xref: /linux/drivers/md/dm.c (revision 14b42963f64b98ab61fa9723c03d71aa5ef4f862)
1 /*
2  * Copyright (C) 2001, 2002 Sistina Software (UK) Limited.
3  * Copyright (C) 2004-2006 Red Hat, Inc. All rights reserved.
4  *
5  * This file is released under the GPL.
6  */
7 
8 #include "dm.h"
9 #include "dm-bio-list.h"
10 
11 #include <linux/init.h>
12 #include <linux/module.h>
13 #include <linux/mutex.h>
14 #include <linux/moduleparam.h>
15 #include <linux/blkpg.h>
16 #include <linux/bio.h>
17 #include <linux/buffer_head.h>
18 #include <linux/mempool.h>
19 #include <linux/slab.h>
20 #include <linux/idr.h>
21 #include <linux/hdreg.h>
22 #include <linux/blktrace_api.h>
23 
24 #define DM_MSG_PREFIX "core"
25 
26 static const char *_name = DM_NAME;
27 
28 static unsigned int major = 0;
29 static unsigned int _major = 0;
30 
31 static DEFINE_SPINLOCK(_minor_lock);
32 /*
33  * One of these is allocated per bio.
34  */
35 struct dm_io {
36 	struct mapped_device *md;
37 	int error;
38 	struct bio *bio;
39 	atomic_t io_count;
40 	unsigned long start_time;
41 };
42 
43 /*
44  * One of these is allocated per target within a bio.  Hopefully
45  * this will be simplified out one day.
46  */
47 struct target_io {
48 	struct dm_io *io;
49 	struct dm_target *ti;
50 	union map_info info;
51 };
52 
53 union map_info *dm_get_mapinfo(struct bio *bio)
54 {
55 	if (bio && bio->bi_private)
56 		return &((struct target_io *)bio->bi_private)->info;
57 	return NULL;
58 }
59 
60 #define MINOR_ALLOCED ((void *)-1)
61 
62 /*
63  * Bits for the md->flags field.
64  */
65 #define DMF_BLOCK_IO 0
66 #define DMF_SUSPENDED 1
67 #define DMF_FROZEN 2
68 #define DMF_FREEING 3
69 #define DMF_DELETING 4
70 
71 struct mapped_device {
72 	struct rw_semaphore io_lock;
73 	struct semaphore suspend_lock;
74 	rwlock_t map_lock;
75 	atomic_t holders;
76 	atomic_t open_count;
77 
78 	unsigned long flags;
79 
80 	request_queue_t *queue;
81 	struct gendisk *disk;
82 	char name[16];
83 
84 	void *interface_ptr;
85 
86 	/*
87 	 * A list of ios that arrived while we were suspended.
88 	 */
89 	atomic_t pending;
90 	wait_queue_head_t wait;
91  	struct bio_list deferred;
92 
93 	/*
94 	 * The current mapping.
95 	 */
96 	struct dm_table *map;
97 
98 	/*
99 	 * io objects are allocated from here.
100 	 */
101 	mempool_t *io_pool;
102 	mempool_t *tio_pool;
103 
104 	/*
105 	 * Event handling.
106 	 */
107 	atomic_t event_nr;
108 	wait_queue_head_t eventq;
109 
110 	/*
111 	 * freeze/thaw support require holding onto a super block
112 	 */
113 	struct super_block *frozen_sb;
114 	struct block_device *suspended_bdev;
115 
116 	/* forced geometry settings */
117 	struct hd_geometry geometry;
118 };
119 
120 #define MIN_IOS 256
121 static kmem_cache_t *_io_cache;
122 static kmem_cache_t *_tio_cache;
123 
124 static struct bio_set *dm_set;
125 
126 static int __init local_init(void)
127 {
128 	int r;
129 
130 	dm_set = bioset_create(16, 16, 4);
131 	if (!dm_set)
132 		return -ENOMEM;
133 
134 	/* allocate a slab for the dm_ios */
135 	_io_cache = kmem_cache_create("dm_io",
136 				      sizeof(struct dm_io), 0, 0, NULL, NULL);
137 	if (!_io_cache)
138 		return -ENOMEM;
139 
140 	/* allocate a slab for the target ios */
141 	_tio_cache = kmem_cache_create("dm_tio", sizeof(struct target_io),
142 				       0, 0, NULL, NULL);
143 	if (!_tio_cache) {
144 		kmem_cache_destroy(_io_cache);
145 		return -ENOMEM;
146 	}
147 
148 	_major = major;
149 	r = register_blkdev(_major, _name);
150 	if (r < 0) {
151 		kmem_cache_destroy(_tio_cache);
152 		kmem_cache_destroy(_io_cache);
153 		return r;
154 	}
155 
156 	if (!_major)
157 		_major = r;
158 
159 	return 0;
160 }
161 
162 static void local_exit(void)
163 {
164 	kmem_cache_destroy(_tio_cache);
165 	kmem_cache_destroy(_io_cache);
166 
167 	bioset_free(dm_set);
168 
169 	if (unregister_blkdev(_major, _name) < 0)
170 		DMERR("unregister_blkdev failed");
171 
172 	_major = 0;
173 
174 	DMINFO("cleaned up");
175 }
176 
177 int (*_inits[])(void) __initdata = {
178 	local_init,
179 	dm_target_init,
180 	dm_linear_init,
181 	dm_stripe_init,
182 	dm_interface_init,
183 };
184 
185 void (*_exits[])(void) = {
186 	local_exit,
187 	dm_target_exit,
188 	dm_linear_exit,
189 	dm_stripe_exit,
190 	dm_interface_exit,
191 };
192 
