1 /* 2 * Copyright (C) 2001, 2002 Sistina Software (UK) Limited. 3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved. 4 * 5 * This file is released under the GPL. 6 */ 7 8 #include "dm-core.h" 9 #include "dm-rq.h" 10 #include "dm-uevent.h" 11 12 #include <linux/init.h> 13 #include <linux/module.h> 14 #include <linux/mutex.h> 15 #include <linux/sched/signal.h> 16 #include <linux/blkpg.h> 17 #include <linux/bio.h> 18 #include <linux/mempool.h> 19 #include <linux/dax.h> 20 #include <linux/slab.h> 21 #include <linux/idr.h> 22 #include <linux/uio.h> 23 #include <linux/hdreg.h> 24 #include <linux/delay.h> 25 #include <linux/wait.h> 26 #include <linux/pr.h> 27 #include <linux/refcount.h> 28 29 #define DM_MSG_PREFIX "core" 30 31 /* 32 * Cookies are numeric values sent with CHANGE and REMOVE 33 * uevents while resuming, removing or renaming the device. 34 */ 35 #define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE" 36 #define DM_COOKIE_LENGTH 24 37 38 static const char *_name = DM_NAME; 39 40 static unsigned int major = 0; 41 static unsigned int _major = 0; 42 43 static DEFINE_IDR(_minor_idr); 44 45 static DEFINE_SPINLOCK(_minor_lock); 46 47 static void do_deferred_remove(struct work_struct *w); 48 49 static DECLARE_WORK(deferred_remove_work, do_deferred_remove); 50 51 static struct workqueue_struct *deferred_remove_workqueue; 52 53 atomic_t dm_global_event_nr = ATOMIC_INIT(0); 54 DECLARE_WAIT_QUEUE_HEAD(dm_global_eventq); 55 56 void dm_issue_global_event(void) 57 { 58 atomic_inc(&dm_global_event_nr); 59 wake_up(&dm_global_eventq); 60 } 61 62 /* 63 * One of these is allocated (on-stack) per original bio. 64 */ 65 struct clone_info { 66 struct dm_table *map; 67 struct bio *bio; 68 struct dm_io *io; 69 sector_t sector; 70 unsigned sector_count; 71 }; 72 73 /* 74 * One of these is allocated per clone bio. 75 */ 76 #define DM_TIO_MAGIC 7282014 77 struct dm_target_io { 78 unsigned magic; 79 struct dm_io *io; 80 struct dm_target *ti; 81 unsigned target_bio_nr; 82 unsigned *len_ptr; 83 bool inside_dm_io; 84 struct bio clone; 85 }; 86 87 /* 88 * One of these is allocated per original bio. 89 * It contains the first clone used for that original. 90 */ 91 #define DM_IO_MAGIC 5191977 92 struct dm_io { 93 unsigned magic; 94 struct mapped_device *md; 95 blk_status_t status; 96 atomic_t io_count; 97 struct bio *orig_bio; 98 unsigned long start_time; 99 spinlock_t endio_lock; 100 struct dm_stats_aux stats_aux; 101 /* last member of dm_target_io is 'struct bio' */ 102 struct dm_target_io tio; 103 }; 104 105 void *dm_per_bio_data(struct bio *bio, size_t data_size) 106 { 107 struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone); 108 if (!tio->inside_dm_io) 109 return (char *)bio - offsetof(struct dm_target_io, clone) - data_size; 110 return (char *)bio - offsetof(struct dm_target_io, clone) - offsetof(struct dm_io, tio) - data_size; 111 } 112 EXPORT_SYMBOL_GPL(dm_per_bio_data); 113 114 struct bio *dm_bio_from_per_bio_data(void *data, size_t data_size) 115 { 116 struct dm_io *io = (struct dm_io *)((char *)data + data_size); 117 if (io->magic == DM_IO_MAGIC) 118 return (struct bio *)((char *)io + offsetof(struct dm_io, tio) + offsetof(struct dm_target_io, clone)); 119 BUG_ON(io->magic != DM_TIO_MAGIC); 120 return (struct bio *)((char *)io + offsetof(struct dm_target_io, clone)); 121 } 122 EXPORT_SYMBOL_GPL(dm_bio_from_per_bio_data); 123 124 unsigned dm_bio_get_target_bio_nr(const struct bio *bio) 125 { 126 return container_of(bio, struct dm_target_io, clone)->target_bio_nr; 127 } 128 EXPORT_SYMBOL_GPL(dm_bio_get_target_bio_nr); 129 130 #define MINOR_ALLOCED ((void *)-1) 131 132 /* 133 * Bits for the md->flags field. 134 */ 135 #define DMF_BLOCK_IO_FOR_SUSPEND 0 136 #define DMF_SUSPENDED 1 137 #define DMF_FROZEN 2 138 #define DMF_FREEING 3 139 #define DMF_DELETING 4 140 #define DMF_NOFLUSH_SUSPENDING 5 141 #define DMF_DEFERRED_REMOVE 6 142 #define DMF_SUSPENDED_INTERNALLY 7 143 144 #define DM_NUMA_NODE NUMA_NO_NODE 145 static int dm_numa_node = DM_NUMA_NODE; 146 147 /* 148 * For mempools pre-allocation at the table loading time. 149 */ 150 struct dm_md_mempools { 151 struct bio_set *bs; 152 struct bio_set *io_bs; 153 }; 154 155 struct table_device { 156 struct list_head list; 157 refcount_t count; 158 struct dm_dev dm_dev; 159 }; 160 161 static struct kmem_cache *_rq_tio_cache; 162 static struct kmem_cache *_rq_cache; 163 164 /* 165 * Bio-based DM's mempools' reserved IOs set by the user. 166 */ 167 #define RESERVED_BIO_BASED_IOS 16 168 static unsigned reserved_bio_based_ios = RESERVED_BIO_BASED_IOS; 169 170 static int __dm_get_module_param_int(int *module_param, int min, int max) 171 { 172 int param = READ_ONCE(*module_param); 173 int modified_param = 0; 174 bool modified = true; 175 176 if (param < min) 177 modified_param = min; 178 else if (param > max) 179 modified_param = max; 180 else 181 modified = false; 182 183 if (modified) { 184 (void)cmpxchg(module_param, param, modified_param); 185 param = modified_param; 186 } 187 188 return param; 189 } 190 191 unsigned __dm_get_module_param(unsigned *module_param, 192 unsigned def, unsigned max) 193 { 194 unsigned param = READ_ONCE(*module_param); 195 unsigned modified_param = 0; 196 197 if (!param) 198 modified_param = def; 199 else if (param > max) 200 modified_param = max; 201 202 if (modified_param) { 203 (void)cmpxchg(module_param, param, modified_param); 204 param = modified_param; 205 } 206 207 return param; 208 } 209 210 unsigned dm_get_reserved_bio_based_ios(void) 211 { 212 return __dm_get_module_param(&reserved_bio_based_ios, 213 RESERVED_BIO_BASED_IOS, DM_RESERVED_MAX_IOS); 214 } 215 EXPORT_SYMBOL_GPL(dm_get_reserved_bio_based_ios); 216 217 static unsigned dm_get_numa_node(void) 218 { 219 return __dm_get_module_param_int(&dm_numa_node, 220 DM_NUMA_NODE, num_online_nodes() - 1); 221 } 222 223 static int __init local_init(void) 224 { 225 int r = -ENOMEM; 226 227 _rq_tio_cache = KMEM_CACHE(dm_rq_target_io, 0); 228 if (!_rq_tio_cache) 229 return r; 230 231 _rq_cache = kmem_cache_create("dm_old_clone_request", sizeof(struct request), 232 __alignof__(struct request), 0, NULL); 233 if (!_rq_cache) 234 goto out_free_rq_tio_cache; 235 236 r = dm_uevent_init(); 237 if (r) 238 goto out_free_rq_cache; 239 240 deferred_remove_workqueue = alloc_workqueue("kdmremove", WQ_UNBOUND, 1); 241 if (!deferred_remove_workqueue) { 242 r = -ENOMEM; 243 goto out_uevent_exit; 244 } 245 246 _major = major; 247 r = register_blkdev(_major, _name); 248 if (r < 0) 249 goto out_free_workqueue; 250 251 if (!_major) 252 _major = r; 253 254 return 0; 255 256 out_free_workqueue: 257 destroy_workqueue(deferred_remove_workqueue); 258 out_uevent_exit: 259 dm_uevent_exit(); 260 out_free_rq_cache: 261 kmem_cache_destroy(_rq_cache); 262 out_free_rq_tio_cache: 263 kmem_cache_destroy(_rq_tio_cache); 264 265 return r; 266 } 267 268 static void local_exit(void) 269 { 270 flush_scheduled_work(); 271 destroy_workqueue(deferred_remove_workqueue); 272 273 kmem_cache_destroy(_rq_cache); 274 kmem_cache_destroy(_rq_tio_cache); 275 unregister_blkdev(_major, _name); 276 dm_uevent_exit(); 277 278 _major = 0; 279 280 DMINFO("cleaned up"); 281 } 282 283 static int (*_inits[])(void) __initdata = { 284 local_init, 285 dm_target_init, 286 dm_linear_init, 287 dm_stripe_init, 288 dm_io_init, 289 dm_kcopyd_init, 290 dm_interface_init, 291 dm_statistics_init, 292 }; 293 294 static void (*_exits[])(void) = { 295 local_exit, 296 dm_target_exit, 297 dm_linear_exit, 298 dm_stripe_exit, 299 dm_io_exit, 300 dm_kcopyd_exit, 301 dm_interface_exit, 302 dm_statistics_exit, 303 }; 304 305 static int __init dm_init(void) 306 { 307 const int count = ARRAY_SIZE(_inits); 308 309 int r, i; 310 311 for (i = 0; i < count; i++) { 312 r = _inits[i](); 313 if (r) 314 goto bad; 315 } 316 317 return 0; 318 319 bad: 320 while (i--) 321 _exits[i](); 322 323 return r; 324 } 325 326 static void __exit dm_exit(void) 327 { 328 int i = ARRAY_SIZE(_exits); 329 330 while (i--) 331 _exits[i](); 332 333 /* 334 * Should be empty by this point. 335 */ 336 idr_destroy(&_minor_idr); 337 } 338 339 /* 340 * Block device functions 341 */ 342 int dm_deleting_md(struct mapped_device *md) 343 { 344 return test_bit(DMF_DELETING, &md->flags); 345 } 346 347 static int dm_blk_open(struct block_device *bdev, fmode_t mode) 348 { 349 struct mapped_device *md; 350 351 spin_lock(&_minor_lock); 352 353 md = bdev->bd_disk->private_data; 354 if (!md) 355 goto out; 356 357 if (test_bit(DMF_FREEING, &md->flags) || 358 dm_deleting_md(md)) { 359 md = NULL; 360 goto out; 361 } 362 363 dm_get(md); 364 atomic_inc(&md->open_count); 365 out: 366 spin_unlock(&_minor_lock); 367 368 return md ? 0 : -ENXIO; 369 } 370 371 static void dm_blk_close(struct gendisk *disk, fmode_t mode) 372 { 373 struct mapped_device *md; 374 375 spin_lock(&_minor_lock); 376 377 md = disk->private_data; 378 if (WARN_ON(!md)) 379 goto out; 380 381 if (atomic_dec_and_test(&md->open_count) && 382 (test_bit(DMF_DEFERRED_REMOVE, &md->flags))) 383 queue_work(deferred_remove_workqueue, &deferred_remove_work); 384 385 dm_put(md); 386 out: 387 spin_unlock(&_minor_lock); 388 } 389 390 int dm_open_count(struct mapped_device *md) 391 { 392 return atomic_read(&md->open_count); 393 } 394 395 /* 396 * Guarantees nothing is using the device before it's deleted. 