xref: /linux/drivers/md/dm.c (revision 148f9bb87745ed45f7a11b2cbd3bc0f017d5d257)
1 /*
2  * Copyright (C) 2001, 2002 Sistina Software (UK) Limited.
3  * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
4  *
5  * This file is released under the GPL.
6  */
7 
8 #include "dm.h"
9 #include "dm-uevent.h"
10 
11 #include <linux/init.h>
12 #include <linux/module.h>
13 #include <linux/mutex.h>
14 #include <linux/moduleparam.h>
15 #include <linux/blkpg.h>
16 #include <linux/bio.h>
17 #include <linux/mempool.h>
18 #include <linux/slab.h>
19 #include <linux/idr.h>
20 #include <linux/hdreg.h>
21 #include <linux/delay.h>
22 
23 #include <trace/events/block.h>
24 
25 #define DM_MSG_PREFIX "core"
26 
27 #ifdef CONFIG_PRINTK
28 /*
29  * ratelimit state to be used in DMXXX_LIMIT().
30  */
31 DEFINE_RATELIMIT_STATE(dm_ratelimit_state,
32 		       DEFAULT_RATELIMIT_INTERVAL,
33 		       DEFAULT_RATELIMIT_BURST);
34 EXPORT_SYMBOL(dm_ratelimit_state);
35 #endif
36 
37 /*
38  * Cookies are numeric values sent with CHANGE and REMOVE
39  * uevents while resuming, removing or renaming the device.
40  */
41 #define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE"
42 #define DM_COOKIE_LENGTH 24
43 
44 static const char *_name = DM_NAME;
45 
46 static unsigned int major = 0;
47 static unsigned int _major = 0;
48 
49 static DEFINE_IDR(_minor_idr);
50 
51 static DEFINE_SPINLOCK(_minor_lock);
52 /*
53  * For bio-based dm.
54  * One of these is allocated per bio.
55  */
56 struct dm_io {
57 	struct mapped_device *md;
58 	int error;
59 	atomic_t io_count;
60 	struct bio *bio;
61 	unsigned long start_time;
62 	spinlock_t endio_lock;
63 };
64 
65 /*
66  * For request-based dm.
67  * One of these is allocated per request.
68  */
69 struct dm_rq_target_io {
70 	struct mapped_device *md;
71 	struct dm_target *ti;
72 	struct request *orig, clone;
73 	int error;
74 	union map_info info;
75 };
76 
77 /*
78  * For request-based dm - the bio clones we allocate are embedded in these
79  * structs.
80  *
81  * We allocate these with bio_alloc_bioset, using the front_pad parameter when
82  * the bioset is created - this means the bio has to come at the end of the
83  * struct.
84  */
85 struct dm_rq_clone_bio_info {
86 	struct bio *orig;
87 	struct dm_rq_target_io *tio;
88 	struct bio clone;
89 };
90 
91 union map_info *dm_get_mapinfo(struct bio *bio)
92 {
93 	if (bio && bio->bi_private)
94 		return &((struct dm_target_io *)bio->bi_private)->info;
95 	return NULL;
96 }
97 
98 union map_info *dm_get_rq_mapinfo(struct request *rq)
99 {
100 	if (rq && rq->end_io_data)
101 		return &((struct dm_rq_target_io *)rq->end_io_data)->info;
102 	return NULL;
103 }
104 EXPORT_SYMBOL_GPL(dm_get_rq_mapinfo);
105 
106 #define MINOR_ALLOCED ((void *)-1)
107 
108 /*
109  * Bits for the md->flags field.
110  */
111 #define DMF_BLOCK_IO_FOR_SUSPEND 0
112 #define DMF_SUSPENDED 1
113 #define DMF_FROZEN 2
114 #define DMF_FREEING 3
115 #define DMF_DELETING 4
116 #define DMF_NOFLUSH_SUSPENDING 5
117 #define DMF_MERGE_IS_OPTIONAL 6
118 
119 /*
120  * A dummy definition to make RCU happy.
121  * struct dm_table should never be dereferenced in this file.
122  */
123 struct dm_table {
124 	int undefined__;
125 };
126 
127 /*
128  * Work processed by per-device workqueue.
129  */
130 struct mapped_device {
131 	struct srcu_struct io_barrier;
132 	struct mutex suspend_lock;
133 	atomic_t holders;
134 	atomic_t open_count;
135 
136 	/*
137 	 * The current mapping.
138 	 * Use dm_get_live_table{_fast} or take suspend_lock for
139 	 * dereference.
140 	 */
141 	struct dm_table *map;
142 
143 	unsigned long flags;
144 
145 	struct request_queue *queue;
146 	unsigned type;
147 	/* Protect queue and type against concurrent access. */
148 	struct mutex type_lock;
149 
150 	struct target_type *immutable_target_type;
151 
152 	struct gendisk *disk;
153 	char name[16];
154 
155 	void *interface_ptr;
156 
157 	/*
158 	 * A list of ios that arrived while we were suspended.
159 	 */
160 	atomic_t pending[2];
161 	wait_queue_head_t wait;
162 	struct work_struct work;
163 	struct bio_list deferred;
164 	spinlock_t deferred_lock;
165 
166 	/*
167 	 * Processing queue (flush)
168 	 */
169 	struct workqueue_struct *wq;
170 
171 	/*
172 	 * io objects are allocated from here.
173 	 */
174 	mempool_t *io_pool;
175 
176 	struct bio_set *bs;
177 
178 	/*
179 	 * Event handling.
180 	 */
181 	atomic_t event_nr;
182 	wait_queue_head_t eventq;
183 	atomic_t uevent_seq;
184 	struct list_head uevent_list;
185 	spinlock_t uevent_lock; /* Protect access to uevent_list */
186 
187 	/*
188 	 * freeze/thaw support require holding onto a super block
189 	 */
190 	struct super_block *frozen_sb;
191 	struct block_device *bdev;
192 
193 	/* forced geometry settings */
194 	struct hd_geometry geometry;
195 
196 	/* sysfs handle */
197 	struct kobject kobj;
198 
199 	/* zero-length flush that will be cloned and submitted to targets */
200 	struct bio flush_bio;
201 };
202 
203 /*
204  * For mempools pre-allocation at the table loading time.
205  */
206 struct dm_md_mempools {
207 	mempool_t *io_pool;
208 	struct bio_set *bs;
209 };
210 
211 #define MIN_IOS 256
212 static struct kmem_cache *_io_cache;
213 static struct kmem_cache *_rq_tio_cache;
214 
215 static int __init local_init(void)
216 {
217 	int r = -ENOMEM;
218 
219 	/* allocate a slab for the dm_ios */
220 	_io_cache = KMEM_CACHE(dm_io, 0);
221 	if (!_io_cache)
222 		return r;
223 
224 	_rq_tio_cache = KMEM_CACHE(dm_rq_target_io, 0);
225 	if (!_rq_tio_cache)
226 		goto out_free_io_cache;
227 
228 	r = dm_uevent_init();
229 	if (r)
230 		goto out_free_rq_tio_cache;
231 
232 	_major = major;
233 	r = register_blkdev(_major, _name);
234 	if (r < 0)
235 		goto out_uevent_exit;
236 
237 	if (!_major)
238 		_major = r;
239 
240 	return 0;
241 
242 out_uevent_exit:
243 	dm_uevent_exit();
244 out_free_rq_tio_cache:
245 	kmem_cache_destroy(_rq_tio_cache);
246 out_free_io_cache:
247 	kmem_cache_destroy(_io_cache);
248 
249 	return r;
250 }
251 
252 static void local_exit(void)
253 {
254 	kmem_cache_destroy(_rq_tio_cache);
255 	kmem_cache_destroy(_io_cache);
256 	unregister_blkdev(_major, _name);
257 	dm_uevent_exit();
258 
259 	_major = 0;
260 
261 	DMINFO("cleaned up");
262 }
263 
264 static int (*_inits[])(void) __initdata = {
265 	local_init,
266 	dm_target_init,
267 	dm_linear_init,
268 	dm_stripe_init,
269 	dm_io_init,
270 	dm_kcopyd_init,
271 	dm_interface_init,
272 };
273 
274 static void (*_exits[])(void) = {
275 	local_exit,
276 	dm_target_exit,
277 	dm_linear_exit,
278 	dm_stripe_exit,
279 	dm_io_exit,
280 	dm_kcopyd_exit,
281 	dm_interface_exit,
282 };
283 
284 static int __init dm_init(void)
285 {
286 	const int count = ARRAY_SIZE(_inits);
287 
288 	int r, i;
289 
290 	for (i = 0; i < count; i++) {
291 		r = _inits[i]();
292 		if (r)
293 			goto bad;
294 	}
295 
296 	return 0;
297 
298       bad:
299 	while (i--)
300 		_exits[i]();
301 
302 	return r;
303 }
304 
305 static void __exit dm_exit(void)
306 {
307 	int i = ARRAY_SIZE(_exits);
308 
309 	while (i--)
310 		_exits[i]();
311 
312 	/*
313 	 * Should be empty by this point.
314 	 */
315 	idr_destroy(&_minor_idr);
316 }
317 
318 /*
319  * Block device functions
320  */
321 int dm_deleting_md(struct mapped_device *md)
322 {
323 	return test_bit(DMF_DELETING, &md->flags);
324 }
325 
326 static int dm_blk_open(struct block_device *bdev, fmode_t mode)
327 {
328 	struct mapped_device *md;
329 
330 	spin_lock(&_minor_lock);
331 
332 	md = bdev->bd_disk->private_data;
333 	if (!md)
334 		goto out;
335 
336 	if (test_bit(DMF_FREEING, &md->flags) ||
337 	    dm_deleting_md(md)) {
338 		md = NULL;
339 		goto out;
340 	}
341 
342 	dm_get(md);
343 	atomic_inc(&md->open_count);
344 
345 out:
346 	spin_unlock(&_minor_lock);
347 
348 	return md ? 0 : -ENXIO;
349 }
350 
351 static void dm_blk_close(struct gendisk *disk, fmode_t mode)
352 {
353 	struct mapped_device *md = disk->private_data;
354 
355 	spin_lock(&_minor_lock);
356 
357 	atomic_dec(&md->open_count);
358 	dm_put(md);
359 
360 	spin_unlock(&_minor_lock);
361 }
362 
363 int dm_open_count(struct mapped_device *md)
364 {
365 	return atomic_read(&md->open_count);
366 }
367 
368 /*
369  * Guarantees nothing is using the device before it's deleted.
