xref: /linux/drivers/md/dm-verity-target.c (revision 6e7fd890f1d6ac83805409e9c346240de2705584)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2012 Red Hat, Inc.
4  *
5  * Author: Mikulas Patocka <mpatocka@redhat.com>
6  *
7  * Based on Chromium dm-verity driver (C) 2011 The Chromium OS Authors
8  *
9  * In the file "/sys/module/dm_verity/parameters/prefetch_cluster" you can set
10  * default prefetch value. Data are read in "prefetch_cluster" chunks from the
11  * hash device. Setting this greatly improves performance when data and hash
12  * are on the same disk on different partitions on devices with poor random
13  * access behavior.
14  */
15 
16 #include "dm-verity.h"
17 #include "dm-verity-fec.h"
18 #include "dm-verity-verify-sig.h"
19 #include "dm-audit.h"
20 #include <linux/module.h>
21 #include <linux/reboot.h>
22 #include <linux/scatterlist.h>
23 #include <linux/string.h>
24 #include <linux/jump_label.h>
25 
26 #define DM_MSG_PREFIX			"verity"
27 
28 #define DM_VERITY_ENV_LENGTH		42
29 #define DM_VERITY_ENV_VAR_NAME		"DM_VERITY_ERR_BLOCK_NR"
30 
31 #define DM_VERITY_DEFAULT_PREFETCH_SIZE	262144
32 
33 #define DM_VERITY_MAX_CORRUPTED_ERRS	100
34 
35 #define DM_VERITY_OPT_LOGGING		"ignore_corruption"
36 #define DM_VERITY_OPT_RESTART		"restart_on_corruption"
37 #define DM_VERITY_OPT_PANIC		"panic_on_corruption"
38 #define DM_VERITY_OPT_IGN_ZEROES	"ignore_zero_blocks"
39 #define DM_VERITY_OPT_AT_MOST_ONCE	"check_at_most_once"
40 #define DM_VERITY_OPT_TASKLET_VERIFY	"try_verify_in_tasklet"
41 
42 #define DM_VERITY_OPTS_MAX		(4 + DM_VERITY_OPTS_FEC + \
43 					 DM_VERITY_ROOT_HASH_VERIFICATION_OPTS)
44 
45 static unsigned int dm_verity_prefetch_cluster = DM_VERITY_DEFAULT_PREFETCH_SIZE;
46 
47 module_param_named(prefetch_cluster, dm_verity_prefetch_cluster, uint, 0644);
48 
49 static DEFINE_STATIC_KEY_FALSE(use_bh_wq_enabled);
50 
51 /* Is at least one dm-verity instance using ahash_tfm instead of shash_tfm? */
52 static DEFINE_STATIC_KEY_FALSE(ahash_enabled);
53 
54 struct dm_verity_prefetch_work {
55 	struct work_struct work;
56 	struct dm_verity *v;
57 	unsigned short ioprio;
58 	sector_t block;
59 	unsigned int n_blocks;
60 };
61 
62 /*
63  * Auxiliary structure appended to each dm-bufio buffer. If the value
64  * hash_verified is nonzero, hash of the block has been verified.
65  *
66  * The variable hash_verified is set to 0 when allocating the buffer, then
67  * it can be changed to 1 and it is never reset to 0 again.
68  *
69  * There is no lock around this value, a race condition can at worst cause
70  * that multiple processes verify the hash of the same buffer simultaneously
71  * and write 1 to hash_verified simultaneously.
72  * This condition is harmless, so we don't need locking.
73  */
74 struct buffer_aux {
75 	int hash_verified;
76 };
77 
78 /*
79  * Initialize struct buffer_aux for a freshly created buffer.
80  */
81 static void dm_bufio_alloc_callback(struct dm_buffer *buf)
82 {
83 	struct buffer_aux *aux = dm_bufio_get_aux_data(buf);
84 
85 	aux->hash_verified = 0;
86 }
87 
88 /*
89  * Translate input sector number to the sector number on the target device.
