1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 2012 Red Hat, Inc. 4 * 5 * Author: Mikulas Patocka <mpatocka@redhat.com> 6 * 7 * Based on Chromium dm-verity driver (C) 2011 The Chromium OS Authors 8 * 9 * In the file "/sys/module/dm_verity/parameters/prefetch_cluster" you can set 10 * default prefetch value. Data are read in "prefetch_cluster" chunks from the 11 * hash device. Setting this greatly improves performance when data and hash 12 * are on the same disk on different partitions on devices with poor random 13 * access behavior. 14 */ 15 16 #include "dm-verity.h" 17 #include "dm-verity-fec.h" 18 #include "dm-verity-verify-sig.h" 19 #include <linux/module.h> 20 #include <linux/reboot.h> 21 #include <linux/scatterlist.h> 22 #include <linux/string.h> 23 #include <linux/jump_label.h> 24 25 #define DM_MSG_PREFIX "verity" 26 27 #define DM_VERITY_ENV_LENGTH 42 28 #define DM_VERITY_ENV_VAR_NAME "DM_VERITY_ERR_BLOCK_NR" 29 30 #define DM_VERITY_DEFAULT_PREFETCH_SIZE 262144 31 32 #define DM_VERITY_MAX_CORRUPTED_ERRS 100 33 34 #define DM_VERITY_OPT_LOGGING "ignore_corruption" 35 #define DM_VERITY_OPT_RESTART "restart_on_corruption" 36 #define DM_VERITY_OPT_PANIC "panic_on_corruption" 37 #define DM_VERITY_OPT_IGN_ZEROES "ignore_zero_blocks" 38 #define DM_VERITY_OPT_AT_MOST_ONCE "check_at_most_once" 39 #define DM_VERITY_OPT_TASKLET_VERIFY "try_verify_in_tasklet" 40 41 #define DM_VERITY_OPTS_MAX (4 + DM_VERITY_OPTS_FEC + \ 42 DM_VERITY_ROOT_HASH_VERIFICATION_OPTS) 43 44 static unsigned int dm_verity_prefetch_cluster = DM_VERITY_DEFAULT_PREFETCH_SIZE; 45 46 module_param_named(prefetch_cluster, dm_verity_prefetch_cluster, uint, 0644); 47 48 static DEFINE_STATIC_KEY_FALSE(use_tasklet_enabled); 49 50 struct dm_verity_prefetch_work { 51 struct work_struct work; 52 struct dm_verity *v; 53 sector_t block; 54 unsigned int n_blocks; 55 }; 56 57 /* 58 * Auxiliary structure appended to each dm-bufio buffer. If the value 59 * hash_verified is nonzero, hash of the block has been verified. 60 * 61 * The variable hash_verified is set to 0 when allocating the buffer, then 62 * it can be changed to 1 and it is never reset to 0 again. 63 * 64 * There is no lock around this value, a race condition can at worst cause 65 * that multiple processes verify the hash of the same buffer simultaneously 66 * and write 1 to hash_verified simultaneously. 67 * This condition is harmless, so we don't need locking. 68 */ 69 struct buffer_aux { 70 int hash_verified; 71 }; 72 73 /* 74 * Initialize struct buffer_aux for a freshly created buffer. 75 */ 76 static void dm_bufio_alloc_callback(struct dm_buffer *buf) 77 { 78 struct buffer_aux *aux = dm_bufio_get_aux_data(buf); 79 80 aux->hash_verified = 0; 81 } 82 83 /* 84 * Translate input sector number to the sector number on the target device. 85 */ 86 static sector_t verity_map_sector(struct dm_verity *v, sector_t bi_sector) 87 { 88 return v->data_start + dm_target_offset(v->ti, bi_sector); 89 } 90 91 /* 92 * Return hash position of a specified block at a specified tree level 93 * (0 is the lowest level). 94 * The lowest "hash_per_block_bits"-bits of the result denote hash position 95 * inside a hash block. The remaining bits denote location of the hash block. 96 */ 97 static sector_t verity_position_at_level(struct dm_verity *v, sector_t block, 98 int level) 99 { 100 return block >> (level * v->hash_per_block_bits); 101 } 102 103 static int verity_hash_update(struct dm_verity *v, struct ahash_request *req, 104 const u8 *data, size_t len, 105 struct crypto_wait *wait) 106 { 107 struct scatterlist sg; 108 109 if (likely(!is_vmalloc_addr(data))) { 110 sg_init_one(&sg, data, len); 111 ahash_request_set_crypt(req, &sg, NULL, len); 112 return crypto_wait_req(crypto_ahash_update(req), wait); 113 } 114 115 do { 116 int r; 117 size_t this_step = min_t(size_t, len, PAGE_SIZE - offset_in_page(data)); 118 119 flush_kernel_vmap_range((void *)data, this_step); 120 sg_init_table(&sg, 1); 121 sg_set_page(&sg, vmalloc_to_page(data), this_step, offset_in_page(data)); 122 ahash_request_set_crypt(req, &sg, NULL, this_step); 123 r = crypto_wait_req(crypto_ahash_update(req), wait); 124 if (unlikely(r)) 125 return r; 126 data += this_step; 127 len -= this_step; 128 } while (len); 129 130 return 0; 131 } 132 133 /* 134 * Wrapper for crypto_ahash_init, which handles verity salting. 135 */ 136 static int verity_hash_init(struct dm_verity *v, struct ahash_request *req, 137 struct crypto_wait *wait) 138 { 139 int r; 140 141 ahash_request_set_tfm(req, v->tfm); 142 ahash_request_set_callback(req, CRYPTO_TFM_REQ_MAY_SLEEP | 143 CRYPTO_TFM_REQ_MAY_BACKLOG, 144 crypto_req_done, (void *)wait); 145 crypto_init_wait(wait); 146 147 r = crypto_wait_req(crypto_ahash_init(req), wait); 148 149 if (unlikely(r < 0)) { 150 DMERR("crypto_ahash_init failed: %d", r); 151 return r; 152 } 153 154 if (likely(v->salt_size && (v->version >= 1))) 155 r = verity_hash_update(v, req, v->salt, v->salt_size, wait); 156 157 return r; 158 } 159 160 static int verity_hash_final(struct dm_verity *v, struct ahash_request *req, 161 u8 *digest, struct crypto_wait *wait) 162 { 163 int r; 164 165 if (unlikely(v->salt_size && (!v->version))) { 166 r = verity_hash_update(v, req, v->salt, v->salt_size, wait); 