1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 2012 Red Hat, Inc. 4 * 5 * Author: Mikulas Patocka <mpatocka@redhat.com> 6 * 7 * Based on Chromium dm-verity driver (C) 2011 The Chromium OS Authors 8 * 9 * In the file "/sys/module/dm_verity/parameters/prefetch_cluster" you can set 10 * default prefetch value. Data are read in "prefetch_cluster" chunks from the 11 * hash device. Setting this greatly improves performance when data and hash 12 * are on the same disk on different partitions on devices with poor random 13 * access behavior. 14 */ 15 16 #include "dm-verity.h" 17 #include "dm-verity-fec.h" 18 #include "dm-verity-verify-sig.h" 19 #include <linux/module.h> 20 #include <linux/reboot.h> 21 #include <linux/scatterlist.h> 22 #include <linux/string.h> 23 #include <linux/jump_label.h> 24 25 #define DM_MSG_PREFIX "verity" 26 27 #define DM_VERITY_ENV_LENGTH 42 28 #define DM_VERITY_ENV_VAR_NAME "DM_VERITY_ERR_BLOCK_NR" 29 30 #define DM_VERITY_DEFAULT_PREFETCH_SIZE 262144 31 32 #define DM_VERITY_MAX_CORRUPTED_ERRS 100 33 34 #define DM_VERITY_OPT_LOGGING "ignore_corruption" 35 #define DM_VERITY_OPT_RESTART "restart_on_corruption" 36 #define DM_VERITY_OPT_PANIC "panic_on_corruption" 37 #define DM_VERITY_OPT_IGN_ZEROES "ignore_zero_blocks" 38 #define DM_VERITY_OPT_AT_MOST_ONCE "check_at_most_once" 39 #define DM_VERITY_OPT_TASKLET_VERIFY "try_verify_in_tasklet" 40 41 #define DM_VERITY_OPTS_MAX (4 + DM_VERITY_OPTS_FEC + \ 42 DM_VERITY_ROOT_HASH_VERIFICATION_OPTS) 43 44 static unsigned dm_verity_prefetch_cluster = DM_VERITY_DEFAULT_PREFETCH_SIZE; 45 46 module_param_named(prefetch_cluster, dm_verity_prefetch_cluster, uint, S_IRUGO | S_IWUSR); 47 48 static DEFINE_STATIC_KEY_FALSE(use_tasklet_enabled); 49 50 struct dm_verity_prefetch_work { 51 struct work_struct work; 52 struct dm_verity *v; 53 sector_t block; 54 unsigned n_blocks; 55 }; 56 57 /* 58 * Auxiliary structure appended to each dm-bufio buffer. If the value 59 * hash_verified is nonzero, hash of the block has been verified. 60 * 61 * The variable hash_verified is set to 0 when allocating the buffer, then 62 * it can be changed to 1 and it is never reset to 0 again. 63 * 64 * There is no lock around this value, a race condition can at worst cause 65 * that multiple processes verify the hash of the same buffer simultaneously 66 * and write 1 to hash_verified simultaneously. 67 * This condition is harmless, so we don't need locking. 68 */ 69 struct buffer_aux { 70 int hash_verified; 71 }; 72 73 /* 74 * Initialize struct buffer_aux for a freshly created buffer. 75 */ 76 static void dm_bufio_alloc_callback(struct dm_buffer *buf) 77 { 78 struct buffer_aux *aux = dm_bufio_get_aux_data(buf); 79 80 aux->hash_verified = 0; 81 } 82 83 /* 84 * Translate input sector number to the sector number on the target device. 85 */ 86 static sector_t verity_map_sector(struct dm_verity *v, sector_t bi_sector) 87 { 88 return v->data_start + dm_target_offset(v->ti, bi_sector); 89 } 90 91 /* 92 * Return hash position of a specified block at a specified tree level 93 * (0 is the lowest level). 94 * The lowest "hash_per_block_bits"-bits of the result denote hash position 95 * inside a hash block. The remaining bits denote location of the hash block. 96 */ 97 static sector_t verity_position_at_level(struct dm_verity *v, sector_t block, 98 int level) 99 { 100 return block >> (level * v->hash_per_block_bits); 101 } 102 103 static int verity_hash_update(struct dm_verity *v, struct ahash_request *req, 104 const u8 *data, size_t len, 105 struct crypto_wait *wait) 106 { 107 struct scatterlist sg; 108 109 if (likely(!is_vmalloc_addr(data))) { 110 sg_init_one(&sg, data, len); 111 ahash_request_set_crypt(req, &sg, NULL, len); 112 return crypto_wait_req(crypto_ahash_update(req), wait); 113 } else { 114 do { 115 int r; 116 size_t this_step = min_t(size_t, len, PAGE_SIZE - offset_in_page(data)); 117 flush_kernel_vmap_range((void *)data, this_step); 118 sg_init_table(&sg, 1); 119 sg_set_page(&sg, vmalloc_to_page(data), this_step, offset_in_page(data)); 120 ahash_request_set_crypt(req, &sg, NULL, this_step); 121 r = crypto_wait_req(crypto_ahash_update(req), wait); 122 if (unlikely(r)) 123 return r; 124 data += this_step; 125 len -= this_step; 126 } while (len); 127 return 0; 128 } 129 } 130 131 /* 132 * Wrapper for crypto_ahash_init, which handles verity salting. 133 */ 134 static int verity_hash_init(struct dm_verity *v, struct ahash_request *req, 135 struct crypto_wait *wait) 136 { 137 int r; 138 139 ahash_request_set_tfm(req, v->tfm); 140 ahash_request_set_callback(req, CRYPTO_TFM_REQ_MAY_SLEEP | 141 CRYPTO_TFM_REQ_MAY_BACKLOG, 142 crypto_req_done, (void *)wait); 143 crypto_init_wait(wait); 144 145 r = crypto_wait_req(crypto_ahash_init(req), wait); 146 147 if (unlikely(r < 0)) { 148 DMERR("crypto_ahash_init failed: %d", r); 149 return r; 150 } 151 152 if (likely(v->salt_size && (v->version >= 1))) 153 r = verity_hash_update(v, req, v->salt, v->salt_size, wait); 154 155 return r; 156 } 157 158 static int verity_hash_final(struct dm_verity *v, struct ahash_request *req, 159 u8 *digest, struct crypto_wait *wait) 160 { 161 int r; 162 163 if (unlikely(v->salt_size && (!v->version))) { 164 r = verity_hash_update(v, req, v->salt, v->salt_size, wait); 