1 /* 2 * Copyright (C) 2012 Red Hat, Inc. 3 * 4 * Author: Mikulas Patocka <mpatocka@redhat.com> 5 * 6 * Based on Chromium dm-verity driver (C) 2011 The Chromium OS Authors 7 * 8 * This file is released under the GPLv2. 9 * 10 * In the file "/sys/module/dm_verity/parameters/prefetch_cluster" you can set 11 * default prefetch value. Data are read in "prefetch_cluster" chunks from the 12 * hash device. Setting this greatly improves performance when data and hash 13 * are on the same disk on different partitions on devices with poor random 14 * access behavior. 15 */ 16 17 #include "dm-verity.h" 18 #include "dm-verity-fec.h" 19 20 #include <linux/module.h> 21 #include <linux/reboot.h> 22 23 #define DM_MSG_PREFIX "verity" 24 25 #define DM_VERITY_ENV_LENGTH 42 26 #define DM_VERITY_ENV_VAR_NAME "DM_VERITY_ERR_BLOCK_NR" 27 28 #define DM_VERITY_DEFAULT_PREFETCH_SIZE 262144 29 30 #define DM_VERITY_MAX_CORRUPTED_ERRS 100 31 32 #define DM_VERITY_OPT_LOGGING "ignore_corruption" 33 #define DM_VERITY_OPT_RESTART "restart_on_corruption" 34 #define DM_VERITY_OPT_IGN_ZEROES "ignore_zero_blocks" 35 36 #define DM_VERITY_OPTS_MAX (2 + DM_VERITY_OPTS_FEC) 37 38 static unsigned dm_verity_prefetch_cluster = DM_VERITY_DEFAULT_PREFETCH_SIZE; 39 40 module_param_named(prefetch_cluster, dm_verity_prefetch_cluster, uint, S_IRUGO | S_IWUSR); 41 42 struct dm_verity_prefetch_work { 43 struct work_struct work; 44 struct dm_verity *v; 45 sector_t block; 46 unsigned n_blocks; 47 }; 48 49 /* 50 * Auxiliary structure appended to each dm-bufio buffer. If the value 51 * hash_verified is nonzero, hash of the block has been verified. 52 * 53 * The variable hash_verified is set to 0 when allocating the buffer, then 54 * it can be changed to 1 and it is never reset to 0 again. 55 * 56 * There is no lock around this value, a race condition can at worst cause 57 * that multiple processes verify the hash of the same buffer simultaneously 58 * and write 1 to hash_verified simultaneously. 59 * This condition is harmless, so we don't need locking. 60 */ 61 struct buffer_aux { 62 int hash_verified; 63 }; 64 65 /* 66 * Initialize struct buffer_aux for a freshly created buffer. 67 */ 68 static void dm_bufio_alloc_callback(struct dm_buffer *buf) 69 { 70 struct buffer_aux *aux = dm_bufio_get_aux_data(buf); 71 72 aux->hash_verified = 0; 73 } 74 75 /* 76 * Translate input sector number to the sector number on the target device. 77 */ 78 static sector_t verity_map_sector(struct dm_verity *v, sector_t bi_sector) 79 { 80 return v->data_start + dm_target_offset(v->ti, bi_sector); 81 } 82 83 /* 84 * Return hash position of a specified block at a specified tree level 85 * (0 is the lowest level). 86 * The lowest "hash_per_block_bits"-bits of the result denote hash position 87 * inside a hash block. The remaining bits denote location of the hash block. 88 */ 89 static sector_t verity_position_at_level(struct dm_verity *v, sector_t block, 90 int level) 91 { 92 return block >> (level * v->hash_per_block_bits); 93 } 94 95 /* 96 * Callback function for asynchrnous crypto API completion notification 97 */ 98 static void verity_op_done(struct crypto_async_request *base, int err) 99 { 100 struct verity_result *res = (struct verity_result *)base->data; 101 102 if (err == -EINPROGRESS) 103 return; 104 105 res->err = err; 106 complete(&res->completion); 107 } 108 109 /* 110 * Wait for async crypto API callback 111 */ 112 static inline int verity_complete_op(struct verity_result *res, int ret) 113 { 114 switch (ret) { 115 case 0: 116 break; 117 118 case -EINPROGRESS: 119 case -EBUSY: 120 ret = wait_for_completion_interruptible(&res->completion); 121 if (!ret) 122 ret = res->err; 123 reinit_completion(&res->completion); 124 break; 125 126 default: 127 DMERR("verity_wait_hash: crypto op submission failed: %d", ret); 128 } 129 130 if (unlikely(ret < 0)) 131 DMERR("verity_wait_hash: crypto op failed: %d", ret); 132 133 return ret; 134 } 135 136 static int verity_hash_update(struct dm_verity *v, struct ahash_request *req, 137 const u8 *data, size_t len, 138 struct verity_result *res) 139 { 140 struct scatterlist sg; 141 142 sg_init_one(&sg, data, len); 143 ahash_request_set_crypt(req, &sg, NULL, len); 144 145 return verity_complete_op(res, crypto_ahash_update(req)); 146 } 147 148 /* 149 * Wrapper for crypto_ahash_init, which handles verity salting. 