167 168 if (r < 0) { 169 DMERR("%s failed updating salt: %d", __func__, r); 170 goto out; 171 } 172 } 173 174 ahash_request_set_crypt(req, NULL, digest, 0); 175 r = crypto_wait_req(crypto_ahash_final(req), wait); 176 out: 177 return r; 178 } 179 180 int verity_hash(struct dm_verity *v, struct ahash_request *req, 181 const u8 *data, size_t len, u8 *digest) 182 { 183 int r; 184 struct crypto_wait wait; 185 186 r = verity_hash_init(v, req, &wait); 187 if (unlikely(r < 0)) 188 goto out; 189 190 r = verity_hash_update(v, req, data, len, &wait); 191 if (unlikely(r < 0)) 192 goto out; 193 194 r = verity_hash_final(v, req, digest, &wait); 195 196 out: 197 return r; 198 } 199 200 static void verity_hash_at_level(struct dm_verity *v, sector_t block, int level, 201 sector_t *hash_block, unsigned int *offset) 202 { 203 sector_t position = verity_position_at_level(v, block, level); 204 unsigned int idx; 205 206 *hash_block = v->hash_level_block[level] + (position >> v->hash_per_block_bits); 207 208 if (!offset) 209 return; 210 211 idx = position & ((1 << v->hash_per_block_bits) - 1); 212 if (!v->version) 213 *offset = idx * v->digest_size; 214 else 215 *offset = idx << (v->hash_dev_block_bits - v->hash_per_block_bits); 216 } 217 218 /* 219 * Handle verification errors. 220 */ 221 static int verity_handle_err(struct dm_verity *v, enum verity_block_type type, 222 unsigned long long block) 223 { 224 char verity_env[DM_VERITY_ENV_LENGTH]; 225 char *envp[] = { verity_env, NULL }; 226 const char *type_str = ""; 227 struct mapped_device *md = dm_table_get_md(v->ti->table); 228 229 /* Corruption should be visible in device status in all modes */ 230 v->hash_failed = true; 231 232 if (v->corrupted_errs >= DM_VERITY_MAX_CORRUPTED_ERRS) 233 goto out; 234 235 v->corrupted_errs++; 236 237 switch (type) { 238 case DM_VERITY_BLOCK_TYPE_DATA: 239 type_str = "data"; 240 break; 241 case DM_VERITY_BLOCK_TYPE_METADATA: 242 type_str = "metadata"; 243 break; 244 default: 245 BUG(); 246 } 247 248 DMERR_LIMIT("%s: %s block %llu is corrupted", v->data_dev->name, 249 type_str, block); 250 251 if (v->corrupted_errs == DM_VERITY_MAX_CORRUPTED_ERRS) 252 DMERR("%s: reached maximum errors", v->data_dev->name); 253 254 snprintf(verity_env, DM_VERITY_ENV_LENGTH, "%s=%d,%llu", 255 DM_VERITY_ENV_VAR_NAME, type, block); 256 257 kobject_uevent_env(&disk_to_dev(dm_disk(md))->kobj, KOBJ_CHANGE, envp); 258 259 out: 260 if (v->mode == DM_VERITY_MODE_LOGGING) 261 return 0; 262 263 if (v->mode == DM_VERITY_MODE_RESTART) 264 kernel_restart("dm-verity device corrupted"); 265 266 if (v->mode == DM_VERITY_MODE_PANIC) 267 panic("dm-verity device corrupted"); 268 269 return 1; 270 } 271 272 /* 273 * Verify hash of a metadata block pertaining to the specified data block 274 * ("block" argument) at a specified level ("level" argument). 275 * 276 * On successful return, verity_io_want_digest(v, io) contains the hash value 277 * for a lower tree level or for the data block (if we're at the lowest level). 278 * 279 * If "skip_unverified" is true, unverified buffer is skipped and 1 is returned. 280 * If "skip_unverified" is false, unverified buffer is hashed and verified 281 * against current value of verity_io_want_digest(v, io). 282 */ 283 static int verity_verify_level(struct dm_verity *v, struct dm_verity_io *io, 284 sector_t block, int level, bool skip_unverified, 285 u8 *want_digest) 286 { 287 struct dm_buffer *buf; 288 struct buffer_aux *aux; 289 u8 *data; 290 int r; 291 sector_t hash_block; 292 unsigned int offset; 293 294 verity_hash_at_level(v, block, level, &hash_block, &offset); 295 296 if (static_branch_unlikely(&use_tasklet_enabled) && io->in_tasklet) { 297 data = dm_bufio_get(v->bufio, hash_block, &buf); 298 if (data == NULL) { 299 /* 300 * In tasklet and the hash was not in the bufio cache. 301 * Return early and resume execution from a work-queue 302 * to read the hash from disk. 303 */ 304 return -EAGAIN; 305 } 306 } else 307 data = dm_bufio_read(v->bufio, hash_block, &buf); 308 309 if (IS_ERR(data)) 310 return PTR_ERR(data); 311 312 aux = dm_bufio_get_aux_data(buf); 313 314 if (!aux->hash_verified) { 315 if (skip_unverified) { 316 r = 1; 317 goto release_ret_r; 318 } 319 320 r = verity_hash(v, verity_io_hash_req(v, io), 321 data, 1 << v->hash_dev_block_bits, 322 verity_io_real_digest(v, io)); 323 if (unlikely(r < 0)) 324 goto release_ret_r; 325 326 if (likely(memcmp(verity_io_real_digest(v, io), want_digest, 327 v->digest_size) == 0)) 328 aux->hash_verified = 1; 329 else if (static_branch_unlikely(&use_tasklet_enabled) && 330 io->in_tasklet) { 331 /* 332 * Error handling code (FEC included) cannot be run in a 333 * tasklet since it may sleep, so fallback to work-queue. 334 */ 335 r = -EAGAIN; 336 goto release_ret_r; 337 } else if (verity_fec_decode(v, io, DM_VERITY_BLOCK_TYPE_METADATA, 338 hash_block, data, NULL) == 0) 339 aux->hash_verified = 1; 340 else if (verity_handle_err(v, 341 DM_VERITY_BLOCK_TYPE_METADATA, 342 hash_block)) { 343 r = -EIO; 344 goto release_ret_r; 345 } 346 } 347 348 data += offset; 349 memcpy(want_digest, data, v->digest_size); 350 r = 0; 351 352 release_ret_r: 353 dm_bufio_release(buf); 354 return r; 355 } 356 357 /* 358 * Find a hash for a given block, write it to digest and verify the integrity 359 * of the hash tree if necessary. 