397 */ 398 int dm_lock_for_deletion(struct mapped_device *md, bool mark_deferred, bool only_deferred) 399 { 400 int r = 0; 401 402 spin_lock(&_minor_lock); 403 404 if (dm_open_count(md)) { 405 r = -EBUSY; 406 if (mark_deferred) 407 set_bit(DMF_DEFERRED_REMOVE, &md->flags); 408 } else if (only_deferred && !test_bit(DMF_DEFERRED_REMOVE, &md->flags)) 409 r = -EEXIST; 410 else 411 set_bit(DMF_DELETING, &md->flags); 412 413 spin_unlock(&_minor_lock); 414 415 return r; 416 } 417 418 int dm_cancel_deferred_remove(struct mapped_device *md) 419 { 420 int r = 0; 421 422 spin_lock(&_minor_lock); 423 424 if (test_bit(DMF_DELETING, &md->flags)) 425 r = -EBUSY; 426 else 427 clear_bit(DMF_DEFERRED_REMOVE, &md->flags); 428 429 spin_unlock(&_minor_lock); 430 431 return r; 432 } 433 434 static void do_deferred_remove(struct work_struct *w) 435 { 436 dm_deferred_remove(); 437 } 438 439 sector_t dm_get_size(struct mapped_device *md) 440 { 441 return get_capacity(md->disk); 442 } 443 444 struct request_queue *dm_get_md_queue(struct mapped_device *md) 445 { 446 return md->queue; 447 } 448 449 struct dm_stats *dm_get_stats(struct mapped_device *md) 450 { 451 return &md->stats; 452 } 453 454 static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo) 455 { 456 struct mapped_device *md = bdev->bd_disk->private_data; 457 458 return dm_get_geometry(md, geo); 459 } 460 461 static int dm_grab_bdev_for_ioctl(struct mapped_device *md, 462 struct block_device **bdev, 463 fmode_t *mode) 464 { 465 struct dm_target *tgt; 466 struct dm_table *map; 467 int srcu_idx, r; 468 469 retry: 470 r = -ENOTTY; 471 map = dm_get_live_table(md, &srcu_idx); 472 if (!map || !dm_table_get_size(map)) 473 goto out; 474 475 /* We only support devices that have a single target */ 476 if (dm_table_get_num_targets(map) != 1) 477 goto out; 478 479 tgt = dm_table_get_target(map, 0); 480 if (!tgt->type->prepare_ioctl) 481 goto out; 482 483 if (dm_suspended_md(md)) { 484 r = -EAGAIN; 485 goto out; 486 } 487 488 r = tgt->type->prepare_ioctl(tgt, bdev, mode); 489 if (r < 0) 490 goto out; 491 492 bdgrab(*bdev); 493 dm_put_live_table(md, srcu_idx); 494 return r; 495 496 out: 497 dm_put_live_table(md, srcu_idx); 498 if (r == -ENOTCONN && !fatal_signal_pending(current)) { 499 msleep(10); 500 goto retry; 501 } 502 return r; 503 } 504 505 static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode, 506 unsigned int cmd, unsigned long arg) 507 { 508 struct mapped_device *md = bdev->bd_disk->private_data; 509 int r; 510 511 r = dm_grab_bdev_for_ioctl(md, &bdev, &mode); 512 if (r < 0) 513 return r; 514 515 if (r > 0) { 516 /* 517 * Target determined this ioctl is being issued against a 518 * subset of the parent bdev; require extra privileges. 519 */ 520 if (!capable(CAP_SYS_RAWIO)) { 521 DMWARN_LIMIT( 522 "%s: sending ioctl %x to DM device without required privilege.", 523 current->comm, cmd); 524 r = -ENOIOCTLCMD; 525 goto out; 526 } 527 } 528 529 r = __blkdev_driver_ioctl(bdev, mode, cmd, arg); 530 out: 531 bdput(bdev); 532 return r; 533 } 534 535 static void start_io_acct(struct dm_io *io); 536 537 static struct dm_io *alloc_io(struct mapped_device *md, struct bio *bio) 538 { 539 struct dm_io *io; 540 struct dm_target_io *tio; 541 struct bio *clone; 542 543 clone = bio_alloc_bioset(GFP_NOIO, 0, md->io_bs); 544 if (!clone) 545 return NULL; 546 547 tio = container_of(clone, struct dm_target_io, clone); 548 tio->inside_dm_io = true; 549 tio->io = NULL; 550 551 io = container_of(tio, struct dm_io, tio); 552 io->magic = DM_IO_MAGIC; 553 io->status = 0; 554 atomic_set(&io->io_count, 1); 555 io->orig_bio = bio; 556 io->md = md; 557 spin_lock_init(&io->endio_lock); 558 559 start_io_acct(io); 560 561 return io; 562 } 563 564 static void free_io(struct mapped_device *md, struct dm_io *io) 565 { 566 bio_put(&io->tio.clone); 567 } 568 569 static struct dm_target_io *alloc_tio(struct clone_info *ci, struct dm_target *ti, 570 unsigned target_bio_nr, gfp_t gfp_mask) 571 { 572 struct dm_target_io *tio; 573 574 if (!ci->io->tio.io) { 575 /* the dm_target_io embedded in ci->io is available */ 576 tio = &ci->io->tio; 577 } else { 578 struct bio *clone = bio_alloc_bioset(gfp_mask, 0, ci->io->md->bs); 579 if (!clone) 580 return NULL; 581 582 tio = container_of(clone, struct dm_target_io, clone); 583 tio->inside_dm_io = false; 584 } 585 586 tio->magic = DM_TIO_MAGIC; 587 tio->io = ci->io; 588 tio->ti = ti; 589 tio->target_bio_nr = target_bio_nr; 590 591 return tio; 592 } 593 594 static void free_tio(struct dm_target_io *tio) 595 { 596 if (tio->inside_dm_io) 597 return; 598 bio_put(&tio->clone); 599 } 600 601 int md_in_flight(struct mapped_device *md) 602 { 603 return atomic_read(&md->pending[READ]) + 604 atomic_read(&md->pending[WRITE]); 605 } 606 607 static void start_io_acct(struct dm_io *io) 608 { 609 struct mapped_device *md = io->md; 610 struct bio *bio = io->orig_bio; 611 int rw = bio_data_dir(bio); 612 613 io->start_time = jiffies; 614 615 generic_start_io_acct(md->queue, rw, bio_sectors(bio), &dm_disk(md)->part0); 616 617 atomic_set(&dm_disk(md)->part0.in_flight[rw], 618 atomic_inc_return(&md->pending[rw])); 619 620 if (unlikely(dm_stats_used(&md->stats))) 621 dm_stats_account_io(&md->stats, bio_data_dir(bio), 622 bio->bi_iter.bi_sector, bio_sectors(bio), 623 false, 0, &io->stats_aux); 624 } 625 626 static void end_io_acct(struct dm_io *io) 627 { 628 struct mapped_device *md = io->md; 629 struct bio *bio = io->orig_bio; 630 unsigned long duration = jiffies - io->start_time; 631 int pending; 632 int rw = bio_data_dir(bio); 633 634 generic_end_io_acct(md->queue, rw, &dm_disk(md)->part0, io->start_time); 635 636 if (unlikely(dm_stats_used(&md->stats))) 637 dm_stats_account_io(&md->stats, bio_data_dir(bio), 638 bio->bi_iter.bi_sector, bio_sectors(bio), 639 true, duration, &io->stats_aux); 640 641 /* 642 * After this is decremented the bio must not be touched if it is 643 * a flush. 644 */ 645 pending = atomic_dec_return(&md->pending[rw]); 646 atomic_set(&dm_disk(md)->part0.in_flight[rw], pending); 647 pending += atomic_read(&md->pending[rw^0x1]); 648 649 /* nudge anyone waiting on suspend queue */ 650 if (!pending) 651 wake_up(&md->wait); 652 } 653 654 /* 655 * Add the bio to the list of deferred io. 656 */ 657 static void queue_io(struct mapped_device *md, struct bio *bio) 658 { 659 unsigned long flags; 660 661 spin_lock_irqsave(&md->deferred_lock, flags); 662 bio_list_add(&md->deferred, bio); 663 spin_unlock_irqrestore(&md->deferred_lock, flags); 664 queue_work(md->wq, &md->work); 665 } 666 667 /* 668 * Everyone (including functions in this file), should use this 669 * function to access the md->map field, and make sure they call 670 * dm_put_live_table() when finished. 671 */ 672 struct dm_table *dm_get_live_table(struct mapped_device *md, int *srcu_idx) __acquires(md->io_barrier) 673 { 674 *srcu_idx = srcu_read_lock(&md->io_barrier); 675 676 return srcu_dereference(md->map, &md->io_barrier); 677 } 678 679 void dm_put_live_table(struct mapped_device *md, int srcu_idx) __releases(md->io_barrier) 680 { 681 srcu_read_unlock(&md->io_barrier, srcu_idx); 682 } 683 684 void dm_sync_table(struct mapped_device *md) 685 { 686 synchronize_srcu(&md->io_barrier); 687 synchronize_rcu_expedited(); 688 } 689 690 /* 691 * A fast alternative to dm_get_live_table/dm_put_live_table. 692 * The caller must not block between these two functions. 693 */ 694 static struct dm_table *dm_get_live_table_fast(struct mapped_device *md) __acquires(RCU) 695 { 696 rcu_read_lock(); 697 return rcu_dereference(md->map); 698 } 699 700 static void dm_put_live_table_fast(struct mapped_device *md) __releases(RCU) 701 { 702 rcu_read_unlock(); 703 } 704 705 /* 706 * Open a table device so we can use it as a map destination. 707 */ 708 static int open_table_device(struct table_device *td, dev_t dev, 709 struct mapped_device *md) 710 { 711 static char *_claim_ptr = "I belong to device-mapper"; 712 struct block_device *bdev; 713 714 int r; 715 716 BUG_ON(td->dm_dev.bdev); 717 718 bdev = blkdev_get_by_dev(dev, td->dm_dev.mode | FMODE_EXCL, _claim_ptr); 719 if (IS_ERR(bdev)) 720 return PTR_ERR(bdev); 721 722 r = bd_link_disk_holder(bdev, dm_disk(md)); 723 if (r) { 724 blkdev_put(bdev, td->dm_dev.mode | FMODE_EXCL); 725 return r; 726 } 727 728 td->dm_dev.bdev = bdev; 729 td->dm_dev.dax_dev = dax_get_by_host(bdev->bd_disk->disk_name); 730 return 0; 731 } 732 733 /* 734 * Close a table device that we've been using. 735 */ 736 static void close_table_device(struct table_device *td, struct mapped_device *md) 737 { 738 if (!td->dm_dev.bdev) 739 return; 740 741 bd_unlink_disk_holder(td->dm_dev.bdev, dm_disk(md)); 742 blkdev_put(td->dm_dev.bdev, td->dm_dev.mode | FMODE_EXCL); 743 put_dax(td->dm_dev.dax_dev); 744 td->dm_dev.bdev = NULL; 745 td->dm_dev.dax_dev = NULL; 746 } 747 748 static struct table_device *find_table_device(struct list_head *l, dev_t dev, 749 fmode_t mode) { 750 struct table_device *td; 751 752 list_for_each_entry(td, l, list) 753 if (td->dm_dev.bdev->bd_dev == dev && td->dm_dev.mode == mode) 754 return td; 755 756 return NULL; 757 } 758 759 int dm_get_table_device(struct mapped_device *md, dev_t dev, fmode_t mode, 760 struct dm_dev **result) { 761 int r; 762 struct table_device *td; 763 764 mutex_lock(&md->table_devices_lock); 765 td = find_table_device(&md->table_devices, dev, mode); 766 if (!td) { 767 td = kmalloc_node(sizeof(*td), GFP_KERNEL, md->numa_node_id); 768 if (!td) { 769 mutex_unlock(&md->table_devices_lock); 770 return -ENOMEM; 771 } 772 773 td->dm_dev.mode = mode; 774 td->dm_dev.bdev = NULL; 775 776 if ((r = open_table_device(td, dev, md))) { 777 mutex_unlock(&md->table_devices_lock); 778 kfree(td); 779 return r; 780 } 781 782 format_dev_t(td->dm_dev.name, dev); 783 784 refcount_set(&td->count, 1); 785 list_add(&td->list, &md->table_devices); 786 } else { 787 refcount_inc(&td->count); 788 } 789 mutex_unlock(&md->table_devices_lock); 790 791 *result = &td->dm_dev; 792 return 0; 793 } 794 EXPORT_SYMBOL_GPL(dm_get_table_device); 795 796 void dm_put_table_device(struct mapped_device *md, struct dm_dev *d) 797 { 798 struct table_device *td = container_of(d, struct table_device, dm_dev); 799 800 mutex_lock(&md->table_devices_lock); 801 if (refcount_dec_and_test(&td->count)) { 802 close_table_device(td, md); 803 list_del(&td->list); 804 kfree(td); 805 } 806 mutex_unlock(&md->table_devices_lock); 807 } 808 EXPORT_SYMBOL(dm_put_table_device); 809 810 static void free_table_devices(struct list_head *devices) 811 { 812 struct list_head *tmp, *next; 813 814 list_for_each_safe(tmp, next, devices) { 815 struct table_device *td = list_entry(tmp, struct table_device, list); 816 817 DMWARN("dm_destroy: %s still exists with %d references", 818 td->dm_dev.name, refcount_read(&td->count)); 819 kfree(td); 820 } 821 } 822 823 /* 824 * Get the geometry associated with a dm device 825 */ 826 int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo) 827 { 828 *geo = md->geometry; 829 830 return 0; 831 } 832 833 /* 834 * Set the geometry of a device. 835 */ 836 int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo) 837 { 838 sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors; 839 840 if (geo->start > sz) { 841 DMWARN("Start sector is beyond the geometry limits."); 842 return -EINVAL; 843 } 844 845 md->geometry = *geo; 846 847 return 0; 848 } 849 850 static int __noflush_suspending(struct mapped_device *md) 851 { 852 return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags); 853 } 854 855 /* 856 * Decrements the number of outstanding ios that a bio has been 857 * cloned into, completing the original io if necc. 858 */ 859 static void dec_pending(struct dm_io *io, blk_status_t error) 860 { 861 unsigned long flags; 862 blk_status_t io_error; 863 struct bio *bio; 864 struct mapped_device *md = io->md; 865 866 /* Push-back supersedes any I/O errors */ 867 if (unlikely(error)) { 868 spin_lock_irqsave(&io->endio_lock, flags); 869 if (!