011 spin_lock(&_minor_lock); 1012 1013 r = idr_get_new(&_minor_idr, MINOR_ALLOCED, &m); 1014 if (r) 1015 goto out; 1016 1017 if (m >= (1 << MINORBITS)) { 1018 idr_remove(&_minor_idr, m); 1019 r = -ENOSPC; 1020 goto out; 1021 } 1022 1023 *minor = m; 1024 1025 out: 1026 spin_unlock(&_minor_lock); 1027 return r; 1028 } 1029 1030 static struct block_device_operations dm_blk_dops; 1031 1032 /* 1033 * Allocate and initialise a blank device with a given minor. 1034 */ 1035 static struct mapped_device *alloc_dev(int minor) 1036 { 1037 int r; 1038 struct mapped_device *md = kzalloc(sizeof(*md), GFP_KERNEL); 1039 void *old_md; 1040 1041 if (!md) { 1042 DMWARN("unable to allocate device, out of memory."); 1043 return NULL; 1044 } 1045 1046 if (!try_module_get(THIS_MODULE)) 1047 goto bad_module_get; 1048 1049 /* get a minor number for the dev */ 1050 if (minor == DM_ANY_MINOR) 1051 r = next_free_minor(&minor); 1052 else 1053 r = specific_minor(minor); 1054 if (r < 0) 1055 goto bad_minor; 1056 1057 init_rwsem(&md->io_lock); 1058 mutex_init(&md->suspend_lock); 1059 spin_lock_init(&md->pushback_lock); 1060 rwlock_init(&md->map_lock); 1061 atomic_set(&md->holders, 1); 1062 atomic_set(&md->open_count, 0); 1063 atomic_set(&md->event_nr, 0); 1064 atomic_set(&md->uevent_seq, 0); 1065 INIT_LIST_HEAD(&md->uevent_list); 1066 spin_lock_init(&md->uevent_lock); 1067 1068 md->queue = blk_alloc_queue(GFP_KERNEL); 1069 if (!md->queue) 1070 goto bad_queue; 1071 1072 md->queue->queuedata = md; 1073 md->queue->backing_dev_info.congested_fn = dm_any_congested; 1074 md->queue->backing_dev_info.congested_data = md; 1075 blk_queue_make_request(md->queue, dm_request); 1076 blk_queue_bounce_limit(md->queue, BLK_BOUNCE_ANY); 1077 md->queue->unplug_fn = dm_unplug_all; 1078 blk_queue_merge_bvec(md->queue, dm_merge_bvec); 1079 1080 md->io_pool = mempool_create_slab_pool(MIN_IOS, _io_cache); 1081 if (!md->io_pool) 1082 goto bad_io_pool; 1083 1084 md->tio_pool = mempool_create_slab_pool(MIN_IOS, _tio_cache); 1085 if (!md->tio_pool) 1086 goto bad_tio_pool; 1087 1088 md->bs = bioset_create(16, 16); 1089 if (!md->bs) 1090 goto bad_no_bioset; 1091 1092 md->disk = alloc_disk(1); 1093 if (!md->disk) 1094 goto bad_disk; 1095 1096 atomic_set(&md->pending, 0); 1097 init_waitqueue_head(&md->wait); 1098 init_waitqueue_head(&md->eventq); 1099 1100 md->disk->major = _major; 1101 md->disk->first_minor = minor; 1102 md->disk->fops = &dm_blk_dops; 1103 md->disk->queue = md->queue; 1104 md->disk->private_data = md; 1105 sprintf(md->disk->disk_name, "dm-%d", minor); 1106 add_disk(md->disk); 1107 format_dev_t(md->name, MKDEV(_major, minor)); 1108 1109 md->wq = create_singlethread_workqueue("kdmflush"); 1110 if (!md->wq) 1111 goto bad_thread; 1112 1113 /* Populate the mapping, nobody knows we exist yet */ 1114 spin_lock(&_minor_lock); 1115 old_md = idr_replace(&_minor_idr, md, minor); 1116 spin_unlock(&_minor_lock); 1117 1118 BUG_ON(old_md != MINOR_ALLOCED); 1119 1120 return md; 1121 1122 bad_thread: 1123 put_disk(md->disk); 1124 bad_disk: 1125 bioset_free(md->bs); 1126 bad_no_bioset: 1127 mempool_destroy(md->tio_pool); 1128 bad_tio_pool: 1129 mempool_destroy(md->io_pool); 1130 bad_io_pool: 1131 blk_cleanup_queue(md->queue); 1132 bad_queue: 1133 free_minor(minor); 1134 bad_minor: 1135 module_put(THIS_MODULE); 1136 bad_module_get: 1137 kfree(md); 1138 return NULL; 1139 } 1140 1141 static void unlock_fs(struct mapped_device *md); 1142 1143 static void