165 166 if (r < 0) { 167 DMERR("verity_hash_final failed updating salt: %d", r); 168 goto out; 169 } 170 } 171 172 ahash_request_set_crypt(req, NULL, digest, 0); 173 r = crypto_wait_req(crypto_ahash_final(req), wait); 174 out: 175 return r; 176 } 177 178 int verity_hash(struct dm_verity *v, struct ahash_request *req, 179 const u8 *data, size_t len, u8 *digest) 180 { 181 int r; 182 struct crypto_wait wait; 183 184 r = verity_hash_init(v, req, &wait); 185 if (unlikely(r < 0)) 186 goto out; 187 188 r = verity_hash_update(v, req, data, len, &wait); 189 if (unlikely(r < 0)) 190 goto out; 191 192 r = verity_hash_final(v, req, digest, &wait); 193 194 out: 195 return r; 196 } 197 198 static void verity_hash_at_level(struct dm_verity *v, sector_t block, int level, 199 sector_t *hash_block, unsigned *offset) 200 { 201 sector_t position = verity_position_at_level(v, block, level); 202 unsigned idx; 203 204 *hash_block = v->hash_level_block[level] + (position >> v->hash_per_block_bits); 205 206 if (!offset) 207 return; 208 209 idx = position & ((1 << v->hash_per_block_bits) - 1); 210 if (!v->version) 211 *offset = idx * v->digest_size; 212 else 213 *offset = idx << (v->hash_dev_block_bits - v->hash_per_block_bits); 214 } 215 216 /* 217 * Handle verification errors. 218 */ 219 static int verity_handle_err(struct dm_verity *v, enum verity_block_type type, 220 unsigned long long block) 221 { 222 char verity_env[DM_VERITY_ENV_LENGTH]; 223 char *envp[] = { verity_env, NULL }; 224 const char *type_str = ""; 225 struct mapped_device *md = dm_table_get_md(v->ti->table); 226 227 /* Corruption should be visible in device status in all modes */ 228 v->hash_failed = true; 229 230 if (v->corrupted_errs >= DM_VERITY_MAX_CORRUPTED_ERRS) 231 goto out; 232 233 v->corrupted_errs++; 234 235 switch (type) { 236 case DM_VERITY_BLOCK_TYPE_DATA: 237 type_str = "data"; 238 break; 239 case DM_VERITY_BLOCK_TYPE_METADATA: 240 type_str = "metadata"; 241 break; 242 default: 243 BUG(); 244 } 245 246 DMERR_LIMIT("%s: %s block %llu is corrupted", v->data_dev->name, 247 type_str, block); 248 249 if (v->corrupted_errs == DM_VERITY_MAX_CORRUPTED_ERRS) 250 DMERR("%s: reached maximum errors", v->data_dev->name); 251 252 snprintf(verity_env, DM_VERITY_ENV_LENGTH, "%s=%d,%llu", 253 DM_VERITY_ENV_VAR_NAME, type, block); 254 255 kobject_uevent_env(&disk_to_dev(dm_disk(md))->kobj, KOBJ_CHANGE, envp); 256 257 out: 258 if (v->mode == DM_VERITY_MODE_LOGGING) 259 return 0; 260 261 if (v->mode == DM_VERITY_MODE_RESTART) 262 kernel_restart("dm-verity device corrupted"); 263 264 if (v->mode == DM_VERITY_MODE_PANIC) 265 panic("dm-verity device corrupted"); 266 267 return 1; 268 } 269 270 /* 271 * Verify hash of a metadata block pertaining to the specified data block 272 * ("block" argument) at a specified level ("level" argument). 273 * 274 * On successful return, verity_io_want_digest(v, io) contains the hash value 275 * for a lower tree level or for the data block (if we're at the lowest level). 276 * 277 * If "skip_unverified" is true, unverified buffer is skipped and 1 is returned. 278 * If "skip_unverified" is false, unverified buffer is hashed and verified 279 * against current value of verity_io_want_digest(v, io). 280 */ 281 static int verity_verify_level(struct dm_verity *v, struct dm_verity_io *io, 282 sector_t block, int level, bool skip_unverified, 283 u8 *want_digest) 284 { 285 struct dm_buffer *buf; 286 struct buffer_aux *aux; 287 u8 *data; 288 int r; 289 sector_t hash_block; 290 unsigned offset; 291 292 verity_hash_at_level(v, block, level, &hash_block, &offset); 293 294 if (static_branch_unlikely(&use_tasklet_enabled) && io->in_tasklet) { 295 data = dm_bufio_get(v->bufio, hash_block, &buf); 296 if (data == NULL) { 297 /* 298 * In tasklet and the hash was not in the bufio cache. 299 * Return early and resume execution from a work-queue 300 * to read the hash from disk. 301 */ 302 return -EAGAIN; 303 } 304 } else 305 data = dm_bufio_read(v->bufio, hash_block, &buf); 306 307 if (IS_ERR(data)) 308 return PTR_ERR(data); 309 310 aux = dm_bufio_get_aux_data(buf); 311 312 if (!aux->hash_verified) { 313 if (skip_unverified) { 314 r = 1; 315 goto release_ret_r; 316 } 317 318 r = verity_hash(v, verity_io_hash_req(v, io), 319 data, 1 << v->hash_dev_block_bits, 320 verity_io_real_digest(v, io)); 321 if (unlikely(r < 0)) 322 goto release_ret_r; 323 324 if (likely(memcmp(verity_io_real_digest(v, io), want_digest, 325 v->digest_size) == 0)) 326 aux->hash_verified = 1; 327 else if (static_branch_unlikely(&use_tasklet_enabled) && 328 io->in_tasklet) { 329 /* 330 * Error handling code (FEC included) cannot be run in a 331 * tasklet since it may sleep, so fallback to work-queue. 332 */ 333 r = -EAGAIN; 334 goto release_ret_r; 335 } 336 else if (verity_fec_decode(v, io, 337 DM_VERITY_BLOCK_TYPE_METADATA, 338 hash_block, data, NULL) == 0) 339 aux->hash_verified = 1; 340 else if (verity_handle_err(v, 341 DM_VERITY_BLOCK_TYPE_METADATA, 342 hash_block)) { 343 r = -EIO; 344 goto release_ret_r; 345 } 346 } 347 348 data += offset; 349 memcpy(want_digest, data, v->digest_size); 350 r = 0; 351 352 release_ret_r: 353 dm_bufio_release(buf); 354 return r; 355 } 356 357 /* 358 * Find a hash for a given block, write it to digest and verify the integrity 359 * of the hash tree if necessary. 