193 static int __init dm_init(void)
194 {
195 	const int count = ARRAY_SIZE(_inits);
196 
197 	int r, i;
198 
199 	for (i = 0; i < count; i++) {
200 		r = _inits[i]();
201 		if (r)
202 			goto bad;
203 	}
204 
205 	return 0;
206 
207       bad:
208 	while (i--)
209 		_exits[i]();
210 
211 	return r;
212 }
213 
214 static void __exit dm_exit(void)
215 {
216 	int i = ARRAY_SIZE(_exits);
217 
218 	while (i--)
219 		_exits[i]();
220 }
221 
222 /*
223  * Block device functions
224  */
225 static int dm_blk_open(struct inode *inode, struct file *file)
226 {
227 	struct mapped_device *md;
228 
229 	spin_lock(&_minor_lock);
230 
231 	md = inode->i_bdev->bd_disk->private_data;
232 	if (!md)
233 		goto out;
234 
235 	if (test_bit(DMF_FREEING, &md->flags) ||
236 	    test_bit(DMF_DELETING, &md->flags)) {
237 		md = NULL;
238 		goto out;
239 	}
240 
241 	dm_get(md);
242 	atomic_inc(&md->open_count);
243 
244 out:
245 	spin_unlock(&_minor_lock);
246 
247 	return md ? 0 : -ENXIO;
248 }
249 
250 static int dm_blk_close(struct inode *inode, struct file *file)
251 {
252 	struct mapped_device *md;
253 
254 	md = inode->i_bdev->bd_disk->private_data;
255 	atomic_dec(&md->open_count);
256 	dm_put(md);
257 	return 0;
258 }
259 
260 int dm_open_count(struct mapped_device *md)
261 {
262 	return atomic_read(&md->open_count);
263 }
264 
265 /*
266  * Guarantees nothing is using the device before it's deleted.
267  */
268 int dm_lock_for_deletion(struct mapped_device *md)
269 {
270 	int r = 0;
271 
272 	spin_lock(&_minor_lock);
273 
274 	if (dm_open_count(md))
275 		r = -EBUSY;
276 	else
277 		set_bit(DMF_DELETING, &md->flags);
278 
279 	spin_unlock(&_minor_lock);
280 
281 	return r;
282 }
283 
284 static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
285 {
286 	struct mapped_device *md = bdev->bd_disk->private_data;
287 
288 	return dm_get_geometry(md, geo);
289 }
290 
291 static inline struct dm_io *alloc_io(struct mapped_device *md)
292 {
293 	return mempool_alloc(md->io_pool, GFP_NOIO);
294 }
295 
296 static inline void free_io(struct mapped_device *md, struct dm_io *io)
297 {
298 	mempool_free(io, md->io_pool);
299 }
300 
301 static inline struct target_io *alloc_tio(struct mapped_device *md)
302 {
303 	return mempool_alloc(md->tio_pool, GFP_NOIO);
304 }
305 
306 static inline void free_tio(struct mapped_device *md, struct target_io *tio)
307 {
308 	mempool_free(tio, md->tio_pool);
309 }
310 
311 static void start_io_acct(struct dm_io *io)
312 {
313 	struct mapped_device *md = io->md;
314 
315 	io->start_time = jiffies;
316 
317 	preempt_disable();
318 	disk_round_stats(dm_disk(md));
319 	preempt_enable();
320 	dm_disk(md)->in_flight = atomic_inc_return(&md->pending);
321 }
322 
323 static int end_io_acct(struct dm_io *io)
324 {
325 	struct mapped_device *md = io->md;
326 	struct bio *bio = io->bio;
327 	unsigned long duration = jiffies - io->start_time;
328 	int pending;
329 	int rw = bio_data_dir(bio);
330 
331 	preempt_disable();
332 	disk_round_stats(dm_disk(md));
333 	preempt_enable();
334 	dm_disk(md)->in_flight = pending = atomic_dec_return(&md->pending);
335 
336 	disk_stat_add(dm_disk(md), ticks[rw], duration);
337 
338 	return !pending;
339 }
340 
341 /*
342  * Add the bio to the list of deferred io.
343  */
344 static int queue_io(struct mapped_device *md, struct bio *bio)
345 {
346 	down_write(&md->io_lock);
347 
348 	if (!test_bit(DMF_BLOCK_IO, &md->flags)) {
349 		up_write(&md->io_lock);
350 		return 1;
351 	}
352 
353 	bio_list_add(&md->deferred, bio);
354 
355 	up_write(&md->io_lock);
356 	return 0;		/* deferred successfully */
357 }
358 
359 /*
360  * Everyone (including functions in this file), should use this
361  * function to access the md->map field, and make sure they call
362  * dm_table_put() when finished.
363  */
364 struct dm_table *dm_get_table(struct mapped_device *md)
365 {
366 	struct dm_table *t;
367 
368 	read_lock(&md->map_lock);
369 	t = md->map;
370 	if (t)
371 		dm_table_get(t);
372 	read_unlock(&md->map_lock);
373 
374 	return t;
375 }
376 
377 /*
378  * Get the geometry associated with a dm device
379  */
380 int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo)
381 {
382 	*geo = md->geometry;
383 
384 	return 0;
385 }
386 
387 /*
388  * Set the geometry of a device.
