xref: /linux/drivers/md/dm.c (revision 13abf8130139c2ccd4962a7e5a8902be5e6cb5a7)
1 /*
2  * Copyright (C) 2001, 2002 Sistina Software (UK) Limited.
3  * Copyright (C) 2004 Red Hat, Inc. All rights reserved.
4  *
5  * This file is released under the GPL.
6  */
7 
8 #include "dm.h"
9 #include "dm-bio-list.h"
10 
11 #include <linux/init.h>
12 #include <linux/module.h>
13 #include <linux/moduleparam.h>
14 #include <linux/blkpg.h>
15 #include <linux/bio.h>
16 #include <linux/buffer_head.h>
17 #include <linux/mempool.h>
18 #include <linux/slab.h>
19 #include <linux/idr.h>
20 
21 static const char *_name = DM_NAME;
22 
23 static unsigned int major = 0;
24 static unsigned int _major = 0;
25 
26 /*
27  * One of these is allocated per bio.
28  */
29 struct dm_io {
30 	struct mapped_device *md;
31 	int error;
32 	struct bio *bio;
33 	atomic_t io_count;
34 };
35 
36 /*
37  * One of these is allocated per target within a bio.  Hopefully
38  * this will be simplified out one day.
39  */
40 struct target_io {
41 	struct dm_io *io;
42 	struct dm_target *ti;
43 	union map_info info;
44 };
45 
46 union map_info *dm_get_mapinfo(struct bio *bio)
47 {
48         if (bio && bio->bi_private)
49                 return &((struct target_io *)bio->bi_private)->info;
50         return NULL;
51 }
52 
53 /*
54  * Bits for the md->flags field.
55  */
56 #define DMF_BLOCK_IO 0
57 #define DMF_SUSPENDED 1
58 
59 struct mapped_device {
60 	struct rw_semaphore io_lock;
61 	struct semaphore suspend_lock;
62 	rwlock_t map_lock;
63 	atomic_t holders;
64 
65 	unsigned long flags;
66 
67 	request_queue_t *queue;
68 	struct gendisk *disk;
69 
70 	void *interface_ptr;
71 
72 	/*
73 	 * A list of ios that arrived while we were suspended.
74 	 */
75 	atomic_t pending;
76 	wait_queue_head_t wait;
77  	struct bio_list deferred;
78 
79 	/*
80 	 * The current mapping.
81 	 */
82 	struct dm_table *map;
83 
84 	/*
85 	 * io objects are allocated from here.
86 	 */
87 	mempool_t *io_pool;
88 	mempool_t *tio_pool;
89 
90 	/*
91 	 * Event handling.
92 	 */
93 	atomic_t event_nr;
94 	wait_queue_head_t eventq;
95 
96 	/*
97 	 * freeze/thaw support require holding onto a super block
98 	 */
99 	struct super_block *frozen_sb;
100 	struct block_device *frozen_bdev;
101 };
102 
103 #define MIN_IOS 256
104 static kmem_cache_t *_io_cache;
105 static kmem_cache_t *_tio_cache;
106 
107 static struct bio_set *dm_set;
108 
109 static int __init local_init(void)
110 {
111 	int r;
112 
113 	dm_set = bioset_create(16, 16, 4);
114 	if (!dm_set)
115 		return -ENOMEM;
116 
117 	/* allocate a slab for the dm_ios */
118 	_io_cache = kmem_cache_create("dm_io",
119 				      sizeof(struct dm_io), 0, 0, NULL, NULL);
120 	if (!_io_cache)
121 		return -ENOMEM;
122 
123 	/* allocate a slab for the target ios */
124 	_tio_cache = kmem_cache_create("dm_tio", sizeof(struct target_io),
125 				       0, 0, NULL, NULL);
126 	if (!_tio_cache) {
127 		kmem_cache_destroy(_io_cache);
128 		return -ENOMEM;
129 	}
130 
131 	_major = major;
132 	r = register_blkdev(_major, _name);
133 	if (r < 0) {
134 		kmem_cache_destroy(_tio_cache);
135 		kmem_cache_destroy(_io_cache);
136 		return r;
137 	}
138 
139 	if (!_major)
140 		_major = r;
141 
142 	return 0;
143 }
144 
145 static void local_exit(void)
146 {
147 	kmem_cache_destroy(_tio_cache);
148 	kmem_cache_destroy(_io_cache);
149 