(io->status == BLK_STS_DM_REQUEUE && __noflush_suspending(md))) 870 io->status = error; 871 spin_unlock_irqrestore(&io->endio_lock, flags); 872 } 873 874 if (atomic_dec_and_test(&io->io_count)) { 875 if (io->status == BLK_STS_DM_REQUEUE) { 876 /* 877 * Target requested pushing back the I/O. 878 */ 879 spin_lock_irqsave(&md->deferred_lock, flags); 880 if (__noflush_suspending(md)) 881 /* NOTE early return due to BLK_STS_DM_REQUEUE below */ 882 bio_list_add_head(&md->deferred, io->orig_bio); 883 else 884 /* noflush suspend was interrupted. */ 885 io->status = BLK_STS_IOERR; 886 spin_unlock_irqrestore(&md->deferred_lock, flags); 887 } 888 889 io_error = io->status; 890 bio = io->orig_bio; 891 end_io_acct(io); 892 free_io(md, io); 893 894 if (io_error == BLK_STS_DM_REQUEUE) 895 return; 896 897 if ((bio->bi_opf & REQ_PREFLUSH) && bio->bi_iter.bi_size) { 898 /* 899 * Preflush done for flush with data, reissue 900 * without REQ_PREFLUSH. 901 */ 902 bio->bi_opf &= ~REQ_PREFLUSH; 903 queue_io(md, bio); 904 } else { 905 /* done with normal IO or empty flush */ 906 bio->bi_status = io_error; 907 bio_endio(bio); 908 } 909 } 910 } 911 912 void disable_write_same(struct mapped_device *md) 913 { 914 struct queue_limits *limits = dm_get_queue_limits(md); 915 916 /* device doesn't really support WRITE SAME, disable it */ 917 limits->max_write_same_sectors = 0; 918 } 919 920 void disable_write_zeroes(struct mapped_device *md) 921 { 922 struct queue_limits *limits = dm_get_queue_limits(md); 923 924 /* device doesn't really support WRITE ZEROES, disable it */ 925 limits->max_write_zeroes_sectors = 0; 926 } 927 928 static void clone_endio(struct bio *bio) 929 { 930 blk_status_t error = bio->bi_status; 931 struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone); 932 struct dm_io *io = tio->io; 933 struct mapped_device *md = tio->io->md; 934 dm_endio_fn endio = tio->ti->type->end_io; 935 936 if (unlikely(error == BLK_STS_TARGET) && md->type != DM_TYPE_NVME_BIO_BASED) { 937 if (bio_op(bio) == REQ_OP_WRITE_SAME && 938 !bio->bi_disk->queue->limits.max_write_same_sectors) 939 disable_write_same(md); 940 if (bio_op(bio) == REQ_OP_WRITE_ZEROES && 941 !bio->bi_disk->queue->limits.max_write_zeroes_sectors) 942 disable_write_zeroes(md); 943 } 944 945 if (endio) { 946 int r = endio(tio->ti, bio, &error); 947 switch (r) { 948 case DM_ENDIO_REQUEUE: 949 error = BLK_STS_DM_REQUEUE; 950 /*FALLTHRU*/ 951 case DM_ENDIO_DONE: 952 break; 953 case DM_ENDIO_INCOMPLETE: 954 /* The target will handle the io */ 955 return; 956 default: 957 DMWARN("unimplemented target endio return value: %d", r); 958 BUG(); 959 } 960 } 961 962 free_tio(tio); 963 dec_pending(io, error); 964 } 965 966 /* 967 * Return maximum size of I/O possible at the supplied sector up to the current 968 * target boundary. 969 */ 970 static sector_t max_io_len_target_boundary(sector_t sector, struct dm_target *ti) 971 { 972 sector_t target_offset = dm_target_offset(ti, sector); 973 974 return ti->len - target_offset; 975 } 976 977 static sector_t max_io_len(sector_t sector, struct dm_target *ti) 978 { 979 sector_t len = max_io_len_target_boundary(sector, ti); 980 sector_t offset, max_len; 981 982 /* 983 * Does the target need to split even further? 984 */ 985 if (ti->max_io_len) { 986 offset = dm_target_offset(ti, sector); 987 if (unlikely(ti->max_io_len & (ti->max_io_len - 1))) 988 max_len = sector_div(offset, ti->max_io_len); 989 else 990 max_len = offset & (ti->max_io_len - 1); 991 max_len = ti->max_io_len - max_len; 992 993 if (len > max_len) 994 len = max_len; 995 } 996 997 return len; 998 } 999 1000 int dm_set_target_max_io_len(struct dm_target *ti, sector_t len) 1001 { 1002 if (len > UINT_MAX) { 1003 DMERR("Specified maximum size of target IO (%llu) exceeds limit (%u)", 1004 (unsigned long long)len, UINT_MAX); 1005 ti->error = "Maximum size of target IO is too large"; 1006 return -EINVAL; 1007 } 1008 1009 /* 1010 * BIO based queue uses its own splitting. When multipage bvecs 1011 * is switched on, size of the incoming bio may be too big to 1012 * be handled in some targets, such as crypt. 1013 * 1014 * When these targets are ready for the big bio, we can remove 1015 * the limit. 1016 */ 1017 ti->max_io_len = min_t(uint32_t, len, BIO_MAX_PAGES * PAGE_SIZE); 1018 1019 return 0; 1020 } 1021 EXPORT_SYMBOL_GPL(dm_set_target_max_io_len); 1022 1023 static struct dm_target *dm_dax_get_live_target(struct mapped_device *md, 1024 sector_t sector, int *srcu_idx) 1025 { 1026 struct dm_table *map; 1027 struct dm_target *ti; 1028 1029 map = dm_get_live_table(md, srcu_idx); 1030 if (!map) 1031 return NULL; 1032 1033 ti = dm_table_find_target(map, sector); 1034 if (!dm_target_is_valid(ti)) 1035 return NULL; 1036 1037 return ti; 1038 } 1039 1040 static long dm_dax_direct_access(struct dax_device *dax_dev, pgoff_t pgoff, 1041 long nr_pages, void **kaddr, pfn_t *pfn) 1042 { 1043 struct mapped_device *md = dax_get_private(dax_dev); 1044 sector_t sector = pgoff * PAGE_SECTORS; 1045 struct dm_target *ti; 1046 long len, ret = -EIO; 1047 int srcu_idx; 1048 1049 ti = dm_dax_get_live_target(md, sector, &srcu_idx); 1050 1051 if (!ti) 1052 goto out; 1053 if (!ti->type->direct_access) 1054 goto out; 1055 len = max_io_len(sector, ti) / PAGE_SECTORS; 1056 if (len < 1) 1057 goto out; 1058 nr_pages = min(len, nr_pages); 1059 if (ti->type->direct_access) 1060 ret = ti->type->direct_access(ti, pgoff, nr_pages, kaddr, pfn); 1061 1062 out: 1063 dm_put_live_table(md, srcu_idx); 1064 1065 return ret; 1066 } 1067 1068 static size_t dm_dax_copy_from_iter(struct dax_device *dax_dev, pgoff_t pgoff, 1069 void *addr, size_t bytes, struct iov_iter *i) 1070 { 1071 struct mapped_device *md = dax_get_private(dax_dev); 1072 sector_t sector = pgoff * PAGE_SECTORS; 1073 struct dm_target *ti; 1074 long ret = 0; 1075 int srcu_idx; 1076 1077 ti = dm_dax_get_live_target(md, sector, &srcu_idx); 1078 1079 if (!ti) 1080 goto out; 1081 if (!ti->type->dax_copy_from_iter) { 1082 ret = copy_from_iter(addr, bytes, i); 1083 goto out; 1084 } 1085 ret = ti->type->dax_copy_from_iter(ti, pgoff, addr, bytes, i); 1086 out: 1087 dm_put_live_table(md, srcu_idx); 1088 1089 return ret; 1090 } 1091 1092 /* 1093 * A target may call dm_accept_partial_bio only from the map routine. It is 1094 * allowed for all bio types except REQ_PREFLUSH and REQ_OP_ZONE_RESET. 1095 * 1096 * dm_accept_partial_bio informs the dm that the target only wants to process 1097 * additional n_sectors sectors of the bio and the rest of the data should be 1098 * sent in a next bio. 1099 * 1100 * A diagram that explains the arithmetics: 1101 * +--------------------+---------------+-------+ 1102 * | 1 | 2 | 3 | 1103 * +--------------------+---------------+-------+ 1104 * 1105 * <-------------- *tio->len_ptr ---------------> 1106 * <------- bi_size -------> 1107 * <-- n_sectors --> 1108 * 1109 * Region 1 was already iterated over with bio_advance or similar function. 1110 * (it may be empty if the target doesn't use bio_advance) 1111 * Region 2 is the remaining bio size that the target wants to process. 1112 * (it may be empty if region 1 is non-empty, although there is no reason 1113 * to make it empty) 1114 * The target requires that region 3 is to be sent in the next bio. 1115 * 1116 * If the target wants to receive multiple copies of the bio (via num_*bios, etc), 1117 * the partially processed part (the sum of regions 1+2) must be the same for all 1118 * copies of the bio. 1119 */ 1120 void dm_accept_partial_bio(struct bio *bio, unsigned n_sectors) 1121 { 1122 struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone); 1123 unsigned bi_size = bio->bi_iter.bi_size >> SECTOR_SHIFT; 1124 BUG_ON(bio->bi_opf & REQ_PREFLUSH); 1125 BUG_ON(bi_size > *tio->len_ptr); 1126 BUG_ON(n_sectors > bi_size); 1127 *tio->len_ptr -= bi_size - n_sectors; 1128 bio->bi_iter.bi_size = n_sectors << SECTOR_SHIFT; 1129 } 1130 EXPORT_SYMBOL_GPL(dm_accept_partial_bio); 1131 1132 /* 1133 * The zone descriptors obtained with a zone report indicate 1134 * zone positions within the target device. The zone descriptors 1135 * must be remapped to match their position within the dm device. 1136 * A target may call dm_remap_zone_report after completion of a 1137 * REQ_OP_ZONE_REPORT bio to remap the zone descriptors obtained 1138 * from the target device mapping to the dm device. 1139 */ 1140 void dm_remap_zone_report(struct dm_target *ti, struct bio *bio, sector_t start) 1141 { 1142 #ifdef CONFIG_BLK_DEV_ZONED 1143 struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone); 1144 struct bio *report_bio = tio->io->orig_bio; 1145 struct blk_zone_report_hdr *hdr = NULL; 1146 struct blk_zone *zone; 1147 unsigned int nr_rep = 0; 1148 unsigned int ofst; 1149 struct bio_vec bvec; 1150 struct bvec_iter iter; 1151 void *addr; 1152 1153 if (bio->bi_status) 1154 return; 1155 1156 /* 1157 * Remap the start sector of the reported zones. For sequential zones, 1158 * also remap the write pointer position. 