xref: /linux/drivers/md/dm-verity-target.c (revision e58e871becec2d3b04ed91c0c16fe8deac9c9dfa)
1 /*
2  * Copyright (C) 2012 Red Hat, Inc.
3  *
4  * Author: Mikulas Patocka <mpatocka@redhat.com>
5  *
6  * Based on Chromium dm-verity driver (C) 2011 The Chromium OS Authors
7  *
8  * This file is released under the GPLv2.
9  *
10  * In the file "/sys/module/dm_verity/parameters/prefetch_cluster" you can set
11  * default prefetch value. Data are read in "prefetch_cluster" chunks from the
12  * hash device. Setting this greatly improves performance when data and hash
13  * are on the same disk on different partitions on devices with poor random
14  * access behavior.
15  */
16 
17 #include "dm-verity.h"
18 #include "dm-verity-fec.h"
19 
20 #include <linux/module.h>
21 #include <linux/reboot.h>
22 
23 #define DM_MSG_PREFIX			"verity"
24 
25 #define DM_VERITY_ENV_LENGTH		42
26 #define DM_VERITY_ENV_VAR_NAME		"DM_VERITY_ERR_BLOCK_NR"
27 
28 #define DM_VERITY_DEFAULT_PREFETCH_SIZE	262144
29 
30 #define DM_VERITY_MAX_CORRUPTED_ERRS	100
31 
32 #define DM_VERITY_OPT_LOGGING		"ignore_corruption"
33 #define DM_VERITY_OPT_RESTART		"restart_on_corruption"
34 #define DM_VERITY_OPT_IGN_ZEROES	"ignore_zero_blocks"
35 
36 #define DM_VERITY_OPTS_MAX		(2 + DM_VERITY_OPTS_FEC)
37 
38 static unsigned dm_verity_prefetch_cluster = DM_VERITY_DEFAULT_PREFETCH_SIZE;
39 
40 module_param_named(prefetch_cluster, dm_verity_prefetch_cluster, uint, S_IRUGO | S_IWUSR);
41 
42 struct dm_verity_prefetch_work {
43 	struct work_struct work;
44 	struct dm_verity *v;
45 	sector_t block;
46 	unsigned n_blocks;
47 };
48 
49 /*
50  * Auxiliary structure appended to each dm-bufio buffer. If the value
51  * hash_verified is nonzero, hash of the block has been verified.
52  *
53  * The variable hash_verified is set to 0 when allocating the buffer, then
54  * it can be changed to 1 and it is never reset to 0 again.
55  *
56  * There is no lock around this value, a race condition can at worst cause
57  * that multiple processes verify the hash of the same buffer simultaneously
58  * and write 1 to hash_verified simultaneously.
59  * This condition is harmless, so we don't need locking.
60  */
61 struct buffer_aux {
62 	int hash_verified;
63 };
64 
65 /*
66  * Initialize struct buffer_aux for a freshly created buffer.
67  */
68 static void dm_bufio_alloc_callback(struct dm_buffer *buf)
69 {
70 	struct buffer_aux *aux = dm_bufio_get_aux_data(buf);
71 
72 	aux->hash_verified = 0;
73 }
74 
75 /*
76  * Translate input sector number to the sector number on the target device.
77  */
78 static sector_t verity_map_sector(struct dm_verity *v, sector_t bi_sector)
79 {
80 	return v->data_start + dm_target_offset(v->ti, bi_sector);
81 }
82 
83 /*
84  * Return hash position of a specified block at a specified tree level
85  * (0 is the lowest level).
86  * The lowest "hash_per_block_bits"-bits of the result denote hash position
87  * inside a hash block. The remaining bits denote location of the hash block.
88  */
89 static sector_t verity_position_at_level(struct dm_verity *v, sector_t block,
90 					 int level)
91 {
92 	return block >> (level * v->hash_per_block_bits);
93 }
94 
95 /*
96  * Callback function for asynchrnous crypto API completion notification
97  */
98 static void verity_op_done(struct crypto_async_request *base, int err)
99 {
100 	struct verity_result *res = (struct verity_result *)base->data;
101 
102 	if (err == -EINPROGRESS)
103 		return;
104 
105 	res->err = err;
106 	complete(&res->completion);
107 }
108 
109 /*
110  * Wait for async crypto API callback
111  */
112 static inline int verity_complete_op(struct verity_result *res, int ret)
113 {
114 	switch (ret) {
115 	case 0:
116 		break;
117 
118 	case -EINPROGRESS:
119 	case -EBUSY:
120 		ret = wait_for_completion_interruptible(&res->completion);
121 		if (!ret)
122 			ret = res->err;
123 		reinit_completion(&res->completion);
124 		break;
125 
126 	default:
127 		DMERR("verity_wait_hash: crypto op submission failed: %d", ret);
128 	}
129 
130 	if (unlikely(ret < 0))
131 		DMERR("verity_wait_hash: crypto op failed: %d", ret);
132 
133 	return ret;
134 }
135 
136 static int verity_hash_update(struct dm_verity *v, struct ahash_request *req,
137 				const u8 *data, size_t len,
138 				struct verity_result *res)
139 {
140 	struct scatterlist sg;
141 
142 	sg_init_one(&sg, data, len);
143 	ahash_request_set_crypt(req, &sg, NULL, len);
144 
145 	return verity_complete_op(res, crypto_ahash_update(req));
146 }
147 
148 /*
149  * Wrapper for crypto_ahash_init, which handles verity salting.