370  */
371 int dm_lock_for_deletion(struct mapped_device *md)
372 {
373 	int r = 0;
374 
375 	spin_lock(&_minor_lock);
376 
377 	if (dm_open_count(md))
378 		r = -EBUSY;
379 	else
380 		set_bit(DMF_DELETING, &md->flags);
381 
382 	spin_unlock(&_minor_lock);
383 
384 	return r;
385 }
386 
387 static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
388 {
389 	struct mapped_device *md = bdev->bd_disk->private_data;
390 
391 	return dm_get_geometry(md, geo);
392 }
393 
394 static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode,
395 			unsigned int cmd, unsigned long arg)
396 {
397 	struct mapped_device *md = bdev->bd_disk->private_data;
398 	int srcu_idx;
399 	struct dm_table *map;
400 	struct dm_target *tgt;
401 	int r = -ENOTTY;
402 
403 retry:
404 	map = dm_get_live_table(md, &srcu_idx);
405 
406 	if (!map || !dm_table_get_size(map))
407 		goto out;
408 
409 	/* We only support devices that have a single target */
410 	if (dm_table_get_num_targets(map) != 1)
411 		goto out;
412 
413 	tgt = dm_table_get_target(map, 0);
414 
415 	if (dm_suspended_md(md)) {
416 		r = -EAGAIN;
417 		goto out;
418 	}
419 
420 	if (tgt->type->ioctl)
421 		r = tgt->type->ioctl(tgt, cmd, arg);
422 
423 out:
424 	dm_put_live_table(md, srcu_idx);
425 
426 	if (r == -ENOTCONN) {
427 		msleep(10);
428 		goto retry;
429 	}
430 
431 	return r;
432 }
433 
434 static struct dm_io *alloc_io(struct mapped_device *md)
435 {
436 	return mempool_alloc(md->io_pool, GFP_NOIO);
437 }
438 
439 static void free_io(struct mapped_device *md, struct dm_io *io)
440 {
441 	mempool_free(io, md->io_pool);
442 }
443 
444 static void free_tio(struct mapped_device *md, struct dm_target_io *tio)
445 {
446 	bio_put(&tio->clone);
447 }
448 
449 static struct dm_rq_target_io *alloc_rq_tio(struct mapped_device *md,
450 					    gfp_t gfp_mask)
451 {
452 	return mempool_alloc(md->io_pool, gfp_mask);
453 }
454 
455 static void free_rq_tio(struct dm_rq_target_io *tio)
456 {
457 	mempool_free(tio, tio->md->io_pool);
458 }
459 
460 static int md_in_flight(struct mapped_device *md)
461 {
462 	return atomic_read(&md->pending[READ]) +
463 	       atomic_read(&md->pending[WRITE]);
464 }
465 
466 static void start_io_acct(struct dm_io *io)
467 {
468 	struct mapped_device *md = io->md;
469 	int cpu;
470 	int rw = bio_data_dir(io->bio);
471 
472 	io->start_time = jiffies;
473 
474 	cpu = part_stat_lock();
475 	part_round_stats(cpu, &dm_disk(md)->part0);
476 	part_stat_unlock();
477 	atomic_set(&dm_disk(md)->part0.in_flight[rw],
478 		atomic_inc_return(&md->pending[rw]));
479 }
480 
481 static void end_io_acct(struct dm_io *io)
482 {
483 	struct mapped_device *md = io->md;
484 	struct bio *bio = io->bio;
485 	unsigned long duration = jiffies - io->start_time;
486 	int pending, cpu;
487 	int rw = bio_data_dir(bio);
488 
489 	cpu = part_stat_lock();
490 	part_round_stats(cpu, &dm_disk(md)->part0);
491 	part_stat_add(cpu, &dm_disk(md)->part0, ticks[rw], duration);
492 	part_stat_unlock();
493 
494 	/*
495 	 * After this is decremented the bio must not be touched if it is
496 	 * a flush.
497 	 */
498 	pending = atomic_dec_return(&md->pending[rw]);
499 	atomic_set(&dm_disk(md)->part0.in_flight[rw], pending);
500 	pending += atomic_read(&md->pending[rw^0x1]);
501 
502 	/* nudge anyone waiting on suspend queue */
503 	if (!pending)
504 		wake_up(&md->wait);
505 }
506 
507 /*
508  * Add the bio to the list of deferred io.
509  */
510 static void queue_io(struct mapped_device *md, struct bio *bio)
511 {
512 	unsigned long flags;
513 
514 	spin_lock_irqsave(&md->deferred_lock, flags);
515 	bio_list_add(&md->deferred, bio);
516 	spin_unlock_irqrestore(&md->deferred_lock, flags);
517 	queue_work(md->wq, &md->work);
518 }
519 
520 /*
521  * Everyone (including functions in this file), should use this
522  * function to access the md->map field, and make sure they call
523  * dm_put_live_table() when finished.
524  */
525 struct dm_table *dm_get_live_table(struct mapped_device *md, int *srcu_idx) __acquires(md->io_barrier)
526 {
527 	*srcu_idx = srcu_read_lock(&md->io_barrier);
528 
529 	return srcu_dereference(md->map, &md->io_barrier);
530 }
531 
532 void dm_put_live_table(struct mapped_device *md, int srcu_idx) __releases(md->io_barrier)
533 {
534 	srcu_read_unlock(&md->io_barrier, srcu_idx);
535 }
536 
537 void dm_sync_table(struct mapped_device *md)
538 {
539 	synchronize_srcu(&md->io_barrier);
540 	synchronize_rcu_expedited();
541 }
542 
543 /*
544  * A fast alternative to dm_get_live_table/dm_put_live_table.
545  * The caller must not block between these two functions.
546  */
547 static struct dm_table *dm_get_live_table_fast(struct mapped_device *md) __acquires(RCU)
548 {
549 	rcu_read_lock();
550 	return rcu_dereference(md->map);
551 }
552 
553 static void dm_put_live_table_fast(struct mapped_device *md) __releases(RCU)
554 {
555 	rcu_read_unlock();
556 }
557 
558 /*
559  * Get the geometry associated with a dm device
560  */
561 int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo)
562 {
563 	*geo = md->geometry;
564 
565 	return 0;
566 }
567 
568 /*
569  * Set the geometry of a device.
570  */
571 int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo)
572 {
573 	sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors;
574 
575 	if (geo->start > sz) {
576 		DMWARN("Start sector is beyond the geometry limits.");
577 		return -EINVAL;
578 	}
579 
580 	md->geometry = *geo;
581 
582 	return 0;
583 }
584 
585 /*-----------------------------------------------------------------
586  * CRUD START:
587  *   A more elegant soln is in the works that uses the queue
588  *   merge fn, unfortunately there are a couple of changes to
589  *   the block layer that I want to make for this.  So in the
590  *   interests of getting something for people to use I give
591  *   you this clearly demarcated crap.
592  *---------------------------------------------------------------*/
593 
594 static int __noflush_suspending(struct mapped_device *md)
595 {
596 	return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
597 }
598 
599 /*
600  * Decrements the number of outstanding ios that a bio has been
601  * cloned into, completing the original io if necc.
602  */
603 static void dec_pending(struct dm_io *io, int error)
604 {
605 	unsigned long flags;
606 	int io_error;
607 	struct bio *bio;
608 	struct mapped_device *md = io->md;
609 
610 	/* Push-back supersedes any I/O errors */
611 	if (unlikely(error)) {
612 		spin_lock_irqsave(&io->endio_lock, flags);
613 		if (!(io->error > 0 && __noflush_suspending(md)))
614 			io->error = error;
615 		spin_unlock_irqrestore(&io->endio_lock, flags);
616 	}
617 
618 	if (atomic_dec_and_test(&io->io_count)) {
619 		if (io->error == DM_ENDIO_REQUEUE) {
620 			/*
621 			 * Target requested pushing back the I/O.
622 			 */
623 			spin_lock_irqsave(&md->deferred_lock, flags);
624 			if (__noflush_suspending(md))
625 				bio_list_add_head(&md->deferred, io->bio);
626 			else
627 				/* noflush suspend was interrupted. */
628 				io->error = -EIO;
629 			spin_unlock_irqrestore(&md->deferred_lock, flags);
630 		}
631 
632 		io_error = io->error;
633 		bio = io->bio;
634 		end_io_acct(io);
635 		free_io(md, io);
636 
637 		if (io_error == DM_ENDIO_REQUEUE)
638 			return;
639 
640 		if ((bio->bi_rw & REQ_FLUSH) && bio->bi_size) {
641 			/*
642 			 * Preflush done for flush with data, reissue
643 			 * without REQ_FLUSH.
644 			 */
645 			bio->bi_rw &= ~REQ_FLUSH;
646 			queue_io(md, bio);
647 		} else {
648 			/* done with normal IO or empty flush */
649 			trace_block_bio_complete(md->queue, bio, io_error);
650 			bio_endio(bio, io_error);
651 		}
652 	}
653 }
654 
655 static void clone_endio(struct bio *bio, int error)
656 {
657 	int r = 0;
658 	struct dm_target_io *tio = bio->bi_private;
659 	struct dm_io *io = tio->io;
660 	struct mapped_device *md = tio->io->md;
661 	dm_endio_fn endio = tio->ti->type->end_io;
662 
663 	if (!bio_flagged(bio, BIO_UPTODATE) && !error)
664 		error = -EIO;
665 
666 	if (endio) {
667 		r = endio(tio->ti, bio, error);
668 		if (r < 0 || r == DM_ENDIO_REQUEUE)
669 			/*
670 			 * error and requeue request are handled
671 			 * in dec_pending().
672 			 */
673 			error = r;
674 		else if (r == DM_ENDIO_INCOMPLETE)
675 			/* The target will handle the io */
676 			return;
677 		else if (r) {
678 			DMWARN("unimplemented target endio return value: %d", r);
679 			BUG();
680 		}
681 	}
682 
683 	free_tio(md, tio);
684 	dec_pending(io, error);
685 }
686 
687 /*
688  * Partial completion handling for request-based dm
689  */
690 static void end_clone_bio(struct bio *clone, int error)
691 {
692 	struct dm_rq_clone_bio_info *info = clone->bi_private;
693 	struct dm_rq_target_io *tio = info->tio;
694 	struct bio *bio = info->orig;
695 	unsigned int nr_bytes = info->orig->bi_size;
696 
697 	bio_put(clone);
698 
699 	if (tio->error)
700 		/*
701 		 * An error has already been detected on the request.
702 		 * Once error occurred, just let clone->end_io() handle
703 		 * the remainder.
704 		 */
705 		return;
706 	else if (error) {
707 		/*
708 		 * Don't notice the error to the upper layer yet.
709 		 * The error handling decision is made by the target driver,
710 		 * when the request is completed.
711 		 */
712 		tio->error = error;
713 		return;
714 	}
715 
716 	/*
717 	 * I/O for the bio successfully completed.
718 	 * Notice the data completion to the upper layer.
719 	 */
720 
721 	/*
722 	 * bios are processed from the head of the list.
723 	 * So the completing bio should always be rq->bio.
724 	 * If it's not, something wrong is happening.
725 	 */
726 	if (tio->orig->bio != bio)
727 		DMERR("bio completion is going in the middle of the request");
728 
729 	/*
730 	 * Update the original request.
731 	 * Do not use blk_end_request() here, because it may complete
732 	 * the original request before the clone, and break the ordering.
733 	 */
734 	blk_update_request(tio->orig, 0, nr_bytes);
735 }
736 
737 /*
738  * Don't touch any member of the md after calling this function because
739  * the md may be freed in dm_put() at the end of this function.
740  * Or do dm_get() before calling this function and dm_put() later.
741  */
742 static void rq_completed(struct mapped_device *md, int rw, int run_queue)
743 {
744 	atomic_dec(&md->pending[rw]);
745 
746 	/* nudge anyone waiting on suspend queue */
747 	if (!md_in_flight(md))
748 		wake_up(&md->wait);
749 
750 	/*
751 	 * Run this off this callpath, as drivers could invoke end_io while
752 	 * inside their request_fn (and holding the queue lock). Calling
753 	 * back into ->request_fn() could deadlock attempting to grab the
754 	 * queue lock again.
755 	 */
756 	if (run_queue)
757 		blk_run_queue_async(md->queue);
758 
759 	/*
760 	 * dm_put() must be at the end of this function. See the comment above
761 	 */
762 	dm_put(md);
763 }
764 
765 static void free_rq_clone(struct request *clone)
766 {
767 	struct dm_rq_target_io *tio = clone->end_io_data;
768 
769 	blk_rq_unprep_clone(clone);
770 	free_rq_tio(tio);
771 }
772 
773 /*
774  * Complete the clone and the original request.
775  * Must be called without queue lock.
776  */
777 static void dm_end_request(struct request *clone, int error)
778 {
779 	int rw = rq_data_dir(clone);
780 	struct dm_rq_target_io *tio = clone->end_io_data;
781 	struct mapped_device *md = tio->md;
782 	struct request *rq = tio->orig;
783 
784 	if (rq->cmd_type == REQ_TYPE_BLOCK_PC) {
785 		rq->errors = clone->errors;
786 		rq->resid_len = clone->resid_len;
787 
788 		if (rq->sense)
789 			/*
790 			 * We are using the sense buffer of the original
791 			 * request.
792 			 * So setting the length of the sense data is enough.
793 			 */
794 			rq->sense_len = clone->sense_len;
795 	}
796 
797 	free_rq_clone(clone);
798 	blk_end_request_all(rq, error);
799 	rq_completed(md, rw, true);
800 }
801 
802 static void dm_unprep_request(struct request *rq)
803 {
804 	struct request *clone = rq->special;
805 
806 	rq->special = NULL;
807 	rq->cmd_flags &= ~REQ_DONTPREP;
808 
809 	free_rq_clone(clone);
810 }
811 
812 /*
813  * Requeue the original request of a clone.