free_dev(struct mapped_device *md) 1144 { 1145 int minor = md->disk->first_minor; 1146 1147 if (md->suspended_bdev) { 1148 unlock_fs(md); 1149 bdput(md->suspended_bdev); 1150 } 1151 destroy_workqueue(md->wq); 1152 mempool_destroy(md->tio_pool); 1153 mempool_destroy(md->io_pool); 1154 bioset_free(md->bs); 1155 del_gendisk(md->disk); 1156 free_minor(minor); 1157 1158 spin_lock(&_minor_lock); 1159 md->disk->private_data = NULL; 1160 spin_unlock(&_minor_lock); 1161 1162 put_disk(md->disk); 1163 blk_cleanup_queue(md->queue); 1164 module_put(THIS_MODULE); 1165 kfree(md); 1166 } 1167 1168 /* 1169 * Bind a table to the device. 1170 */ 1171 static void event_callback(void *context) 1172 { 1173 unsigned long flags; 1174 LIST_HEAD(uevents); 1175 struct mapped_device *md = (struct mapped_device *) context; 1176 1177 spin_lock_irqsave(&md->uevent_lock, flags); 1178 list_splice_init(&md->uevent_list, &uevents); 1179 spin_unlock_irqrestore(&md->uevent_lock, flags); 1180 1181 dm_send_uevents(&uevents, &md->disk->dev.kobj); 1182 1183 atomic_inc(&md->event_nr); 1184 wake_up(&md->eventq); 1185 } 1186 1187 static void __set_size(struct mapped_device *md, sector_t size) 1188 { 1189 set_capacity(md->disk, size); 1190 1191 mutex_lock(&md->suspended_bdev->bd_inode->i_mutex); 1192 i_size_write(md->suspended_bdev->bd_inode, (loff_t)size << SECTOR_SHIFT); 1193 mutex_unlock(&md->suspended_bdev->bd_inode->i_mutex); 1194 } 1195 1196 static int __bind(struct mapped_device *md, struct dm_table *t) 1197 { 1198 struct request_queue *q = md->queue; 1199 sector_t size; 1200 1201 size = dm_table_get_size(t); 1202 1203 /* 1204 * Wipe any geometry if the size of the table changed. 1205 */ 1206 if (size != get_capacity(md->disk)) 1207 memset(&md->geometry, 0, sizeof(md->geometry)); 1208 1209 if (md->suspended_bdev) 1210 __set_size(md, size); 1211 if (size == 0) 1212 return 0; 1213 1214 dm_table_get(t); 1215 dm_table_event_callback(t, event_callback, md); 1216 1217 write_lock(&md->map_lock); 1218 md->map = t; 1219 dm_table_set_restrictions(t, q); 1220 write_unlock(&md->map_lock); 1221 1222 return 0; 1223 } 1224 1225 static void __unbind(struct mapped_device *md) 1226 { 1227 struct dm_table *map = md->map; 1228 1229 if (!map) 1230 return; 1231 1232 dm_table_event_callback(map, NULL, NULL); 1233 write_lock(&md->map_lock); 1234 md->map = NULL; 1235 write_unlock(&md->map_lock); 1236 dm_table_put(map); 1237 } 1238 1239 /* 1240 * Constructor for a new device. 1241 */ 1242 int dm_create(int minor, struct mapped_device **result) 1243 { 1244 struct mapped_device *md; 1245 1246 md = alloc_dev(minor); 1247 if (!md) 1248 return -ENXIO; 1249 1250 *result = md; 1251 return 0; 1252 } 1253 1254 static struct mapped_device *dm_find_md(dev_t dev) 1255 { 1256 struct mapped_device *md; 1257 unsigned minor = MINOR(dev); 1258 1259 if (MAJOR(dev) != _major || minor >= (1 << MINORBITS)) 1260 return NULL; 1261 1262 spin_lock(&_minor_lock); 1263 1264 md = idr_find(&_minor_idr, minor); 1265 if (md && (md == MINOR_ALLOCED || 1266 (dm_disk(md)->first_minor != minor) || 1267 test_bit(DMF_FREEING, &md->flags))) { 1268 md = NULL; 1269 goto out; 1270 } 1271 1272 out: 1273 spin_unlock(&_minor_lock); 1274 1275 return md; 1276 } 1277 1278 struct mapped_device *dm_get_md(dev_t dev) 1279 { 1280 struct mapped_device *md = dm_find_md(dev); 1281 1282 if (md) 1283 dm_get(md); 1284 1285 return md; 1286 } 1287 1288 void *dm_get_mdptr(struct mapped_device *md) 1289 { 1290 return