xref: /linux/drivers/md/dm-verity-target.c (revision d8e473182ab9e85708067be81d20424045d939fa)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2012 Red Hat, Inc.
4  *
5  * Author: Mikulas Patocka <mpatocka@redhat.com>
6  *
7  * Based on Chromium dm-verity driver (C) 2011 The Chromium OS Authors
8  *
9  * In the file "/sys/module/dm_verity/parameters/prefetch_cluster" you can set
10  * default prefetch value. Data are read in "prefetch_cluster" chunks from the
11  * hash device. Setting this greatly improves performance when data and hash
12  * are on the same disk on different partitions on devices with poor random
13  * access behavior.
14  */
15 
16 #include "dm-verity.h"
17 #include "dm-verity-fec.h"
18 #include "dm-verity-verify-sig.h"
19 #include <linux/module.h>
20 #include <linux/reboot.h>
21 #include <linux/scatterlist.h>
22 #include <linux/string.h>
23 #include <linux/jump_label.h>
24 
25 #define DM_MSG_PREFIX			"verity"
26 
27 #define DM_VERITY_ENV_LENGTH		42
28 #define DM_VERITY_ENV_VAR_NAME		"DM_VERITY_ERR_BLOCK_NR"
29 
30 #define DM_VERITY_DEFAULT_PREFETCH_SIZE	262144
31 
32 #define DM_VERITY_MAX_CORRUPTED_ERRS	100
33 
34 #define DM_VERITY_OPT_LOGGING		"ignore_corruption"
35 #define DM_VERITY_OPT_RESTART		"restart_on_corruption"
36 #define DM_VERITY_OPT_PANIC		"panic_on_corruption"
37 #define DM_VERITY_OPT_IGN_ZEROES	"ignore_zero_blocks"
38 #define DM_VERITY_OPT_AT_MOST_ONCE	"check_at_most_once"
39 #define DM_VERITY_OPT_TASKLET_VERIFY	"try_verify_in_tasklet"
40 
41 #define DM_VERITY_OPTS_MAX		(4 + DM_VERITY_OPTS_FEC + \
42 					 DM_VERITY_ROOT_HASH_VERIFICATION_OPTS)
43 
44 static unsigned int dm_verity_prefetch_cluster = DM_VERITY_DEFAULT_PREFETCH_SIZE;
45 
46 module_param_named(prefetch_cluster, dm_verity_prefetch_cluster, uint, 0644);
47 
48 static DEFINE_STATIC_KEY_FALSE(use_tasklet_enabled);
49 
50 struct dm_verity_prefetch_work {
51 	struct work_struct work;
52 	struct dm_verity *v;
53 	sector_t block;
54 	unsigned int n_blocks;
55 };
56 
57 /*
58  * Auxiliary structure appended to each dm-bufio buffer. If the value
59  * hash_verified is nonzero, hash of the block has been verified.
60  *
61  * The variable hash_verified is set to 0 when allocating the buffer, then
62  * it can be changed to 1 and it is never reset to 0 again.
63  *
64  * There is no lock around this value, a race condition can at worst cause
65  * that multiple processes verify the hash of the same buffer simultaneously
66  * and write 1 to hash_verified simultaneously.
67  * This condition is harmless, so we don't need locking.
68  */
69 struct buffer_aux {
70 	int hash_verified;
71 };
72 
73 /*
74  * Initialize struct buffer_aux for a freshly created buffer.
75  */
76 static void dm_bufio_alloc_callback(struct dm_buffer *buf)
77 {
78 	struct buffer_aux *aux = dm_bufio_get_aux_data(buf);
79 
80 	aux->hash_verified = 0;
81 }
82 
83 /*
84  * Translate input sector number to the sector number on the target device.
85  */
86 static sector_t verity_map_sector(struct dm_verity *v, sector_t bi_sector)
87 {
88 	return v->data_start + dm_target_offset(v->ti, bi_sector);
89 }
90 
91 /*
92  * Return hash position of a specified block at a specified tree level
93  * (0 is the lowest level).
94  * The lowest "hash_per_block_bits"-bits of the result denote hash position
95  * inside a hash block. The remaining bits denote location of the hash block.
96  */
97 static sector_t verity_position_at_level(struct dm_verity *v, sector_t block,
98 					 int level)
99 {
100 	return block >> (level * v->hash_per_block_bits);
101 }
102 
103 static int verity_hash_update(struct dm_verity *v, struct ahash_request *req,
104 				const u8 *data, size_t len,
105 				struct crypto_wait *wait)
106 {
107 	struct scatterlist sg;
108 
109 	if (likely(!is_vmalloc_addr(data))) {
110 		sg_init_one(&sg, data, len);
111 		ahash_request_set_crypt(req, &sg, NULL, len);
112 		return crypto_wait_req(crypto_ahash_update(req), wait);
113 	}
114 
115 	do {
116 		int r;
117 		size_t this_step = min_t(size_t, len, PAGE_SIZE - offset_in_page(data));
118 
119 		flush_kernel_vmap_range((void *)data, this_step);
120 		sg_init_table(&sg, 1);
121 		sg_set_page(&sg, vmalloc_to_page(data), this_step, offset_in_page(data));
122 		ahash_request_set_crypt(req, &sg, NULL, this_step);
123 		r = crypto_wait_req(crypto_ahash_update(req), wait);
124 		if (unlikely(r))
125 			return r;
126 		data += this_step;
127 		len -= this_step;
128 	} while (len);
129 
130 	return 0;
131 }
132 
133 /*
134  * Wrapper for crypto_ahash_init, which handles verity salting.
135  */
136 static int verity_hash_init(struct dm_verity *v, struct ahash_request *req,
137 				struct crypto_wait *wait)
138 {
139 	int r;
140 
141 	ahash_request_set_tfm(req, v->tfm);
142 	ahash_request_set_callback(req, CRYPTO_TFM_REQ_MAY_SLEEP |
143 					CRYPTO_TFM_REQ_MAY_BACKLOG,
144 					crypto_req_done, (void *)wait);
145 	crypto_init_wait(wait);
146 
147 	r = crypto_wait_req(crypto_ahash_init(req), wait);
148 
149 	if (unlikely(r < 0)) {
150 		DMERR("crypto_ahash_init failed: %d", r);
151 		return r;
152 	}
153 
154 	if (likely(v->salt_size && (v->version >= 1)))
155 		r = verity_hash_update(v, req, v->salt, v->salt_size, wait);
156 
157 	return r;
158 }
159 
160 static int verity_hash_final(struct dm_verity *v, struct ahash_request *req,
161 			     u8 *digest, struct crypto_wait *wait)
162 {
163 	int r;
164 
165 	if (unlikely(v->salt_size && (!v->version))) {
166 		r = verity_hash_update(v, req, v->salt, v->salt_size, wait);
167 
168 		if (r < 0) {
169 			DMERR("%s failed updating salt: %d", __func__, r);
170 			goto out;
171 		}
172 	}
173 
174 	ahash_request_set_crypt(req, NULL, digest, 0);
175 	r = crypto_wait_req(crypto_ahash_final(req), wait);
176 out:
177 	return r;
178 }
179 
180 int verity_hash(struct dm_verity *v, struct ahash_request *req,
181 		const u8 *data, size_t len, u8 *digest)
182 {
183 	int r;
184 	struct crypto_wait wait;
185 
186 	r = verity_hash_init(v, req, &wait);
187 	if (unlikely(r < 0))
188 		goto out;
189 
190 	r = verity_hash_update(v, req, data, len, &wait);
191 	if (unlikely(r < 0))
192 		goto out;
193 
194 	r = verity_hash_final(v, req, digest, &wait);
195 
196 out:
197 	return r;
198 }
199 
200 static void verity_hash_at_level(struct dm_verity *v, sector_t block, int level,
201 				 sector_t *hash_block, unsigned int *offset)
202 {
203 	sector_t position = verity_position_at_level(v, block, level);
204 	unsigned int idx;
205 
206 	*hash_block = v->hash_level_block[level] + (position >> v->hash_per_block_bits);
207 
208 	if (!offset)
209 		return;
210 
211 	idx = position & ((1 << v->hash_per_block_bits) - 1);
212 	if (!v->version)
213 		*offset = idx * v->digest_size;
214 	else
215 		*offset = idx << (v->hash_dev_block_bits - v->hash_per_block_bits);
216 }
217 
218 /*
219  * Handle verification errors.