360 */ 361 int verity_hash_for_block(struct dm_verity *v, struct dm_verity_io *io, 362 sector_t block, u8 *digest, bool *is_zero) 363 { 364 int r = 0, i; 365 366 if (likely(v->levels)) { 367 /* 368 * First, we try to get the requested hash for 369 * the current block. If the hash block itself is 370 * verified, zero is returned. If it isn't, this 371 * function returns 1 and we fall back to whole 372 * chain verification. 373 */ 374 r = verity_verify_level(v, io, block, 0, true, digest); 375 if (likely(r <= 0)) 376 goto out; 377 } 378 379 memcpy(digest, v->root_digest, v->digest_size); 380 381 for (i = v->levels - 1; i >= 0; i--) { 382 r = verity_verify_level(v, io, block, i, false, digest); 383 if (unlikely(r)) 384 goto out; 385 } 386 out: 387 if (!r && v->zero_digest) 388 *is_zero = !memcmp(v->zero_digest, digest, v->digest_size); 389 else 390 *is_zero = false; 391 392 return r; 393 } 394 395 /* 396 * Calculates the digest for the given bio 397 */ 398 static int verity_for_io_block(struct dm_verity *v, struct dm_verity_io *io, 399 struct bvec_iter *iter, struct crypto_wait *wait) 400 { 401 unsigned int todo = 1 << v->data_dev_block_bits; 402 struct bio *bio = dm_bio_from_per_bio_data(io, v->ti->per_io_data_size); 403 struct scatterlist sg; 404 struct ahash_request *req = verity_io_hash_req(v, io); 405 406 do { 407 int r; 408 unsigned int len; 409 struct bio_vec bv = bio_iter_iovec(bio, *iter); 410 411 sg_init_table(&sg, 1); 412 413 len = bv.bv_len; 414 415 if (likely(len >= todo)) 416 len = todo; 417 /* 418 * Operating on a single page at a time looks suboptimal 419 * until you consider the typical block size is 4,096B. 420 * Going through this loops twice should be very rare. 421 */ 422 sg_set_page(&sg, bv.bv_page, len, bv.bv_offset); 423 ahash_request_set_crypt(req, &sg, NULL, len); 424 r = crypto_wait_req(crypto_ahash_update(req), wait); 425 426 if (unlikely(r < 0)) { 427 DMERR("verity_for_io_block crypto op failed: %d", r); 428 return r; 429 } 430 431 bio_advance_iter(bio, iter, len); 432 todo -= len; 433 } while (todo); 434 435 return 0; 436 } 437 438 /* 439 * Calls function process for 1 << v->data_dev_block_bits bytes in the bio_vec 440 * starting from iter. 441 */ 442 int verity_for_bv_block(struct dm_verity *v, struct dm_verity_io *io, 443 struct bvec_iter *iter, 444 int (*process)(struct dm_verity *v, 445 struct dm_verity_io *io, u8 *data, 446 size_t len)) 447 { 448 unsigned todo = 1 << v->data_dev_block_bits; 449 struct bio *bio = dm_bio_from_per_bio_data(io, v->ti->per_io_data_size); 450 451 do { 452 int r; 453 u8 *page; 454 unsigned len; 455 struct bio_vec bv = bio_iter_iovec(bio, *iter); 456 457 page = bvec_kmap_local(&bv); 458 len = bv.bv_len; 459 460 if (likely(len >= todo)) 461 len = todo; 462 463 r = process(v, io, page, len); 464 kunmap_local(page); 465 466 if (r < 0) 467 return r; 468 469 bio_advance_iter(bio, iter, len); 470 todo -= len; 471 } while (todo); 472 473 return 0; 474 } 475 476 static int verity_bv_zero(struct dm_verity *v, struct dm_verity_io *io, 477 u8 *data, size_t len) 478 { 479 memset(data, 0, len); 480 return 0; 481 } 482 483 /* 484 * Moves the bio iter one data block forward. 485 */ 486 static inline void verity_bv_skip_block(struct dm_verity *v, 487 struct dm_verity_io *io, 488 struct bvec_iter *iter) 489 { 490 struct bio *bio = dm_bio_from_per_bio_data(io, v->ti->per_io_data_size); 491 492 bio_advance_iter(bio, iter, 1 << v->data_dev_block_bits); 493 } 494 495 /* 496 * Verify one "dm_verity_io" structure. 497 */ 498 static int verity_verify_io(struct dm_verity_io *io) 499 { 500 bool is_zero; 501 struct dm_verity *v = io->v; 502 #if defined(CONFIG_DM_VERITY_FEC) 503 struct bvec_iter start; 504 #endif 505 struct bvec_iter iter_copy; 506 struct bvec_iter *iter; 507 struct crypto_wait wait; 508 struct bio *bio = dm_bio_from_per_bio_data(io, v->ti->per_io_data_size); 509 unsigned int b; 510 511 if (static_branch_unlikely(&use_tasklet_enabled) && io->in_tasklet) { 512 /* 513 * Copy the iterator in case we need to restart 514 * verification in a work-queue. 515 */ 516 iter_copy = io->iter; 517 iter = &iter_copy; 518 } else 519 iter = &io->iter; 520 521 for (b = 0; b < io->n_blocks; b++) { 522 int r; 523 sector_t cur_block = io->block + b; 524 struct ahash_request *req = verity_io_hash_req(v, io); 525 526 if (v->validated_blocks && 527 likely(test_bit(cur_block, v->validated_blocks))) { 528 verity_bv_skip_block(v, io, iter); 529 continue; 530 } 531 532 r = verity_hash_for_block(v, io, cur_block, 533 verity_io_want_digest(v, io), 534 &is_zero); 535 if (unlikely(r < 0)) 536 return r; 537 538 if (is_zero) { 539 /* 540 * If we expect a zero block, don't validate, just 541 * return zeros. 542 */ 543 r = verity_for_bv_block(v, io, iter, 544 verity_bv_zero); 545 if (unlikely(r < 0)) 546 return r; 547 548 continue; 549 } 550 551 r = verity_hash_init(v, req, &wait); 552 if (unlikely(r < 0)) 553 return r; 554 555 #if defined(CONFIG_DM_VERITY_FEC) 556 if (verity_fec_is_enabled(v)) 557 start = *iter; 558 #endif 559 r = verity_for_io_block(v, io, iter, &wait); 560 if (unlikely(r < 0)) 561 return r; 562 563 r = verity_hash_final(v, req, verity_io_real_digest(v, io), 564 &wait); 565 if (unlikely(r < 0)) 566 return r; 567 568 if (likely(memcmp(verity_io_real_digest(v, io), 569 verity_io_want_digest(v, io), v->digest_size) == 0)) { 570 if (v->validated_blocks) 571 set_bit(cur_block, v->validated_blocks); 572 continue; 573 } else if (static_branch_unlikely(&use_tasklet_enabled) && 574 io->in_tasklet) { 575 /* 576 * Error handling code (FEC included) cannot be run in a 577 * tasklet since it may sleep, so fallback to work-queue. 