1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 2012 Red Hat, Inc. 4 * 5 * Author: Mikulas Patocka <mpatocka@redhat.com> 6 * 7 * Based on Chromium dm-verity driver (C) 2011 The Chromium OS Authors 8 * 9 * In the file "/sys/module/dm_verity/parameters/prefetch_cluster" you can set 10 * default prefetch value. Data are read in "prefetch_cluster" chunks from the 11 * hash device. Setting this greatly improves performance when data and hash 12 * are on the same disk on different partitions on devices with poor random 13 * access behavior. 14 */ 15 16 #include "dm-verity.h" 17 #include "dm-verity-fec.h" 18 #include "dm-verity-verify-sig.h" 19 #include "dm-audit.h" 20 #include <linux/module.h> 21 #include <linux/reboot.h> 22 #include <linux/string.h> 23 #include <linux/jump_label.h> 24 #include <linux/security.h> 25 26 #define DM_MSG_PREFIX "verity" 27 28 #define DM_VERITY_ENV_LENGTH 42 29 #define DM_VERITY_ENV_VAR_NAME "DM_VERITY_ERR_BLOCK_NR" 30 31 #define DM_VERITY_DEFAULT_PREFETCH_SIZE 262144 32 #define DM_VERITY_USE_BH_DEFAULT_BYTES 8192 33 34 #define DM_VERITY_MAX_CORRUPTED_ERRS 100 35 36 #define DM_VERITY_OPT_LOGGING "ignore_corruption" 37 #define DM_VERITY_OPT_RESTART "restart_on_corruption" 38 #define DM_VERITY_OPT_PANIC "panic_on_corruption" 39 #define DM_VERITY_OPT_ERROR_RESTART "restart_on_error" 40 #define DM_VERITY_OPT_ERROR_PANIC "panic_on_error" 41 #define DM_VERITY_OPT_IGN_ZEROES "ignore_zero_blocks" 42 #define DM_VERITY_OPT_AT_MOST_ONCE "check_at_most_once" 43 #define DM_VERITY_OPT_TASKLET_VERIFY "try_verify_in_tasklet" 44 45 #define DM_VERITY_OPTS_MAX (5 + DM_VERITY_OPTS_FEC + \ 46 DM_VERITY_ROOT_HASH_VERIFICATION_OPTS) 47 48 static unsigned int dm_verity_prefetch_cluster = DM_VERITY_DEFAULT_PREFETCH_SIZE; 49 50 module_param_named(prefetch_cluster, dm_verity_prefetch_cluster, uint, 0644); 51 52 static unsigned int dm_verity_use_bh_bytes[4] = { 53 DM_VERITY_USE_BH_DEFAULT_BYTES, // IOPRIO_CLASS_NONE 54 DM_VERITY_USE_BH_DEFAULT_BYTES, // IOPRIO_CLASS_RT 55 DM_VERITY_USE_BH_DEFAULT_BYTES, // IOPRIO_CLASS_BE 56 0 // IOPRIO_CLASS_IDLE 57 }; 58 59 module_param_array_named(use_bh_bytes, dm_verity_use_bh_bytes, uint, NULL, 0644); 60 61 static DEFINE_STATIC_KEY_FALSE(use_bh_wq_enabled); 62 63 struct dm_verity_prefetch_work { 64 struct work_struct work; 65 struct dm_verity *v; 66 unsigned short ioprio; 67 sector_t block; 68 unsigned int n_blocks; 69 }; 70 71 /* 72 * Auxiliary structure appended to each dm-bufio buffer. If the value 73 * hash_verified is nonzero, hash of the block has been verified. 74 * 75 * The variable hash_verified is set to 0 when allocating the buffer, then 76 * it can be changed to 1 and it is never reset to 0 again. 77 * 78 * There is no lock around this value, a race condition can at worst cause 79 * that multiple processes verify the hash of the same buffer simultaneously 80 * and write 1 to hash_verified simultaneously. 81 * This condition is harmless, so we don't need locking. 82 */ 83 struct buffer_aux { 84 int hash_verified; 85 }; 86 87 /* 88 * Initialize struct buffer_aux for a freshly created buffer. 89 */ 90 static void dm_bufio_alloc_callback(struct dm_buffer *buf) 91 { 92 struct buffer_aux *aux = dm_bufio_get_aux_data(buf); 93 94 aux->hash_verified = 0; 95 } 96 97 /* 98 * Translate input sector number to the sector number on the target device. 99 */ 100 static sector_t verity_map_sector(struct dm_verity *v, sector_t bi_sector) 101 { 102 return dm_target_offset(v->ti, bi_sector); 103 } 104 105 /* 106 * Return hash position of a specified block at a specified tree level 107 * (0 is the lowest level). 108 * The lowest "hash_per_block_bits"-bits of the result denote hash position 109 * inside a hash block. The remaining bits denote location of the hash block. 110 */ 111 static sector_t verity_position_at_level(struct dm_verity *v, sector_t block, 112 int level) 113 { 114 return block >> (level * v->hash_per_block_bits); 115 } 116 117 int verity_hash(struct dm_verity *v, struct dm_verity_io *io, 118 const u8 *data, size_t len, u8 *digest) 119 { 120 struct shash_desc *desc; 121 int r; 122 123 if (likely(v->use_sha256_lib)) { 124 struct sha256_ctx *ctx = &io->hash_ctx.sha256; 125 126 /* 127 * Fast path using SHA-256 library. This is enabled only for 128 * verity version 1, where the salt is at the beginning. 129 */ 130 *ctx = *v->initial_hashstate.sha256; 131 sha256_update(ctx, data, len); 132 sha256_final(ctx, digest); 133 return 0; 134 } 135 136 desc = &io->hash_ctx.shash; 137 desc->tfm = v->shash_tfm; 138 if (unlikely(v->initial_hashstate.shash == NULL)) { 139 /* Version 0: salt at end */ 140 r = crypto_shash_init(desc) ?: 141 crypto_shash_update(desc, data, len) ?: 142 crypto_shash_update(desc, v->salt, v->salt_size) ?: 143 crypto_shash_final(desc, digest); 144 } else { 145 /* Version 1: salt at beginning */ 146 r = crypto_shash_import(desc, v->initial_hashstate.shash) ?: 147 crypto_shash_finup(desc, data, len, digest); 148 } 149 if (unlikely(r)) 150 DMERR("Error hashing block: %d", r); 151 return r; 152 } 153 154 static void verity_hash_at_level(struct dm_verity *v, sector_t block, int level, 155 sector_t *hash_block, unsigned int *offset) 156 { 157 sector_t position = verity_position_at_level(v, block, level); 158 unsigned int idx; 159 160 *hash_block = v->hash_level_block[level] + (position >> v->hash_per_block_bits); 161 162 if (!offset) 163 return; 164 165 idx = position & ((1 << v->hash_per_block_bits) - 1); 166 if (!v->version) 167 *offset = idx * v->digest_size; 168 else 169 *offset = idx << (v->hash_dev_block_bits - v->hash_per_block_bits); 170 } 171 172 /* 173 * Handle verification errors. 