150 	bioset_free(dm_set);
151 
152 	if (unregister_blkdev(_major, _name) < 0)
153 		DMERR("devfs_unregister_blkdev failed");
154 
155 	_major = 0;
156 
157 	DMINFO("cleaned up");
158 }
159 
160 int (*_inits[])(void) __initdata = {
161 	local_init,
162 	dm_target_init,
163 	dm_linear_init,
164 	dm_stripe_init,
165 	dm_interface_init,
166 };
167 
168 void (*_exits[])(void) = {
169 	local_exit,
170 	dm_target_exit,
171 	dm_linear_exit,
172 	dm_stripe_exit,
173 	dm_interface_exit,
174 };
175 
176 static int __init dm_init(void)
177 {
178 	const int count = ARRAY_SIZE(_inits);
179 
180 	int r, i;
181 
182 	for (i = 0; i < count; i++) {
183 		r = _inits[i]();
184 		if (r)
185 			goto bad;
186 	}
187 
188 	return 0;
189 
190       bad:
191 	while (i--)
192 		_exits[i]();
193 
194 	return r;
195 }
196 
197 static void __exit dm_exit(void)
198 {
199 	int i = ARRAY_SIZE(_exits);
200 
201 	while (i--)
202 		_exits[i]();
203 }
204 
205 /*
206  * Block device functions
207  */
208 static int dm_blk_open(struct inode *inode, struct file *file)
209 {
210 	struct mapped_device *md;
211 
212 	md = inode->i_bdev->bd_disk->private_data;
213 	dm_get(md);
214 	return 0;
215 }
216 
217 static int dm_blk_close(struct inode *inode, struct file *file)
218 {
219 	struct mapped_device *md;
220 
221 	md = inode->i_bdev->bd_disk->private_data;
222 	dm_put(md);
223 	return 0;
224 }
225 
226 static inline struct dm_io *alloc_io(struct mapped_device *md)
227 {
228 	return mempool_alloc(md->io_pool, GFP_NOIO);
229 }
230 
231 static inline void free_io(struct mapped_device *md, struct dm_io *io)
232 {
233 	mempool_free(io, md->io_pool);
234 }
235 
236 static inline struct target_io *alloc_tio(struct mapped_device *md)
237 {
238 	return mempool_alloc(md->tio_pool, GFP_NOIO);
239 }
240 
241 static inline void free_tio(struct mapped_device *md, struct target_io *tio)
242 {
243 	mempool_free(tio, md->tio_pool);
244 }
245 
246 /*
247  * Add the bio to the list of deferred io.
248  */
249 static int queue_io(struct mapped_device *md, struct bio *bio)
250 {
251 	down_write(&md->io_lock);
252 
253 	if (!test_bit(DMF_BLOCK_IO, &md->flags)) {
254 		up_write(&md->io_lock);
255 		return 1;
256 	}
257 
258 	bio_list_add(&md->deferred, bio);
259 
260 	up_write(&md->io_lock);
261 	return 0;		/* deferred successfully */
262 }
263 
264 /*
265  * Everyone (including functions in this file), should use this
266  * function to access the md->map field, and make sure they call
267  * dm_table_put() when finished.
268  */
269 struct dm_table *dm_get_table(struct mapped_device *md)
270 {
271 	struct dm_table *t;
272 
273 	read_lock(&md->map_lock);
274 	t = md->map;
275 	if (t)
276 		dm_table_get(t);
277 	read_unlock(&md->map_lock);
278 
279 	return t;
280 }
281 
282 /*-----------------------------------------------------------------
283  * CRUD START:
284  *   A more elegant soln is in the works that uses the queue
285  *   merge fn, unfortunately there are a couple of changes to
286  *   the block layer that I want to make for this.  So in the
287  *   interests of getting something for people to use I give
288  *   you this clearly demarcated crap.
289  *---------------------------------------------------------------*/
290 
291 /*
292  * Decrements the number of outstanding ios that a bio has been
293  * cloned into, completing the original io if necc.