814  */
815 void dm_requeue_unmapped_request(struct request *clone)
816 {
817 	int rw = rq_data_dir(clone);
818 	struct dm_rq_target_io *tio = clone->end_io_data;
819 	struct mapped_device *md = tio->md;
820 	struct request *rq = tio->orig;
821 	struct request_queue *q = rq->q;
822 	unsigned long flags;
823 
824 	dm_unprep_request(rq);
825 
826 	spin_lock_irqsave(q->queue_lock, flags);
827 	blk_requeue_request(q, rq);
828 	spin_unlock_irqrestore(q->queue_lock, flags);
829 
830 	rq_completed(md, rw, 0);
831 }
832 EXPORT_SYMBOL_GPL(dm_requeue_unmapped_request);
833 
834 static void __stop_queue(struct request_queue *q)
835 {
836 	blk_stop_queue(q);
837 }
838 
839 static void stop_queue(struct request_queue *q)
840 {
841 	unsigned long flags;
842 
843 	spin_lock_irqsave(q->queue_lock, flags);
844 	__stop_queue(q);
845 	spin_unlock_irqrestore(q->queue_lock, flags);
846 }
847 
848 static void __start_queue(struct request_queue *q)
849 {
850 	if (blk_queue_stopped(q))
851 		blk_start_queue(q);
852 }
853 
854 static void start_queue(struct request_queue *q)
855 {
856 	unsigned long flags;
857 
858 	spin_lock_irqsave(q->queue_lock, flags);
859 	__start_queue(q);
860 	spin_unlock_irqrestore(q->queue_lock, flags);
861 }
862 
863 static void dm_done(struct request *clone, int error, bool mapped)
864 {
865 	int r = error;
866 	struct dm_rq_target_io *tio = clone->end_io_data;
867 	dm_request_endio_fn rq_end_io = NULL;
868 
869 	if (tio->ti) {
870 		rq_end_io = tio->ti->type->rq_end_io;
871 
872 		if (mapped && rq_end_io)
873 			r = rq_end_io(tio->ti, clone, error, &tio->info);
874 	}
875 
876 	if (r <= 0)
877 		/* The target wants to complete the I/O */
878 		dm_end_request(clone, r);
879 	else if (r == DM_ENDIO_INCOMPLETE)
880 		/* The target will handle the I/O */
881 		return;
882 	else if (r == DM_ENDIO_REQUEUE)
883 		/* The target wants to requeue the I/O */
884 		dm_requeue_unmapped_request(clone);
885 	else {
886 		DMWARN("unimplemented target endio return value: %d", r);
887 		BUG();
888 	}
889 }
890 
891 /*
892  * Request completion handler for request-based dm
893  */
894 static void dm_softirq_done(struct request *rq)
895 {
896 	bool mapped = true;
897 	struct request *clone = rq->completion_data;
898 	struct dm_rq_target_io *tio = clone->end_io_data;
899 
900 	if (rq->cmd_flags & REQ_FAILED)
901 		mapped = false;
902 
903 	dm_done(clone, tio->error, mapped);
904 }
905 
906 /*
907  * Complete the clone and the original request with the error status
908  * through softirq context.
909  */
910 static void dm_complete_request(struct request *clone, int error)
911 {
912 	struct dm_rq_target_io *tio = clone->end_io_data;
913 	struct request *rq = tio->orig;
914 
915 	tio->error = error;
916 	rq->completion_data = clone;
917 	blk_complete_request(rq);
918 }
919 
920 /*
921  * Complete the not-mapped clone and the original request with the error status
922  * through softirq context.
923  * Target's rq_end_io() function isn't called.
924  * This may be used when the target's map_rq() function fails.
925  */
926 void dm_kill_unmapped_request(struct request *clone, int error)
927 {
928 	struct dm_rq_target_io *tio = clone->end_io_data;
929 	struct request *rq = tio->orig;
930 
931 	rq->cmd_flags |= REQ_FAILED;
932 	dm_complete_request(clone, error);
933 }
934 EXPORT_SYMBOL_GPL(dm_kill_unmapped_request);
935 
936 /*
937  * Called with the queue lock held
938  */
939 static void end_clone_request(struct request *clone, int error)
940 {
941 	/*
942 	 * For just cleaning up the information of the queue in which
943 	 * the clone was dispatched.
944 	 * The clone is *NOT* freed actually here because it is alloced from
945 	 * dm own mempool and REQ_ALLOCED isn't set in clone->cmd_flags.
946 	 */
947 	__blk_put_request(clone->q, clone);
948 
949 	/*
950 	 * Actual request completion is done in a softirq context which doesn't
951 	 * hold the queue lock.  Otherwise, deadlock could occur because:
952 	 *     - another request may be submitted by the upper level driver
953 	 *       of the stacking during the completion
954 	 *     - the submission which requires queue lock may be done
955 	 *       against this queue
956 	 */
957 	dm_complete_request(clone, error);
958 }
959 
960 /*
961  * Return maximum size of I/O possible at the supplied sector up to the current
962  * target boundary.
963  */
964 static sector_t max_io_len_target_boundary(sector_t sector, struct dm_target *ti)
965 {
966 	sector_t target_offset = dm_target_offset(ti, sector);
967 
968 	return ti->len - target_offset;
969 }
970 
971 static sector_t max_io_len(sector_t sector, struct dm_target *ti)
972 {
973 	sector_t len = max_io_len_target_boundary(sector, ti);
974 	sector_t offset, max_len;
975 
976 	/*
977 	 * Does the target need to split even further?
978 	 */
979 	if (ti->max_io_len) {
980 		offset = dm_target_offset(ti, sector);
981 		if (unlikely(ti->max_io_len & (ti->max_io_len - 1)))
982 			max_len = sector_div(offset, ti->max_io_len);
983 		else
984 			max_len = offset & (ti->max_io_len - 1);
985 		max_len = ti->max_io_len - max_len;
986 
987 		if (len > max_len)
988 			len = max_len;
989 	}
990 
991 	return len;
992 }
993 
994 int dm_set_target_max_io_len(struct dm_target *ti, sector_t len)
995 {
996 	if (len > UINT_MAX) {
997 		DMERR("Specified maximum size of target IO (%llu) exceeds limit (%u)",
998 		      (unsigned long long)len, UINT_MAX);
999 		ti->error = "Maximum size of target IO is too large";
1000 		return -EINVAL;
1001 	}
1002 
1003 	ti->max_io_len = (uint32_t) len;
1004 
1005 	return 0;
1006 }
1007 EXPORT_SYMBOL_GPL(dm_set_target_max_io_len);
1008 
1009 static void __map_bio(struct dm_target_io *tio)
1010 {
1011 	int r;
1012 	sector_t sector;
1013 	struct mapped_device *md;
1014 	struct bio *clone = &tio->clone;
1015 	struct dm_target *ti = tio->ti;
1016 
1017 	clone->bi_end_io = clone_endio;
1018 	clone->bi_private = tio;
1019 
1020 	/*
1021 	 * Map the clone.  If r == 0 we don't need to do
1022 	 * anything, the target has assumed ownership of
1023 	 * this io.
1024 	 */
1025 	atomic_inc(&tio->io->io_count);
1026 	sector = clone->bi_sector;
1027 	r = ti->type->map(ti, clone);
1028 	if (r == DM_MAPIO_REMAPPED) {
1029 		/* the bio has been remapped so dispatch it */
1030 
1031 		trace_block_bio_remap(bdev_get_queue(clone->bi_bdev), clone,
1032 				      tio->io->bio->bi_bdev->bd_dev, sector);
1033 
1034 		generic_make_request(clone);
1035 	} else if (r < 0 || r == DM_MAPIO_REQUEUE) {
1036 		/* error the io and bail out, or requeue it if needed */
1037 		md = tio->io->md;
1038 		dec_pending(tio->io, r);
1039 		free_tio(md, tio);
1040 	} else if (r) {
1041 		DMWARN("unimplemented target map return value: %d", r);
1042 		BUG();
1043 	}
1044 }
1045 
1046 struct clone_info {
1047 	struct mapped_device *md;
1048 	struct dm_table *map;
1049 	struct bio *bio;
1050 	struct dm_io *io;
1051 	sector_t sector;
1052 	sector_t sector_count;
1053 	unsigned short idx;
1054 };
1055 
1056 static void bio_setup_sector(struct bio *bio, sector_t sector, sector_t len)
1057 {
1058 	bio->bi_sector = sector;
1059 	bio->bi_size = to_bytes(len);
1060 }
1061 
1062 static void bio_setup_bv(struct bio *bio, unsigned short idx, unsigned short bv_count)
1063 {
1064 	bio->bi_idx = idx;
1065 	bio->bi_vcnt = idx + bv_count;
1066 	bio->bi_flags &= ~(1 << BIO_SEG_VALID);
1067 }
1068 
1069 static void clone_bio_integrity(struct bio *bio, struct bio *clone,
1070 				unsigned short idx, unsigned len, unsigned offset,
1071 				unsigned trim)
1072 {
1073 	if (!bio_integrity(bio))
1074 		return;
1075 
1076 	bio_integrity_clone(clone, bio, GFP_NOIO);
1077 
1078 	if (trim)
1079 		bio_integrity_trim(clone, bio_sector_offset(bio, idx, offset), len);
1080 }
1081 
1082 /*
1083  * Creates a little bio that just does part of a bvec.
1084  */
1085 static void clone_split_bio(struct dm_target_io *tio, struct bio *bio,
1086 			    sector_t sector, unsigned short idx,
1087 			    unsigned offset, unsigned len)
1088 {
1089 	struct bio *clone = &tio->clone;
1090 	struct bio_vec *bv = bio->bi_io_vec + idx;
1091 
1092 	*clone->bi_io_vec = *bv;
1093 
1094 	bio_setup_sector(clone, sector, len);
1095 
1096 	clone->bi_bdev = bio->bi_bdev;
1097 	clone->bi_rw = bio->bi_rw;
1098 	clone->bi_vcnt = 1;
1099 	clone->bi_io_vec->bv_offset = offset;
1100 	clone->bi_io_vec->bv_len = clone->bi_size;
1101 	clone->bi_flags |= 1 << BIO_CLONED;
1102 
1103 	clone_bio_integrity(bio, clone, idx, len, offset, 1);
1104 }
1105 
1106 /*
1107  * Creates a bio that consists of range of complete bvecs.
1108  */
1109 static void clone_bio(struct dm_target_io *tio, struct bio *bio,
1110 		      sector_t sector, unsigned short idx,
1111 		      unsigned short bv_count, unsigned len)
1112 {
1113 	struct bio *clone = &tio->clone;
1114 	unsigned trim = 0;
1115 
1116 	__bio_clone(clone, bio);
1117 	bio_setup_sector(clone, sector, len);
1118 	bio_setup_bv(clone, idx, bv_count);
1119 
1120 	if (idx != bio->bi_idx || clone->bi_size < bio->bi_size)
1121 		trim = 1;
1122 	clone_bio_integrity(bio, clone, idx, len, 0, trim);
1123 }
1124 
1125 static struct dm_target_io *alloc_tio(struct clone_info *ci,
1126 				      struct dm_target *ti, int nr_iovecs,
1127 				      unsigned target_bio_nr)
1128 {
1129 	struct dm_target_io *tio;
1130 	struct bio *clone;
1131 
1132 	clone = bio_alloc_bioset(GFP_NOIO, nr_iovecs, ci->md->bs);
1133 	tio = container_of(clone, struct dm_target_io, clone);
1134 
1135 	tio->io = ci->io;
1136 	tio->ti = ti;
1137 	memset(&tio->info, 0, sizeof(tio->info));
1138 	tio->target_bio_nr = target_bio_nr;
1139 
1140 	return tio;
1141 }
1142 
1143 static void __clone_and_map_simple_bio(struct clone_info *ci,
1144 				       struct dm_target *ti,
1145 				       unsigned target_bio_nr, sector_t len)
1146 {
1147 	struct dm_target_io *tio = alloc_tio(ci, ti, ci->bio->bi_max_vecs, target_bio_nr);
1148 	struct bio *clone = &tio->clone;
1149 
1150 	/*
1151 	 * Discard requests require the bio's inline iovecs be initialized.