174 */ 175 static int verity_handle_err(struct dm_verity *v, enum verity_block_type type, 176 unsigned long long block) 177 { 178 char verity_env[DM_VERITY_ENV_LENGTH]; 179 char *envp[] = { verity_env, NULL }; 180 const char *type_str = ""; 181 struct mapped_device *md = dm_table_get_md(v->ti->table); 182 183 /* Corruption should be visible in device status in all modes */ 184 v->hash_failed = true; 185 186 if (v->corrupted_errs >= DM_VERITY_MAX_CORRUPTED_ERRS) 187 goto out; 188 189 v->corrupted_errs++; 190 191 switch (type) { 192 case DM_VERITY_BLOCK_TYPE_DATA: 193 type_str = "data"; 194 break; 195 case DM_VERITY_BLOCK_TYPE_METADATA: 196 type_str = "metadata"; 197 break; 198 default: 199 BUG(); 200 } 201 202 DMERR_LIMIT("%s: %s block %llu is corrupted", v->data_dev->name, 203 type_str, block); 204 205 if (v->corrupted_errs == DM_VERITY_MAX_CORRUPTED_ERRS) { 206 DMERR("%s: reached maximum errors", v->data_dev->name); 207 dm_audit_log_target(DM_MSG_PREFIX, "max-corrupted-errors", v->ti, 0); 208 } 209 210 snprintf(verity_env, DM_VERITY_ENV_LENGTH, "%s=%d,%llu", 211 DM_VERITY_ENV_VAR_NAME, type, block); 212 213 kobject_uevent_env(&disk_to_dev(dm_disk(md))->kobj, KOBJ_CHANGE, envp); 214 215 out: 216 if (v->mode == DM_VERITY_MODE_LOGGING) 217 return 0; 218 219 if (v->mode == DM_VERITY_MODE_RESTART) 220 kernel_restart("dm-verity device corrupted"); 221 222 if (v->mode == DM_VERITY_MODE_PANIC) 223 panic("dm-verity device corrupted"); 224 225 return 1; 226 } 227 228 /* 229 * Verify hash of a metadata block pertaining to the specified data block 230 * ("block" argument) at a specified level ("level" argument). 231 * 232 * On successful return, want_digest contains the hash value for a lower tree 233 * level or for the data block (if we're at the lowest level). 234 * 235 * If "skip_unverified" is true, unverified buffer is skipped and 1 is returned. 236 * If "skip_unverified" is false, unverified buffer is hashed and verified 237 * against current value of want_digest. 238 */ 239 static int verity_verify_level(struct dm_verity *v, struct dm_verity_io *io, 240 sector_t block, int level, bool skip_unverified, 241 u8 *want_digest) 242 { 243 struct dm_buffer *buf; 244 struct buffer_aux *aux; 245 u8 *data; 246 int r; 247 sector_t hash_block; 248 unsigned int offset; 249 struct bio *bio = dm_bio_from_per_bio_data(io, v->ti->per_io_data_size); 250 251 verity_hash_at_level(v, block, level, &hash_block, &offset); 252 253 if (static_branch_unlikely(&use_bh_wq_enabled) && io->in_bh) { 254 data = dm_bufio_get(v->bufio, hash_block, &buf); 255 if (IS_ERR_OR_NULL(data)) { 256 /* 257 * In tasklet and the hash was not in the bufio cache. 258 * Return early and resume execution from a work-queue 259 * to read the hash from disk. 260 */ 261 return -EAGAIN; 262 } 263 } else { 264 data = dm_bufio_read_with_ioprio(v->bufio, hash_block, 265 &buf, bio->bi_ioprio); 266 } 267 268 if (IS_ERR(data)) { 269 if (skip_unverified) 270 return 1; 271 r = PTR_ERR(data); 272 data = dm_bufio_new(v->bufio, hash_block, &buf); 273 if (IS_ERR(data)) 274 return r; 275 if (verity_fec_decode(v, io, DM_VERITY_BLOCK_TYPE_METADATA, 276 want_digest, hash_block, data) == 0) { 277 aux = dm_bufio_get_aux_data(buf); 278 aux->hash_verified = 1; 279 goto release_ok; 280 } else { 281 dm_bufio_release(buf); 282 dm_bufio_forget(v->bufio, hash_block); 283 return r; 284 } 285 } 286 287 aux = dm_bufio_get_aux_data(buf); 288 289 if (!aux->hash_verified) { 290 if (skip_unverified) { 291 r = 1; 292 goto release_ret_r; 293 } 294 295 r = verity_hash(v, io, data, 1 << v->hash_dev_block_bits, 296 io->tmp_digest); 297 if (unlikely(r < 0)) 298 goto release_ret_r; 299 300 if (likely(memcmp(io->tmp_digest, want_digest, 301 v->digest_size) == 0)) 302 aux->hash_verified = 1; 303 else if (static_branch_unlikely(&use_bh_wq_enabled) && io->in_bh) { 304 /* 305 * Error handling code (FEC included) cannot be run in a 306 * tasklet since it may sleep, so fallback to work-queue. 307 */ 308 r = -EAGAIN; 309 goto release_ret_r; 310 } else if (verity_fec_decode(v, io, DM_VERITY_BLOCK_TYPE_METADATA, 311 want_digest, hash_block, data) == 0) 312 aux->hash_verified = 1; 313 else if (verity_handle_err(v, 314 DM_VERITY_BLOCK_TYPE_METADATA, 315 hash_block)) { 316 struct bio *bio; 317 io->had_mismatch = true; 318 bio = dm_bio_from_per_bio_data(io, v->ti->per_io_data_size); 319 dm_audit_log_bio(DM_MSG_PREFIX, "verify-metadata", bio, 320 block, 0); 321 r = -EIO; 322 goto release_ret_r; 323 } 324 } 325 326 release_ok: 327 data += offset; 328 memcpy(want_digest, data, v->digest_size); 329 r = 0; 330 331 release_ret_r: 332 dm_bufio_release(buf); 333 return r; 334 } 335 336 /* 337 * Find a hash for a given block, write it to digest and verify the integrity 338 * of the hash tree if necessary. 339 */ 340 int verity_hash_for_block(struct dm_verity *v, struct dm_verity_io *io, 341 sector_t block, u8 *digest, bool *is_zero) 342 { 343 int r = 0, i; 344 345 if (likely(v->levels)) { 346 /* 347 * First, we try to get the requested hash for 348 * the current block. If the hash block itself is 349 * verified, zero is returned. If it isn't, this 350 * function returns 1 and we fall back to whole 351 * chain verification. 352 */ 353 r = verity_verify_level(v, io, block, 0, true, digest); 354 if (likely(r <= 0)) 355 goto out; 356 } 357 358 memcpy(digest, v->root_digest, v->digest_size); 359 360 for (i = v->levels - 1; i >= 0; i--) { 361 r = verity_verify_level(v, io, block, i, false, digest); 362 if (unlikely(r)) 363 goto out; 364 } 365 out: 366 if (!r && v->zero_digest) 367 *is_zero = !memcmp(v->zero_digest, digest, v->digest_size); 368 else 369 *is_zero = false; 370 371 return r; 372 } 373 374 static noinline int verity_recheck(struct dm_verity *v, struct dm_verity_io *io, 375 const u8 *want_digest, sector_t cur_block, 376 u8 *dest) 377 { 378 struct page *page; 379 void *buffer; 380 int r; 381 struct dm_io_request io_req; 382 struct dm_io_region io_loc; 383 384 page = mempool_alloc(&v->recheck_pool, GFP_NOIO); 385 buffer = page_to_virt(page); 386 387 io_req.bi_opf = REQ_OP_READ; 388 io_req.mem.type = DM_IO_KMEM; 389 io_req.mem.ptr.addr = buffer; 390 io_req.notify.fn = NULL; 391 io_req.client = v->io; 392 io_loc.bdev = v->data_dev->bdev; 393 io_loc.sector = cur_block << (v->data_dev_block_bits - SECTOR_SHIFT); 394 io_loc.count = 1 << (v->data_dev_block_bits - SECTOR_SHIFT); 395 r = dm_io(&io_req, 1, &io_loc, NULL, IOPRIO_DEFAULT); 396 if (unlikely(r)) 397 goto free_ret; 398 399 r = verity_hash(v, io, buffer, 1 << v->data_dev_block_bits, 400 io->tmp_digest); 401 if (unlikely(r)) 402 goto free_ret; 403 404 if (memcmp(io->tmp_digest, want_digest, v->digest_size)) { 405 r = -EIO; 406 goto free_ret; 407 } 408 409 memcpy(dest, buffer, 1 << v->data_dev_block_bits); 410 r = 0; 411 free_ret: 412 mempool_free(page, &v->recheck_pool); 413 414 return r; 415 } 416 417 static int verity_handle_data_hash_mismatch(struct dm_verity *v, 418 struct dm_verity_io *io, 419 struct bio *bio, 420 struct pending_block *block) 421 { 422 const u8 *want_digest = block->want_digest; 423 sector_t blkno = block->blkno; 424 u8 *data = block->data; 425 426 if (static_branch_unlikely(&use_bh_wq_enabled) && io->in_bh) { 427 /* 428 * Error handling code (FEC included) cannot be run in the 429 * BH workqueue, so fallback to a standard workqueue. 