1 /* 2 * Copyright (C) 2001, 2002 Sistina Software (UK) Limited. 3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved. 4 * 5 * This file is released under the GPL. 6 */ 7 8 #include "dm.h" 9 #include "dm-uevent.h" 10 11 #include <linux/init.h> 12 #include <linux/module.h> 13 #include <linux/mutex.h> 14 #include <linux/moduleparam.h> 15 #include <linux/blkpg.h> 16 #include <linux/bio.h> 17 #include <linux/mempool.h> 18 #include <linux/slab.h> 19 #include <linux/idr.h> 20 #include <linux/hdreg.h> 21 #include <linux/delay.h> 22 23 #include <trace/events/block.h> 24 25 #define DM_MSG_PREFIX "core" 26 27 #ifdef CONFIG_PRINTK 28 /* 29 * ratelimit state to be used in DMXXX_LIMIT(). 30 */ 31 DEFINE_RATELIMIT_STATE(dm_ratelimit_state, 32 DEFAULT_RATELIMIT_INTERVAL, 33 DEFAULT_RATELIMIT_BURST); 34 EXPORT_SYMBOL(dm_ratelimit_state); 35 #endif 36 37 /* 38 * Cookies are numeric values sent with CHANGE and REMOVE 39 * uevents while resuming, removing or renaming the device. 40 */ 41 #define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE" 42 #define DM_COOKIE_LENGTH 24 43 44 static const char *_name = DM_NAME; 45 46 static unsigned int major = 0; 47 static unsigned int _major = 0; 48 49 static DEFINE_IDR(_minor_idr); 50 51 static DEFINE_SPINLOCK(_minor_lock); 52 /* 53 * For bio-based dm. 54 * One of these is allocated per bio. 55 */ 56 struct dm_io { 57 struct mapped_device *md; 58 int error; 59 atomic_t io_count; 60 struct bio *bio; 61 unsigned long start_time; 62 spinlock_t endio_lock; 63 }; 64 65 /* 66 * For request-based dm. 67 * One of these is allocated per request. 68 */ 69 struct dm_rq_target_io { 70 struct mapped_device *md; 71 struct dm_target *ti; 72 struct request *orig, clone; 73 int error; 74 union map_info info; 75 }; 76 77 /* 78 * For request-based dm - the bio clones we allocate are embedded in these 79 * structs. 80 * 81 * We allocate these with bio_alloc_bioset, using the front_pad parameter when 82 * the bioset is created - this means the bio has to come at the end of the 83 * struct. 84 */ 85 struct dm_rq_clone_bio_info { 86 struct bio *orig; 87 struct dm_rq_target_io *tio; 88 struct bio clone; 89 }; 90 91 union map_info *dm_get_mapinfo(struct bio *bio) 92 { 93 if (bio && bio->bi_private) 94 return &((struct dm_target_io *)bio->bi_private)->info; 95 return NULL; 96 } 97 98 union map_info *dm_get_rq_mapinfo(struct request *rq) 99 { 100 if (rq && rq->end_io_data) 101 return &((struct dm_rq_target_io *)rq->end_io_data)->info; 102 return NULL; 103 } 104 EXPORT_SYMBOL_GPL(dm_get_rq_mapinfo); 105 106 #define MINOR_ALLOCED ((void *)-1) 107 108 /* 109 * Bits for the md->flags field. 110 */ 111 #define DMF_BLOCK_IO_FOR_SUSPEND 0 112 #define DMF_SUSPENDED 1 113 #define DMF_FROZEN 2 114 #define DMF_FREEING 3 115 #define DMF_DELETING 4 116 #define DMF_NOFLUSH_SUSPENDING 5 117 #define DMF_MERGE_IS_OPTIONAL 6 118 119 /* 120 * A dummy definition to make RCU happy. 121 * struct dm_table should never be dereferenced in this file. 122 */ 123 struct dm_table { 124 int undefined__; 125 }; 126 127 /* 128 * Work processed by per-device workqueue. 129 */ 130 struct mapped_device { 131 struct srcu_struct io_barrier; 132 struct mutex suspend_lock; 133 atomic_t holders; 134 atomic_t open_count; 135 136 /* 137 * The current mapping. 138 * Use dm_get_live_table{_fast} or take suspend_lock for 139 * dereference. 140 */ 141 struct dm_table *map; 142 143 unsigned long flags; 144 145 struct request_queue *queue; 146 unsigned type; 147 /* Protect queue and type against concurrent access. */ 148 struct mutex type_lock; 149 150 struct target_type *immutable_target_type; 151 152 struct gendisk *disk; 153 char name[16]; 154 155 void *interface_ptr; 156 157 /* 158 * A list of ios that arrived while we were suspended. 159 */ 160 atomic_t pending[2]; 161 wait_queue_head_t wait; 162 struct work_struct work; 163 struct bio_list deferred; 164 spinlock_t deferred_lock; 165 166 /* 167 * Processing queue (flush) 168 */ 169 struct workqueue_struct *wq; 170 171 /* 172 * io objects are allocated from here. 173 */ 174 mempool_t *io_pool; 175 176 struct bio_set *bs; 177 178 /* 179 * Event handling. 180 */ 181 atomic_t event_nr; 182 wait_queue_head_t eventq; 183 atomic_t uevent_seq; 184 struct list_head uevent_list; 185 spinlock_t uevent_lock; /* Protect access to uevent_list */ 186 187 /* 188 * freeze/thaw support require holding onto a super block 189 */ 190 struct super_block *frozen_sb; 191 struct block_device *bdev; 192 193 /* forced geometry settings */ 194 struct hd_geometry geometry; 195 196 /* sysfs handle */ 197 struct kobject kobj; 198 199 /* zero-length flush that will be cloned and submitted to targets */ 200 struct bio flush_bio; 201 }; 202 203 /* 204 * For mempools pre-allocation at the table loading time. 205 */ 206 struct dm_md_mempools { 207 mempool_t *io_pool; 208 struct bio_set *bs; 209 }; 210 211 #define MIN_IOS 256 212 static struct kmem_cache *_io_cache; 213 static struct kmem_cache *_rq_tio_cache; 214 215 static int __init local_init(void) 216 { 217 int r = -ENOMEM; 218 219 /* allocate a slab for the dm_ios */ 220 _io_cache = KMEM_CACHE(dm_io, 0); 221 if (!_io_cache) 222 return r; 223 224 _rq_tio_cache = KMEM_CACHE(dm_rq_target_io, 0); 225 if (!_rq_tio_cache) 226 goto out_free_io_cache; 227 228 r = dm_uevent_init(); 229 if (r) 230 goto out_free_rq_tio_cache; 231 232 _major = major; 233 r = register_blkdev(_major, _name); 234 if (r < 0) 235 goto out_uevent_exit; 236 237 if (!_major) 238 _major = r; 239 240 return 0; 241 242 out_uevent_exit: 243 dm_uevent_exit(); 244 out_free_rq_tio_cache: 245 kmem_cache_destroy(_rq_tio_cache); 246 out_free_io_cache: 247 kmem_cache_destroy(_io_cache); 248 249 return r; 250 } 251 252 static void local_exit(void) 253 { 254 kmem_cache_destroy(_rq_tio_cache); 255 kmem_cache_destroy(_io_cache); 256 unregister_blkdev(_major, _name); 257 dm_uevent_exit(); 258 259 _major = 0; 260 261 DMINFO("cleaned up"); 262 } 263 264 static int (*_inits[])(void) __initdata = { 265 local_init, 266 dm_target_init, 267 dm_linear_init, 268 dm_stripe_init, 269 dm_io_init, 270 dm_kcopyd_init, 271 dm_interface_init, 272 }; 273 274 static void (*_exits[])(void) = { 275 local_exit, 276 dm_target_exit, 277 dm_linear_exit, 278 dm_stripe_exit, 279 dm_io_exit, 280 dm_kcopyd_exit, 281 dm_interface_exit, 282 }; 283 284 static int __init dm_init(void) 285 { 286 const int count = ARRAY_SIZE(_inits); 287 288 int r, i; 289 290 for (i = 0; i < count; i++) { 291 r = _inits[i](); 292 if (r) 293 goto bad; 294 } 295 296 return 0; 297 298 bad: 299 while (i--) 300 _exits[i](); 301 302 return r; 303 } 304 305 static void __exit dm_exit(void) 306 { 307 int i = ARRAY_SIZE(_exits); 308 309 while (i--) 310 _exits[i](); 311 312 /* 313 * Should be empty by this point. 314 */ 315 idr_destroy(&_minor_idr); 316 } 317 318 /* 319 * Block device functions 320 */ 321 int dm_deleting_md(struct mapped_device *md) 322 { 323 return test_bit(DMF_DELETING, &md->flags); 324 } 325 326 static int dm_blk_open(struct block_device *bdev, fmode_t mode) 327 { 328 struct mapped_device *md; 329 330 spin_lock(&_minor_lock); 331 332 md = bdev->bd_disk->private_data; 333 if (!md) 334 goto out; 335 336 if (test_bit(DMF_FREEING, &md->flags) || 337 dm_deleting_md(md)) { 338 md = NULL; 339 goto out; 340 } 341 342 dm_get(md); 343 atomic_inc(&md->open_count); 344 345 out: 346 spin_unlock(&_minor_lock); 347 348 return md ? 0 : -ENXIO; 349 } 350 351 static void dm_blk_close(struct gendisk *disk, fmode_t mode) 352 { 353 struct mapped_device *md = disk->private_data; 354 355 spin_lock(&_minor_lock); 356 357 atomic_dec(&md->open_count); 358 dm_put(md); 359 360 spin_unlock(&_minor_lock); 361 } 362 363 int dm_open_count(struct mapped_device *md) 364 { 365 return atomic_read(&md->open_count); 366 } 367 368 /* 369 * Guarantees nothing is using the device before it's deleted. 370 */ 371 int dm_lock_for_deletion(struct mapped_device *md) 372 { 373 int r = 0; 374 375 spin_lock(&_minor_lock); 376 377 if (dm_open_count(md)) 378 r = -EBUSY; 379 else 380 set_bit(DMF_DELETING, &md->flags); 381 382 spin_unlock(&_minor_lock); 383 384 return r; 385 } 386 387 static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo) 388 { 389 struct mapped_device *md = bdev->bd_disk->private_data; 390 391 return dm_get_geometry(md, geo); 392 } 393 394 static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode, 395 unsigned int cmd, unsigned long arg) 396 { 397 struct mapped_device *md = bdev->bd_disk->private_data; 398 int srcu_idx; 399 struct dm_table *map; 400 struct dm_target *tgt; 401 int r = -ENOTTY; 402 403 retry: 404 map = dm_get_live_table(md, &srcu_idx); 405 406 if (!map || !dm_table_get_size(map)) 407 goto out; 408 409 /* We only support devices that have a single target */ 410 if (dm_table_get_num_targets(map) != 1) 411 goto out; 412 413 tgt = dm_table_get_target(map, 0); 414 415 if (dm_suspended_md(md)) { 416 r = -EAGAIN; 417 goto out; 418 } 419 420 if (tgt->type->ioctl) 421 r = tgt->type->ioctl(tgt, cmd, arg); 422 423 out: 424 dm_put_live_table(md, srcu_idx); 425 426 if (r == -ENOTCONN) { 427 msleep(10); 428 goto retry; 429 } 430 431 return r; 432 } 433 434 static struct dm_io *alloc_io(struct mapped_device *md) 435 { 436 return mempool_alloc(md->io_pool, GFP_NOIO); 437 } 438 439 static void free_io(struct mapped_device *md, struct dm_io *io) 440 { 441 mempool_free(io, md->io_pool); 