1152 	 * ci->bio->bi_max_vecs is BIO_INLINE_VECS anyway, for both flush
1153 	 * and discard, so no need for concern about wasted bvec allocations.
1154 	 */
1155 	 __bio_clone(clone, ci->bio);
1156 	if (len)
1157 		bio_setup_sector(clone, ci->sector, len);
1158 
1159 	__map_bio(tio);
1160 }
1161 
1162 static void __send_duplicate_bios(struct clone_info *ci, struct dm_target *ti,
1163 				  unsigned num_bios, sector_t len)
1164 {
1165 	unsigned target_bio_nr;
1166 
1167 	for (target_bio_nr = 0; target_bio_nr < num_bios; target_bio_nr++)
1168 		__clone_and_map_simple_bio(ci, ti, target_bio_nr, len);
1169 }
1170 
1171 static int __send_empty_flush(struct clone_info *ci)
1172 {
1173 	unsigned target_nr = 0;
1174 	struct dm_target *ti;
1175 
1176 	BUG_ON(bio_has_data(ci->bio));
1177 	while ((ti = dm_table_get_target(ci->map, target_nr++)))
1178 		__send_duplicate_bios(ci, ti, ti->num_flush_bios, 0);
1179 
1180 	return 0;
1181 }
1182 
1183 static void __clone_and_map_data_bio(struct clone_info *ci, struct dm_target *ti,
1184 				     sector_t sector, int nr_iovecs,
1185 				     unsigned short idx, unsigned short bv_count,
1186 				     unsigned offset, unsigned len,
1187 				     unsigned split_bvec)
1188 {
1189 	struct bio *bio = ci->bio;
1190 	struct dm_target_io *tio;
1191 	unsigned target_bio_nr;
1192 	unsigned num_target_bios = 1;
1193 
1194 	/*
1195 	 * Does the target want to receive duplicate copies of the bio?
1196 	 */
1197 	if (bio_data_dir(bio) == WRITE && ti->num_write_bios)
1198 		num_target_bios = ti->num_write_bios(ti, bio);
1199 
1200 	for (target_bio_nr = 0; target_bio_nr < num_target_bios; target_bio_nr++) {
1201 		tio = alloc_tio(ci, ti, nr_iovecs, target_bio_nr);
1202 		if (split_bvec)
1203 			clone_split_bio(tio, bio, sector, idx, offset, len);
1204 		else
1205 			clone_bio(tio, bio, sector, idx, bv_count, len);
1206 		__map_bio(tio);
1207 	}
1208 }
1209 
1210 typedef unsigned (*get_num_bios_fn)(struct dm_target *ti);
1211 
1212 static unsigned get_num_discard_bios(struct dm_target *ti)
1213 {
1214 	return ti->num_discard_bios;
1215 }
1216 
1217 static unsigned get_num_write_same_bios(struct dm_target *ti)
1218 {
1219 	return ti->num_write_same_bios;
1220 }
1221 
1222 typedef bool (*is_split_required_fn)(struct dm_target *ti);
1223 
1224 static bool is_split_required_for_discard(struct dm_target *ti)
1225 {
1226 	return ti->split_discard_bios;
1227 }
1228 
1229 static int __send_changing_extent_only(struct clone_info *ci,
1230 				       get_num_bios_fn get_num_bios,
1231 				       is_split_required_fn is_split_required)
1232 {
1233 	struct dm_target *ti;
1234 	sector_t len;
1235 	unsigned num_bios;
1236 
1237 	do {
1238 		ti = dm_table_find_target(ci->map, ci->sector);
1239 		if (!dm_target_is_valid(ti))
1240 			return -EIO;
1241 
1242 		/*
1243 		 * Even though the device advertised support for this type of
1244 		 * request, that does not mean every target supports it, and
1245 		 * reconfiguration might also have changed that since the
1246 		 * check was performed.
1247 		 */
1248 		num_bios = get_num_bios ? get_num_bios(ti) : 0;
1249 		if (!num_bios)
1250 			return -EOPNOTSUPP;
1251 
1252 		if (is_split_required && !is_split_required(ti))
1253 			len = min(ci->sector_count, max_io_len_target_boundary(ci->sector, ti));
1254 		else
1255 			len = min(ci->sector_count, max_io_len(ci->sector, ti));
1256 
1257 		__send_duplicate_bios(ci, ti, num_bios, len);
1258 
1259 		ci->sector += len;
1260 	} while (ci->sector_count -= len);
1261 
1262 	return 0;
1263 }
1264 
1265 static int __send_discard(struct clone_info *ci)
1266 {
1267 	return __send_changing_extent_only(ci, get_num_discard_bios,
1268 					   is_split_required_for_discard);
1269 }
1270 
1271 static int __send_write_same(struct clone_info *ci)
1272 {
1273 	return __send_changing_extent_only(ci, get_num_write_same_bios, NULL);
1274 }
1275 
1276 /*
1277  * Find maximum number of sectors / bvecs we can process with a single bio.
1278  */
1279 static sector_t __len_within_target(struct clone_info *ci, sector_t max, int *idx)
1280 {
1281 	struct bio *bio = ci->bio;
1282 	sector_t bv_len, total_len = 0;
1283 
1284 	for (*idx = ci->idx; max && (*idx < bio->bi_vcnt); (*idx)++) {
1285 		bv_len = to_sector(bio->bi_io_vec[*idx].bv_len);
1286 
1287 		if (bv_len > max)
1288 			break;
1289 
1290 		max -= bv_len;
1291 		total_len += bv_len;
1292 	}
1293 
1294 	return total_len;
1295 }
1296 
1297 static int __split_bvec_across_targets(struct clone_info *ci,
1298 				       struct dm_target *ti, sector_t max)
1299 {
1300 	struct bio *bio = ci->bio;
1301 	struct bio_vec *bv = bio->bi_io_vec + ci->idx;
1302 	sector_t remaining = to_sector(bv->bv_len);
1303 	unsigned offset = 0;
1304 	sector_t len;
1305 
1306 	do {
1307 		if (offset) {
1308 			ti = dm_table_find_target(ci->map, ci->sector);
1309 			if (!dm_target_is_valid(ti))
1310 				return -EIO;
1311 
1312 			max = max_io_len(ci->sector, ti);
1313 		}
1314 
1315 		len = min(remaining, max);
1316 
1317 		__clone_and_map_data_bio(ci, ti, ci->sector, 1, ci->idx, 0,
1318 					 bv->bv_offset + offset, len, 1);
1319 
1320 		ci->sector += len;
1321 		ci->sector_count -= len;
1322 		offset += to_bytes(len);
1323 	} while (remaining -= len);
1324 
1325 	ci->idx++;
1326 
1327 	return 0;
1328 }
1329 
1330 /*
1331  * Select the correct strategy for processing a non-flush bio.
1332  */
1333 static int __split_and_process_non_flush(struct clone_info *ci)
1334 {
1335 	struct bio *bio = ci->bio;
1336 	struct dm_target *ti;
1337 	sector_t len, max;
1338 	int idx;
1339 
1340 	if (unlikely(bio->bi_rw & REQ_DISCARD))
1341 		return __send_discard(ci);
1342 	else if (unlikely(bio->bi_rw & REQ_WRITE_SAME))
1343 		return __send_write_same(ci);
1344 
1345 	ti = dm_table_find_target(ci->map, ci->sector);
1346 	if (!dm_target_is_valid(ti))
1347 		return -EIO;
1348 
1349 	max = max_io_len(ci->sector, ti);
1350 
1351 	/*
1352 	 * Optimise for the simple case where we can do all of
1353 	 * the remaining io with a single clone.
1354 	 */
1355 	if (ci->sector_count <= max) {
1356 		__clone_and_map_data_bio(ci, ti, ci->sector, bio->bi_max_vecs,
1357 					 ci->idx, bio->bi_vcnt - ci->idx, 0,
1358 					 ci->sector_count, 0);
1359 		ci->sector_count = 0;
1360 		return 0;
1361 	}
1362 
1363 	/*
1364 	 * There are some bvecs that don't span targets.
1365 	 * Do as many of these as possible.
1366 	 */
1367 	if (to_sector(bio->bi_io_vec[ci->idx].bv_len) <= max) {
1368 		len = __len_within_target(ci, max, &idx);
1369 
1370 		__clone_and_map_data_bio(ci, ti, ci->sector, bio->bi_max_vecs,
1371 					 ci->idx, idx - ci->idx, 0, len, 0);
1372 
1373 		ci->sector += len;
1374 		ci->sector_count -= len;
1375 		ci->idx = idx;
1376 
1377 		return 0;
1378 	}
1379 
1380 	/*
1381 	 * Handle a bvec that must be split between two or more targets.
1382 	 */
1383 	return __split_bvec_across_targets(ci, ti, max);
1384 }
1385 
1386 /*
1387  * Entry point to split a bio into clones and submit them to the targets.
1388  */
1389 static void __split_and_process_bio(struct mapped_device *md,
1390 				    struct dm_table *map, struct bio *bio)
1391 {
1392 	struct clone_info ci;
1393 	int error = 0;
1394 
1395 	if (unlikely(!map)) {
1396 		bio_io_error(bio);
1397 		return;
1398 	}
1399 
1400 	ci.map = map;
1401 	ci.md = md;
1402 	ci.io = alloc_io(md);
1403 	ci.io->error = 0;
1404 	atomic_set(&ci.io->io_count, 1);
1405 	ci.io->bio = bio;
1406 	ci.io->md = md;
1407 	spin_lock_init(&ci.io->endio_lock);
1408 	ci.sector = bio->bi_sector;
1409 	ci.idx = bio->bi_idx;
1410 
1411 	start_io_acct(ci.io);
1412 
1413 	if (bio->bi_rw & REQ_FLUSH) {
1414 		ci.bio = &ci.md->flush_bio;
1415 		ci.sector_count = 0;
1416 		error = __send_empty_flush(&ci);
1417 		/* dec_pending submits any data associated with flush */
1418 	} else {
1419 		ci.bio = bio;
1420 		ci.sector_count = bio_sectors(bio);
1421 		while (ci.sector_count && !error)
1422 			error = __split_and_process_non_flush(&ci);
1423 	}
1424 
1425 	/* drop the extra reference count */
1426 	dec_pending(ci.io, error);
1427 }
1428 /*-----------------------------------------------------------------
1429  * CRUD END
1430  *---------------------------------------------------------------*/
1431 
1432 static int dm_merge_bvec(struct request_queue *q,
1433 			 struct bvec_merge_data *bvm,
1434 			 struct bio_vec *biovec)
1435 {
1436 	struct mapped_device *md = q->queuedata;
1437 	struct dm_table *map = dm_get_live_table_fast(md);
1438 	struct dm_target *ti;
1439 	sector_t max_sectors;
1440 	int max_size = 0;
1441 
1442 	if (unlikely(!map))
1443 		goto out;
1444 
1445 	ti = dm_table_find_target(map, bvm->bi_sector);
1446 	if (!dm_target_is_valid(ti))
1447 		goto out;
1448 
1449 	/*
1450 	 * Find maximum amount of I/O that won't need splitting
1451 	 */
1452 	max_sectors = min(max_io_len(bvm->bi_sector, ti),
1453 			  (sector_t) BIO_MAX_SECTORS);
1454 	max_size = (max_sectors << SECTOR_SHIFT) - bvm->bi_size;
1455 	if (max_size < 0)
1456 		max_size = 0;
1457 
1458 	/*
1459 	 * merge_bvec_fn() returns number of bytes
1460 	 * it can accept at this offset
1461 	 * max is precomputed maximal io size
1462 	 */
1463 	if (max_size && ti->type->merge)
1464 		max_size = ti->type->merge(ti, bvm, biovec, max_size);
1465 	/*
1466 	 * If the target doesn't support merge method and some of the devices
1467 	 * provided their merge_bvec method (we know this by looking at
1468 	 * queue_max_hw_sectors), then we can't allow bios with multiple vector
1469 	 * entries.  So always set max_size to 0, and the code below allows
1470 	 * just one page.