578 */ 579 return -EAGAIN; 580 #if defined(CONFIG_DM_VERITY_FEC) 581 } else if (verity_fec_decode(v, io, DM_VERITY_BLOCK_TYPE_DATA, 582 cur_block, NULL, &start) == 0) { 583 continue; 584 #endif 585 } else { 586 if (bio->bi_status) { 587 /* 588 * Error correction failed; Just return error 589 */ 590 return -EIO; 591 } 592 if (verity_handle_err(v, DM_VERITY_BLOCK_TYPE_DATA, 593 cur_block)) 594 return -EIO; 595 } 596 } 597 598 return 0; 599 } 600 601 /* 602 * Skip verity work in response to I/O error when system is shutting down. 603 */ 604 static inline bool verity_is_system_shutting_down(void) 605 { 606 return system_state == SYSTEM_HALT || system_state == SYSTEM_POWER_OFF 607 || system_state == SYSTEM_RESTART; 608 } 609 610 /* 611 * End one "io" structure with a given error. 612 */ 613 static void verity_finish_io(struct dm_verity_io *io, blk_status_t status) 614 { 615 struct dm_verity *v = io->v; 616 struct bio *bio = dm_bio_from_per_bio_data(io, v->ti->per_io_data_size); 617 618 bio->bi_end_io = io->orig_bi_end_io; 619 bio->bi_status = status; 620 621 if (!static_branch_unlikely(&use_tasklet_enabled) || !io->in_tasklet) 622 verity_fec_finish_io(io); 623 624 bio_endio(bio); 625 } 626 627 static void verity_work(struct work_struct *w) 628 { 629 struct dm_verity_io *io = container_of(w, struct dm_verity_io, work); 630 631 io->in_tasklet = false; 632 633 verity_fec_init_io(io); 634 verity_finish_io(io, errno_to_blk_status(verity_verify_io(io))); 635 } 636 637 static void verity_tasklet(unsigned long data) 638 { 639 struct dm_verity_io *io = (struct dm_verity_io *)data; 640 int err; 641 642 io->in_tasklet = true; 643 err = verity_verify_io(io); 644 if (err == -EAGAIN) { 645 /* fallback to retrying with work-queue */ 646 INIT_WORK(&io->work, verity_work); 647 queue_work(io->v->verify_wq, &io->work); 648 return; 649 } 650 651 verity_finish_io(io, errno_to_blk_status(err)); 652 } 653 654 static void verity_end_io(struct bio *bio) 655 { 656 struct dm_verity_io *io = bio->bi_private; 657 658 if (bio->bi_status && 659 (!verity_fec_is_enabled(io->v) || verity_is_system_shutting_down())) { 660 verity_finish_io(io, bio->bi_status); 661 return; 662 } 663 664 if (static_branch_unlikely(&use_tasklet_enabled) && io->v->use_tasklet) { 665 tasklet_init(&io->tasklet, verity_tasklet, (unsigned long)io); 666 tasklet_schedule(&io->tasklet); 667 } else { 668 INIT_WORK(&io->work, verity_work); 669 queue_work(io->v->verify_wq, &io->work); 670 } 671 } 672 673 /* 674 * Prefetch buffers for the specified io. 675 * The root buffer is not prefetched, it is assumed that it will be cached 676 * all the time. 677 */ 678 static void verity_prefetch_io(struct work_struct *work) 679 { 680 struct dm_verity_prefetch_work *pw = 681 container_of(work, struct dm_verity_prefetch_work, work); 682 struct dm_verity *v = pw->v; 683 int i; 684 685 for (i = v->levels - 2; i >= 0; i--) { 686 sector_t hash_block_start; 687 sector_t hash_block_end; 688 verity_hash_at_level(v, pw->block, i, &hash_block_start, NULL); 689 verity_hash_at_level(v, pw->block + pw->n_blocks - 1, i, &hash_block_end, NULL); 690 if (!i) { 691 unsigned cluster = READ_ONCE(dm_verity_prefetch_cluster); 692 693 cluster >>= v->data_dev_block_bits; 694 if (unlikely(!cluster)) 695 goto no_prefetch_cluster; 696 697 if (unlikely(cluster & (cluster - 1))) 698 cluster = 1 << __fls(cluster); 699 700 hash_block_start &= ~(sector_t)(cluster - 1); 701 hash_block_end |= cluster - 1; 702 if (unlikely(hash_block_end >= v->hash_blocks)) 703 hash_block_end = v->hash_blocks - 1; 704 } 705 no_prefetch_cluster: 706 dm_bufio_prefetch(v->bufio, hash_block_start, 707 hash_block_end - hash_block_start + 1); 708 } 709 710 kfree(pw); 711 } 712 713 static void verity_submit_prefetch(struct dm_verity *v, struct dm_verity_io *io) 714 { 715 sector_t block = io->block; 716 unsigned int n_blocks = io->n_blocks; 717 struct dm_verity_prefetch_work *pw; 718 719 if (v->validated_blocks) { 720 while (n_blocks && test_bit(block, v->validated_blocks)) { 721 block++; 722 n_blocks--; 723 } 724 while (n_blocks && test_bit(block + n_blocks - 1, 725 v->validated_blocks)) 726 n_blocks--; 727 if (!n_blocks) 728 return; 729 } 730 731 pw = kmalloc(sizeof(struct dm_verity_prefetch_work), 732 GFP_NOIO | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN); 733 734 if (!pw) 735 return; 736 737 INIT_WORK(&pw->work, verity_prefetch_io); 738 pw->v = v; 739 pw->block = block; 740 pw->n_blocks = n_blocks; 741 queue_work(v->verify_wq, &pw->work); 742 } 743 744 /* 745 * Bio map function. It allocates dm_verity_io structure and bio vector and 746 * fills them. Then it issues prefetches and the I/O. 747 */ 748 static int verity_map(struct dm_target *ti, struct bio *bio) 749 { 750 struct dm_verity *v = ti->private; 751 struct