389  */
390 int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo)
391 {
392 	sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors;
393 
394 	if (geo->start > sz) {
395 		DMWARN("Start sector is beyond the geometry limits.");
396 		return -EINVAL;
397 	}
398 
399 	md->geometry = *geo;
400 
401 	return 0;
402 }
403 
404 /*-----------------------------------------------------------------
405  * CRUD START:
406  *   A more elegant soln is in the works that uses the queue
407  *   merge fn, unfortunately there are a couple of changes to
408  *   the block layer that I want to make for this.  So in the
409  *   interests of getting something for people to use I give
410  *   you this clearly demarcated crap.
411  *---------------------------------------------------------------*/
412 
413 /*
414  * Decrements the number of outstanding ios that a bio has been
415  * cloned into, completing the original io if necc.
416  */
417 static void dec_pending(struct dm_io *io, int error)
418 {
419 	if (error)
420 		io->error = error;
421 
422 	if (atomic_dec_and_test(&io->io_count)) {
423 		if (end_io_acct(io))
424 			/* nudge anyone waiting on suspend queue */
425 			wake_up(&io->md->wait);
426 
427 		blk_add_trace_bio(io->md->queue, io->bio, BLK_TA_COMPLETE);
428 
429 		bio_endio(io->bio, io->bio->bi_size, io->error);
430 		free_io(io->md, io);
431 	}
432 }
433 
434 static int clone_endio(struct bio *bio, unsigned int done, int error)
435 {
436 	int r = 0;
437 	struct target_io *tio = bio->bi_private;
438 	struct dm_io *io = tio->io;
439 	dm_endio_fn endio = tio->ti->type->end_io;
440 
441 	if (bio->bi_size)
442 		return 1;
443 
444 	if (!bio_flagged(bio, BIO_UPTODATE) && !error)
445 		error = -EIO;
446 
447 	if (endio) {
448 		r = endio(tio->ti, bio, error, &tio->info);
449 		if (r < 0)
450 			error = r;
451 
452 		else if (r > 0)
453 			/* the target wants another shot at the io */
454 			return 1;
455 	}
456 
457 	free_tio(io->md, tio);
458 	dec_pending(io, error);
459 	bio_put(bio);
460 	return r;
461 }
462 
463 static sector_t max_io_len(struct mapped_device *md,
464 			   sector_t sector, struct dm_target *ti)
465 {
466 	sector_t offset = sector - ti->begin;
467 	sector_t len = ti->len - offset;
468 
469 	/*
470 	 * Does the target need to split even further ?
471 	 */
472 	if (ti->split_io) {
473 		sector_t boundary;
474 		boundary = ((offset + ti->split_io) & ~(ti->split_io - 1))
475 			   - offset;
476 		if (len > boundary)
477 			len = boundary;
478 	}
479 
480 	return len;
481 }
482 
483 static void __map_bio(struct dm_target *ti, struct bio *clone,
484 		      struct target_io *tio)
485 {
486 	int r;
487 	sector_t sector;
488 
489 	/*
490 	 * Sanity checks.
491 	 */
492 	BUG_ON(!clone->bi_size);
493 
494 	clone->bi_end_io = clone_endio;
495 	clone->bi_private = tio;
496 
497 	/*
498 	 * Map the clone.  If r == 0 we don't need to do
499 	 * anything, the target has assumed ownership of
500 	 * this io.
501 	 */
502 	atomic_inc(&tio->io->io_count);
503 	sector = clone->bi_sector;
504 	r = ti->type->map(ti, clone, &tio->info);
505 	if (r > 0) {
506 		/* the bio has been remapped so dispatch it */
507 
508 		blk_add_trace_remap(bdev_get_queue(clone->bi_bdev), clone,
509 				    tio->io->bio->bi_bdev->bd_dev, sector,
510 				    clone->bi_sector);
511 
512 		generic_make_request(clone);
513 	}
514 
515 	else if (r < 0) {
516 		/* error the io and bail out */
517 		struct dm_io *io = tio->io;
518 		free_tio(tio->io->md, tio);
519 		dec_pending(io, r);
520 		bio_put(clone);
521 	}
522 }
523 
524 struct clone_info {
525 	struct mapped_device *md;
526 	struct dm_table *map;
527 	struct bio *bio;
528 	struct dm_io *io;
529 	sector_t sector;
530 	sector_t sector_count;
531 	unsigned short idx;
532 };
533 
534 static void dm_bio_destructor(struct bio *bio)
535 {
536 	bio_free(bio, dm_set);
537 }
538 
539 /*
540  * Creates a little bio that is just does part of a bvec.
541  */
542 static struct bio *split_bvec(struct bio *bio, sector_t sector,
543 			      unsigned short idx, unsigned int offset,
544 			      unsigned int len)
545 {
546 	struct bio *clone;
547 	struct bio_vec *bv = bio->bi_io_vec + idx;
548 
549 	clone = bio_alloc_bioset(GFP_NOIO, 1, dm_set);
550 	clone->bi_destructor = dm_bio_destructor;
551 	*clone->bi_io_vec = *bv;
552 
553 	clone->bi_sector = sector;
554 	clone->bi_bdev = bio->bi_bdev;
555 	clone->bi_rw = bio->bi_rw;
556 	clone->bi_vcnt = 1;
557 	clone->bi_size = to_bytes(len);
558 	clone->bi_io_vec->bv_offset = offset;
559 	clone->bi_io_vec->bv_len = clone->bi_size;
560 
561 	return clone;
562 }
563 
564 /*
565  * Creates a bio that consists of range of complete bvecs.