442 } 443 444 static void free_tio(struct mapped_device *md, struct dm_target_io *tio) 445 { 446 bio_put(&tio->clone); 447 } 448 449 static struct dm_rq_target_io *alloc_rq_tio(struct mapped_device *md, 450 gfp_t gfp_mask) 451 { 452 return mempool_alloc(md->io_pool, gfp_mask); 453 } 454 455 static void free_rq_tio(struct dm_rq_target_io *tio) 456 { 457 mempool_free(tio, tio->md->io_pool); 458 } 459 460 static int md_in_flight(struct mapped_device *md) 461 { 462 return atomic_read(&md->pending[READ]) + 463 atomic_read(&md->pending[WRITE]); 464 } 465 466 static void start_io_acct(struct dm_io *io) 467 { 468 struct mapped_device *md = io->md; 469 int cpu; 470 int rw = bio_data_dir(io->bio); 471 472 io->start_time = jiffies; 473 474 cpu = part_stat_lock(); 475 part_round_stats(cpu, &dm_disk(md)->part0); 476 part_stat_unlock(); 477 atomic_set(&dm_disk(md)->part0.in_flight[rw], 478 atomic_inc_return(&md->pending[rw])); 479 } 480 481 static void end_io_acct(struct dm_io *io) 482 { 483 struct mapped_device *md = io->md; 484 struct bio *bio = io->bio; 485 unsigned long duration = jiffies - io->start_time; 486 int pending, cpu; 487 int rw = bio_data_dir(bio); 488 489 cpu = part_stat_lock(); 490 part_round_stats(cpu, &dm_disk(md)->part0); 491 part_stat_add(cpu, &dm_disk(md)->part0, ticks[rw], duration); 492 part_stat_unlock(); 493 494 /* 495 * After this is decremented the bio must not be touched if it is 496 * a flush. 497 */ 498 pending = atomic_dec_return(&md->pending[rw]); 499 atomic_set(&dm_disk(md)->part0.in_flight[rw], pending); 500 pending += atomic_read(&md->pending[rw^0x1]); 501 502 /* nudge anyone waiting on suspend queue */ 503 if (!pending) 504 wake_up(&md->wait); 505 } 506 507 /* 508 * Add the bio to the list of deferred io. 509 */ 510 static void queue_io(struct mapped_device *md, struct bio *bio) 511 { 512 unsigned long flags; 513 514 spin_lock_irqsave(&md->deferred_lock, flags); 515 bio_list_add(&md->deferred, bio); 516 spin_unlock_irqrestore(&md->deferred_lock, flags); 517 queue_work(md->wq, &md->work); 518 } 519 520 /* 521 * Everyone (including functions in this file), should use this 522 * function to access the md->map field, and make sure they call 523 * dm_put_live_table() when finished. 524 */ 525 struct dm_table *dm_get_live_table(struct mapped_device *md, int *srcu_idx) __acquires(md->io_barrier) 526 { 527 *srcu_idx = srcu_read_lock(&md->io_barrier); 528 529 return srcu_dereference(md->map, &md->io_barrier); 530 } 531 532 void dm_put_live_table(struct mapped_device *md, int srcu_idx) __releases(md->io_barrier) 533 { 534 srcu_read_unlock(&md->io_barrier, srcu_idx); 535 } 536 537 void dm_sync_table(struct mapped_device *md) 538 { 539 synchronize_srcu(&md->io_barrier); 540 synchronize_rcu_expedited(); 541 } 542 543 /* 544 * A fast alternative to dm_get_live_table/dm_put_live_table. 545 * The caller must not block between these two functions. 546 */ 547 static struct dm_table *dm_get_live_table_fast(struct mapped_device *md) __acquires(RCU) 548 { 549 rcu_read_lock(); 550 return rcu_dereference(md->map); 551 } 552 553 static void dm_put_live_table_fast(struct mapped_device *md) __releases(RCU) 554 { 555 rcu_read_unlock(); 556 } 557 558 /* 559 * Get the geometry associated with a dm device 560 */ 561 int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo) 562 { 563 *geo = md->geometry; 564 565 return 0; 566 } 567 568 /* 569 * Set the geometry of a device. 570 */ 571 int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo) 572 { 573 sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors; 574 575 if (geo->start > sz) { 576 DMWARN("Start sector is beyond the geometry limits."); 577 return -EINVAL; 578 } 579 580 md->geometry = *geo; 581 582 return 0; 583 } 584 585 /*----------------------------------------------------------------- 586 * CRUD START: 587 * A more elegant soln is in the works that uses the queue 588 * merge fn, unfortunately there are a couple of changes to 589 * the block layer that I want to make for this. So in the 590 * interests of getting something for people to use I give 591 * you this clearly demarcated crap. 592 *---------------------------------------------------------------*/ 593 594 static int __noflush_suspending(struct mapped_device *md) 595 { 596 return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags); 597 } 598 599 /* 600 * Decrements the number of outstanding ios that a bio has been 601 * cloned into, completing the original io if necc. 602 */ 603 static void dec_pending(struct dm_io *io, int error) 604 { 605 unsigned long flags; 606 int io_error; 607 struct bio *bio; 608 struct mapped_device *md = io->md; 609 610 /* Push-back supersedes any I/O errors */ 611 if (unlikely(error)) { 612 spin_lock_irqsave(&io->endio_lock, flags); 613 if (!(io->error > 0 && __noflush_suspending(md))) 614 io->error = error; 615 spin_unlock_irqrestore(&io->endio_lock, flags); 616 } 617 618 if (atomic_dec_and_test(&io->io_count)) { 619 if (io->error == DM_ENDIO_REQUEUE) { 620 /* 621 * Target requested pushing back the I/O. 622 */ 623 spin_lock_irqsave(&md->deferred_lock, flags); 624 if (__noflush_suspending(md)) 625 bio_list_add_head(&md->deferred, io->bio); 626 else 627 /* noflush suspend was interrupted. */ 628 io->error = -EIO; 629 spin_unlock_irqrestore(&md->deferred_lock, flags); 630 } 631 632 io_error = io->error; 633 bio = io->bio; 634 end_io_acct(io); 635 free_io(md, io); 636 637 if (io_error == DM_ENDIO_REQUEUE) 638 return; 639 640 if ((bio->bi_rw & REQ_FLUSH) && bio->bi_size) { 641 /* 642 * Preflush done for flush with data, reissue 643 * without REQ_FLUSH. 644 */ 645 bio->bi_rw &= ~REQ_FLUSH; 646 queue_io(md, bio); 647 } else { 648 /* done with normal IO or empty flush */ 649 trace_block_bio_complete(md->queue, bio, io_error); 650 bio_endio(bio, io_error); 651 } 652 } 653 } 654 655 static void clone_endio(struct bio *bio, int error) 656 { 657 int r = 0; 658 struct dm_target_io *tio = bio->bi_private; 659 struct dm_io *io = tio->io; 660 struct mapped_device *md = tio->io->md; 661 dm_endio_fn endio = tio->ti->type->end_io; 662 663 if (!bio_flagged(bio, BIO_UPTODATE) && !error) 664 error = -EIO; 665 666 if (endio) { 667 r = endio(tio->ti, bio, error); 668 if (r < 0 || r == DM_ENDIO_REQUEUE) 669 /* 670 * error and requeue request are handled 671 * in dec_pending(). 672 */ 673 error = r; 674 else if (r == DM_ENDIO_INCOMPLETE) 675 /* The target will handle the io */ 676 return; 677 else if (r) { 678 DMWARN("unimplemented target endio return value: %d", r); 679 BUG(); 680 } 681 } 682 683 free_tio(md, tio); 684 dec_pending(io, error); 685 } 686 687 /* 688 * Partial completion handling for request-based dm 689 */ 690 static void end_clone_bio(struct bio *clone, int error) 691 { 692 struct dm_rq_clone_bio_info *info = clone->bi_private; 693 struct dm_rq_target_io *tio = info->tio; 694 struct bio *bio = info->orig; 695 unsigned int nr_bytes = info->orig->bi_size; 696 697 bio_put(clone); 698 699 if (tio->error) 700 /* 701 * An error has already been detected on the request. 702 * Once error occurred, just let clone->end_io() handle 703 * the remainder. 704 */ 705 return; 706 else if (error) { 707 /* 708 * Don't notice the error to the upper layer yet. 709 * The error handling decision is made by the target driver, 710 * when the request is completed. 711 */ 712 tio->error = error; 713 return; 714 } 715 716 /* 717 * I/O for the bio successfully completed. 718 * Notice the data completion to the upper layer. 719 */ 720 721 /* 722 * bios are processed from the head of the list. 723 * So the completing bio should always be rq->bio. 724 * If it's not, something wrong is happening. 725 */ 726 if (tio->orig->bio != bio) 727 DMERR("bio completion is going in the middle of the request"); 728 729 /* 730 * Update the original request. 731 * Do not use blk_end_request() here, because it may complete 732 * the original request before the clone, and break the ordering. 733 */ 734 blk_update_request(tio->orig, 0, nr_bytes); 735 } 736 737 /* 738 * Don't touch any member of the md after calling this function because 739 * the md may be freed in dm_put() at the end of this function. 740 * Or do dm_get() before calling this function and dm_put() later. 741 */ 742 static void rq_completed(struct mapped_device *md, int rw, int run_queue) 743 { 744 atomic_dec(&md->pending[rw]); 745 746 /* nudge anyone waiting on suspend queue */ 747 if (!md_in_flight(md)) 748 wake_up(&md->wait); 749 750 /* 751 * Run this off this callpath, as drivers could invoke end_io while 752 * inside their request_fn (and holding the queue lock). Calling 753 * back into ->request_fn() could deadlock attempting to grab the 754 * queue lock again. 755 */ 756 if (run_queue) 757 blk_run_queue_async(md->queue); 758 759 /* 760 * dm_put() must be at the end of this function. See the comment above 761 */ 762 dm_put(md); 763 } 764 765 static void free_rq_clone(struct request *clone) 766 { 767 struct dm_rq_target_io *tio = clone->end_io_data; 768 769 blk_rq_unprep_clone(clone); 770 free_rq_tio(tio); 771 } 772 773 /* 774 * Complete the clone and the original request. 