294  */
295 static inline void dec_pending(struct dm_io *io, int error)
296 {
297 	if (error)
298 		io->error = error;
299 
300 	if (atomic_dec_and_test(&io->io_count)) {
301 		if (atomic_dec_and_test(&io->md->pending))
302 			/* nudge anyone waiting on suspend queue */
303 			wake_up(&io->md->wait);
304 
305 		bio_endio(io->bio, io->bio->bi_size, io->error);
306 		free_io(io->md, io);
307 	}
308 }
309 
310 static int clone_endio(struct bio *bio, unsigned int done, int error)
311 {
312 	int r = 0;
313 	struct target_io *tio = bio->bi_private;
314 	struct dm_io *io = tio->io;
315 	dm_endio_fn endio = tio->ti->type->end_io;
316 
317 	if (bio->bi_size)
318 		return 1;
319 
320 	if (!bio_flagged(bio, BIO_UPTODATE) && !error)
321 		error = -EIO;
322 
323 	if (endio) {
324 		r = endio(tio->ti, bio, error, &tio->info);
325 		if (r < 0)
326 			error = r;
327 
328 		else if (r > 0)
329 			/* the target wants another shot at the io */
330 			return 1;
331 	}
332 
333 	free_tio(io->md, tio);
334 	dec_pending(io, error);
335 	bio_put(bio);
336 	return r;
337 }
338 
339 static sector_t max_io_len(struct mapped_device *md,
340 			   sector_t sector, struct dm_target *ti)
341 {
342 	sector_t offset = sector - ti->begin;
343 	sector_t len = ti->len - offset;
344 
345 	/*
346 	 * Does the target need to split even further ?
347 	 */
348 	if (ti->split_io) {
349 		sector_t boundary;
350 		boundary = ((offset + ti->split_io) & ~(ti->split_io - 1))
351 			   - offset;
352 		if (len > boundary)
353 			len = boundary;
354 	}
355 
356 	return len;
357 }
358 
359 static void __map_bio(struct dm_target *ti, struct bio *clone,
360 		      struct target_io *tio)
361 {
362 	int r;
363 
364 	/*
365 	 * Sanity checks.
366 	 */
367 	BUG_ON(!clone->bi_size);
368 
369 	clone->bi_end_io = clone_endio;
370 	clone->bi_private = tio;
371 
372 	/*
373 	 * Map the clone.  If r == 0 we don't need to do
374 	 * anything, the target has assumed ownership of
375 	 * this io.
376 	 */
377 	atomic_inc(&tio->io->io_count);
378 	r = ti->type->map(ti, clone, &tio->info);
379 	if (r > 0)
380 		/* the bio has been remapped so dispatch it */
381 		generic_make_request(clone);
382 
383 	else if (r < 0) {
384 		/* error the io and bail out */
385 		struct dm_io *io = tio->io;
386 		free_tio(tio->io->md, tio);
387 		dec_pending(io, r);
388 		bio_put(clone);
389 	}
390 }
391 
392 struct clone_info {
393 	struct mapped_device *md;
394 	struct dm_table *map;
395 	struct bio *bio;
396 	struct dm_io *io;
397 	sector_t sector;
398 	sector_t sector_count;
399 	unsigned short idx;
400 };
401 
402 /*
403  * Creates a little bio that is just does part of a bvec.
404  */
405 static struct bio *split_bvec(struct bio *bio, sector_t sector,
406 			      unsigned short idx, unsigned int offset,
407 			      unsigned int len)
408 {
409 	struct bio *clone;
410 	struct bio_vec *bv = bio->bi_io_vec + idx;
411 
412 	clone = bio_alloc_bioset(GFP_NOIO, 1, dm_set);
413 	*clone->bi_io_vec = *bv;
414 
415 	clone->bi_sector = sector;
416 	clone->bi_bdev = bio->bi_bdev;
417 	clone->bi_rw = bio->bi_rw;
418 	clone->bi_vcnt = 1;
419 	clone->bi_size = to_bytes(len);
420 	clone->bi_io_vec->bv_offset = offset;
421 	clone->bi_io_vec->bv_len = clone->bi_size;
422 
423 	return clone;
424 }
425 
426 /*
427  * Creates a bio that consists of range of complete bvecs.
428  */
429 static struct bio *clone_bio(struct bio *bio, sector_t sector,
430 			     unsigned short idx, unsigned short bv_count,
431 			     unsigned int len)
432 {
433 	struct bio *clone;
434 
435 	clone = bio_clone(bio, GFP_NOIO);
436 	clone->bi_sector = sector;
437 	clone->bi_idx = idx;
438 	clone->bi_vcnt = idx + bv_count;
439 	clone->bi_size = to_bytes(len);
440 	clone->bi_flags &= ~(1 << BIO_SEG_VALID);
441 
442 	return clone;
443 }
444 
445 static void __clone_and_map(struct clone_info *ci)
446 {
447 	struct bio *clone, *bio = ci->bio;
448 	struct dm_target *ti = dm_table_find_target(ci->map, ci->sector);
449 	sector_t len = 0, max = max_io_len(ci->md, ci->sector, ti);
450 	struct target_io *tio;
451 
452 	/*
453 	 * Allocate a target io object.