1159 */ 1160 bio_for_each_segment(bvec, report_bio, iter) { 1161 addr = kmap_atomic(bvec.bv_page); 1162 1163 /* Remember the report header in the first page */ 1164 if (!hdr) { 1165 hdr = addr; 1166 ofst = sizeof(struct blk_zone_report_hdr); 1167 } else 1168 ofst = 0; 1169 1170 /* Set zones start sector */ 1171 while (hdr->nr_zones && ofst < bvec.bv_len) { 1172 zone = addr + ofst; 1173 if (zone->start >= start + ti->len) { 1174 hdr->nr_zones = 0; 1175 break; 1176 } 1177 zone->start = zone->start + ti->begin - start; 1178 if (zone->type != BLK_ZONE_TYPE_CONVENTIONAL) { 1179 if (zone->cond == BLK_ZONE_COND_FULL) 1180 zone->wp = zone->start + zone->len; 1181 else if (zone->cond == BLK_ZONE_COND_EMPTY) 1182 zone->wp = zone->start; 1183 else 1184 zone->wp = zone->wp + ti->begin - start; 1185 } 1186 ofst += sizeof(struct blk_zone); 1187 hdr->nr_zones--; 1188 nr_rep++; 1189 } 1190 1191 if (addr != hdr) 1192 kunmap_atomic(addr); 1193 1194 if (!hdr->nr_zones) 1195 break; 1196 } 1197 1198 if (hdr) { 1199 hdr->nr_zones = nr_rep; 1200 kunmap_atomic(hdr); 1201 } 1202 1203 bio_advance(report_bio, report_bio->bi_iter.bi_size); 1204 1205 #else /* !CONFIG_BLK_DEV_ZONED */ 1206 bio->bi_status = BLK_STS_NOTSUPP; 1207 #endif 1208 } 1209 EXPORT_SYMBOL_GPL(dm_remap_zone_report); 1210 1211 static blk_qc_t __map_bio(struct dm_target_io *tio) 1212 { 1213 int r; 1214 sector_t sector; 1215 struct bio *clone = &tio->clone; 1216 struct dm_io *io = tio->io; 1217 struct mapped_device *md = io->md; 1218 struct dm_target *ti = tio->ti; 1219 blk_qc_t ret = BLK_QC_T_NONE; 1220 1221 clone->bi_end_io = clone_endio; 1222 1223 /* 1224 * Map the clone. If r == 0 we don't need to do 1225 * anything, the target has assumed ownership of 1226 * this io. 1227 */ 1228 atomic_inc(&io->io_count); 1229 sector = clone->bi_iter.bi_sector; 1230 1231 r = ti->type->map(ti, clone); 1232 switch (r) { 1233 case DM_MAPIO_SUBMITTED: 1234 break; 1235 case DM_MAPIO_REMAPPED: 1236 /* the bio has been remapped so dispatch it */ 1237 trace_block_bio_remap(clone->bi_disk->queue, clone, 1238 bio_dev(io->orig_bio), sector); 1239 if (md->type == DM_TYPE_NVME_BIO_BASED) 1240 ret = direct_make_request(clone); 1241 else 1242 ret = generic_make_request(clone); 1243 break; 1244 case DM_MAPIO_KILL: 1245 free_tio(tio); 1246 dec_pending(io, BLK_STS_IOERR); 1247 break; 1248 case DM_MAPIO_REQUEUE: 1249 free_tio(tio); 1250 dec_pending(io, BLK_STS_DM_REQUEUE); 1251 break; 1252 default: 1253 DMWARN("unimplemented target map return value: %d", r); 1254 BUG(); 1255 } 1256 1257 return ret; 1258 } 1259 1260 static void bio_setup_sector(struct bio *bio, sector_t sector, unsigned len) 1261 { 1262 bio->bi_iter.bi_sector = sector; 1263 bio->bi_iter.bi_size = to_bytes(len); 1264 } 1265 1266 /* 1267 * Creates a bio that consists of range of complete bvecs. 1268 */ 1269 static int clone_bio(struct dm_target_io *tio, struct bio *bio, 1270 sector_t sector, unsigned len) 1271 { 1272 struct bio *clone = &tio->clone; 1273 1274 __bio_clone_fast(clone, bio); 1275 1276 if (unlikely(bio_integrity(bio) != NULL)) { 1277 int r; 1278 1279 if (unlikely(!dm_target_has_integrity(tio->ti->type) && 1280 !dm_target_passes_integrity(tio->ti->type))) { 1281 DMWARN("%s: the target %s doesn't support integrity data.", 1282 dm_device_name(tio->io->md), 1283 tio->ti->type->name); 1284 return -EIO; 1285 } 1286 1287 r = bio_integrity_clone(clone, bio, GFP_NOIO); 1288 if (r < 0) 1289 return r; 1290 } 1291 1292 if (bio_op(bio) != REQ_OP_ZONE_REPORT) 1293 bio_advance(clone, to_bytes(sector - clone->bi_iter.bi_sector)); 1294 clone->bi_iter.bi_size = to_bytes(len); 1295 1296 if (unlikely(bio_integrity(bio) != NULL)) 1297 bio_integrity_trim(clone); 1298 1299 return 0; 1300 } 1301 1302 static void alloc_multiple_bios(struct bio_list *blist, struct clone_info *ci, 1303 struct dm_target *ti, unsigned num_bios) 1304 { 1305 struct dm_target_io *tio; 1306 int try; 1307 1308 if (!num_bios) 1309 return; 1310 1311 if (num_bios == 1) { 1312 tio = alloc_tio(ci, ti, 0, GFP_NOIO); 1313 bio_list_add(blist, &tio->clone); 1314 return; 1315 } 1316 1317 for (try = 0; try < 2; try++) { 1318 int bio_nr; 1319 struct bio *bio; 1320 1321 if (try) 1322 mutex_lock(&ci->io->md->table_devices_lock); 1323 for (bio_nr = 0; bio_nr < num_bios; bio_nr++) { 1324 tio = alloc_tio(ci, ti, bio_nr, try ? GFP_NOIO : GFP_NOWAIT); 1325 if (!tio) 1326 break; 1327 1328 bio_list_add(blist, &tio->clone); 1329 } 1330 if (try) 1331 mutex_unlock(&ci->io->md->table_devices_lock); 1332 if (bio_nr == num_bios) 1333 return; 1334 1335 while ((bio = bio_list_pop(blist))) { 1336 tio = container_of(bio, struct dm_target_io, clone); 1337 free_tio(tio); 1338 } 1339 } 1340 } 1341 1342 static blk_qc_t __clone_and_map_simple_bio(struct clone_info *ci, 1343 struct dm_target_io *tio, unsigned *len) 1344 { 1345 struct bio *clone = &tio->clone; 1346 1347 tio->len_ptr = len; 1348 1349 __bio_clone_fast(clone, ci->bio); 1350 if (len) 1351 bio_setup_sector(clone, ci->sector, *len); 1352 1353 return __map_bio(tio); 1354 } 1355 1356 static void __send_duplicate_bios(struct clone_info *ci, struct dm_target *ti, 1357 unsigned num_bios, unsigned *len) 1358 { 1359 struct bio_list blist = BIO_EMPTY_LIST; 1360 struct bio *bio; 1361 struct dm_target_io *tio; 1362 1363 alloc_multiple_bios(&blist, ci, ti, num_bios); 1364 1365 while ((bio = bio_list_pop(&blist))) { 1366 tio = container_of(bio, struct dm_target_io, clone); 1367 (void) __clone_and_map_simple_bio(ci, tio, len); 1368 } 1369 } 1370 1371 static int __send_empty_flush(struct clone_info *ci) 1372 { 1373 unsigned target_nr = 0; 1374 struct dm_target *ti; 1375 1376 BUG_ON(bio_has_data(ci->bio)); 1377 while ((ti = dm_table_get_target(ci->map, target_nr++))) 1378 __send_duplicate_bios(ci, ti, ti->num_flush_bios, NULL); 1379 1380 return 0; 1381 } 1382 1383 static int __clone_and_map_data_bio(struct clone_info *ci, struct dm_target *ti, 1384 sector_t sector, unsigned *len) 1385 { 1386 struct bio *bio = ci->bio; 1387 struct dm_target_io *tio; 1388 int r; 1389 1390 tio = alloc_tio(ci, ti, 0, GFP_NOIO); 1391 tio->len_ptr = len; 1392 r = clone_bio(tio, bio, sector, *len); 1393 if (r < 0) { 1394 free_tio(tio); 1395 return r; 1396 } 1397 (void) __map_bio(tio); 1398 1399 return 0; 1400 } 1401 1402 typedef unsigned (*get_num_bios_fn)(struct dm_target *ti); 1403 1404 static unsigned get_num_discard_bios(struct dm_target *ti) 1405 { 1406 return ti->num_discard_bios; 1407 } 1408 1409 static unsigned get_num_write_same_bios(struct dm_target *ti) 1410 { 1411 return ti->num_write_same_bios; 1412 } 1413 1414 static unsigned get_num_write_zeroes_bios(struct dm_target *ti) 1415 { 1416 return ti->num_write_zeroes_bios; 1417 } 1418 1419 typedef bool (*is_split_required_fn)(struct dm_target *ti); 1420 1421 static bool is_split_required_for_discard(struct dm_target *ti) 1422 { 1423 return ti->split_discard_bios; 1424 } 1425 1426 static int __send_changing_extent_only(struct clone_info *ci, struct dm_target *ti, 1427 get_num_bios_fn get_num_bios, 1428 is_split_required_fn is_split_required) 1429 { 1430 unsigned len; 1431 unsigned num_bios; 1432 1433 /* 1434 * Even though the device advertised support for this type of 1435 * request, that does not mean every target supports it, and 1436 * reconfiguration might also have changed that since the 1437 * check was performed. 1438 */ 1439 num_bios = get_num_bios ? get_num_bios(ti) : 0; 1440 if (!num_bios) 1441 return -EOPNOTSUPP; 1442 1443 if (is_split_required && !is_split_required(ti)) 1444 len = min((sector_t)ci->sector_count, max_io_len_target_boundary(ci->sector, ti)); 1445 else 1446 len = min((sector_t)ci->sector_count, max_io_len(ci->sector, ti)); 1447 1448 __send_duplicate_bios(ci, ti, num_bios, &len); 1449 1450 ci->sector += len; 1451 ci->sector_count -= len; 1452 1453 return 0; 1454 } 1455 1456 static int __send_discard(struct clone_info *ci, struct dm_target *ti) 1457 { 1458 return __send_changing_extent_only(ci, ti, get_num_discard_bios, 1459 is_split_required_for_discard); 1460 } 1461 1462 static int __send_write_same(struct clone_info *ci, struct dm_target *ti) 1463 { 1464 return __send_changing_extent_only(ci, ti, get_num_write_same_bios, NULL); 1465 } 1466 1467 static int __send_write_zeroes(struct clone_info *ci, struct dm_target *ti) 1468 { 1469 return __send_changing_extent_only(ci, ti, get_num_write_zeroes_bios, NULL); 1470 } 1471 1472 /* 1473 * Select the correct strategy for processing a non-flush bio. 1474 */ 1475 static int __split_and_process_non_flush(struct clone_info *ci) 1476 { 1477 struct bio *bio = ci->bio; 1478 struct dm_target *ti; 1479 unsigned len; 1480 int r; 1481 1482 ti = dm_table_find_target(ci->map, ci->sector); 1483 if (!dm_target_is_valid(ti)) 1484 return -EIO; 1485 1486 if (unlikely(bio_op(bio) == REQ_OP_DISCARD)) 1487 return __send_discard(ci, ti); 1488 else if (unlikely(bio_op(bio) == REQ_OP_WRITE_SAME)) 1489 return __send_write_same(ci, ti); 1490 else if (unlikely(bio_op(bio) == REQ_OP_WRITE_ZEROES)) 1491 return __send_write_zeroes(ci, ti); 1492 1493 if (bio_op(bio) == REQ_OP_ZONE_REPORT) 1494 len = ci->sector_count; 1495 else 1496 len = min_t(sector_t, max_io_len(ci->sector, ti), 1497 ci->sector_count); 1498 1499 r = __clone_and_map_data_bio(ci, ti, ci->sector, &len); 1500 if (r < 0) 1501 return r; 1502 1503 ci->sector += len; 1504 ci->sector_count -= len; 1505 1506 return 0; 1507 } 1508 1509 static void init_clone_info(struct clone_info *ci, struct mapped_device *md, 1510 struct dm_table *map, struct bio *bio) 1511 { 1512 ci->map = map; 1513 ci->io = alloc_io(md, bio); 1514 ci->sector = bio->bi_iter.bi_sector; 1515 } 1516 1517 /* 1518 * Entry point to split a bio into clones and submit them to the targets. 1519 */ 1520 static blk_qc_t __split_and_process_bio(struct mapped_device *md, 1521 struct dm_table *map, struct bio *bio) 1522 { 1523 struct clone_info ci; 1524 blk_qc_t ret = BLK_QC_T_NONE; 1525 int error = 0; 1526 1527 if (unlikely(!map)) { 1528 bio_io_error(bio); 1529 return ret; 1530 } 1531 1532 init_clone_info(&ci, md, map, bio); 1533 1534 if (bio->bi_opf & REQ_PREFLUSH) { 1535 ci.bio = &ci.io->md->flush_bio; 1536 ci.sector_count = 0; 1537 error = __send_empty_flush(&ci); 1538 /* dec_pending submits any data associated with flush */ 1539 } else if (bio_op(bio) == REQ_OP_ZONE_RESET) { 1540 ci.bio = bio; 1541 ci.sector_count = 0; 1542 error = __split_and_process_non_flush(&ci); 1543 } else { 1544 ci.bio = bio; 1545 ci.sector_count = bio_sectors(bio); 1546 while (ci.sector_count && !error) { 1547 error = __split_and_process_non_flush(&ci); 1548 if (current->bio_list && ci.sector_count && !error) { 1549 /* 1550 * Remainder must be passed to generic_make_request() 1551 * so that it gets handled *after* bios already submitted 1552 * have been completely processed. 1553 * We take a clone of the original to store in 1554 * ci.io->orig_bio to be used by end_io_acct() and 1555 * for dec_pending to use for completion handling. 1556 * As this path is not used for REQ_OP_ZONE_REPORT, 1557 * the usage of io->orig_bio in dm_remap_zone_report() 1558 * won't be affected by this reassignment. 