150 */ 151 static int verity_hash_init(struct dm_verity *v, struct ahash_request *req, 152 struct verity_result *res) 153 { 154 int r; 155 156 ahash_request_set_tfm(req, v->tfm); 157 ahash_request_set_callback(req, CRYPTO_TFM_REQ_MAY_SLEEP | 158 CRYPTO_TFM_REQ_MAY_BACKLOG, 159 verity_op_done, (void *)res); 160 init_completion(&res->completion); 161 162 r = verity_complete_op(res, crypto_ahash_init(req)); 163 164 if (unlikely(r < 0)) { 165 DMERR("crypto_ahash_init failed: %d", r); 166 return r; 167 } 168 169 if (likely(v->salt_size && (v->version >= 1))) 170 r = verity_hash_update(v, req, v->salt, v->salt_size, res); 171 172 return r; 173 } 174 175 static int verity_hash_final(struct dm_verity *v, struct ahash_request *req, 176 u8 *digest, struct verity_result *res) 177 { 178 int r; 179 180 if (unlikely(v->salt_size && (!v->version))) { 181 r = verity_hash_update(v, req, v->salt, v->salt_size, res); 182 183 if (r < 0) { 184 DMERR("verity_hash_final failed updating salt: %d", r); 185 goto out; 186 } 187 } 188 189 ahash_request_set_crypt(req, NULL, digest, 0); 190 r = verity_complete_op(res, crypto_ahash_final(req)); 191 out: 192 return r; 193 } 194 195 int verity_hash(struct dm_verity *v, struct ahash_request *req, 196 const u8 *data, size_t len, u8 *digest) 197 { 198 int r; 199 struct verity_result res; 200 201 r = verity_hash_init(v, req, &res); 202 if (unlikely(r < 0)) 203 goto out; 204 205 r = verity_hash_update(v, req, data, len, &res); 206 if (unlikely(r < 0)) 207 goto out; 208 209 r = verity_hash_final(v, req, digest, &res); 210 211 out: 212 return r; 213 } 214 215 static void verity_hash_at_level(struct dm_verity *v, sector_t block, int level, 216 sector_t *hash_block, unsigned *offset) 217 { 218 sector_t position = verity_position_at_level(v, block, level); 219 unsigned idx; 220 221 *hash_block = v->hash_level_block[level] + (position >> v->hash_per_block_bits); 222 223 if (!offset) 224 return; 225 226 idx = position & ((1 << v->hash_per_block_bits) - 1); 227 if (!v->version) 228 *offset = idx * v->digest_size; 229 else 230 *offset = idx << (v->hash_dev_block_bits - v->hash_per_block_bits); 231 } 232 233 /* 234 * Handle verification errors. 235 */ 236 static int verity_handle_err(struct dm_verity *v, enum verity_block_type type, 237 unsigned long long block) 238 { 239 char verity_env[DM_VERITY_ENV_LENGTH]; 240 char *envp[] = { verity_env, NULL }; 241 const char *type_str = ""; 242 struct mapped_device *md = dm_table_get_md(v->ti->table); 243 244 /* Corruption should be visible in device status in all modes */ 245 v->hash_failed = 1; 246 247 if (v->corrupted_errs >= DM_VERITY_MAX_CORRUPTED_ERRS) 248 goto out; 249 250 v->corrupted_errs++; 251 252 switch (type) { 253 case DM_VERITY_BLOCK_TYPE_DATA: 254 type_str = "data"; 255 break; 256 case DM_VERITY_BLOCK_TYPE_METADATA: 257 type_str = "metadata"; 258 break; 259 default: 260 BUG(); 261 } 262 263 DMERR("%s: %s block %llu is corrupted", v->data_dev->name, type_str, 264 block); 265 266 if (v->corrupted_errs == DM_VERITY_MAX_CORRUPTED_ERRS) 267 DMERR("%s: reached maximum errors", v->data_dev->name); 268 269 snprintf(verity_env, DM_VERITY_ENV_LENGTH, "%s=%d,%llu", 270 DM_VERITY_ENV_VAR_NAME, type, block); 271 272 kobject_uevent_env(&disk_to_dev(dm_disk(md))->kobj, KOBJ_CHANGE, envp); 273 274 out: 275 if (v->mode == DM_VERITY_MODE_LOGGING) 276 return 0; 277 278 if (v->mode == DM_VERITY_MODE_RESTART) 279 kernel_restart("dm-verity device corrupted"); 280 281 return 1; 282 } 283 284 /* 285 * Verify hash of a metadata block pertaining to the specified data block 286 * ("block" argument) at a specified level ("level" argument). 