454 	 */
455 	tio = alloc_tio(ci->md);
456 	tio->io = ci->io;
457 	tio->ti = ti;
458 	memset(&tio->info, 0, sizeof(tio->info));
459 
460 	if (ci->sector_count <= max) {
461 		/*
462 		 * Optimise for the simple case where we can do all of
463 		 * the remaining io with a single clone.
464 		 */
465 		clone = clone_bio(bio, ci->sector, ci->idx,
466 				  bio->bi_vcnt - ci->idx, ci->sector_count);
467 		__map_bio(ti, clone, tio);
468 		ci->sector_count = 0;
469 
470 	} else if (to_sector(bio->bi_io_vec[ci->idx].bv_len) <= max) {
471 		/*
472 		 * There are some bvecs that don't span targets.
473 		 * Do as many of these as possible.
474 		 */
475 		int i;
476 		sector_t remaining = max;
477 		sector_t bv_len;
478 
479 		for (i = ci->idx; remaining && (i < bio->bi_vcnt); i++) {
480 			bv_len = to_sector(bio->bi_io_vec[i].bv_len);
481 
482 			if (bv_len > remaining)
483 				break;
484 
485 			remaining -= bv_len;
486 			len += bv_len;
487 		}
488 
489 		clone = clone_bio(bio, ci->sector, ci->idx, i - ci->idx, len);
490 		__map_bio(ti, clone, tio);
491 
492 		ci->sector += len;
493 		ci->sector_count -= len;
494 		ci->idx = i;
495 
496 	} else {
497 		/*
498 		 * Create two copy bios to deal with io that has
499 		 * been split across a target.
500 		 */
501 		struct bio_vec *bv = bio->bi_io_vec + ci->idx;
502 
503 		clone = split_bvec(bio, ci->sector, ci->idx,
504 				   bv->bv_offset, max);
505 		__map_bio(ti, clone, tio);
506 
507 		ci->sector += max;
508 		ci->sector_count -= max;
509 		ti = dm_table_find_target(ci->map, ci->sector);
510 
511 		len = to_sector(bv->bv_len) - max;
512 		clone = split_bvec(bio, ci->sector, ci->idx,
513 				   bv->bv_offset + to_bytes(max), len);
514 		tio = alloc_tio(ci->md);
515 		tio->io = ci->io;
516 		tio->ti = ti;
517 		memset(&tio->info, 0, sizeof(tio->info));
518 		__map_bio(ti, clone, tio);
519 
520 		ci->sector += len;
521 		ci->sector_count -= len;
522 		ci->idx++;
523 	}
524 }
525 
526 /*
527  * Split the bio into several clones.
528  */
529 static void __split_bio(struct mapped_device *md, struct bio *bio)
530 {
531 	struct clone_info ci;
532 
533 	ci.map = dm_get_table(md);
534 	if (!ci.map) {
535 		bio_io_error(bio, bio->bi_size);
536 		return;
537 	}
538 
539 	ci.md = md;
540 	ci.bio = bio;
541 	ci.io = alloc_io(md);
542 	ci.io->error = 0;
543 	atomic_set(&ci.io->io_count, 1);
544 	ci.io->bio = bio;
545 	ci.io->md = md;
546 	ci.sector = bio->bi_sector;
547 	ci.sector_count = bio_sectors(bio);
548 	ci.idx = bio->bi_idx;
549 
550 	atomic_inc(&md->pending);
551 	while (ci.sector_count)
552 		__clone_and_map(&ci);
553 
554 	/* drop the extra reference count */
555 	dec_pending(ci.io, 0);
556 	dm_table_put(ci.map);
557 }
558 /*-----------------------------------------------------------------
559  * CRUD END
560  *---------------------------------------------------------------*/
561 
562 /*
563  * The request function that just remaps the bio built up by
564  * dm_merge_bvec.
565  */
566 static int dm_request(request_queue_t *q, struct bio *bio)
567 {
568 	int r;
569 	struct mapped_device *md = q->queuedata;
570 
571 	down_read(&md->io_lock);
572 
573 	/*
574 	 * If we're suspended we have to queue
575 	 * this io for later.
576 	 */
577 	while (test_bit(DMF_BLOCK_IO, &md->flags)) {
578 		up_read(&md->io_lock);
579 
580 		if (bio_rw(bio) == READA) {
581 			bio_io_error(bio, bio->bi_size);
582 			return 0;
583 		}
584 
585 		r = queue_io(md, bio);
586 		if (r < 0) {
587 			bio_io_error(bio, bio->bi_size);
588 			return 0;
589 
590 		} else if (r == 0)
591 			return 0;	/* deferred successfully */
592 
593 		/*
594 		 * We're in a while loop, because someone could suspend
595 		 * before we get to the following read lock.