566  */
567 static struct bio *clone_bio(struct bio *bio, sector_t sector,
568 			     unsigned short idx, unsigned short bv_count,
569 			     unsigned int len)
570 {
571 	struct bio *clone;
572 
573 	clone = bio_clone(bio, GFP_NOIO);
574 	clone->bi_sector = sector;
575 	clone->bi_idx = idx;
576 	clone->bi_vcnt = idx + bv_count;
577 	clone->bi_size = to_bytes(len);
578 	clone->bi_flags &= ~(1 << BIO_SEG_VALID);
579 
580 	return clone;
581 }
582 
583 static void __clone_and_map(struct clone_info *ci)
584 {
585 	struct bio *clone, *bio = ci->bio;
586 	struct dm_target *ti = dm_table_find_target(ci->map, ci->sector);
587 	sector_t len = 0, max = max_io_len(ci->md, ci->sector, ti);
588 	struct target_io *tio;
589 
590 	/*
591 	 * Allocate a target io object.
592 	 */
593 	tio = alloc_tio(ci->md);
594 	tio->io = ci->io;
595 	tio->ti = ti;
596 	memset(&tio->info, 0, sizeof(tio->info));
597 
598 	if (ci->sector_count <= max) {
599 		/*
600 		 * Optimise for the simple case where we can do all of
601 		 * the remaining io with a single clone.
602 		 */
603 		clone = clone_bio(bio, ci->sector, ci->idx,
604 				  bio->bi_vcnt - ci->idx, ci->sector_count);
605 		__map_bio(ti, clone, tio);
606 		ci->sector_count = 0;
607 
608 	} else if (to_sector(bio->bi_io_vec[ci->idx].bv_len) <= max) {
609 		/*
610 		 * There are some bvecs that don't span targets.
611 		 * Do as many of these as possible.
612 		 */
613 		int i;
614 		sector_t remaining = max;
615 		sector_t bv_len;
616 
617 		for (i = ci->idx; remaining && (i < bio->bi_vcnt); i++) {
618 			bv_len = to_sector(bio->bi_io_vec[i].bv_len);
619 
620 			if (bv_len > remaining)
621 				break;
622 
623 			remaining -= bv_len;
624 			len += bv_len;
625 		}
626 
627 		clone = clone_bio(bio, ci->sector, ci->idx, i - ci->idx, len);
628 		__map_bio(ti, clone, tio);
629 
630 		ci->sector += len;
631 		ci->sector_count -= len;
632 		ci->idx = i;
633 
634 	} else {
635 		/*
636 		 * Handle a bvec that must be split between two or more targets.
637 		 */
638 		struct bio_vec *bv = bio->bi_io_vec + ci->idx;
639 		sector_t remaining = to_sector(bv->bv_len);
640 		unsigned int offset = 0;
641 
642 		do {
643 			if (offset) {
644 				ti = dm_table_find_target(ci->map, ci->sector);
645 				max = max_io_len(ci->md, ci->sector, ti);
646 
647 				tio = alloc_tio(ci->md);
648 				tio->io = ci->io;
649 				tio->ti = ti;
650 				memset(&tio->info, 0, sizeof(tio->info));
651 			}
652 
653 			len = min(remaining, max);
654 
655 			clone = split_bvec(bio, ci->sector, ci->idx,
656 					   bv->bv_offset + offset, len);
657 
658 			__map_bio(ti, clone, tio);
659 
660 			ci->sector += len;
661 			ci->sector_count -= len;
662 			offset += to_bytes(len);
663 		} while (remaining -= len);
664 
665 		ci->idx++;
666 	}
667 }
668 
669 /*
670  * Split the bio into several clones.
671  */
672 static void __split_bio(struct mapped_device *md, struct bio *bio)
673 {
674 	struct clone_info ci;
675 
676 	ci.map = dm_get_table(md);
677 	if (!ci.map) {
678 		bio_io_error(bio, bio->bi_size);
679 		return;
680 	}
681 
682 	ci.md = md;
683 	ci.bio = bio;
684 	ci.io = alloc_io(md);
685 	ci.io->error = 0;
686 	atomic_set(&ci.io->io_count, 1);
687 	ci.io->bio = bio;
688 	ci.io->md = md;
689 	ci.sector = bio->bi_sector;
690 	ci.sector_count = bio_sectors(bio);
691 	ci.idx = bio->bi_idx;
692 
693 	start_io_acct(ci.io);
694 	while (ci.sector_count)
695 		__clone_and_map(&ci);
696 
697 	/* drop the extra reference count */
698 	dec_pending(ci.io, 0);
699 	dm_table_put(ci.map);
700 }
701 /*-----------------------------------------------------------------
702  * CRUD END
703  *---------------------------------------------------------------*/
704 
705 /*
706  * The request function that just remaps the bio built up by
707  * dm_merge_bvec.
708  */
709 static int dm_request(request_queue_t *q, struct bio *bio)
710 {
711 	int r;
712 	int rw = bio_data_dir(bio);
713 	struct mapped_device *md = q->queuedata;
714 
715 	down_read(&md->io_lock);
716 
717 	disk_stat_inc(dm_disk(md), ios[rw]);
718 	disk_stat_add(dm_disk(md), sectors[rw], bio_sectors(bio));
719 
720 	/*
721 	 * If we're suspended we have to queue
722 	 * this io for later.