150  */
151 static int verity_hash_init(struct dm_verity *v, struct ahash_request *req,
152 				struct verity_result *res)
153 {
154 	int r;
155 
156 	ahash_request_set_tfm(req, v->tfm);
157 	ahash_request_set_callback(req, CRYPTO_TFM_REQ_MAY_SLEEP |
158 					CRYPTO_TFM_REQ_MAY_BACKLOG,
159 					verity_op_done, (void *)res);
160 	init_completion(&res->completion);
161 
162 	r = verity_complete_op(res, crypto_ahash_init(req));
163 
164 	if (unlikely(r < 0)) {
165 		DMERR("crypto_ahash_init failed: %d", r);
166 		return r;
167 	}
168 
169 	if (likely(v->salt_size && (v->version >= 1)))
170 		r = verity_hash_update(v, req, v->salt, v->salt_size, res);
171 
172 	return r;
173 }
174 
175 static int verity_hash_final(struct dm_verity *v, struct ahash_request *req,
176 			     u8 *digest, struct verity_result *res)
177 {
178 	int r;
179 
180 	if (unlikely(v->salt_size && (!v->version))) {
181 		r = verity_hash_update(v, req, v->salt, v->salt_size, res);
182 
183 		if (r < 0) {
184 			DMERR("verity_hash_final failed updating salt: %d", r);
185 			goto out;
186 		}
187 	}
188 
189 	ahash_request_set_crypt(req, NULL, digest, 0);
190 	r = verity_complete_op(res, crypto_ahash_final(req));
191 out:
192 	return r;
193 }
194 
195 int verity_hash(struct dm_verity *v, struct ahash_request *req,
196 		const u8 *data, size_t len, u8 *digest)
197 {
198 	int r;
199 	struct verity_result res;
200 
201 	r = verity_hash_init(v, req, &res);
202 	if (unlikely(r < 0))
203 		goto out;
204 
205 	r = verity_hash_update(v, req, data, len, &res);
206 	if (unlikely(r < 0))
207 		goto out;
208 
209 	r = verity_hash_final(v, req, digest, &res);
210 
211 out:
212 	return r;
213 }
214 
215 static void verity_hash_at_level(struct dm_verity *v, sector_t block, int level,
216 				 sector_t *hash_block, unsigned *offset)
217 {
218 	sector_t position = verity_position_at_level(v, block, level);
219 	unsigned idx;
220 
221 	*hash_block = v->hash_level_block[level] + (position >> v->hash_per_block_bits);
222 
223 	if (!offset)
224 		return;
225 
226 	idx = position & ((1 << v->hash_per_block_bits) - 1);
227 	if (!v->version)
228 		*offset = idx * v->digest_size;
229 	else
230 		*offset = idx << (v->hash_dev_block_bits - v->hash_per_block_bits);
231 }
232 
233 /*
234  * Handle verification errors.
235  */
236 static int verity_handle_err(struct dm_verity *v, enum verity_block_type type,
237 			     unsigned long long block)
238 {
239 	char verity_env[DM_VERITY_ENV_LENGTH];
240 	char *envp[] = { verity_env, NULL };
241 	const char *type_str = "";
242 	struct mapped_device *md = dm_table_get_md(v->ti->table);
243 
244 	/* Corruption should be visible in device status in all modes */
245 	v->hash_failed = 1;
246 
247 	if (v->corrupted_errs >= DM_VERITY_MAX_CORRUPTED_ERRS)
248 		goto out;
249 
250 	v->corrupted_errs++;
251 
252 	switch (type) {
253 	case DM_VERITY_BLOCK_TYPE_DATA:
254 		type_str = "data";
255 		break;
256 	case DM_VERITY_BLOCK_TYPE_METADATA:
257 		type_str = "metadata";
258 		break;
259 	default:
260 		BUG();
261 	}
262 
263 	DMERR("%s: %s block %llu is corrupted", v->data_dev->name, type_str,
264 		block);
265 
266 	if (v->corrupted_errs == DM_VERITY_MAX_CORRUPTED_ERRS)
267 		DMERR("%s: reached maximum errors", v->data_dev->name);
268 
269 	snprintf(verity_env, DM_VERITY_ENV_LENGTH, "%s=%d,%llu",
270 		DM_VERITY_ENV_VAR_NAME, type, block);
271 
272 	kobject_uevent_env(&disk_to_dev(dm_disk(md))->kobj, KOBJ_CHANGE, envp);
273 
274 out:
275 	if (v->mode == DM_VERITY_MODE_LOGGING)
276 		return 0;
277 
278 	if (v->mode == DM_VERITY_MODE_RESTART)
279 		kernel_restart("dm-verity device corrupted");
280 
281 	return 1;
282 }
283 
284 /*
285  * Verify hash of a metadata block pertaining to the specified data block
286  * ("block" argument) at a specified level ("level" argument).
287  *
288  * On successful return, verity_io_want_digest(v, io) contains the hash value
289  * for a lower tree level or for the data block (if we're at the lowest level).
290  *
291  * If "skip_unverified" is true, unverified buffer is skipped and 1 is returned.
292  * If "skip_unverified" is false, unverified buffer is hashed and verified
293  * against current value of verity_io_want_digest(v, io).