287 * 288 * On successful return, verity_io_want_digest(v, io) contains the hash value 289 * for a lower tree level or for the data block (if we're at the lowest level). 290 * 291 * If "skip_unverified" is true, unverified buffer is skipped and 1 is returned. 292 * If "skip_unverified" is false, unverified buffer is hashed and verified 293 * against current value of verity_io_want_digest(v, io). 294 */ 295 static int verity_verify_level(struct dm_verity *v, struct dm_verity_io *io, 296 sector_t block, int level, bool skip_unverified, 297 u8 *want_digest) 298 { 299 struct dm_buffer *buf; 300 struct buffer_aux *aux; 301 u8 *data; 302 int r; 303 sector_t hash_block; 304 unsigned offset; 305 306 verity_hash_at_level(v, block, level, &hash_block, &offset); 307 308 data = dm_bufio_read(v->bufio, hash_block, &buf); 309 if (IS_ERR(data)) 310 return PTR_ERR(data); 311 312 aux = dm_bufio_get_aux_data(buf); 313 314 if (!aux->hash_verified) { 315 if (skip_unverified) { 316 r = 1; 317 goto release_ret_r; 318 } 319 320 r = verity_hash(v, verity_io_hash_req(v, io), 321 data, 1 << v->hash_dev_block_bits, 322 verity_io_real_digest(v, io)); 323 if (unlikely(r < 0)) 324 goto release_ret_r; 325 326 if (likely(memcmp(verity_io_real_digest(v, io), want_digest, 327 v->digest_size) == 0)) 328 aux->hash_verified = 1; 329 else if (verity_fec_decode(v, io, 330 DM_VERITY_BLOCK_TYPE_METADATA, 331 hash_block, data, NULL) == 0) 332 aux->hash_verified = 1; 333 else if (verity_handle_err(v, 334 DM_VERITY_BLOCK_TYPE_METADATA, 335 hash_block)) { 336 r = -EIO; 337 goto release_ret_r; 338 } 339 } 340 341 data += offset; 342 memcpy(want_digest, data, v->digest_size); 343 r = 0; 344 345 release_ret_r: 346 dm_bufio_release(buf); 347 return r; 348 } 349 350 /* 351 * Find a hash for a given block, write it to digest and verify the integrity 352 * of the hash tree if necessary. 353 */ 354 int verity_hash_for_block(struct dm_verity *v, struct dm_verity_io *io, 355 sector_t block, u8 *digest, bool *is_zero) 356 { 357 int r = 0, i; 358 359 if (likely(v->levels)) { 360 /* 361 * First, we try to get the requested hash for 362 * the current block. If the hash block itself is 363 * verified, zero is returned. If it isn't, this 364 * function returns 1 and we fall back to whole 365 * chain verification. 366 */ 367 r = verity_verify_level(v, io, block, 0, true, digest); 368 if (likely(r <= 0)) 369 goto out; 370 } 371 372 memcpy(digest, v->root_digest, v->digest_size); 373 374 for (i = v->levels - 1; i >= 0; i--) { 375 r = verity_verify_level(v, io, block, i, false, digest); 376 if (unlikely(r)) 377 goto out; 378 } 379 out: 380 if (!r && v->zero_digest) 381 *is_zero = !memcmp(v->zero_digest, digest, v->digest_size); 382 else 383 *is_zero = false; 384 385 return r; 386 } 387 388 /* 389 * Calculates the digest for the given bio 390 */ 391 int verity_for_io_block(struct dm_verity *v, struct dm_verity_io *io, 392 struct bvec_iter *iter, struct verity_result *res) 393 { 394 unsigned int todo = 1 << v->data_dev_block_bits; 395 struct bio *bio = dm_bio_from_per_bio_data(io, v->ti->per_io_data_size); 396 struct scatterlist sg; 397 struct ahash_request *req = verity_io_hash_req(v, io); 398 399 do { 400 int r; 401 unsigned int len; 402 struct bio_vec bv = bio_iter_iovec(bio, *iter); 403 404 sg_init_table(&sg, 1); 405 406 len = bv.bv_len; 407 408 if (likely(len >= todo)) 409 len = todo; 410 /* 411 * Operating on a single page at a time looks suboptimal 412 * until you consider the typical block size is 4,096B. 413 * Going through this loops twice should be very rare. 414 */ 415 sg_set_page(&sg, bv.bv_page, len, bv.bv_offset); 