90  */
91 static sector_t verity_map_sector(struct dm_verity *v, sector_t bi_sector)
92 {
93 	return v->data_start + dm_target_offset(v->ti, bi_sector);
94 }
95 
96 /*
97  * Return hash position of a specified block at a specified tree level
98  * (0 is the lowest level).
99  * The lowest "hash_per_block_bits"-bits of the result denote hash position
100  * inside a hash block. The remaining bits denote location of the hash block.
101  */
102 static sector_t verity_position_at_level(struct dm_verity *v, sector_t block,
103 					 int level)
104 {
105 	return block >> (level * v->hash_per_block_bits);
106 }
107 
108 static int verity_ahash_update(struct dm_verity *v, struct ahash_request *req,
109 				const u8 *data, size_t len,
110 				struct crypto_wait *wait)
111 {
112 	struct scatterlist sg;
113 
114 	if (likely(!is_vmalloc_addr(data))) {
115 		sg_init_one(&sg, data, len);
116 		ahash_request_set_crypt(req, &sg, NULL, len);
117 		return crypto_wait_req(crypto_ahash_update(req), wait);
118 	}
119 
120 	do {
121 		int r;
122 		size_t this_step = min_t(size_t, len, PAGE_SIZE - offset_in_page(data));
123 
124 		flush_kernel_vmap_range((void *)data, this_step);
125 		sg_init_table(&sg, 1);
126 		sg_set_page(&sg, vmalloc_to_page(data), this_step, offset_in_page(data));
127 		ahash_request_set_crypt(req, &sg, NULL, this_step);
128 		r = crypto_wait_req(crypto_ahash_update(req), wait);
129 		if (unlikely(r))
130 			return r;
131 		data += this_step;
132 		len -= this_step;
133 	} while (len);
134 
135 	return 0;
136 }
137 
138 /*
139  * Wrapper for crypto_ahash_init, which handles verity salting.
140  */
141 static int verity_ahash_init(struct dm_verity *v, struct ahash_request *req,
142 				struct crypto_wait *wait, bool may_sleep)
143 {
144 	int r;
145 
146 	ahash_request_set_tfm(req, v->ahash_tfm);
147 	ahash_request_set_callback(req,
148 		may_sleep ? CRYPTO_TFM_REQ_MAY_SLEEP | CRYPTO_TFM_REQ_MAY_BACKLOG : 0,
149 		crypto_req_done, (void *)wait);
150 	crypto_init_wait(wait);
151 
152 	r = crypto_wait_req(crypto_ahash_init(req), wait);
153 
154 	if (unlikely(r < 0)) {
155 		if (r != -ENOMEM)
156 			DMERR("crypto_ahash_init failed: %d", r);
157 		return r;
158 	}
159 
160 	if (likely(v->salt_size && (v->version >= 1)))
161 		r = verity_ahash_update(v, req, v->salt, v->salt_size, wait);
162 
163 	return r;
164 }
165 
166 static int verity_ahash_final(struct dm_verity *v, struct ahash_request *req,
167 			      u8 *digest, struct crypto_wait *wait)
168 {
169 	int r;
170 
171 	if (unlikely(v->salt_size && (!v->version))) {
172 		r = verity_ahash_update(v, req, v->salt, v->salt_size, wait);
173 
174 		if (r < 0) {
175 			DMERR("%s failed updating salt: %d", __func__, r);
176 			goto out;
177 		}
178 	}
179 
180 	ahash_request_set_crypt(req, NULL, digest, 0);
181 	r = crypto_wait_req(crypto_ahash_final(req), wait);
182 out:
183 	return r;
184 }
185 
186 int verity_hash(struct dm_verity *v, struct dm_verity_io *io,
187 		const u8 *data, size_t len, u8 *digest, bool may_sleep)
188 {
189 	int r;
190 
191 	if (static_branch_unlikely(&ahash_enabled) && !v->shash_tfm) {
192 		struct ahash_request *req = verity_io_hash_req(v, io);
193 		struct crypto_wait wait;
194 