294  */
295 static int verity_verify_level(struct dm_verity *v, struct dm_verity_io *io,
296 			       sector_t block, int level, bool skip_unverified,
297 			       u8 *want_digest)
298 {
299 	struct dm_buffer *buf;
300 	struct buffer_aux *aux;
301 	u8 *data;
302 	int r;
303 	sector_t hash_block;
304 	unsigned offset;
305 
306 	verity_hash_at_level(v, block, level, &hash_block, &offset);
307 
308 	data = dm_bufio_read(v->bufio, hash_block, &buf);
309 	if (IS_ERR(data))
310 		return PTR_ERR(data);
311 
312 	aux = dm_bufio_get_aux_data(buf);
313 
314 	if (!aux->hash_verified) {
315 		if (skip_unverified) {
316 			r = 1;
317 			goto release_ret_r;
318 		}
319 
320 		r = verity_hash(v, verity_io_hash_req(v, io),
321 				data, 1 << v->hash_dev_block_bits,
322 				verity_io_real_digest(v, io));
323 		if (unlikely(r < 0))
324 			goto release_ret_r;
325 
326 		if (likely(memcmp(verity_io_real_digest(v, io), want_digest,
327 				  v->digest_size) == 0))
328 			aux->hash_verified = 1;
329 		else if (verity_fec_decode(v, io,
330 					   DM_VERITY_BLOCK_TYPE_METADATA,
331 					   hash_block, data, NULL) == 0)
332 			aux->hash_verified = 1;
333 		else if (verity_handle_err(v,
334 					   DM_VERITY_BLOCK_TYPE_METADATA,
335 					   hash_block)) {
336 			r = -EIO;
337 			goto release_ret_r;
338 		}
339 	}
340 
341 	data += offset;
342 	memcpy(want_digest, data, v->digest_size);
343 	r = 0;
344 
345 release_ret_r:
346 	dm_bufio_release(buf);
347 	return r;
348 }
349 
350 /*
351  * Find a hash for a given block, write it to digest and verify the integrity
352  * of the hash tree if necessary.
353  */
354 int verity_hash_for_block(struct dm_verity *v, struct dm_verity_io *io,
355 			  sector_t block, u8 *digest, bool *is_zero)
356 {
357 	int r = 0, i;
358 
359 	if (likely(v->levels)) {
360 		/*
361 		 * First, we try to get the requested hash for
362 		 * the current block. If the hash block itself is
363 		 * verified, zero is returned. If it isn't, this
364 		 * function returns 1 and we fall back to whole
365 		 * chain verification.
366 		 */
367 		r = verity_verify_level(v, io, block, 0, true, digest);
368 		if (likely(r <= 0))
369 			goto out;
370 	}
371 
372 	memcpy(digest, v->root_digest, v->digest_size);
373 
374 	for (i = v->levels - 1; i >= 0; i--) {
375 		r = verity_verify_level(v, io, block, i, false, digest);
376 		if (unlikely(r))
377 			goto out;
378 	}
379 out:
380 	if (!r && v->zero_digest)
381 		*is_zero = !memcmp(v->zero_digest, digest, v->digest_size);
382 	else
383 		*is_zero = false;
384 
385 	return r;
386 }
387 
388 /*
389  * Calculates the digest for the given bio
390  */
391 int verity_for_io_block(struct dm_verity *v, struct dm_verity_io *io,
392 			struct bvec_iter *iter, struct verity_result *res)
393 {
394 	unsigned int todo = 1 << v->data_dev_block_bits;
395 	struct bio *bio = dm_bio_from_per_bio_data(io, v->ti->per_io_data_size);
396 	struct scatterlist sg;
397 	struct ahash_request *req = verity_io_hash_req(v, io);
398 
399 	do {
400 		int r;
401 		unsigned int len;
402 		struct bio_vec bv = bio_iter_iovec(bio, *iter);
403 
404 		sg_init_table(&sg, 1);
405 
406 		len = bv.bv_len;
407 
408 		if (likely(len >= todo))
409 			len = todo;
410 		/*
411 		 * Operating on a single page at a time looks suboptimal
412 		 * until you consider the typical block size is 4,096B.
413 		 * Going through this loops twice should be very rare.
414 		 */
415 		sg_set_page(&sg, bv.bv_page, len, bv.bv_offset);
416 		ahash_request_set_crypt(req, &sg, NULL, len);
417 		r = verity_complete_op(res, crypto_ahash_update(req));
418 
419 		if (unlikely(r < 0)) {
420 			DMERR("verity_for_io_block crypto op failed: %d", r);
421 			return r;
422 		}
423 
424 		bio_advance_iter(bio, iter, len);
425 		todo -= len;
426 	} while (todo);
427 
428 	return 0;
429 }
430 
431 /*
432  * Calls function process for 1 << v->data_dev_block_bits bytes in the bio_vec
433  * starting from iter.