723 	 */
724 	while (test_bit(DMF_BLOCK_IO, &md->flags)) {
725 		up_read(&md->io_lock);
726 
727 		if (bio_rw(bio) == READA) {
728 			bio_io_error(bio, bio->bi_size);
729 			return 0;
730 		}
731 
732 		r = queue_io(md, bio);
733 		if (r < 0) {
734 			bio_io_error(bio, bio->bi_size);
735 			return 0;
736 
737 		} else if (r == 0)
738 			return 0;	/* deferred successfully */
739 
740 		/*
741 		 * We're in a while loop, because someone could suspend
742 		 * before we get to the following read lock.
743 		 */
744 		down_read(&md->io_lock);
745 	}
746 
747 	__split_bio(md, bio);
748 	up_read(&md->io_lock);
749 	return 0;
750 }
751 
752 static int dm_flush_all(request_queue_t *q, struct gendisk *disk,
753 			sector_t *error_sector)
754 {
755 	struct mapped_device *md = q->queuedata;
756 	struct dm_table *map = dm_get_table(md);
757 	int ret = -ENXIO;
758 
759 	if (map) {
760 		ret = dm_table_flush_all(map);
761 		dm_table_put(map);
762 	}
763 
764 	return ret;
765 }
766 
767 static void dm_unplug_all(request_queue_t *q)
768 {
769 	struct mapped_device *md = q->queuedata;
770 	struct dm_table *map = dm_get_table(md);
771 
772 	if (map) {
773 		dm_table_unplug_all(map);
774 		dm_table_put(map);
775 	}
776 }
777 
778 static int dm_any_congested(void *congested_data, int bdi_bits)
779 {
780 	int r;
781 	struct mapped_device *md = (struct mapped_device *) congested_data;
782 	struct dm_table *map = dm_get_table(md);
783 
784 	if (!map || test_bit(DMF_BLOCK_IO, &md->flags))
785 		r = bdi_bits;
786 	else
787 		r = dm_table_any_congested(map, bdi_bits);
788 
789 	dm_table_put(map);
790 	return r;
791 }
792 
793 /*-----------------------------------------------------------------
794  * An IDR is used to keep track of allocated minor numbers.
795  *---------------------------------------------------------------*/
796 static DEFINE_IDR(_minor_idr);
797 
798 static void free_minor(int minor)
799 {
800 	spin_lock(&_minor_lock);
801 	idr_remove(&_minor_idr, minor);
802 	spin_unlock(&_minor_lock);
803 }
804 
805 /*
806  * See if the device with a specific minor # is free.
807  */
808 static int specific_minor(struct mapped_device *md, int minor)
809 {
810 	int r, m;
811 
812 	if (minor >= (1 << MINORBITS))
813 		return -EINVAL;
814 
815 	r = idr_pre_get(&_minor_idr, GFP_KERNEL);
816 	if (!r)
817 		return -ENOMEM;
818 
819 	spin_lock(&_minor_lock);
820 
821 	if (idr_find(&_minor_idr, minor)) {
822 		r = -EBUSY;
823 		goto out;
824 	}
825 
826 	r = idr_get_new_above(&_minor_idr, MINOR_ALLOCED, minor, &m);
827 	if (r)
828 		goto out;
829 
830 	if (m != minor) {
831 		idr_remove(&_minor_idr, m);
832 		r = -EBUSY;
833 		goto out;
834 	}
835 
836 out:
837 	spin_unlock(&_minor_lock);
838 	return r;
839 }
840 
841 static int next_free_minor(struct mapped_device *md, int *minor)
842 {
843 	int r, m;
844 
845 	r = idr_pre_get(&_minor_idr, GFP_KERNEL);
846 	if (!r)
847 		return -ENOMEM;
848 
849 	spin_lock(&_minor_lock);
850 
851 	r = idr_get_new(&_minor_idr, MINOR_ALLOCED, &m);
852 	if (r) {
853 		goto out;
854 	}
855 
856 	if (m >= (1 << MINORBITS)) {
857 		idr_remove(&_minor_idr, m);
858 		r = -ENOSPC;
859 		goto out;
860 	}
861 
862 	*minor = m;
863 
864 out:
865 	spin_unlock(&_minor_lock);
866 	return r;
867 }
868 
869 static struct block_device_operations dm_blk_dops;
870 
871 /*
872  * Allocate and initialise a blank device with a given minor.