220  */
221 static int verity_handle_err(struct dm_verity *v, enum verity_block_type type,
222 			     unsigned long long block)
223 {
224 	char verity_env[DM_VERITY_ENV_LENGTH];
225 	char *envp[] = { verity_env, NULL };
226 	const char *type_str = "";
227 	struct mapped_device *md = dm_table_get_md(v->ti->table);
228 
229 	/* Corruption should be visible in device status in all modes */
230 	v->hash_failed = true;
231 
232 	if (v->corrupted_errs >= DM_VERITY_MAX_CORRUPTED_ERRS)
233 		goto out;
234 
235 	v->corrupted_errs++;
236 
237 	switch (type) {
238 	case DM_VERITY_BLOCK_TYPE_DATA:
239 		type_str = "data";
240 		break;
241 	case DM_VERITY_BLOCK_TYPE_METADATA:
242 		type_str = "metadata";
243 		break;
244 	default:
245 		BUG();
246 	}
247 
248 	DMERR_LIMIT("%s: %s block %llu is corrupted", v->data_dev->name,
249 		    type_str, block);
250 
251 	if (v->corrupted_errs == DM_VERITY_MAX_CORRUPTED_ERRS)
252 		DMERR("%s: reached maximum errors", v->data_dev->name);
253 
254 	snprintf(verity_env, DM_VERITY_ENV_LENGTH, "%s=%d,%llu",
255 		DM_VERITY_ENV_VAR_NAME, type, block);
256 
257 	kobject_uevent_env(&disk_to_dev(dm_disk(md))->kobj, KOBJ_CHANGE, envp);
258 
259 out:
260 	if (v->mode == DM_VERITY_MODE_LOGGING)
261 		return 0;
262 
263 	if (v->mode == DM_VERITY_MODE_RESTART)
264 		kernel_restart("dm-verity device corrupted");
265 
266 	if (v->mode == DM_VERITY_MODE_PANIC)
267 		panic("dm-verity device corrupted");
268 
269 	return 1;
270 }
271 
272 /*
273  * Verify hash of a metadata block pertaining to the specified data block
274  * ("block" argument) at a specified level ("level" argument).
275  *
276  * On successful return, verity_io_want_digest(v, io) contains the hash value
277  * for a lower tree level or for the data block (if we're at the lowest level).
278  *
279  * If "skip_unverified" is true, unverified buffer is skipped and 1 is returned.
280  * If "skip_unverified" is false, unverified buffer is hashed and verified
281  * against current value of verity_io_want_digest(v, io).
282  */
283 static int verity_verify_level(struct dm_verity *v, struct dm_verity_io *io,
284 			       sector_t block, int level, bool skip_unverified,
285 			       u8 *want_digest)
286 {
287 	struct dm_buffer *buf;
288 	struct buffer_aux *aux;
289 	u8 *data;
290 	int r;
291 	sector_t hash_block;
292 	unsigned int offset;
293 
294 	verity_hash_at_level(v, block, level, &hash_block, &offset);
295 
296 	if (static_branch_unlikely(&use_tasklet_enabled) && io->in_tasklet) {
297 		data = dm_bufio_get(v->bufio, hash_block, &buf);
298 		if (data == NULL) {
299 			/*
300 			 * In tasklet and the hash was not in the bufio cache.
301 			 * Return early and resume execution from a work-queue
302 			 * to read the hash from disk.
303 			 */
304 			return -EAGAIN;
305 		}
306 	} else
307 		data = dm_bufio_read(v->bufio, hash_block, &buf);
308 
309 	if (IS_ERR(data))
310 		return PTR_ERR(data);
311 
312 	aux = dm_bufio_get_aux_data(buf);
313 
314 	if (!aux->hash_verified) {
315 		if (skip_unverified) {
316 			r = 1;
317 			goto release_ret_r;
318 		}
319 
320 		r = verity_hash(v, verity_io_hash_req(v, io),
321 				data, 1 << v->hash_dev_block_bits,
322 				verity_io_real_digest(v, io));
323 		if (unlikely(r < 0))
324 			goto release_ret_r;
325 
326 		if (likely(memcmp(verity_io_real_digest(v, io), want_digest,
327 				  v->digest_size) == 0))
328 			aux->hash_verified = 1;
329 		else if (static_branch_unlikely(&use_tasklet_enabled) &&
330 			 io->in_tasklet) {
331 			/*
332 			 * Error handling code (FEC included) cannot be run in a
333 			 * tasklet since it may sleep, so fallback to work-queue.
334 			 */
335 			r = -EAGAIN;
336 			goto release_ret_r;
337 		} else if (verity_fec_decode(v, io, DM_VERITY_BLOCK_TYPE_METADATA,
338 					     hash_block, data, NULL) == 0)
339 			aux->hash_verified = 1;
340 		else if (verity_handle_err(v,
341 					   DM_VERITY_BLOCK_TYPE_METADATA,
342 					   hash_block)) {
343 			r = -EIO;
344 			goto release_ret_r;
345 		}
346 	}
347 
348 	data += offset;
349 	memcpy(want_digest, data, v->digest_size);
350 	r = 0;
351 
352 release_ret_r:
353 	dm_bufio_release(buf);
354 	return r;
355 }
356 
357 /*
358  * Find a hash for a given block, write it to digest and verify the integrity
359  * of the hash tree if necessary.
360  */
361 int verity_hash_for_block(struct dm_verity *v, struct dm_verity_io *io,
362 			  sector_t block, u8 *digest, bool *is_zero)
363 {
364 	int r = 0, i;
365 
366 	if (likely(v->levels)) {
367 		/*
368 		 * First, we try to get the requested hash for
369 		 * the current block. If the hash block itself is
370 		 * verified, zero is returned. If it isn't, this
371 		 * function returns 1 and we fall back to whole
372 		 * chain verification.