430 */ 431 return -EAGAIN; 432 } 433 if (verity_recheck(v, io, want_digest, blkno, data) == 0) { 434 if (v->validated_blocks) 435 set_bit(blkno, v->validated_blocks); 436 return 0; 437 } 438 #if defined(CONFIG_DM_VERITY_FEC) 439 if (verity_fec_decode(v, io, DM_VERITY_BLOCK_TYPE_DATA, want_digest, 440 blkno, data) == 0) 441 return 0; 442 #endif 443 if (bio->bi_status) 444 return -EIO; /* Error correction failed; Just return error */ 445 446 if (verity_handle_err(v, DM_VERITY_BLOCK_TYPE_DATA, blkno)) { 447 io->had_mismatch = true; 448 dm_audit_log_bio(DM_MSG_PREFIX, "verify-data", bio, blkno, 0); 449 return -EIO; 450 } 451 return 0; 452 } 453 454 static void verity_clear_pending_blocks(struct dm_verity_io *io) 455 { 456 int i; 457 458 for (i = io->num_pending - 1; i >= 0; i--) { 459 kunmap_local(io->pending_blocks[i].data); 460 io->pending_blocks[i].data = NULL; 461 } 462 io->num_pending = 0; 463 } 464 465 static int verity_verify_pending_blocks(struct dm_verity *v, 466 struct dm_verity_io *io, 467 struct bio *bio) 468 { 469 const unsigned int block_size = 1 << v->data_dev_block_bits; 470 int i, r; 471 472 if (io->num_pending == 2) { 473 /* num_pending == 2 implies that the algorithm is SHA-256 */ 474 sha256_finup_2x(v->initial_hashstate.sha256, 475 io->pending_blocks[0].data, 476 io->pending_blocks[1].data, block_size, 477 io->pending_blocks[0].real_digest, 478 io->pending_blocks[1].real_digest); 479 } else { 480 for (i = 0; i < io->num_pending; i++) { 481 r = verity_hash(v, io, io->pending_blocks[i].data, 482 block_size, 483 io->pending_blocks[i].real_digest); 484 if (unlikely(r)) 485 return r; 486 } 487 } 488 489 for (i = 0; i < io->num_pending; i++) { 490 struct pending_block *block = &io->pending_blocks[i]; 491 492 if (likely(memcmp(block->real_digest, block->want_digest, 493 v->digest_size) == 0)) { 494 if (v->validated_blocks) 495 set_bit(block->blkno, v->validated_blocks); 496 } else { 497 r = verity_handle_data_hash_mismatch(v, io, bio, block); 498 if (unlikely(r)) 499 return r; 500 } 501 } 502 verity_clear_pending_blocks(io); 503 return 0; 504 } 505 506 /* 507 * Verify one "dm_verity_io" structure. 508 */ 509 static int verity_verify_io(struct dm_verity_io *io) 510 { 511 struct dm_verity *v = io->v; 512 const unsigned int block_size = 1 << v->data_dev_block_bits; 513 const int max_pending = v->use_sha256_finup_2x ? 2 : 1; 514 struct bvec_iter iter_copy; 515 struct bvec_iter *iter; 516 struct bio *bio = dm_bio_from_per_bio_data(io, v->ti->per_io_data_size); 517 unsigned int b; 518 int r; 519 520 io->num_pending = 0; 521 522 if (static_branch_unlikely(&use_bh_wq_enabled) && io->in_bh) { 523 /* 524 * Copy the iterator in case we need to restart 525 * verification in a work-queue. 526 */ 527 iter_copy = io->iter; 528 iter = &iter_copy; 529 } else 530 iter = &io->iter; 531 532 for (b = 0; b < io->n_blocks; 533 b++, bio_advance_iter(bio, iter, block_size)) { 534 sector_t blkno = io->block + b; 535 struct pending_block *block; 536 bool is_zero; 537 struct bio_vec bv; 538 void *data; 539 540 if (v->validated_blocks && bio->bi_status == BLK_STS_OK && 541 likely(test_bit(blkno, v->validated_blocks))) 542 continue; 543 544 block = &io->pending_blocks[io->num_pending]; 545 546 r = verity_hash_for_block(v, io, blkno, block->want_digest, 547 &is_zero); 548 if (unlikely(r < 0)) 549 goto error; 550 551 bv = bio_iter_iovec(bio, *iter); 552 if (unlikely(bv.bv_len < block_size)) { 553 /* 554 * Data block spans pages. This should not happen, 555 * since dm-verity sets dma_alignment to the data block 556 * size minus 1, and dm-verity also doesn't allow the 557 * data block size to be greater than PAGE_SIZE. 558 */ 559 DMERR_LIMIT("unaligned io (data block spans pages)"); 560 r = -EIO; 561 goto error; 562 } 563 564 data = bvec_kmap_local(&bv); 565 566 if (is_zero) { 567 /* 568 * If we expect a zero block, don't validate, just 569 * return zeros. 570 */ 571 memset(data, 0, block_size); 572 kunmap_local(data); 573 continue; 574 } 575 block->data = data; 576 block->blkno = blkno; 577 if (++io->num_pending == max_pending) { 578 r = verity_verify_pending_blocks(v, io, bio); 579 if (unlikely(r)) 580 goto error; 581 } 582 } 583 584 if (io->num_pending) { 585 r = verity_verify_pending_blocks(v, io, bio); 586 if (unlikely(r)) 587 goto error; 588 } 589 590 return 0; 591 592 error: 593 verity_clear_pending_blocks(io); 594 return r; 595 } 596 597 /* 598 * Skip verity work in response to I/O error when system is shutting down. 599 */ 600 static inline bool verity_is_system_shutting_down(void) 601 { 602 return system_state == SYSTEM_HALT || system_state == SYSTEM_POWER_OFF 603 || system_state == SYSTEM_RESTART; 604 } 605 606 static void restart_io_error(struct work_struct *w) 607 { 608 kernel_restart("dm-verity device has I/O error"); 609 } 610 611 /* 612 * End one "io" structure with a given error. 613 */ 614 static void verity_finish_io(struct dm_verity_io *io, blk_status_t status) 615 { 616 struct dm_verity *v = io->v; 617 struct bio *bio = dm_bio_from_per_bio_data(io, v->ti->per_io_data_size); 618 619 bio->bi_end_io = io->orig_bi_end_io; 620 bio->bi_status = status; 621 622 if (!static_branch_unlikely(&use_bh_wq_enabled) || !io->in_bh) 623 verity_fec_finish_io(io); 624 625 if (unlikely(status != BLK_STS_OK) && 626 unlikely(!(bio->bi_opf & REQ_RAHEAD)) && 627 !io->had_mismatch && 628 !verity_is_system_shutting_down()) { 629 if (v->error_mode == DM_VERITY_MODE_PANIC) { 630 panic("dm-verity device has I/O error"); 631 } 632 if (v->error_mode == DM_VERITY_MODE_RESTART) { 633 static DECLARE_WORK(restart_work, restart_io_error); 634 queue_work(v->verify_wq, &restart_work); 635 /* 636 * We deliberately don't call bio_endio here, because 637 * the machine will be restarted anyway. 