md->interface_ptr; 1291 } 1292 1293 void dm_set_mdptr(struct mapped_device *md, void *ptr) 1294 { 1295 md->interface_ptr = ptr; 1296 } 1297 1298 void dm_get(struct mapped_device *md) 1299 { 1300 atomic_inc(&md->holders); 1301 } 1302 1303 const char *dm_device_name(struct mapped_device *md) 1304 { 1305 return md->name; 1306 } 1307 EXPORT_SYMBOL_GPL(dm_device_name); 1308 1309 void dm_put(struct mapped_device *md) 1310 { 1311 struct dm_table *map; 1312 1313 BUG_ON(test_bit(DMF_FREEING, &md->flags)); 1314 1315 if (atomic_dec_and_lock(&md->holders, &_minor_lock)) { 1316 map = dm_get_table(md); 1317 idr_replace(&_minor_idr, MINOR_ALLOCED, dm_disk(md)->first_minor); 1318 set_bit(DMF_FREEING, &md->flags); 1319 spin_unlock(&_minor_lock); 1320 if (!dm_suspended(md)) { 1321 dm_table_presuspend_targets(map); 1322 dm_table_postsuspend_targets(map); 1323 } 1324 __unbind(md); 1325 dm_table_put(map); 1326 free_dev(md); 1327 } 1328 } 1329 EXPORT_SYMBOL_GPL(dm_put); 1330 1331 static int dm_wait_for_completion(struct mapped_device *md) 1332 { 1333 int r = 0; 1334 1335 while (1) { 1336 set_current_state(TASK_INTERRUPTIBLE); 1337 1338 smp_mb(); 1339 if (!atomic_read(&md->pending)) 1340 break; 1341 1342 if (signal_pending(current)) { 1343 r = -EINTR; 1344 break; 1345 } 1346 1347 io_schedule(); 1348 } 1349 set_current_state(TASK_RUNNING); 1350 1351 return r; 1352 } 1353 1354 /* 1355 * Process the deferred bios 1356 */ 1357 static void __flush_deferred_io(struct mapped_device *md) 1358 { 1359 struct bio *c; 1360 1361 while ((c = bio_list_pop(&md->deferred))) { 1362 if (__split_bio(md, c)) 1363 bio_io_error(c); 1364 } 1365 1366 clear_bit(DMF_BLOCK_IO, &md->flags); 1367 } 1368 1369 static void __merge_pushback_list(struct mapped_device *md) 1370 { 1371 unsigned long flags; 1372 1373 spin_lock_irqsave(&md->pushback_lock, flags); 1374 clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags); 1375 bio_list_merge_head(&md->deferred, &md->pushback); 1376 bio_list_init(&md->pushback); 1377 spin_unlock_irqrestore(&md->pushback_lock, flags); 1378 } 1379 1380 static void dm_wq_work(struct work_struct *work) 1381 { 1382 struct dm_wq_req *req = container_of(work, struct dm_wq_req, work); 1383 struct mapped_device *md = req->md; 1384 1385 down_write(&md->io_lock); 1386 switch (req->type) { 1387 case DM_WQ_FLUSH_ALL: 1388 __merge_pushback_list(md); 1389 /* pass through */ 1390 case DM_WQ_FLUSH_DEFERRED: 1391 __flush_deferred_io(md); 1392 break; 1393 default: 1394 DMERR("dm_wq_work: unrecognised work type %d", req->type); 1395 BUG(); 1396 } 1397 up_write(&md->io_lock); 1398 } 1399 1400 static void dm_wq_queue(struct mapped_device *md, int type, void *context, 1401 struct dm_wq_req *req) 1402 { 1403 req->type = type; 1404 req->md = md; 1405 req->context = context; 1406 INIT_WORK(&req->work, dm_wq_work); 1407 queue_work(md->wq, &req->work); 1408 } 1409 1410 static void dm_queue_flush(struct mapped_device *md, int type, void *context) 1411 { 1412 struct dm_wq_req req; 1413 1414 dm_wq_queue(md, type, context, &req); 1415 flush_workqueue(md->wq); 1416 } 1417 1418 /* 1419 * Swap in a new table (destroying old one). 1420 */ 1421 int dm_swap_table(struct mapped_device *md, struct dm_table *table) 1422 { 1423 int r = -EINVAL; 1424 1425 mutex_lock(&md->suspend_lock); 1426 1427 /* device must be suspended */ 1428 if (!dm_suspended(md)) 1429 goto out; 1430 1431 /* without bdev, the device size cannot be changed */ 1432 if (!md->suspended_bdev) 1433 if (get_capacity(md->disk) != dm_table_get_size(table)) 1434 goto out; 1435 1436 __unbind(md); 1437 r = __bind(md, table); 1438 1439 out: 1440 mutex_unlock(&md->suspend_lock); 1441 return r; 1442 } 1443 1444 /* 1445 * Functions to lock and unlock any filesystem running on the 1446 * device. 