434  */
435 int verity_for_bv_block(struct dm_verity *v, struct dm_verity_io *io,
436 			struct bvec_iter *iter,
437 			int (*process)(struct dm_verity *v,
438 				       struct dm_verity_io *io, u8 *data,
439 				       size_t len))
440 {
441 	unsigned todo = 1 << v->data_dev_block_bits;
442 	struct bio *bio = dm_bio_from_per_bio_data(io, v->ti->per_io_data_size);
443 
444 	do {
445 		int r;
446 		u8 *page;
447 		unsigned len;
448 		struct bio_vec bv = bio_iter_iovec(bio, *iter);
449 
450 		page = kmap_atomic(bv.bv_page);
451 		len = bv.bv_len;
452 
453 		if (likely(len >= todo))
454 			len = todo;
455 
456 		r = process(v, io, page + bv.bv_offset, len);
457 		kunmap_atomic(page);
458 
459 		if (r < 0)
460 			return r;
461 
462 		bio_advance_iter(bio, iter, len);
463 		todo -= len;
464 	} while (todo);
465 
466 	return 0;
467 }
468 
469 static int verity_bv_zero(struct dm_verity *v, struct dm_verity_io *io,
470 			  u8 *data, size_t len)
471 {
472 	memset(data, 0, len);
473 	return 0;
474 }
475 
476 /*
477  * Verify one "dm_verity_io" structure.
478  */
479 static int verity_verify_io(struct dm_verity_io *io)
480 {
481 	bool is_zero;
482 	struct dm_verity *v = io->v;
483 	struct bvec_iter start;
484 	unsigned b;
485 	struct verity_result res;
486 
487 	for (b = 0; b < io->n_blocks; b++) {
488 		int r;
489 		struct ahash_request *req = verity_io_hash_req(v, io);
490 
491 		r = verity_hash_for_block(v, io, io->block + b,
492 					  verity_io_want_digest(v, io),
493 					  &is_zero);
494 		if (unlikely(r < 0))
495 			return r;
496 
497 		if (is_zero) {
498 			/*
499 			 * If we expect a zero block, don't validate, just
500 			 * return zeros.
501 			 */
502 			r = verity_for_bv_block(v, io, &io->iter,
503 						verity_bv_zero);
504 			if (unlikely(r < 0))
505 				return r;
506 
507 			continue;
508 		}
509 
510 		r = verity_hash_init(v, req, &res);
511 		if (unlikely(r < 0))
512 			return r;
513 
514 		start = io->iter;
515 		r = verity_for_io_block(v, io, &io->iter, &res);
516 		if (unlikely(r < 0))
517 			return r;
518 
519 		r = verity_hash_final(v, req, verity_io_real_digest(v, io),
520 					&res);
521 		if (unlikely(r < 0))
522 			return r;
523 
524 		if (likely(memcmp(verity_io_real_digest(v, io),
525 				  verity_io_want_digest(v, io), v->digest_size) == 0))
526 			continue;
527 		else if (verity_fec_decode(v, io, DM_VERITY_BLOCK_TYPE_DATA,
528 					   io->block + b, NULL, &start) == 0)
529 			continue;
530 		else if (verity_handle_err(v, DM_VERITY_BLOCK_TYPE_DATA,
531 					   io->block + b))
532 			return -EIO;
533 	}
534 
535 	return 0;
536 }
537 
538 /*
539  * End one "io" structure with a given error.
540  */
541 static void verity_finish_io(struct dm_verity_io *io, int error)
542 {
543 	struct dm_verity *v = io->v;
544 	struct bio *bio = dm_bio_from_per_bio_data(io, v->ti->per_io_data_size);
545 
546 	bio->bi_end_io = io->orig_bi_end_io;
547 	bio->bi_error = error;
548 
549 	verity_fec_finish_io(io);
550 
551 	bio_endio(bio);
552 }
553 
554 static void verity_work(struct work_struct *w)
555 {
556 	struct dm_verity_io *io = container_of(w, struct dm_verity_io, work);
557 
558 	verity_finish_io(io, verity_verify_io(io));
559 }
560 
561 static void verity_end_io(struct bio *bio)
562 {
563 	struct dm_verity_io *io = bio->bi_private;
564 
565 	if (bio->bi_error && !verity_fec_is_enabled(io->v)) {
566 		verity_finish_io(io, bio->bi_error);
567 		return;
568 	}
569 
570 	INIT_WORK(&io->work, verity_work);
571 	queue_work(io->v->verify_wq, &io->work);
572 }
573 
574 /*
575  * Prefetch buffers for the specified io.
576  * The root buffer is not prefetched, it is assumed that it will be cached
577  * all the time.
578  */
579 static void verity_prefetch_io(struct work_struct *work)
580 {
581 	struct dm_verity_prefetch_work *pw =
582 		container_of(work, struct dm_verity_prefetch_work, work);
583 	struct dm_verity *v = pw->v;
584 	int i;
585 
586 	for (i = v->levels - 2; i >= 0; i--) {
587 		sector_t hash_block_start;
588 		sector_t hash_block_end;
589 		verity_hash_at_level(v, pw->block, i, &hash_block_start, NULL);
590 		verity_hash_at_level(v, pw->block + pw->n_blocks - 1, i, &hash_block_end, NULL);
591 		if (!i) {
592 			unsigned cluster = ACCESS_ONCE(dm_verity_prefetch_cluster);
593 
594 			cluster >>= v->data_dev_block_bits;
595 			if (unlikely(!cluster))
596 				goto no_prefetch_cluster;
597 
598 			if (unlikely(cluster & (cluster - 1)))
599 				cluster = 1 << __fls(cluster);
600 
601 			hash_block_start &= ~(sector_t)(cluster - 1);
602 			hash_block_end |= cluster - 1;
603 			if (unlikely(hash_block_end >= v->hash_blocks))
604 				hash_block_end = v->hash_blocks - 1;
605 		}
606 no_prefetch_cluster:
607 		dm_bufio_prefetch(v->bufio, hash_block_start,
608 				  hash_block_end - hash_block_start + 1);
609 	}
610 
611 	kfree(pw);
612 }
613 
614 static void verity_submit_prefetch(struct dm_verity *v, struct dm_verity_io *io)
615 {
616 	struct dm_verity_prefetch_work *pw;
617 
618 	pw = kmalloc(sizeof(struct dm_verity_prefetch_work),
619 		GFP_NOIO | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN);
620 
621 	if (!pw)
622 		return;
623 
624 	INIT_WORK(&pw->work, verity_prefetch_io);
625 	pw->v = v;
626 	pw->block = io->block;
627 	pw->n_blocks = io->n_blocks;
628 	queue_work(v->verify_wq, &pw->work);
629 }
630 
631 /*
632  * Bio map function. It allocates dm_verity_io structure and bio vector and
633  * fills them. Then it issues prefetches and the I/O.