dm_verity_io *io; 752 753 bio_set_dev(bio, v->data_dev->bdev); 754 bio->bi_iter.bi_sector = verity_map_sector(v, bio->bi_iter.bi_sector); 755 756 if (((unsigned)bio->bi_iter.bi_sector | bio_sectors(bio)) & 757 ((1 << (v->data_dev_block_bits - SECTOR_SHIFT)) - 1)) { 758 DMERR_LIMIT("unaligned io"); 759 return DM_MAPIO_KILL; 760 } 761 762 if (bio_end_sector(bio) >> 763 (v->data_dev_block_bits - SECTOR_SHIFT) > v->data_blocks) { 764 DMERR_LIMIT("io out of range"); 765 return DM_MAPIO_KILL; 766 } 767 768 if (bio_data_dir(bio) == WRITE) 769 return DM_MAPIO_KILL; 770 771 io = dm_per_bio_data(bio, ti->per_io_data_size); 772 io->v = v; 773 io->orig_bi_end_io = bio->bi_end_io; 774 io->block = bio->bi_iter.bi_sector >> (v->data_dev_block_bits - SECTOR_SHIFT); 775 io->n_blocks = bio->bi_iter.bi_size >> v->data_dev_block_bits; 776 777 bio->bi_end_io = verity_end_io; 778 bio->bi_private = io; 779 io->iter = bio->bi_iter; 780 781 verity_submit_prefetch(v, io); 782 783 submit_bio_noacct(bio); 784 785 return DM_MAPIO_SUBMITTED; 786 } 787 788 /* 789 * Status: V (valid) or C (corruption found) 790 */ 791 static void verity_status(struct dm_target *ti, status_type_t type, 792 unsigned status_flags, char *result, unsigned maxlen) 793 { 794 struct dm_verity *v = ti->private; 795 unsigned args = 0; 796 unsigned sz = 0; 797 unsigned x; 798 799 switch (type) { 800 case STATUSTYPE_INFO: 801 DMEMIT("%c", v->hash_failed ? 'C' : 'V'); 802 break; 803 case STATUSTYPE_TABLE: 804 DMEMIT("%u %s %s %u %u %llu %llu %s ", 805 v->version, 806 v->data_dev->name, 807 v->hash_dev->name, 808 1 << v->data_dev_block_bits, 809 1 << v->hash_dev_block_bits, 810 (unsigned long long)v->data_blocks, 811 (unsigned long long)v->hash_start, 812 v->alg_name 813 ); 814 for (x = 0; x < v->digest_size; x++) 815 DMEMIT("%02x", v->root_digest[x]); 816 DMEMIT(" "); 817 if (!v->salt_size) 818 DMEMIT("-"); 819 else 820 for (x = 0; x < v->salt_size; x++) 821 DMEMIT("%02x", v->salt[x]); 822 if (v->mode != DM_VERITY_MODE_EIO) 823 args++; 824 if (verity_fec_is_enabled(v)) 825 args += DM_VERITY_OPTS_FEC; 826 if (v->zero_digest) 827 args++; 828 if (v->validated_blocks) 829 args++; 830 if (v->use_tasklet) 831 args++; 832 if (v->signature_key_desc) 833 args += DM_VERITY_ROOT_HASH_VERIFICATION_OPTS; 834 if (!args) 835 return; 836 DMEMIT(" %u", args); 837 if (v->mode != DM_VERITY_MODE_EIO) { 838 DMEMIT(" "); 839 switch (v->mode) { 840 case DM_VERITY_MODE_LOGGING: 841 DMEMIT(DM_VERITY_OPT_LOGGING); 842 break; 843 case DM_VERITY_MODE_RESTART: 844 DMEMIT(DM_VERITY_OPT_RESTART); 845 break; 846 case DM_VERITY_MODE_PANIC: 847 DMEMIT(DM_VERITY_OPT_PANIC); 848 break; 849 default: 850 BUG(); 851 } 852 } 853 if (v->zero_digest) 854 DMEMIT(" " DM_VERITY_OPT_IGN_ZEROES); 855 if (v->validated_blocks) 856 DMEMIT(" " DM_VERITY_OPT_AT_MOST_ONCE); 857 if (v->use_tasklet) 858 DMEMIT(" " DM_VERITY_OPT_TASKLET_VERIFY); 859 sz = verity_fec_status_table(v, sz, result, maxlen); 860 if (v->signature_key_desc) 861 DMEMIT(" " DM_VERITY_ROOT_HASH_VERIFICATION_OPT_SIG_KEY 862 " %s", v->signature_key_desc); 863 break; 864 865 case STATUSTYPE_IMA: 866 DMEMIT_TARGET_NAME_VERSION(ti->type); 867 DMEMIT(",hash_failed=%c", v->hash_failed ? 'C' : 'V'); 868 DMEMIT(",verity_version=%u", v->version); 869 DMEMIT(",data_device_name=%s", v->data_dev->name); 870 DMEMIT(",hash_device_name=%s", v->hash_dev->name); 871 DMEMIT(",verity_algorithm=%s", v->alg_name); 872 873 DMEMIT(",root_digest="); 874 for (x = 0; x < v->digest_size; x++) 875 DMEMIT("%02x", v->root_digest[x]); 876 877 DMEMIT(",salt="); 878 if (!v->salt_size) 879 DMEMIT("-"); 880 else 881 for (x = 0; x < v->salt_size; x++) 882 DMEMIT("%02x", v->salt[x]); 883 884 DMEMIT(",ignore_zero_blocks=%c", v->zero_digest ? 'y' : 'n'); 885 DMEMIT(",check_at_most_once=%c", v->validated_blocks ? 'y' : 'n'); 886 if (v->signature_key_desc) 887 DMEMIT(",root_hash_sig_key_desc=%s", v->signature_key_desc); 888 889 if (v->mode != DM_VERITY_MODE_EIO) { 890 DMEMIT(",verity_mode="); 891 switch (v->mode) { 892 case DM_VERITY_MODE_LOGGING: 893 DMEMIT(DM_VERITY_OPT_LOGGING); 894 break; 895 case DM_VERITY_MODE_RESTART: 896 DMEMIT(DM_VERITY_OPT_RESTART); 897 break; 898 case DM_VERITY_MODE_PANIC: 899 DMEMIT(DM_VERITY_OPT_PANIC); 900 break; 901 default: 902 DMEMIT("invalid"); 903 } 904 } 905 DMEMIT(";"); 906 break; 907 } 908 } 909 910 static int verity_prepare_ioctl(struct dm_target *ti, struct block_device **bdev) 911 { 912 struct dm_verity *v = ti->private; 913 914 *bdev = v->data_dev->bdev; 915 916 if (v->data_start || ti->len != bdev_nr_sectors(v->data_dev->bdev)) 917 return 1; 918 return 0; 919 } 920 921 static int verity_iterate_devices(struct dm_target *ti, 922 iterate_devices_callout_fn fn, void *data) 923 { 924 struct dm_verity *v = ti->private; 925 926 return fn(ti, v->data_dev, v->data_start, ti->len, data); 927 } 928 929 static void verity_io_hints(struct dm_target *ti, struct queue_limits *limits) 930 { 931 struct dm_verity *v = ti->private; 932 933 if (limits->logical_block_size < 1 << v->data_dev_block_bits) 934 limits->logical_block_size = 1 << v->data_dev_block_bits; 935 936 if (limits->physical_block_size < 1 << v->data_dev_block_bits) 937 limits->physical_block_size = 1 << v->data_dev_block_bits; 938 939 