195 		r = verity_ahash_init(v, req, &wait, may_sleep) ?:
196 		    verity_ahash_update(v, req, data, len, &wait) ?:
197 		    verity_ahash_final(v, req, digest, &wait);
198 	} else {
199 		struct shash_desc *desc = verity_io_hash_req(v, io);
200 
201 		desc->tfm = v->shash_tfm;
202 		r = crypto_shash_import(desc, v->initial_hashstate) ?:
203 		    crypto_shash_finup(desc, data, len, digest);
204 	}
205 	if (unlikely(r))
206 		DMERR("Error hashing block: %d", r);
207 	return r;
208 }
209 
210 static void verity_hash_at_level(struct dm_verity *v, sector_t block, int level,
211 				 sector_t *hash_block, unsigned int *offset)
212 {
213 	sector_t position = verity_position_at_level(v, block, level);
214 	unsigned int idx;
215 
216 	*hash_block = v->hash_level_block[level] + (position >> v->hash_per_block_bits);
217 
218 	if (!offset)
219 		return;
220 
221 	idx = position & ((1 << v->hash_per_block_bits) - 1);
222 	if (!v->version)
223 		*offset = idx * v->digest_size;
224 	else
225 		*offset = idx << (v->hash_dev_block_bits - v->hash_per_block_bits);
226 }
227 
228 /*
229  * Handle verification errors.
230  */
231 static int verity_handle_err(struct dm_verity *v, enum verity_block_type type,
232 			     unsigned long long block)
233 {
234 	char verity_env[DM_VERITY_ENV_LENGTH];
235 	char *envp[] = { verity_env, NULL };
236 	const char *type_str = "";
237 	struct mapped_device *md = dm_table_get_md(v->ti->table);
238 
239 	/* Corruption should be visible in device status in all modes */
240 	v->hash_failed = true;
241 
242 	if (v->corrupted_errs >= DM_VERITY_MAX_CORRUPTED_ERRS)
243 		goto out;
244 
245 	v->corrupted_errs++;
246 
247 	switch (type) {
248 	case DM_VERITY_BLOCK_TYPE_DATA:
249 		type_str = "data";
250 		break;
251 	case DM_VERITY_BLOCK_TYPE_METADATA:
252 		type_str = "metadata";
253 		break;
254 	default:
255 		BUG();
256 	}
257 
258 	DMERR_LIMIT("%s: %s block %llu is corrupted", v->data_dev->name,
259 		    type_str, block);
260 
261 	if (v->corrupted_errs == DM_VERITY_MAX_CORRUPTED_ERRS) {
262 		DMERR("%s: reached maximum errors", v->data_dev->name);
263 		dm_audit_log_target(DM_MSG_PREFIX, "max-corrupted-errors", v->ti, 0);
264 	}
265 
266 	snprintf(verity_env, DM_VERITY_ENV_LENGTH, "%s=%d,%llu",
267 		DM_VERITY_ENV_VAR_NAME, type, block);
268 
269 	kobject_uevent_env(&disk_to_dev(dm_disk(md))->kobj, KOBJ_CHANGE, envp);
270 
271 out:
272 	if (v->mode == DM_VERITY_MODE_LOGGING)
273 		return 0;
274 
275 	if (v->mode == DM_VERITY_MODE_RESTART)
276 		kernel_restart("dm-verity device corrupted");
277 
278 	if (v->mode == DM_VERITY_MODE_PANIC)
279 		panic("dm-verity device corrupted");
280 
281 	return 1;
282 }
283 
284 /*
285  * Verify hash of a metadata block pertaining to the specified data block
286  * ("block" argument) at a specified level ("level" argument).
287  *
288  * On successful return, verity_io_want_digest(v, io) contains the hash value
289  * for a lower tree level or for the data block (if we're at the lowest level).
290  *
291  * If "skip_unverified" is true, unverified buffer is skipped and 1 is returned.
292  * If "skip_unverified" is false, unverified buffer is hashed and verified
293  * against current value of verity_io_want_digest(v, io).