1447 */ 1448 static int lock_fs(struct mapped_device *md) 1449 { 1450 int r; 1451 1452 WARN_ON(md->frozen_sb); 1453 1454 md->frozen_sb = freeze_bdev(md->suspended_bdev); 1455 if (IS_ERR(md->frozen_sb)) { 1456 r = PTR_ERR(md->frozen_sb); 1457 md->frozen_sb = NULL; 1458 return r; 1459 } 1460 1461 set_bit(DMF_FROZEN, &md->flags); 1462 1463 /* don't bdput right now, we don't want the bdev 1464 * to go away while it is locked. 1465 */ 1466 return 0; 1467 } 1468 1469 static void unlock_fs(struct mapped_device *md) 1470 { 1471 if (!test_bit(DMF_FROZEN, &md->flags)) 1472 return; 1473 1474 thaw_bdev(md->suspended_bdev, md->frozen_sb); 1475 md->frozen_sb = NULL; 1476 clear_bit(DMF_FROZEN, &md->flags); 1477 } 1478 1479 /* 1480 * We need to be able to change a mapping table under a mounted 1481 * filesystem. For example we might want to move some data in 1482 * the background. Before the table can be swapped with 1483 * dm_bind_table, dm_suspend must be called to flush any in 1484 * flight bios and ensure that any further io gets deferred. 1485 */ 1486 int dm_suspend(struct mapped_device *md, unsigned suspend_flags) 1487 { 1488 struct dm_table *map = NULL; 1489 DECLARE_WAITQUEUE(wait, current); 1490 int r = 0; 1491 int do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG ? 1 : 0; 1492 int noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG ? 1 : 0; 1493 1494 mutex_lock(&md->suspend_lock); 1495 1496 if (dm_suspended(md)) { 1497 r = -EINVAL; 1498 goto out_unlock; 1499 } 1500 1501 map = dm_get_table(md); 1502 1503 /* 1504 * DMF_NOFLUSH_SUSPENDING must be set before presuspend. 1505 * This flag is cleared before dm_suspend returns. 1506 */ 1507 if (noflush) 1508 set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags); 1509 1510 /* This does not get reverted if there's an error later. */ 1511 dm_table_presuspend_targets(map); 1512 1513 /* bdget() can stall if the pending I/Os are not flushed */ 1514 if (!noflush) { 1515 md->suspended_bdev = bdget_disk(md->disk, 0); 1516 if (!md->suspended_bdev) { 1517 DMWARN("bdget failed in dm_suspend"); 1518 r = -ENOMEM; 1519 goto flush_and_out; 1520 } 1521 1522 /* 1523 * Flush I/O to the device. noflush supersedes do_lockfs, 1524 * because lock_fs() needs to flush I/Os. 1525 */ 1526 if (do_lockfs) { 1527 r = lock_fs(md); 1528 if (r) 1529 goto out; 1530 } 1531 } 1532 1533 /* 1534 * First we set the BLOCK_IO flag so no more ios will be mapped. 1535 */ 1536 down_write(&md->io_lock); 1537 set_bit(DMF_BLOCK_IO, &md->flags); 1538 1539 add_wait_queue(&md->wait, &wait); 1540 up_write(&md->io_lock); 1541 1542 /* unplug */ 1543 if (map) 1544 dm_table_unplug_all(map); 1545 1546 /* 1547 * Wait for the already-mapped ios to complete. 1548 */ 1549 r = dm_wait_for_completion(md); 1550 1551 down_write(&md->io_lock); 1552 remove_wait_queue(&md->wait, &wait); 1553 1554 if (noflush) 1555 __merge_pushback_list(md); 1556 up_write(&md->io_lock); 1557 1558 /* were we interrupted ? */ 1559 if (r < 0) { 1560 dm_queue_flush(md, DM_WQ_FLUSH_DEFERRED, NULL); 1561 1562 unlock_fs(md); 1563 goto out; /* pushback list is already flushed, so skip flush */ 1564 } 1565 1566 dm_table_postsuspend_targets(map); 1567 1568 set_bit(DMF_SUSPENDED, &md->flags); 1569 1570 flush_and_out: 1571 if (r && noflush) 1572 /* 1573 * Because there may be already I/Os in the pushback list, 1574 * flush them before return. 