373 		 */
374 		r = verity_verify_level(v, io, block, 0, true, digest);
375 		if (likely(r <= 0))
376 			goto out;
377 	}
378 
379 	memcpy(digest, v->root_digest, v->digest_size);
380 
381 	for (i = v->levels - 1; i >= 0; i--) {
382 		r = verity_verify_level(v, io, block, i, false, digest);
383 		if (unlikely(r))
384 			goto out;
385 	}
386 out:
387 	if (!r && v->zero_digest)
388 		*is_zero = !memcmp(v->zero_digest, digest, v->digest_size);
389 	else
390 		*is_zero = false;
391 
392 	return r;
393 }
394 
395 /*
396  * Calculates the digest for the given bio
397  */
398 static int verity_for_io_block(struct dm_verity *v, struct dm_verity_io *io,
399 			       struct bvec_iter *iter, struct crypto_wait *wait)
400 {
401 	unsigned int todo = 1 << v->data_dev_block_bits;
402 	struct bio *bio = dm_bio_from_per_bio_data(io, v->ti->per_io_data_size);
403 	struct scatterlist sg;
404 	struct ahash_request *req = verity_io_hash_req(v, io);
405 
406 	do {
407 		int r;
408 		unsigned int len;
409 		struct bio_vec bv = bio_iter_iovec(bio, *iter);
410 
411 		sg_init_table(&sg, 1);
412 
413 		len = bv.bv_len;
414 
415 		if (likely(len >= todo))
416 			len = todo;
417 		/*
418 		 * Operating on a single page at a time looks suboptimal
419 		 * until you consider the typical block size is 4,096B.
420 		 * Going through this loops twice should be very rare.
421 		 */
422 		sg_set_page(&sg, bv.bv_page, len, bv.bv_offset);
423 		ahash_request_set_crypt(req, &sg, NULL, len);
424 		r = crypto_wait_req(crypto_ahash_update(req), wait);
425 
426 		if (unlikely(r < 0)) {
427 			DMERR("%s crypto op failed: %d", __func__, r);
428 			return r;
429 		}
430 
431 		bio_advance_iter(bio, iter, len);
432 		todo -= len;
433 	} while (todo);
434 
435 	return 0;
436 }
437 
438 /*
439  * Calls function process for 1 << v->data_dev_block_bits bytes in the bio_vec
440  * starting from iter.
441  */
442 int verity_for_bv_block(struct dm_verity *v, struct dm_verity_io *io,
443 			struct bvec_iter *iter,
444 			int (*process)(struct dm_verity *v,
445 				       struct dm_verity_io *io, u8 *data,
446 				       size_t len))
447 {
448 	unsigned int todo = 1 << v->data_dev_block_bits;
449 	struct bio *bio = dm_bio_from_per_bio_data(io, v->ti->per_io_data_size);
450 
451 	do {
452 		int r;
453 		u8 *page;
454 		unsigned int len;
455 		struct bio_vec bv = bio_iter_iovec(bio, *iter);
456 
457 		page = bvec_kmap_local(&bv);
458 		len = bv.bv_len;
459 
460 		if (likely(len >= todo))
461 			len = todo;
462 
463 		r = process(v, io, page, len);
464 		kunmap_local(page);
465 
466 		if (r < 0)
467 			return r;
468 
469 		bio_advance_iter(bio, iter, len);
470 		todo -= len;
471 	} while (todo);
472 
473 	return 0;
474 }
475 
476 static int verity_bv_zero(struct dm_verity *v, struct dm_verity_io *io,
477 			  u8 *data, size_t len)
478 {
479 	memset(data, 0, len);
480 	return 0;
481 }
482 
483 /*
484  * Moves the bio iter one data block forward.
485  */
486 static inline void verity_bv_skip_block(struct dm_verity *v,
487 					struct dm_verity_io *io,
488 					struct bvec_iter *iter)
489 {
490 	struct bio *bio = dm_bio_from_per_bio_data(io, v->ti->per_io_data_size);
491 
492 	bio_advance_iter(bio, iter, 1 << v->data_dev_block_bits);
493 }
494 
495 /*
496  * Verify one "dm_verity_io" structure.
497  */
498 static int verity_verify_io(struct dm_verity_io *io)
499 {
500 	bool is_zero;
501 	struct dm_verity *v = io->v;
502 #if defined(CONFIG_DM_VERITY_FEC)
503 	struct bvec_iter start;
504 #endif
505 	struct bvec_iter iter_copy;
506 	struct bvec_iter *iter;
507 	struct crypto_wait wait;
508 	struct bio *bio = dm_bio_from_per_bio_data(io, v->ti->per_io_data_size);
509 	unsigned int b;
510 
511 	if (static_branch_unlikely(&use_tasklet_enabled) && io->in_tasklet) {
512 		/*
513 		 * Copy the iterator in case we need to restart
514 		 * verification in a work-queue.
515 		 */
516 		iter_copy = io->iter;
517 		iter = &iter_copy;
518 	} else
519 		iter = &io->iter;
520 
521 	for (b = 0; b < io->n_blocks; b++) {
522 		int r;
523 		sector_t cur_block = io->block + b;
524 		struct ahash_request *req = verity_io_hash_req(v, io);
525 
526 		if (v->validated_blocks &&
527 		    likely(test_bit(cur_block, v->validated_blocks))) {
528 			verity_bv_skip_block(v, io, iter);
529 			continue;
530 		}
531 
532 		r = verity_hash_for_block(v, io, cur_block,
533 					  verity_io_want_digest(v, io),
534 					  &is_zero);
535 		if (unlikely(r < 0))
536 			return r;
537 
538 		if (is_zero) {
539 			/*
540 			 * If we expect a zero block, don't validate, just
541 			 * return zeros.
542 			 */
543 			r = verity_for_bv_block(v, io, iter,
544 						verity_bv_zero);
545 			if (unlikely(r < 0))
546 				return r;
547 
548 			continue;
549 		}
550 
551 		r = verity_hash_init(v, req, &wait);
552 		if (unlikely(r < 0))
553 			return r;
554 
555 #if defined(CONFIG_DM_VERITY_FEC)
556 		if (verity_fec_is_enabled(v))
557 			start = *iter;
558 #endif
559 		r = verity_for_io_block(v, io, iter, &wait);
560 		if (unlikely(r < 0))
561 			return r;
562 
563 		r = verity_hash_final(v, req, verity_io_real_digest(v, io),
564 					&wait);
565 		if (unlikely(r < 0))
566 			return r;
567 
568 		if (likely(memcmp(verity_io_real_digest(v, io),
569 				  verity_io_want_digest(v, io), v->digest_size) == 0)) {
570 			if (v->validated_blocks)
571 				set_bit(cur_block, v->validated_blocks);
572 			continue;
573 		} else if (static_branch_unlikely(&use_tasklet_enabled) &&
574 			   io->in_tasklet) {
575 			/*
576 			 * Error handling code (FEC included) cannot be run in a
577 			 * tasklet since it may sleep, so fallback to work-queue.
578 			 */
579 			return -EAGAIN;
580 #if defined(CONFIG_DM_VERITY_FEC)
581 		} else if (verity_fec_decode(v, io, DM_VERITY_BLOCK_TYPE_DATA,
582 					     cur_block, NULL, &start) == 0) {
583 			continue;
584 #endif
585 		} else {
586 			if (bio->bi_status) {
587 				/*
588 				 * Error correction failed; Just return error
589 				 */
590 				return -EIO;
591 			}
592 			if (verity_handle_err(v, DM_VERITY_BLOCK_TYPE_DATA,
593 					      cur_block))
594 				return -EIO;
595 		}
596 	}
597 
598 	return 0;
599 }
600 
601 /*
602  * Skip verity work in response to I/O error when system is shutting down.