634  */
635 static int verity_map(struct dm_target *ti, struct bio *bio)
636 {
637 	struct dm_verity *v = ti->private;
638 	struct dm_verity_io *io;
639 
640 	bio->bi_bdev = v->data_dev->bdev;
641 	bio->bi_iter.bi_sector = verity_map_sector(v, bio->bi_iter.bi_sector);
642 
643 	if (((unsigned)bio->bi_iter.bi_sector | bio_sectors(bio)) &
644 	    ((1 << (v->data_dev_block_bits - SECTOR_SHIFT)) - 1)) {
645 		DMERR_LIMIT("unaligned io");
646 		return -EIO;
647 	}
648 
649 	if (bio_end_sector(bio) >>
650 	    (v->data_dev_block_bits - SECTOR_SHIFT) > v->data_blocks) {
651 		DMERR_LIMIT("io out of range");
652 		return -EIO;
653 	}
654 
655 	if (bio_data_dir(bio) == WRITE)
656 		return -EIO;
657 
658 	io = dm_per_bio_data(bio, ti->per_io_data_size);
659 	io->v = v;
660 	io->orig_bi_end_io = bio->bi_end_io;
661 	io->block = bio->bi_iter.bi_sector >> (v->data_dev_block_bits - SECTOR_SHIFT);
662 	io->n_blocks = bio->bi_iter.bi_size >> v->data_dev_block_bits;
663 
664 	bio->bi_end_io = verity_end_io;
665 	bio->bi_private = io;
666 	io->iter = bio->bi_iter;
667 
668 	verity_fec_init_io(io);
669 
670 	verity_submit_prefetch(v, io);
671 
672 	generic_make_request(bio);
673 
674 	return DM_MAPIO_SUBMITTED;
675 }
676 
677 /*
678  * Status: V (valid) or C (corruption found)
679  */
680 static void verity_status(struct dm_target *ti, status_type_t type,
681 			  unsigned status_flags, char *result, unsigned maxlen)
682 {
683 	struct dm_verity *v = ti->private;
684 	unsigned args = 0;
685 	unsigned sz = 0;
686 	unsigned x;
687 
688 	switch (type) {
689 	case STATUSTYPE_INFO:
690 		DMEMIT("%c", v->hash_failed ? 'C' : 'V');
691 		break;
692 	case STATUSTYPE_TABLE:
693 		DMEMIT("%u %s %s %u %u %llu %llu %s ",
694 			v->version,
695 			v->data_dev->name,
696 			v->hash_dev->name,
697 			1 << v->data_dev_block_bits,
698 			1 << v->hash_dev_block_bits,
699 			(unsigned long long)v->data_blocks,
700 			(unsigned long long)v->hash_start,
701 			v->alg_name
702 			);
703 		for (x = 0; x < v->digest_size; x++)
704 			DMEMIT("%02x", v->root_digest[x]);
705 		DMEMIT(" ");
706 		if (!v->salt_size)
707 			DMEMIT("-");
708 		else
709 			for (x = 0; x < v->salt_size; x++)
710 				DMEMIT("%02x", v->salt[x]);
711 		if (v->mode != DM_VERITY_MODE_EIO)
712 			args++;
713 		if (verity_fec_is_enabled(v))
714 			args += DM_VERITY_OPTS_FEC;
715 		if (v->zero_digest)
716 			args++;
717 		if (!args)
718 			return;
719 		DMEMIT(" %u", args);
720 		if (v->mode != DM_VERITY_MODE_EIO) {
721 			DMEMIT(" ");
722 			switch (v->mode) {
723 			case DM_VERITY_MODE_LOGGING:
724 				DMEMIT(DM_VERITY_OPT_LOGGING);
725 				break;
726 			case DM_VERITY_MODE_RESTART:
727 				DMEMIT(DM_VERITY_OPT_RESTART);
728 				break;
729 			default:
730 				BUG();
731 			}
732 		}
733 		if (v->zero_digest)
734 			DMEMIT(" " DM_VERITY_OPT_IGN_ZEROES);
735 		sz = verity_fec_status_table(v, sz, result, maxlen);
736 		break;
737 	}
738 }
739 
740 static int verity_prepare_ioctl(struct dm_target *ti,
741 		struct block_device **bdev, fmode_t *mode)
742 {
743 	struct dm_verity *v = ti->private;
744 
745 	*bdev = v->data_dev->bdev;
746 
747 	if (v->data_start ||
748 	    ti->len != i_size_read(v->data_dev->bdev->bd_inode) >> SECTOR_SHIFT)
749 		return 1;
750 	return 0;
751 }
752 
753 static int verity_iterate_devices(struct dm_target *ti,
754 				  iterate_devices_callout_fn fn, void *data)
755 {
756 	struct dm_verity *v = ti->private;
757 