596 		 */
597 		down_read(&md->io_lock);
598 	}
599 
600 	__split_bio(md, bio);
601 	up_read(&md->io_lock);
602 	return 0;
603 }
604 
605 static int dm_flush_all(request_queue_t *q, struct gendisk *disk,
606 			sector_t *error_sector)
607 {
608 	struct mapped_device *md = q->queuedata;
609 	struct dm_table *map = dm_get_table(md);
610 	int ret = -ENXIO;
611 
612 	if (map) {
613 		ret = dm_table_flush_all(map);
614 		dm_table_put(map);
615 	}
616 
617 	return ret;
618 }
619 
620 static void dm_unplug_all(request_queue_t *q)
621 {
622 	struct mapped_device *md = q->queuedata;
623 	struct dm_table *map = dm_get_table(md);
624 
625 	if (map) {
626 		dm_table_unplug_all(map);
627 		dm_table_put(map);
628 	}
629 }
630 
631 static int dm_any_congested(void *congested_data, int bdi_bits)
632 {
633 	int r;
634 	struct mapped_device *md = (struct mapped_device *) congested_data;
635 	struct dm_table *map = dm_get_table(md);
636 
637 	if (!map || test_bit(DMF_BLOCK_IO, &md->flags))
638 		r = bdi_bits;
639 	else
640 		r = dm_table_any_congested(map, bdi_bits);
641 
642 	dm_table_put(map);
643 	return r;
644 }
645 
646 /*-----------------------------------------------------------------
647  * An IDR is used to keep track of allocated minor numbers.
648  *---------------------------------------------------------------*/
649 static DECLARE_MUTEX(_minor_lock);
650 static DEFINE_IDR(_minor_idr);
651 
652 static void free_minor(unsigned int minor)
653 {
654 	down(&_minor_lock);
655 	idr_remove(&_minor_idr, minor);
656 	up(&_minor_lock);
657 }
658 
659 /*
660  * See if the device with a specific minor # is free.
661  */
662 static int specific_minor(struct mapped_device *md, unsigned int minor)
663 {
664 	int r, m;
665 
666 	if (minor >= (1 << MINORBITS))
667 		return -EINVAL;
668 
669 	down(&_minor_lock);
670 
671 	if (idr_find(&_minor_idr, minor)) {
672 		r = -EBUSY;
673 		goto out;
674 	}
675 
676 	r = idr_pre_get(&_minor_idr, GFP_KERNEL);
677 	if (!r) {
678 		r = -ENOMEM;
679 		goto out;
680 	}
681 
682 	r = idr_get_new_above(&_minor_idr, md, minor, &m);
683 	if (r) {
684 		goto out;
685 	}
686 
687 	if (m != minor) {
688 		idr_remove(&_minor_idr, m);
689 		r = -EBUSY;
690 		goto out;
691 	}
692 
693 out:
694 	up(&_minor_lock);
695 	return r;
696 }
697 
698 static int next_free_minor(struct mapped_device *md, unsigned int *minor)
699 {
700 	int r;
701 	unsigned int m;
702 
703 	down(&_minor_lock);
704 
705 	r = idr_pre_get(&_minor_idr, GFP_KERNEL);
706 	if (!r) {
707 		r = -ENOMEM;
708 		goto out;
709 	}
710 
711 	r = idr_get_new(&_minor_idr, md, &m);
712 	if (r) {
713 		goto out;
714 	}
715 
716 	if (m >= (1 << MINORBITS)) {
717 		idr_remove(&_minor_idr, m);
718 		r = -ENOSPC;
719 		goto out;
720 	}
721 
722 	*minor = m;
723 
724 out:
725 	up(&_minor_lock);
726 	return r;
727 }
728 
729 static struct block_device_operations dm_blk_dops;
730 
731 /*
732  * Allocate and initialise a blank device with a given minor.