603  */
604 static inline bool verity_is_system_shutting_down(void)
605 {
606 	return system_state == SYSTEM_HALT || system_state == SYSTEM_POWER_OFF
607 		|| system_state == SYSTEM_RESTART;
608 }
609 
610 /*
611  * End one "io" structure with a given error.
612  */
613 static void verity_finish_io(struct dm_verity_io *io, blk_status_t status)
614 {
615 	struct dm_verity *v = io->v;
616 	struct bio *bio = dm_bio_from_per_bio_data(io, v->ti->per_io_data_size);
617 
618 	bio->bi_end_io = io->orig_bi_end_io;
619 	bio->bi_status = status;
620 
621 	if (!static_branch_unlikely(&use_tasklet_enabled) || !io->in_tasklet)
622 		verity_fec_finish_io(io);
623 
624 	bio_endio(bio);
625 }
626 
627 static void verity_work(struct work_struct *w)
628 {
629 	struct dm_verity_io *io = container_of(w, struct dm_verity_io, work);
630 
631 	io->in_tasklet = false;
632 
633 	verity_fec_init_io(io);
634 	verity_finish_io(io, errno_to_blk_status(verity_verify_io(io)));
635 }
636 
637 static void verity_tasklet(unsigned long data)
638 {
639 	struct dm_verity_io *io = (struct dm_verity_io *)data;
640 	int err;
641 
642 	io->in_tasklet = true;
643 	err = verity_verify_io(io);
644 	if (err == -EAGAIN) {
645 		/* fallback to retrying with work-queue */
646 		INIT_WORK(&io->work, verity_work);
647 		queue_work(io->v->verify_wq, &io->work);
648 		return;
649 	}
650 
651 	verity_finish_io(io, errno_to_blk_status(err));
652 }
653 
654 static void verity_end_io(struct bio *bio)
655 {
656 	struct dm_verity_io *io = bio->bi_private;
657 
658 	if (bio->bi_status &&
659 	    (!verity_fec_is_enabled(io->v) || verity_is_system_shutting_down())) {
660 		verity_finish_io(io, bio->bi_status);
661 		return;
662 	}
663 
664 	if (static_branch_unlikely(&use_tasklet_enabled) && io->v->use_tasklet) {
665 		tasklet_init(&io->tasklet, verity_tasklet, (unsigned long)io);
666 		tasklet_schedule(&io->tasklet);
667 	} else {
668 		INIT_WORK(&io->work, verity_work);
669 		queue_work(io->v->verify_wq, &io->work);
670 	}
671 }
672 
673 /*
674  * Prefetch buffers for the specified io.
675  * The root buffer is not prefetched, it is assumed that it will be cached
676  * all the time.
677  */
678 static void verity_prefetch_io(struct work_struct *work)
679 {
680 	struct dm_verity_prefetch_work *pw =
681 		container_of(work, struct dm_verity_prefetch_work, work);
682 	struct dm_verity *v = pw->v;
683 	int i;
684 
685 	for (i = v->levels - 2; i >= 0; i--) {
686 		sector_t hash_block_start;
687 		sector_t hash_block_end;
688 
689 		verity_hash_at_level(v, pw->block, i, &hash_block_start, NULL);
690 		verity_hash_at_level(v, pw->block + pw->n_blocks - 1, i, &hash_block_end, NULL);
691 
692 		if (!i) {
693 			unsigned int cluster = READ_ONCE(dm_verity_prefetch_cluster);
694 
695 			cluster >>= v->data_dev_block_bits;
696 			if (unlikely(!cluster))
697 				goto no_prefetch_cluster;
698 
699 			if (unlikely(cluster & (cluster - 1)))
700 				cluster = 1 << __fls(cluster);
701 
702 			hash_block_start &= ~(sector_t)(cluster - 1);
703 			hash_block_end |= cluster - 1;
704 			if (unlikely(hash_block_end >= v->hash_blocks))
705 				hash_block_end = v->hash_blocks - 1;
706 		}
707 no_prefetch_cluster:
708 		dm_bufio_prefetch(v->bufio, hash_block_start,
709 				  hash_block_end - hash_block_start + 1);
710 	}
711 
712 	kfree(pw);
713 }
714 
715 static void verity_submit_prefetch(struct dm_verity *v, struct dm_verity_io *io)
716 {
717 	sector_t block = io->block;
718 	unsigned int n_blocks = io->n_blocks;
719 	struct dm_verity_prefetch_work *pw;
720 
721 	if (v->validated_blocks) {
722 		while (n_blocks && test_bit(block, v->validated_blocks)) {
723 			block++;
724 			n_blocks--;
725 		}
726 		while (n_blocks && test_bit(block + n_blocks - 1,
727 					    v->validated_blocks))
728 			n_blocks--;
729 		if (!n_blocks)
730 			return;
731 	}
732 
733 	pw = kmalloc(sizeof(struct dm_verity_prefetch_work),
734 		GFP_NOIO | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN);
735 
736 	if (!pw)
737 		return;
738 
739 	INIT_WORK(&pw->work, verity_prefetch_io);
740 	pw->v = v;
741 	pw->block = block;
742 	pw->n_blocks = n_blocks;
743 	queue_work(v->verify_wq, &pw->work);
744 }
745 
746 /*
747  * Bio map function. It allocates dm_verity_io structure and bio vector and
748  * fills them. Then it issues prefetches and the I/O.