1559 */ 1560 struct bio *b = bio_clone_bioset(bio, GFP_NOIO, 1561 md->queue->bio_split); 1562 ci.io->orig_bio = b; 1563 bio_advance(bio, (bio_sectors(bio) - ci.sector_count) << 9); 1564 bio_chain(b, bio); 1565 ret = generic_make_request(bio); 1566 break; 1567 } 1568 } 1569 } 1570 1571 /* drop the extra reference count */ 1572 dec_pending(ci.io, errno_to_blk_status(error)); 1573 return ret; 1574 } 1575 1576 /* 1577 * Optimized variant of __split_and_process_bio that leverages the 1578 * fact that targets that use it do _not_ have a need to split bios. 1579 */ 1580 static blk_qc_t __process_bio(struct mapped_device *md, 1581 struct dm_table *map, struct bio *bio) 1582 { 1583 struct clone_info ci; 1584 blk_qc_t ret = BLK_QC_T_NONE; 1585 int error = 0; 1586 1587 if (unlikely(!map)) { 1588 bio_io_error(bio); 1589 return ret; 1590 } 1591 1592 init_clone_info(&ci, md, map, bio); 1593 1594 if (bio->bi_opf & REQ_PREFLUSH) { 1595 ci.bio = &ci.io->md->flush_bio; 1596 ci.sector_count = 0; 1597 error = __send_empty_flush(&ci); 1598 /* dec_pending submits any data associated with flush */ 1599 } else { 1600 struct dm_target *ti = md->immutable_target; 1601 struct dm_target_io *tio; 1602 1603 /* 1604 * Defend against IO still getting in during teardown 1605 * - as was seen for a time with nvme-fcloop 1606 */ 1607 if (unlikely(WARN_ON_ONCE(!ti || !dm_target_is_valid(ti)))) { 1608 error = -EIO; 1609 goto out; 1610 } 1611 1612 tio = alloc_tio(&ci, ti, 0, GFP_NOIO); 1613 ci.bio = bio; 1614 ci.sector_count = bio_sectors(bio); 1615 ret = __clone_and_map_simple_bio(&ci, tio, NULL); 1616 } 1617 out: 1618 /* drop the extra reference count */ 1619 dec_pending(ci.io, errno_to_blk_status(error)); 1620 return ret; 1621 } 1622 1623 typedef blk_qc_t (process_bio_fn)(struct mapped_device *, struct dm_table *, struct bio *); 1624 1625 static blk_qc_t __dm_make_request(struct request_queue *q, struct bio *bio, 1626 process_bio_fn process_bio) 1627 { 1628 struct mapped_device *md = q->queuedata; 1629 blk_qc_t ret = BLK_QC_T_NONE; 1630 int srcu_idx; 1631 struct dm_table *map; 1632 1633 map = dm_get_live_table(md, &srcu_idx); 1634 1635 /* if we're suspended, we have to queue this io for later */ 1636 if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))) { 1637 dm_put_live_table(md, srcu_idx); 1638 1639 if (!(bio->bi_opf & REQ_RAHEAD)) 1640 queue_io(md, bio); 1641 else 1642 bio_io_error(bio); 1643 return ret; 1644 } 1645 1646 ret = process_bio(md, map, bio); 1647 1648 dm_put_live_table(md, srcu_idx); 1649 return ret; 1650 } 1651 1652 /* 1653 * The request function that remaps the bio to one target and 1654 * splits off any remainder. 1655 */ 1656 static blk_qc_t dm_make_request(struct request_queue *q, struct bio *bio) 1657 { 1658 return __dm_make_request(q, bio, __split_and_process_bio); 1659 } 1660 1661 static blk_qc_t dm_make_request_nvme(struct request_queue *q, struct bio *bio) 1662 { 1663 return __dm_make_request(q, bio, __process_bio); 1664 } 1665 1666 static int dm_any_congested(void *congested_data, int bdi_bits) 1667 { 1668 int r = bdi_bits; 1669 struct mapped_device *md = congested_data; 1670 struct dm_table *map; 1671 1672 if (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) { 1673 if (dm_request_based(md)) { 1674 /* 1675 * With request-based DM we only need to check the 1676 * top-level queue for congestion. 1677 */ 1678 r = md->queue->backing_dev_info->wb.state & bdi_bits; 1679 } else { 1680 map = dm_get_live_table_fast(md); 1681 if (map) 1682 r = dm_table_any_congested(map, bdi_bits); 1683 dm_put_live_table_fast(md); 1684 } 1685 } 1686 1687 return r; 1688 } 1689 1690 /*----------------------------------------------------------------- 1691 * An IDR is used to keep track of allocated minor numbers. 1692 *---------------------------------------------------------------*/ 1693 static void free_minor(int minor) 1694 { 1695 spin_lock(&_minor_lock); 1696 idr_remove(&_minor_idr, minor); 1697 spin_unlock(&_minor_lock); 1698 } 1699 1700 /* 1701 * See if the device with a specific minor # is free. 1702 */ 1703 static int specific_minor(int minor) 1704 { 1705 int r; 1706 1707 if (minor >= (1 << MINORBITS)) 1708 return -EINVAL; 1709 1710 idr_preload(GFP_KERNEL); 1711 spin_lock(&_minor_lock); 1712 1713 r = idr_alloc(&_minor_idr, MINOR_ALLOCED, minor, minor + 1, GFP_NOWAIT); 1714 1715 spin_unlock(&_minor_lock); 1716 idr_preload_end(); 1717 if (r < 0) 1718 return r == -ENOSPC ? -EBUSY : r; 1719 return 0; 1720 } 1721 1722 static int next_free_minor(int *minor) 1723 { 1724 int r; 1725 1726 idr_preload(GFP_KERNEL); 1727 spin_lock(&_minor_lock); 1728 1729 r = idr_alloc(&_minor_idr, MINOR_ALLOCED, 0, 1 << MINORBITS, GFP_NOWAIT); 1730 1731 spin_unlock(&_minor_lock); 1732 idr_preload_end(); 1733 if (r < 0) 1734 return r; 1735 *minor = r; 1736 return 0; 1737 } 1738 1739 static const struct block_device_operations dm_blk_dops; 1740 static const struct dax_operations dm_dax_ops; 1741 1742 static void dm_wq_work(struct work_struct *work); 1743 1744 static void dm_init_normal_md_queue(struct mapped_device *md) 1745 { 1746 md->use_blk_mq = false; 1747 1748 /* 1749 * Initialize aspects of queue that aren't relevant for blk-mq 1750 */ 1751 md->queue->backing_dev_info->congested_fn = dm_any_congested; 1752 } 1753 1754 static void cleanup_mapped_device(struct mapped_device *md) 1755 { 1756 if (md->wq) 1757 destroy_workqueue(md->wq); 1758 if (md->kworker_task) 1759 kthread_stop(md->kworker_task); 1760 if (md->bs) 1761 bioset_free(md->bs); 1762 if (md->io_bs) 1763 bioset_free(md->io_bs); 1764 1765 if (md->dax_dev) { 1766 kill_dax(md->dax_dev); 1767 put_dax(md->dax_dev); 1768 md->dax_dev = NULL; 1769 } 1770 1771 if (md->disk) { 1772 spin_lock(&_minor_lock); 1773 md->disk->private_data = NULL; 1774 spin_unlock(&_minor_lock); 1775 del_gendisk(md->disk); 1776 put_disk(md->disk); 1777 } 1778 1779 if (md->queue) 1780 blk_cleanup_queue(md->queue); 1781 1782 cleanup_srcu_struct(&md->io_barrier); 1783 1784 if (md->bdev) { 1785 bdput(md->bdev); 1786 md->bdev = NULL; 1787 } 1788 1789 mutex_destroy(&md->suspend_lock); 1790 mutex_destroy(&md->type_lock); 1791 mutex_destroy(&md->table_devices_lock); 1792 1793 dm_mq_cleanup_mapped_device(md); 1794 } 1795 1796 /* 1797 * Allocate and initialise a blank device with a given minor. 1798 */ 1799 static struct mapped_device *alloc_dev(int minor) 1800 { 1801 int r, numa_node_id = dm_get_numa_node(); 1802 struct dax_device *dax_dev; 1803 struct mapped_device *md; 1804 void *old_md; 1805 1806 md = kvzalloc_node(sizeof(*md), GFP_KERNEL, numa_node_id); 1807 if (!md) { 1808 DMWARN("unable to allocate device, out of memory."); 1809 return NULL; 1810 } 1811 1812 if (!try_module_get(THIS_MODULE)) 1813 goto bad_module_get; 1814 1815 /* get a minor number for the dev */ 1816 if (minor == DM_ANY_MINOR) 1817 r = next_free_minor(&minor); 1818 else 1819 r = specific_minor(minor); 1820 if (r < 0) 1821 goto bad_minor; 1822 1823 r = init_srcu_struct(&md->io_barrier); 1824 if (r < 0) 1825 goto bad_io_barrier; 1826 1827 md->numa_node_id = numa_node_id; 1828 md->use_blk_mq = dm_use_blk_mq_default(); 1829 md->init_tio_pdu = false; 1830 md->type = DM_TYPE_NONE; 1831 mutex_init(&md->suspend_lock); 1832 mutex_init(&md->type_lock); 1833 mutex_init(&md->table_devices_lock); 1834 spin_lock_init(&md->deferred_lock); 1835 atomic_set(&md->holders, 1); 1836 atomic_set(&md->open_count, 0); 1837 atomic_set(&md->event_nr, 0); 1838 atomic_set(&md->uevent_seq, 0); 1839 INIT_LIST_HEAD(&md->uevent_list); 1840 INIT_LIST_HEAD(&md->table_devices); 1841 spin_lock_init(&md->uevent_lock); 1842 1843 md->queue = blk_alloc_queue_node(GFP_KERNEL, numa_node_id); 1844 if (!md->queue) 1845 goto bad; 1846 md->queue->queuedata = md; 1847 md->queue->backing_dev_info->congested_data = md; 1848 1849 md->disk = alloc_disk_node(1, md->numa_node_id); 1850 if (!md->disk) 1851 goto bad; 1852 1853 atomic_set(&md->pending[0], 0); 1854 atomic_set(&md->pending[1], 0); 1855 init_waitqueue_head(&md->wait); 1856 INIT_WORK(&md->work, dm_wq_work); 1857 init_waitqueue_head(&md->eventq); 1858 init_completion(&md->kobj_holder.completion); 1859 md->kworker_task = NULL; 1860 1861 md->disk->major = _major; 1862 md->disk->first_minor = minor; 1863 md->disk->fops = &dm_blk_dops; 1864 md->disk->queue = md->queue; 1865 md->disk->private_data = md; 1866 sprintf(md->disk->disk_name, "dm-%d", minor); 1867 1868 dax_dev = alloc_dax(md, md->disk->disk_name, &dm_dax_ops); 1869 if (!dax_dev) 1870 goto bad; 1871 md->dax_dev = dax_dev; 1872 1873 add_disk_no_queue_reg(md->disk); 1874 format_dev_t(md->name, MKDEV(_major, minor)); 1875 1876 md->wq = alloc_workqueue("kdmflush", WQ_MEM_RECLAIM, 0); 1877 if (!md->wq) 1878 goto bad; 1879 1880 md->bdev = bdget_disk(md->disk, 0); 1881 if (!md->bdev) 1882 goto bad; 1883 1884 bio_init(&md->flush_bio, NULL, 0); 1885 bio_set_dev(&md->flush_bio, md->bdev); 1886 md->flush_bio.bi_opf = REQ_OP_WRITE | REQ_PREFLUSH | REQ_SYNC; 1887 1888 dm_stats_init(&md->stats); 1889 1890 /* Populate the mapping, nobody knows we exist yet */ 1891 spin_lock(&_minor_lock); 1892 old_md = idr_replace(&_minor_idr, md, minor); 1893 spin_unlock(&_minor_lock); 1894 1895 BUG_ON(old_md != MINOR_ALLOCED); 1896 1897 return md; 1898 1899 bad: 1900 cleanup_mapped_device(md); 1901 bad_io_barrier: 1902 free_minor(minor); 1903 bad_minor: 1904 module_put(THIS_MODULE); 1905 bad_module_get: 1906 kvfree(md); 1907 return NULL; 1908 } 1909 1910 static void unlock_fs(struct mapped_device *md); 1911 1912 static void free_dev(struct mapped_device *md) 1913 { 1914 int minor = MINOR(disk_devt(md->disk)); 1915 1916 unlock_fs(md); 1917 1918 cleanup_mapped_device(md); 1919 1920 free_table_devices(&md->table_devices); 1921 dm_stats_cleanup(&md->stats); 1922 free_minor(minor); 1923 1924 module_put(THIS_MODULE); 1925 kvfree(md); 1926 } 1927 1928 static void __bind_mempools(struct mapped_device *md, struct dm_table *t) 1929 { 1930 struct dm_md_mempools *p = dm_table_get_md_mempools(t); 1931 1932 if (dm_table_bio_based(t)) { 1933 /* 1934 * The md may already have mempools that need changing. 1935 * If so, reload bioset because front_pad may have changed 1936 * because a different table was loaded. 1937 */ 1938 if (md->bs) { 1939 bioset_free(md->bs); 1940 md->bs = NULL; 1941 } 1942 if (md->io_bs) { 1943 bioset_free(md->io_bs); 1944 md->io_bs = NULL; 1945 } 1946 1947 } else if (md->bs) { 1948 /* 1949 * There's no need to reload with request-based dm 1950 * because the size of front_pad doesn't change. 1951 * Note for future: If you are to reload bioset, 1952 * prep-ed requests in the queue may refer 1953 * to bio from the old bioset, so you must walk 1954 * through the queue to unprep. 1955 */ 1956 goto out; 1957 } 1958 1959 BUG_ON(!p || md->bs || md->io_bs); 1960 1961 md->bs = p->bs; 1962 p->bs = NULL; 1963 md->io_bs = p->io_bs; 1964 p->io_bs = NULL; 1965 out: 1966 /* mempool bind completed, no longer need any mempools in the table */ 1967 dm_table_free_md_mempools(t); 1968 } 1969 1970 /* 1971 * Bind a table to the device. 