873  */
874 static struct mapped_device *alloc_dev(int minor)
875 {
876 	int r;
877 	struct mapped_device *md = kmalloc(sizeof(*md), GFP_KERNEL);
878 	void *old_md;
879 
880 	if (!md) {
881 		DMWARN("unable to allocate device, out of memory.");
882 		return NULL;
883 	}
884 
885 	if (!try_module_get(THIS_MODULE))
886 		goto bad0;
887 
888 	/* get a minor number for the dev */
889 	if (minor == DM_ANY_MINOR)
890 		r = next_free_minor(md, &minor);
891 	else
892 		r = specific_minor(md, minor);
893 	if (r < 0)
894 		goto bad1;
895 
896 	memset(md, 0, sizeof(*md));
897 	init_rwsem(&md->io_lock);
898 	init_MUTEX(&md->suspend_lock);
899 	rwlock_init(&md->map_lock);
900 	atomic_set(&md->holders, 1);
901 	atomic_set(&md->open_count, 0);
902 	atomic_set(&md->event_nr, 0);
903 
904 	md->queue = blk_alloc_queue(GFP_KERNEL);
905 	if (!md->queue)
906 		goto bad1;
907 
908 	md->queue->queuedata = md;
909 	md->queue->backing_dev_info.congested_fn = dm_any_congested;
910 	md->queue->backing_dev_info.congested_data = md;
911 	blk_queue_make_request(md->queue, dm_request);
912 	blk_queue_bounce_limit(md->queue, BLK_BOUNCE_ANY);
913 	md->queue->unplug_fn = dm_unplug_all;
914 	md->queue->issue_flush_fn = dm_flush_all;
915 
916 	md->io_pool = mempool_create_slab_pool(MIN_IOS, _io_cache);
917  	if (!md->io_pool)
918  		goto bad2;
919 
920 	md->tio_pool = mempool_create_slab_pool(MIN_IOS, _tio_cache);
921 	if (!md->tio_pool)
922 		goto bad3;
923 
924 	md->disk = alloc_disk(1);
925 	if (!md->disk)
926 		goto bad4;
927 
928 	atomic_set(&md->pending, 0);
929 	init_waitqueue_head(&md->wait);
930 	init_waitqueue_head(&md->eventq);
931 
932 	md->disk->major = _major;
933 	md->disk->first_minor = minor;
934 	md->disk->fops = &dm_blk_dops;
935 	md->disk->queue = md->queue;
936 	md->disk->private_data = md;
937 	sprintf(md->disk->disk_name, "dm-%d", minor);
938 	add_disk(md->disk);
939 	format_dev_t(md->name, MKDEV(_major, minor));
940 
941 	/* Populate the mapping, nobody knows we exist yet */
942 	spin_lock(&_minor_lock);
943 	old_md = idr_replace(&_minor_idr, md, minor);
944 	spin_unlock(&_minor_lock);
945 
946 	BUG_ON(old_md != MINOR_ALLOCED);
947 
948 	return md;
949 
950  bad4:
951 	mempool_destroy(md->tio_pool);
952  bad3:
953 	mempool_destroy(md->io_pool);
954  bad2:
955 	blk_cleanup_queue(md->queue);
956 	free_minor(minor);
957  bad1:
958 	module_put(THIS_MODULE);
959  bad0:
960 	kfree(md);
961 	return NULL;
962 }
963 
964 static void free_dev(struct mapped_device *md)
965 {
966 	int minor = md->disk->first_minor;
967 
968 	if (md->suspended_bdev) {
969 		thaw_bdev(md->suspended_bdev, NULL);
970 		bdput(md->suspended_bdev);
971 	}
972 	mempool_destroy(md->tio_pool);
973 	mempool_destroy(md->io_pool);
974 	del_gendisk(md->disk);
975 	free_minor(minor);
976 
977 	spin_lock(&_minor_lock);
978 	md->disk->private_data = NULL;
979 	spin_unlock(&_minor_lock);
980 
981 	put_disk(md->disk);
982 	blk_cleanup_queue(md->queue);
983 	module_put(THIS_MODULE);
984 	kfree(md);
985 }
986 
987 /*
988  * Bind a table to the device.
989  */
990 static void event_callback(void *context)
991 {
992 	struct mapped_device *md = (struct mapped_device *) context;
993 
994 	atomic_inc(&md->event_nr);
995 	wake_up(&md->eventq);
996 }
997 
998 static void __set_size(struct mapped_device *md, sector_t size)
999 {
1000 	set_capacity(md->disk, size);
1001 
1002 	mutex_lock(&md->suspended_bdev->bd_inode->i_mutex);
1003 	i_size_write(md->suspended_bdev->bd_inode, (loff_t)size << SECTOR_SHIFT);
1004 	mutex_unlock(&md->suspended_bdev->bd_inode->i_mutex);
1005 }
1006 
1007 static int __bind(struct mapped_device *md, struct dm_table *t)
1008 {
1009 	request_queue_t *q = md->queue;
1010 	sector_t size;
1011 
1012 	size = dm_table_get_size(t);
1013 
1014 	/*
1015 	 * Wipe any geometry if the size of the table changed.
1016 	 */
1017 	if (size != get_capacity(md->disk))
1018 		memset(&md->geometry, 0, sizeof(md->geometry));
1019 
1020 	__set_size(md, size);
1021 	if (size == 0)
1022 		return 0;
1023 
1024 	dm_table_get(t);
1025 	dm_table_event_callback(t, event_callback, md);
1026 
1027 	write_lock(&md->map_lock);
1028 	md->map = t;
1029 	dm_table_set_restrictions(t, q);
1030 	write_unlock(&md->map_lock);
1031 
1032 	return 0;
1033 }
1034 
1035 static void __unbind(struct mapped_device *md)
1036 {
1037 	struct dm_table *map = md->map;
1038 
1039 	if (!map)
1040 		return;
1041 
1042 	dm_table_event_callback(map, NULL, NULL);
1043 	write_lock(&md->map_lock);
1044 	md->map = NULL;
1045 	write_unlock(&md->map_lock);
1046 	dm_table_put(map);
1047 }
1048 
1049 /*
1050  * Constructor for a new device.