416 ahash_request_set_crypt(req, &sg, NULL, len); 417 r = verity_complete_op(res, crypto_ahash_update(req)); 418 419 if (unlikely(r < 0)) { 420 DMERR("verity_for_io_block crypto op failed: %d", r); 421 return r; 422 } 423 424 bio_advance_iter(bio, iter, len); 425 todo -= len; 426 } while (todo); 427 428 return 0; 429 } 430 431 /* 432 * Calls function process for 1 << v->data_dev_block_bits bytes in the bio_vec 433 * starting from iter. 434 */ 435 int verity_for_bv_block(struct dm_verity *v, struct dm_verity_io *io, 436 struct bvec_iter *iter, 437 int (*process)(struct dm_verity *v, 438 struct dm_verity_io *io, u8 *data, 439 size_t len)) 440 { 441 unsigned todo = 1 << v->data_dev_block_bits; 442 struct bio *bio = dm_bio_from_per_bio_data(io, v->ti->per_io_data_size); 443 444 do { 445 int r; 446 u8 *page; 447 unsigned len; 448 struct bio_vec bv = bio_iter_iovec(bio, *iter); 449 450 page = kmap_atomic(bv.bv_page); 451 len = bv.bv_len; 452 453 if (likely(len >= todo)) 454 len = todo; 455 456 r = process(v, io, page + bv.bv_offset, len); 457 kunmap_atomic(page); 458 459 if (r < 0) 460 return r; 461 462 bio_advance_iter(bio, iter, len); 463 todo -= len; 464 } while (todo); 465 466 return 0; 467 } 468 469 static int verity_bv_zero(struct dm_verity *v, struct dm_verity_io *io, 470 u8 *data, size_t len) 471 { 472 memset(data, 0, len); 473 return 0; 474 } 475 476 /* 477 * Verify one "dm_verity_io" structure. 478 */ 479 static int verity_verify_io(struct dm_verity_io *io) 480 { 481 bool is_zero; 482 struct dm_verity *v = io->v; 483 struct bvec_iter start; 484 unsigned b; 485 struct verity_result res; 486 487 for (b = 0; b < io->n_blocks; b++) { 488 int r; 489 struct ahash_request *req = verity_io_hash_req(v, io); 490 491 r = verity_hash_for_block(v, io, io->block + b, 492 verity_io_want_digest(v, io), 493 &is_zero); 494 if (unlikely(r < 0)) 495 return r; 496 497 if (is_zero) { 498 /* 499 * If we expect a zero block, don't validate, just 500 * return zeros. 501 */ 502 r = verity_for_bv_block(v, io, &io->iter, 503 verity_bv_zero); 504 if (unlikely(r < 0)) 505 return r; 506 507 continue; 508 } 509 510 r = verity_hash_init(v, req, &res); 511 if (unlikely(r < 0)) 512 return r; 513 514 start = io->iter; 515 r = verity_for_io_block(v, io, &io->iter, &res); 516 if (unlikely(r < 0)) 517 return r; 518 519 r = verity_hash_final(v, req, verity_io_real_digest(v, io), 520 &res); 521 if (unlikely(r < 0)) 522 return r; 523 524 if (likely(memcmp(verity_io_real_digest(v, io), 525 verity_io_want_digest(v, io), v->digest_size) == 0)) 526 continue; 527 else if (verity_fec_decode(v, io, DM_VERITY_BLOCK_TYPE_DATA, 528 io->block + b, NULL, &start) == 0) 529 continue; 530 else if (verity_handle_err(v, DM_VERITY_BLOCK_TYPE_DATA, 531 io->block + b)) 532 return -EIO; 533 } 534 535 return 0; 536 } 537 538 /* 539 * End one "io" structure with a given error. 540 */ 541 static void verity_finish_io(struct dm_verity_io *io, int error) 542 { 543 struct dm_verity *v = io->v; 544 struct bio *bio = dm_bio_from_per_bio_data(io, v->ti->per_io_data_size); 545 546 bio->bi_end_io = io->orig_bi_end_io; 547 bio->bi_error = error; 548 549 verity_fec_finish_io(io); 550 551 bio_endio(bio); 552 } 553 554 static void verity_work(struct work_struct *w) 555 { 556 struct dm_verity_io *io = container_of(w, struct dm_verity_io, work); 557 558 verity_finish_io(io, verity_verify_io(io)); 559 } 560 561 static void verity_end_io(struct bio *bio) 562 { 563 struct dm_verity_io *io = bio->bi_private; 564 565 if (bio->bi_error && !verity_fec_is_enabled(io->v)) { 566 verity_finish_io(io, bio->bi_error); 567 return; 568 } 569 570 INIT_WORK(&io->work, verity_work); 571 queue_work(io->v->verify_wq, &io->work); 572 } 573 574 /* 575 * Prefetch buffers for the specified io. 576 * The root buffer is not prefetched, it is assumed that it will be cached 577 * all the time. 