1471 	 */
1472 	else if (queue_max_hw_sectors(q) <= PAGE_SIZE >> 9)
1473 
1474 		max_size = 0;
1475 
1476 out:
1477 	dm_put_live_table_fast(md);
1478 	/*
1479 	 * Always allow an entire first page
1480 	 */
1481 	if (max_size <= biovec->bv_len && !(bvm->bi_size >> SECTOR_SHIFT))
1482 		max_size = biovec->bv_len;
1483 
1484 	return max_size;
1485 }
1486 
1487 /*
1488  * The request function that just remaps the bio built up by
1489  * dm_merge_bvec.
1490  */
1491 static void _dm_request(struct request_queue *q, struct bio *bio)
1492 {
1493 	int rw = bio_data_dir(bio);
1494 	struct mapped_device *md = q->queuedata;
1495 	int cpu;
1496 	int srcu_idx;
1497 	struct dm_table *map;
1498 
1499 	map = dm_get_live_table(md, &srcu_idx);
1500 
1501 	cpu = part_stat_lock();
1502 	part_stat_inc(cpu, &dm_disk(md)->part0, ios[rw]);
1503 	part_stat_add(cpu, &dm_disk(md)->part0, sectors[rw], bio_sectors(bio));
1504 	part_stat_unlock();
1505 
1506 	/* if we're suspended, we have to queue this io for later */
1507 	if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))) {
1508 		dm_put_live_table(md, srcu_idx);
1509 
1510 		if (bio_rw(bio) != READA)
1511 			queue_io(md, bio);
1512 		else
1513 			bio_io_error(bio);
1514 		return;
1515 	}
1516 
1517 	__split_and_process_bio(md, map, bio);
1518 	dm_put_live_table(md, srcu_idx);
1519 	return;
1520 }
1521 
1522 static int dm_request_based(struct mapped_device *md)
1523 {
1524 	return blk_queue_stackable(md->queue);
1525 }
1526 
1527 static void dm_request(struct request_queue *q, struct bio *bio)
1528 {
1529 	struct mapped_device *md = q->queuedata;
1530 
1531 	if (dm_request_based(md))
1532 		blk_queue_bio(q, bio);
1533 	else
1534 		_dm_request(q, bio);
1535 }
1536 
1537 void dm_dispatch_request(struct request *rq)
1538 {
1539 	int r;
1540 
1541 	if (blk_queue_io_stat(rq->q))
1542 		rq->cmd_flags |= REQ_IO_STAT;
1543 
1544 	rq->start_time = jiffies;
1545 	r = blk_insert_cloned_request(rq->q, rq);
1546 	if (r)
1547 		dm_complete_request(rq, r);
1548 }
1549 EXPORT_SYMBOL_GPL(dm_dispatch_request);
1550 
1551 static int dm_rq_bio_constructor(struct bio *bio, struct bio *bio_orig,
1552 				 void *data)
1553 {
1554 	struct dm_rq_target_io *tio = data;
1555 	struct dm_rq_clone_bio_info *info =
1556 		container_of(bio, struct dm_rq_clone_bio_info, clone);
1557 
1558 	info->orig = bio_orig;
1559 	info->tio = tio;
1560 	bio->bi_end_io = end_clone_bio;
1561 	bio->bi_private = info;
1562 
1563 	return 0;
1564 }
1565 
1566 static int setup_clone(struct request *clone, struct request *rq,
1567 		       struct dm_rq_target_io *tio)
1568 {
1569 	int r;
1570 
1571 	r = blk_rq_prep_clone(clone, rq, tio->md->bs, GFP_ATOMIC,
1572 			      dm_rq_bio_constructor, tio);
1573 	if (r)
1574 		return r;
1575 
1576 	clone->cmd = rq->cmd;
1577 	clone->cmd_len = rq->cmd_len;
1578 	clone->sense = rq->sense;
1579 	clone->buffer = rq->buffer;
1580 	clone->end_io = end_clone_request;
1581 	clone->end_io_data = tio;
1582 
1583 	return 0;
1584 }
1585 
1586 static struct request *clone_rq(struct request *rq, struct mapped_device *md,
1587 				gfp_t gfp_mask)
1588 {
1589 	struct request *clone;
1590 	struct dm_rq_target_io *tio;
1591 
1592 	tio = alloc_rq_tio(md, gfp_mask);
1593 	if (!tio)
1594 		return NULL;
1595 
1596 	tio->md = md;
1597 	tio->ti = NULL;
1598 	tio->orig = rq;
1599 	tio->error = 0;
1600 	memset(&tio->info, 0, sizeof(tio->info));
1601 
1602 	clone = &tio->clone;
1603 	if (setup_clone(clone, rq, tio)) {
1604 		/* -ENOMEM */
1605 		free_rq_tio(tio);
1606 		return NULL;
1607 	}
1608 
1609 	return clone;
1610 }
1611 
1612 /*
1613  * Called with the queue lock held.
1614  */
1615 static int dm_prep_fn(struct request_queue *q, struct request *rq)
1616 {
1617 	struct mapped_device *md = q->queuedata;
1618 	struct request *clone;
1619 
1620 	if (unlikely(rq->special)) {
1621 		DMWARN("Already has something in rq->special.");
1622 		return BLKPREP_KILL;
1623 	}
1624 
1625 	clone = clone_rq(rq, md, GFP_ATOMIC);
1626 	if (!clone)
1627 		return BLKPREP_DEFER;
1628 
1629 	rq->special = clone;
1630 	rq->cmd_flags |= REQ_DONTPREP;
1631 
1632 	return BLKPREP_OK;
1633 }
1634 
1635 /*
1636  * Returns:
1637  * 0  : the request has been processed (not requeued)
1638  * !0 : the request has been requeued
1639  */
1640 static int map_request(struct dm_target *ti, struct request *clone,
1641 		       struct mapped_device *md)
1642 {
1643 	int r, requeued = 0;
1644 	struct dm_rq_target_io *tio = clone->end_io_data;
1645 
1646 	tio->ti = ti;
1647 	r = ti->type->map_rq(ti, clone, &tio->info);
1648 	switch (r) {
1649 	case DM_MAPIO_SUBMITTED:
1650 		/* The target has taken the I/O to submit by itself later */
1651 		break;
1652 	case DM_MAPIO_REMAPPED:
1653 		/* The target has remapped the I/O so dispatch it */
1654 		trace_block_rq_remap(clone->q, clone, disk_devt(dm_disk(md)),
1655 				     blk_rq_pos(tio->orig));
1656 		dm_dispatch_request(clone);
1657 		break;
1658 	case DM_MAPIO_REQUEUE:
1659 		/* The target wants to requeue the I/O */
1660 		dm_requeue_unmapped_request(clone);
1661 		requeued = 1;
1662 		break;
1663 	default:
1664 		if (r > 0) {
1665 			DMWARN("unimplemented target map return value: %d", r);
1666 			BUG();
1667 		}
1668 
1669 		/* The target wants to complete the I/O */
1670 		dm_kill_unmapped_request(clone, r);
1671 		break;
1672 	}
1673 
1674 	return requeued;
1675 }
1676 
1677 static struct request *dm_start_request(struct mapped_device *md, struct request *orig)
1678 {
1679 	struct request *clone;
1680 
1681 	blk_start_request(orig);
1682 	clone = orig->special;
1683 	atomic_inc(&md->pending[rq_data_dir(clone)]);
1684 
1685 	/*
1686 	 * Hold the md reference here for the in-flight I/O.
1687 	 * We can't rely on the reference count by device opener,
1688 	 * because the device may be closed during the request completion
1689 	 * when all bios are completed.
1690 	 * See the comment in rq_completed() too.
1691 	 */
1692 	dm_get(md);
1693 
1694 	return clone;
1695 }
1696 
1697 /*
1698  * q->request_fn for request-based dm.
1699  * Called with the queue lock held.
1700  */
1701 static void dm_request_fn(struct request_queue *q)
1702 {
1703 	struct mapped_device *md = q->queuedata;
1704 	int srcu_idx;
1705 	struct dm_table *map = dm_get_live_table(md, &srcu_idx);
1706 	struct dm_target *ti;
1707 	struct request *rq, *clone;
1708 	sector_t pos;
1709 
1710 	/*
1711 	 * For suspend, check blk_queue_stopped() and increment
1712 	 * ->pending within a single queue_lock not to increment the
1713 	 * number of in-flight I/Os after the queue is stopped in
1714 	 * dm_suspend().
1715 	 */
1716 	while (!blk_queue_stopped(q)) {
1717 		rq = blk_peek_request(q);
1718 		if (!rq)
1719 			goto delay_and_out;
1720 
1721 		/* always use block 0 to find the target for flushes for now */
1722 		pos = 0;
1723 		if (!(rq->cmd_flags & REQ_FLUSH))
1724 			pos = blk_rq_pos(rq);
1725 
1726 		ti = dm_table_find_target(map, pos);
1727 		if (!dm_target_is_valid(ti)) {
1728 			/*
1729 			 * Must perform setup, that dm_done() requires,
1730 			 * before calling dm_kill_unmapped_request
1731 			 */
1732 			DMERR_LIMIT("request attempted access beyond the end of device");
1733 			clone = dm_start_request(md, rq);
1734 			dm_kill_unmapped_request(clone, -EIO);
1735 			continue;
1736 		}
1737 
1738 		if (ti->type->busy && ti->type->busy(ti))
1739 			goto delay_and_out;
1740 
1741 		clone = dm_start_request(md, rq);
1742 
1743 		spin_unlock(q->queue_lock);
1744 		if (map_request(ti, clone, md))
1745 			goto requeued;
1746 
1747 		BUG_ON(!irqs_disabled());
1748 		spin_lock(q->queue_lock);
1749 	}
1750 
1751 	goto out;
1752 
1753 requeued:
1754 	BUG_ON(!irqs_disabled());
1755 	spin_lock(q->queue_lock);
1756 
1757 delay_and_out:
1758 	blk_delay_queue(q, HZ / 10);
1759 out:
1760 	dm_put_live_table(md, srcu_idx);
1761 }
1762 
1763 int dm_underlying_device_busy(struct request_queue *q)
1764 {
1765 	return blk_lld_busy(q);
1766 }
1767 EXPORT_SYMBOL_GPL(dm_underlying_device_busy);
1768 
1769 static int dm_lld_busy(struct request_queue *q)
1770 {
1771 	int r;
1772 	struct mapped_device *md = q->queuedata;
1773 	struct dm_table *map = dm_get_live_table_fast(md);
1774 
1775 	if (!map || test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))
1776 		r = 1;
1777 	else
1778 		r = dm_table_any_busy_target(map);
1779 
1780 	dm_put_live_table_fast(md);
1781 
1782 	return r;
1783 }
1784 
1785 static int dm_any_congested(void *congested_data, int bdi_bits)
1786 {
1787 	int r = bdi_bits;
1788 	struct mapped_device *md = congested_data;
1789 	struct dm_table *map;
1790 
1791 	if (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
1792 		map = dm_get_live_table_fast(md);
1793 		if (map) {
1794 			/*
1795 			 * Request-based dm cares about only own queue for
1796 			 * the query about congestion status of request_queue
1797 			 */
1798 			if (dm_request_based(md))
1799 				r = md->queue->backing_dev_info.state &
1800 				    bdi_bits;
1801 			else
1802 				r = dm_table_any_congested(map, bdi_bits);
1803 		}
1804 		dm_put_live_table_fast(md);
1805 	}
1806 
1807 	return r;
1808 }
1809 
1810 /*-----------------------------------------------------------------
1811  * An IDR is used to keep track of allocated minor numbers.
1812  *---------------------------------------------------------------*/
1813 static void free_minor(int minor)
1814 {
1815 	spin_lock(&_minor_lock);
1816 	idr_remove(&_minor_idr, minor);
1817 	spin_unlock(&_minor_lock);
1818 }
1819 
1820 /*
1821  * See if the device with a specific minor # is free.