360 */ 361 int verity_hash_for_block(struct dm_verity *v, struct dm_verity_io *io, 362 sector_t block, u8 *digest, bool *is_zero) 363 { 364 int r = 0, i; 365 366 if (likely(v->levels)) { 367 /* 368 * First, we try to get the requested hash for 369 * the current block. If the hash block itself is 370 * verified, zero is returned. If it isn't, this 371 * function returns 1 and we fall back to whole 372 * chain verification. 373 */ 374 r = verity_verify_level(v, io, block, 0, true, digest); 375 if (likely(r <= 0)) 376 goto out; 377 } 378 379 memcpy(digest, v->root_digest, v->digest_size); 380 381 for (i = v->levels - 1; i >= 0; i--) { 382 r = verity_verify_level(v, io, block, i, false, digest); 383 if (unlikely(r)) 384 goto out; 385 } 386 out: 387 if (!r && v->zero_digest) 388 *is_zero = !memcmp(v->zero_digest, digest, v->digest_size); 389 else 390 *is_zero = false; 391 392 return r; 393 } 394 395 /* 396 * Calculates the digest for the given bio 397 */ 398 static int verity_for_io_block(struct dm_verity *v, struct dm_verity_io *io, 399 struct bvec_iter *iter, struct crypto_wait *wait) 400 { 401 unsigned int todo = 1 << v->data_dev_block_bits; 402 struct bio *bio = dm_bio_from_per_bio_data(io, v->ti->per_io_data_size); 403 struct scatterlist sg; 404 struct ahash_request *req = verity_io_hash_req(v, io); 405 406 do { 407 int r; 408 unsigned int len; 409 struct bio_vec bv = bio_iter_iovec(bio, *iter); 410 411 sg_init_table(&sg, 1); 412 413 len = bv.bv_len; 414 415 if (likely(len >= todo)) 416 len = todo; 417 /* 418 * Operating on a single page at a time looks suboptimal 419 * until you consider the typical block size is 4,096B. 420 * Going through this loops twice should be very rare. 421 */ 422 sg_set_page(&sg, bv.bv_page, len, bv.bv_offset); 423 ahash_request_set_crypt(req, &sg, NULL, len); 424 r = crypto_wait_req(crypto_ahash_update(req), wait); 425 426 if (unlikely(r < 0)) { 427 DMERR("%s crypto op failed: %d", __func__, r); 428 return r; 429 } 430 431 bio_advance_iter(bio, iter, len); 432 todo -= len; 433 } while (todo); 434 435 return 0; 436 } 437 438 /* 439 * Calls function process for 1 << v->data_dev_block_bits bytes in the bio_vec 440 * starting from iter. 441 */ 442 int verity_for_bv_block(struct dm_verity *v, struct dm_verity_io *io, 443 struct bvec_iter *iter, 444 int (*process)(struct dm_verity *v, 445 struct dm_verity_io *io, u8 *data, 446 size_t len)) 447 { 448 unsigned int todo = 1 << v->data_dev_block_bits; 449 struct bio *bio = dm_bio_from_per_bio_data(io, v->ti->per_io_data_size); 450 451 do { 452 int r; 453 u8 *page; 454 unsigned int len; 455 struct bio_vec bv = bio_iter_iovec(bio, *iter); 456 457 page = bvec_kmap_local(&bv); 458 len = bv.bv_len; 459 460 if (likely(len >= todo)) 461 len = todo; 462 463 r = process(v, io, page, len); 464 kunmap_local(page); 465 466 if (r < 0) 467 return r; 468 469 bio_advance_iter(bio, iter, len); 470 todo -= len; 471 } while (todo); 472 473 return 0; 474 } 475 476 static int verity_bv_zero(struct dm_verity *v, struct dm_verity_io *io, 477 u8 *data, size_t len) 478 { 479 memset(data, 0, len); 480 return 0; 481 } 482 483 /* 484 * Moves the bio iter one data block forward. 485 */ 486 static inline void verity_bv_skip_block(struct dm_verity *v, 487 struct dm_verity_io *io, 488 struct bvec_iter *iter) 489 { 490 struct bio *bio = dm_bio_from_per_bio_data(io, v->ti->per_io_data_size); 491 492 bio_advance_iter(bio, iter, 1 << v->data_dev_block_bits); 493 } 494 495 /* 496 * Verify one "dm_verity_io" structure. 497 */ 498 static int verity_verify_io(struct dm_verity_io *io) 499 { 500 bool is_zero; 501 struct dm_verity *v = io->v; 502 #if defined(CONFIG_DM_VERITY_FEC) 503 struct bvec_iter start; 504 #endif 505 struct bvec_iter iter_copy; 506 struct bvec_iter *iter; 507 struct crypto_wait wait; 508 struct bio *bio = dm_bio_from_per_bio_data(io, v->ti->per_io_data_size); 509 unsigned int b; 510 511 if (static_branch_unlikely(&use_tasklet_enabled) && io->in_tasklet) { 512 /* 513 * Copy the iterator in case we need to restart 514 * verification in a work-queue. 515 */ 516 iter_copy = io->iter; 517 iter = &iter_copy; 518 } else 519 iter = &io->iter; 520 521 for (b = 0; b < io->n_blocks; b++) { 522 int r; 523 sector_t cur_block = io->block + b; 524 struct ahash_request *req = verity_io_hash_req(v, io); 525 526 if (v->validated_blocks && 527 likely(test_bit(cur_block, v->validated_blocks))) { 528 verity_bv_skip_block(v, io, iter); 529 continue; 530 } 531 532 r = verity_hash_for_block(v, io, cur_block, 533 verity_io_want_digest(v, io), 534 &is_zero); 535 if (unlikely(r < 0)) 536 return r; 537 538 if (is_zero) { 539 /* 540 * If we expect a zero block, don't validate, just 541 * return zeros. 