775 * Must be called without queue lock. 776 */ 777 static void dm_end_request(struct request *clone, int error) 778 { 779 int rw = rq_data_dir(clone); 780 struct dm_rq_target_io *tio = clone->end_io_data; 781 struct mapped_device *md = tio->md; 782 struct request *rq = tio->orig; 783 784 if (rq->cmd_type == REQ_TYPE_BLOCK_PC) { 785 rq->errors = clone->errors; 786 rq->resid_len = clone->resid_len; 787 788 if (rq->sense) 789 /* 790 * We are using the sense buffer of the original 791 * request. 792 * So setting the length of the sense data is enough. 793 */ 794 rq->sense_len = clone->sense_len; 795 } 796 797 free_rq_clone(clone); 798 blk_end_request_all(rq, error); 799 rq_completed(md, rw, true); 800 } 801 802 static void dm_unprep_request(struct request *rq) 803 { 804 struct request *clone = rq->special; 805 806 rq->special = NULL; 807 rq->cmd_flags &= ~REQ_DONTPREP; 808 809 free_rq_clone(clone); 810 } 811 812 /* 813 * Requeue the original request of a clone. 814 */ 815 void dm_requeue_unmapped_request(struct request *clone) 816 { 817 int rw = rq_data_dir(clone); 818 struct dm_rq_target_io *tio = clone->end_io_data; 819 struct mapped_device *md = tio->md; 820 struct request *rq = tio->orig; 821 struct request_queue *q = rq->q; 822 unsigned long flags; 823 824 dm_unprep_request(rq); 825 826 spin_lock_irqsave(q->queue_lock, flags); 827 blk_requeue_request(q, rq); 828 spin_unlock_irqrestore(q->queue_lock, flags); 829 830 rq_completed(md, rw, 0); 831 } 832 EXPORT_SYMBOL_GPL(dm_requeue_unmapped_request); 833 834 static void __stop_queue(struct request_queue *q) 835 { 836 blk_stop_queue(q); 837 } 838 839 static void stop_queue(struct request_queue *q) 840 { 841 unsigned long flags; 842 843 spin_lock_irqsave(q->queue_lock, flags); 844 __stop_queue(q); 845 spin_unlock_irqrestore(q->queue_lock, flags); 846 } 847 848 static void __start_queue(struct request_queue *q) 849 { 850 if (blk_queue_stopped(q)) 851 blk_start_queue(q); 852 } 853 854 static void start_queue(struct request_queue *q) 855 { 856 unsigned long flags; 857 858 spin_lock_irqsave(q->queue_lock, flags); 859 __start_queue(q); 860 spin_unlock_irqrestore(q->queue_lock, flags); 861 } 862 863 static void dm_done(struct request *clone, int error, bool mapped) 864 { 865 int r = error; 866 struct dm_rq_target_io *tio = clone->end_io_data; 867 dm_request_endio_fn rq_end_io = NULL; 868 869 if (tio->ti) { 870 rq_end_io = tio->ti->type->rq_end_io; 871 872 if (mapped && rq_end_io) 873 r = rq_end_io(tio->ti, clone, error, &tio->info); 874 } 875 876 if (r <= 0) 877 /* The target wants to complete the I/O */ 878 dm_end_request(clone, r); 879 else if (r == DM_ENDIO_INCOMPLETE) 880 /* The target will handle the I/O */ 881 return; 882 else if (r == DM_ENDIO_REQUEUE) 883 /* The target wants to requeue the I/O */ 884 dm_requeue_unmapped_request(clone); 885 else { 886 DMWARN("unimplemented target endio return value: %d", r); 887 BUG(); 888 } 889 } 890 891 /* 892 * Request completion handler for request-based dm 893 */ 894 static void dm_softirq_done(struct request *rq) 895 { 896 bool mapped = true; 897 struct request *clone = rq->completion_data; 898 struct dm_rq_target_io *tio = clone->end_io_data; 899 900 if (rq->cmd_flags & REQ_FAILED) 901 mapped = false; 902 903 dm_done(clone, tio->error, mapped); 904 } 905 906 /* 907 * Complete the clone and the original request with the error status 908 * through softirq context. 909 */ 910 static void dm_complete_request(struct request *clone, int error) 911 { 912 struct dm_rq_target_io *tio = clone->end_io_data; 913 struct request *rq = tio->orig; 914 915 tio->error = error; 916 rq->completion_data = clone; 917 blk_complete_request(rq); 918 } 919 920 /* 921 * Complete the not-mapped clone and the original request with the error status 922 * through softirq context. 923 * Target's rq_end_io() function isn't called. 924 * This may be used when the target's map_rq() function fails. 925 */ 926 void dm_kill_unmapped_request(struct request *clone, int error) 927 { 928 struct dm_rq_target_io *tio = clone->end_io_data; 929 struct request *rq = tio->orig; 930 931 rq->cmd_flags |= REQ_FAILED; 932 dm_complete_request(clone, error); 933 } 934 EXPORT_SYMBOL_GPL(dm_kill_unmapped_request); 935 936 /* 937 * Called with the queue lock held 938 */ 939 static void end_clone_request(struct request *clone, int error) 940 { 941 /* 942 * For just cleaning up the information of the queue in which 943 * the clone was dispatched. 944 * The clone is *NOT* freed actually here because it is alloced from 945 * dm own mempool and REQ_ALLOCED isn't set in clone->cmd_flags. 946 */ 947 __blk_put_request(clone->q, clone); 948 949 /* 950 * Actual request completion is done in a softirq context which doesn't 951 * hold the queue lock. Otherwise, deadlock could occur because: 952 * - another request may be submitted by the upper level driver 953 * of the stacking during the completion 954 * - the submission which requires queue lock may be done 955 * against this queue 956 */ 957 dm_complete_request(clone, error); 958 } 959 960 /* 961 * Return maximum size of I/O possible at the supplied sector up to the current 962 * target boundary. 963 */ 964 static sector_t max_io_len_target_boundary(sector_t sector, struct dm_target *ti) 965 { 966 sector_t target_offset = dm_target_offset(ti, sector); 967 968 return ti->len - target_offset; 969 } 970 971 static sector_t max_io_len(sector_t sector, struct dm_target *ti) 972 { 973 sector_t len = max_io_len_target_boundary(sector, ti); 974 sector_t offset, max_len; 975 976 /* 977 * Does the target need to split even further? 978 */ 979 if (ti->max_io_len) { 980 offset = dm_target_offset(ti, sector); 981 if (unlikely(ti->max_io_len & (ti->max_io_len - 1))) 982 max_len = sector_div(offset, ti->max_io_len); 983 else 984 max_len = offset & (ti->max_io_len - 1); 985 max_len = ti->max_io_len - max_len; 986 987 if (len > max_len) 988 len = max_len; 989 } 990 991 return len; 992 } 993 994 int dm_set_target_max_io_len(struct dm_target *ti, sector_t len) 995 { 996 if (len > UINT_MAX) { 997 DMERR("Specified maximum size of target IO (%llu) exceeds limit (%u)", 998 (unsigned long long)len, UINT_MAX); 999 ti->error = "Maximum size of target IO is too large"; 1000 return -EINVAL; 1001 } 1002 1003 ti->max_io_len = (uint32_t) len; 1004 1005 return 0; 1006 } 1007 EXPORT_SYMBOL_GPL(dm_set_target_max_io_len); 1008 1009 static void __map_bio(struct dm_target_io *tio) 1010 { 1011 int r; 1012 sector_t sector; 1013 struct mapped_device *md; 1014 struct bio *clone = &tio->clone; 1015 struct dm_target *ti = tio->ti; 1016 1017 clone->bi_end_io = clone_endio; 1018 clone->bi_private = tio; 1019 1020 /* 1021 * Map the clone. If r == 0 we don't need to do 1022 * anything, the target has assumed ownership of 1023 * this io. 1024 */ 1025 atomic_inc(&tio->io->io_count); 1026 sector = clone->bi_sector; 1027 r = ti->type->map(ti, clone); 1028 if (r == DM_MAPIO_REMAPPED) { 1029 /* the bio has been remapped so dispatch it */ 1030 1031 trace_block_bio_remap(bdev_get_queue(clone->bi_bdev), clone, 1032 tio->io->bio->bi_bdev->bd_dev, sector); 1033 1034 generic_make_request(clone); 1035 } else if (r < 0 || r == DM_MAPIO_REQUEUE) { 1036 /* error the io and bail out, or requeue it if needed */ 1037 md = tio->io->md; 1038 dec_pending(tio->io, r); 1039 free_tio(md, tio); 1040 } else if (r) { 1041 DMWARN("unimplemented target map return value: %d", r); 1042 BUG(); 1043 } 1044 } 1045 1046 struct clone_info { 1047 struct mapped_device *md; 1048 struct dm_table *map; 1049 struct bio *bio; 1050 struct dm_io *io; 1051 sector_t sector; 1052 sector_t sector_count; 1053 unsigned short idx; 1054 }; 1055 1056 static void bio_setup_sector(struct bio *bio, sector_t sector, sector_t len) 1057 { 1058 bio->bi_sector = sector; 1059 bio->bi_size = to_bytes(len); 1060 } 1061 1062 static void bio_setup_bv(struct bio *bio, unsigned short idx, unsigned short bv_count) 1063 { 1064 bio->bi_idx = idx; 1065 bio->bi_vcnt = idx + bv_count; 1066 bio->bi_flags &= ~(1 << BIO_SEG_VALID); 1067 } 1068 1069 static void clone_bio_integrity(struct bio *bio, struct bio *clone, 1070 unsigned short idx, unsigned len, unsigned offset, 1071 unsigned trim) 1072 { 1073 if (!bio_integrity(bio)) 1074 return; 1075 1076 bio_integrity_clone(clone, bio, GFP_NOIO); 1077 1078 if (trim) 1079 bio_integrity_trim(clone, bio_sector_offset(bio, idx, offset), len); 1080 } 1081 1082 /* 1083 * Creates a little bio that just does part of a bvec. 1084 */ 1085 static void clone_split_bio(struct dm_target_io *tio, struct bio *bio, 1086 sector_t sector, unsigned short idx, 1087 unsigned offset, unsigned len) 1088 { 1089 struct bio *clone = &tio->clone; 1090 struct bio_vec *bv = bio->bi_io_vec + idx; 1091 1092 *clone->bi_io_vec = *bv; 1093 1094 bio_setup_sector(clone, sector, len); 1095 1096 clone->bi_bdev = bio->bi_bdev; 1097 clone->bi_rw = bio->bi_rw; 1098 clone->bi_vcnt = 1; 1099 clone->bi_io_vec->bv_offset = offset; 1100 clone->bi_io_vec->bv_len = clone->bi_size; 1101 clone->bi_flags |= 1 << BIO_CLONED; 1102 1103 clone_bio_integrity(bio, clone, idx, len, offset, 1); 1104 } 1105 1106 /* 1107 * Creates a bio that consists of range of complete bvecs. 