294  */
295 static int verity_verify_level(struct dm_verity *v, struct dm_verity_io *io,
296 			       sector_t block, int level, bool skip_unverified,
297 			       u8 *want_digest)
298 {
299 	struct dm_buffer *buf;
300 	struct buffer_aux *aux;
301 	u8 *data;
302 	int r;
303 	sector_t hash_block;
304 	unsigned int offset;
305 	struct bio *bio = dm_bio_from_per_bio_data(io, v->ti->per_io_data_size);
306 
307 	verity_hash_at_level(v, block, level, &hash_block, &offset);
308 
309 	if (static_branch_unlikely(&use_bh_wq_enabled) && io->in_bh) {
310 		data = dm_bufio_get(v->bufio, hash_block, &buf);
311 		if (data == NULL) {
312 			/*
313 			 * In tasklet and the hash was not in the bufio cache.
314 			 * Return early and resume execution from a work-queue
315 			 * to read the hash from disk.
316 			 */
317 			return -EAGAIN;
318 		}
319 	} else {
320 		data = dm_bufio_read_with_ioprio(v->bufio, hash_block,
321 						&buf, bio_prio(bio));
322 	}
323 
324 	if (IS_ERR(data))
325 		return PTR_ERR(data);
326 
327 	aux = dm_bufio_get_aux_data(buf);
328 
329 	if (!aux->hash_verified) {
330 		if (skip_unverified) {
331 			r = 1;
332 			goto release_ret_r;
333 		}
334 
335 		r = verity_hash(v, io, data, 1 << v->hash_dev_block_bits,
336 				verity_io_real_digest(v, io), !io->in_bh);
337 		if (unlikely(r < 0))
338 			goto release_ret_r;
339 
340 		if (likely(memcmp(verity_io_real_digest(v, io), want_digest,
341 				  v->digest_size) == 0))
342 			aux->hash_verified = 1;
343 		else if (static_branch_unlikely(&use_bh_wq_enabled) && io->in_bh) {
344 			/*
345 			 * Error handling code (FEC included) cannot be run in a
346 			 * tasklet since it may sleep, so fallback to work-queue.
347 			 */
348 			r = -EAGAIN;
349 			goto release_ret_r;
350 		} else if (verity_fec_decode(v, io, DM_VERITY_BLOCK_TYPE_METADATA,
351 					     hash_block, data) == 0)
352 			aux->hash_verified = 1;
353 		else if (verity_handle_err(v,
354 					   DM_VERITY_BLOCK_TYPE_METADATA,
355 					   hash_block)) {
356 			struct bio *bio =
357 				dm_bio_from_per_bio_data(io,
358 							 v->ti->per_io_data_size);
359 			dm_audit_log_bio(DM_MSG_PREFIX, "verify-metadata", bio,
360 					 block, 0);
361 			r = -EIO;
362 			goto release_ret_r;
363 		}
364 	}
365 
366 	data += offset;
367 	memcpy(want_digest, data, v->digest_size);
368 	r = 0;
369 
370 release_ret_r:
371 	dm_bufio_release(buf);
372 	return r;
373 }
374 
375 /*
376  * Find a hash for a given block, write it to digest and verify the integrity
377  * of the hash tree if necessary.
378  */
379 int verity_hash_for_block(struct dm_verity *v, struct dm_verity_io *io,
380 			  sector_t block, u8 *digest, bool *is_zero)
381 {
382 	int r = 0, i;
383 
384 	if (likely(v->levels)) {
385 		/*
386 		 * First, we try to get the requested hash for
387 		 * the current block. If the hash block itself is
388 		 * verified, zero is returned. If it isn't, this
389 		 * function returns 1 and we fall back to whole
390 		 * chain verification.