1972 */ 1973 static void event_callback(void *context) 1974 { 1975 unsigned long flags; 1976 LIST_HEAD(uevents); 1977 struct mapped_device *md = (struct mapped_device *) context; 1978 1979 spin_lock_irqsave(&md->uevent_lock, flags); 1980 list_splice_init(&md->uevent_list, &uevents); 1981 spin_unlock_irqrestore(&md->uevent_lock, flags); 1982 1983 dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj); 1984 1985 atomic_inc(&md->event_nr); 1986 wake_up(&md->eventq); 1987 dm_issue_global_event(); 1988 } 1989 1990 /* 1991 * Protected by md->suspend_lock obtained by dm_swap_table(). 1992 */ 1993 static void __set_size(struct mapped_device *md, sector_t size) 1994 { 1995 lockdep_assert_held(&md->suspend_lock); 1996 1997 set_capacity(md->disk, size); 1998 1999 i_size_write(md->bdev->bd_inode, (loff_t)size << SECTOR_SHIFT); 2000 } 2001 2002 /* 2003 * Returns old map, which caller must destroy. 2004 */ 2005 static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t, 2006 struct queue_limits *limits) 2007 { 2008 struct dm_table *old_map; 2009 struct request_queue *q = md->queue; 2010 bool request_based = dm_table_request_based(t); 2011 sector_t size; 2012 2013 lockdep_assert_held(&md->suspend_lock); 2014 2015 size = dm_table_get_size(t); 2016 2017 /* 2018 * Wipe any geometry if the size of the table changed. 2019 */ 2020 if (size != dm_get_size(md)) 2021 memset(&md->geometry, 0, sizeof(md->geometry)); 2022 2023 __set_size(md, size); 2024 2025 dm_table_event_callback(t, event_callback, md); 2026 2027 /* 2028 * The queue hasn't been stopped yet, if the old table type wasn't 2029 * for request-based during suspension. So stop it to prevent 2030 * I/O mapping before resume. 2031 * This must be done before setting the queue restrictions, 2032 * because request-based dm may be run just after the setting. 2033 */ 2034 if (request_based) 2035 dm_stop_queue(q); 2036 2037 if (request_based || md->type == DM_TYPE_NVME_BIO_BASED) { 2038 /* 2039 * Leverage the fact that request-based DM targets and 2040 * NVMe bio based targets are immutable singletons 2041 * - used to optimize both dm_request_fn and dm_mq_queue_rq; 2042 * and __process_bio. 2043 */ 2044 md->immutable_target = dm_table_get_immutable_target(t); 2045 } 2046 2047 __bind_mempools(md, t); 2048 2049 old_map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock)); 2050 rcu_assign_pointer(md->map, (void *)t); 2051 md->immutable_target_type = dm_table_get_immutable_target_type(t); 2052 2053 dm_table_set_restrictions(t, q, limits); 2054 if (old_map) 2055 dm_sync_table(md); 2056 2057 return old_map; 2058 } 2059 2060 /* 2061 * Returns unbound table for the caller to free. 2062 */ 2063 static struct dm_table *__unbind(struct mapped_device *md) 2064 { 2065 struct dm_table *map = rcu_dereference_protected(md->map, 1); 2066 2067 if (!map) 2068 return NULL; 2069 2070 dm_table_event_callback(map, NULL, NULL); 2071 RCU_INIT_POINTER(md->map, NULL); 2072 dm_sync_table(md); 2073 2074 return map; 2075 } 2076 2077 /* 2078 * Constructor for a new device. 2079 */ 2080 int dm_create(int minor, struct mapped_device **result) 2081 { 2082 int r; 2083 struct mapped_device *md; 2084 2085 md = alloc_dev(minor); 2086 if (!md) 2087 return -ENXIO; 2088 2089 r = dm_sysfs_init(md); 2090 if (r) { 2091 free_dev(md); 2092 return r; 2093 } 2094 2095 *result = md; 2096 return 0; 2097 } 2098 2099 /* 2100 * Functions to manage md->type. 2101 * All are required to hold md->type_lock. 2102 */ 2103 void dm_lock_md_type(struct mapped_device *md) 2104 { 2105 mutex_lock(&md->type_lock); 2106 } 2107 2108 void dm_unlock_md_type(struct mapped_device *md) 2109 { 2110 mutex_unlock(&md->type_lock); 2111 } 2112 2113 void dm_set_md_type(struct mapped_device *md, enum dm_queue_mode type) 2114 { 2115 BUG_ON(!mutex_is_locked(&md->type_lock)); 2116 md->type = type; 2117 } 2118 2119 enum dm_queue_mode dm_get_md_type(struct mapped_device *md) 2120 { 2121 return md->type; 2122 } 2123 2124 struct target_type *dm_get_immutable_target_type(struct mapped_device *md) 2125 { 2126 return md->immutable_target_type; 2127 } 2128 2129 /* 2130 * The queue_limits are only valid as long as you have a reference 2131 * count on 'md'. 2132 */ 2133 struct queue_limits *dm_get_queue_limits(struct mapped_device *md) 2134 { 2135 BUG_ON(!atomic_read(&md->holders)); 2136 return &md->queue->limits; 2137 } 2138 EXPORT_SYMBOL_GPL(dm_get_queue_limits); 2139 2140 /* 2141 * Setup the DM device's queue based on md's type 2142 */ 2143 int dm_setup_md_queue(struct mapped_device *md, struct dm_table *t) 2144 { 2145 int r; 2146 struct queue_limits limits; 2147 enum dm_queue_mode type = dm_get_md_type(md); 2148 2149 switch (type) { 2150 case DM_TYPE_REQUEST_BASED: 2151 dm_init_normal_md_queue(md); 2152 r = dm_old_init_request_queue(md, t); 2153 if (r) { 2154 DMERR("Cannot initialize queue for request-based mapped device"); 2155 return r; 2156 } 2157 break; 2158 case DM_TYPE_MQ_REQUEST_BASED: 2159 r = dm_mq_init_request_queue(md, t); 2160 if (r) { 2161 DMERR("Cannot initialize queue for request-based dm-mq mapped device"); 2162 return r; 2163 } 2164 break; 2165 case DM_TYPE_BIO_BASED: 2166 case DM_TYPE_DAX_BIO_BASED: 2167 dm_init_normal_md_queue(md); 2168 blk_queue_make_request(md->queue, dm_make_request); 2169 break; 2170 case DM_TYPE_NVME_BIO_BASED: 2171 dm_init_normal_md_queue(md); 2172 blk_queue_make_request(md->queue, dm_make_request_nvme); 2173 break; 2174 case DM_TYPE_NONE: 2175 WARN_ON_ONCE(true); 2176 break; 2177 } 2178 2179 r = dm_calculate_queue_limits(t, &limits); 2180 if (r) { 2181 DMERR("Cannot calculate initial queue limits"); 2182 return r; 2183 } 2184 dm_table_set_restrictions(t, md->queue, &limits); 2185 blk_register_queue(md->disk); 2186 2187 return 0; 2188 } 2189 2190 struct mapped_device *dm_get_md(dev_t dev) 2191 { 2192 struct mapped_device *md; 2193 unsigned minor = MINOR(dev); 2194 2195 if (MAJOR(dev) != _major || minor >= (1 << MINORBITS)) 2196 return NULL; 2197 2198 spin_lock(&_minor_lock); 2199 2200 md = idr_find(&_minor_idr, minor); 2201 if (!md || md == MINOR_ALLOCED || (MINOR(disk_devt(dm_disk(md))) != minor) || 2202 test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) { 2203 md = NULL; 2204 goto out; 2205 } 2206 dm_get(md); 2207 out: 2208 spin_unlock(&_minor_lock); 2209 2210 return md; 2211 } 2212 EXPORT_SYMBOL_GPL(dm_get_md); 2213 2214 void *dm_get_mdptr(struct mapped_device *md) 2215 { 2216 return md->interface_ptr; 2217 } 2218 2219 void dm_set_mdptr(struct mapped_device *md, void *ptr) 2220 { 2221 md->interface_ptr = ptr; 2222 } 2223 2224 void dm_get(struct mapped_device *md) 2225 { 2226 atomic_inc(&md->holders); 2227 BUG_ON(test_bit(DMF_FREEING, &md->flags)); 2228 } 2229 2230 int dm_hold(struct mapped_device *md) 2231 { 2232 spin_lock(&_minor_lock); 2233 if (test_bit(DMF_FREEING, &md->flags)) { 2234 spin_unlock(&_minor_lock); 2235 return -EBUSY; 2236 } 2237 dm_get(md); 2238 spin_unlock(&_minor_lock); 2239 return 0; 2240 } 2241 EXPORT_SYMBOL_GPL(dm_hold); 2242 2243 const char *dm_device_name(struct mapped_device *md) 2244 { 2245 return md->name; 2246 } 2247 EXPORT_SYMBOL_GPL(dm_device_name); 2248 2249 static void __dm_destroy(struct mapped_device *md, bool wait) 2250 { 2251 struct dm_table *map; 2252 int srcu_idx; 2253 2254 might_sleep(); 2255 2256 spin_lock(&_minor_lock); 2257 idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md)))); 2258 set_bit(DMF_FREEING, &md->flags); 2259 spin_unlock(&_minor_lock); 2260 2261 blk_set_queue_dying(md->queue); 2262 2263 if (dm_request_based(md) && md->kworker_task) 2264 kthread_flush_worker(&md->kworker); 2265 2266 /* 2267 * Take suspend_lock so that presuspend and postsuspend methods 2268 * do not race with internal suspend. 2269 */ 2270 mutex_lock(&md->suspend_lock); 2271 map = dm_get_live_table(md, &srcu_idx); 2272 if (!dm_suspended_md(md)) { 2273 dm_table_presuspend_targets(map); 2274 dm_table_postsuspend_targets(map); 2275 } 2276 /* dm_put_live_table must be before msleep, otherwise deadlock is possible */ 2277 dm_put_live_table(md, srcu_idx); 2278 mutex_unlock(&md->suspend_lock); 2279 2280 /* 2281 * Rare, but there may be I/O requests still going to complete, 2282 * for example. Wait for all references to disappear. 2283 * No one should increment the reference count of the mapped_device, 2284 * after the mapped_device state becomes DMF_FREEING. 2285 */ 2286 if (wait) 2287 while (atomic_read(&md->holders)) 2288 msleep(1); 2289 else if (atomic_read(&md->holders)) 2290 DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)", 2291 dm_device_name(md), atomic_read(&md->holders)); 2292 2293 dm_sysfs_exit(md); 2294 dm_table_destroy(__unbind(md)); 2295 free_dev(md); 2296 } 2297 2298 void dm_destroy(struct mapped_device *md) 2299 { 2300 __dm_destroy(md, true); 2301 } 2302 2303 void dm_destroy_immediate(struct mapped_device *md) 2304 { 2305 __dm_destroy(md, false); 2306 } 2307 2308 void dm_put(struct mapped_device *md) 2309 { 2310 atomic_dec(&md->holders); 2311 } 2312 EXPORT_SYMBOL_GPL(dm_put); 2313 2314 static int dm_wait_for_completion(struct mapped_device *md, long task_state) 2315 { 2316 int r = 0; 2317 DEFINE_WAIT(wait); 2318 2319 while (1) { 2320 prepare_to_wait(&md->wait, &wait, task_state); 2321 2322 if (!md_in_flight(md)) 2323 break; 2324 2325 if (signal_pending_state(task_state, current)) { 2326 r = -EINTR; 2327 break; 2328 } 2329 2330 io_schedule(); 2331 } 2332 finish_wait(&md->wait, &wait); 2333 2334 return r; 2335 } 2336 2337 /* 2338 * Process the deferred bios 2339 */ 2340 static void dm_wq_work(struct work_struct *work) 2341 { 2342 struct mapped_device *md = container_of(work, struct mapped_device, 2343 work); 2344 struct bio *c; 2345 int srcu_idx; 2346 struct dm_table *map; 2347 2348 map = dm_get_live_table(md, &srcu_idx); 2349 2350 while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) { 2351 spin_lock_irq(&md->deferred_lock); 2352 c = bio_list_pop(&md->deferred); 2353 spin_unlock_irq(&md->deferred_lock); 2354 2355 if (!c) 2356 break; 2357 2358 if (dm_request_based(md)) 2359 generic_make_request(c); 2360 else 2361 __split_and_process_bio(md, map, c); 2362 } 2363 2364 dm_put_live_table(md, srcu_idx); 2365 } 2366 2367 static void dm_queue_flush(struct mapped_device *md) 2368 { 2369 clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags); 2370 smp_mb__after_atomic(); 2371 queue_work(md->wq, &md->work); 2372 } 2373 2374 /* 2375 * Swap in a new table, returning the old one for the caller to destroy. 