1108 */ 1109 static void clone_bio(struct dm_target_io *tio, struct bio *bio, 1110 sector_t sector, unsigned short idx, 1111 unsigned short bv_count, unsigned len) 1112 { 1113 struct bio *clone = &tio->clone; 1114 unsigned trim = 0; 1115 1116 __bio_clone(clone, bio); 1117 bio_setup_sector(clone, sector, len); 1118 bio_setup_bv(clone, idx, bv_count); 1119 1120 if (idx != bio->bi_idx || clone->bi_size < bio->bi_size) 1121 trim = 1; 1122 clone_bio_integrity(bio, clone, idx, len, 0, trim); 1123 } 1124 1125 static struct dm_target_io *alloc_tio(struct clone_info *ci, 1126 struct dm_target *ti, int nr_iovecs, 1127 unsigned target_bio_nr) 1128 { 1129 struct dm_target_io *tio; 1130 struct bio *clone; 1131 1132 clone = bio_alloc_bioset(GFP_NOIO, nr_iovecs, ci->md->bs); 1133 tio = container_of(clone, struct dm_target_io, clone); 1134 1135 tio->io = ci->io; 1136 tio->ti = ti; 1137 memset(&tio->info, 0, sizeof(tio->info)); 1138 tio->target_bio_nr = target_bio_nr; 1139 1140 return tio; 1141 } 1142 1143 static void __clone_and_map_simple_bio(struct clone_info *ci, 1144 struct dm_target *ti, 1145 unsigned target_bio_nr, sector_t len) 1146 { 1147 struct dm_target_io *tio = alloc_tio(ci, ti, ci->bio->bi_max_vecs, target_bio_nr); 1148 struct bio *clone = &tio->clone; 1149 1150 /* 1151 * Discard requests require the bio's inline iovecs be initialized. 1152 * ci->bio->bi_max_vecs is BIO_INLINE_VECS anyway, for both flush 1153 * and discard, so no need for concern about wasted bvec allocations. 1154 */ 1155 __bio_clone(clone, ci->bio); 1156 if (len) 1157 bio_setup_sector(clone, ci->sector, len); 1158 1159 __map_bio(tio); 1160 } 1161 1162 static void __send_duplicate_bios(struct clone_info *ci, struct dm_target *ti, 1163 unsigned num_bios, sector_t len) 1164 { 1165 unsigned target_bio_nr; 1166 1167 for (target_bio_nr = 0; target_bio_nr < num_bios; target_bio_nr++) 1168 __clone_and_map_simple_bio(ci, ti, target_bio_nr, len); 1169 } 1170 1171 static int __send_empty_flush(struct clone_info *ci) 1172 { 1173 unsigned target_nr = 0; 1174 struct dm_target *ti; 1175 1176 BUG_ON(bio_has_data(ci->bio)); 1177 while ((ti = dm_table_get_target(ci->map, target_nr++))) 1178 __send_duplicate_bios(ci, ti, ti->num_flush_bios, 0); 1179 1180 return 0; 1181 } 1182 1183 static void __clone_and_map_data_bio(struct clone_info *ci, struct dm_target *ti, 1184 sector_t sector, int nr_iovecs, 1185 unsigned short idx, unsigned short bv_count, 1186 unsigned offset, unsigned len, 1187 unsigned split_bvec) 1188 { 1189 struct bio *bio = ci->bio; 1190 struct dm_target_io *tio; 1191 unsigned target_bio_nr; 1192 unsigned num_target_bios = 1; 1193 1194 /* 1195 * Does the target want to receive duplicate copies of the bio? 1196 */ 1197 if (bio_data_dir(bio) == WRITE && ti->num_write_bios) 1198 num_target_bios = ti->num_write_bios(ti, bio); 1199 1200 for (target_bio_nr = 0; target_bio_nr < num_target_bios; target_bio_nr++) { 1201 tio = alloc_tio(ci, ti, nr_iovecs, target_bio_nr); 1202 if (split_bvec) 1203 clone_split_bio(tio, bio, sector, idx, offset, len); 1204 else 1205 clone_bio(tio, bio, sector, idx, bv_count, len); 1206 __map_bio(tio); 1207 } 1208 } 1209 1210 typedef unsigned (*get_num_bios_fn)(struct dm_target *ti); 1211 1212 static unsigned get_num_discard_bios(struct dm_target *ti) 1213 { 1214 return ti->num_discard_bios; 1215 } 1216 1217 static unsigned get_num_write_same_bios(struct dm_target *ti) 1218 { 1219 return ti->num_write_same_bios; 1220 } 1221 1222 typedef bool (*is_split_required_fn)(struct dm_target *ti); 1223 1224 static bool is_split_required_for_discard(struct dm_target *ti) 1225 { 1226 return ti->split_discard_bios; 1227 } 1228 1229 static int __send_changing_extent_only(struct clone_info *ci, 1230 get_num_bios_fn get_num_bios, 1231 is_split_required_fn is_split_required) 1232 { 1233 struct dm_target *ti; 1234 sector_t len; 1235 unsigned num_bios; 1236 1237 do { 1238 ti = dm_table_find_target(ci->map, ci->sector); 1239 if (!dm_target_is_valid(ti)) 1240 return -EIO; 1241 1242 /* 1243 * Even though the device advertised support for this type of 1244 * request, that does not mean every target supports it, and 1245 * reconfiguration might also have changed that since the 1246 * check was performed. 1247 */ 1248 num_bios = get_num_bios ? get_num_bios(ti) : 0; 1249 if (!num_bios) 1250 return -EOPNOTSUPP; 1251 1252 if (is_split_required && !is_split_required(ti)) 1253 len = min(ci->sector_count, max_io_len_target_boundary(ci->sector, ti)); 1254 else 1255 len = min(ci->sector_count, max_io_len(ci->sector, ti)); 1256 1257 __send_duplicate_bios(ci, ti, num_bios, len); 1258 1259 ci->sector += len; 1260 } while (ci->sector_count -= len); 1261 1262 return 0; 1263 } 1264 1265 static int __send_discard(struct clone_info *ci) 1266 { 1267 return __send_changing_extent_only(ci, get_num_discard_bios, 1268 is_split_required_for_discard); 1269 } 1270 1271 static int __send_write_same(struct clone_info *ci) 1272 { 1273 return __send_changing_extent_only(ci, get_num_write_same_bios, NULL); 1274 } 1275 1276 /* 1277 * Find maximum number of sectors / bvecs we can process with a single bio. 1278 */ 1279 static sector_t __len_within_target(struct clone_info *ci, sector_t max, int *idx) 1280 { 1281 struct bio *bio = ci->bio; 1282 sector_t bv_len, total_len = 0; 1283 1284 for (*idx = ci->idx; max && (*idx < bio->bi_vcnt); (*idx)++) { 1285 bv_len = to_sector(bio->bi_io_vec[*idx].bv_len); 1286 1287 if (bv_len > max) 1288 break; 1289 1290 max -= bv_len; 1291 total_len += bv_len; 1292 } 1293 1294 return total_len; 1295 } 1296 1297 static int __split_bvec_across_targets(struct clone_info *ci, 1298 struct dm_target *ti, sector_t max) 1299 { 1300 struct bio *bio = ci->bio; 1301 struct bio_vec *bv = bio->bi_io_vec + ci->idx; 1302 sector_t remaining = to_sector(bv->bv_len); 1303 unsigned offset = 0; 1304 sector_t len; 1305 1306 do { 1307 if (offset) { 1308 ti = dm_table_find_target(ci->map, ci->sector); 1309 if (!dm_target_is_valid(ti)) 1310 return -EIO; 1311 1312 max = max_io_len(ci->sector, ti); 1313 } 1314 1315 len = min(remaining, max); 1316 1317 __clone_and_map_data_bio(ci, ti, ci->sector, 1, ci->idx, 0, 1318 bv->bv_offset + offset, len, 1); 1319 1320 ci->sector += len; 1321 ci->sector_count -= len; 1322 offset += to_bytes(len); 1323 } while (remaining -= len); 1324 1325 ci->idx++; 1326 1327 return 0; 1328 } 1329 1330 /* 1331 * Select the correct strategy for processing a non-flush bio. 1332 */ 1333 static int __split_and_process_non_flush(struct clone_info *ci) 1334 { 1335 struct bio *bio = ci->bio; 1336 struct dm_target *ti; 1337 sector_t len, max; 1338 int idx; 1339 1340 if (unlikely(bio->bi_rw & REQ_DISCARD)) 1341 return __send_discard(ci); 1342 else if (unlikely(bio->bi_rw & REQ_WRITE_SAME)) 1343 return __send_write_same(ci); 1344 1345 ti = dm_table_find_target(ci->map, ci->sector); 1346 if (!dm_target_is_valid(ti)) 1347 return -EIO; 1348 1349 max = max_io_len(ci->sector, ti); 1350 1351 /* 1352 * Optimise for the simple case where we can do all of 1353 * the remaining io with a single clone. 1354 */ 1355 if (ci->sector_count <= max) { 1356 __clone_and_map_data_bio(ci, ti, ci->sector, bio->bi_max_vecs, 1357 ci->idx, bio->bi_vcnt - ci->idx, 0, 1358 ci->sector_count, 0); 1359 ci->sector_count = 0; 1360 return 0; 1361 } 1362 1363 /* 1364 * There are some bvecs that don't span targets. 1365 * Do as many of these as possible. 1366 */ 1367 if (to_sector(bio->bi_io_vec[ci->idx].bv_len) <= max) { 1368 len = __len_within_target(ci, max, &idx); 1369 1370 __clone_and_map_data_bio(ci, ti, ci->sector, bio->bi_max_vecs, 1371 ci->idx, idx - ci->idx, 0, len, 0); 1372 1373 ci->sector += len; 1374 ci->sector_count -= len; 1375 ci->idx = idx; 1376 1377 return 0; 1378 } 1379 1380 /* 1381 * Handle a bvec that must be split between two or more targets. 1382 */ 1383 return __split_bvec_across_targets(ci, ti, max); 1384 } 1385 1386 /* 1387 * Entry point to split a bio into clones and submit them to the targets. 1388 */ 1389 static void __split_and_process_bio(struct mapped_device *md, 1390 struct dm_table *map, struct bio *bio) 1391 { 1392 struct clone_info ci; 1393 int error = 0; 1394 1395 if (unlikely(!map)) { 1396 bio_io_error(bio); 1397 return; 1398 } 1399 1400 ci.map = map; 1401 ci.md = md; 1402 ci.io = alloc_io(md); 1403 ci.io->error = 0; 1404 atomic_set(&ci.io->io_count, 1); 1405 ci.io->bio = bio; 1406 ci.io->md = md; 1407 spin_lock_init(&ci.io->endio_lock); 1408 ci.sector = bio->bi_sector; 1409 ci.idx = bio->bi_idx; 1410 1411 start_io_acct(ci.io); 1412 1413 if (bio->bi_rw & REQ_FLUSH) { 1414 ci.bio = &ci.md->flush_bio; 1415 ci.sector_count = 0; 1416 error = __send_empty_flush(&ci); 1417 /* dec_pending submits any data associated with flush */ 1418 } else { 1419 ci.bio = bio; 1420 ci.sector_count = bio_sectors(bio); 1421 while (ci.sector_count && !error) 1422 error = __split_and_process_non_flush(&ci); 1423 } 1424 1425 /* drop the extra reference count */ 1426 dec_pending(ci.io, error); 1427 } 1428 /*----------------------------------------------------------------- 1429 * CRUD END 1430 *---------------------------------------------------------------*/ 1431 1432 static int dm_merge_bvec(struct request_queue *q, 1433 struct bvec_merge_data *bvm, 1434 struct bio_vec *biovec) 1435 { 1436 struct mapped_device *md = q->queuedata; 1437 struct dm_table *map = dm_get_live_table_fast(md); 1438 struct dm_target *ti; 1439 sector_t max_sectors; 1440 int max_size = 0; 1441 1442 if (unlikely(!map)) 1443 goto out; 1444 1445 ti = dm_table_find_target(map, bvm->bi_sector); 1446 if (!dm_target_is_valid(ti)) 1447 goto out; 1448 1449 /* 1450 * Find maximum amount of I/O that won't need splitting 1451 */ 1452 max_sectors = min(max_io_len(bvm->bi_sector, ti), 1453 (sector_t) BIO_MAX_SECTORS); 1454 max_size = (max_sectors << SECTOR_SHIFT) - bvm->bi_size; 1455 if (max_size < 0) 1456 max_size = 0; 1457 1458 /* 1459 * merge_bvec_fn() returns number of bytes 1460 * it can accept at this offset 1461 * max is precomputed maximal io size 1462 */ 1463 if (max_size && ti->type->merge) 1464 max_size = ti->type->merge(ti, bvm, biovec, max_size); 1465 /* 1466 * If the target doesn't support merge method and some of the devices 1467 * provided their merge_bvec method (we know this by looking at 1468 * queue_max_hw_sectors), then we can't allow bios with multiple vector 1469 * entries. So always set max_size to 0, and the code below allows 1470 * just one page. 1471 */ 1472 else if (queue_max_hw_sectors(q) <= PAGE_SIZE >> 9) 1473 1474 max_size = 0; 1475 1476 out: 1477 dm_put_live_table_fast(md); 1478 /* 1479 * Always allow an entire first page 1480 */ 1481 if (max_size <= biovec->bv_len && !