1051  */
1052 int dm_create(int minor, struct mapped_device **result)
1053 {
1054 	struct mapped_device *md;
1055 
1056 	md = alloc_dev(minor);
1057 	if (!md)
1058 		return -ENXIO;
1059 
1060 	*result = md;
1061 	return 0;
1062 }
1063 
1064 static struct mapped_device *dm_find_md(dev_t dev)
1065 {
1066 	struct mapped_device *md;
1067 	unsigned minor = MINOR(dev);
1068 
1069 	if (MAJOR(dev) != _major || minor >= (1 << MINORBITS))
1070 		return NULL;
1071 
1072 	spin_lock(&_minor_lock);
1073 
1074 	md = idr_find(&_minor_idr, minor);
1075 	if (md && (md == MINOR_ALLOCED ||
1076 		   (dm_disk(md)->first_minor != minor) ||
1077 		   test_bit(DMF_FREEING, &md->flags))) {
1078 		md = NULL;
1079 		goto out;
1080 	}
1081 
1082 out:
1083 	spin_unlock(&_minor_lock);
1084 
1085 	return md;
1086 }
1087 
1088 struct mapped_device *dm_get_md(dev_t dev)
1089 {
1090 	struct mapped_device *md = dm_find_md(dev);
1091 
1092 	if (md)
1093 		dm_get(md);
1094 
1095 	return md;
1096 }
1097 
1098 void *dm_get_mdptr(struct mapped_device *md)
1099 {
1100 	return md->interface_ptr;
1101 }
1102 
1103 void dm_set_mdptr(struct mapped_device *md, void *ptr)
1104 {
1105 	md->interface_ptr = ptr;
1106 }
1107 
1108 void dm_get(struct mapped_device *md)
1109 {
1110 	atomic_inc(&md->holders);
1111 }
1112 
1113 const char *dm_device_name(struct mapped_device *md)
1114 {
1115 	return md->name;
1116 }
1117 EXPORT_SYMBOL_GPL(dm_device_name);
1118 
1119 void dm_put(struct mapped_device *md)
1120 {
1121 	struct dm_table *map;
1122 
1123 	BUG_ON(test_bit(DMF_FREEING, &md->flags));
1124 
1125 	if (atomic_dec_and_lock(&md->holders, &_minor_lock)) {
1126 		map = dm_get_table(md);
1127 		idr_replace(&_minor_idr, MINOR_ALLOCED, dm_disk(md)->first_minor);
1128 		set_bit(DMF_FREEING, &md->flags);
1129 		spin_unlock(&_minor_lock);
1130 		if (!dm_suspended(md)) {
1131 			dm_table_presuspend_targets(map);
1132 			dm_table_postsuspend_targets(map);
1133 		}
1134 		__unbind(md);
1135 		dm_table_put(map);
1136 		free_dev(md);
1137 	}
1138 }
1139 
1140 /*
1141  * Process the deferred bios
1142  */
1143 static void __flush_deferred_io(struct mapped_device *md, struct bio *c)
1144 {
1145 	struct bio *n;
1146 
1147 	while (c) {
1148 		n = c->bi_next;
1149 		c->bi_next = NULL;
1150 		__split_bio(md, c);
1151 		c = n;
1152 	}
1153 }
1154 
1155 /*
1156  * Swap in a new table (destroying old one).
1157  */
1158 int dm_swap_table(struct mapped_device *md, struct dm_table *table)
1159 {
1160 	int r = -EINVAL;
1161 
1162 	down(&md->suspend_lock);
1163 
1164 	/* device must be suspended */
1165 	if (!dm_suspended(md))
1166 		goto out;
1167 
1168 	__unbind(md);
1169 	r = __bind(md, table);
1170 
1171 out:
1172 	up(&md->suspend_lock);
1173 	return r;
1174 }
1175 
1176 /*
1177  * Functions to lock and unlock any filesystem running on the
1178  * device.
1179  */
1180 static int lock_fs(struct mapped_device *md)
1181 {
1182 	int r;
1183 
1184 	WARN_ON(md->frozen_sb);
1185 
1186 	md->frozen_sb = freeze_bdev(md->suspended_bdev);
1187 	if (IS_ERR(md->frozen_sb)) {
1188 		r = PTR_ERR(md->frozen_sb);
1189 		md->frozen_sb = NULL;
1190 		return r;
1191 	}
1192 
1193 	set_bit(DMF_FROZEN, &md->flags);
1194 
1195 	/* don't bdput right now, we don't want the bdev
1196 	 * to go away while it is locked.
1197 	 */
1198 	return 0;
1199 }
1200 
1201 static void unlock_fs(struct mapped_device *md)
1202 {
1203 	if (!test_bit(DMF_FROZEN, &md->flags))
1204 		return;
1205 
1206 	thaw_bdev(md->suspended_bdev, md->frozen_sb);
1207 	md->frozen_sb = NULL;
1208 	clear_bit(DMF_FROZEN, &md->flags);
1209 }
1210 
1211 /*
1212  * We need to be able to change a mapping table under a mounted
1213  * filesystem.  For example we might want to move some data in
1214  * the background.  Before the table can be swapped with
1215  * dm_bind_table, dm_suspend must be called to flush any in
1216  * flight bios and ensure that any further io gets deferred.