blk_limits_io_min(limits, limits->logical_block_size); 940 } 941 942 static void verity_dtr(struct dm_target *ti) 943 { 944 struct dm_verity *v = ti->private; 945 946 if (v->verify_wq) 947 destroy_workqueue(v->verify_wq); 948 949 if (v->bufio) 950 dm_bufio_client_destroy(v->bufio); 951 952 kvfree(v->validated_blocks); 953 kfree(v->salt); 954 kfree(v->root_digest); 955 kfree(v->zero_digest); 956 957 if (v->tfm) 958 crypto_free_ahash(v->tfm); 959 960 kfree(v->alg_name); 961 962 if (v->hash_dev) 963 dm_put_device(ti, v->hash_dev); 964 965 if (v->data_dev) 966 dm_put_device(ti, v->data_dev); 967 968 verity_fec_dtr(v); 969 970 kfree(v->signature_key_desc); 971 972 if (v->use_tasklet) 973 static_branch_dec(&use_tasklet_enabled); 974 975 kfree(v); 976 } 977 978 static int verity_alloc_most_once(struct dm_verity *v) 979 { 980 struct dm_target *ti = v->ti; 981 982 /* the bitset can only handle INT_MAX blocks */ 983 if (v->data_blocks > INT_MAX) { 984 ti->error = "device too large to use check_at_most_once"; 985 return -E2BIG; 986 } 987 988 v->validated_blocks = kvcalloc(BITS_TO_LONGS(v->data_blocks), 989 sizeof(unsigned long), 990 GFP_KERNEL); 991 if (!v->validated_blocks) { 992 ti->error = "failed to allocate bitset for check_at_most_once"; 993 return -ENOMEM; 994 } 995 996 return 0; 997 } 998 999 static int verity_alloc_zero_digest(struct dm_verity *v) 1000 { 1001 int r = -ENOMEM; 1002 struct ahash_request *req; 1003 u8 *zero_data; 1004 1005 v->zero_digest = kmalloc(v->digest_size, GFP_KERNEL); 1006 1007 if (!v->zero_digest) 1008 return r; 1009 1010 req = kmalloc(v->ahash_reqsize, GFP_KERNEL); 1011 1012 if (!req) 1013 return r; /* verity_dtr will free zero_digest */ 1014 1015 zero_data = kzalloc(1 << v->data_dev_block_bits, GFP_KERNEL); 1016 1017 if (!zero_data) 1018 goto out; 1019 1020 r = verity_hash(v, req, zero_data, 1 << v->data_dev_block_bits, 1021 v->zero_digest); 1022 1023 out: 1024 kfree(req); 1025 kfree(zero_data); 1026 1027 return r; 1028 } 1029 1030 static inline bool verity_is_verity_mode(const char *arg_name) 1031 { 1032 return (!strcasecmp(arg_name, DM_VERITY_OPT_LOGGING) || 1033 !strcasecmp(arg_name, DM_VERITY_OPT_RESTART) || 1034 !strcasecmp(arg_name, DM_VERITY_OPT_PANIC)); 1035 } 1036 1037 static int verity_parse_verity_mode(struct dm_verity *v, const char *arg_name) 1038 { 1039 if (v->mode) 1040 return -EINVAL; 1041 1042 if (!strcasecmp(arg_name, DM_VERITY_OPT_LOGGING)) 1043 v->mode = DM_VERITY_MODE_LOGGING; 1044 else if (!strcasecmp(arg_name, DM_VERITY_OPT_RESTART)) 1045 v->mode = DM_VERITY_MODE_RESTART; 1046 else if (!strcasecmp(arg_name, DM_VERITY_OPT_PANIC)) 1047 v->mode = DM_VERITY_MODE_PANIC; 1048 1049 return 0; 1050 } 1051 1052 static int verity_parse_opt_args(struct dm_arg_set *as, struct dm_verity *v, 1053 struct dm_verity_sig_opts *verify_args, 1054 bool only_modifier_opts) 1055 { 1056 int r = 0; 1057 unsigned argc; 1058 struct dm_target *ti = v->ti; 1059 const char *arg_name; 1060 1061 static const struct dm_arg _args[] = { 1062 {0, DM_VERITY_OPTS_MAX, "Invalid number of feature args"}, 1063 }; 1064 1065 r = dm_read_arg_group(_args, as, &argc, &ti->error); 1066 if (r) 1067 return -EINVAL; 1068 1069 if (!argc) 1070 return 0; 1071 1072 do { 1073 arg_name = dm_shift_arg(as); 1074 argc--; 1075 1076 if (verity_is_verity_mode(arg_name)) { 1077 if (only_modifier_opts) 1078 continue; 1079 r = verity_parse_verity_mode(v, arg_name); 1080 if (r) { 1081 ti->error = "Conflicting error handling parameters"; 1082 return r; 1083 } 1084 continue; 1085 1086 } else if (!strcasecmp(arg_name, DM_VERITY_OPT_IGN_ZEROES)) { 1087 if (only_modifier_opts) 1088 continue; 1089 r = verity_alloc_zero_digest(v); 1090 if (r) { 1091 ti->error = "Cannot allocate zero digest"; 1092 return r; 1093 } 1094 continue; 1095 1096 } else if (!strcasecmp(arg_name, DM_VERITY_OPT_AT_MOST_ONCE)) { 1097 if (only_modifier_opts) 1098 continue; 1099 r = verity_alloc_most_once(v); 1100 if (r) 1101 return r; 1102 continue; 1103 1104 } else if (!strcasecmp(arg_name, DM_VERITY_OPT_TASKLET_VERIFY)) { 1105 v->use_tasklet = true; 1106 static_branch_inc(&use_tasklet_enabled); 1107 continue; 1108 1109 } else if (verity_is_fec_opt_arg(arg_name)) { 1110 if (only_modifier_opts) 1111 continue; 1112 r = verity_fec_parse_opt_args(as, v, &argc, arg_name); 1113 if (r) 1114 return r; 1115 continue; 1116 1117 } else if (verity_verify_is_sig_opt_arg(arg_name)) { 1118 if (only_modifier_opts) 1119 continue; 1120 r = verity_verify_sig_parse_opt_args(as, v, 1121 verify_args, 1122 &argc, arg_name); 1123 if (r) 1124 return r; 1125 continue; 1126 1127 } else if (only_modifier_opts) { 1128 /* 1129 * Ignore unrecognized opt, could easily be an extra 1130 * argument to an option whose parsing was skipped. 1131 * Normal parsing (@only_modifier_opts=false) will 1132 * properly parse all options (and their extra args). 1133 */ 1134 continue; 1135 } 1136 1137 DMERR("Unrecognized verity feature request: %s", arg_name); 1138 ti->error = "Unrecognized verity feature request"; 1139 return -EINVAL; 1140 } while (argc && !r); 1141 1142 return r; 1143 } 1144 1145 /* 1146 * Target parameters: 1147 * <version> The current format is version 1. 1148 * Vsn 0 is compatible with original Chromium OS releases. 