1822  */
1823 static int specific_minor(int minor)
1824 {
1825 	int r;
1826 
1827 	if (minor >= (1 << MINORBITS))
1828 		return -EINVAL;
1829 
1830 	idr_preload(GFP_KERNEL);
1831 	spin_lock(&_minor_lock);
1832 
1833 	r = idr_alloc(&_minor_idr, MINOR_ALLOCED, minor, minor + 1, GFP_NOWAIT);
1834 
1835 	spin_unlock(&_minor_lock);
1836 	idr_preload_end();
1837 	if (r < 0)
1838 		return r == -ENOSPC ? -EBUSY : r;
1839 	return 0;
1840 }
1841 
1842 static int next_free_minor(int *minor)
1843 {
1844 	int r;
1845 
1846 	idr_preload(GFP_KERNEL);
1847 	spin_lock(&_minor_lock);
1848 
1849 	r = idr_alloc(&_minor_idr, MINOR_ALLOCED, 0, 1 << MINORBITS, GFP_NOWAIT);
1850 
1851 	spin_unlock(&_minor_lock);
1852 	idr_preload_end();
1853 	if (r < 0)
1854 		return r;
1855 	*minor = r;
1856 	return 0;
1857 }
1858 
1859 static const struct block_device_operations dm_blk_dops;
1860 
1861 static void dm_wq_work(struct work_struct *work);
1862 
1863 static void dm_init_md_queue(struct mapped_device *md)
1864 {
1865 	/*
1866 	 * Request-based dm devices cannot be stacked on top of bio-based dm
1867 	 * devices.  The type of this dm device has not been decided yet.
1868 	 * The type is decided at the first table loading time.
1869 	 * To prevent problematic device stacking, clear the queue flag
1870 	 * for request stacking support until then.
1871 	 *
1872 	 * This queue is new, so no concurrency on the queue_flags.
1873 	 */
1874 	queue_flag_clear_unlocked(QUEUE_FLAG_STACKABLE, md->queue);
1875 
1876 	md->queue->queuedata = md;
1877 	md->queue->backing_dev_info.congested_fn = dm_any_congested;
1878 	md->queue->backing_dev_info.congested_data = md;
1879 	blk_queue_make_request(md->queue, dm_request);
1880 	blk_queue_bounce_limit(md->queue, BLK_BOUNCE_ANY);
1881 	blk_queue_merge_bvec(md->queue, dm_merge_bvec);
1882 }
1883 
1884 /*
1885  * Allocate and initialise a blank device with a given minor.
1886  */
1887 static struct mapped_device *alloc_dev(int minor)
1888 {
1889 	int r;
1890 	struct mapped_device *md = kzalloc(sizeof(*md), GFP_KERNEL);
1891 	void *old_md;
1892 
1893 	if (!md) {
1894 		DMWARN("unable to allocate device, out of memory.");
1895 		return NULL;
1896 	}
1897 
1898 	if (!try_module_get(THIS_MODULE))
1899 		goto bad_module_get;
1900 
1901 	/* get a minor number for the dev */
1902 	if (minor == DM_ANY_MINOR)
1903 		r = next_free_minor(&minor);
1904 	else
1905 		r = specific_minor(minor);
1906 	if (r < 0)
1907 		goto bad_minor;
1908 
1909 	r = init_srcu_struct(&md->io_barrier);
1910 	if (r < 0)
1911 		goto bad_io_barrier;
1912 
1913 	md->type = DM_TYPE_NONE;
1914 	mutex_init(&md->suspend_lock);
1915 	mutex_init(&md->type_lock);
1916 	spin_lock_init(&md->deferred_lock);
1917 	atomic_set(&md->holders, 1);
1918 	atomic_set(&md->open_count, 0);
1919 	atomic_set(&md->event_nr, 0);
1920 	atomic_set(&md->uevent_seq, 0);
1921 	INIT_LIST_HEAD(&md->uevent_list);
1922 	spin_lock_init(&md->uevent_lock);
1923 
1924 	md->queue = blk_alloc_queue(GFP_KERNEL);
1925 	if (!md->queue)
1926 		goto bad_queue;
1927 
1928 	dm_init_md_queue(md);
1929 
1930 	md->disk = alloc_disk(1);
1931 	if (!md->disk)
1932 		goto bad_disk;
1933 
1934 	atomic_set(&md->pending[0], 0);
1935 	atomic_set(&md->pending[1], 0);
1936 	init_waitqueue_head(&md->wait);
1937 	INIT_WORK(&md->work, dm_wq_work);
1938 	init_waitqueue_head(&md->eventq);
1939 
1940 	md->disk->major = _major;
1941 	md->disk->first_minor = minor;
1942 	md->disk->fops = &dm_blk_dops;
1943 	md->disk->queue = md->queue;
1944 	md->disk->private_data = md;
1945 	sprintf(md->disk->disk_name, "dm-%d", minor);
1946 	add_disk(md->disk);
1947 	format_dev_t(md->name, MKDEV(_major, minor));
1948 
1949 	md->wq = alloc_workqueue("kdmflush",
1950 				 WQ_NON_REENTRANT | WQ_MEM_RECLAIM, 0);
1951 	if (!md->wq)
1952 		goto bad_thread;
1953 
1954 	md->bdev = bdget_disk(md->disk, 0);
1955 	if (!md->bdev)
1956 		goto bad_bdev;
1957 
1958 	bio_init(&md->flush_bio);
1959 	md->flush_bio.bi_bdev = md->bdev;
1960 	md->flush_bio.bi_rw = WRITE_FLUSH;
1961 
1962 	/* Populate the mapping, nobody knows we exist yet */
1963 	spin_lock(&_minor_lock);
1964 	old_md = idr_replace(&_minor_idr, md, minor);
1965 	spin_unlock(&_minor_lock);
1966 
1967 	BUG_ON(old_md != MINOR_ALLOCED);
1968 
1969 	return md;
1970 
1971 bad_bdev:
1972 	destroy_workqueue(md->wq);
1973 bad_thread:
1974 	del_gendisk(md->disk);
1975 	put_disk(md->disk);
1976 bad_disk:
1977 	blk_cleanup_queue(md->queue);
1978 bad_queue:
1979 	cleanup_srcu_struct(&md->io_barrier);
1980 bad_io_barrier:
1981 	free_minor(minor);
1982 bad_minor:
1983 	module_put(THIS_MODULE);
1984 bad_module_get:
1985 	kfree(md);
1986 	return NULL;
1987 }
1988 
1989 static void unlock_fs(struct mapped_device *md);
1990 
1991 static void free_dev(struct mapped_device *md)
1992 {
1993 	int minor = MINOR(disk_devt(md->disk));
1994 
1995 	unlock_fs(md);
1996 	bdput(md->bdev);
1997 	destroy_workqueue(md->wq);
1998 	if (md->io_pool)
1999 		mempool_destroy(md->io_pool);
2000 	if (md->bs)
2001 		bioset_free(md->bs);
2002 	blk_integrity_unregister(md->disk);
2003 	del_gendisk(md->disk);
2004 	cleanup_srcu_struct(&md->io_barrier);
2005 	free_minor(minor);
2006 
2007 	spin_lock(&_minor_lock);
2008 	md->disk->private_data = NULL;
2009 	spin_unlock(&_minor_lock);
2010 
2011 	put_disk(md->disk);
2012 	blk_cleanup_queue(md->queue);
2013 	module_put(THIS_MODULE);
2014 	kfree(md);
2015 }
2016 
2017 static void __bind_mempools(struct mapped_device *md, struct dm_table *t)
2018 {
2019 	struct dm_md_mempools *p = dm_table_get_md_mempools(t);
2020 
2021 	if (md->io_pool && md->bs) {
2022 		/* The md already has necessary mempools. */
2023 		if (dm_table_get_type(t) == DM_TYPE_BIO_BASED) {
2024 			/*
2025 			 * Reload bioset because front_pad may have changed
2026 			 * because a different table was loaded.
2027 			 */
2028 			bioset_free(md->bs);
2029 			md->bs = p->bs;
2030 			p->bs = NULL;
2031 		} else if (dm_table_get_type(t) == DM_TYPE_REQUEST_BASED) {
2032 			/*
2033 			 * There's no need to reload with request-based dm
2034 			 * because the size of front_pad doesn't change.
2035 			 * Note for future: If you are to reload bioset,
2036 			 * prep-ed requests in the queue may refer
2037 			 * to bio from the old bioset, so you must walk
2038 			 * through the queue to unprep.
2039 			 */
2040 		}
2041 		goto out;
2042 	}
2043 
2044 	BUG_ON(!p || md->io_pool || md->bs);
2045 
2046 	md->io_pool = p->io_pool;
2047 	p->io_pool = NULL;
2048 	md->bs = p->bs;
2049 	p->bs = NULL;
2050 
2051 out:
2052 	/* mempool bind completed, now no need any mempools in the table */
2053 	dm_table_free_md_mempools(t);
2054 }
2055 
2056 /*
2057  * Bind a table to the device.
2058  */
2059 static void event_callback(void *context)
2060 {
2061 	unsigned long flags;
2062 	LIST_HEAD(uevents);
2063 	struct mapped_device *md = (struct mapped_device *) context;
2064 
2065 	spin_lock_irqsave(&md->uevent_lock, flags);
2066 	list_splice_init(&md->uevent_list, &uevents);
2067 	spin_unlock_irqrestore(&md->uevent_lock, flags);
2068 
2069 	dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj);
2070 
2071 	atomic_inc(&md->event_nr);
2072 	wake_up(&md->eventq);
2073 }
2074 
2075 /*
2076  * Protected by md->suspend_lock obtained by dm_swap_table().
2077  */
2078 static void __set_size(struct mapped_device *md, sector_t size)
2079 {
2080 	set_capacity(md->disk, size);
2081 
2082 	i_size_write(md->bdev->bd_inode, (loff_t)size << SECTOR_SHIFT);
2083 }
2084 
2085 /*
2086  * Return 1 if the queue has a compulsory merge_bvec_fn function.
2087  *
2088  * If this function returns 0, then the device is either a non-dm
2089  * device without a merge_bvec_fn, or it is a dm device that is
2090  * able to split any bios it receives that are too big.
2091  */
2092 int dm_queue_merge_is_compulsory(struct request_queue *q)
2093 {
2094 	struct mapped_device *dev_md;
2095 
2096 	if (!q->merge_bvec_fn)
2097 		return 0;
2098 
2099 	if (q->make_request_fn == dm_request) {
2100 		dev_md = q->queuedata;
2101 		if (test_bit(DMF_MERGE_IS_OPTIONAL, &dev_md->flags))
2102 			return 0;
2103 	}
2104 
2105 	return 1;
2106 }
2107 
2108 static int dm_device_merge_is_compulsory(struct dm_target *ti,
2109 					 struct dm_dev *dev, sector_t start,
2110 					 sector_t len, void *data)
2111 {
2112 	struct block_device *bdev = dev->bdev;
2113 	struct request_queue *q = bdev_get_queue(bdev);
2114 
2115 	return dm_queue_merge_is_compulsory(q);
2116 }
2117 
2118 /*
2119  * Return 1 if it is acceptable to ignore merge_bvec_fn based
2120  * on the properties of the underlying devices.
2121  */
2122 static int dm_table_merge_is_optional(struct dm_table *table)
2123 {
2124 	unsigned i = 0;
2125 	struct dm_target *ti;
2126 
2127 	while (i < dm_table_get_num_targets(table)) {
2128 		ti = dm_table_get_target(table, i++);
2129 
2130 		if (ti->type->iterate_devices &&
2131 		    ti->type->iterate_devices(ti, dm_device_merge_is_compulsory, NULL))
2132 			return 0;
2133 	}
2134 
2135 	return 1;
2136 }
2137 
2138 /*
2139  * Returns old map, which caller must destroy.
2140  */
2141 static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t,
2142 			       struct queue_limits *limits)
2143 {
2144 	struct dm_table *old_map;
2145 	struct request_queue *q = md->queue;
2146 	sector_t size;
2147 	int merge_is_optional;
2148 
2149 	size = dm_table_get_size(t);
2150 
2151 	/*
2152 	 * Wipe any geometry if the size of the table changed.