749  */
750 static int verity_map(struct dm_target *ti, struct bio *bio)
751 {
752 	struct dm_verity *v = ti->private;
753 	struct dm_verity_io *io;
754 
755 	bio_set_dev(bio, v->data_dev->bdev);
756 	bio->bi_iter.bi_sector = verity_map_sector(v, bio->bi_iter.bi_sector);
757 
758 	if (((unsigned int)bio->bi_iter.bi_sector | bio_sectors(bio)) &
759 	    ((1 << (v->data_dev_block_bits - SECTOR_SHIFT)) - 1)) {
760 		DMERR_LIMIT("unaligned io");
761 		return DM_MAPIO_KILL;
762 	}
763 
764 	if (bio_end_sector(bio) >>
765 	    (v->data_dev_block_bits - SECTOR_SHIFT) > v->data_blocks) {
766 		DMERR_LIMIT("io out of range");
767 		return DM_MAPIO_KILL;
768 	}
769 
770 	if (bio_data_dir(bio) == WRITE)
771 		return DM_MAPIO_KILL;
772 
773 	io = dm_per_bio_data(bio, ti->per_io_data_size);
774 	io->v = v;
775 	io->orig_bi_end_io = bio->bi_end_io;
776 	io->block = bio->bi_iter.bi_sector >> (v->data_dev_block_bits - SECTOR_SHIFT);
777 	io->n_blocks = bio->bi_iter.bi_size >> v->data_dev_block_bits;
778 
779 	bio->bi_end_io = verity_end_io;
780 	bio->bi_private = io;
781 	io->iter = bio->bi_iter;
782 
783 	verity_submit_prefetch(v, io);
784 
785 	submit_bio_noacct(bio);
786 
787 	return DM_MAPIO_SUBMITTED;
788 }
789 
790 /*
791  * Status: V (valid) or C (corruption found)
792  */
793 static void verity_status(struct dm_target *ti, status_type_t type,
794 			  unsigned int status_flags, char *result, unsigned int maxlen)
795 {
796 	struct dm_verity *v = ti->private;
797 	unsigned int args = 0;
798 	unsigned int sz = 0;
799 	unsigned int x;
800 
801 	switch (type) {
802 	case STATUSTYPE_INFO:
803 		DMEMIT("%c", v->hash_failed ? 'C' : 'V');
804 		break;
805 	case STATUSTYPE_TABLE:
806 		DMEMIT("%u %s %s %u %u %llu %llu %s ",
807 			v->version,
808 			v->data_dev->name,
809 			v->hash_dev->name,
810 			1 << v->data_dev_block_bits,
811 			1 << v->hash_dev_block_bits,
812 			(unsigned long long)v->data_blocks,
813 			(unsigned long long)v->hash_start,
814 			v->alg_name
815 			);
816 		for (x = 0; x < v->digest_size; x++)
817 			DMEMIT("%02x", v->root_digest[x]);
818 		DMEMIT(" ");
819 		if (!v->salt_size)
820 			DMEMIT("-");
821 		else
822 			for (x = 0; x < v->salt_size; x++)
823 				DMEMIT("%02x", v->salt[x]);
824 		if (v->mode != DM_VERITY_MODE_EIO)
825 			args++;
826 		if (verity_fec_is_enabled(v))
827 			args += DM_VERITY_OPTS_FEC;
828 		if (v->zero_digest)
829 			args++;
830 		if (v->validated_blocks)
831 			args++;
832 		if (v->use_tasklet)
833 			args++;
834 		if (v->signature_key_desc)
835 			args += DM_VERITY_ROOT_HASH_VERIFICATION_OPTS;
836 		if (!args)
837 			return;
838 		DMEMIT(" %u", args);
839 		if (v->mode != DM_VERITY_MODE_EIO) {
840 			DMEMIT(" ");
841 			switch (v->mode) {
842 			case DM_VERITY_MODE_LOGGING:
843 				DMEMIT(DM_VERITY_OPT_LOGGING);
844 				break;
845 			case DM_VERITY_MODE_RESTART:
846 				DMEMIT(DM_VERITY_OPT_RESTART);
847 				break;
848 			case DM_VERITY_MODE_PANIC:
849 				DMEMIT(DM_VERITY_OPT_PANIC);
850 				break;
851 			default:
852 				BUG();
853 			}
854 		}
855 		if (v->zero_digest)
856 			DMEMIT(" " DM_VERITY_OPT_IGN_ZEROES);
857 		if (v->validated_blocks)
858 			DMEMIT(" " DM_VERITY_OPT_AT_MOST_ONCE);
859 		if (v->use_tasklet)
860 			DMEMIT(" " DM_VERITY_OPT_TASKLET_VERIFY);
861 		sz = verity_fec_status_table(v, sz, result, maxlen);
862 		if (v->signature_key_desc)
863 			DMEMIT(" " DM_VERITY_ROOT_HASH_VERIFICATION_OPT_SIG_KEY
864 				" %s", v->signature_key_desc);
865 		break;
866 
867 	case STATUSTYPE_IMA:
868 		DMEMIT_TARGET_NAME_VERSION(ti->type);
869 		DMEMIT(",hash_failed=%c", v->hash_failed ? 'C' : 'V');
870 		DMEMIT(",verity_version=%u", v->version);
871 		DMEMIT(",data_device_name=%s", v->data_dev->name);
872 		DMEMIT(",hash_device_name=%s", v->hash_dev->name);
873 		DMEMIT(",verity_algorithm=%s", v->alg_name);
874 
875 		DMEMIT(",root_digest=");
876 		for (x = 0; x < v->digest_size; x++)
877 			DMEMIT("%02x", v->root_digest[x]);
878 
879 		DMEMIT(",salt=");
880 		if (!v->salt_size)
881 			DMEMIT("-");
882 		else
883 			for (x = 0; x < v->salt_size; x++)
884 				DMEMIT("%02x", v->salt[x]);
885 
886 		DMEMIT(",ignore_zero_blocks=%c", v->zero_digest ? 'y' : 'n');
887 		DMEMIT(",check_at_most_once=%c", v->validated_blocks ? 'y' : 'n');
888 		if (v->signature_key_desc)
889 			DMEMIT(",root_hash_sig_key_desc=%s", v->signature_key_desc);
890 
891 		if (v->mode != DM_VERITY_MODE_EIO) {
892 			DMEMIT(",verity_mode=");
893 			switch (v->mode) {
894 			case DM_VERITY_MODE_LOGGING:
895 				DMEMIT(DM_VERITY_OPT_LOGGING);
896 				break;
897 			case DM_VERITY_MODE_RESTART:
898 				DMEMIT(DM_VERITY_OPT_RESTART);
899 				break;
900 			case DM_VERITY_MODE_PANIC:
901 				DMEMIT(DM_VERITY_OPT_PANIC);
902 				break;
903 			default:
904 				DMEMIT("invalid");
905 			}
906 		}
907 		DMEMIT(";");
908 		break;
909 	}
910 }
911 
912 static int verity_prepare_ioctl(struct dm_target *ti, struct block_device **bdev)
913 {
914 	struct dm_verity *v = ti->private;
915 
916 	*bdev = v->data_dev->bdev;
917 
918 	if (v->data_start || ti->len != bdev_nr_sectors(v->data_dev->bdev))
919 		return 1;
920 	return 0;
921 }
922 
923 static int verity_iterate_devices(struct dm_target *ti,
924 				  iterate_devices_callout_fn fn, void *data)
925 {
926 	struct dm_verity *v = ti->private;
927 
928 	return fn(ti, v->data_dev, v->data_start, ti->len, data);
929 }
930 
931 static void verity_io_hints(struct dm_target *ti, struct queue_limits *limits)
932 {
933 	struct dm_verity *v = ti->private;
934 
935 	if (limits->logical_block_size < 1 << v->data_dev_block_bits)
936 		limits->logical_block_size = 1 << v->data_dev_block_bits;
937 
938 	if (limits->physical_block_size < 1 << v->data_dev_block_bits)
939 		limits->physical_block_size = 1 << v->data_dev_block_bits;
940 
941 	blk_limits_io_min(limits, limits->logical_block_size);