578 */ 579 static void verity_prefetch_io(struct work_struct *work) 580 { 581 struct dm_verity_prefetch_work *pw = 582 container_of(work, struct dm_verity_prefetch_work, work); 583 struct dm_verity *v = pw->v; 584 int i; 585 586 for (i = v->levels - 2; i >= 0; i--) { 587 sector_t hash_block_start; 588 sector_t hash_block_end; 589 verity_hash_at_level(v, pw->block, i, &hash_block_start, NULL); 590 verity_hash_at_level(v, pw->block + pw->n_blocks - 1, i, &hash_block_end, NULL); 591 if (!i) { 592 unsigned cluster = ACCESS_ONCE(dm_verity_prefetch_cluster); 593 594 cluster >>= v->data_dev_block_bits; 595 if (unlikely(!cluster)) 596 goto no_prefetch_cluster; 597 598 if (unlikely(cluster & (cluster - 1))) 599 cluster = 1 << __fls(cluster); 600 601 hash_block_start &= ~(sector_t)(cluster - 1); 602 hash_block_end |= cluster - 1; 603 if (unlikely(hash_block_end >= v->hash_blocks)) 604 hash_block_end = v->hash_blocks - 1; 605 } 606 no_prefetch_cluster: 607 dm_bufio_prefetch(v->bufio, hash_block_start, 608 hash_block_end - hash_block_start + 1); 609 } 610 611 kfree(pw); 612 } 613 614 static void verity_submit_prefetch(struct dm_verity *v, struct dm_verity_io *io) 615 { 616 struct dm_verity_prefetch_work *pw; 617 618 pw = kmalloc(sizeof(struct dm_verity_prefetch_work), 619 GFP_NOIO | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN); 620 621 if (!pw) 622 return; 623 624 INIT_WORK(&pw->work, verity_prefetch_io); 625 pw->v = v; 626 pw->block = io->block; 627 pw->n_blocks = io->n_blocks; 628 queue_work(v->verify_wq, &pw->work); 629 } 630 631 /* 632 * Bio map function. It allocates dm_verity_io structure and bio vector and 633 * fills them. Then it issues prefetches and the I/O. 634 */ 635 static int verity_map(struct dm_target *ti, struct bio *bio) 636 { 637 struct dm_verity *v = ti->private; 638 struct dm_verity_io *io; 639 640 bio->bi_bdev = v->data_dev->bdev; 641 bio->bi_iter.bi_sector = verity_map_sector(v, bio->bi_iter.bi_sector); 642 643 if (((unsigned)bio->bi_iter.bi_sector | bio_sectors(bio)) & 644 ((1 << (v->data_dev_block_bits - SECTOR_SHIFT)) - 1)) { 645 DMERR_LIMIT("unaligned io"); 646 return -EIO; 647 } 648 649 if (bio_end_sector(bio) >> 650 (v->data_dev_block_bits - SECTOR_SHIFT) > v->data_blocks) { 651 DMERR_LIMIT("io out of range"); 652 return -EIO; 653 } 654 655 if (bio_data_dir(bio) == WRITE) 656 return -EIO; 657 658 io = dm_per_bio_data(bio, ti->per_io_data_size); 659 io->v = v; 660 io->orig_bi_end_io = bio->bi_end_io; 661 io->block = bio->bi_iter.bi_sector >> (v->data_dev_block_bits - SECTOR_SHIFT); 662 io->n_blocks = bio->bi_iter.bi_size >> v->data_dev_block_bits; 663 664 bio->bi_end_io = verity_end_io; 665 bio->bi_private = io; 666 io->iter = bio->bi_iter; 667 668 verity_fec_init_io(io); 669 670 verity_submit_prefetch(v, io); 671 672 generic_make_request(bio); 673 674 return DM_MAPIO_SUBMITTED; 675 } 676 677 /* 678 * Status: V (valid) or C (corruption found) 679 */ 680 static void verity_status(struct dm_target *ti, status_type_t type, 681 unsigned status_flags, char *result, unsigned maxlen) 682 { 683 struct dm_verity *v = ti->private; 684 unsigned args = 0; 685 unsigned sz = 0; 686 unsigned x; 687 688 switch (type) { 689 case STATUSTYPE_INFO: 690 DMEMIT("%c", v->hash_failed ? 'C' : 'V'); 691 break; 692 case STATUSTYPE_TABLE: 693 DMEMIT("%u %s %s %u %u %llu %llu %s ", 694 v->version, 695 v->data_dev->name, 696 v->hash_dev->name, 697 1 << v->data_dev_block_bits, 698 1 << v->hash_dev_block_bits, 699 (unsigned long long)v->data_blocks, 700 (unsigned long long)v->hash_start, 701 v->alg_name 702 ); 703 for (x = 0; x < v->digest_size; x++) 704 DMEMIT("%02x", v->root_digest[x]); 705 DMEMIT(" "); 706 if (!v->salt_size) 707 DMEMIT("-"); 708 else 709 for (x = 0; x < v->salt_size; x++) 710 DMEMIT("%02x", v->salt[x]); 711 if (v->mode != DM_VERITY_MODE_EIO) 712 args++; 713 if (verity_fec_is_enabled(v)) 