2153 	 */
2154 	if (size != get_capacity(md->disk))
2155 		memset(&md->geometry, 0, sizeof(md->geometry));
2156 
2157 	__set_size(md, size);
2158 
2159 	dm_table_event_callback(t, event_callback, md);
2160 
2161 	/*
2162 	 * The queue hasn't been stopped yet, if the old table type wasn't
2163 	 * for request-based during suspension.  So stop it to prevent
2164 	 * I/O mapping before resume.
2165 	 * This must be done before setting the queue restrictions,
2166 	 * because request-based dm may be run just after the setting.
2167 	 */
2168 	if (dm_table_request_based(t) && !blk_queue_stopped(q))
2169 		stop_queue(q);
2170 
2171 	__bind_mempools(md, t);
2172 
2173 	merge_is_optional = dm_table_merge_is_optional(t);
2174 
2175 	old_map = md->map;
2176 	rcu_assign_pointer(md->map, t);
2177 	md->immutable_target_type = dm_table_get_immutable_target_type(t);
2178 
2179 	dm_table_set_restrictions(t, q, limits);
2180 	if (merge_is_optional)
2181 		set_bit(DMF_MERGE_IS_OPTIONAL, &md->flags);
2182 	else
2183 		clear_bit(DMF_MERGE_IS_OPTIONAL, &md->flags);
2184 	dm_sync_table(md);
2185 
2186 	return old_map;
2187 }
2188 
2189 /*
2190  * Returns unbound table for the caller to free.
2191  */
2192 static struct dm_table *__unbind(struct mapped_device *md)
2193 {
2194 	struct dm_table *map = md->map;
2195 
2196 	if (!map)
2197 		return NULL;
2198 
2199 	dm_table_event_callback(map, NULL, NULL);
2200 	rcu_assign_pointer(md->map, NULL);
2201 	dm_sync_table(md);
2202 
2203 	return map;
2204 }
2205 
2206 /*
2207  * Constructor for a new device.
2208  */
2209 int dm_create(int minor, struct mapped_device **result)
2210 {
2211 	struct mapped_device *md;
2212 
2213 	md = alloc_dev(minor);
2214 	if (!md)
2215 		return -ENXIO;
2216 
2217 	dm_sysfs_init(md);
2218 
2219 	*result = md;
2220 	return 0;
2221 }
2222 
2223 /*
2224  * Functions to manage md->type.
2225  * All are required to hold md->type_lock.
2226  */
2227 void dm_lock_md_type(struct mapped_device *md)
2228 {
2229 	mutex_lock(&md->type_lock);
2230 }
2231 
2232 void dm_unlock_md_type(struct mapped_device *md)
2233 {
2234 	mutex_unlock(&md->type_lock);
2235 }
2236 
2237 void dm_set_md_type(struct mapped_device *md, unsigned type)
2238 {
2239 	md->type = type;
2240 }
2241 
2242 unsigned dm_get_md_type(struct mapped_device *md)
2243 {
2244 	return md->type;
2245 }
2246 
2247 struct target_type *dm_get_immutable_target_type(struct mapped_device *md)
2248 {
2249 	return md->immutable_target_type;
2250 }
2251 
2252 /*
2253  * Fully initialize a request-based queue (->elevator, ->request_fn, etc).
2254  */
2255 static int dm_init_request_based_queue(struct mapped_device *md)
2256 {
2257 	struct request_queue *q = NULL;
2258 
2259 	if (md->queue->elevator)
2260 		return 1;
2261 
2262 	/* Fully initialize the queue */
2263 	q = blk_init_allocated_queue(md->queue, dm_request_fn, NULL);
2264 	if (!q)
2265 		return 0;
2266 
2267 	md->queue = q;
2268 	dm_init_md_queue(md);
2269 	blk_queue_softirq_done(md->queue, dm_softirq_done);
2270 	blk_queue_prep_rq(md->queue, dm_prep_fn);
2271 	blk_queue_lld_busy(md->queue, dm_lld_busy);
2272 
2273 	elv_register_queue(md->queue);
2274 
2275 	return 1;
2276 }
2277 
2278 /*
2279  * Setup the DM device's queue based on md's type
2280  */
2281 int dm_setup_md_queue(struct mapped_device *md)
2282 {
2283 	if ((dm_get_md_type(md) == DM_TYPE_REQUEST_BASED) &&
2284 	    !dm_init_request_based_queue(md)) {
2285 		DMWARN("Cannot initialize queue for request-based mapped device");
2286 		return -EINVAL;
2287 	}
2288 
2289 	return 0;
2290 }
2291 
2292 static struct mapped_device *dm_find_md(dev_t dev)
2293 {
2294 	struct mapped_device *md;
2295 	unsigned minor = MINOR(dev);
2296 
2297 	if (MAJOR(dev) != _major || minor >= (1 << MINORBITS))
2298 		return NULL;
2299 
2300 	spin_lock(&_minor_lock);
2301 
2302 	md = idr_find(&_minor_idr, minor);
2303 	if (md && (md == MINOR_ALLOCED ||
2304 		   (MINOR(disk_devt(dm_disk(md))) != minor) ||
2305 		   dm_deleting_md(md) ||
2306 		   test_bit(DMF_FREEING, &md->flags))) {
2307 		md = NULL;
2308 		goto out;
2309 	}
2310 
2311 out:
2312 	spin_unlock(&_minor_lock);
2313 
2314 	return md;
2315 }
2316 
2317 struct mapped_device *dm_get_md(dev_t dev)
2318 {
2319 	struct mapped_device *md = dm_find_md(dev);
2320 
2321 	if (md)
2322 		dm_get(md);
2323 
2324 	return md;
2325 }
2326 EXPORT_SYMBOL_GPL(dm_get_md);
2327 
2328 void *dm_get_mdptr(struct mapped_device *md)
2329 {
2330 	return md->interface_ptr;
2331 }
2332 
2333 void dm_set_mdptr(struct mapped_device *md, void *ptr)
2334 {
2335 	md->interface_ptr = ptr;
2336 }
2337 
2338 void dm_get(struct mapped_device *md)
2339 {
2340 	atomic_inc(&md->holders);
2341 	BUG_ON(test_bit(DMF_FREEING, &md->flags));
2342 }
2343 
2344 const char *dm_device_name(struct mapped_device *md)
2345 {
2346 	return md->name;
2347 }
2348 EXPORT_SYMBOL_GPL(dm_device_name);
2349 
2350 static void __dm_destroy(struct mapped_device *md, bool wait)
2351 {
2352 	struct dm_table *map;
2353 	int srcu_idx;
2354 
2355 	might_sleep();
2356 
2357 	spin_lock(&_minor_lock);
2358 	map = dm_get_live_table(md, &srcu_idx);
2359 	idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md))));
2360 	set_bit(DMF_FREEING, &md->flags);
2361 	spin_unlock(&_minor_lock);
2362 
2363 	if (!dm_suspended_md(md)) {
2364 		dm_table_presuspend_targets(map);
2365 		dm_table_postsuspend_targets(map);
2366 	}
2367 
2368 	/* dm_put_live_table must be before msleep, otherwise deadlock is possible */
2369 	dm_put_live_table(md, srcu_idx);
2370 
2371 	/*
2372 	 * Rare, but there may be I/O requests still going to complete,
2373 	 * for example.  Wait for all references to disappear.
2374 	 * No one should increment the reference count of the mapped_device,
2375 	 * after the mapped_device state becomes DMF_FREEING.
2376 	 */
2377 	if (wait)
2378 		while (atomic_read(&md->holders))
2379 			msleep(1);
2380 	else if (atomic_read(&md->holders))
2381 		DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)",
2382 		       dm_device_name(md), atomic_read(&md->holders));
2383 
2384 	dm_sysfs_exit(md);
2385 	dm_table_destroy(__unbind(md));
2386 	free_dev(md);
2387 }
2388 
2389 void dm_destroy(struct mapped_device *md)
2390 {
2391 	__dm_destroy(md, true);
2392 }
2393 
2394 void dm_destroy_immediate(struct mapped_device *md)
2395 {
2396 	__dm_destroy(md, false);
2397 }
2398 
2399 void dm_put(struct mapped_device *md)
2400 {
2401 	atomic_dec(&md->holders);
2402 }
2403 EXPORT_SYMBOL_GPL(dm_put);
2404 
2405 static int dm_wait_for_completion(struct mapped_device *md, int interruptible)
2406 {
2407 	int r = 0;
2408 	DECLARE_WAITQUEUE(wait, current);
2409 
2410 	add_wait_queue(&md->wait, &wait);
2411 
2412 	while (1) {
2413 		set_current_state(interruptible);
2414 
2415 		if (!md_in_flight(md))
2416 			break;
2417 
2418 		if (interruptible == TASK_INTERRUPTIBLE &&
2419 		    signal_pending(current)) {
2420 			r = -EINTR;
2421 			break;
2422 		}
2423 
2424 		io_schedule();
2425 	}
2426 	set_current_state(TASK_RUNNING);
2427 
2428 	remove_wait_queue(&md->wait, &wait);
2429 
2430 	return r;
2431 }
2432 
2433 /*
2434  * Process the deferred bios
2435  */
2436 static void dm_wq_work(struct work_struct *work)
2437 {
2438 	struct mapped_device *md = container_of(work, struct mapped_device,
2439 						work);
2440 	struct bio *c;
2441 	int srcu_idx;
2442 	struct dm_table *map;
2443 
2444 	map = dm_get_live_table(md, &srcu_idx);
2445 
2446 	while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
2447 		spin_lock_irq(&md->deferred_lock);
2448 		c = bio_list_pop(&md->deferred);
2449 		spin_unlock_irq(&md->deferred_lock);
2450 
2451 		if (!c)
2452 			break;
2453 
2454 		if (dm_request_based(md))
2455 			generic_make_request(c);
2456 		else
2457 			__split_and_process_bio(md, map, c);
2458 	}
2459 
2460 	dm_put_live_table(md, srcu_idx);
2461 }
2462 
2463 static void dm_queue_flush(struct mapped_device *md)
2464 {
2465 	clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2466 	smp_mb__after_clear_bit();
2467 	queue_work(md->wq, &md->work);
2468 }
2469 
2470 /*
2471  * Swap in a new table, returning the old one for the caller to destroy.
2472  */
2473 struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table)
2474 {
2475 	struct dm_table *live_map = NULL, *map = ERR_PTR(-EINVAL);
2476 	struct queue_limits limits;
2477 	int r;
2478 
2479 	mutex_lock(&md->suspend_lock);
2480 
2481 	/* device must be suspended */
2482 	if (!dm_suspended_md(md))
2483 		goto out;
2484 
2485 	/*
2486 	 * If the new table has no data devices, retain the existing limits.
2487 	 * This helps multipath with queue_if_no_path if all paths disappear,
2488 	 * then new I/O is queued based on these limits, and then some paths
2489 	 * reappear.
2490 	 */
2491 	if (dm_table_has_no_data_devices(table)) {
2492 		live_map = dm_get_live_table_fast(md);
2493 		if (live_map)
2494 			limits = md->queue->limits;
2495 		dm_put_live_table_fast(md);
2496 	}
2497 
2498 	if (!live_map) {
2499 		r = dm_calculate_queue_limits(table, &limits);
2500 		if (r) {
2501 			map = ERR_PTR(r);
2502 			goto out;
2503 		}
2504 	}
2505 
2506 	map = __bind(md, table, &limits);
2507 
2508 out:
2509 	mutex_unlock(&md->suspend_lock);
2510 	return map;
2511 }
2512 
2513 /*
2514  * Functions to lock and unlock any filesystem running on the
2515  * device.