2376 */ 2377 struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table) 2378 { 2379 struct dm_table *live_map = NULL, *map = ERR_PTR(-EINVAL); 2380 struct queue_limits limits; 2381 int r; 2382 2383 mutex_lock(&md->suspend_lock); 2384 2385 /* device must be suspended */ 2386 if (!dm_suspended_md(md)) 2387 goto out; 2388 2389 /* 2390 * If the new table has no data devices, retain the existing limits. 2391 * This helps multipath with queue_if_no_path if all paths disappear, 2392 * then new I/O is queued based on these limits, and then some paths 2393 * reappear. 2394 */ 2395 if (dm_table_has_no_data_devices(table)) { 2396 live_map = dm_get_live_table_fast(md); 2397 if (live_map) 2398 limits = md->queue->limits; 2399 dm_put_live_table_fast(md); 2400 } 2401 2402 if (!live_map) { 2403 r = dm_calculate_queue_limits(table, &limits); 2404 if (r) { 2405 map = ERR_PTR(r); 2406 goto out; 2407 } 2408 } 2409 2410 map = __bind(md, table, &limits); 2411 dm_issue_global_event(); 2412 2413 out: 2414 mutex_unlock(&md->suspend_lock); 2415 return map; 2416 } 2417 2418 /* 2419 * Functions to lock and unlock any filesystem running on the 2420 * device. 2421 */ 2422 static int lock_fs(struct mapped_device *md) 2423 { 2424 int r; 2425 2426 WARN_ON(md->frozen_sb); 2427 2428 md->frozen_sb = freeze_bdev(md->bdev); 2429 if (IS_ERR(md->frozen_sb)) { 2430 r = PTR_ERR(md->frozen_sb); 2431 md->frozen_sb = NULL; 2432 return r; 2433 } 2434 2435 set_bit(DMF_FROZEN, &md->flags); 2436 2437 return 0; 2438 } 2439 2440 static void unlock_fs(struct mapped_device *md) 2441 { 2442 if (!test_bit(DMF_FROZEN, &md->flags)) 2443 return; 2444 2445 thaw_bdev(md->bdev, md->frozen_sb); 2446 md->frozen_sb = NULL; 2447 clear_bit(DMF_FROZEN, &md->flags); 2448 } 2449 2450 /* 2451 * @suspend_flags: DM_SUSPEND_LOCKFS_FLAG and/or DM_SUSPEND_NOFLUSH_FLAG 2452 * @task_state: e.g. TASK_INTERRUPTIBLE or TASK_UNINTERRUPTIBLE 2453 * @dmf_suspended_flag: DMF_SUSPENDED or DMF_SUSPENDED_INTERNALLY 2454 * 2455 * If __dm_suspend returns 0, the device is completely quiescent 2456 * now. There is no request-processing activity. All new requests 2457 * are being added to md->deferred list. 2458 */ 2459 static int __dm_suspend(struct mapped_device *md, struct dm_table *map, 2460 unsigned suspend_flags, long task_state, 2461 int dmf_suspended_flag) 2462 { 2463 bool do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG; 2464 bool noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG; 2465 int r; 2466 2467 lockdep_assert_held(&md->suspend_lock); 2468 2469 /* 2470 * DMF_NOFLUSH_SUSPENDING must be set before presuspend. 2471 * This flag is cleared before dm_suspend returns. 2472 */ 2473 if (noflush) 2474 set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags); 2475 else 2476 pr_debug("%s: suspending with flush\n", dm_device_name(md)); 2477 2478 /* 2479 * This gets reverted if there's an error later and the targets 2480 * provide the .presuspend_undo hook. 2481 */ 2482 dm_table_presuspend_targets(map); 2483 2484 /* 2485 * Flush I/O to the device. 2486 * Any I/O submitted after lock_fs() may not be flushed. 2487 * noflush takes precedence over do_lockfs. 2488 * (lock_fs() flushes I/Os and waits for them to complete.) 2489 */ 2490 if (!noflush && do_lockfs) { 2491 r = lock_fs(md); 2492 if (r) { 2493 dm_table_presuspend_undo_targets(map); 2494 return r; 2495 } 2496 } 2497 2498 /* 2499 * Here we must make sure that no processes are submitting requests 2500 * to target drivers i.e. no one may be executing 2501 * __split_and_process_bio. This is called from dm_request and 2502 * dm_wq_work. 2503 * 2504 * To get all processes out of __split_and_process_bio in dm_request, 2505 * we take the write lock. To prevent any process from reentering 2506 * __split_and_process_bio from dm_request and quiesce the thread 2507 * (dm_wq_work), we set BMF_BLOCK_IO_FOR_SUSPEND and call 2508 * flush_workqueue(md->wq). 2509 */ 2510 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags); 2511 if (map) 2512 synchronize_srcu(&md->io_barrier); 2513 2514 /* 2515 * Stop md->queue before flushing md->wq in case request-based 2516 * dm defers requests to md->wq from md->queue. 2517 */ 2518 if (dm_request_based(md)) { 2519 dm_stop_queue(md->queue); 2520 if (md->kworker_task) 2521 kthread_flush_worker(&md->kworker); 2522 } 2523 2524 flush_workqueue(md->wq); 2525 2526 /* 2527 * At this point no more requests are entering target request routines. 2528 * We call dm_wait_for_completion to wait for all existing requests 2529 * to finish. 2530 */ 2531 r = dm_wait_for_completion(md, task_state); 2532 if (!r) 2533 set_bit(dmf_suspended_flag, &md->flags); 2534 2535 if (noflush) 2536 clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags); 2537 if (map) 2538 synchronize_srcu(&md->io_barrier); 2539 2540 /* were we interrupted ? */ 2541 if (r < 0) { 2542 dm_queue_flush(md); 2543 2544 if (dm_request_based(md)) 2545 dm_start_queue(md->queue); 2546 2547 unlock_fs(md); 2548 dm_table_presuspend_undo_targets(map); 2549 /* pushback list is already flushed, so skip flush */ 2550 } 2551 2552 return r; 2553 } 2554 2555 /* 2556 * We need to be able to change a mapping table under a mounted 2557 * filesystem. For example we might want to move some data in 2558 * the background. Before the table can be swapped with 2559 * dm_bind_table, dm_suspend must be called to flush any in 2560 * flight bios and ensure that any further io gets deferred. 2561 */ 2562 /* 2563 * Suspend mechanism in request-based dm. 2564 * 2565 * 1. Flush all I/Os by lock_fs() if needed. 2566 * 2. Stop dispatching any I/O by stopping the request_queue. 2567 * 3. Wait for all in-flight I/Os to be completed or requeued. 2568 * 2569 * To abort suspend, start the request_queue. 2570 */ 2571 int dm_suspend(struct mapped_device *md, unsigned suspend_flags) 2572 { 2573 struct dm_table *map = NULL; 2574 int r = 0; 2575 2576 retry: 2577 mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING); 2578 2579 if (dm_suspended_md(md)) { 2580 r = -EINVAL; 2581 goto out_unlock; 2582 } 2583 2584 if (dm_suspended_internally_md(md)) { 2585 /* already internally suspended, wait for internal resume */ 2586 mutex_unlock(&md->suspend_lock); 2587 r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE); 2588 if (r) 2589 return r; 2590 goto retry; 2591 } 2592 2593 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock)); 2594 2595 r = __dm_suspend(md, map, suspend_flags, TASK_INTERRUPTIBLE, DMF_SUSPENDED); 2596 if (r) 2597 goto out_unlock; 2598 2599 dm_table_postsuspend_targets(map); 2600 2601 out_unlock: 2602 mutex_unlock(&md->suspend_lock); 2603 return r; 2604 } 2605 2606 static int __dm_resume(struct mapped_device *md, struct dm_table *map) 2607 { 2608 if (map) { 2609 int r = dm_table_resume_targets(map); 2610 if (r) 2611 return r; 2612 } 2613 2614 dm_queue_flush(md); 2615 2616 /* 2617 * Flushing deferred I/Os must be done after targets are resumed 2618 * so that mapping of targets can work correctly. 2619 * Request-based dm is queueing the deferred I/Os in its request_queue. 2620 */ 2621 if (dm_request_based(md)) 2622 dm_start_queue(md->queue); 2623 2624 unlock_fs(md); 2625 2626 return 0; 2627 } 2628 2629 int dm_resume(struct mapped_device *md) 2630 { 2631 int r; 2632 struct dm_table *map = NULL; 2633 2634 retry: 2635 r = -EINVAL; 2636 mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING); 2637 2638 if (!dm_suspended_md(md)) 2639 goto out; 2640 2641 if (dm_suspended_internally_md(md)) { 2642 /* already internally suspended, wait for internal resume */ 2643 mutex_unlock(&md->suspend_lock); 2644 r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE); 2645 if (r) 2646 return r; 2647 goto retry; 2648 } 2649 2650 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock)); 2651 if (!map || !dm_table_get_size(map)) 2652 goto out; 2653 2654 r = __dm_resume(md, map); 2655 if (r) 2656 goto out; 2657 2658 clear_bit(DMF_SUSPENDED, &md->flags); 2659 out: 2660 mutex_unlock(&md->suspend_lock); 2661 2662 return r; 2663 } 2664 2665 /* 2666 * Internal suspend/resume works like userspace-driven suspend. It waits 2667 * until all bios finish and prevents issuing new bios to the target drivers. 2668 * It may be used only from the kernel. 2669 */ 2670 2671 static void __dm_internal_suspend(struct mapped_device *md, unsigned suspend_flags) 2672 { 2673 struct dm_table *map = NULL; 2674 2675 lockdep_assert_held(&md->suspend_lock); 2676 2677 if (md->internal_suspend_count++) 2678 return; /* nested internal suspend */ 2679 2680 if (dm_suspended_md(md)) { 2681 set_bit(DMF_SUSPENDED_INTERNALLY, &md->flags); 2682 return; /* nest suspend */ 2683 } 2684 2685 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock)); 2686 2687 /* 2688 * Using TASK_UNINTERRUPTIBLE because only NOFLUSH internal suspend is 2689 * supported. Properly supporting a TASK_INTERRUPTIBLE internal suspend 2690 * would require changing .presuspend to return an error -- avoid this 2691 * until there is a need for more elaborate variants of internal suspend. 2692 */ 2693 (void) __dm_suspend(md, map, suspend_flags, TASK_UNINTERRUPTIBLE, 2694 DMF_SUSPENDED_INTERNALLY); 2695 2696 dm_table_postsuspend_targets(map); 2697 } 2698 2699 static void __dm_internal_resume(struct mapped_device *md) 2700 { 2701 BUG_ON(!md->internal_suspend_count); 2702 2703 if (--md->internal_suspend_count) 2704 return; /* resume from nested internal suspend */ 2705 2706 if (dm_suspended_md(md)) 2707 goto done; /* resume from nested suspend */ 2708 2709 /* 2710 * NOTE: existing callers don't need to call dm_table_resume_targets 2711 * (which may fail -- so best to avoid it for now by passing NULL map) 2712 */ 2713 (void) __dm_resume(md, NULL); 2714 2715 done: 2716 clear_bit(DMF_SUSPENDED_INTERNALLY, &md->flags); 2717 smp_mb__after_atomic(); 2718 wake_up_bit(&md->flags, DMF_SUSPENDED_INTERNALLY); 2719 } 2720 2721 void dm_internal_suspend_noflush(struct mapped_device *md) 2722 { 2723 mutex_lock(&md->suspend_lock); 2724 __dm_internal_suspend(md, DM_SUSPEND_NOFLUSH_FLAG); 2725 mutex_unlock(&md->suspend_lock); 2726 } 2727 EXPORT_SYMBOL_GPL(dm_internal_suspend_noflush); 2728 2729 void dm_internal_resume(struct mapped_device *md) 2730 { 2731 mutex_lock(&md->suspend_lock); 2732 __dm_internal_resume(md); 2733 mutex_unlock(&md->suspend_lock); 2734 } 2735 EXPORT_SYMBOL_GPL(dm_internal_resume); 2736 2737 /* 2738 * Fast variants of internal suspend/resume hold md->suspend_lock, 2739 * which prevents interaction with userspace-driven suspend. 