638 */ 639 return; 640 } 641 } 642 643 bio_endio(bio); 644 } 645 646 static void verity_work(struct work_struct *w) 647 { 648 struct dm_verity_io *io = container_of(w, struct dm_verity_io, work); 649 650 io->in_bh = false; 651 652 verity_finish_io(io, errno_to_blk_status(verity_verify_io(io))); 653 } 654 655 static void verity_bh_work(struct work_struct *w) 656 { 657 struct dm_verity_io *io = container_of(w, struct dm_verity_io, bh_work); 658 int err; 659 660 io->in_bh = true; 661 err = verity_verify_io(io); 662 if (err == -EAGAIN || err == -ENOMEM) { 663 /* fallback to retrying with work-queue */ 664 INIT_WORK(&io->work, verity_work); 665 queue_work(io->v->verify_wq, &io->work); 666 return; 667 } 668 669 verity_finish_io(io, errno_to_blk_status(err)); 670 } 671 672 static inline bool verity_use_bh(unsigned int bytes, unsigned short ioprio) 673 { 674 return ioprio <= IOPRIO_CLASS_IDLE && 675 bytes <= READ_ONCE(dm_verity_use_bh_bytes[ioprio]) && 676 !need_resched(); 677 } 678 679 static void verity_end_io(struct bio *bio) 680 { 681 struct dm_verity_io *io = bio->bi_private; 682 unsigned short ioprio = IOPRIO_PRIO_CLASS(bio->bi_ioprio); 683 unsigned int bytes = io->n_blocks << io->v->data_dev_block_bits; 684 685 if (bio->bi_status && 686 (!verity_fec_is_enabled(io->v) || 687 verity_is_system_shutting_down() || 688 (bio->bi_opf & REQ_RAHEAD))) { 689 verity_finish_io(io, bio->bi_status); 690 return; 691 } 692 693 if (static_branch_unlikely(&use_bh_wq_enabled) && io->v->use_bh_wq && 694 verity_use_bh(bytes, ioprio)) { 695 if (in_hardirq() || irqs_disabled()) { 696 INIT_WORK(&io->bh_work, verity_bh_work); 697 queue_work(system_bh_wq, &io->bh_work); 698 } else { 699 verity_bh_work(&io->bh_work); 700 } 701 } else { 702 INIT_WORK(&io->work, verity_work); 703 queue_work(io->v->verify_wq, &io->work); 704 } 705 } 706 707 /* 708 * Prefetch buffers for the specified io. 709 * The root buffer is not prefetched, it is assumed that it will be cached 710 * all the time. 711 */ 712 static void verity_prefetch_io(struct work_struct *work) 713 { 714 struct dm_verity_prefetch_work *pw = 715 container_of(work, struct dm_verity_prefetch_work, work); 716 struct dm_verity *v = pw->v; 717 int i; 718 719 for (i = v->levels - 2; i >= 0; i--) { 720 sector_t hash_block_start; 721 sector_t hash_block_end; 722 723 verity_hash_at_level(v, pw->block, i, &hash_block_start, NULL); 724 verity_hash_at_level(v, pw->block + pw->n_blocks - 1, i, &hash_block_end, NULL); 725 726 if (!i) { 727 unsigned int cluster = READ_ONCE(dm_verity_prefetch_cluster); 728 729 cluster >>= v->data_dev_block_bits; 730 if (unlikely(!cluster)) 731 goto no_prefetch_cluster; 732 733 if (unlikely(cluster & (cluster - 1))) 734 cluster = 1 << __fls(cluster); 735 736 hash_block_start &= ~(sector_t)(cluster - 1); 737 hash_block_end |= cluster - 1; 738 if (unlikely(hash_block_end >= v->hash_blocks)) 739 hash_block_end = v->hash_blocks - 1; 740 } 741 no_prefetch_cluster: 742 dm_bufio_prefetch_with_ioprio(v->bufio, hash_block_start, 743 hash_block_end - hash_block_start + 1, 744 pw->ioprio); 745 } 746 747 kfree(pw); 748 } 749 750 static void verity_submit_prefetch(struct dm_verity *v, struct dm_verity_io *io, 751 unsigned short ioprio) 752 { 753 sector_t block = io->block; 754 unsigned int n_blocks = io->n_blocks; 755 struct dm_verity_prefetch_work *pw; 756 757 if (v->validated_blocks) { 758 while (n_blocks && test_bit(block, v->validated_blocks)) { 759 block++; 760 n_blocks--; 761 } 762 while (n_blocks && test_bit(block + n_blocks - 1, 763 v->validated_blocks)) 764 n_blocks--; 765 if (!n_blocks) 766 return; 767 } 768 769 pw = kmalloc(sizeof(struct dm_verity_prefetch_work), 770 GFP_NOIO | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN); 771 772 if (!pw) 773 return; 774 775 INIT_WORK(&pw->work, verity_prefetch_io); 776 pw->v = v; 777 pw->block = block; 778 pw->n_blocks = n_blocks; 779 pw->ioprio = ioprio; 780 queue_work(v->verify_wq, &pw->work); 781 } 782 783 /* 784 * Bio map function. It allocates dm_verity_io structure and bio vector and 785 * fills them. Then it issues prefetches and the I/O. 786 */ 787 static int verity_map(struct dm_target *ti, struct bio *bio) 788 { 789 struct dm_verity *v = ti->private; 790 struct dm_verity_io *io; 791 792 bio_set_dev(bio, v->data_dev->bdev); 793 bio->bi_iter.bi_sector = verity_map_sector(v, bio->bi_iter.bi_sector); 794 795 if (((unsigned int)bio->bi_iter.bi_sector | bio_sectors(bio)) & 796 ((1 << (v->data_dev_block_bits - SECTOR_SHIFT)) - 1)) { 797 DMERR_LIMIT("unaligned io"); 798 return DM_MAPIO_KILL; 799 } 800 801 if (bio_end_sector(bio) >> 802 (v->data_dev_block_bits - SECTOR_SHIFT) > v->data_blocks) { 803 DMERR_LIMIT("io out of range"); 804 return DM_MAPIO_KILL; 805 } 806 807 if (bio_data_dir(bio) == WRITE) 808 return DM_MAPIO_KILL; 809 810 io = dm_per_bio_data(bio, ti->per_io_data_size); 811 io->v = v; 812 io->orig_bi_end_io = bio->bi_end_io; 813 io->block = bio->bi_iter.bi_sector >> (v->data_dev_block_bits - SECTOR_SHIFT); 814 io->n_blocks = bio->bi_iter.bi_size >> v->data_dev_block_bits; 815 io->had_mismatch = false; 816 817 bio->bi_end_io = verity_end_io; 818 bio->bi_private = io; 819 io->iter = bio->bi_iter; 820 821 verity_fec_init_io(io); 822 823 verity_submit_prefetch(v, io, bio->bi_ioprio); 824 825 submit_bio_noacct(bio); 826 827 return DM_MAPIO_SUBMITTED; 828 } 829 830 static void verity_postsuspend(struct dm_target *ti) 831 { 832 struct dm_verity *v = ti->private; 833 flush_workqueue(v->verify_wq); 834 dm_bufio_client_reset(v->bufio); 835 } 836 837 /* 838 * Status: V (valid) or C (corruption found) 839 */ 840 static void verity_status(struct dm_target *ti, status_type_t type, 841 unsigned int status_flags, char *result, unsigned int maxlen) 842 { 843 struct dm_verity *v = ti->private; 844 unsigned int args = 0; 845 unsigned int sz = 0; 846 unsigned int x; 847 848 switch (type) { 849 case STATUSTYPE_INFO: 850 DMEMIT("%c", v->hash_failed ? 