2516  */
2517 static int lock_fs(struct mapped_device *md)
2518 {
2519 	int r;
2520 
2521 	WARN_ON(md->frozen_sb);
2522 
2523 	md->frozen_sb = freeze_bdev(md->bdev);
2524 	if (IS_ERR(md->frozen_sb)) {
2525 		r = PTR_ERR(md->frozen_sb);
2526 		md->frozen_sb = NULL;
2527 		return r;
2528 	}
2529 
2530 	set_bit(DMF_FROZEN, &md->flags);
2531 
2532 	return 0;
2533 }
2534 
2535 static void unlock_fs(struct mapped_device *md)
2536 {
2537 	if (!test_bit(DMF_FROZEN, &md->flags))
2538 		return;
2539 
2540 	thaw_bdev(md->bdev, md->frozen_sb);
2541 	md->frozen_sb = NULL;
2542 	clear_bit(DMF_FROZEN, &md->flags);
2543 }
2544 
2545 /*
2546  * We need to be able to change a mapping table under a mounted
2547  * filesystem.  For example we might want to move some data in
2548  * the background.  Before the table can be swapped with
2549  * dm_bind_table, dm_suspend must be called to flush any in
2550  * flight bios and ensure that any further io gets deferred.
2551  */
2552 /*
2553  * Suspend mechanism in request-based dm.
2554  *
2555  * 1. Flush all I/Os by lock_fs() if needed.
2556  * 2. Stop dispatching any I/O by stopping the request_queue.
2557  * 3. Wait for all in-flight I/Os to be completed or requeued.
2558  *
2559  * To abort suspend, start the request_queue.
2560  */
2561 int dm_suspend(struct mapped_device *md, unsigned suspend_flags)
2562 {
2563 	struct dm_table *map = NULL;
2564 	int r = 0;
2565 	int do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG ? 1 : 0;
2566 	int noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG ? 1 : 0;
2567 
2568 	mutex_lock(&md->suspend_lock);
2569 
2570 	if (dm_suspended_md(md)) {
2571 		r = -EINVAL;
2572 		goto out_unlock;
2573 	}
2574 
2575 	map = md->map;
2576 
2577 	/*
2578 	 * DMF_NOFLUSH_SUSPENDING must be set before presuspend.
2579 	 * This flag is cleared before dm_suspend returns.
2580 	 */
2581 	if (noflush)
2582 		set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2583 
2584 	/* This does not get reverted if there's an error later. */
2585 	dm_table_presuspend_targets(map);
2586 
2587 	/*
2588 	 * Flush I/O to the device.
2589 	 * Any I/O submitted after lock_fs() may not be flushed.
2590 	 * noflush takes precedence over do_lockfs.
2591 	 * (lock_fs() flushes I/Os and waits for them to complete.)
2592 	 */
2593 	if (!noflush && do_lockfs) {
2594 		r = lock_fs(md);
2595 		if (r)
2596 			goto out_unlock;
2597 	}
2598 
2599 	/*
2600 	 * Here we must make sure that no processes are submitting requests
2601 	 * to target drivers i.e. no one may be executing
2602 	 * __split_and_process_bio. This is called from dm_request and
2603 	 * dm_wq_work.
2604 	 *
2605 	 * To get all processes out of __split_and_process_bio in dm_request,
2606 	 * we take the write lock. To prevent any process from reentering
2607 	 * __split_and_process_bio from dm_request and quiesce the thread
2608 	 * (dm_wq_work), we set BMF_BLOCK_IO_FOR_SUSPEND and call
2609 	 * flush_workqueue(md->wq).
2610 	 */
2611 	set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2612 	synchronize_srcu(&md->io_barrier);
2613 
2614 	/*
2615 	 * Stop md->queue before flushing md->wq in case request-based
2616 	 * dm defers requests to md->wq from md->queue.
2617 	 */
2618 	if (dm_request_based(md))
2619 		stop_queue(md->queue);
2620 
2621 	flush_workqueue(md->wq);
2622 
2623 	/*
2624 	 * At this point no more requests are entering target request routines.
2625 	 * We call dm_wait_for_completion to wait for all existing requests
2626 	 * to finish.
2627 	 */
2628 	r = dm_wait_for_completion(md, TASK_INTERRUPTIBLE);
2629 
2630 	if (noflush)
2631 		clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2632 	synchronize_srcu(&md->io_barrier);
2633 
2634 	/* were we interrupted ? */
2635 	if (r < 0) {
2636 		dm_queue_flush(md);
2637 
2638 		if (dm_request_based(md))
2639 			start_queue(md->queue);
2640 
2641 		unlock_fs(md);
2642 		goto out_unlock; /* pushback list is already flushed, so skip flush */
2643 	}
2644 
2645 	/*
2646 	 * If dm_wait_for_completion returned 0, the device is completely
2647 	 * quiescent now. There is no request-processing activity. All new
2648 	 * requests are being added to md->deferred list.
2649 	 */
2650 
2651 	set_bit(DMF_SUSPENDED, &md->flags);
2652 
2653 	dm_table_postsuspend_targets(map);
2654 
2655 out_unlock:
2656 	mutex_unlock(&md->suspend_lock);
2657 	return r;
2658 }
2659 
2660 int dm_resume(struct mapped_device *md)
2661 {
2662 	int r = -EINVAL;
2663 	struct dm_table *map = NULL;
2664 
2665 	mutex_lock(&md->suspend_lock);
2666 	if (!dm_suspended_md(md))
2667 		goto out;
2668 
2669 	map = md->map;
2670 	if (!map || !dm_table_get_size(map))
2671 		goto out;
2672 
2673 	r = dm_table_resume_targets(map);
2674 	if (r)
2675 		goto out;
2676 
2677 	dm_queue_flush(md);
2678 
2679 	/*
2680 	 * Flushing deferred I/Os must be done after targets are resumed
2681 	 * so that mapping of targets can work correctly.
2682 	 * Request-based dm is queueing the deferred I/Os in its request_queue.
2683 	 */
2684 	if (dm_request_based(md))
2685 		start_queue(md->queue);
2686 
2687 	unlock_fs(md);
2688 
2689 	clear_bit(DMF_SUSPENDED, &md->flags);
2690 
2691 	r = 0;
2692 out:
2693 	mutex_unlock(&md->suspend_lock);
2694 
2695 	return r;
2696 }
2697 
2698 /*-----------------------------------------------------------------
2699  * Event notification.
2700  *---------------------------------------------------------------*/
2701 int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action,
2702 		       unsigned cookie)
2703 {
2704 	char udev_cookie[DM_COOKIE_LENGTH];
2705 	char *envp[] = { udev_cookie, NULL };
2706 
2707 	if (!cookie)
2708 		return kobject_uevent(&disk_to_dev(md->disk)->kobj, action);
2709 	else {
2710 		snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u",
2711 			 DM_COOKIE_ENV_VAR_NAME, cookie);
2712 		return kobject_uevent_env(&disk_to_dev(md->disk)->kobj,
2713 					  action, envp);
2714 	}
2715 }
2716 
2717 uint32_t dm_next_uevent_seq(struct mapped_device *md)
2718 {
2719 	return atomic_add_return(1, &md->uevent_seq);
2720 }
2721 
2722 uint32_t dm_get_event_nr(struct mapped_device *md)
2723 {
2724 	return atomic_read(&md->event_nr);
2725 }
2726 
2727 int dm_wait_event(struct mapped_device *md, int event_nr)
2728 {
2729 	return wait_event_interruptible(md->eventq,
2730 			(event_nr != atomic_read(&md->event_nr)));
2731 }
2732 
2733 void dm_uevent_add(struct mapped_device *md, struct list_head *elist)
2734 {
2735 	unsigned long flags;
2736 
2737 	spin_lock_irqsave(&md->uevent_lock, flags);
2738 	list_add(elist, &md->uevent_list);
2739 	spin_unlock_irqrestore(&md->uevent_lock, flags);
2740 }
2741 
2742 /*
2743  * The gendisk is only valid as long as you have a reference
2744  * count on 'md'.
2745  */
2746 struct gendisk *dm_disk(struct mapped_device *md)
2747 {
2748 	return md->disk;
2749 }
2750 
2751 struct kobject *dm_kobject(struct mapped_device *md)
2752 {
2753 	return &md->kobj;
2754 }
2755 
2756 /*
2757  * struct mapped_device should not be exported outside of dm.c
2758  * so use this check to verify that kobj is part of md structure
2759  */
2760 struct mapped_device *dm_get_from_kobject(struct kobject *kobj)
2761 {
2762 	struct mapped_device *md;
2763 
2764 	md = container_of(kobj, struct mapped_device, kobj);
2765 	if (&md->kobj != kobj)
2766 		return NULL;
2767 
2768 	if (test_bit(DMF_FREEING, &md->flags) ||
2769 	    dm_deleting_md(md))
2770 		return NULL;
2771 
2772 	dm_get(md);
2773 	return md;
2774 }
2775 
2776 int dm_suspended_md(struct mapped_device *md)
2777 {
2778 	return test_bit(DMF_SUSPENDED, &md->flags);
2779 }
2780 
2781 int dm_suspended(struct dm_target *ti)
2782 {
2783 	return dm_suspended_md(dm_table_get_md(ti->table));
2784 }
2785 EXPORT_SYMBOL_GPL(dm_suspended);
2786 
2787 int dm_noflush_suspending(struct dm_target *ti)
2788 {
2789 	return __noflush_suspending(dm_table_get_md(ti->table));
2790 }
2791 EXPORT_SYMBOL_GPL(dm_noflush_suspending);
2792 
2793 struct dm_md_mempools *dm_alloc_md_mempools(unsigned type, unsigned integrity, unsigned per_bio_data_size)
2794 {
2795 	struct dm_md_mempools *pools = kzalloc(sizeof(*pools), GFP_KERNEL);
2796 	struct kmem_cache *cachep;
2797 	unsigned int pool_size;
2798 	unsigned int front_pad;
2799 
2800 	if (!pools)
2801 		return NULL;
2802 
2803 	if (type == DM_TYPE_BIO_BASED) {
2804 		cachep = _io_cache;
2805 		pool_size = 16;
2806 		front_pad = roundup(per_bio_data_size, __alignof__(struct dm_target_io)) + offsetof(struct dm_target_io, clone);
2807 	} else if (type == DM_TYPE_REQUEST_BASED) {
2808 		cachep = _rq_tio_cache;
2809 		pool_size = MIN_IOS;
2810 		front_pad = offsetof(struct dm_rq_clone_bio_info, clone);
2811 		/* per_bio_data_size is not used. See __bind_mempools(). */
2812 		WARN_ON(per_bio_data_size != 0);
2813 	} else
2814 		goto out;
2815 
2816 	pools->io_pool = mempool_create_slab_pool(MIN_IOS, cachep);
2817 	if (!pools->io_pool)
2818 		goto out;
2819 
2820 	pools->bs = bioset_create(pool_size, front_pad);
2821 	if (!pools->bs)
2822 		goto out;
2823 
2824 	if (integrity && bioset_integrity_create(pools->bs, pool_size))
2825 		goto out;
2826 
2827 	return pools;
2828 
2829 out:
2830 	dm_free_md_mempools(pools);
2831 
2832 	return NULL;
2833 }
2834 
2835 void dm_free_md_mempools(struct dm_md_mempools *pools)
2836 {
2837 	if (!pools)
2838 		return;
2839 
2840 	if (pools->io_pool)
2841 		mempool_destroy(pools->io_pool);
2842 
2843 	if (pools->bs)
2844 		bioset_free(pools->bs);
2845 
2846 	kfree(pools);
2847 }
2848 
2849 static const struct block_device_operations dm_blk_dops = {
2850 	.open = dm_blk_open,
2851 	.release = dm_blk_close,
2852 	.ioctl = dm_blk_ioctl,
2853 	.getgeo = dm_blk_getgeo,
2854 	.owner = THIS_MODULE
2855 };
2856 
2857 EXPORT_SYMBOL(dm_get_mapinfo);
2858 
2859 /*
2860  * module hooks
2861  */
2862 module_init(dm_init);
2863 module_exit(dm_exit);
2864 
2865 module_param(major, uint, 0);
2866 MODULE_PARM_DESC(major, "The major number of the device mapper");
2867 MODULE_DESCRIPTION(DM_NAME " driver");
2868 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
2869 MODULE_LICENSE("GPL");
2870