(bvm->bi_size >> SECTOR_SHIFT)) 1482 max_size = biovec->bv_len; 1483 1484 return max_size; 1485 } 1486 1487 /* 1488 * The request function that just remaps the bio built up by 1489 * dm_merge_bvec. 1490 */ 1491 static void _dm_request(struct request_queue *q, struct bio *bio) 1492 { 1493 int rw = bio_data_dir(bio); 1494 struct mapped_device *md = q->queuedata; 1495 int cpu; 1496 int srcu_idx; 1497 struct dm_table *map; 1498 1499 map = dm_get_live_table(md, &srcu_idx); 1500 1501 cpu = part_stat_lock(); 1502 part_stat_inc(cpu, &dm_disk(md)->part0, ios[rw]); 1503 part_stat_add(cpu, &dm_disk(md)->part0, sectors[rw], bio_sectors(bio)); 1504 part_stat_unlock(); 1505 1506 /* if we're suspended, we have to queue this io for later */ 1507 if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))) { 1508 dm_put_live_table(md, srcu_idx); 1509 1510 if (bio_rw(bio) != READA) 1511 queue_io(md, bio); 1512 else 1513 bio_io_error(bio); 1514 return; 1515 } 1516 1517 __split_and_process_bio(md, map, bio); 1518 dm_put_live_table(md, srcu_idx); 1519 return; 1520 } 1521 1522 static int dm_request_based(struct mapped_device *md) 1523 { 1524 return blk_queue_stackable(md->queue); 1525 } 1526 1527 static void dm_request(struct request_queue *q, struct bio *bio) 1528 { 1529 struct mapped_device *md = q->queuedata; 1530 1531 if (dm_request_based(md)) 1532 blk_queue_bio(q, bio); 1533 else 1534 _dm_request(q, bio); 1535 } 1536 1537 void dm_dispatch_request(struct request *rq) 1538 { 1539 int r; 1540 1541 if (blk_queue_io_stat(rq->q)) 1542 rq->cmd_flags |= REQ_IO_STAT; 1543 1544 rq->start_time = jiffies; 1545 r = blk_insert_cloned_request(rq->q, rq); 1546 if (r) 1547 dm_complete_request(rq, r); 1548 } 1549 EXPORT_SYMBOL_GPL(dm_dispatch_request); 1550 1551 static int dm_rq_bio_constructor(struct bio *bio, struct bio *bio_orig, 1552 void *data) 1553 { 1554 struct dm_rq_target_io *tio = data; 1555 struct dm_rq_clone_bio_info *info = 1556 container_of(bio, struct dm_rq_clone_bio_info, clone); 1557 1558 info->orig = bio_orig; 1559 info->tio = tio; 1560 bio->bi_end_io = end_clone_bio; 1561 bio->bi_private = info; 1562 1563 return 0; 1564 } 1565 1566 static int setup_clone(struct request *clone, struct request *rq, 1567 struct dm_rq_target_io *tio) 1568 { 1569 int r; 1570 1571 r = blk_rq_prep_clone(clone, rq, tio->md->bs, GFP_ATOMIC, 1572 dm_rq_bio_constructor, tio); 1573 if (r) 1574 return r; 1575 1576 clone->cmd = rq->cmd; 1577 clone->cmd_len = rq->cmd_len; 1578 clone->sense = rq->sense; 1579 clone->buffer = rq->buffer; 1580 clone->end_io = end_clone_request; 1581 clone->end_io_data = tio; 1582 1583 return 0; 1584 } 1585 1586 static struct request *clone_rq(struct request *rq, struct mapped_device *md, 1587 gfp_t gfp_mask) 1588 { 1589 struct request *clone; 1590 struct dm_rq_target_io *tio; 1591 1592 tio = alloc_rq_tio(md, gfp_mask); 1593 if (!tio) 1594 return NULL; 1595 1596 tio->md = md; 1597 tio->ti = NULL; 1598 tio->orig = rq; 1599 tio->error = 0; 1600 memset(&tio->info, 0, sizeof(tio->info)); 1601 1602 clone = &tio->clone; 1603 if (setup_clone(clone, rq, tio)) { 1604 /* -ENOMEM */ 1605 free_rq_tio(tio); 1606 return NULL; 1607 } 1608 1609 return clone; 1610 } 1611 1612 /* 1613 * Called with the queue lock held. 1614 */ 1615 static int dm_prep_fn(struct request_queue *q, struct request *rq) 1616 { 1617 struct mapped_device *md = q->queuedata; 1618 struct request *clone; 1619 1620 if (unlikely(rq->special)) { 1621 DMWARN("Already has something in rq->special."); 1622 return BLKPREP_KILL; 1623 } 1624 1625 clone = clone_rq(rq, md, GFP_ATOMIC); 1626 if (!clone) 1627 return BLKPREP_DEFER; 1628 1629 rq->special = clone; 1630 rq->cmd_flags |= REQ_DONTPREP; 1631 1632 return BLKPREP_OK; 1633 } 1634 1635 /* 1636 * Returns: 1637 * 0 : the request has been processed (not requeued) 1638 * !0 : the request has been requeued 1639 */ 1640 static int map_request(struct dm_target *ti, struct request *clone, 1641 struct mapped_device *md) 1642 { 1643 int r, requeued = 0; 1644 struct dm_rq_target_io *tio = clone->end_io_data; 1645 1646 tio->ti = ti; 1647 r = ti->type->map_rq(ti, clone, &tio->info); 1648 switch (r) { 1649 case DM_MAPIO_SUBMITTED: 1650 /* The target has taken the I/O to submit by itself later */ 1651 break; 1652 case DM_MAPIO_REMAPPED: 1653 /* The target has remapped the I/O so dispatch it */ 1654 trace_block_rq_remap(clone->q, clone, disk_devt(dm_disk(md)), 1655 blk_rq_pos(tio->orig)); 1656 dm_dispatch_request(clone); 1657 break; 1658 case DM_MAPIO_REQUEUE: 1659 /* The target wants to requeue the I/O */ 1660 dm_requeue_unmapped_request(clone); 1661 requeued = 1; 1662 break; 1663 default: 1664 if (r > 0) { 1665 DMWARN("unimplemented target map return value: %d", r); 1666 BUG(); 1667 } 1668 1669 /* The target wants to complete the I/O */ 1670 dm_kill_unmapped_request(clone, r); 1671 break; 1672 } 1673 1674 return requeued; 1675 } 1676 1677 static struct request *dm_start_request(struct mapped_device *md, struct request *orig) 1678 { 1679 struct request *clone; 1680 1681 blk_start_request(orig); 1682 clone = orig->special; 1683 atomic_inc(&md->pending[rq_data_dir(clone)]); 1684 1685 /* 1686 * Hold the md reference here for the in-flight I/O. 1687 * We can't rely on the reference count by device opener, 1688 * because the device may be closed during the request completion 1689 * when all bios are completed. 1690 * See the comment in rq_completed() too. 1691 */ 1692 dm_get(md); 1693 1694 return clone; 1695 } 1696 1697 /* 1698 * q->request_fn for request-based dm. 1699 * Called with the queue lock held. 1700 */ 1701 static void dm_request_fn(struct request_queue *q) 1702 { 1703 struct mapped_device *md = q->queuedata; 1704 int srcu_idx; 1705 struct dm_table *map = dm_get_live_table(md, &srcu_idx); 1706 struct dm_target *ti; 1707 struct request *rq, *clone; 1708 sector_t pos; 1709 1710 /* 1711 * For suspend, check blk_queue_stopped() and increment 1712 * ->pending within a single queue_lock not to increment the 1713 * number of in-flight I/Os after the queue is stopped in 1714 * dm_suspend(). 1715 */ 1716 while (!blk_queue_stopped(q)) { 1717 rq = blk_peek_request(q); 1718 if (!rq) 1719 goto delay_and_out; 1720 1721 /* always use block 0 to find the target for flushes for now */ 1722 pos = 0; 1723 if (!(rq->cmd_flags & REQ_FLUSH)) 1724 pos = blk_rq_pos(rq); 1725 1726 ti = dm_table_find_target(map, pos); 1727 if (!dm_target_is_valid(ti)) { 1728 /* 1729 * Must perform setup, that dm_done() requires, 1730 * before calling dm_kill_unmapped_request 1731 */ 1732 DMERR_LIMIT("request attempted access beyond the end of device"); 1733 clone = dm_start_request(md, rq); 1734 dm_kill_unmapped_request(clone, -EIO); 1735 continue; 1736 } 1737 1738 if (ti->type->busy && ti->type->busy(ti)) 1739 goto delay_and_out; 1740 1741 clone = dm_start_request(md, rq); 1742 1743 spin_unlock(q->queue_lock); 1744 if (map_request(ti, clone, md)) 1745 goto requeued; 1746 1747 BUG_ON(!irqs_disabled()); 1748 spin_lock(q->queue_lock); 1749 } 1750 1751 goto out; 1752 1753 requeued: 1754 BUG_ON(!irqs_disabled()); 1755 spin_lock(q->queue_lock); 1756 1757 delay_and_out: 1758 blk_delay_queue(q, HZ / 10); 1759 out: 1760 dm_put_live_table(md, srcu_idx); 1761 } 1762 1763 int dm_underlying_device_busy(struct request_queue *q) 1764 { 1765 return blk_lld_busy(q); 1766 } 1767 EXPORT_SYMBOL_GPL(dm_underlying_device_busy); 1768 1769 static int dm_lld_busy(struct request_queue *q) 1770 { 1771 int r; 1772 struct mapped_device *md = q->queuedata; 1773 struct dm_table *map = dm_get_live_table_fast(md); 1774 1775 if (!map || test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) 1776 r = 1; 1777 else 1778 r = dm_table_any_busy_target(map); 1779 1780 dm_put_live_table_fast(md); 1781 1782 return r; 1783 } 1784 1785 static int dm_any_congested(void *congested_data, int bdi_bits) 1786 { 1787 int r = bdi_bits; 1788 struct mapped_device *md = congested_data; 1789 struct dm_table *map; 1790 1791 if (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) { 1792 map = dm_get_live_table_fast(md); 1793 if (map) { 1794 /* 1795 * Request-based dm cares about only own queue for 1796 * the query about congestion status of request_queue 1797 */ 1798 if (dm_request_based(md)) 1799 r = md->queue->backing_dev_info.state & 1800 bdi_bits; 1801 else 1802 r = dm_table_any_congested(map, bdi_bits); 1803 } 1804 dm_put_live_table_fast(md); 1805 } 1806 1807 return r; 1808 } 1809 1810 /*----------------------------------------------------------------- 1811 * An IDR is used to keep track of allocated minor numbers. 