'C' : 'V'); 851 if (verity_fec_is_enabled(v)) 852 DMEMIT(" %lld", atomic64_read(&v->fec->corrected)); 853 else 854 DMEMIT(" -"); 855 break; 856 case STATUSTYPE_TABLE: 857 DMEMIT("%u %s %s %u %u %llu %llu %s ", 858 v->version, 859 v->data_dev->name, 860 v->hash_dev->name, 861 1 << v->data_dev_block_bits, 862 1 << v->hash_dev_block_bits, 863 (unsigned long long)v->data_blocks, 864 (unsigned long long)v->hash_start, 865 v->alg_name 866 ); 867 for (x = 0; x < v->digest_size; x++) 868 DMEMIT("%02x", v->root_digest[x]); 869 DMEMIT(" "); 870 if (!v->salt_size) 871 DMEMIT("-"); 872 else 873 for (x = 0; x < v->salt_size; x++) 874 DMEMIT("%02x", v->salt[x]); 875 if (v->mode != DM_VERITY_MODE_EIO) 876 args++; 877 if (v->error_mode != DM_VERITY_MODE_EIO) 878 args++; 879 if (verity_fec_is_enabled(v)) 880 args += DM_VERITY_OPTS_FEC; 881 if (v->zero_digest) 882 args++; 883 if (v->validated_blocks) 884 args++; 885 if (v->use_bh_wq) 886 args++; 887 if (v->signature_key_desc) 888 args += DM_VERITY_ROOT_HASH_VERIFICATION_OPTS; 889 if (!args) 890 return; 891 DMEMIT(" %u", args); 892 if (v->mode != DM_VERITY_MODE_EIO) { 893 DMEMIT(" "); 894 switch (v->mode) { 895 case DM_VERITY_MODE_LOGGING: 896 DMEMIT(DM_VERITY_OPT_LOGGING); 897 break; 898 case DM_VERITY_MODE_RESTART: 899 DMEMIT(DM_VERITY_OPT_RESTART); 900 break; 901 case DM_VERITY_MODE_PANIC: 902 DMEMIT(DM_VERITY_OPT_PANIC); 903 break; 904 default: 905 BUG(); 906 } 907 } 908 if (v->error_mode != DM_VERITY_MODE_EIO) { 909 DMEMIT(" "); 910 switch (v->error_mode) { 911 case DM_VERITY_MODE_RESTART: 912 DMEMIT(DM_VERITY_OPT_ERROR_RESTART); 913 break; 914 case DM_VERITY_MODE_PANIC: 915 DMEMIT(DM_VERITY_OPT_ERROR_PANIC); 916 break; 917 default: 918 BUG(); 919 } 920 } 921 if (v->zero_digest) 922 DMEMIT(" " DM_VERITY_OPT_IGN_ZEROES); 923 if (v->validated_blocks) 924 DMEMIT(" " DM_VERITY_OPT_AT_MOST_ONCE); 925 if (v->use_bh_wq) 926 DMEMIT(" " DM_VERITY_OPT_TASKLET_VERIFY); 927 sz = verity_fec_status_table(v, sz, result, maxlen); 928 if (v->signature_key_desc) 929 DMEMIT(" " DM_VERITY_ROOT_HASH_VERIFICATION_OPT_SIG_KEY 930 " %s", v->signature_key_desc); 931 break; 932 933 case STATUSTYPE_IMA: 934 DMEMIT_TARGET_NAME_VERSION(ti->type); 935 DMEMIT(",hash_failed=%c", v->hash_failed ? 'C' : 'V'); 936 DMEMIT(",verity_version=%u", v->version); 937 DMEMIT(",data_device_name=%s", v->data_dev->name); 938 DMEMIT(",hash_device_name=%s", v->hash_dev->name); 939 DMEMIT(",verity_algorithm=%s", v->alg_name); 940 941 DMEMIT(",root_digest="); 942 for (x = 0; x < v->digest_size; x++) 943 DMEMIT("%02x", v->root_digest[x]); 944 945 DMEMIT(",salt="); 946 if (!v->salt_size) 947 DMEMIT("-"); 948 else 949 for (x = 0; x < v->salt_size; x++) 950 DMEMIT("%02x", v->salt[x]); 951 952 DMEMIT(",ignore_zero_blocks=%c", v->zero_digest ? 'y' : 'n'); 953 DMEMIT(",check_at_most_once=%c", v->validated_blocks ? 'y' : 'n'); 954 if (v->signature_key_desc) 955 DMEMIT(",root_hash_sig_key_desc=%s", v->signature_key_desc); 956 957 if (v->mode != DM_VERITY_MODE_EIO) { 958 DMEMIT(",verity_mode="); 959 switch (v->mode) { 960 case DM_VERITY_MODE_LOGGING: 961 DMEMIT(DM_VERITY_OPT_LOGGING); 962 break; 963 case DM_VERITY_MODE_RESTART: 964 DMEMIT(DM_VERITY_OPT_RESTART); 965 break; 966 case DM_VERITY_MODE_PANIC: 967 DMEMIT(DM_VERITY_OPT_PANIC); 968 break; 969 default: 970 DMEMIT("invalid"); 971 } 972 } 973 if (v->error_mode != DM_VERITY_MODE_EIO) { 974 DMEMIT(",verity_error_mode="); 975 switch (v->error_mode) { 976 case DM_VERITY_MODE_RESTART: 977 DMEMIT(DM_VERITY_OPT_ERROR_RESTART); 978 break; 979 case DM_VERITY_MODE_PANIC: 980 DMEMIT(DM_VERITY_OPT_ERROR_PANIC); 981 break; 982 default: 983 DMEMIT("invalid"); 984 } 985 } 986 DMEMIT(";"); 987 break; 988 } 989 } 990 991 static int verity_prepare_ioctl(struct dm_target *ti, struct block_device **bdev, 992 unsigned int cmd, unsigned long arg, 993 bool *forward) 994 { 995 struct dm_verity *v = ti->private; 996 997 *bdev = v->data_dev->bdev; 998 999 if (ti->len != bdev_nr_sectors(v->data_dev->bdev)) 1000 return 1; 1001 return 0; 1002 } 1003 1004 static int verity_iterate_devices(struct dm_target *ti, 1005 iterate_devices_callout_fn fn, void *data) 1006 { 1007 struct dm_verity *v = ti->private; 1008 1009 return fn(ti, v->data_dev, 0, ti->len, data); 1010 } 1011 1012 static void verity_io_hints(struct dm_target *ti, struct queue_limits *limits) 1013 { 1014 struct dm_verity *v = ti->private; 1015 1016 if (limits->logical_block_size < 1 << v->data_dev_block_bits) 1017 limits->logical_block_size = 1 << v->data_dev_block_bits; 1018 1019 if (limits->physical_block_size < 1 << v->data_dev_block_bits) 1020 limits->physical_block_size = 1 << v->data_dev_block_bits; 1021 1022 limits->io_min = limits->logical_block_size; 1023 1024 /* 1025 * Similar to what dm-crypt does, opt dm-verity out of support for 1026 * direct I/O that is aligned to less than the traditional direct I/O 1027 * alignment requirement of logical_block_size. This prevents dm-verity 1028 * data blocks from crossing pages, eliminating various edge cases. 1029 */ 1030 limits->dma_alignment = limits->logical_block_size - 1; 1031 } 1032 1033 #ifdef CONFIG_SECURITY 1034 1035 static int verity_init_sig(struct dm_verity *v, const void *sig, 1036 size_t sig_size) 1037 { 1038 v->sig_size = sig_size; 1039 1040 if (sig) { 1041 v->root_digest_sig = kmemdup(sig, v->sig_size, GFP_KERNEL); 1042 if (!v->root_digest_sig) 1043 return -ENOMEM; 1044 } 1045 1046 return 0; 1047 } 1048 1049 static void verity_free_sig(struct dm_verity *v) 1050 { 1051 kfree(v->root_digest_sig); 1052 } 1053 1054 #else 1055 1056 static inline int verity_init_sig(struct dm_verity *v, const void *sig, 1057 size_t sig_size) 1058 { 1059 return 0; 1060 } 1061 1062 static inline void verity_free_sig(struct dm_verity *v) 1063 { 1064 } 1065 1066 #endif /* CONFIG_SECURITY */ 1067 1068 static void verity_dtr(struct dm_target *ti) 1069 { 1070 struct dm_verity *v = ti->private; 1071 1072 if (v->verify_wq) 1073 destroy_workqueue(v->verify_wq); 1074 1075 mempool_exit(&v->recheck_pool); 1076 if (v->io) 1077 dm_io_client_destroy(v->io); 1078 1079 if (v->bufio) 1080 dm_bufio_client_destroy(v->bufio); 1081 1082 kvfree(v->validated_blocks); 1083 kfree(v->salt); 1084 kfree(v->initial_hashstate.shash); 1085 kfree(v->root_digest); 1086 kfree(v->zero_digest); 1087 verity_free_sig(v); 1088 1089 crypto_free_shash(v->shash_tfm); 1090 1091 kfree(v->alg_name); 1092 1093 if (v->hash_dev) 1094 dm_put_device(ti, v->hash_dev); 1095 1096 if (v->data_dev) 1097 dm_put_device(ti, v->data_dev); 1098 1099 verity_fec_dtr(v); 1100 1101 kfree(v->signature_key_desc); 1102 1103 if (v->use_bh_wq) 1104 static_branch_dec(&use_bh_wq_enabled); 1105 1106 kfree(v); 1107 1108 dm_audit_log_dtr(DM_MSG_PREFIX, ti, 1); 1109 } 1110 1111 static int verity_alloc_most_once(struct dm_verity *v) 1112 { 1113 struct dm_target *ti = v->ti; 1114 1115 if (v->validated_blocks) 1116 return 0; 1117 1118 /* the bitset can only handle INT_MAX blocks */ 1119 if (v->data_blocks > INT_MAX) { 1120 ti->error = "device too large to use check_at_most_once"; 1121 return -E2BIG; 1122 } 1123 1124 v->validated_blocks = kvcalloc(BITS_TO_LONGS(v->data_blocks), 1125 sizeof(unsigned long), 1126 GFP_KERNEL); 1127 if (!v->validated_blocks) { 1128 ti->error = "failed to allocate bitset for check_at_most_once"; 1129 