733  */
734 static struct mapped_device *alloc_dev(unsigned int minor, int persistent)
735 {
736 	int r;
737 	struct mapped_device *md = kmalloc(sizeof(*md), GFP_KERNEL);
738 
739 	if (!md) {
740 		DMWARN("unable to allocate device, out of memory.");
741 		return NULL;
742 	}
743 
744 	/* get a minor number for the dev */
745 	r = persistent ? specific_minor(md, minor) : next_free_minor(md, &minor);
746 	if (r < 0)
747 		goto bad1;
748 
749 	memset(md, 0, sizeof(*md));
750 	init_rwsem(&md->io_lock);
751 	init_MUTEX(&md->suspend_lock);
752 	rwlock_init(&md->map_lock);
753 	atomic_set(&md->holders, 1);
754 	atomic_set(&md->event_nr, 0);
755 
756 	md->queue = blk_alloc_queue(GFP_KERNEL);
757 	if (!md->queue)
758 		goto bad1;
759 
760 	md->queue->queuedata = md;
761 	md->queue->backing_dev_info.congested_fn = dm_any_congested;
762 	md->queue->backing_dev_info.congested_data = md;
763 	blk_queue_make_request(md->queue, dm_request);
764 	md->queue->unplug_fn = dm_unplug_all;
765 	md->queue->issue_flush_fn = dm_flush_all;
766 
767 	md->io_pool = mempool_create(MIN_IOS, mempool_alloc_slab,
768 				     mempool_free_slab, _io_cache);
769  	if (!md->io_pool)
770  		goto bad2;
771 
772 	md->tio_pool = mempool_create(MIN_IOS, mempool_alloc_slab,
773 				      mempool_free_slab, _tio_cache);
774 	if (!md->tio_pool)
775 		goto bad3;
776 
777 	md->disk = alloc_disk(1);
778 	if (!md->disk)
779 		goto bad4;
780 
781 	md->disk->major = _major;
782 	md->disk->first_minor = minor;
783 	md->disk->fops = &dm_blk_dops;
784 	md->disk->queue = md->queue;
785 	md->disk->private_data = md;
786 	sprintf(md->disk->disk_name, "dm-%d", minor);
787 	add_disk(md->disk);
788 
789 	atomic_set(&md->pending, 0);
790 	init_waitqueue_head(&md->wait);
791 	init_waitqueue_head(&md->eventq);
792 
793 	return md;
794 
795  bad4:
796 	mempool_destroy(md->tio_pool);
797  bad3:
798 	mempool_destroy(md->io_pool);
799  bad2:
800 	blk_put_queue(md->queue);
801 	free_minor(minor);
802  bad1:
803 	kfree(md);
804 	return NULL;
805 }
806 
807 static void free_dev(struct mapped_device *md)
808 {
809 	free_minor(md->disk->first_minor);
810 	mempool_destroy(md->tio_pool);
811 	mempool_destroy(md->io_pool);
812 	del_gendisk(md->disk);
813 	put_disk(md->disk);
814 	blk_put_queue(md->queue);
815 	kfree(md);
816 }
817 
818 /*
819  * Bind a table to the device.
820  */
821 static void event_callback(void *context)
822 {
823 	struct mapped_device *md = (struct mapped_device *) context;
824 
825 	atomic_inc(&md->event_nr);
826 	wake_up(&md->eventq);
827 }
828 
829 static void __set_size(struct mapped_device *md, sector_t size)
830 {
831 	set_capacity(md->disk, size);
832 
833 	down(&md->frozen_bdev->bd_inode->i_sem);
834 	i_size_write(md->frozen_bdev->bd_inode, (loff_t)size << SECTOR_SHIFT);
835 	up(&md->frozen_bdev->bd_inode->i_sem);
836 }
837 
838 static int __bind(struct mapped_device *md, struct dm_table *t)
839 {
840 	request_queue_t *q = md->queue;
841 	sector_t size;
842 
843 	size = dm_table_get_size(t);
844 	__set_size(md, size);
845 	if (size == 0)
846 		return 0;
847 
848 	dm_table_get(t);
849 	dm_table_event_callback(t, event_callback, md);
850 
851 	write_lock(&md->map_lock);
852 	md->map = t;
853 	dm_table_set_restrictions(t, q);
854 	write_unlock(&md->map_lock);
855 
856 	return 0;
857 }
858 
859 static void __unbind(struct mapped_device *md)
860 {
861 	struct dm_table *map = md->map;
862 
863 	if (!map)
864 		return;
865 
866 	dm_table_event_callback(map, NULL, NULL);
867 	write_lock(&md->map_lock);
868 	md->map = NULL;
869 	write_unlock(&md->map_lock);
870 	dm_table_put(map);
871 }
872 
873 /*
874  * Constructor for a new device.