1812 *---------------------------------------------------------------*/ 1813 static void free_minor(int minor) 1814 { 1815 spin_lock(&_minor_lock); 1816 idr_remove(&_minor_idr, minor); 1817 spin_unlock(&_minor_lock); 1818 } 1819 1820 /* 1821 * See if the device with a specific minor # is free. 1822 */ 1823 static int specific_minor(int minor) 1824 { 1825 int r; 1826 1827 if (minor >= (1 << MINORBITS)) 1828 return -EINVAL; 1829 1830 idr_preload(GFP_KERNEL); 1831 spin_lock(&_minor_lock); 1832 1833 r = idr_alloc(&_minor_idr, MINOR_ALLOCED, minor, minor + 1, GFP_NOWAIT); 1834 1835 spin_unlock(&_minor_lock); 1836 idr_preload_end(); 1837 if (r < 0) 1838 return r == -ENOSPC ? -EBUSY : r; 1839 return 0; 1840 } 1841 1842 static int next_free_minor(int *minor) 1843 { 1844 int r; 1845 1846 idr_preload(GFP_KERNEL); 1847 spin_lock(&_minor_lock); 1848 1849 r = idr_alloc(&_minor_idr, MINOR_ALLOCED, 0, 1 << MINORBITS, GFP_NOWAIT); 1850 1851 spin_unlock(&_minor_lock); 1852 idr_preload_end(); 1853 if (r < 0) 1854 return r; 1855 *minor = r; 1856 return 0; 1857 } 1858 1859 static const struct block_device_operations dm_blk_dops; 1860 1861 static void dm_wq_work(struct work_struct *work); 1862 1863 static void dm_init_md_queue(struct mapped_device *md) 1864 { 1865 /* 1866 * Request-based dm devices cannot be stacked on top of bio-based dm 1867 * devices. The type of this dm device has not been decided yet. 1868 * The type is decided at the first table loading time. 1869 * To prevent problematic device stacking, clear the queue flag 1870 * for request stacking support until then. 1871 * 1872 * This queue is new, so no concurrency on the queue_flags. 1873 */ 1874 queue_flag_clear_unlocked(QUEUE_FLAG_STACKABLE, md->queue); 1875 1876 md->queue->queuedata = md; 1877 md->queue->backing_dev_info.congested_fn = dm_any_congested; 1878 md->queue->backing_dev_info.congested_data = md; 1879 blk_queue_make_request(md->queue, dm_request); 1880 blk_queue_bounce_limit(md->queue, BLK_BOUNCE_ANY); 1881 blk_queue_merge_bvec(md->queue, dm_merge_bvec); 1882 } 1883 1884 /* 1885 * Allocate and initialise a blank device with a given minor. 1886 */ 1887 static struct mapped_device *alloc_dev(int minor) 1888 { 1889 int r; 1890 struct mapped_device *md = kzalloc(sizeof(*md), GFP_KERNEL); 1891 void *old_md; 1892 1893 if (!md) { 1894 DMWARN("unable to allocate device, out of memory."); 1895 return NULL; 1896 } 1897 1898 if (!try_module_get(THIS_MODULE)) 1899 goto bad_module_get; 1900 1901 /* get a minor number for the dev */ 1902 if (minor == DM_ANY_MINOR) 1903 r = next_free_minor(&minor); 1904 else 1905 r = specific_minor(minor); 1906 if (r < 0) 1907 goto bad_minor; 1908 1909 r = init_srcu_struct(&md->io_barrier); 1910 if (r < 0) 1911 goto bad_io_barrier; 1912 1913 md->type = DM_TYPE_NONE; 1914 mutex_init(&md->suspend_lock); 1915 mutex_init(&md->type_lock); 1916 spin_lock_init(&md->deferred_lock); 1917 atomic_set(&md->holders, 1); 1918 atomic_set(&md->open_count, 0); 1919 atomic_set(&md->event_nr, 0); 1920 atomic_set(&md->uevent_seq, 0); 1921 INIT_LIST_HEAD(&md->uevent_list); 1922 spin_lock_init(&md->uevent_lock); 1923 1924 md->queue = blk_alloc_queue(GFP_KERNEL); 1925 if (!md->queue) 1926 goto bad_queue; 1927 1928 dm_init_md_queue(md); 1929 1930 md->disk = alloc_disk(1); 1931 if (!md->disk) 1932 goto bad_disk; 1933 1934 atomic_set(&md->pending[0], 0); 1935 atomic_set(&md->pending[1], 0); 1936 init_waitqueue_head(&md->wait); 1937 INIT_WORK(&md->work, dm_wq_work); 1938 init_waitqueue_head(&md->eventq); 1939 1940 md->disk->major = _major; 1941 md->disk->first_minor = minor; 1942 md->disk->fops = &dm_blk_dops; 1943 md->disk->queue = md->queue; 1944 md->disk->private_data = md; 1945 sprintf(md->disk->disk_name, "dm-%d", minor); 1946 add_disk(md->disk); 1947 format_dev_t(md->name, MKDEV(_major, minor)); 1948 1949 md->wq = alloc_workqueue("kdmflush", 1950 WQ_NON_REENTRANT | WQ_MEM_RECLAIM, 0); 1951 if (!md->wq) 1952 goto bad_thread; 1953 1954 md->bdev = bdget_disk(md->disk, 0); 1955 if (!md->bdev) 1956 goto bad_bdev; 1957 1958 bio_init(&md->flush_bio); 1959 md->flush_bio.bi_bdev = md->bdev; 1960 md->flush_bio.bi_rw = WRITE_FLUSH; 1961 1962 /* Populate the mapping, nobody knows we exist yet */ 1963 spin_lock(&_minor_lock); 1964 old_md = idr_replace(&_minor_idr, md, minor); 1965 spin_unlock(&_minor_lock); 1966 1967 BUG_ON(old_md != MINOR_ALLOCED); 1968 1969 return md; 1970 1971 bad_bdev: 1972 destroy_workqueue(md->wq); 1973 bad_thread: 1974 del_gendisk(md->disk); 1975 put_disk(md->disk); 1976 bad_disk: 1977 blk_cleanup_queue(md->queue); 1978 bad_queue: 1979 cleanup_srcu_struct(&md->io_barrier); 1980 bad_io_barrier: 1981 free_minor(minor); 1982 bad_minor: 1983 module_put(THIS_MODULE); 1984 bad_module_get: 1985 kfree(md); 1986 return NULL; 1987 } 1988 1989 static void unlock_fs(struct mapped_device *md); 1990 1991 static void free_dev(struct mapped_device *md) 1992 { 1993 int minor = MINOR(disk_devt(md->disk)); 1994 1995 unlock_fs(md); 1996 bdput(md->bdev); 1997 destroy_workqueue(md->wq); 1998 if (md->io_pool) 1999 mempool_destroy(md->io_pool); 2000 if (md->bs) 2001 bioset_free(md->bs); 2002 blk_integrity_unregister(md->disk); 2003 del_gendisk(md->disk); 2004 cleanup_srcu_struct(&md->io_barrier); 2005 free_minor(minor); 2006 2007 spin_lock(&_minor_lock); 2008 md->disk->private_data = NULL; 2009 spin_unlock(&_minor_lock); 2010 2011 put_disk(md->disk); 2012 blk_cleanup_queue(md->queue); 2013 module_put(THIS_MODULE); 2014 kfree(md); 2015 } 2016 2017 static void __bind_mempools(struct mapped_device *md, struct dm_table *t) 2018 { 2019 struct dm_md_mempools *p = dm_table_get_md_mempools(t); 2020 2021 if (md->io_pool && md->bs) { 2022 /* The md already has necessary mempools. */ 2023 if (dm_table_get_type(t) == DM_TYPE_BIO_BASED) { 2024 /* 2025 * Reload bioset because front_pad may have changed 2026 * because a different table was loaded. 2027 */ 2028 bioset_free(md->bs); 2029 md->bs = p->bs; 2030 p->bs = NULL; 2031 } else if (dm_table_get_type(t) == DM_TYPE_REQUEST_BASED) { 2032 /* 2033 * There's no need to reload with request-based dm 2034 * because the size of front_pad doesn't change. 2035 * Note for future: If you are to reload bioset, 2036 * prep-ed requests in the queue may refer 2037 * to bio from the old bioset, so you must walk 2038 * through the queue to unprep. 2039 */ 2040 } 2041 goto out; 2042 } 2043 2044 BUG_ON(!p || md->io_pool || md->bs); 2045 2046 md->io_pool = p->io_pool; 2047 p->io_pool = NULL; 2048 md->bs = p->bs; 2049 p->bs = NULL; 2050 2051 out: 2052 /* mempool bind completed, now no need any mempools in the table */ 2053 dm_table_free_md_mempools(t); 2054 } 2055 2056 /* 2057 * Bind a table to the device. 2058 */ 2059 static void event_callback(void *context) 2060 { 2061 unsigned long flags; 2062 LIST_HEAD(uevents); 2063 struct mapped_device *md = (struct mapped_device *) context; 2064 2065 spin_lock_irqsave(&md->uevent_lock, flags); 2066 list_splice_init(&md->uevent_list, &uevents); 2067 spin_unlock_irqrestore(&md->uevent_lock, flags); 2068 2069 dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj); 2070 2071 atomic_inc(&md->event_nr); 2072 wake_up(&md->eventq); 2073 } 2074 2075 /* 2076 * Protected by md->suspend_lock obtained by dm_swap_table(). 2077 */ 2078 static void __set_size(struct mapped_device *md, sector_t size) 2079 { 2080 set_capacity(md->disk, size); 2081 2082 i_size_write(md->bdev->bd_inode, (loff_t)size << SECTOR_SHIFT); 2083 } 2084 2085 /* 2086 * Return 1 if the queue has a compulsory merge_bvec_fn function. 2087 * 2088 * If this function returns 0, then the device is either a non-dm 2089 * device without a merge_bvec_fn, or it is a dm device that is 2090 * able to split any bios it receives that are too big. 2091 */ 2092 int dm_queue_merge_is_compulsory(struct request_queue *q) 2093 { 2094 struct mapped_device *dev_md; 2095 2096 if (!q->merge_bvec_fn) 2097 return 0; 2098 2099 if (q->make_request_fn == dm_request) { 2100 dev_md = q->queuedata; 2101 if (test_bit(DMF_MERGE_IS_OPTIONAL, &dev_md->flags)) 2102 return 0; 2103 } 2104 2105 return 1; 2106 } 2107 2108 static int dm_device_merge_is_compulsory(struct dm_target *ti, 2109 struct dm_dev *dev, sector_t start, 2110 sector_t len, void *data) 2111 { 2112 struct block_device *bdev = dev->bdev; 2113 struct request_queue *q = bdev_get_queue(bdev); 2114 2115 return dm_queue_merge_is_compulsory(q); 2116 } 2117 2118 /* 2119 * Return 1 if it is acceptable to ignore merge_bvec_fn based 2120 * on the properties of the underlying devices. 2121 */ 2122 static int dm_table_merge_is_optional(struct dm_table *table) 2123 { 2124 unsigned i = 0; 2125 struct dm_target *ti; 2126 2127 while (i < dm_table_get_num_targets(table)) { 2128 ti = dm_table_get_target(table, i++); 2129 2130 if (ti->type->iterate_devices && 2131 ti->type->iterate_devices(ti, dm_device_merge_is_compulsory, NULL)) 2132 return 0; 2133 } 2134 2135 return 1; 2136 } 2137 2138 /* 2139 * Returns old map, which caller must destroy. 2140 */ 2141 static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t, 2142 struct queue_limits *limits) 2143 { 2144 struct dm_table *old_map; 2145 struct request_queue *q = md->queue; 2146 sector_t size; 2147 int merge_is_optional; 2148 2149 size = dm_table_get_size(t); 2150 2151 /* 2152 * Wipe any geometry if the size of the table changed. 