return -ENOMEM; 1130 } 1131 1132 return 0; 1133 } 1134 1135 static int verity_alloc_zero_digest(struct dm_verity *v) 1136 { 1137 int r = -ENOMEM; 1138 struct dm_verity_io *io; 1139 u8 *zero_data; 1140 1141 if (v->zero_digest) 1142 return 0; 1143 1144 v->zero_digest = kmalloc(v->digest_size, GFP_KERNEL); 1145 1146 if (!v->zero_digest) 1147 return r; 1148 1149 io = kmalloc(v->ti->per_io_data_size, GFP_KERNEL); 1150 1151 if (!io) 1152 return r; /* verity_dtr will free zero_digest */ 1153 1154 zero_data = kzalloc(1 << v->data_dev_block_bits, GFP_KERNEL); 1155 1156 if (!zero_data) 1157 goto out; 1158 1159 r = verity_hash(v, io, zero_data, 1 << v->data_dev_block_bits, 1160 v->zero_digest); 1161 1162 out: 1163 kfree(io); 1164 kfree(zero_data); 1165 1166 return r; 1167 } 1168 1169 static inline bool verity_is_verity_mode(const char *arg_name) 1170 { 1171 return (!strcasecmp(arg_name, DM_VERITY_OPT_LOGGING) || 1172 !strcasecmp(arg_name, DM_VERITY_OPT_RESTART) || 1173 !strcasecmp(arg_name, DM_VERITY_OPT_PANIC)); 1174 } 1175 1176 static int verity_parse_verity_mode(struct dm_verity *v, const char *arg_name) 1177 { 1178 if (v->mode) 1179 return -EINVAL; 1180 1181 if (!strcasecmp(arg_name, DM_VERITY_OPT_LOGGING)) 1182 v->mode = DM_VERITY_MODE_LOGGING; 1183 else if (!strcasecmp(arg_name, DM_VERITY_OPT_RESTART)) 1184 v->mode = DM_VERITY_MODE_RESTART; 1185 else if (!strcasecmp(arg_name, DM_VERITY_OPT_PANIC)) 1186 v->mode = DM_VERITY_MODE_PANIC; 1187 1188 return 0; 1189 } 1190 1191 static inline bool verity_is_verity_error_mode(const char *arg_name) 1192 { 1193 return (!strcasecmp(arg_name, DM_VERITY_OPT_ERROR_RESTART) || 1194 !strcasecmp(arg_name, DM_VERITY_OPT_ERROR_PANIC)); 1195 } 1196 1197 static int verity_parse_verity_error_mode(struct dm_verity *v, const char *arg_name) 1198 { 1199 if (v->error_mode) 1200 return -EINVAL; 1201 1202 if (!strcasecmp(arg_name, DM_VERITY_OPT_ERROR_RESTART)) 1203 v->error_mode = DM_VERITY_MODE_RESTART; 1204 else if (!strcasecmp(arg_name, DM_VERITY_OPT_ERROR_PANIC)) 1205 v->error_mode = DM_VERITY_MODE_PANIC; 1206 1207 return 0; 1208 } 1209 1210 static int verity_parse_opt_args(struct dm_arg_set *as, struct dm_verity *v, 1211 struct dm_verity_sig_opts *verify_args, 1212 bool only_modifier_opts) 1213 { 1214 int r = 0; 1215 unsigned int argc; 1216 struct dm_target *ti = v->ti; 1217 const char *arg_name; 1218 1219 static const struct dm_arg _args[] = { 1220 {0, DM_VERITY_OPTS_MAX, "Invalid number of feature args"}, 1221 }; 1222 1223 r = dm_read_arg_group(_args, as, &argc, &ti->error); 1224 if (r) 1225 return -EINVAL; 1226 1227 if (!argc) 1228 return 0; 1229 1230 do { 1231 arg_name = dm_shift_arg(as); 1232 argc--; 1233 1234 if (verity_is_verity_mode(arg_name)) { 1235 if (only_modifier_opts) 1236 continue; 1237 r = verity_parse_verity_mode(v, arg_name); 1238 if (r) { 1239 ti->error = "Conflicting error handling parameters"; 1240 return r; 1241 } 1242 continue; 1243 1244 } else if (verity_is_verity_error_mode(arg_name)) { 1245 if (only_modifier_opts) 1246 continue; 1247 r = verity_parse_verity_error_mode(v, arg_name); 1248 if (r) { 1249 ti->error = "Conflicting error handling parameters"; 1250 return r; 1251 } 1252 continue; 1253 1254 } else if (!strcasecmp(arg_name, DM_VERITY_OPT_IGN_ZEROES)) { 1255 if (only_modifier_opts) 1256 continue; 1257 r = verity_alloc_zero_digest(v); 1258 if (r) { 1259 ti->error = "Cannot allocate zero digest"; 1260 return r; 1261 } 1262 continue; 1263 1264 } else if (!strcasecmp(arg_name, DM_VERITY_OPT_AT_MOST_ONCE)) { 1265 if (only_modifier_opts) 1266 continue; 1267 r = verity_alloc_most_once(v); 1268 if (r) 1269 return r; 1270 continue; 1271 1272 } else if (!strcasecmp(arg_name, DM_VERITY_OPT_TASKLET_VERIFY)) { 1273 v->use_bh_wq = true; 1274 static_branch_inc(&use_bh_wq_enabled); 1275 continue; 1276 1277 } else if (verity_is_fec_opt_arg(arg_name)) { 1278 if (only_modifier_opts) 1279 continue; 1280 r = verity_fec_parse_opt_args(as, v, &argc, arg_name); 1281 if (r) 1282 return r; 1283 continue; 1284 1285 } else if (verity_verify_is_sig_opt_arg(arg_name)) { 1286 if (only_modifier_opts) 1287 continue; 1288 r = verity_verify_sig_parse_opt_args(as, v, 1289 verify_args, 1290 &argc, arg_name); 1291 if (r) 1292 return r; 1293 continue; 1294 1295 } else if (only_modifier_opts) { 1296 /* 1297 * Ignore unrecognized opt, could easily be an extra 1298 * argument to an option whose parsing was skipped. 1299 * Normal parsing (@only_modifier_opts=false) will 1300 * properly parse all options (and their extra args). 1301 */ 1302 continue; 1303 } 1304 1305 DMERR("Unrecognized verity feature request: %s", arg_name); 1306 ti->error = "Unrecognized verity feature request"; 1307 return -EINVAL; 1308 } while (argc && !r); 1309 1310 return r; 1311 } 1312 1313 static int verity_setup_hash_alg(struct dm_verity *v, const char *alg_name) 1314 { 1315 struct dm_target *ti = v->ti; 1316 struct crypto_shash *shash; 1317 1318 v->alg_name = kstrdup(alg_name, GFP_KERNEL); 1319 if (!v->alg_name) { 1320 ti->error = "Cannot allocate algorithm name"; 1321 return -ENOMEM; 1322 } 1323 1324 shash = crypto_alloc_shash(alg_name, 0, 0); 1325 if (IS_ERR(shash)) { 1326 ti->error = "Cannot initialize hash function"; 1327 return PTR_ERR(shash); 1328 } 1329 v->shash_tfm = shash; 1330 v->digest_size = crypto_shash_digestsize(shash); 1331 if ((1 << v->hash_dev_block_bits) < v->digest_size * 2) { 1332 ti->error = "Digest size too big"; 1333 return -EINVAL; 1334 } 1335 if (likely(v->version && strcmp(alg_name, "sha256") == 0)) { 1336 /* 1337 * Fast path: use the library API for reduced overhead and 1338 * interleaved hashing support. 