758 	return fn(ti, v->data_dev, v->data_start, ti->len, data);
759 }
760 
761 static void verity_io_hints(struct dm_target *ti, struct queue_limits *limits)
762 {
763 	struct dm_verity *v = ti->private;
764 
765 	if (limits->logical_block_size < 1 << v->data_dev_block_bits)
766 		limits->logical_block_size = 1 << v->data_dev_block_bits;
767 
768 	if (limits->physical_block_size < 1 << v->data_dev_block_bits)
769 		limits->physical_block_size = 1 << v->data_dev_block_bits;
770 
771 	blk_limits_io_min(limits, limits->logical_block_size);
772 }
773 
774 static void verity_dtr(struct dm_target *ti)
775 {
776 	struct dm_verity *v = ti->private;
777 
778 	if (v->verify_wq)
779 		destroy_workqueue(v->verify_wq);
780 
781 	if (v->bufio)
782 		dm_bufio_client_destroy(v->bufio);
783 
784 	kfree(v->salt);
785 	kfree(v->root_digest);
786 	kfree(v->zero_digest);
787 
788 	if (v->tfm)
789 		crypto_free_ahash(v->tfm);
790 
791 	kfree(v->alg_name);
792 
793 	if (v->hash_dev)
794 		dm_put_device(ti, v->hash_dev);
795 
796 	if (v->data_dev)
797 		dm_put_device(ti, v->data_dev);
798 
799 	verity_fec_dtr(v);
800 
801 	kfree(v);
802 }
803 
804 static int verity_alloc_zero_digest(struct dm_verity *v)
805 {
806 	int r = -ENOMEM;
807 	struct ahash_request *req;
808 	u8 *zero_data;
809 
810 	v->zero_digest = kmalloc(v->digest_size, GFP_KERNEL);
811 
812 	if (!v->zero_digest)
813 		return r;
814 
815 	req = kmalloc(v->ahash_reqsize, GFP_KERNEL);
816 
817 	if (!req)
818 		return r; /* verity_dtr will free zero_digest */
819 
820 	zero_data = kzalloc(1 << v->data_dev_block_bits, GFP_KERNEL);
821 
822 	if (!zero_data)
823 		goto out;
824 
825 	r = verity_hash(v, req, zero_data, 1 << v->data_dev_block_bits,
826 			v->zero_digest);
827 
828 out:
829 	kfree(req);
830 	kfree(zero_data);
831 
832 	return r;
833 }
834 
835 static int verity_parse_opt_args(struct dm_arg_set *as, struct dm_verity *v)
836 {
837 	int r;
838 	unsigned argc;
839 	struct dm_target *ti = v->ti;
840 	const char *arg_name;
841 
842 	static struct dm_arg _args[] = {
843 		{0, DM_VERITY_OPTS_MAX, "Invalid number of feature args"},
844 	};
845 
846 	r = dm_read_arg_group(_args, as, &argc, &ti->error);
847 	if (r)
848 		return -EINVAL;
849 
850 	if (!argc)
851 		return 0;
852 
853 	do {
854 		arg_name = dm_shift_arg(as);
855 		argc--;
856 
857 		if (!strcasecmp(arg_name, DM_VERITY_OPT_LOGGING)) {
858 			v->mode = DM_VERITY_MODE_LOGGING;
859 			continue;
860 
861 		} else if (!strcasecmp(arg_name, DM_VERITY_OPT_RESTART)) {
862 			v->mode = DM_VERITY_MODE_RESTART;
863 			continue;
864 
865 		} else if (!strcasecmp(arg_name, DM_VERITY_OPT_IGN_ZEROES)) {
866 			r = verity_alloc_zero_digest(v);
867 			if (r) {
868 				ti->error = "Cannot allocate zero digest";
869 				return r;
870 			}
871 			continue;
872 
873 		} else if (verity_is_fec_opt_arg(arg_name)) {
874 			r = verity_fec_parse_opt_args(as, v, &argc, arg_name);
875 			if (r)
876 				return r;
877 			continue;
878 		}
879 
880 		ti->error = "Unrecognized verity feature request";
881 		return -EINVAL;
882 	} while (argc && !r);
883 
884 	return r;
885 }
886 
887 /*
888  * Target parameters:
889  *	<version>	The current format is version 1.
890  *			Vsn 0 is compatible with original Chromium OS releases.
891  *	<data device>
892  *	<hash device>
893  *	<data block size>
894  *	<hash block size>
895  *	<the number of data blocks>
896  *	<hash start block>
897  *	<algorithm>
898  *	<digest>
899  *	<salt>		Hex string or "-" if no salt.