875  */
876 static int create_aux(unsigned int minor, int persistent,
877 		      struct mapped_device **result)
878 {
879 	struct mapped_device *md;
880 
881 	md = alloc_dev(minor, persistent);
882 	if (!md)
883 		return -ENXIO;
884 
885 	*result = md;
886 	return 0;
887 }
888 
889 int dm_create(struct mapped_device **result)
890 {
891 	return create_aux(0, 0, result);
892 }
893 
894 int dm_create_with_minor(unsigned int minor, struct mapped_device **result)
895 {
896 	return create_aux(minor, 1, result);
897 }
898 
899 void *dm_get_mdptr(dev_t dev)
900 {
901 	struct mapped_device *md;
902 	void *mdptr = NULL;
903 	unsigned minor = MINOR(dev);
904 
905 	if (MAJOR(dev) != _major || minor >= (1 << MINORBITS))
906 		return NULL;
907 
908 	down(&_minor_lock);
909 
910 	md = idr_find(&_minor_idr, minor);
911 
912 	if (md && (dm_disk(md)->first_minor == minor))
913 		mdptr = md->interface_ptr;
914 
915 	up(&_minor_lock);
916 
917 	return mdptr;
918 }
919 
920 void dm_set_mdptr(struct mapped_device *md, void *ptr)
921 {
922 	md->interface_ptr = ptr;
923 }
924 
925 void dm_get(struct mapped_device *md)
926 {
927 	atomic_inc(&md->holders);
928 }
929 
930 void dm_put(struct mapped_device *md)
931 {
932 	struct dm_table *map = dm_get_table(md);
933 
934 	if (atomic_dec_and_test(&md->holders)) {
935 		if (!dm_suspended(md)) {
936 			dm_table_presuspend_targets(map);
937 			dm_table_postsuspend_targets(map);
938 		}
939 		__unbind(md);
940 		free_dev(md);
941 	}
942 
943 	dm_table_put(map);
944 }
945 
946 /*
947  * Process the deferred bios
948  */
949 static void __flush_deferred_io(struct mapped_device *md, struct bio *c)
950 {
951 	struct bio *n;
952 
953 	while (c) {
954 		n = c->bi_next;
955 		c->bi_next = NULL;
956 		__split_bio(md, c);
957 		c = n;
958 	}
959 }
960 
961 /*
962  * Swap in a new table (destroying old one).
963  */
964 int dm_swap_table(struct mapped_device *md, struct dm_table *table)
965 {
966 	int r = -EINVAL;
967 
968 	down(&md->suspend_lock);
969 
970 	/* device must be suspended */
971 	if (!dm_suspended(md))
972 		goto out;
973 
974 	__unbind(md);
975 	r = __bind(md, table);
976 
977 out:
978 	up(&md->suspend_lock);
979 	return r;
980 }
981 
982 /*
983  * Functions to lock and unlock any filesystem running on the
984  * device.
985  */
986 static int lock_fs(struct mapped_device *md)
987 {
988 	int r = -ENOMEM;
989 
990 	md->frozen_bdev = bdget_disk(md->disk, 0);
991 	if (!md->frozen_bdev) {
992 		DMWARN("bdget failed in lock_fs");
993 		goto out;
994 	}
995 
996 	WARN_ON(md->frozen_sb);
997 
998 	md->frozen_sb = freeze_bdev(md->frozen_bdev);
999 	if (IS_ERR(md->frozen_sb)) {
1000 		r = PTR_ERR(md->frozen_sb);
1001 		goto out_bdput;
1002 	}
1003 
1004 	/* don't bdput right now, we don't want the bdev
1005 	 * to go away while it is locked.  We'll bdput
1006 	 * in unlock_fs
1007 	 */
1008 	return 0;
1009 
1010 out_bdput:
1011 	bdput(md->frozen_bdev);
1012 	md->frozen_sb = NULL;
1013 	md->frozen_bdev = NULL;
1014 out:
1015 	return r;
1016 }
1017 
1018 static void unlock_fs(struct mapped_device *md)
1019 {
1020 	thaw_bdev(md->frozen_bdev, md->frozen_sb);
1021 	bdput(md->frozen_bdev);
1022 
1023 	md->frozen_sb = NULL;
1024 	md->frozen_bdev = NULL;
1025 }
1026 
1027 /*
1028  * We need to be able to change a mapping table under a mounted
1029  * filesystem.  For example we might want to move some data in
1030  * the background.  Before the table can be swapped with
1031  * dm_bind_table, dm_suspend must be called to flush any in
1032  * flight bios and ensure that any further io gets deferred.
1033  */
1034 int dm_suspend(struct mapped_device *md)
1035 {
1036 	struct dm_table *map = NULL;
1037 	DECLARE_WAITQUEUE(wait, current);
1038 	int r = -EINVAL;
1039 
1040 	down(&md->suspend_lock);
1041 
1042 	if (dm_suspended(md))
1043 		goto out;
1044 
1045 	map = dm_get_table(md);
1046 
1047 	/* This does not get reverted if there's an error later. */
1048 	dm_table_presuspend_targets(map);
1049 
1050 	/* Flush I/O to the device. */
1051 	r = lock_fs(md);
1052 	if (r)
1053 		goto out;
1054 
1055 	/*
1056 	 * First we set the BLOCK_IO flag so no more ios will be mapped.