714 args += DM_VERITY_OPTS_FEC; 715 if (v->zero_digest) 716 args++; 717 if (!args) 718 return; 719 DMEMIT(" %u", args); 720 if (v->mode != DM_VERITY_MODE_EIO) { 721 DMEMIT(" "); 722 switch (v->mode) { 723 case DM_VERITY_MODE_LOGGING: 724 DMEMIT(DM_VERITY_OPT_LOGGING); 725 break; 726 case DM_VERITY_MODE_RESTART: 727 DMEMIT(DM_VERITY_OPT_RESTART); 728 break; 729 default: 730 BUG(); 731 } 732 } 733 if (v->zero_digest) 734 DMEMIT(" " DM_VERITY_OPT_IGN_ZEROES); 735 sz = verity_fec_status_table(v, sz, result, maxlen); 736 break; 737 } 738 } 739 740 static int verity_prepare_ioctl(struct dm_target *ti, 741 struct block_device **bdev, fmode_t *mode) 742 { 743 struct dm_verity *v = ti->private; 744 745 *bdev = v->data_dev->bdev; 746 747 if (v->data_start || 748 ti->len != i_size_read(v->data_dev->bdev->bd_inode) >> SECTOR_SHIFT) 749 return 1; 750 return 0; 751 } 752 753 static int verity_iterate_devices(struct dm_target *ti, 754 iterate_devices_callout_fn fn, void *data) 755 { 756 struct dm_verity *v = ti->private; 757 758 return fn(ti, v->data_dev, v->data_start, ti->len, data); 759 } 760 761 static void verity_io_hints(struct dm_target *ti, struct queue_limits *limits) 762 { 763 struct dm_verity *v = ti->private; 764 765 if (limits->logical_block_size < 1 << v->data_dev_block_bits) 766 limits->logical_block_size = 1 << v->data_dev_block_bits; 767 768 if (limits->physical_block_size < 1 << v->data_dev_block_bits) 769 limits->physical_block_size = 1 << v->data_dev_block_bits; 770 771 blk_limits_io_min(limits, limits->logical_block_size); 772 } 773 774 static void verity_dtr(struct dm_target *ti) 775 { 776 struct dm_verity *v = ti->private; 777 778 if (v->verify_wq) 779 destroy_workqueue(v->verify_wq); 780 781 if (v->bufio) 782 dm_bufio_client_destroy(v->bufio); 783 784 kfree(v->salt); 785 kfree(v->root_digest); 786 kfree(v->zero_digest); 787 788 if (v->tfm) 789 crypto_free_ahash(v->tfm); 790 791 kfree(v->alg_name); 792 793 if (v->hash_dev) 794 dm_put_device(ti, v->hash_dev); 795 796 if (v->data_dev) 797 dm_put_device(ti, v->data_dev); 798 799 verity_fec_dtr(v); 800 801 kfree(v); 802 } 803 804 static int verity_alloc_zero_digest(struct dm_verity *v) 805 { 806 int r = -ENOMEM; 807 struct ahash_request *req; 808 u8 *zero_data; 809 810 v->zero_digest = kmalloc(v->digest_size, GFP_KERNEL); 811 812 if (!v->zero_digest) 813 return r; 814 815 req = kmalloc(v->ahash_reqsize, GFP_KERNEL); 816 817 if (!req) 818 return r; /* verity_dtr will free zero_digest */ 819 820 zero_data = kzalloc(1 << v->data_dev_block_bits, GFP_KERNEL); 821 822 if (!zero_data) 823 goto out; 824 825 r = verity_hash(v, req, zero_data, 1 << v->data_dev_block_bits, 826 v->zero_digest); 827 828 out: 829 kfree(req); 830 kfree(zero_data); 831 832 return r; 833 } 834 835 static int verity_parse_opt_args(struct dm_arg_set *as, struct dm_verity *v) 836 { 837 int r; 838 unsigned argc; 839 struct dm_target *ti = v->ti; 840 const char *arg_name; 841 842 static struct dm_arg _args[] = { 843 {0, DM_VERITY_OPTS_MAX, "Invalid number of feature args"}, 844 }; 845 846 r = dm_read_arg_group(_args, as, &argc, &ti->error); 847 if (r) 848 return -EINVAL; 849 850 if (!argc) 851 return 0; 852 853 do { 854 arg_name = dm_shift_arg(as); 855 argc--; 856 857 if (!strcasecmp(arg_name, DM_VERITY_OPT_LOGGING)) { 858 v->mode = DM_VERITY_MODE_LOGGING; 859 continue; 860 861 } else if (!strcasecmp(arg_name, DM_VERITY_OPT_RESTART)) { 862 v->mode = DM_VERITY_MODE_RESTART; 863 continue; 864 865 } else if (!strcasecmp(arg_name, DM_VERITY_OPT_IGN_ZEROES)) { 866 r = verity_alloc_zero_digest(v); 867 if (r) { 868 ti->error = "Cannot allocate zero digest"; 869 return r; 870 } 871 continue; 872 873 } else if (verity_is_fec_opt_arg(arg_name)) { 874 r = verity_fec_parse_opt_args(as, v, &argc, arg_name); 875 if (r) 876 return r; 877 continue; 878 } 879 880 ti->error = "Unrecognized verity feature request"; 881 return -EINVAL; 882 } while (argc && !r); 883 884 return r; 885 } 886 887 /* 888 * Target parameters: 889 * <version> The current format is version 1. 