542 */ 543 r = verity_for_bv_block(v, io, iter, 544 verity_bv_zero); 545 if (unlikely(r < 0)) 546 return r; 547 548 continue; 549 } 550 551 r = verity_hash_init(v, req, &wait); 552 if (unlikely(r < 0)) 553 return r; 554 555 #if defined(CONFIG_DM_VERITY_FEC) 556 if (verity_fec_is_enabled(v)) 557 start = *iter; 558 #endif 559 r = verity_for_io_block(v, io, iter, &wait); 560 if (unlikely(r < 0)) 561 return r; 562 563 r = verity_hash_final(v, req, verity_io_real_digest(v, io), 564 &wait); 565 if (unlikely(r < 0)) 566 return r; 567 568 if (likely(memcmp(verity_io_real_digest(v, io), 569 verity_io_want_digest(v, io), v->digest_size) == 0)) { 570 if (v->validated_blocks) 571 set_bit(cur_block, v->validated_blocks); 572 continue; 573 } else if (static_branch_unlikely(&use_tasklet_enabled) && 574 io->in_tasklet) { 575 /* 576 * Error handling code (FEC included) cannot be run in a 577 * tasklet since it may sleep, so fallback to work-queue. 578 */ 579 return -EAGAIN; 580 #if defined(CONFIG_DM_VERITY_FEC) 581 } else if (verity_fec_decode(v, io, DM_VERITY_BLOCK_TYPE_DATA, 582 cur_block, NULL, &start) == 0) { 583 continue; 584 #endif 585 } else { 586 if (bio->bi_status) { 587 /* 588 * Error correction failed; Just return error 589 */ 590 return -EIO; 591 } 592 if (verity_handle_err(v, DM_VERITY_BLOCK_TYPE_DATA, 593 cur_block)) 594 return -EIO; 595 } 596 } 597 598 return 0; 599 } 600 601 /* 602 * Skip verity work in response to I/O error when system is shutting down. 603 */ 604 static inline bool verity_is_system_shutting_down(void) 605 { 606 return system_state == SYSTEM_HALT || system_state == SYSTEM_POWER_OFF 607 || system_state == SYSTEM_RESTART; 608 } 609 610 /* 611 * End one "io" structure with a given error. 612 */ 613 static void verity_finish_io(struct dm_verity_io *io, blk_status_t status) 614 { 615 struct dm_verity *v = io->v; 616 struct bio *bio = dm_bio_from_per_bio_data(io, v->ti->per_io_data_size); 617 618 bio->bi_end_io = io->orig_bi_end_io; 619 bio->bi_status = status; 620 621 if (!static_branch_unlikely(&use_tasklet_enabled) || !io->in_tasklet) 622 verity_fec_finish_io(io); 623 624 bio_endio(bio); 625 } 626 627 static void verity_work(struct work_struct *w) 628 { 629 struct dm_verity_io *io = container_of(w, struct dm_verity_io, work); 630 631 io->in_tasklet = false; 632 633 verity_fec_init_io(io); 634 verity_finish_io(io, errno_to_blk_status(verity_verify_io(io))); 635 } 636 637 static void verity_tasklet(unsigned long data) 638 { 639 struct dm_verity_io *io = (struct dm_verity_io *)data; 640 int err; 641 642 io->in_tasklet = true; 643 err = verity_verify_io(io); 644 if (err == -EAGAIN) { 645 /* fallback to retrying with work-queue */ 646 INIT_WORK(&io->work, verity_work); 647 queue_work(io->v->verify_wq, &io->work); 648 return; 649 } 650 651 verity_finish_io(io, errno_to_blk_status(err)); 652 } 653 654 static void verity_end_io(struct bio *bio) 655 { 656 struct dm_verity_io *io = bio->bi_private; 657 658 if (bio->bi_status && 659 (!verity_fec_is_enabled(io->v) || verity_is_system_shutting_down())) { 660 verity_finish_io(io, bio->bi_status); 661 return; 662 } 663 664 if (static_branch_unlikely(&use_tasklet_enabled) && io->v->use_tasklet) { 665 tasklet_init(&io->tasklet, verity_tasklet, (unsigned long)io); 666 tasklet_schedule(&io->tasklet); 667 } else { 668 INIT_WORK(&io->work, verity_work); 669 queue_work(io->v->verify_wq, &io->work); 670 } 671 } 672 673 /* 674 * Prefetch buffers for the specified io. 675 * The root buffer is not prefetched, it is assumed that it will be cached 676 * all the time. 677 */ 678 static void verity_prefetch_io(struct work_struct *work) 679 { 680 struct dm_verity_prefetch_work *pw = 681 container_of(work, struct dm_verity_prefetch_work, work); 682 struct dm_verity *v = pw->v; 683 int i; 684 685 for (i = v->levels - 2; i >= 0; i--) { 686 sector_t hash_block_start; 687 sector_t hash_block_end; 688 689 verity_hash_at_level(v, pw->block, i, &hash_block_start, NULL); 690 verity_hash_at_level(v, pw->block + pw->n_blocks - 1, i, &hash_block_end, NULL); 691 692 if (!i) { 693 unsigned int cluster = READ_ONCE(dm_verity_prefetch_cluster); 694 695 cluster >>= v->data_dev_block_bits; 696 if (unlikely(!cluster)) 697 goto no_prefetch_cluster; 698 699 if (unlikely(cluster & (cluster - 1))) 700 cluster = 1 << __fls(cluster); 701 702 hash_block_start &= ~(sector_t)(cluster - 1); 703 hash_block_end |= cluster - 1; 704 if (unlikely(hash_block_end >= v->hash_blocks)) 705 hash_block_end = v->hash_blocks - 1; 706 } 707 no_prefetch_cluster: 708 dm_bufio_prefetch(v->bufio, hash_block_start, 709 hash_block_end - hash_block_start + 1); 710 } 711 712 kfree(pw); 713 } 714 715 static void verity_submit_prefetch(struct dm_verity *v, struct dm_verity_io *io) 716 { 717 sector_t block = io->block; 718 unsigned int n_blocks = io->n_blocks; 719 struct dm_verity_prefetch_work *pw; 720 721 if (v->validated_blocks) { 722 while (n_blocks && test_bit(block, v->validated_blocks)) { 723 block++; 724 n_blocks--; 725 } 726 while (n_blocks && test_bit(block + n_blocks - 1, 727 v->validated_blocks)) 728 n_blocks--; 729 if (!n_blocks) 730 return; 731 } 732 733 pw = kmalloc(sizeof(struct dm_verity_prefetch_work), 734 GFP_NOIO | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN); 735 736 if (!pw) 737 return; 738 739 INIT_WORK(&pw->work, verity_prefetch_io); 740 pw->v = v; 741 pw->block = block; 742 pw->n_blocks = n_blocks; 743 queue_work(v->verify_wq, &pw->work); 744 } 745 746 /* 747 * Bio map function. It allocates dm_verity_io structure and bio vector and 748 * fills them. Then it issues prefetches and the I/O. 749 */ 750 static int verity_map(struct dm_target *ti, struct