1057 	 */
1058 	down_write(&md->io_lock);
1059 	set_bit(DMF_BLOCK_IO, &md->flags);
1060 
1061 	add_wait_queue(&md->wait, &wait);
1062 	up_write(&md->io_lock);
1063 
1064 	/* unplug */
1065 	if (map)
1066 		dm_table_unplug_all(map);
1067 
1068 	/*
1069 	 * Then we wait for the already mapped ios to
1070 	 * complete.
1071 	 */
1072 	while (1) {
1073 		set_current_state(TASK_INTERRUPTIBLE);
1074 
1075 		if (!atomic_read(&md->pending) || signal_pending(current))
1076 			break;
1077 
1078 		io_schedule();
1079 	}
1080 	set_current_state(TASK_RUNNING);
1081 
1082 	down_write(&md->io_lock);
1083 	remove_wait_queue(&md->wait, &wait);
1084 
1085 	/* were we interrupted ? */
1086 	r = -EINTR;
1087 	if (atomic_read(&md->pending)) {
1088 		up_write(&md->io_lock);
1089 		unlock_fs(md);
1090 		clear_bit(DMF_BLOCK_IO, &md->flags);
1091 		goto out;
1092 	}
1093 	up_write(&md->io_lock);
1094 
1095 	dm_table_postsuspend_targets(map);
1096 
1097 	set_bit(DMF_SUSPENDED, &md->flags);
1098 
1099 	r = 0;
1100 
1101 out:
1102 	dm_table_put(map);
1103 	up(&md->suspend_lock);
1104 	return r;
1105 }
1106 
1107 int dm_resume(struct mapped_device *md)
1108 {
1109 	int r = -EINVAL;
1110 	struct bio *def;
1111 	struct dm_table *map = NULL;
1112 
1113 	down(&md->suspend_lock);
1114 	if (!dm_suspended(md))
1115 		goto out;
1116 
1117 	map = dm_get_table(md);
1118 	if (!map || !dm_table_get_size(map))
1119 		goto out;
1120 
1121 	dm_table_resume_targets(map);
1122 
1123 	down_write(&md->io_lock);
1124 	clear_bit(DMF_BLOCK_IO, &md->flags);
1125 
1126 	def = bio_list_get(&md->deferred);
1127 	__flush_deferred_io(md, def);
1128 	up_write(&md->io_lock);
1129 
1130 	unlock_fs(md);
1131 
1132 	clear_bit(DMF_SUSPENDED, &md->flags);
1133 
1134 	dm_table_unplug_all(map);
1135 
1136 	r = 0;
1137 
1138 out:
1139 	dm_table_put(map);
1140 	up(&md->suspend_lock);
1141 
1142 	return r;
1143 }
1144 
1145 /*-----------------------------------------------------------------
1146  * Event notification.
1147  *---------------------------------------------------------------*/
1148 uint32_t dm_get_event_nr(struct mapped_device *md)
1149 {
1150 	return atomic_read(&md->event_nr);
1151 }
1152 
1153 int dm_wait_event(struct mapped_device *md, int event_nr)
1154 {
1155 	return wait_event_interruptible(md->eventq,
1156 			(event_nr != atomic_read(&md->event_nr)));
1157 }
1158 
1159 /*
1160  * The gendisk is only valid as long as you have a reference
1161  * count on 'md'.
1162  */
1163 struct gendisk *dm_disk(struct mapped_device *md)
1164 {
1165 	return md->disk;
1166 }
1167 
1168 int dm_suspended(struct mapped_device *md)
1169 {
1170 	return test_bit(DMF_SUSPENDED, &md->flags);
1171 }
1172 
1173 static struct block_device_operations dm_blk_dops = {
1174 	.open = dm_blk_open,
1175 	.release = dm_blk_close,
1176 	.owner = THIS_MODULE
1177 };
1178 
1179 EXPORT_SYMBOL(dm_get_mapinfo);
1180 
1181 /*
1182  * module hooks
1183  */
1184 module_init(dm_init);
1185 module_exit(dm_exit);
1186 
1187 module_param(major, uint, 0);
1188 MODULE_PARM_DESC(major, "The major number of the device mapper");
1189 MODULE_DESCRIPTION(DM_NAME " driver");
1190 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
1191 MODULE_LICENSE("GPL");
1192