1149 * <data device> 1150 * <hash device> 1151 * <data block size> 1152 * <hash block size> 1153 * <the number of data blocks> 1154 * <hash start block> 1155 * <algorithm> 1156 * <digest> 1157 * <salt> Hex string or "-" if no salt. 1158 */ 1159 static int verity_ctr(struct dm_target *ti, unsigned argc, char **argv) 1160 { 1161 struct dm_verity *v; 1162 struct dm_verity_sig_opts verify_args = {0}; 1163 struct dm_arg_set as; 1164 unsigned int num; 1165 unsigned int wq_flags; 1166 unsigned long long num_ll; 1167 int r; 1168 int i; 1169 sector_t hash_position; 1170 char dummy; 1171 char *root_hash_digest_to_validate; 1172 1173 v = kzalloc(sizeof(struct dm_verity), GFP_KERNEL); 1174 if (!v) { 1175 ti->error = "Cannot allocate verity structure"; 1176 return -ENOMEM; 1177 } 1178 ti->private = v; 1179 v->ti = ti; 1180 1181 r = verity_fec_ctr_alloc(v); 1182 if (r) 1183 goto bad; 1184 1185 if ((dm_table_get_mode(ti->table) & ~FMODE_READ)) { 1186 ti->error = "Device must be readonly"; 1187 r = -EINVAL; 1188 goto bad; 1189 } 1190 1191 if (argc < 10) { 1192 ti->error = "Not enough arguments"; 1193 r = -EINVAL; 1194 goto bad; 1195 } 1196 1197 /* Parse optional parameters that modify primary args */ 1198 if (argc > 10) { 1199 as.argc = argc - 10; 1200 as.argv = argv + 10; 1201 r = verity_parse_opt_args(&as, v, &verify_args, true); 1202 if (r < 0) 1203 goto bad; 1204 } 1205 1206 if (sscanf(argv[0], "%u%c", &num, &dummy) != 1 || 1207 num > 1) { 1208 ti->error = "Invalid version"; 1209 r = -EINVAL; 1210 goto bad; 1211 } 1212 v->version = num; 1213 1214 r = dm_get_device(ti, argv[1], FMODE_READ, &v->data_dev); 1215 if (r) { 1216 ti->error = "Data device lookup failed"; 1217 goto bad; 1218 } 1219 1220 r = dm_get_device(ti, argv[2], FMODE_READ, &v->hash_dev); 1221 if (r) { 1222 ti->error = "Hash device lookup failed"; 1223 goto bad; 1224 } 1225 1226 if (sscanf(argv[3], "%u%c", &num, &dummy) != 1 || 1227 !num || (num & (num - 1)) || 1228 num < bdev_logical_block_size(v->data_dev->bdev) || 1229 num > PAGE_SIZE) { 1230 ti->error = "Invalid data device block size"; 1231 r = -EINVAL; 1232 goto bad; 1233 } 1234 v->data_dev_block_bits = __ffs(num); 1235 1236 if (sscanf(argv[4], "%u%c", &num, &dummy) != 1 || 1237 !num || (num & (num - 1)) || 1238 num < bdev_logical_block_size(v->hash_dev->bdev) || 1239 num > INT_MAX) { 1240 ti->error = "Invalid hash device block size"; 1241 r = -EINVAL; 1242 goto bad; 1243 } 1244 v->hash_dev_block_bits = __ffs(num); 1245 1246 if (sscanf(argv[5], "%llu%c", &num_ll, &dummy) != 1 || 1247 (sector_t)(num_ll << (v->data_dev_block_bits - SECTOR_SHIFT)) 1248 >> (v->data_dev_block_bits - SECTOR_SHIFT) != num_ll) { 1249 ti->error = "Invalid data blocks"; 1250 r = -EINVAL; 1251 goto bad; 1252 } 1253 v->data_blocks = num_ll; 1254 1255 if (ti->len > (v->data_blocks << (v->data_dev_block_bits - SECTOR_SHIFT))) { 1256 ti->error = "Data device is too small"; 1257 r = -EINVAL; 1258 goto bad; 1259 } 1260 1261 if (sscanf(argv[6], "%llu%c", &num_ll, &dummy) != 1 || 1262 (sector_t)(num_ll << (v->hash_dev_block_bits - SECTOR_SHIFT)) 1263 >> (v->hash_dev_block_bits - SECTOR_SHIFT) != num_ll) { 1264 ti->error = "Invalid hash start"; 1265 r = -EINVAL; 1266 goto bad; 1267 } 1268 v->hash_start = num_ll; 1269 1270 v->alg_name = kstrdup(argv[7], GFP_KERNEL); 1271 if (!v->alg_name) { 1272 ti->error = "Cannot allocate algorithm name"; 1273 r = -ENOMEM; 1274 goto bad; 1275 } 1276 1277 v->tfm = crypto_alloc_ahash(v->alg_name, 0, 1278 v->use_tasklet ? CRYPTO_ALG_ASYNC : 0); 1279 if (IS_ERR(v->tfm)) { 1280 ti->error = "Cannot initialize hash function"; 1281 r = PTR_ERR(v->tfm); 1282 v->tfm = NULL; 1283 goto bad; 1284 } 1285 1286 /* 1287 * dm-verity performance can vary greatly depending on which hash 1288 * algorithm implementation is used. Help people debug performance 1289 * problems by logging the ->cra_driver_name. 1290 */ 1291 DMINFO("%s using implementation \"%s\"", v->alg_name, 1292 crypto_hash_alg_common(v->tfm)->base.cra_driver_name); 1293 1294 v->digest_size = crypto_ahash_digestsize(v->tfm); 1295 if ((1 << v->hash_dev_block_bits) < v->digest_size * 2) { 1296 ti->error = "Digest size too big"; 1297 r = -EINVAL; 1298 goto bad; 1299 } 1300 v->ahash_reqsize = sizeof(struct ahash_request) + 1301 crypto_ahash_reqsize(v->tfm); 1302 1303 v->root_digest = kmalloc(v->digest_size, GFP_KERNEL); 1304 if (!v->root_digest) { 1305 ti->error = "Cannot allocate root digest"; 1306 r = -ENOMEM; 1307 goto bad; 1308 } 1309 if (strlen(argv[8]) != v->digest_size * 2 || 1310 hex2bin(v->root_digest, argv[8], v->digest_size)) { 1311 ti->error = "Invalid root digest"; 1312 r = -EINVAL; 1313 goto bad; 1314 } 1315 root_hash_digest_to_validate = argv[8]; 1316 1317 if (strcmp(argv[9], "-")) { 1318 v->salt_size = strlen(argv[9]) / 2; 1319 v->salt = kmalloc(v->salt_size, GFP_KERNEL); 1320 if (!v->salt) { 1321 ti->error = "Cannot allocate salt"; 1322 r = -ENOMEM; 1323 goto bad; 1324 } 1325 if (strlen(argv[9]) != v->salt_size * 2 || 1326 hex2bin(v->salt, argv[9], v->salt_size)) { 1327 ti->error = "Invalid salt"; 1328 r = -EINVAL; 1329 goto bad; 1330 } 1331 } 1332 1333 argv += 10; 1334 argc -= 10; 1335 1336 /* Optional parameters */ 1337 if (argc) { 1338 as.argc = argc; 1339 as.argv = argv; 1340 r = verity_parse_opt_args(&as, v, &verify_args, false); 