900  */
901 static int verity_ctr(struct dm_target *ti, unsigned argc, char **argv)
902 {
903 	struct dm_verity *v;
904 	struct dm_arg_set as;
905 	unsigned int num;
906 	unsigned long long num_ll;
907 	int r;
908 	int i;
909 	sector_t hash_position;
910 	char dummy;
911 
912 	v = kzalloc(sizeof(struct dm_verity), GFP_KERNEL);
913 	if (!v) {
914 		ti->error = "Cannot allocate verity structure";
915 		return -ENOMEM;
916 	}
917 	ti->private = v;
918 	v->ti = ti;
919 
920 	r = verity_fec_ctr_alloc(v);
921 	if (r)
922 		goto bad;
923 
924 	if ((dm_table_get_mode(ti->table) & ~FMODE_READ)) {
925 		ti->error = "Device must be readonly";
926 		r = -EINVAL;
927 		goto bad;
928 	}
929 
930 	if (argc < 10) {
931 		ti->error = "Not enough arguments";
932 		r = -EINVAL;
933 		goto bad;
934 	}
935 
936 	if (sscanf(argv[0], "%u%c", &num, &dummy) != 1 ||
937 	    num > 1) {
938 		ti->error = "Invalid version";
939 		r = -EINVAL;
940 		goto bad;
941 	}
942 	v->version = num;
943 
944 	r = dm_get_device(ti, argv[1], FMODE_READ, &v->data_dev);
945 	if (r) {
946 		ti->error = "Data device lookup failed";
947 		goto bad;
948 	}
949 
950 	r = dm_get_device(ti, argv[2], FMODE_READ, &v->hash_dev);
951 	if (r) {
952 		ti->error = "Hash device lookup failed";
953 		goto bad;
954 	}
955 
956 	if (sscanf(argv[3], "%u%c", &num, &dummy) != 1 ||
957 	    !num || (num & (num - 1)) ||
958 	    num < bdev_logical_block_size(v->data_dev->bdev) ||
959 	    num > PAGE_SIZE) {
960 		ti->error = "Invalid data device block size";
961 		r = -EINVAL;
962 		goto bad;
963 	}
964 	v->data_dev_block_bits = __ffs(num);
965 
966 	if (sscanf(argv[4], "%u%c", &num, &dummy) != 1 ||
967 	    !num || (num & (num - 1)) ||
968 	    num < bdev_logical_block_size(v->hash_dev->bdev) ||
969 	    num > INT_MAX) {
970 		ti->error = "Invalid hash device block size";
971 		r = -EINVAL;
972 		goto bad;
973 	}
974 	v->hash_dev_block_bits = __ffs(num);
975 
976 	if (sscanf(argv[5], "%llu%c", &num_ll, &dummy) != 1 ||
977 	    (sector_t)(num_ll << (v->data_dev_block_bits - SECTOR_SHIFT))
978 	    >> (v->data_dev_block_bits - SECTOR_SHIFT) != num_ll) {
979 		ti->error = "Invalid data blocks";
980 		r = -EINVAL;
981 		goto bad;
982 	}
983 	v->data_blocks = num_ll;
984 
985 	if (ti->len > (v->data_blocks << (v->data_dev_block_bits - SECTOR_SHIFT))) {
986 		ti->error = "Data device is too small";
987 		r = -EINVAL;
988 		goto bad;
989 	}
990 
991 	if (sscanf(argv[6], "%llu%c", &num_ll, &dummy) != 1 ||
992 	    (sector_t)(num_ll << (v->hash_dev_block_bits - SECTOR_SHIFT))
993 	    >> (v->hash_dev_block_bits - SECTOR_SHIFT) != num_ll) {
994 		ti->error = "Invalid hash start";
995 		r = -EINVAL;
996 		goto bad;
997 	}
998 	v->hash_start = num_ll;
999 
1000 	v->alg_name = kstrdup(argv[7], GFP_KERNEL);
1001 	if (!v->alg_name) {
1002 		ti->error = "Cannot allocate algorithm name";
1003 		r = -ENOMEM;
1004 		goto bad;
1005 	}
1006 
1007 	v->tfm = crypto_alloc_ahash(v->alg_name, 0, 0);
1008 	if (IS_ERR(v->tfm)) {
1009 		ti->error = "Cannot initialize hash function";
1010 		r = PTR_ERR(v->tfm);
1011 		v->tfm = NULL;
1012 		goto bad;
1013 	}
1014 	v->digest_size = crypto_ahash_digestsize(v->tfm);
1015 	if ((1 << v->hash_dev_block_bits) < v->digest_size * 2) {
1016 		ti->error = "Digest size too big";
1017 		r = -EINVAL;
1018 		goto bad;
1019 	}
1020 	v->ahash_reqsize = sizeof(struct ahash_request) +
1021 		crypto_ahash_reqsize(v->tfm);
1022 
1023 	v->root_digest = kmalloc(v->digest_size, GFP_KERNEL);
1024 	if (!v->root_digest) {
1025 		ti->error = "Cannot allocate root digest";
1026 		r = -ENOMEM;
1027 		goto bad;
1028 	}
1029 	if (strlen(argv[8]) != v->digest_size * 2 ||
1030 	    hex2bin(v->root_digest, argv[8], v->digest_size)) {
1031 		ti->error = "Invalid root digest";
1032 		r = -EINVAL;
1033 		goto bad;
1034 	}
1035 
1036 	if (strcmp(argv[9], "-")) {