942 }
943 
944 static void verity_dtr(struct dm_target *ti)
945 {
946 	struct dm_verity *v = ti->private;
947 
948 	if (v->verify_wq)
949 		destroy_workqueue(v->verify_wq);
950 
951 	if (v->bufio)
952 		dm_bufio_client_destroy(v->bufio);
953 
954 	kvfree(v->validated_blocks);
955 	kfree(v->salt);
956 	kfree(v->root_digest);
957 	kfree(v->zero_digest);
958 
959 	if (v->tfm)
960 		crypto_free_ahash(v->tfm);
961 
962 	kfree(v->alg_name);
963 
964 	if (v->hash_dev)
965 		dm_put_device(ti, v->hash_dev);
966 
967 	if (v->data_dev)
968 		dm_put_device(ti, v->data_dev);
969 
970 	verity_fec_dtr(v);
971 
972 	kfree(v->signature_key_desc);
973 
974 	if (v->use_tasklet)
975 		static_branch_dec(&use_tasklet_enabled);
976 
977 	kfree(v);
978 }
979 
980 static int verity_alloc_most_once(struct dm_verity *v)
981 {
982 	struct dm_target *ti = v->ti;
983 
984 	/* the bitset can only handle INT_MAX blocks */
985 	if (v->data_blocks > INT_MAX) {
986 		ti->error = "device too large to use check_at_most_once";
987 		return -E2BIG;
988 	}
989 
990 	v->validated_blocks = kvcalloc(BITS_TO_LONGS(v->data_blocks),
991 				       sizeof(unsigned long),
992 				       GFP_KERNEL);
993 	if (!v->validated_blocks) {
994 		ti->error = "failed to allocate bitset for check_at_most_once";
995 		return -ENOMEM;
996 	}
997 
998 	return 0;
999 }
1000 
1001 static int verity_alloc_zero_digest(struct dm_verity *v)
1002 {
1003 	int r = -ENOMEM;
1004 	struct ahash_request *req;
1005 	u8 *zero_data;
1006 
1007 	v->zero_digest = kmalloc(v->digest_size, GFP_KERNEL);
1008 
1009 	if (!v->zero_digest)
1010 		return r;
1011 
1012 	req = kmalloc(v->ahash_reqsize, GFP_KERNEL);
1013 
1014 	if (!req)
1015 		return r; /* verity_dtr will free zero_digest */
1016 
1017 	zero_data = kzalloc(1 << v->data_dev_block_bits, GFP_KERNEL);
1018 
1019 	if (!zero_data)
1020 		goto out;
1021 
1022 	r = verity_hash(v, req, zero_data, 1 << v->data_dev_block_bits,
1023 			v->zero_digest);
1024 
1025 out:
1026 	kfree(req);
1027 	kfree(zero_data);
1028 
1029 	return r;
1030 }
1031 
1032 static inline bool verity_is_verity_mode(const char *arg_name)
1033 {
1034 	return (!strcasecmp(arg_name, DM_VERITY_OPT_LOGGING) ||
1035 		!strcasecmp(arg_name, DM_VERITY_OPT_RESTART) ||
1036 		!strcasecmp(arg_name, DM_VERITY_OPT_PANIC));
1037 }
1038 
1039 static int verity_parse_verity_mode(struct dm_verity *v, const char *arg_name)
1040 {
1041 	if (v->mode)
1042 		return -EINVAL;
1043 
1044 	if (!strcasecmp(arg_name, DM_VERITY_OPT_LOGGING))
1045 		v->mode = DM_VERITY_MODE_LOGGING;
1046 	else if (!strcasecmp(arg_name, DM_VERITY_OPT_RESTART))
1047 		v->mode = DM_VERITY_MODE_RESTART;
1048 	else if (!strcasecmp(arg_name, DM_VERITY_OPT_PANIC))
1049 		v->mode = DM_VERITY_MODE_PANIC;
1050 
1051 	return 0;
1052 }
1053 
1054 static int verity_parse_opt_args(struct dm_arg_set *as, struct dm_verity *v,
1055 				 struct dm_verity_sig_opts *verify_args,
1056 				 bool only_modifier_opts)
1057 {
1058 	int r = 0;
1059 	unsigned int argc;
1060 	struct dm_target *ti = v->ti;
1061 	const char *arg_name;
1062 
1063 	static const struct dm_arg _args[] = {
1064 		{0, DM_VERITY_OPTS_MAX, "Invalid number of feature args"},
1065 	};
1066 
1067 	r = dm_read_arg_group(_args, as, &argc, &ti->error);
1068 	if (r)
1069 		return -EINVAL;
1070 
1071 	if (!argc)
1072 		return 0;
1073 
1074 	do {
1075 		arg_name = dm_shift_arg(as);
1076 		argc--;
1077 
1078 		if (verity_is_verity_mode(arg_name)) {
1079 			if (only_modifier_opts)
1080 				continue;
1081 			r = verity_parse_verity_mode(v, arg_name);
1082 			if (r) {
1083 				ti->error = "Conflicting error handling parameters";
1084 				return r;
1085 			}
1086 			continue;
1087 
1088 		} else if (!strcasecmp(arg_name, DM_VERITY_OPT_IGN_ZEROES)) {
1089 			if (only_modifier_opts)
1090 				continue;
1091 			r = verity_alloc_zero_digest(v);
1092 			if (r) {
1093 				ti->error = "Cannot allocate zero digest";
1094 				return r;
1095 			}
1096 			continue;
1097 
1098 		} else if (!strcasecmp(arg_name, DM_VERITY_OPT_AT_MOST_ONCE)) {
1099 			if (only_modifier_opts)
1100 				continue;
1101 			r = verity_alloc_most_once(v);
1102 			if (r)
1103 				return r;
1104 			continue;
1105 
1106 		} else if (!strcasecmp(arg_name, DM_VERITY_OPT_TASKLET_VERIFY)) {
1107 			v->use_tasklet = true;
1108 			static_branch_inc(&use_tasklet_enabled);
1109 			continue;
1110 
1111 		} else if (verity_is_fec_opt_arg(arg_name)) {
1112 			if (only_modifier_opts)
1113 				continue;
1114 			r = verity_fec_parse_opt_args(as, v, &argc, arg_name);
1115 			if (r)
1116 				return r;
1117 			continue;
1118 
1119 		} else if (verity_verify_is_sig_opt_arg(arg_name)) {
1120 			if (only_modifier_opts)
1121 				continue;
1122 			r = verity_verify_sig_parse_opt_args(as, v,
1123 							     verify_args,
1124 							     &argc, arg_name);
1125 			if (r)
1126 				return r;
1127 			continue;
1128 
1129 		} else if (only_modifier_opts) {
1130 			/*
1131 			 * Ignore unrecognized opt, could easily be an extra
1132 			 * argument to an option whose parsing was skipped.
1133 			 * Normal parsing (@only_modifier_opts=false) will
1134 			 * properly parse all options (and their extra args).
1135 			 */
1136 			continue;
1137 		}
1138 
1139 		DMERR("Unrecognized verity feature request: %s", arg_name);
1140 		ti->error = "Unrecognized verity feature request";
1141 		return -EINVAL;
1142 	} while (argc && !r);
1143 
1144 	return r;
1145 }
1146 
1147 /*
1148  * Target parameters:
1149  *	<version>	The current format is version 1.
1150  *			Vsn 0 is compatible with original Chromium OS releases.
1151  *	<data device>
1152  *	<hash device>
1153  *	<data block size>
1154  *	<hash block size>
1155  *	<the number of data blocks>
1156  *	<hash start block>
1157  *	<algorithm>
1158  *	<digest>
1159  *	<salt>		Hex string or "-" if no salt.