2153 */ 2154 if (size != get_capacity(md->disk)) 2155 memset(&md->geometry, 0, sizeof(md->geometry)); 2156 2157 __set_size(md, size); 2158 2159 dm_table_event_callback(t, event_callback, md); 2160 2161 /* 2162 * The queue hasn't been stopped yet, if the old table type wasn't 2163 * for request-based during suspension. So stop it to prevent 2164 * I/O mapping before resume. 2165 * This must be done before setting the queue restrictions, 2166 * because request-based dm may be run just after the setting. 2167 */ 2168 if (dm_table_request_based(t) && !blk_queue_stopped(q)) 2169 stop_queue(q); 2170 2171 __bind_mempools(md, t); 2172 2173 merge_is_optional = dm_table_merge_is_optional(t); 2174 2175 old_map = md->map; 2176 rcu_assign_pointer(md->map, t); 2177 md->immutable_target_type = dm_table_get_immutable_target_type(t); 2178 2179 dm_table_set_restrictions(t, q, limits); 2180 if (merge_is_optional) 2181 set_bit(DMF_MERGE_IS_OPTIONAL, &md->flags); 2182 else 2183 clear_bit(DMF_MERGE_IS_OPTIONAL, &md->flags); 2184 dm_sync_table(md); 2185 2186 return old_map; 2187 } 2188 2189 /* 2190 * Returns unbound table for the caller to free. 2191 */ 2192 static struct dm_table *__unbind(struct mapped_device *md) 2193 { 2194 struct dm_table *map = md->map; 2195 2196 if (!map) 2197 return NULL; 2198 2199 dm_table_event_callback(map, NULL, NULL); 2200 rcu_assign_pointer(md->map, NULL); 2201 dm_sync_table(md); 2202 2203 return map; 2204 } 2205 2206 /* 2207 * Constructor for a new device. 2208 */ 2209 int dm_create(int minor, struct mapped_device **result) 2210 { 2211 struct mapped_device *md; 2212 2213 md = alloc_dev(minor); 2214 if (!md) 2215 return -ENXIO; 2216 2217 dm_sysfs_init(md); 2218 2219 *result = md; 2220 return 0; 2221 } 2222 2223 /* 2224 * Functions to manage md->type. 2225 * All are required to hold md->type_lock. 2226 */ 2227 void dm_lock_md_type(struct mapped_device *md) 2228 { 2229 mutex_lock(&md->type_lock); 2230 } 2231 2232 void dm_unlock_md_type(struct mapped_device *md) 2233 { 2234 mutex_unlock(&md->type_lock); 2235 } 2236 2237 void dm_set_md_type(struct mapped_device *md, unsigned type) 2238 { 2239 md->type = type; 2240 } 2241 2242 unsigned dm_get_md_type(struct mapped_device *md) 2243 { 2244 return md->type; 2245 } 2246 2247 struct target_type *dm_get_immutable_target_type(struct mapped_device *md) 2248 { 2249 return md->immutable_target_type; 2250 } 2251 2252 /* 2253 * Fully initialize a request-based queue (->elevator, ->request_fn, etc). 2254 */ 2255 static int dm_init_request_based_queue(struct mapped_device *md) 2256 { 2257 struct request_queue *q = NULL; 2258 2259 if (md->queue->elevator) 2260 return 1; 2261 2262 /* Fully initialize the queue */ 2263 q = blk_init_allocated_queue(md->queue, dm_request_fn, NULL); 2264 if (!q) 2265 return 0; 2266 2267 md->queue = q; 2268 dm_init_md_queue(md); 2269 blk_queue_softirq_done(md->queue, dm_softirq_done); 2270 blk_queue_prep_rq(md->queue, dm_prep_fn); 2271 blk_queue_lld_busy(md->queue, dm_lld_busy); 2272 2273 elv_register_queue(md->queue); 2274 2275 return 1; 2276 } 2277 2278 /* 2279 * Setup the DM device's queue based on md's type 2280 */ 2281 int dm_setup_md_queue(struct mapped_device *md) 2282 { 2283 if ((dm_get_md_type(md) == DM_TYPE_REQUEST_BASED) && 2284 !dm_init_request_based_queue(md)) { 2285 DMWARN("Cannot initialize queue for request-based mapped device"); 2286 return -EINVAL; 2287 } 2288 2289 return 0; 2290 } 2291 2292 static struct mapped_device *dm_find_md(dev_t dev) 2293 { 2294 struct mapped_device *md; 2295 unsigned minor = MINOR(dev); 2296 2297 if (MAJOR(dev) != _major || minor >= (1 << MINORBITS)) 2298 return NULL; 2299 2300 spin_lock(&_minor_lock); 2301 2302 md = idr_find(&_minor_idr, minor); 2303 if (md && (md == MINOR_ALLOCED || 2304 (MINOR(disk_devt(dm_disk(md))) != minor) || 2305 dm_deleting_md(md) || 2306 test_bit(DMF_FREEING, &md->flags))) { 2307 md = NULL; 2308 goto out; 2309 } 2310 2311 out: 2312 spin_unlock(&_minor_lock); 2313 2314 return md; 2315 } 2316 2317 struct mapped_device *dm_get_md(dev_t dev) 2318 { 2319 struct mapped_device *md = dm_find_md(dev); 2320 2321 if (md) 2322 dm_get(md); 2323 2324 return md; 2325 } 2326 EXPORT_SYMBOL_GPL(dm_get_md); 2327 2328 void *dm_get_mdptr(struct mapped_device *md) 2329 { 2330 return md->interface_ptr; 2331 } 2332 2333 void dm_set_mdptr(struct mapped_device *md, void *ptr) 2334 { 2335 md->interface_ptr = ptr; 2336 } 2337 2338 void dm_get(struct mapped_device *md) 2339 { 2340 atomic_inc(&md->holders); 2341 BUG_ON(test_bit(DMF_FREEING, &md->flags)); 2342 } 2343 2344 const char *dm_device_name(struct mapped_device *md) 2345 { 2346 return md->name; 2347 } 2348 EXPORT_SYMBOL_GPL(dm_device_name); 2349 2350 static void __dm_destroy(struct mapped_device *md, bool wait) 2351 { 2352 struct dm_table *map; 2353 int srcu_idx; 2354 2355 might_sleep(); 2356 2357 spin_lock(&_minor_lock); 2358 map = dm_get_live_table(md, &srcu_idx); 2359 idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md)))); 2360 set_bit(DMF_FREEING, &md->flags); 2361 spin_unlock(&_minor_lock); 2362 2363 if (!dm_suspended_md(md)) { 2364 dm_table_presuspend_targets(map); 2365 dm_table_postsuspend_targets(map); 2366 } 2367 2368 /* dm_put_live_table must be before msleep, otherwise deadlock is possible */ 2369 dm_put_live_table(md, srcu_idx); 2370 2371 /* 2372 * Rare, but there may be I/O requests still going to complete, 2373 * for example. Wait for all references to disappear. 2374 * No one should increment the reference count of the mapped_device, 2375 * after the mapped_device state becomes DMF_FREEING. 2376 */ 2377 if (wait) 2378 while (atomic_read(&md->holders)) 2379 msleep(1); 2380 else if (atomic_read(&md->holders)) 2381 DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)", 2382 dm_device_name(md), atomic_read(&md->holders)); 2383 2384 dm_sysfs_exit(md); 2385 dm_table_destroy(__unbind(md)); 2386 free_dev(md); 2387 } 2388 2389 void dm_destroy(struct mapped_device *md) 2390 { 2391 __dm_destroy(md, true); 2392 } 2393 2394 void dm_destroy_immediate(struct mapped_device *md) 2395 { 2396 __dm_destroy(md, false); 2397 } 2398 2399 void dm_put(struct mapped_device *md) 2400 { 2401 atomic_dec(&md->holders); 2402 } 2403 EXPORT_SYMBOL_GPL(dm_put); 2404 2405 static int dm_wait_for_completion(struct mapped_device *md, int interruptible) 2406 { 2407 int r = 0; 2408 DECLARE_WAITQUEUE(wait, current); 2409 2410 add_wait_queue(&md->wait, &wait); 2411 2412 while (1) { 2413 set_current_state(interruptible); 2414 2415 if (!md_in_flight(md)) 2416 break; 2417 2418 if (interruptible == TASK_INTERRUPTIBLE && 2419 signal_pending(current)) { 2420 r = -EINTR; 2421 break; 2422 } 2423 2424 io_schedule(); 2425 } 2426 set_current_state(TASK_RUNNING); 2427 2428 remove_wait_queue(&md->wait, &wait); 2429 2430 return r; 2431 } 2432 2433 /* 2434 * Process the deferred bios 2435 */ 2436 static void dm_wq_work(struct work_struct *work) 2437 { 2438 struct mapped_device *md = container_of(work, struct mapped_device, 2439 work); 2440 struct bio *c; 2441 int srcu_idx; 2442 struct dm_table *map; 2443 2444 map = dm_get_live_table(md, &srcu_idx); 2445 2446 while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) { 2447 spin_lock_irq(&md->deferred_lock); 2448 c = bio_list_pop(&md->deferred); 2449 spin_unlock_irq(&md->deferred_lock); 2450 2451 if (!c) 2452 break; 2453 2454 if (dm_request_based(md)) 2455 generic_make_request(c); 2456 else 2457 __split_and_process_bio(md, map, c); 2458 } 2459 2460 dm_put_live_table(md, srcu_idx); 2461 } 2462 2463 static void dm_queue_flush(struct mapped_device *md) 2464 { 2465 clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags); 2466 smp_mb__after_clear_bit(); 2467 queue_work(md->wq, &md->work); 2468 } 2469 2470 /* 2471 * Swap in a new table, returning the old one for the caller to destroy. 2472 */ 2473 struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table) 2474 { 2475 struct dm_table *live_map = NULL, *map = ERR_PTR(-EINVAL); 2476 struct queue_limits limits; 2477 int r; 2478 2479 mutex_lock(&md->suspend_lock); 2480 2481 /* device must be suspended */ 2482 if (!dm_suspended_md(md)) 2483 goto out; 2484 2485 /* 2486 * If the new table has no data devices, retain the existing limits. 2487 * This helps multipath with queue_if_no_path if all paths disappear, 2488 * then new I/O is queued based on these limits, and then some paths 2489 * reappear. 2490 */ 2491 if (dm_table_has_no_data_devices(table)) { 2492 live_map = dm_get_live_table_fast(md); 2493 if (live_map) 2494 limits = md->queue->limits; 2495 dm_put_live_table_fast(md); 2496 } 2497 2498 if (!live_map) { 2499 r = dm_calculate_queue_limits(table, &limits); 2500 if (r) { 2501 map = ERR_PTR(r); 2502 goto out; 2503 } 2504 } 2505 2506 map = __bind(md, table, &limits); 2507 2508 out: 2509 mutex_unlock(&md->suspend_lock); 2510 return map; 2511 } 2512 2513 /* 2514 * Functions to lock and unlock any filesystem running on the 2515 * device. 