1217  */
1218 int dm_suspend(struct mapped_device *md, int do_lockfs)
1219 {
1220 	struct dm_table *map = NULL;
1221 	DECLARE_WAITQUEUE(wait, current);
1222 	struct bio *def;
1223 	int r = -EINVAL;
1224 
1225 	down(&md->suspend_lock);
1226 
1227 	if (dm_suspended(md))
1228 		goto out;
1229 
1230 	map = dm_get_table(md);
1231 
1232 	/* This does not get reverted if there's an error later. */
1233 	dm_table_presuspend_targets(map);
1234 
1235 	md->suspended_bdev = bdget_disk(md->disk, 0);
1236 	if (!md->suspended_bdev) {
1237 		DMWARN("bdget failed in dm_suspend");
1238 		r = -ENOMEM;
1239 		goto out;
1240 	}
1241 
1242 	/* Flush I/O to the device. */
1243 	if (do_lockfs) {
1244 		r = lock_fs(md);
1245 		if (r)
1246 			goto out;
1247 	}
1248 
1249 	/*
1250 	 * First we set the BLOCK_IO flag so no more ios will be mapped.
1251 	 */
1252 	down_write(&md->io_lock);
1253 	set_bit(DMF_BLOCK_IO, &md->flags);
1254 
1255 	add_wait_queue(&md->wait, &wait);
1256 	up_write(&md->io_lock);
1257 
1258 	/* unplug */
1259 	if (map)
1260 		dm_table_unplug_all(map);
1261 
1262 	/*
1263 	 * Then we wait for the already mapped ios to
1264 	 * complete.
1265 	 */
1266 	while (1) {
1267 		set_current_state(TASK_INTERRUPTIBLE);
1268 
1269 		if (!atomic_read(&md->pending) || signal_pending(current))
1270 			break;
1271 
1272 		io_schedule();
1273 	}
1274 	set_current_state(TASK_RUNNING);
1275 
1276 	down_write(&md->io_lock);
1277 	remove_wait_queue(&md->wait, &wait);
1278 
1279 	/* were we interrupted ? */
1280 	r = -EINTR;
1281 	if (atomic_read(&md->pending)) {
1282 		clear_bit(DMF_BLOCK_IO, &md->flags);
1283 		def = bio_list_get(&md->deferred);
1284 		__flush_deferred_io(md, def);
1285 		up_write(&md->io_lock);
1286 		unlock_fs(md);
1287 		goto out;
1288 	}
1289 	up_write(&md->io_lock);
1290 
1291 	dm_table_postsuspend_targets(map);
1292 
1293 	set_bit(DMF_SUSPENDED, &md->flags);
1294 
1295 	r = 0;
1296 
1297 out:
1298 	if (r && md->suspended_bdev) {
1299 		bdput(md->suspended_bdev);
1300 		md->suspended_bdev = NULL;
1301 	}
1302 
1303 	dm_table_put(map);
1304 	up(&md->suspend_lock);
1305 	return r;
1306 }
1307 
1308 int dm_resume(struct mapped_device *md)
1309 {
1310 	int r = -EINVAL;
1311 	struct bio *def;
1312 	struct dm_table *map = NULL;
1313 
1314 	down(&md->suspend_lock);
1315 	if (!dm_suspended(md))
1316 		goto out;
1317 
1318 	map = dm_get_table(md);
1319 	if (!map || !dm_table_get_size(map))
1320 		goto out;
1321 
1322 	dm_table_resume_targets(map);
1323 
1324 	down_write(&md->io_lock);
1325 	clear_bit(DMF_BLOCK_IO, &md->flags);
1326 
1327 	def = bio_list_get(&md->deferred);
1328 	__flush_deferred_io(md, def);
1329 	up_write(&md->io_lock);
1330 
1331 	unlock_fs(md);
1332 
1333 	bdput(md->suspended_bdev);
1334 	md->suspended_bdev = NULL;
1335 
1336 	clear_bit(DMF_SUSPENDED, &md->flags);
1337 
1338 	dm_table_unplug_all(map);
1339 
1340 	r = 0;
1341 
1342 out:
1343 	dm_table_put(map);
1344 	up(&md->suspend_lock);
1345 
1346 	return r;
1347 }
1348 
1349 /*-----------------------------------------------------------------
1350  * Event notification.
1351  *---------------------------------------------------------------*/
1352 uint32_t dm_get_event_nr(struct mapped_device *md)
1353 {
1354 	return atomic_read(&md->event_nr);
1355 }
1356 
1357 int dm_wait_event(struct mapped_device *md, int event_nr)
1358 {
1359 	return wait_event_interruptible(md->eventq,
1360 			(event_nr != atomic_read(&md->event_nr)));
1361 }
1362 
1363 /*
1364  * The gendisk is only valid as long as you have a reference
1365  * count on 'md'.
1366  */
1367 struct gendisk *dm_disk(struct mapped_device *md)
1368 {
1369 	return md->disk;
1370 }
1371 
1372 int dm_suspended(struct mapped_device *md)
1373 {
1374 	return test_bit(DMF_SUSPENDED, &md->flags);
1375 }
1376 
1377 static struct block_device_operations dm_blk_dops = {
1378 	.open = dm_blk_open,
1379 	.release = dm_blk_close,
1380 	.getgeo = dm_blk_getgeo,
1381 	.owner = THIS_MODULE
1382 };
1383 
1384 EXPORT_SYMBOL(dm_get_mapinfo);
1385 
1386 /*
1387  * module hooks
1388  */
1389 module_init(dm_init);
1390 module_exit(dm_exit);
1391 
1392 module_param(major, uint, 0);
1393 MODULE_PARM_DESC(major, "The major number of the device mapper");
1394 MODULE_DESCRIPTION(DM_NAME " driver");
1395 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
1396 MODULE_LICENSE("GPL");
1397