1575 */ 1576 dm_queue_flush(md, DM_WQ_FLUSH_ALL, NULL); 1577 1578 out: 1579 if (r && md->suspended_bdev) { 1580 bdput(md->suspended_bdev); 1581 md->suspended_bdev = NULL; 1582 } 1583 1584 dm_table_put(map); 1585 1586 out_unlock: 1587 mutex_unlock(&md->suspend_lock); 1588 return r; 1589 } 1590 1591 int dm_resume(struct mapped_device *md) 1592 { 1593 int r = -EINVAL; 1594 struct dm_table *map = NULL; 1595 1596 mutex_lock(&md->suspend_lock); 1597 if (!dm_suspended(md)) 1598 goto out; 1599 1600 map = dm_get_table(md); 1601 if (!map || !dm_table_get_size(map)) 1602 goto out; 1603 1604 r = dm_table_resume_targets(map); 1605 if (r) 1606 goto out; 1607 1608 dm_queue_flush(md, DM_WQ_FLUSH_DEFERRED, NULL); 1609 1610 unlock_fs(md); 1611 1612 if (md->suspended_bdev) { 1613 bdput(md->suspended_bdev); 1614 md->suspended_bdev = NULL; 1615 } 1616 1617 clear_bit(DMF_SUSPENDED, &md->flags); 1618 1619 dm_table_unplug_all(map); 1620 1621 dm_kobject_uevent(md); 1622 1623 r = 0; 1624 1625 out: 1626 dm_table_put(map); 1627 mutex_unlock(&md->suspend_lock); 1628 1629 return r; 1630 } 1631 1632 /*----------------------------------------------------------------- 1633 * Event notification. 1634 *---------------------------------------------------------------*/ 1635 void dm_kobject_uevent(struct mapped_device *md) 1636 { 1637 kobject_uevent(&md->disk->dev.kobj, KOBJ_CHANGE); 1638 } 1639 1640 uint32_t dm_next_uevent_seq(struct mapped_device *md) 1641 { 1642 return atomic_add_return(1, &md->uevent_seq); 1643 } 1644 1645 uint32_t dm_get_event_nr(struct mapped_device *md) 1646 { 1647 return atomic_read(&md->event_nr); 1648 } 1649 1650 int dm_wait_event(struct mapped_device *md, int event_nr) 1651 { 1652 return wait_event_interruptible(md->eventq, 1653 (event_nr != atomic_read(&md->event_nr))); 1654 } 1655 1656 void dm_uevent_add(struct mapped_device *md, struct list_head *elist) 1657 { 1658 unsigned long flags; 1659 1660 spin_lock_irqsave(&md->uevent_lock, flags); 1661 list_add(elist, &md->uevent_list); 1662 spin_unlock_irqrestore(&md->uevent_lock, flags); 1663 } 1664 1665 /* 1666 * The gendisk is only valid as long as you have a reference 1667 * count on 'md'. 1668 */ 1669 struct gendisk *dm_disk(struct mapped_device *md) 1670 { 1671 return md->disk; 1672 } 1673 1674 int dm_suspended(struct mapped_device *md) 1675 { 1676 return test_bit(DMF_SUSPENDED, &md->flags); 1677 } 1678 1679 int dm_noflush_suspending(struct dm_target *ti) 1680 { 1681 struct mapped_device *md = dm_table_get_md(ti->table); 1682 int r = __noflush_suspending(md); 1683 1684 dm_put(md); 1685 1686 return r; 1687 } 1688 EXPORT_SYMBOL_GPL(dm_noflush_suspending); 1689 1690 static struct block_device_operations dm_blk_dops = { 1691 .open = dm_blk_open, 1692 .release = dm_blk_close, 1693 .ioctl = dm_blk_ioctl, 1694 .getgeo = dm_blk_getgeo, 1695 .owner = THIS_MODULE 1696 }; 1697 1698 EXPORT_SYMBOL(dm_get_mapinfo); 1699 1700 /* 1701 * module hooks 1702 */ 1703 module_init(dm_init); 1704 module_exit(dm_exit); 1705 1706 module_param(major, uint, 0); 1707 MODULE_PARM_DESC(major, "The major number of the device mapper"); 1708 MODULE_DESCRIPTION(DM_NAME " driver"); 1709 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>"); 1710 MODULE_LICENSE("GPL"); 1711