bio *bio) 751 { 752 struct dm_verity *v = ti->private; 753 struct dm_verity_io *io; 754 755 bio_set_dev(bio, v->data_dev->bdev); 756 bio->bi_iter.bi_sector = verity_map_sector(v, bio->bi_iter.bi_sector); 757 758 if (((unsigned int)bio->bi_iter.bi_sector | bio_sectors(bio)) & 759 ((1 << (v->data_dev_block_bits - SECTOR_SHIFT)) - 1)) { 760 DMERR_LIMIT("unaligned io"); 761 return DM_MAPIO_KILL; 762 } 763 764 if (bio_end_sector(bio) >> 765 (v->data_dev_block_bits - SECTOR_SHIFT) > v->data_blocks) { 766 DMERR_LIMIT("io out of range"); 767 return DM_MAPIO_KILL; 768 } 769 770 if (bio_data_dir(bio) == WRITE) 771 return DM_MAPIO_KILL; 772 773 io = dm_per_bio_data(bio, ti->per_io_data_size); 774 io->v = v; 775 io->orig_bi_end_io = bio->bi_end_io; 776 io->block = bio->bi_iter.bi_sector >> (v->data_dev_block_bits - SECTOR_SHIFT); 777 io->n_blocks = bio->bi_iter.bi_size >> v->data_dev_block_bits; 778 779 bio->bi_end_io = verity_end_io; 780 bio->bi_private = io; 781 io->iter = bio->bi_iter; 782 783 verity_submit_prefetch(v, io); 784 785 submit_bio_noacct(bio); 786 787 return DM_MAPIO_SUBMITTED; 788 } 789 790 /* 791 * Status: V (valid) or C (corruption found) 792 */ 793 static void verity_status(struct dm_target *ti, status_type_t type, 794 unsigned int status_flags, char *result, unsigned int maxlen) 795 { 796 struct dm_verity *v = ti->private; 797 unsigned int args = 0; 798 unsigned int sz = 0; 799 unsigned int x; 800 801 switch (type) { 802 case STATUSTYPE_INFO: 803 DMEMIT("%c", v->hash_failed ? 'C' : 'V'); 804 break; 805 case STATUSTYPE_TABLE: 806 DMEMIT("%u %s %s %u %u %llu %llu %s ", 807 v->version, 808 v->data_dev->name, 809 v->hash_dev->name, 810 1 << v->data_dev_block_bits, 811 1 << v->hash_dev_block_bits, 812 (unsigned long long)v->data_blocks, 813 (unsigned long long)v->hash_start, 814 v->alg_name 815 ); 816 for (x = 0; x < v->digest_size; x++) 817 DMEMIT("%02x", v->root_digest[x]); 818 DMEMIT(" "); 819 if (!v->salt_size) 820 DMEMIT("-"); 821 else 822 for (x = 0; x < v->salt_size; x++) 823 DMEMIT("%02x", v->salt[x]); 824 if (v->mode != DM_VERITY_MODE_EIO) 825 args++; 826 if (verity_fec_is_enabled(v)) 827 args += DM_VERITY_OPTS_FEC; 828 if (v->zero_digest) 829 args++; 830 if (v->validated_blocks) 831 args++; 832 if (v->use_tasklet) 833 args++; 834 if (v->signature_key_desc) 835 args += DM_VERITY_ROOT_HASH_VERIFICATION_OPTS; 836 if (!args) 837 return; 838 DMEMIT(" %u", args); 839 if (v->mode != DM_VERITY_MODE_EIO) { 840 DMEMIT(" "); 841 switch (v->mode) { 842 case DM_VERITY_MODE_LOGGING: 843 DMEMIT(DM_VERITY_OPT_LOGGING); 844 break; 845 case DM_VERITY_MODE_RESTART: 846 DMEMIT(DM_VERITY_OPT_RESTART); 847 break; 848 case DM_VERITY_MODE_PANIC: 849 DMEMIT(DM_VERITY_OPT_PANIC); 850 break; 851 default: 852 BUG(); 853 } 854 } 855 if (v->zero_digest) 856 DMEMIT(" " DM_VERITY_OPT_IGN_ZEROES); 857 if (v->validated_blocks) 858 DMEMIT(" " DM_VERITY_OPT_AT_MOST_ONCE); 859 if (v->use_tasklet) 860 DMEMIT(" " DM_VERITY_OPT_TASKLET_VERIFY); 861 sz = verity_fec_status_table(v, sz, result, maxlen); 862 if (v->signature_key_desc) 863 DMEMIT(" " DM_VERITY_ROOT_HASH_VERIFICATION_OPT_SIG_KEY 864 " %s", v->signature_key_desc); 865 break; 866 867 case STATUSTYPE_IMA: 868 DMEMIT_TARGET_NAME_VERSION(ti->type); 869 DMEMIT(",hash_failed=%c", v->hash_failed ? 'C' : 'V'); 870 DMEMIT(",verity_version=%u", v->version); 871 DMEMIT(",data_device_name=%s", v->data_dev->name); 872 DMEMIT(",hash_device_name=%s", v->hash_dev->name); 873 DMEMIT(",verity_algorithm=%s", v->alg_name); 874 875 DMEMIT(",root_digest="); 876 for (x = 0; x < v->digest_size; x++) 877 DMEMIT("%02x", v->root_digest[x]); 878 879 DMEMIT(",salt="); 880 if (!v->salt_size) 881 DMEMIT("-"); 882 else 883 for (x = 0; x < v->salt_size; x++) 884 DMEMIT("%02x", v->salt[x]); 885 886 DMEMIT(",ignore_zero_blocks=%c", v->zero_digest ? 'y' : 'n'); 887 DMEMIT(",check_at_most_once=%c", v->validated_blocks ? 'y' : 'n'); 888 if (v->signature_key_desc) 889 DMEMIT(",root_hash_sig_key_desc=%s", v->signature_key_desc); 890 891 if (v->mode != DM_VERITY_MODE_EIO) { 892 DMEMIT(",verity_mode="); 893 switch (v->mode) { 894 case DM_VERITY_MODE_LOGGING: 895 DMEMIT(DM_VERITY_OPT_LOGGING); 896 break; 897 case DM_VERITY_MODE_RESTART: 898 DMEMIT(DM_VERITY_OPT_RESTART); 899 break; 900 case DM_VERITY_MODE_PANIC: 901 DMEMIT(DM_VERITY_OPT_PANIC); 902 break; 903 default: 904 DMEMIT("invalid"); 905 } 906 } 907 DMEMIT(";"); 908 break; 909 } 910 } 911 912 static int verity_prepare_ioctl(struct dm_target *ti, struct block_device **bdev) 913 { 914 struct dm_verity *v = ti->private; 915 916 *bdev = v->data_dev->bdev; 917 918 if (v->data_start || ti->len != bdev_nr_sectors(v->data_dev->bdev)) 919 return 1; 920 return 0; 921 } 922 923 static int verity_iterate_devices(struct dm_target *ti, 924 iterate_devices_callout_fn fn, void *data) 925 { 926 struct dm_verity *v = ti->private; 927 928 return fn(ti, v->data_dev, v->data_start, ti->len, data); 929 } 930 931 static void verity_io_hints(struct dm_target *ti, struct queue_limits *limits) 932 { 933 struct dm_verity *v = ti->private; 934 935 if (limits->logical_block_size < 1 << v->data_dev_block_bits) 936 limits->logical_block_size = 1 << v->data_dev_block_bits; 937 938 if (limits->physical_block_size < 1 << v->data_dev_block_bits) 939 limits->physical_block_size = 1 << v->data_dev_block_bits; 940 941 blk_limits_io_min(limits, limits->logical_block_size); 942 } 943 944 static void verity_dtr(struct dm_target *ti) 945 { 946 struct dm_verity *v = ti->private; 947 948 if (v->verify_wq) 949 destroy_workqueue(v->verify_wq); 950 951 if (v->bufio) 952 dm_bufio_client_destroy(v->bufio); 953 954 kvfree(v->validated_blocks); 955 kfree(v->salt); 956 kfree(v->root_digest); 957 kfree(v->zero_digest); 958 959 if (v->tfm) 960 crypto_free_ahash(v->tfm); 961 962 kfree(v->alg_name); 963 964 if (v->hash_dev) 965 dm_put_device(ti, v->hash_dev); 966 967 if (v->data_dev) 968 dm_put_device(ti, v->data_dev); 969 970 verity_fec_dtr(v); 971 972 kfree(v->signature_key_desc); 973 974 if (v->use_tasklet) 975 static_branch_dec(&use_tasklet_enabled); 976 977 kfree(v); 978 } 979 980 static int verity_alloc_most_once(struct dm_verity *v) 981 { 982 struct dm_target *ti = v->ti; 983 984 /* the bitset can only handle INT_MAX blocks */ 985 if (v->data_blocks > INT_MAX) { 986 ti->error = "device too large to use check_at_most_once"; 987 return -E2BIG; 988 } 989 990 v->validated_blocks = kvcalloc(BITS_TO_LONGS(v->data_blocks), 991 sizeof(unsigned long), 992 GFP_KERNEL); 993 if (!v->validated_blocks) { 994 ti->error = "failed to allocate bitset for check_at_most_once"; 995 return -ENOMEM; 996 } 997 998 return 0; 999 } 1000 1001 static int verity_alloc_zero_digest(struct dm_verity *v) 1002 { 1003 int r = -ENOMEM; 1004 struct ahash_request *req; 1005 u8 *zero_data; 1006 1007 v->zero_digest = kmalloc(v->digest_size, GFP_KERNEL); 1008 1009 if (!v->zero_digest) 1010 return r; 1011 1012 req = kmalloc(v->ahash_reqsize, GFP_KERNEL); 1013 1014 if (!req) 1015 return r; /* verity_dtr will free zero_digest */ 1016 1017 zero_data = kzalloc(1 << v->data_dev_block_bits, GFP_KERNEL); 1018 1019 if (!zero_data) 1020 goto out; 1021 1022 r = verity_hash(v, req, zero_data, 1 << v->data_dev_block_bits, 1023 v->zero_digest); 1024 1025 out: 1026 kfree(req); 1027 kfree(zero_data); 1028 1029 return r; 1030 } 1031 1032 static inline bool verity_is_verity_mode(const char *arg_name) 1033 { 1034 return (!strcasecmp(arg_name, DM_VERITY_OPT_LOGGING) || 1035 !strcasecmp(arg_name, DM_VERITY_OPT_RESTART) || 1036 !strcasecmp(arg_name, DM_VERITY_OPT_PANIC)); 1037 } 1038 1039 static int verity_parse_verity_mode(struct dm_verity *v, const char *arg_name) 1040 { 1041 if (v->mode) 1042 return -EINVAL; 1043 1044 if (!strcasecmp(arg_name, DM_VERITY_OPT_LOGGING)) 1045 v->mode = DM_VERITY_MODE_LOGGING; 1046 else if (!strcasecmp(arg_name, DM_VERITY_OPT_RESTART)) 1047 v->mode = DM_VERITY_MODE_RESTART; 1048 else if (!strcasecmp(arg_name, DM_VERITY_OPT_PANIC)) 1049 v->mode = DM_VERITY_MODE_PANIC; 1050 1051 return 0; 1052 } 1053 1054 static int verity_parse_opt_args(struct dm_arg_set *as, struct dm_verity *v, 1055 struct dm_verity_sig_opts *verify_args, 1056 bool only_modifier_opts) 1057 { 1058 int r = 0; 1059 unsigned int argc; 1060 struct dm_target *ti = v->ti; 1061 const char *arg_name; 1062 1063 static const struct dm_arg _args[] = { 1064 {0, DM_VERITY_OPTS_MAX, "Invalid number of feature args"}, 1065 }; 1066 1067 r = dm_read_arg_group(_args, as, &argc, &ti->error); 1068 if (r) 1069 return -EINVAL; 1070 1071 if (!argc) 1072 return 0; 1073 1074 do { 1075 arg_name = dm_shift_arg(as); 1076 argc--; 1077 1078 if (verity_is_verity_mode(arg_name)) { 1079 if (only_modifier_opts) 1080 continue; 1081 r = verity_parse_verity_mode(v, arg_name); 1082 if (r) { 1083 ti->error = "Conflicting error handling parameters"; 1084 return r; 1085 } 1086 continue; 1087 1088 } else if (!strcasecmp(arg_name, DM_VERITY_OPT_IGN_ZEROES)) { 1089 if (only_modifier_opts) 1090 continue; 1091 r = verity_alloc_zero_digest(v); 1092 if (r) { 1093 ti->error = "Cannot allocate zero digest"; 1094 return r; 1095 } 1096 continue; 1097 1098 } else if (!strcasecmp(arg_name, DM_VERITY_OPT_AT_MOST_ONCE)) { 1099 if (only_modifier_opts) 1100 continue; 1101 r = verity_alloc_most_once(v); 1102 if (r) 1103 return r; 1104 continue; 1105 1106 } else if (!strcasecmp(arg_name, DM_VERITY_OPT_TASKLET_VERIFY)) { 1107 v->use_tasklet = true; 1108 static_branch_inc(&use_tasklet_enabled); 1109 continue; 1110 1111 } else if (verity_is_fec_opt_arg(arg_name)) { 1112 if (only_modifier_opts) 1113 continue; 1114 r = verity_fec_parse_opt_args(as, v, &argc, arg_name); 1115 if (r) 1116 return r; 1117 continue; 1118 1119 } else if (verity_verify_is_sig_opt_arg(arg_name)) { 1120 if (only_modifier_opts) 1121 continue; 1122 r = verity_verify_sig_parse_opt_args(as, v, 1123 verify_args, 1124 &argc, arg_name); 1125 if (r) 1126 return r; 1127 continue; 1128 1129 } else if (only_modifier_opts) { 1130 /* 1131 * Ignore unrecognized opt, could easily be an extra 1132 * argument to an option whose parsing was skipped. 1133 * Normal parsing (@only_modifier_opts=false) will 1134 * properly parse all options (and their extra args). 1135 */ 1136 continue; 1137 } 1138 1139 DMERR("Unrecognized verity feature request: %s", arg_name); 1140 ti->error = "Unrecognized verity feature request"; 1141 return -EINVAL; 1142 } while (argc && !r); 1143 1144 return r; 1145 } 1146 1147 /* 1148 * Target parameters: 1149 * <version> The current format is version 1. 