2740 */ 2741 2742 void dm_internal_suspend_fast(struct mapped_device *md) 2743 { 2744 mutex_lock(&md->suspend_lock); 2745 if (dm_suspended_md(md) || dm_suspended_internally_md(md)) 2746 return; 2747 2748 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags); 2749 synchronize_srcu(&md->io_barrier); 2750 flush_workqueue(md->wq); 2751 dm_wait_for_completion(md, TASK_UNINTERRUPTIBLE); 2752 } 2753 EXPORT_SYMBOL_GPL(dm_internal_suspend_fast); 2754 2755 void dm_internal_resume_fast(struct mapped_device *md) 2756 { 2757 if (dm_suspended_md(md) || dm_suspended_internally_md(md)) 2758 goto done; 2759 2760 dm_queue_flush(md); 2761 2762 done: 2763 mutex_unlock(&md->suspend_lock); 2764 } 2765 EXPORT_SYMBOL_GPL(dm_internal_resume_fast); 2766 2767 /*----------------------------------------------------------------- 2768 * Event notification. 2769 *---------------------------------------------------------------*/ 2770 int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action, 2771 unsigned cookie) 2772 { 2773 char udev_cookie[DM_COOKIE_LENGTH]; 2774 char *envp[] = { udev_cookie, NULL }; 2775 2776 if (!cookie) 2777 return kobject_uevent(&disk_to_dev(md->disk)->kobj, action); 2778 else { 2779 snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u", 2780 DM_COOKIE_ENV_VAR_NAME, cookie); 2781 return kobject_uevent_env(&disk_to_dev(md->disk)->kobj, 2782 action, envp); 2783 } 2784 } 2785 2786 uint32_t dm_next_uevent_seq(struct mapped_device *md) 2787 { 2788 return atomic_add_return(1, &md->uevent_seq); 2789 } 2790 2791 uint32_t dm_get_event_nr(struct mapped_device *md) 2792 { 2793 return atomic_read(&md->event_nr); 2794 } 2795 2796 int dm_wait_event(struct mapped_device *md, int event_nr) 2797 { 2798 return wait_event_interruptible(md->eventq, 2799 (event_nr != atomic_read(&md->event_nr))); 2800 } 2801 2802 void dm_uevent_add(struct mapped_device *md, struct list_head *elist) 2803 { 2804 unsigned long flags; 2805 2806 spin_lock_irqsave(&md->uevent_lock, flags); 2807 list_add(elist, &md->uevent_list); 2808 spin_unlock_irqrestore(&md->uevent_lock, flags); 2809 } 2810 2811 /* 2812 * The gendisk is only valid as long as you have a reference 2813 * count on 'md'. 2814 */ 2815 struct gendisk *dm_disk(struct mapped_device *md) 2816 { 2817 return md->disk; 2818 } 2819 EXPORT_SYMBOL_GPL(dm_disk); 2820 2821 struct kobject *dm_kobject(struct mapped_device *md) 2822 { 2823 return &md->kobj_holder.kobj; 2824 } 2825 2826 struct mapped_device *dm_get_from_kobject(struct kobject *kobj) 2827 { 2828 struct mapped_device *md; 2829 2830 md = container_of(kobj, struct mapped_device, kobj_holder.kobj); 2831 2832 spin_lock(&_minor_lock); 2833 if (test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) { 2834 md = NULL; 2835 goto out; 2836 } 2837 dm_get(md); 2838 out: 2839 spin_unlock(&_minor_lock); 2840 2841 return md; 2842 } 2843 2844 int dm_suspended_md(struct mapped_device *md) 2845 { 2846 return test_bit(DMF_SUSPENDED, &md->flags); 2847 } 2848 2849 int dm_suspended_internally_md(struct mapped_device *md) 2850 { 2851 return test_bit(DMF_SUSPENDED_INTERNALLY, &md->flags); 2852 } 2853 2854 int dm_test_deferred_remove_flag(struct mapped_device *md) 2855 { 2856 return test_bit(DMF_DEFERRED_REMOVE, &md->flags); 2857 } 2858 2859 int dm_suspended(struct dm_target *ti) 2860 { 2861 return dm_suspended_md(dm_table_get_md(ti->table)); 2862 } 2863 EXPORT_SYMBOL_GPL(dm_suspended); 2864 2865 int dm_noflush_suspending(struct dm_target *ti) 2866 { 2867 return __noflush_suspending(dm_table_get_md(ti->table)); 2868 } 2869 EXPORT_SYMBOL_GPL(dm_noflush_suspending); 2870 2871 struct dm_md_mempools *dm_alloc_md_mempools(struct mapped_device *md, enum dm_queue_mode type, 2872 unsigned integrity, unsigned per_io_data_size, 2873 unsigned min_pool_size) 2874 { 2875 struct dm_md_mempools *pools = kzalloc_node(sizeof(*pools), GFP_KERNEL, md->numa_node_id); 2876 unsigned int pool_size = 0; 2877 unsigned int front_pad, io_front_pad; 2878 2879 if (!pools) 2880 return NULL; 2881 2882 switch (type) { 2883 case DM_TYPE_BIO_BASED: 2884 case DM_TYPE_DAX_BIO_BASED: 2885 case DM_TYPE_NVME_BIO_BASED: 2886 pool_size = max(dm_get_reserved_bio_based_ios(), min_pool_size); 2887 front_pad = roundup(per_io_data_size, __alignof__(struct dm_target_io)) + offsetof(struct dm_target_io, clone); 2888 io_front_pad = roundup(front_pad, __alignof__(struct dm_io)) + offsetof(struct dm_io, tio); 2889 pools->io_bs = bioset_create(pool_size, io_front_pad, 0); 2890 if (!pools->io_bs) 2891 goto out; 2892 if (integrity && bioset_integrity_create(pools->io_bs, pool_size)) 2893 goto out; 2894 break; 2895 case DM_TYPE_REQUEST_BASED: 2896 case DM_TYPE_MQ_REQUEST_BASED: 2897 pool_size = max(dm_get_reserved_rq_based_ios(), min_pool_size); 2898 front_pad = offsetof(struct dm_rq_clone_bio_info, clone); 2899 /* per_io_data_size is used for blk-mq pdu at queue allocation */ 2900 break; 2901 default: 2902 BUG(); 2903 } 2904 2905 pools->bs = bioset_create(pool_size, front_pad, 0); 2906 if (!pools->bs) 2907 goto out; 2908 2909 if (integrity && bioset_integrity_create(pools->bs, pool_size)) 2910 goto out; 2911 2912 return pools; 2913 2914 out: 2915 dm_free_md_mempools(pools); 2916 2917 return NULL; 2918 } 2919 2920 void dm_free_md_mempools(struct dm_md_mempools *pools) 2921 { 2922 if (!pools) 2923 return; 2924 2925 if (pools->bs) 2926 bioset_free(pools->bs); 2927 if (pools->io_bs) 2928 bioset_free(pools->io_bs); 2929 2930 kfree(pools); 2931 } 2932 2933 struct dm_pr { 2934 u64 old_key; 2935 u64 new_key; 2936 u32 flags; 2937 bool fail_early; 2938 }; 2939 2940 static int dm_call_pr(struct block_device *bdev, iterate_devices_callout_fn fn, 2941 void *data) 2942 { 2943 struct mapped_device *md = bdev->bd_disk->private_data; 2944 struct dm_table *table; 2945 struct dm_target *ti; 2946 int ret = -ENOTTY, srcu_idx; 2947 2948 table = dm_get_live_table(md, &srcu_idx); 2949 if (!table || !dm_table_get_size(table)) 2950 goto out; 2951 2952 /* We only support devices that have a single target */ 2953 if (dm_table_get_num_targets(table) != 1) 2954 goto out; 2955 ti = dm_table_get_target(table, 0); 2956 2957 ret = -EINVAL; 2958 if (!ti->type->iterate_devices) 2959 goto out; 2960 2961 ret = ti->type->iterate_devices(ti, fn, data); 2962 out: 2963 dm_put_live_table(md, srcu_idx); 2964 return ret; 2965 } 2966 2967 /* 2968 * For register / unregister we need to manually call out to every path. 2969 */ 2970 static int __dm_pr_register(struct dm_target *ti, struct dm_dev *dev, 2971 sector_t start, sector_t len, void *data) 2972 { 2973 struct dm_pr *pr = data; 2974 const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops; 2975 2976 if (!ops || !ops->pr_register) 2977 return -EOPNOTSUPP; 2978 return ops->pr_register(dev->bdev, pr->old_key, pr->new_key, pr->flags); 2979 } 2980 2981 static int dm_pr_register(struct block_device *bdev, u64 old_key, u64 new_key, 2982 u32 flags) 2983 { 2984 struct dm_pr pr = { 2985 .old_key = old_key, 2986 .new_key = new_key, 2987 .flags = flags, 2988 .fail_early = true, 2989 }; 2990 int ret; 2991 2992 ret = dm_call_pr(bdev, __dm_pr_register, &pr); 2993 if (ret && new_key) { 2994 /* unregister all paths if we failed to register any path */ 2995 pr.old_key = new_key; 2996 pr.new_key = 0; 2997 pr.flags = 0; 2998 pr.fail_early = false; 2999 dm_call_pr(bdev, __dm_pr_register, &pr); 3000 } 3001 3002 return ret; 3003 } 3004 3005 static int dm_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type, 3006 u32 flags) 3007 { 3008 struct mapped_device *md = bdev->bd_disk->private_data; 3009 const struct pr_ops *ops; 3010 fmode_t mode; 3011 int r; 3012 3013 r = dm_grab_bdev_for_ioctl(md, &bdev, &mode); 3014 if (r < 0) 3015 return r; 3016 3017 ops = bdev->bd_disk->fops->pr_ops; 3018 if (ops && ops->pr_reserve) 3019 r = ops->pr_reserve(bdev, key, type, flags); 3020 else 3021 r = -EOPNOTSUPP; 3022 3023 bdput(bdev); 3024 return r; 3025 } 3026 3027 static int dm_pr_release(struct block_device *bdev, u64 key, enum pr_type type) 3028 { 3029 struct mapped_device *md = bdev->bd_disk->private_data; 3030 const struct pr_ops *ops; 3031 fmode_t mode; 3032 int r; 3033 3034 r = dm_grab_bdev_for_ioctl(md, &bdev, &mode); 3035 if (r < 0) 3036 return r; 3037 3038 ops = bdev->bd_disk->fops->pr_ops; 3039 if (ops && ops->pr_release) 3040 r = ops->pr_release(bdev, key, type); 3041 else 3042 r = -EOPNOTSUPP; 3043 3044 bdput(bdev); 3045 return r; 3046 } 3047 3048 static int dm_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key, 3049 enum pr_type type, bool abort) 3050 { 3051 struct mapped_device *md = bdev->bd_disk->private_data; 3052 const struct pr_ops *ops; 3053 fmode_t mode; 3054 int r; 3055 3056 r = dm_grab_bdev_for_ioctl(md, &bdev, &mode); 3057 if (r < 0) 3058 return r; 3059 3060 ops = bdev->bd_disk->fops->pr_ops; 3061 if (ops && ops->pr_preempt) 3062 r = ops->pr_preempt(bdev, old_key, new_key, type, abort); 3063 else 3064 r = -EOPNOTSUPP; 3065 3066 bdput(bdev); 3067 return r; 3068 } 3069 3070 static int dm_pr_clear(struct block_device *bdev, u64 key) 3071 { 3072 struct mapped_device *md = bdev->bd_disk->private_data; 3073 const struct pr_ops *ops; 3074 fmode_t mode; 3075 int r; 3076 3077 r = dm_grab_bdev_for_ioctl(md, &bdev, &mode); 3078 if (r < 0) 3079 return r; 3080 3081 ops = bdev->bd_disk->fops->pr_ops; 3082 if (ops && ops->pr_clear) 3083 r = ops->pr_clear(bdev, key); 3084 else 3085 r = -EOPNOTSUPP; 3086 3087 bdput(bdev); 3088 return r; 3089 } 3090 3091 static const struct pr_ops dm_pr_ops = { 3092 .pr_register = dm_pr_register, 3093 .pr_reserve = dm_pr_reserve, 3094 .pr_release = dm_pr_release, 3095 .pr_preempt = dm_pr_preempt, 3096 .pr_clear = dm_pr_clear, 3097 }; 3098 3099 static const struct block_device_operations dm_blk_dops = { 3100 .open = dm_blk_open, 3101 .release = dm_blk_close, 3102 .ioctl = dm_blk_ioctl, 3103 .getgeo = dm_blk_getgeo, 3104 .pr_ops = &dm_pr_ops, 3105 .owner = THIS_MODULE 3106 }; 3107 3108 static const struct dax_operations dm_dax_ops = { 3109 .direct_access = dm_dax_direct_access, 3110 .copy_from_iter = dm_dax_copy_from_iter, 3111 }; 3112 3113 /* 3114 * module hooks 3115 */ 3116 module_init(dm_init); 3117 module_exit(dm_exit); 3118 3119 module_param(major, uint, 0); 3120 MODULE_PARM_DESC(major, "The major number of the device mapper"); 3121 3122 module_param(reserved_bio_based_ios, uint, S_IRUGO | S_IWUSR); 3123 MODULE_PARM_DESC(reserved_bio_based_ios, "Reserved IOs in bio-based mempools"); 3124 3125 module_param(dm_numa_node, int, S_IRUGO | S_IWUSR); 3126 MODULE_PARM_DESC(dm_numa_node, "NUMA node for DM device memory allocations"); 3127 3128 MODULE_DESCRIPTION(DM_NAME " driver"); 3129 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>"); 3130 MODULE_LICENSE("GPL"); 3131