2516 */ 2517 static int lock_fs(struct mapped_device *md) 2518 { 2519 int r; 2520 2521 WARN_ON(md->frozen_sb); 2522 2523 md->frozen_sb = freeze_bdev(md->bdev); 2524 if (IS_ERR(md->frozen_sb)) { 2525 r = PTR_ERR(md->frozen_sb); 2526 md->frozen_sb = NULL; 2527 return r; 2528 } 2529 2530 set_bit(DMF_FROZEN, &md->flags); 2531 2532 return 0; 2533 } 2534 2535 static void unlock_fs(struct mapped_device *md) 2536 { 2537 if (!test_bit(DMF_FROZEN, &md->flags)) 2538 return; 2539 2540 thaw_bdev(md->bdev, md->frozen_sb); 2541 md->frozen_sb = NULL; 2542 clear_bit(DMF_FROZEN, &md->flags); 2543 } 2544 2545 /* 2546 * We need to be able to change a mapping table under a mounted 2547 * filesystem. For example we might want to move some data in 2548 * the background. Before the table can be swapped with 2549 * dm_bind_table, dm_suspend must be called to flush any in 2550 * flight bios and ensure that any further io gets deferred. 2551 */ 2552 /* 2553 * Suspend mechanism in request-based dm. 2554 * 2555 * 1. Flush all I/Os by lock_fs() if needed. 2556 * 2. Stop dispatching any I/O by stopping the request_queue. 2557 * 3. Wait for all in-flight I/Os to be completed or requeued. 2558 * 2559 * To abort suspend, start the request_queue. 2560 */ 2561 int dm_suspend(struct mapped_device *md, unsigned suspend_flags) 2562 { 2563 struct dm_table *map = NULL; 2564 int r = 0; 2565 int do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG ? 1 : 0; 2566 int noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG ? 1 : 0; 2567 2568 mutex_lock(&md->suspend_lock); 2569 2570 if (dm_suspended_md(md)) { 2571 r = -EINVAL; 2572 goto out_unlock; 2573 } 2574 2575 map = md->map; 2576 2577 /* 2578 * DMF_NOFLUSH_SUSPENDING must be set before presuspend. 2579 * This flag is cleared before dm_suspend returns. 2580 */ 2581 if (noflush) 2582 set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags); 2583 2584 /* This does not get reverted if there's an error later. */ 2585 dm_table_presuspend_targets(map); 2586 2587 /* 2588 * Flush I/O to the device. 2589 * Any I/O submitted after lock_fs() may not be flushed. 2590 * noflush takes precedence over do_lockfs. 2591 * (lock_fs() flushes I/Os and waits for them to complete.) 2592 */ 2593 if (!noflush && do_lockfs) { 2594 r = lock_fs(md); 2595 if (r) 2596 goto out_unlock; 2597 } 2598 2599 /* 2600 * Here we must make sure that no processes are submitting requests 2601 * to target drivers i.e. no one may be executing 2602 * __split_and_process_bio. This is called from dm_request and 2603 * dm_wq_work. 2604 * 2605 * To get all processes out of __split_and_process_bio in dm_request, 2606 * we take the write lock. To prevent any process from reentering 2607 * __split_and_process_bio from dm_request and quiesce the thread 2608 * (dm_wq_work), we set BMF_BLOCK_IO_FOR_SUSPEND and call 2609 * flush_workqueue(md->wq). 2610 */ 2611 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags); 2612 synchronize_srcu(&md->io_barrier); 2613 2614 /* 2615 * Stop md->queue before flushing md->wq in case request-based 2616 * dm defers requests to md->wq from md->queue. 2617 */ 2618 if (dm_request_based(md)) 2619 stop_queue(md->queue); 2620 2621 flush_workqueue(md->wq); 2622 2623 /* 2624 * At this point no more requests are entering target request routines. 2625 * We call dm_wait_for_completion to wait for all existing requests 2626 * to finish. 2627 */ 2628 r = dm_wait_for_completion(md, TASK_INTERRUPTIBLE); 2629 2630 if (noflush) 2631 clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags); 2632 synchronize_srcu(&md->io_barrier); 2633 2634 /* were we interrupted ? */ 2635 if (r < 0) { 2636 dm_queue_flush(md); 2637 2638 if (dm_request_based(md)) 2639 start_queue(md->queue); 2640 2641 unlock_fs(md); 2642 goto out_unlock; /* pushback list is already flushed, so skip flush */ 2643 } 2644 2645 /* 2646 * If dm_wait_for_completion returned 0, the device is completely 2647 * quiescent now. There is no request-processing activity. All new 2648 * requests are being added to md->deferred list. 2649 */ 2650 2651 set_bit(DMF_SUSPENDED, &md->flags); 2652 2653 dm_table_postsuspend_targets(map); 2654 2655 out_unlock: 2656 mutex_unlock(&md->suspend_lock); 2657 return r; 2658 } 2659 2660 int dm_resume(struct mapped_device *md) 2661 { 2662 int r = -EINVAL; 2663 struct dm_table *map = NULL; 2664 2665 mutex_lock(&md->suspend_lock); 2666 if (!dm_suspended_md(md)) 2667 goto out; 2668 2669 map = md->map; 2670 if (!map || !dm_table_get_size(map)) 2671 goto out; 2672 2673 r = dm_table_resume_targets(map); 2674 if (r) 2675 goto out; 2676 2677 dm_queue_flush(md); 2678 2679 /* 2680 * Flushing deferred I/Os must be done after targets are resumed 2681 * so that mapping of targets can work correctly. 2682 * Request-based dm is queueing the deferred I/Os in its request_queue. 2683 */ 2684 if (dm_request_based(md)) 2685 start_queue(md->queue); 2686 2687 unlock_fs(md); 2688 2689 clear_bit(DMF_SUSPENDED, &md->flags); 2690 2691 r = 0; 2692 out: 2693 mutex_unlock(&md->suspend_lock); 2694 2695 return r; 2696 } 2697 2698 /*----------------------------------------------------------------- 2699 * Event notification. 2700 *---------------------------------------------------------------*/ 2701 int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action, 2702 unsigned cookie) 2703 { 2704 char udev_cookie[DM_COOKIE_LENGTH]; 2705 char *envp[] = { udev_cookie, NULL }; 2706 2707 if (!cookie) 2708 return kobject_uevent(&disk_to_dev(md->disk)->kobj, action); 2709 else { 2710 snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u", 2711 DM_COOKIE_ENV_VAR_NAME, cookie); 2712 return kobject_uevent_env(&disk_to_dev(md->disk)->kobj, 2713 action, envp); 2714 } 2715 } 2716 2717 uint32_t dm_next_uevent_seq(struct mapped_device *md) 2718 { 2719 return atomic_add_return(1, &md->uevent_seq); 2720 } 2721 2722 uint32_t dm_get_event_nr(struct mapped_device *md) 2723 { 2724 return atomic_read(&md->event_nr); 2725 } 2726 2727 int dm_wait_event(struct mapped_device *md, int event_nr) 2728 { 2729 return wait_event_interruptible(md->eventq, 2730 (event_nr != atomic_read(&md->event_nr))); 2731 } 2732 2733 void dm_uevent_add(struct mapped_device *md, struct list_head *elist) 2734 { 2735 unsigned long flags; 2736 2737 spin_lock_irqsave(&md->uevent_lock, flags); 2738 list_add(elist, &md->uevent_list); 2739 spin_unlock_irqrestore(&md->uevent_lock, flags); 2740 } 2741 2742 /* 2743 * The gendisk is only valid as long as you have a reference 2744 * count on 'md'. 2745 */ 2746 struct gendisk *dm_disk(struct mapped_device *md) 2747 { 2748 return md->disk; 2749 } 2750 2751 struct kobject *dm_kobject(struct mapped_device *md) 2752 { 2753 return &md->kobj; 2754 } 2755 2756 /* 2757 * struct mapped_device should not be exported outside of dm.c 2758 * so use this check to verify that kobj is part of md structure 2759 */ 2760 struct mapped_device *dm_get_from_kobject(struct kobject *kobj) 2761 { 2762 struct mapped_device *md; 2763 2764 md = container_of(kobj, struct mapped_device, kobj); 2765 if (&md->kobj != kobj) 2766 return NULL; 2767 2768 if (test_bit(DMF_FREEING, &md->flags) || 2769 dm_deleting_md(md)) 2770 return NULL; 2771 2772 dm_get(md); 2773 return md; 2774 } 2775 2776 int dm_suspended_md(struct mapped_device *md) 2777 { 2778 return test_bit(DMF_SUSPENDED, &md->flags); 2779 } 2780 2781 int dm_suspended(struct dm_target *ti) 2782 { 2783 return dm_suspended_md(dm_table_get_md(ti->table)); 2784 } 2785 EXPORT_SYMBOL_GPL(dm_suspended); 2786 2787 int dm_noflush_suspending(struct dm_target *ti) 2788 { 2789 return __noflush_suspending(dm_table_get_md(ti->table)); 2790 } 2791 EXPORT_SYMBOL_GPL(dm_noflush_suspending); 2792 2793 struct dm_md_mempools *dm_alloc_md_mempools(unsigned type, unsigned integrity, unsigned per_bio_data_size) 2794 { 2795 struct dm_md_mempools *pools = kzalloc(sizeof(*pools), GFP_KERNEL); 2796 struct kmem_cache *cachep; 2797 unsigned int pool_size; 2798 unsigned int front_pad; 2799 2800 if (!pools) 2801 return NULL; 2802 2803 if (type == DM_TYPE_BIO_BASED) { 2804 cachep = _io_cache; 2805 pool_size = 16; 2806 front_pad = roundup(per_bio_data_size, __alignof__(struct dm_target_io)) + offsetof(struct dm_target_io, clone); 2807 } else if (type == DM_TYPE_REQUEST_BASED) { 2808 cachep = _rq_tio_cache; 2809 pool_size = MIN_IOS; 2810 front_pad = offsetof(struct dm_rq_clone_bio_info, clone); 2811 /* per_bio_data_size is not used. See __bind_mempools(). */ 2812 WARN_ON(per_bio_data_size != 0); 2813 } else 2814 goto out; 2815 2816 pools->io_pool = mempool_create_slab_pool(MIN_IOS, cachep); 2817 if (!pools->io_pool) 2818 goto out; 2819 2820 pools->bs = bioset_create(pool_size, front_pad); 2821 if (!pools->bs) 2822 goto out; 2823 2824 if (integrity && bioset_integrity_create(pools->bs, pool_size)) 2825 goto out; 2826 2827 return pools; 2828 2829 out: 2830 dm_free_md_mempools(pools); 2831 2832 return NULL; 2833 } 2834 2835 void dm_free_md_mempools(struct dm_md_mempools *pools) 2836 { 2837 if (!pools) 2838 return; 2839 2840 if (pools->io_pool) 2841 mempool_destroy(pools->io_pool); 2842 2843 if (pools->bs) 2844 bioset_free(pools->bs); 2845 2846 kfree(pools); 2847 } 2848 2849 static const struct block_device_operations dm_blk_dops = { 2850 .open = dm_blk_open, 2851 .release = dm_blk_close, 2852 .ioctl = dm_blk_ioctl, 2853 .getgeo = dm_blk_getgeo, 2854 .owner = THIS_MODULE 2855 }; 2856 2857 EXPORT_SYMBOL(dm_get_mapinfo); 2858 2859 /* 2860 * module hooks 2861 */ 2862 module_init(dm_init); 2863 module_exit(dm_exit); 2864 2865 module_param(major, uint, 0); 2866 MODULE_PARM_DESC(major, "The major number of the device mapper"); 2867 MODULE_DESCRIPTION(DM_NAME " driver"); 2868 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>"); 2869 MODULE_LICENSE("GPL"); 2870