890 * Vsn 0 is compatible with original Chromium OS releases. 891 * <data device> 892 * <hash device> 893 * <data block size> 894 * <hash block size> 895 * <the number of data blocks> 896 * <hash start block> 897 * <algorithm> 898 * <digest> 899 * <salt> Hex string or "-" if no salt. 900 */ 901 static int verity_ctr(struct dm_target *ti, unsigned argc, char **argv) 902 { 903 struct dm_verity *v; 904 struct dm_arg_set as; 905 unsigned int num; 906 unsigned long long num_ll; 907 int r; 908 int i; 909 sector_t hash_position; 910 char dummy; 911 912 v = kzalloc(sizeof(struct dm_verity), GFP_KERNEL); 913 if (!v) { 914 ti->error = "Cannot allocate verity structure"; 915 return -ENOMEM; 916 } 917 ti->private = v; 918 v->ti = ti; 919 920 r = verity_fec_ctr_alloc(v); 921 if (r) 922 goto bad; 923 924 if ((dm_table_get_mode(ti->table) & ~FMODE_READ)) { 925 ti->error = "Device must be readonly"; 926 r = -EINVAL; 927 goto bad; 928 } 929 930 if (argc < 10) { 931 ti->error = "Not enough arguments"; 932 r = -EINVAL; 933 goto bad; 934 } 935 936 if (sscanf(argv[0], "%u%c", &num, &dummy) != 1 || 937 num > 1) { 938 ti->error = "Invalid version"; 939 r = -EINVAL; 940 goto bad; 941 } 942 v->version = num; 943 944 r = dm_get_device(ti, argv[1], FMODE_READ, &v->data_dev); 945 if (r) { 946 ti->error = "Data device lookup failed"; 947 goto bad; 948 } 949 950 r = dm_get_device(ti, argv[2], FMODE_READ, &v->hash_dev); 951 if (r) { 952 ti->error = "Hash device lookup failed"; 953 goto bad; 954 } 955 956 if (sscanf(argv[3], "%u%c", &num, &dummy) != 1 || 957 !num || (num & (num - 1)) || 958 num < bdev_logical_block_size(v->data_dev->bdev) || 959 num > PAGE_SIZE) { 960 ti->error = "Invalid data device block size"; 961 r = -EINVAL; 962 goto bad; 963 } 964 v->data_dev_block_bits = __ffs(num); 965 966 if (sscanf(argv[4], "%u%c", &num, &dummy) != 1 || 967 !num || (num & (num - 1)) || 968 num < bdev_logical_block_size(v->hash_dev->bdev) || 969 num > INT_MAX) { 970 ti->error = "Invalid hash device block size"; 971 r = -EINVAL; 972 goto bad; 973 } 974 v->hash_dev_block_bits = __ffs(num); 975 976 if (sscanf(argv[5], "%llu%c", &num_ll, &dummy) != 1 || 977 (sector_t)(num_ll << (v->data_dev_block_bits - SECTOR_SHIFT)) 978 >> (v->data_dev_block_bits - SECTOR_SHIFT) != num_ll) { 979 ti->error = "Invalid data blocks"; 980 r = -EINVAL; 981 goto bad; 982 } 983 v->data_blocks = num_ll; 984 985 if (ti->len > (v->data_blocks << (v->data_dev_block_bits - SECTOR_SHIFT))) { 986 ti->error = "Data device is too small"; 987 r = -EINVAL; 988 goto bad; 989 } 990 991 if (sscanf(argv[6], "%llu%c", &num_ll, &dummy) != 1 || 992 (sector_t)(num_ll << (v->hash_dev_block_bits - SECTOR_SHIFT)) 993 >> (v->hash_dev_block_bits - SECTOR_SHIFT) != num_ll) { 994 ti->error = "Invalid hash start"; 995 r = -EINVAL; 996 goto bad; 997 } 998 v->hash_start = num_ll; 999 1000 v->alg_name = kstrdup(argv[7], GFP_KERNEL); 1001 if (!v->alg_name) { 1002 ti->error = "Cannot allocate algorithm name"; 1003 r = -ENOMEM; 1004 goto bad; 1005 } 1006 1007 v->tfm = crypto_alloc_ahash(v->alg_name, 0, 0); 1008 if (IS_ERR(v->tfm)) { 1009 ti->error = "Cannot initialize hash function"; 1010 r = PTR_ERR(v->tfm); 1011 v->tfm = NULL; 1012 goto bad; 1013 } 1014 v->digest_size = crypto_ahash_digestsize(v->tfm); 1015 if ((1 << v->hash_dev_block_bits) < v->digest_size * 2) { 1016 ti->error = "Digest size too big"; 1017 r = -EINVAL; 1018 goto bad; 1019 } 1020 v->ahash_reqsize = sizeof(struct ahash_request) + 1021 crypto_ahash_reqsize(v->tfm); 1022 1023 v->root_digest = kmalloc(v->digest_size, GFP_KERNEL); 1024 if (!v->root_digest) { 1025 ti->error = "Cannot allocate root digest"; 1026 r = -ENOMEM; 1027 goto bad; 1028 } 1029 if (strlen(argv[8]) != v->digest_size * 2 || 1030 hex2bin(v->root_digest, argv[8], v->digest_size)) { 1031 ti->error = "Invalid root digest"; 1032 r = -EINVAL; 1033 goto bad; 1034 } 1035 1036 if (strcmp(argv[9], "-")) { 1037 v->salt_size = strlen(argv[9]) / 2; 1038 v->salt = kmalloc(v->salt_size, GFP_KERNEL); 1039 if (!v->salt) { 1040 ti->error = "Cannot allocate salt"; 1041 r = -ENOMEM; 1042 goto bad; 1043 } 1044 if (strlen(argv[9]) != v->salt_size * 2 || 1045 hex2bin(v->salt, argv[9], v->salt_size)) { 1046 ti->error = "Invalid salt"; 1047 r = -EINVAL; 1048 goto bad; 1049 } 1050 } 1051 1052 argv += 10; 1053 argc -= 10; 1054 1055 /* Optional parameters */ 1056 if (argc) { 1057 as.argc = argc; 1058 as.argv = argv; 1059 1060 r = verity_parse_opt_args(&as, v); 1061 if (r < 0) 1062 goto bad; 1063 } 1064 1065 v->hash_per_block_bits = 1066 __fls((1 << v->hash_dev_block_bits) / v->digest_size); 1067 1068 v->levels = 0; 1069 if (v->data_blocks) 1070 while (v->hash_per_block_bits * v->levels < 64 && 1071 (unsigned long long)(v->data_blocks - 1) >> 1072 (v->hash_per_block_bits * v->levels)) 1073 v->levels++; 1074 1075 if (v->levels > DM_VERITY_MAX_LEVELS) { 1076 ti->error = "Too many tree levels"; 1077 r = -E2BIG; 1078 goto bad; 1079 } 1080 1081 hash_position = v->hash_start; 1082 for (i = v->levels - 1; i >= 0; i--) { 1083 sector_t s; 1084 v->hash_level_block[i] = hash_position; 1085 s = (v->data_blocks + ((sector_t)1 << ((i + 1) * v->hash_per_block_bits)) - 1) 1086 >> ((i + 1) * v->hash_per_block_bits); 1087 if (hash_position + s < hash_position) { 1088 ti->error = "Hash device offset overflow"; 1089 r = -E2BIG; 1090 goto bad; 1091 } 1092 hash_position += s; 1093 } 1094 v->hash_blocks = hash_position; 1095 1096 v->bufio = dm_bufio_client_create(v->hash_dev->bdev, 1097 1 << v->hash_dev_block_bits, 1, sizeof(struct buffer_aux), 1098 dm_bufio_alloc_callback, NULL); 1099 if (IS_ERR(v->bufio)) { 1100 ti->error = "Cannot initialize dm-bufio"; 1101 r = PTR_ERR(v->bufio); 1102 v->bufio = NULL; 1103 goto bad; 1104 } 1105 1106 if (dm_bufio_get_device_size(v->bufio) < v->hash_blocks) { 1107 ti->error = "Hash device is too small"; 1108 r = -E2BIG; 1109 goto bad; 1110 } 1111 1112 /* WQ_UNBOUND greatly improves performance when running on ramdisk */ 1113 v->verify_wq = alloc_workqueue("kverityd", WQ_CPU_INTENSIVE | WQ_MEM_RECLAIM | WQ_UNBOUND, num_online_cpus()); 1114 if (!v->verify_wq) { 1115 ti->error = "Cannot allocate workqueue"; 1116 r = -ENOMEM; 1117 goto bad; 1118 } 1119 1120 ti->per_io_data_size = sizeof(struct dm_verity_io) + 1121 v->ahash_reqsize + v->digest_size * 2; 1122 1123 r = verity_fec_ctr(v); 1124 if (r) 1125 goto bad; 1126 1127 ti->per_io_data_size = roundup(ti->per_io_data_size, 1128 __alignof__(struct dm_verity_io)); 1129 1130 return 0; 1131 1132 bad: 1133 verity_dtr(ti); 1134 1135 return r; 1136 } 1137 1138 static struct target_type verity_target = { 1139 .name = "verity", 1140 .version = {1, 3, 0}, 1141 .module = THIS_MODULE, 1142 .ctr = verity_ctr, 1143 .dtr = verity_dtr, 1144 .map = verity_map, 1145 .status = verity_status, 1146 .prepare_ioctl = verity_prepare_ioctl, 1147 .iterate_devices = verity_iterate_devices, 1148 .io_hints = verity_io_hints, 1149 }; 1150 1151 static int __init dm_verity_init(void) 1152 { 1153 int r; 1154 1155 r = dm_register_target(&verity_target); 1156 if (r < 0) 1157 DMERR("register failed %d", r); 1158 1159 return r; 1160 } 1161 1162 static void __exit dm_verity_exit(void) 1163 { 1164 dm_unregister_target(&verity_target); 1165 } 1166 1167 module_init(dm_verity_init); 1168 module_exit(dm_verity_exit); 1169 1170 MODULE_AUTHOR("Mikulas Patocka <mpatocka@redhat.com>"); 1171 MODULE_AUTHOR("Mandeep Baines <msb@chromium.org>"); 1172 MODULE_AUTHOR("Will Drewry <wad@chromium.org>"); 1173 MODULE_DESCRIPTION(DM_NAME " target for transparent disk integrity checking"); 1174 MODULE_LICENSE("GPL"); 1175