1341 if (r < 0) 1342 goto bad; 1343 } 1344 1345 /* Root hash signature is a optional parameter*/ 1346 r = verity_verify_root_hash(root_hash_digest_to_validate, 1347 strlen(root_hash_digest_to_validate), 1348 verify_args.sig, 1349 verify_args.sig_size); 1350 if (r < 0) { 1351 ti->error = "Root hash verification failed"; 1352 goto bad; 1353 } 1354 v->hash_per_block_bits = 1355 __fls((1 << v->hash_dev_block_bits) / v->digest_size); 1356 1357 v->levels = 0; 1358 if (v->data_blocks) 1359 while (v->hash_per_block_bits * v->levels < 64 && 1360 (unsigned long long)(v->data_blocks - 1) >> 1361 (v->hash_per_block_bits * v->levels)) 1362 v->levels++; 1363 1364 if (v->levels > DM_VERITY_MAX_LEVELS) { 1365 ti->error = "Too many tree levels"; 1366 r = -E2BIG; 1367 goto bad; 1368 } 1369 1370 hash_position = v->hash_start; 1371 for (i = v->levels - 1; i >= 0; i--) { 1372 sector_t s; 1373 v->hash_level_block[i] = hash_position; 1374 s = (v->data_blocks + ((sector_t)1 << ((i + 1) * v->hash_per_block_bits)) - 1) 1375 >> ((i + 1) * v->hash_per_block_bits); 1376 if (hash_position + s < hash_position) { 1377 ti->error = "Hash device offset overflow"; 1378 r = -E2BIG; 1379 goto bad; 1380 } 1381 hash_position += s; 1382 } 1383 v->hash_blocks = hash_position; 1384 1385 v->bufio = dm_bufio_client_create(v->hash_dev->bdev, 1386 1 << v->hash_dev_block_bits, 1, sizeof(struct buffer_aux), 1387 dm_bufio_alloc_callback, NULL, 1388 v->use_tasklet ? DM_BUFIO_CLIENT_NO_SLEEP : 0); 1389 if (IS_ERR(v->bufio)) { 1390 ti->error = "Cannot initialize dm-bufio"; 1391 r = PTR_ERR(v->bufio); 1392 v->bufio = NULL; 1393 goto bad; 1394 } 1395 1396 if (dm_bufio_get_device_size(v->bufio) < v->hash_blocks) { 1397 ti->error = "Hash device is too small"; 1398 r = -E2BIG; 1399 goto bad; 1400 } 1401 1402 /* WQ_UNBOUND greatly improves performance when running on ramdisk */ 1403 wq_flags = WQ_MEM_RECLAIM | WQ_UNBOUND; 1404 /* 1405 * Using WQ_HIGHPRI improves throughput and completion latency by 1406 * reducing wait times when reading from a dm-verity device. 1407 * 1408 * Also as required for the "try_verify_in_tasklet" feature: WQ_HIGHPRI 1409 * allows verify_wq to preempt softirq since verification in tasklet 1410 * will fall-back to using it for error handling (or if the bufio cache 1411 * doesn't have required hashes). 1412 */ 1413 wq_flags |= WQ_HIGHPRI; 1414 v->verify_wq = alloc_workqueue("kverityd", wq_flags, num_online_cpus()); 1415 if (!v->verify_wq) { 1416 ti->error = "Cannot allocate workqueue"; 1417 r = -ENOMEM; 1418 goto bad; 1419 } 1420 1421 ti->per_io_data_size = sizeof(struct dm_verity_io) + 1422 v->ahash_reqsize + v->digest_size * 2; 1423 1424 r = verity_fec_ctr(v); 1425 if (r) 1426 goto bad; 1427 1428 ti->per_io_data_size = roundup(ti->per_io_data_size, 1429 __alignof__(struct dm_verity_io)); 1430 1431 verity_verify_sig_opts_cleanup(&verify_args); 1432 1433 return 0; 1434 1435 bad: 1436 1437 verity_verify_sig_opts_cleanup(&verify_args); 1438 verity_dtr(ti); 1439 1440 return r; 1441 } 1442 1443 /* 1444 * Check whether a DM target is a verity target. 1445 */ 1446 bool dm_is_verity_target(struct dm_target *ti) 1447 { 1448 return ti->type->module == THIS_MODULE; 1449 } 1450 1451 /* 1452 * Get the verity mode (error behavior) of a verity target. 1453 * 1454 * Returns the verity mode of the target, or -EINVAL if 'ti' is not a verity 1455 * target. 1456 */ 1457 int dm_verity_get_mode(struct dm_target *ti) 1458 { 1459 struct dm_verity *v = ti->private; 1460 1461 if (!dm_is_verity_target(ti)) 1462 return -EINVAL; 1463 1464 return v->mode; 1465 } 1466 1467 /* 1468 * Get the root digest of a verity target. 1469 * 1470 * Returns a copy of the root digest, the caller is responsible for 1471 * freeing the memory of the digest. 1472 */ 1473 int dm_verity_get_root_digest(struct dm_target *ti, u8 **root_digest, unsigned int *digest_size) 1474 { 1475 struct dm_verity *v = ti->private; 1476 1477 if (!dm_is_verity_target(ti)) 1478 return -EINVAL; 1479 1480 *root_digest = kmemdup(v->root_digest, v->digest_size, GFP_KERNEL); 1481 if (*root_digest == NULL) 1482 return -ENOMEM; 1483 1484 *digest_size = v->digest_size; 1485 1486 return 0; 1487 } 1488 1489 static struct target_type verity_target = { 1490 .name = "verity", 1491 .features = DM_TARGET_IMMUTABLE, 1492 .version = {1, 9, 0}, 1493 .module = THIS_MODULE, 1494 .ctr = verity_ctr, 1495 .dtr = verity_dtr, 1496 .map = verity_map, 1497 .status = verity_status, 1498 .prepare_ioctl = verity_prepare_ioctl, 1499 .iterate_devices = verity_iterate_devices, 1500 .io_hints = verity_io_hints, 1501 }; 1502 1503 static int __init dm_verity_init(void) 1504 { 1505 int r; 1506 1507 r = dm_register_target(&verity_target); 1508 if (r < 0) 1509 DMERR("register failed %d", r); 1510 1511 return r; 1512 } 1513 1514 static void __exit dm_verity_exit(void) 1515 { 1516 dm_unregister_target(&verity_target); 1517 } 1518 1519 module_init(dm_verity_init); 1520 module_exit(dm_verity_exit); 1521 1522 MODULE_AUTHOR("Mikulas Patocka <mpatocka@redhat.com>"); 1523 MODULE_AUTHOR("Mandeep Baines <msb@chromium.org>"); 1524 MODULE_AUTHOR("Will Drewry <wad@chromium.org>"); 1525 MODULE_DESCRIPTION(DM_NAME " target for transparent disk integrity checking"); 1526 MODULE_LICENSE("GPL"); 1527