1160  */
1161 static int verity_ctr(struct dm_target *ti, unsigned int argc, char **argv)
1162 {
1163 	struct dm_verity *v;
1164 	struct dm_verity_sig_opts verify_args = {0};
1165 	struct dm_arg_set as;
1166 	unsigned int num;
1167 	unsigned long long num_ll;
1168 	int r;
1169 	int i;
1170 	sector_t hash_position;
1171 	char dummy;
1172 	char *root_hash_digest_to_validate;
1173 
1174 	v = kzalloc(sizeof(struct dm_verity), GFP_KERNEL);
1175 	if (!v) {
1176 		ti->error = "Cannot allocate verity structure";
1177 		return -ENOMEM;
1178 	}
1179 	ti->private = v;
1180 	v->ti = ti;
1181 
1182 	r = verity_fec_ctr_alloc(v);
1183 	if (r)
1184 		goto bad;
1185 
1186 	if ((dm_table_get_mode(ti->table) & ~FMODE_READ)) {
1187 		ti->error = "Device must be readonly";
1188 		r = -EINVAL;
1189 		goto bad;
1190 	}
1191 
1192 	if (argc < 10) {
1193 		ti->error = "Not enough arguments";
1194 		r = -EINVAL;
1195 		goto bad;
1196 	}
1197 
1198 	/* Parse optional parameters that modify primary args */
1199 	if (argc > 10) {
1200 		as.argc = argc - 10;
1201 		as.argv = argv + 10;
1202 		r = verity_parse_opt_args(&as, v, &verify_args, true);
1203 		if (r < 0)
1204 			goto bad;
1205 	}
1206 
1207 	if (sscanf(argv[0], "%u%c", &num, &dummy) != 1 ||
1208 	    num > 1) {
1209 		ti->error = "Invalid version";
1210 		r = -EINVAL;
1211 		goto bad;
1212 	}
1213 	v->version = num;
1214 
1215 	r = dm_get_device(ti, argv[1], FMODE_READ, &v->data_dev);
1216 	if (r) {
1217 		ti->error = "Data device lookup failed";
1218 		goto bad;
1219 	}
1220 
1221 	r = dm_get_device(ti, argv[2], FMODE_READ, &v->hash_dev);
1222 	if (r) {
1223 		ti->error = "Hash device lookup failed";
1224 		goto bad;
1225 	}
1226 
1227 	if (sscanf(argv[3], "%u%c", &num, &dummy) != 1 ||
1228 	    !num || (num & (num - 1)) ||
1229 	    num < bdev_logical_block_size(v->data_dev->bdev) ||
1230 	    num > PAGE_SIZE) {
1231 		ti->error = "Invalid data device block size";
1232 		r = -EINVAL;
1233 		goto bad;
1234 	}
1235 	v->data_dev_block_bits = __ffs(num);
1236 
1237 	if (sscanf(argv[4], "%u%c", &num, &dummy) != 1 ||
1238 	    !num || (num & (num - 1)) ||
1239 	    num < bdev_logical_block_size(v->hash_dev->bdev) ||
1240 	    num > INT_MAX) {
1241 		ti->error = "Invalid hash device block size";
1242 		r = -EINVAL;
1243 		goto bad;
1244 	}
1245 	v->hash_dev_block_bits = __ffs(num);
1246 
1247 	if (sscanf(argv[5], "%llu%c", &num_ll, &dummy) != 1 ||
1248 	    (sector_t)(num_ll << (v->data_dev_block_bits - SECTOR_SHIFT))
1249 	    >> (v->data_dev_block_bits - SECTOR_SHIFT) != num_ll) {
1250 		ti->error = "Invalid data blocks";
1251 		r = -EINVAL;
1252 		goto bad;
1253 	}
1254 	v->data_blocks = num_ll;
1255 
1256 	if (ti->len > (v->data_blocks << (v->data_dev_block_bits - SECTOR_SHIFT))) {
1257 		ti->error = "Data device is too small";
1258 		r = -EINVAL;
1259 		goto bad;
1260 	}
1261 
1262 	if (sscanf(argv[6], "%llu%c", &num_ll, &dummy) != 1 ||
1263 	    (sector_t)(num_ll << (v->hash_dev_block_bits - SECTOR_SHIFT))
1264 	    >> (v->hash_dev_block_bits - SECTOR_SHIFT) != num_ll) {
1265 		ti->error = "Invalid hash start";
1266 		r = -EINVAL;
1267 		goto bad;
1268 	}
1269 	v->hash_start = num_ll;
1270 
1271 	v->alg_name = kstrdup(argv[7], GFP_KERNEL);
1272 	if (!v->alg_name) {
1273 		ti->error = "Cannot allocate algorithm name";
1274 		r = -ENOMEM;
1275 		goto bad;
1276 	}
1277 
1278 	v->tfm = crypto_alloc_ahash(v->alg_name, 0,
1279 				    v->use_tasklet ? CRYPTO_ALG_ASYNC : 0);
1280 	if (IS_ERR(v->tfm)) {
1281 		ti->error = "Cannot initialize hash function";
1282 		r = PTR_ERR(v->tfm);
1283 		v->tfm = NULL;
1284 		goto bad;
1285 	}
1286 
1287 	/*
1288 	 * dm-verity performance can vary greatly depending on which hash
1289 	 * algorithm implementation is used.  Help people debug performance
1290 	 * problems by logging the ->cra_driver_name.