1339 */ 1340 v->use_sha256_lib = true; 1341 if (sha256_finup_2x_is_optimized()) 1342 v->use_sha256_finup_2x = true; 1343 ti->per_io_data_size = 1344 offsetofend(struct dm_verity_io, hash_ctx.sha256); 1345 } else { 1346 /* Fallback case: use the generic crypto API. */ 1347 ti->per_io_data_size = 1348 offsetofend(struct dm_verity_io, hash_ctx.shash) + 1349 crypto_shash_descsize(shash); 1350 } 1351 return 0; 1352 } 1353 1354 static int verity_setup_salt_and_hashstate(struct dm_verity *v, const char *arg) 1355 { 1356 struct dm_target *ti = v->ti; 1357 1358 if (strcmp(arg, "-") != 0) { 1359 v->salt_size = strlen(arg) / 2; 1360 v->salt = kmalloc(v->salt_size, GFP_KERNEL); 1361 if (!v->salt) { 1362 ti->error = "Cannot allocate salt"; 1363 return -ENOMEM; 1364 } 1365 if (strlen(arg) != v->salt_size * 2 || 1366 hex2bin(v->salt, arg, v->salt_size)) { 1367 ti->error = "Invalid salt"; 1368 return -EINVAL; 1369 } 1370 } 1371 if (likely(v->use_sha256_lib)) { 1372 /* Implies version 1: salt at beginning */ 1373 v->initial_hashstate.sha256 = 1374 kmalloc(sizeof(struct sha256_ctx), GFP_KERNEL); 1375 if (!v->initial_hashstate.sha256) { 1376 ti->error = "Cannot allocate initial hash state"; 1377 return -ENOMEM; 1378 } 1379 sha256_init(v->initial_hashstate.sha256); 1380 sha256_update(v->initial_hashstate.sha256, 1381 v->salt, v->salt_size); 1382 } else if (v->version) { /* Version 1: salt at beginning */ 1383 SHASH_DESC_ON_STACK(desc, v->shash_tfm); 1384 int r; 1385 1386 /* 1387 * Compute the pre-salted hash state that can be passed to 1388 * crypto_shash_import() for each block later. 1389 */ 1390 v->initial_hashstate.shash = kmalloc( 1391 crypto_shash_statesize(v->shash_tfm), GFP_KERNEL); 1392 if (!v->initial_hashstate.shash) { 1393 ti->error = "Cannot allocate initial hash state"; 1394 return -ENOMEM; 1395 } 1396 desc->tfm = v->shash_tfm; 1397 r = crypto_shash_init(desc) ?: 1398 crypto_shash_update(desc, v->salt, v->salt_size) ?: 1399 crypto_shash_export(desc, v->initial_hashstate.shash); 1400 if (r) { 1401 ti->error = "Cannot set up initial hash state"; 1402 return r; 1403 } 1404 } 1405 return 0; 1406 } 1407 1408 /* 1409 * Target parameters: 1410 * <version> The current format is version 1. 1411 * Vsn 0 is compatible with original Chromium OS releases. 1412 * <data device> 1413 * <hash device> 1414 * <data block size> 1415 * <hash block size> 1416 * <the number of data blocks> 1417 * <hash start block> 1418 * <algorithm> 1419 * <digest> 1420 * <salt> Hex string or "-" if no salt. 1421 */ 1422 static int verity_ctr(struct dm_target *ti, unsigned int argc, char **argv) 1423 { 1424 struct dm_verity *v; 1425 struct dm_verity_sig_opts verify_args = {0}; 1426 struct dm_arg_set as; 1427 unsigned int num; 1428 unsigned long long num_ll; 1429 int r; 1430 int i; 1431 sector_t hash_position; 1432 char dummy; 1433 char *root_hash_digest_to_validate; 1434 1435 v = kzalloc(sizeof(struct dm_verity), GFP_KERNEL); 1436 if (!v) { 1437 ti->error = "Cannot allocate verity structure"; 1438 return -ENOMEM; 1439 } 1440 ti->private = v; 1441 v->ti = ti; 1442 1443 r = verity_fec_ctr_alloc(v); 1444 if (r) 1445 goto bad; 1446 1447 if ((dm_table_get_mode(ti->table) & ~BLK_OPEN_READ)) { 1448 ti->error = "Device must be readonly"; 1449 r = -EINVAL; 1450 goto bad; 1451 } 1452 1453 if (argc < 10) { 1454 ti->error = "Not enough arguments"; 1455 r = -EINVAL; 1456 goto bad; 1457 } 1458 1459 /* Parse optional parameters that modify primary args */ 1460 if (argc > 10) { 1461 as.argc = argc - 10; 1462 as.argv = argv + 10; 1463 r = verity_parse_opt_args(&as, v, &verify_args, true); 1464 if (r < 0) 1465 goto bad; 1466 } 1467 1468 if (sscanf(argv[0], "%u%c", &num, &dummy) != 1 || 1469 num > 1) { 1470 ti->error = "Invalid version"; 1471 r = -EINVAL; 1472 goto bad; 1473 } 1474 v->version = num; 1475 1476 r = dm_get_device(ti, argv[1], BLK_OPEN_READ, &v->data_dev); 1477 if (r) { 1478 ti->error = "Data device lookup failed"; 1479 goto bad; 1480 } 1481 1482 r = dm_get_device(ti, argv[2], BLK_OPEN_READ, &v->hash_dev); 1483 if (r) { 1484 ti->error = "Hash device lookup failed"; 1485 goto bad; 1486 } 1487 1488 if (sscanf(argv[3], "%u%c", &num, &dummy) != 1 || 1489 !num || (num & (num - 1)) || 1490 num < bdev_logical_block_size(v->data_dev->bdev) || 1491 num > PAGE_SIZE) { 1492 ti->error = "Invalid data device block size"; 1493 r = -EINVAL; 1494 goto bad; 1495 } 1496 v->data_dev_block_bits = __ffs(num); 1497 1498 if (sscanf(argv[4], "%u%c", &num, &dummy) != 1 || 1499 !num || (num & (num - 1)) || 1500 num < bdev_logical_block_size(v->hash_dev->bdev) || 1501 num > INT_MAX) { 1502 ti->error = "Invalid hash device block size"; 1503 r = -EINVAL; 1504 goto bad; 1505 } 1506 v->hash_dev_block_bits = __ffs(num); 1507 1508 if (sscanf(argv[5], "%llu%c", &num_ll, &dummy) != 1 || 1509 (sector_t)(num_ll << (v->data_dev_block_bits - SECTOR_SHIFT)) 1510 >> (v->data_dev_block_bits - SECTOR_SHIFT) != num_ll) { 1511 ti->error = "Invalid data blocks"; 1512 r = -EINVAL; 1513 goto bad; 1514 } 1515 v->data_blocks = num_ll; 1516 1517 if (ti->len > (v->data_blocks << (v->data_dev_block_bits - SECTOR_SHIFT))) { 1518 ti->error = "Data device is too small"; 1519 r = -EINVAL; 1520 goto bad; 1521 } 1522 1523 if (sscanf(argv[6], "%llu%c", &num_ll, &dummy) != 1 || 1524 (sector_t)(num_ll << (v->hash_dev_block_bits - SECTOR_SHIFT)) 1525 >> (v->hash_dev_block_bits - SECTOR_SHIFT) != num_ll) { 1526 ti->error = "Invalid hash start"; 1527 r = -EINVAL; 1528 goto bad; 1529 } 1530 v->hash_start = num_ll; 1531 1532 r = verity_setup_hash_alg(v, argv[7]); 1533 if (r) 1534 goto bad; 1535 1536 v->root_digest = kmalloc(v->digest_size, GFP_KERNEL); 1537 if (!v->root_digest) { 1538 ti->error = "Cannot allocate root digest"; 1539 r = -ENOMEM; 1540 goto bad; 1541 } 1542 if (strlen(argv[8]) != v->digest_size * 2 || 1543 hex2bin(v->root_digest, argv[8], v->digest_size)) { 1544 ti->error = "Invalid root digest"; 1545 r = -EINVAL; 1546 goto bad; 1547 } 1548 root_hash_digest_to_validate = argv[8]; 1549 1550 r = verity_setup_salt_and_hashstate(v, argv[9]); 1551 if (r) 1552 goto bad; 1553 1554 argv += 10; 1555 argc -= 10; 1556 1557 /* Optional parameters */ 1558 if (argc) { 1559 as.argc = argc; 1560 as.argv = argv; 1561 r = verity_parse_opt_args(&as, v, &verify_args, false); 1562 if (r < 0) 1563 goto bad; 1564 } 1565 1566 /* Root hash signature is an optional parameter */ 1567 r = verity_verify_root_hash(root_hash_digest_to_validate, 1568 strlen(root_hash_digest_to_validate), 1569 verify_args.sig, 1570 verify_args.sig_size); 1571 if (r < 0) { 1572 ti->error = "Root hash verification failed"; 1573 goto bad; 1574 } 1575 1576 r = verity_init_sig(v, verify_args.sig, verify_args.sig_size); 1577 if (r < 0) { 1578 ti->error = "Cannot allocate root digest signature"; 1579 goto bad; 1580 } 1581 1582 v->hash_per_block_bits = 1583 __fls((1 << v->hash_dev_block_bits) / v->digest_size); 1584 1585 v->levels = 0; 1586 if (v->data_blocks) 1587 while (v->hash_per_block_bits * v->levels < 64 && 1588 (unsigned long long)(v->data_blocks - 1) >> 1589 (v->hash_per_block_bits * v->levels)) 1590 v->levels++; 1591 1592 if (v->levels > DM_VERITY_MAX_LEVELS) { 1593 ti->error = "Too many tree levels"; 1594 r = -E2BIG; 1595 goto bad; 1596 } 1597 1598 hash_position = v->hash_start; 1599 for (i = v->levels - 1; i >= 0; i--) { 1600 sector_t s; 1601 1602 v->hash_level_block[i] = hash_position; 1603 s = (v->data_blocks + ((sector_t)1 << ((i + 1) * v->hash_per_block_bits)) - 1) 1604 >> ((i + 1) * v->hash_per_block_bits); 1605 if (hash_position + s < hash_position) { 1606 ti->error = "Hash device offset overflow"; 1607 r = -E2BIG; 1608 goto bad; 1609 } 1610 hash_position += s; 1611 } 1612 v->hash_blocks = hash_position; 1613 1614 r = mempool_init_page_pool(&v->recheck_pool, 1, 0); 1615 if (unlikely(r)) { 1616 ti->error = "Cannot allocate mempool"; 1617 goto bad; 1618 } 1619 1620 v->io = dm_io_client_create(); 1621 if (IS_ERR(v->io)) { 1622 r = PTR_ERR(v->io); 1623 v->io = NULL; 1624 ti->error = "Cannot allocate dm io"; 1625 goto bad; 1626 } 1627 1628 v->bufio = dm_bufio_client_create(v->hash_dev->bdev, 1629 1 << v->hash_dev_block_bits, 1, sizeof(struct buffer_aux), 1630 dm_bufio_alloc_callback, NULL, 1631 v->use_bh_wq ? DM_BUFIO_CLIENT_NO_SLEEP : 0); 1632 if (IS_ERR(v->bufio)) { 1633 ti->error = "Cannot initialize dm-bufio"; 1634 r = PTR_ERR(v->bufio); 1635 v->bufio = NULL; 1636 goto bad; 1637 } 1638 1639 if (dm_bufio_get_device_size(v->bufio) < v->hash_blocks) { 1640 ti->error = "Hash device is too small"; 1641 r = -E2BIG; 1642 goto bad; 1643 } 1644 1645 /* 1646 * Using WQ_HIGHPRI improves throughput and completion latency by 1647 * reducing wait times when reading from a dm-verity device. 1648 * 1649 * Also as required for the "try_verify_in_tasklet" feature: WQ_HIGHPRI 1650 * allows verify_wq to preempt softirq since verification in BH workqueue 1651 * will fall-back to using it for error handling (or if the bufio cache 1652 * doesn't have required hashes). 1653 */ 1654 v->verify_wq = alloc_workqueue("kverityd", WQ_MEM_RECLAIM | WQ_HIGHPRI, 0); 1655 if (!v->verify_wq) { 1656 ti->error = "Cannot allocate workqueue"; 1657 r = -ENOMEM; 1658 goto bad; 1659 } 1660 1661 r = verity_fec_ctr(v); 1662 if (r) 1663 goto bad; 1664 1665 ti->per_io_data_size = roundup(ti->per_io_data_size, 1666 __alignof__(struct dm_verity_io)); 1667 1668 verity_verify_sig_opts_cleanup(&verify_args); 1669 1670 dm_audit_log_ctr(DM_MSG_PREFIX, ti, 1); 1671 1672 return 0; 1673 1674 bad: 1675 1676 verity_verify_sig_opts_cleanup(&verify_args); 1677 dm_audit_log_ctr(DM_MSG_PREFIX, ti, 0); 1678 verity_dtr(ti); 1679 1680 return r; 1681 } 1682 1683 /* 1684 * Get the verity mode (error behavior) of a verity target. 1685 * 1686 * Returns the verity mode of the target, or -EINVAL if 'ti' is not a verity 1687 * target. 1688 */ 1689 int dm_verity_get_mode(struct dm_target *ti) 1690 { 1691 struct dm_verity *v = ti->private; 1692 1693 if (!dm_is_verity_target(ti)) 1694 return -EINVAL; 1695 1696 return v->mode; 1697 } 1698 1699 /* 1700 * Get the root digest of a verity target. 1701 * 1702 * Returns a copy of the root digest, the caller is responsible for 1703 * freeing the memory of the digest. 1704 */ 1705 int dm_verity_get_root_digest(struct dm_target *ti, u8 **root_digest, unsigned int *digest_size) 1706 { 1707 struct dm_verity *v = ti->private; 1708 1709 if (!dm_is_verity_target(ti)) 1710 return -EINVAL; 1711 1712 *root_digest = kmemdup(v->root_digest, v->digest_size, GFP_KERNEL); 1713 if (*root_digest == NULL) 1714 return -ENOMEM; 1715 1716 *digest_size = v->digest_size; 1717 1718 return 0; 1719 } 1720 1721 #ifdef CONFIG_SECURITY 1722 1723 #ifdef CONFIG_DM_VERITY_VERIFY_ROOTHASH_SIG 1724 1725 static int verity_security_set_signature(struct block_device *bdev, 1726 struct dm_verity *v) 1727 { 1728 /* 1729 * if the dm-verity target is unsigned, v->root_digest_sig will 1730 * be NULL, and the hook call is still required to let LSMs mark 1731 * the device as unsigned. This information is crucial for LSMs to 1732 * block operations such as execution on unsigned files 1733 */ 1734 return security_bdev_setintegrity(bdev, 1735 LSM_INT_DMVERITY_SIG_VALID, 1736 v->root_digest_sig, 1737 v->sig_size); 1738 } 1739 1740 #else 1741 1742 static inline int verity_security_set_signature(struct block_device *bdev, 1743 struct dm_verity *v) 1744 { 1745 return 0; 1746 } 1747 1748 #endif /* CONFIG_DM_VERITY_VERIFY_ROOTHASH_SIG */ 1749 1750 /* 1751 * Expose verity target's root hash and signature data to LSMs before resume. 1752 * 1753 * Returns 0 on success, or -ENOMEM if the system is out of memory. 1754 */ 1755 static int verity_preresume(struct dm_target *ti) 1756 { 1757 struct block_device *bdev; 1758 struct dm_verity_digest root_digest; 1759 struct dm_verity *v; 1760 int r; 1761 1762 v = ti->private; 1763 bdev = dm_disk(dm_table_get_md(ti->table))->part0; 1764 root_digest.digest = v->root_digest; 1765 root_digest.digest_len = v->digest_size; 1766 root_digest.alg = crypto_shash_alg_name(v->shash_tfm); 1767 1768 r = security_bdev_setintegrity(bdev, LSM_INT_DMVERITY_ROOTHASH, &root_digest, 1769 sizeof(root_digest)); 1770 if (r) 1771 return r; 1772 1773 r = verity_security_set_signature(bdev, v); 1774 if (r) 1775 goto bad; 1776 1777 return 0; 1778 1779 bad: 1780 1781 security_bdev_setintegrity(bdev, LSM_INT_DMVERITY_ROOTHASH, NULL, 0); 1782 1783 return r; 1784 } 1785 1786 #endif /* CONFIG_SECURITY */ 1787 1788 static struct target_type verity_target = { 1789 .name = "verity", 1790 /* Note: the LSMs depend on the singleton and immutable features */ 1791 .features = DM_TARGET_SINGLETON | DM_TARGET_IMMUTABLE, 1792 .version = {1, 13, 0}, 1793 .module = THIS_MODULE, 1794 .ctr = verity_ctr, 1795 .dtr = verity_dtr, 1796 .map = verity_map, 1797 .postsuspend = verity_postsuspend, 1798 .status = verity_status, 1799 .prepare_ioctl = verity_prepare_ioctl, 1800 .iterate_devices = verity_iterate_devices, 1801 .io_hints = verity_io_hints, 1802 #ifdef CONFIG_SECURITY 1803 .preresume = verity_preresume, 1804 #endif /* CONFIG_SECURITY */ 1805 }; 1806 module_dm(verity); 1807 1808 /* 1809 * Check whether a DM target is a verity target. 1810 */ 1811 bool dm_is_verity_target(struct dm_target *ti) 1812 { 1813 return ti->type == &verity_target; 1814 } 1815 1816 MODULE_AUTHOR("Mikulas Patocka <mpatocka@redhat.com>"); 1817 MODULE_AUTHOR("Mandeep Baines <msb@chromium.org>"); 1818 MODULE_AUTHOR("Will Drewry <wad@chromium.org>"); 1819 MODULE_DESCRIPTION(DM_NAME " target for transparent disk integrity checking"); 1820 MODULE_LICENSE("GPL"); 1821