1037 		v->salt_size = strlen(argv[9]) / 2;
1038 		v->salt = kmalloc(v->salt_size, GFP_KERNEL);
1039 		if (!v->salt) {
1040 			ti->error = "Cannot allocate salt";
1041 			r = -ENOMEM;
1042 			goto bad;
1043 		}
1044 		if (strlen(argv[9]) != v->salt_size * 2 ||
1045 		    hex2bin(v->salt, argv[9], v->salt_size)) {
1046 			ti->error = "Invalid salt";
1047 			r = -EINVAL;
1048 			goto bad;
1049 		}
1050 	}
1051 
1052 	argv += 10;
1053 	argc -= 10;
1054 
1055 	/* Optional parameters */
1056 	if (argc) {
1057 		as.argc = argc;
1058 		as.argv = argv;
1059 
1060 		r = verity_parse_opt_args(&as, v);
1061 		if (r < 0)
1062 			goto bad;
1063 	}
1064 
1065 	v->hash_per_block_bits =
1066 		__fls((1 << v->hash_dev_block_bits) / v->digest_size);
1067 
1068 	v->levels = 0;
1069 	if (v->data_blocks)
1070 		while (v->hash_per_block_bits * v->levels < 64 &&
1071 		       (unsigned long long)(v->data_blocks - 1) >>
1072 		       (v->hash_per_block_bits * v->levels))
1073 			v->levels++;
1074 
1075 	if (v->levels > DM_VERITY_MAX_LEVELS) {
1076 		ti->error = "Too many tree levels";
1077 		r = -E2BIG;
1078 		goto bad;
1079 	}
1080 
1081 	hash_position = v->hash_start;
1082 	for (i = v->levels - 1; i >= 0; i--) {
1083 		sector_t s;
1084 		v->hash_level_block[i] = hash_position;
1085 		s = (v->data_blocks + ((sector_t)1 << ((i + 1) * v->hash_per_block_bits)) - 1)
1086 					>> ((i + 1) * v->hash_per_block_bits);
1087 		if (hash_position + s < hash_position) {
1088 			ti->error = "Hash device offset overflow";
1089 			r = -E2BIG;
1090 			goto bad;
1091 		}
1092 		hash_position += s;
1093 	}
1094 	v->hash_blocks = hash_position;
1095 
1096 	v->bufio = dm_bufio_client_create(v->hash_dev->bdev,
1097 		1 << v->hash_dev_block_bits, 1, sizeof(struct buffer_aux),
1098 		dm_bufio_alloc_callback, NULL);
1099 	if (IS_ERR(v->bufio)) {
1100 		ti->error = "Cannot initialize dm-bufio";
1101 		r = PTR_ERR(v->bufio);
1102 		v->bufio = NULL;
1103 		goto bad;
1104 	}
1105 
1106 	if (dm_bufio_get_device_size(v->bufio) < v->hash_blocks) {
1107 		ti->error = "Hash device is too small";
1108 		r = -E2BIG;
1109 		goto bad;
1110 	}
1111 
1112 	/* WQ_UNBOUND greatly improves performance when running on ramdisk */
1113 	v->verify_wq = alloc_workqueue("kverityd", WQ_CPU_INTENSIVE | WQ_MEM_RECLAIM | WQ_UNBOUND, num_online_cpus());
1114 	if (!v->verify_wq) {
1115 		ti->error = "Cannot allocate workqueue";
1116 		r = -ENOMEM;
1117 		goto bad;
1118 	}
1119 
1120 	ti->per_io_data_size = sizeof(struct dm_verity_io) +
1121 				v->ahash_reqsize + v->digest_size * 2;
1122 
1123 	r = verity_fec_ctr(v);
1124 	if (r)
1125 		goto bad;
1126 
1127 	ti->per_io_data_size = roundup(ti->per_io_data_size,
1128 				       __alignof__(struct dm_verity_io));
1129 
1130 	return 0;
1131 
1132 bad:
1133 	verity_dtr(ti);
1134 
1135 	return r;
1136 }
1137 
1138 static struct target_type verity_target = {
1139 	.name		= "verity",
1140 	.version	= {1, 3, 0},
1141 	.module		= THIS_MODULE,
1142 	.ctr		= verity_ctr,
1143 	.dtr		= verity_dtr,
1144 	.map		= verity_map,
1145 	.status		= verity_status,
1146 	.prepare_ioctl	= verity_prepare_ioctl,
1147 	.iterate_devices = verity_iterate_devices,
1148 	.io_hints	= verity_io_hints,
1149 };
1150 
1151 static int __init dm_verity_init(void)
1152 {
1153 	int r;
1154 
1155 	r = dm_register_target(&verity_target);
1156 	if (r < 0)
1157 		DMERR("register failed %d", r);
1158 
1159 	return r;
1160 }
1161 
1162 static void __exit dm_verity_exit(void)
1163 {
1164 	dm_unregister_target(&verity_target);
1165 }
1166 
1167 module_init(dm_verity_init);
1168 module_exit(dm_verity_exit);
1169 
1170 MODULE_AUTHOR("Mikulas Patocka <mpatocka@redhat.com>");
1171 MODULE_AUTHOR("Mandeep Baines <msb@chromium.org>");
1172 MODULE_AUTHOR("Will Drewry <wad@chromium.org>");
1173 MODULE_DESCRIPTION(DM_NAME " target for transparent disk integrity checking");
1174 MODULE_LICENSE("GPL");
1175