1150 * Vsn 0 is compatible with original Chromium OS releases. 1151 * <data device> 1152 * <hash device> 1153 * <data block size> 1154 * <hash block size> 1155 * <the number of data blocks> 1156 * <hash start block> 1157 * <algorithm> 1158 * <digest> 1159 * <salt> Hex string or "-" if no salt. 1160 */ 1161 static int verity_ctr(struct dm_target *ti, unsigned int argc, char **argv) 1162 { 1163 struct dm_verity *v; 1164 struct dm_verity_sig_opts verify_args = {0}; 1165 struct dm_arg_set as; 1166 unsigned int num; 1167 unsigned long long num_ll; 1168 int r; 1169 int i; 1170 sector_t hash_position; 1171 char dummy; 1172 char *root_hash_digest_to_validate; 1173 1174 v = kzalloc(sizeof(struct dm_verity), GFP_KERNEL); 1175 if (!v) { 1176 ti->error = "Cannot allocate verity structure"; 1177 return -ENOMEM; 1178 } 1179 ti->private = v; 1180 v->ti = ti; 1181 1182 r = verity_fec_ctr_alloc(v); 1183 if (r) 1184 goto bad; 1185 1186 if ((dm_table_get_mode(ti->table) & ~FMODE_READ)) { 1187 ti->error = "Device must be readonly"; 1188 r = -EINVAL; 1189 goto bad; 1190 } 1191 1192 if (argc < 10) { 1193 ti->error = "Not enough arguments"; 1194 r = -EINVAL; 1195 goto bad; 1196 } 1197 1198 /* Parse optional parameters that modify primary args */ 1199 if (argc > 10) { 1200 as.argc = argc - 10; 1201 as.argv = argv + 10; 1202 r = verity_parse_opt_args(&as, v, &verify_args, true); 1203 if (r < 0) 1204 goto bad; 1205 } 1206 1207 if (sscanf(argv[0], "%u%c", &num, &dummy) != 1 || 1208 num > 1) { 1209 ti->error = "Invalid version"; 1210 r = -EINVAL; 1211 goto bad; 1212 } 1213 v->version = num; 1214 1215 r = dm_get_device(ti, argv[1], FMODE_READ, &v->data_dev); 1216 if (r) { 1217 ti->error = "Data device lookup failed"; 1218 goto bad; 1219 } 1220 1221 r = dm_get_device(ti, argv[2], FMODE_READ, &v->hash_dev); 1222 if (r) { 1223 ti->error = "Hash device lookup failed"; 1224 goto bad; 1225 } 1226 1227 if (sscanf(argv[3], "%u%c", &num, &dummy) != 1 || 1228 !num || (num & (num - 1)) || 1229 num < bdev_logical_block_size(v->data_dev->bdev) || 1230 num > PAGE_SIZE) { 1231 ti->error = "Invalid data device block size"; 1232 r = -EINVAL; 1233 goto bad; 1234 } 1235 v->data_dev_block_bits = __ffs(num); 1236 1237 if (sscanf(argv[4], "%u%c", &num, &dummy) != 1 || 1238 !num || (num & (num - 1)) || 1239 num < bdev_logical_block_size(v->hash_dev->bdev) || 1240 num > INT_MAX) { 1241 ti->error = "Invalid hash device block size"; 1242 r = -EINVAL; 1243 goto bad; 1244 } 1245 v->hash_dev_block_bits = __ffs(num); 1246 1247 if (sscanf(argv[5], "%llu%c", &num_ll, &dummy) != 1 || 1248 (sector_t)(num_ll << (v->data_dev_block_bits - SECTOR_SHIFT)) 1249 >> (v->data_dev_block_bits - SECTOR_SHIFT) != num_ll) { 1250 ti->error = "Invalid data blocks"; 1251 r = -EINVAL; 1252 goto bad; 1253 } 1254 v->data_blocks = num_ll; 1255 1256 if (ti->len > (v->data_blocks << (v->data_dev_block_bits - SECTOR_SHIFT))) { 1257 ti->error = "Data device is too small"; 1258 r = -EINVAL; 1259 goto bad; 1260 } 1261 1262 if (sscanf(argv[6], "%llu%c", &num_ll, &dummy) != 1 || 1263 (sector_t)(num_ll << (v->hash_dev_block_bits - SECTOR_SHIFT)) 1264 >> (v->hash_dev_block_bits - SECTOR_SHIFT) != num_ll) { 1265 ti->error = "Invalid hash start"; 1266 r = -EINVAL; 1267 goto bad; 1268 } 1269 v->hash_start = num_ll; 1270 1271 v->alg_name = kstrdup(argv[7], GFP_KERNEL); 1272 if (!v->alg_name) { 1273 ti->error = "Cannot allocate algorithm name"; 1274 r = -ENOMEM; 1275 goto bad; 1276 } 1277 1278 v->tfm = crypto_alloc_ahash(v->alg_name, 0, 1279 v->use_tasklet ? CRYPTO_ALG_ASYNC : 0); 1280 if (IS_ERR(v->tfm)) { 1281 ti->error = "Cannot initialize hash function"; 1282 r = PTR_ERR(v->tfm); 1283 v->tfm = NULL; 1284 goto bad; 1285 } 1286 1287 /* 1288 * dm-verity performance can vary greatly depending on which hash 1289 * algorithm implementation is used. Help people debug performance 1290 * problems by logging the ->cra_driver_name. 1291 */ 1292 DMINFO("%s using implementation \"%s\"", v->alg_name, 1293 crypto_hash_alg_common(v->tfm)->base.cra_driver_name); 1294 1295 v->digest_size = crypto_ahash_digestsize(v->tfm); 1296 if ((1 << v->hash_dev_block_bits) < v->digest_size * 2) { 1297 ti->error = "Digest size too big"; 1298 r = -EINVAL; 1299 goto bad; 1300 } 1301 v->ahash_reqsize = sizeof(struct ahash_request) + 1302 crypto_ahash_reqsize(v->tfm); 1303 1304 v->root_digest = kmalloc(v->digest_size, GFP_KERNEL); 1305 if (!v->root_digest) { 1306 ti->error = "Cannot allocate root digest"; 1307 r = -ENOMEM; 1308 goto bad; 1309 } 1310 if (strlen(argv[8]) != v->digest_size * 2 || 1311 hex2bin(v->root_digest, argv[8], v->digest_size)) { 1312 ti->error = "Invalid root digest"; 1313 r = -EINVAL; 1314 goto bad; 1315 } 1316 root_hash_digest_to_validate = argv[8]; 1317 1318 if (strcmp(argv[9], "-")) { 1319 v->salt_size = strlen(argv[9]) / 2; 1320 v->salt = kmalloc(v->salt_size, GFP_KERNEL); 1321 if (!v->salt) { 1322 ti->error = "Cannot allocate salt"; 1323 r = -ENOMEM; 1324 goto bad; 1325 } 1326 if (strlen(argv[9]) != v->salt_size * 2 || 1327 hex2bin(v->salt, argv[9], v->salt_size)) { 1328 ti->error = "Invalid salt"; 1329 r = -EINVAL; 1330 goto bad; 1331 } 1332 } 1333 1334 argv += 10; 1335 argc -= 10; 1336 1337 /* Optional