1291 	 */
1292 	DMINFO("%s using implementation \"%s\"", v->alg_name,
1293 	       crypto_hash_alg_common(v->tfm)->base.cra_driver_name);
1294 
1295 	v->digest_size = crypto_ahash_digestsize(v->tfm);
1296 	if ((1 << v->hash_dev_block_bits) < v->digest_size * 2) {
1297 		ti->error = "Digest size too big";
1298 		r = -EINVAL;
1299 		goto bad;
1300 	}
1301 	v->ahash_reqsize = sizeof(struct ahash_request) +
1302 		crypto_ahash_reqsize(v->tfm);
1303 
1304 	v->root_digest = kmalloc(v->digest_size, GFP_KERNEL);
1305 	if (!v->root_digest) {
1306 		ti->error = "Cannot allocate root digest";
1307 		r = -ENOMEM;
1308 		goto bad;
1309 	}
1310 	if (strlen(argv[8]) != v->digest_size * 2 ||
1311 	    hex2bin(v->root_digest, argv[8], v->digest_size)) {
1312 		ti->error = "Invalid root digest";
1313 		r = -EINVAL;
1314 		goto bad;
1315 	}
1316 	root_hash_digest_to_validate = argv[8];
1317 
1318 	if (strcmp(argv[9], "-")) {
1319 		v->salt_size = strlen(argv[9]) / 2;
1320 		v->salt = kmalloc(v->salt_size, GFP_KERNEL);
1321 		if (!v->salt) {
1322 			ti->error = "Cannot allocate salt";
1323 			r = -ENOMEM;
1324 			goto bad;
1325 		}
1326 		if (strlen(argv[9]) != v->salt_size * 2 ||
1327 		    hex2bin(v->salt, argv[9], v->salt_size)) {
1328 			ti->error = "Invalid salt";
1329 			r = -EINVAL;
1330 			goto bad;
1331 		}
1332 	}
1333 
1334 	argv += 10;
1335 	argc -= 10;
1336 
1337 	/* Optional parameters */
1338 	if (argc) {
1339 		as.argc = argc;
1340 		as.argv = argv;
1341 		r = verity_parse_opt_args(&as, v, &verify_args, false);
1342 		if (r < 0)
1343 			goto bad;
1344 	}
1345 
1346 	/* Root hash signature is  a optional parameter*/
1347 	r = verity_verify_root_hash(root_hash_digest_to_validate,
1348 				    strlen(root_hash_digest_to_validate),
1349 				    verify_args.sig,
1350 				    verify_args.sig_size);
1351 	if (r < 0) {
1352 		ti->error = "Root hash verification failed";
1353 		goto bad;
1354 	}
1355 	v->hash_per_block_bits =
1356 		__fls((1 << v->hash_dev_block_bits) / v->digest_size);
1357 
1358 	v->levels = 0;
1359 	if (v->data_blocks)
1360 		while (v->hash_per_block_bits * v->levels < 64 &&
1361 		       (unsigned long long)(v->data_blocks - 1) >>
1362 		       (v->hash_per_block_bits * v->levels))
1363 			v->levels++;
1364 
1365 	if (v->levels > DM_VERITY_MAX_LEVELS) {
1366 		ti->error = "Too many tree levels";
1367 		r = -E2BIG;
1368 		goto bad;
1369 	}
1370 
1371 	hash_position = v->hash_start;
1372 	for (i = v->levels - 1; i >= 0; i--) {
1373 		sector_t s;
1374 
1375 		v->hash_level_block[i] = hash_position;
1376 		s = (v->data_blocks + ((sector_t)1 << ((i + 1) * v->hash_per_block_bits)) - 1)
1377 					>> ((i + 1) * v->hash_per_block_bits);
1378 		if (hash_position + s < hash_position) {
1379 			ti->error = "Hash device offset overflow";
1380 			r = -E2BIG;
1381 			goto bad;
1382 		}
1383 		hash_position += s;
1384 	}
1385 	v->hash_blocks = hash_position;
1386 
1387 	v->bufio = dm_bufio_client_create(v->hash_dev->bdev,
1388 		1 << v->hash_dev_block_bits, 1, sizeof(struct buffer_aux),
1389 		dm_bufio_alloc_callback, NULL,
1390 		v->use_tasklet ? DM_BUFIO_CLIENT_NO_SLEEP : 0);
1391 	if (IS_ERR(v->bufio)) {
1392 		ti->error = "Cannot initialize dm-bufio";
1393 		r = PTR_ERR(v->bufio);
1394 		v->bufio = NULL;
1395 		goto bad;
1396 	}
1397 
1398 	if (dm_bufio_get_device_size(v->bufio) < v->hash_blocks) {
1399 		ti->error = "Hash device is too small";
1400 		r = -E2BIG;
1401 		goto bad;
1402 	}
1403 
1404 	/*
1405 	 * Using WQ_HIGHPRI improves throughput and completion latency by
1406 	 * reducing wait times when reading from a dm-verity device.
1407 	 *
1408 	 * Also as required for the "try_verify_in_tasklet" feature: WQ_HIGHPRI
1409 	 * allows verify_wq to preempt softirq since verification in tasklet
1410 	 * will fall-back to using it for error handling (or if the bufio cache
1411 	 * doesn't have required hashes).
1412 	 */
1413 	v->verify_wq = alloc_workqueue("kverityd", WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
1414 	if (!v->verify_wq) {
1415 		ti->error = "Cannot allocate workqueue";
1416 		r = -ENOMEM;
1417 		goto bad;
1418 	}
1419 
1420 	ti->per_io_data_size = sizeof(struct dm_verity_io) +
1421 				v->ahash_reqsize + v->digest_size * 2;
1422 
1423 	r = verity_fec_ctr(v);
1424 	if (r)
1425 		goto bad;
1426 
1427 	ti->per_io_data_size = roundup(ti->per_io_data_size,
1428 				       __alignof__(struct dm_verity_io));
1429 
1430 	verity_verify_sig_opts_cleanup(&verify_args);
1431 
1432 	return 0;
1433 
1434 bad:
1435 
1436 	verity_verify_sig_opts_cleanup(&verify_args);
1437 	verity_dtr(ti);
1438 
1439 	return r;
1440 }
1441 
1442 /*
1443  * Check whether a DM target is a verity target.
1444  */
1445 bool dm_is_verity_target(struct dm_target *ti)
1446 {
1447 	return ti->type->module == THIS_MODULE;
1448 }
1449 
1450 /*
1451  * Get the verity mode (error behavior) of a verity target.
1452  *
1453  * Returns the verity mode of the target, or -EINVAL if 'ti' is not a verity
1454  * target.
1455  */
1456 int dm_verity_get_mode(struct dm_target *ti)
1457 {
1458 	struct dm_verity *v = ti->private;
1459 
1460 	if (!dm_is_verity_target(ti))
1461 		return -EINVAL;
1462 
1463 	return v->mode;
1464 }
1465 
1466 /*
1467  * Get the root digest of a verity target.
1468  *
1469  * Returns a copy of the root digest, the caller is responsible for
1470  * freeing the memory of the digest.
1471  */
1472 int dm_verity_get_root_digest(struct dm_target *ti, u8 **root_digest, unsigned int *digest_size)
1473 {
1474 	struct dm_verity *v = ti->private;
1475 
1476 	if (!dm_is_verity_target(ti))
1477 		return -EINVAL;
1478 
1479 	*root_digest = kmemdup(v->root_digest, v->digest_size, GFP_KERNEL);
1480 	if (*root_digest == NULL)
1481 		return -ENOMEM;
1482 
1483 	*digest_size = v->digest_size;
1484 
1485 	return 0;
1486 }
1487 
1488 static struct target_type verity_target = {
1489 	.name		= "verity",
1490 	.features	= DM_TARGET_IMMUTABLE,
1491 	.version	= {1, 9, 0},
1492 	.module		= THIS_MODULE,
1493 	.ctr		= verity_ctr,
1494 	.dtr		= verity_dtr,
1495 	.map		= verity_map,
1496 	.status		= verity_status,
1497 	.prepare_ioctl	= verity_prepare_ioctl,
1498 	.iterate_devices = verity_iterate_devices,
1499 	.io_hints	= verity_io_hints,
1500 };
1501 
1502 static int __init dm_verity_init(void)
1503 {
1504 	int r;
1505 
1506 	r = dm_register_target(&verity_target);
1507 	if (r < 0)
1508 		DMERR("register failed %d", r);
1509 
1510 	return r;
1511 }
1512 
1513 static void __exit dm_verity_exit(void)
1514 {
1515 	dm_unregister_target(&verity_target);
1516 }
1517 
1518 module_init(dm_verity_init);
1519 module_exit(dm_verity_exit);
1520 
1521 MODULE_AUTHOR("Mikulas Patocka <mpatocka@redhat.com>");
1522 MODULE_AUTHOR("Mandeep Baines <msb@chromium.org>");
1523 MODULE_AUTHOR("Will Drewry <wad@chromium.org>");
1524 MODULE_DESCRIPTION(DM_NAME " target for transparent disk integrity checking");
1525 MODULE_LICENSE("GPL");
1526