parameters */ 1338 if (argc) { 1339 as.argc = argc; 1340 as.argv = argv; 1341 r = verity_parse_opt_args(&as, v, &verify_args, false); 1342 if (r < 0) 1343 goto bad; 1344 } 1345 1346 /* Root hash signature is a optional parameter*/ 1347 r = verity_verify_root_hash(root_hash_digest_to_validate, 1348 strlen(root_hash_digest_to_validate), 1349 verify_args.sig, 1350 verify_args.sig_size); 1351 if (r < 0) { 1352 ti->error = "Root hash verification failed"; 1353 goto bad; 1354 } 1355 v->hash_per_block_bits = 1356 __fls((1 << v->hash_dev_block_bits) / v->digest_size); 1357 1358 v->levels = 0; 1359 if (v->data_blocks) 1360 while (v->hash_per_block_bits * v->levels < 64 && 1361 (unsigned long long)(v->data_blocks - 1) >> 1362 (v->hash_per_block_bits * v->levels)) 1363 v->levels++; 1364 1365 if (v->levels > DM_VERITY_MAX_LEVELS) { 1366 ti->error = "Too many tree levels"; 1367 r = -E2BIG; 1368 goto bad; 1369 } 1370 1371 hash_position = v->hash_start; 1372 for (i = v->levels - 1; i >= 0; i--) { 1373 sector_t s; 1374 1375 v->hash_level_block[i] = hash_position; 1376 s = (v->data_blocks + ((sector_t)1 << ((i + 1) * v->hash_per_block_bits)) - 1) 1377 >> ((i + 1) * v->hash_per_block_bits); 1378 if (hash_position + s < hash_position) { 1379 ti->error = "Hash device offset overflow"; 1380 r = -E2BIG; 1381 goto bad; 1382 } 1383 hash_position += s; 1384 } 1385 v->hash_blocks = hash_position; 1386 1387 v->bufio = dm_bufio_client_create(v->hash_dev->bdev, 1388 1 << v->hash_dev_block_bits, 1, sizeof(struct buffer_aux), 1389 dm_bufio_alloc_callback, NULL, 1390 v->use_tasklet ? DM_BUFIO_CLIENT_NO_SLEEP : 0); 1391 if (IS_ERR(v->bufio)) { 1392 ti->error = "Cannot initialize dm-bufio"; 1393 r = PTR_ERR(v->bufio); 1394 v->bufio = NULL; 1395 goto bad; 1396 } 1397 1398 if (dm_bufio_get_device_size(v->bufio) < v->hash_blocks) { 1399 ti->error = "Hash device is too small"; 1400 r = -E2BIG; 1401 goto bad; 1402 } 1403 1404 /* 1405 * Using WQ_HIGHPRI improves throughput and completion latency by 1406 * reducing wait times when reading from a dm-verity device. 1407 * 1408 * Also as required for the "try_verify_in_tasklet" feature: WQ_HIGHPRI 1409 * allows verify_wq to preempt softirq since verification in tasklet 1410 * will fall-back to using it for error handling (or if the bufio cache 1411 * doesn't have required hashes). 1412 */ 1413 v->verify_wq = alloc_workqueue("kverityd", WQ_MEM_RECLAIM | WQ_HIGHPRI, 0); 1414 if (!v->verify_wq) { 1415 ti->error = "Cannot allocate workqueue"; 1416 r = -ENOMEM; 1417 goto bad; 1418 } 1419 1420 ti->per_io_data_size = sizeof(struct dm_verity_io) + 1421 v->ahash_reqsize + v->digest_size * 2; 1422 1423 r = verity_fec_ctr(v); 1424 if (r) 1425 goto bad; 1426 1427 ti->per_io_data_size = roundup(ti->per_io_data_size, 1428 __alignof__(struct dm_verity_io)); 1429 1430 verity_verify_sig_opts_cleanup(&verify_args); 1431 1432 return 0; 1433 1434 bad: 1435 1436 verity_verify_sig_opts_cleanup(&verify_args); 1437 verity_dtr(ti); 1438 1439 return r; 1440 } 1441 1442 /* 1443 * Check whether a DM target is a verity target. 1444 */ 1445 bool dm_is_verity_target(struct dm_target *ti) 1446 { 1447 return ti->type->module == THIS_MODULE; 1448 } 1449 1450 /* 1451 * Get the verity mode (error behavior) of a verity target. 1452 * 1453 * Returns the verity mode of the target, or -EINVAL if 'ti' is not a verity 1454 * target. 1455 */ 1456 int dm_verity_get_mode(struct dm_target *ti) 1457 { 1458 struct dm_verity *v = ti->private; 1459 1460 if (!dm_is_verity_target(ti)) 1461 return -EINVAL; 1462 1463 return v->mode; 1464 } 1465 1466 /* 1467 * Get the root digest of a verity target. 1468 * 1469 * Returns a copy of the root digest, the caller is responsible for 1470 * freeing the memory of the digest. 1471 */ 1472 int dm_verity_get_root_digest(struct dm_target *ti, u8 **root_digest, unsigned int *digest_size) 1473 { 1474 struct dm_verity *v = ti->private; 1475 1476 if (!dm_is_verity_target(ti)) 1477 return -EINVAL; 1478 1479 *root_digest = kmemdup(v->root_digest, v->digest_size, GFP_KERNEL); 1480 if (*root_digest == NULL) 1481 return -ENOMEM; 1482 1483 *digest_size = v->digest_size; 1484 1485 return 0; 1486 } 1487 1488 static struct target_type verity_target = { 1489 .name = "verity", 1490 .features = DM_TARGET_IMMUTABLE, 1491 .version = {1, 9, 0}, 1492 .module = THIS_MODULE, 1493 .ctr = verity_ctr, 1494 .dtr = verity_dtr, 1495 .map = verity_map, 1496 .status = verity_status, 1497 .prepare_ioctl = verity_prepare_ioctl, 1498 .iterate_devices = verity_iterate_devices, 1499 .io_hints = verity_io_hints, 1500 }; 1501 1502 static int __init dm_verity_init(void) 1503 { 1504 int r; 1505 1506 r = dm_register_target(&verity_target); 1507 if (r < 0) 1508 DMERR("register failed %d", r); 1509 1510 return r; 1511 } 1512 1513 static void __exit dm_verity_exit(void) 1514 { 1515 dm_unregister_target(&verity_target); 1516 } 1517 1518 module_init(dm_verity_init); 1519 module_exit(dm_verity_exit); 1520 1521 MODULE_AUTHOR("Mikulas Patocka <mpatocka@redhat.com>"); 1522 MODULE_AUTHOR("Mandeep Baines <msb@chromium.org>"); 1523 MODULE_AUTHOR("Will Drewry <wad@chromium.org>"); 1524 MODULE_DESCRIPTION(DM_NAME " target for transparent disk integrity checking"); 1525 MODULE_LICENSE("GPL"); 1526