391 		 */
392 		r = verity_verify_level(v, io, block, 0, true, digest);
393 		if (likely(r <= 0))
394 			goto out;
395 	}
396 
397 	memcpy(digest, v->root_digest, v->digest_size);
398 
399 	for (i = v->levels - 1; i >= 0; i--) {
400 		r = verity_verify_level(v, io, block, i, false, digest);
401 		if (unlikely(r))
402 			goto out;
403 	}
404 out:
405 	if (!r && v->zero_digest)
406 		*is_zero = !memcmp(v->zero_digest, digest, v->digest_size);
407 	else
408 		*is_zero = false;
409 
410 	return r;
411 }
412 
413 static noinline int verity_recheck(struct dm_verity *v, struct dm_verity_io *io,
414 				   sector_t cur_block, u8 *dest)
415 {
416 	struct page *page;
417 	void *buffer;
418 	int r;
419 	struct dm_io_request io_req;
420 	struct dm_io_region io_loc;
421 
422 	page = mempool_alloc(&v->recheck_pool, GFP_NOIO);
423 	buffer = page_to_virt(page);
424 
425 	io_req.bi_opf = REQ_OP_READ;
426 	io_req.mem.type = DM_IO_KMEM;
427 	io_req.mem.ptr.addr = buffer;
428 	io_req.notify.fn = NULL;
429 	io_req.client = v->io;
430 	io_loc.bdev = v->data_dev->bdev;
431 	io_loc.sector = cur_block << (v->data_dev_block_bits - SECTOR_SHIFT);
432 	io_loc.count = 1 << (v->data_dev_block_bits - SECTOR_SHIFT);
433 	r = dm_io(&io_req, 1, &io_loc, NULL, IOPRIO_DEFAULT);
434 	if (unlikely(r))
435 		goto free_ret;
436 
437 	r = verity_hash(v, io, buffer, 1 << v->data_dev_block_bits,
438 			verity_io_real_digest(v, io), true);
439 	if (unlikely(r))
440 		goto free_ret;
441 
442 	if (memcmp(verity_io_real_digest(v, io),
443 		   verity_io_want_digest(v, io), v->digest_size)) {
444 		r = -EIO;
445 		goto free_ret;
446 	}
447 
448 	memcpy(dest, buffer, 1 << v->data_dev_block_bits);
449 	r = 0;
450 free_ret:
451 	mempool_free(page, &v->recheck_pool);
452 
453 	return r;
454 }
455 
456 static int verity_handle_data_hash_mismatch(struct dm_verity *v,
457 					    struct dm_verity_io *io,
458 					    struct bio *bio, sector_t blkno,
459 					    u8 *data)
460 {
461 	if (static_branch_unlikely(&use_bh_wq_enabled) && io->in_bh) {
462 		/*
463 		 * Error handling code (FEC included) cannot be run in the
464 		 * BH workqueue, so fallback to a standard workqueue.
465 		 */
466 		return -EAGAIN;
467 	}
468 	if (verity_recheck(v, io, blkno, data) == 0) {
469 		if (v->validated_blocks)
470 			set_bit(blkno, v->validated_blocks);
471 		return 0;
472 	}
473 #if defined(CONFIG_DM_VERITY_FEC)
474 	if (verity_fec_decode(v, io, DM_VERITY_BLOCK_TYPE_DATA, blkno,
475 			      data) == 0)
476 		return 0;
477 #endif
478 	if (bio->bi_status)
479 		return -EIO; /* Error correction failed; Just return error */
480 
481 	if (verity_handle_err(v, DM_VERITY_BLOCK_TYPE_DATA, blkno)) {
482 		dm_audit_log_bio(DM_MSG_PREFIX, "verify-data", bio, blkno, 0);
483 		return -EIO;
484 	}
485 	return 0;
486 }
487 
488 /*
489  * Verify one "dm_verity_io" structure.
490  */
491 static int verity_verify_io(struct dm_verity_io *io)
492 {
493 	struct dm_verity *v = io->v;
494 	const unsigned int block_size = 1 << v->data_dev_block_bits;
495 	struct bvec_iter iter_copy;
496 	struct bvec_iter *iter;
497 	struct bio *bio = dm_bio_from_per_bio_data(io, v->ti->per_io_data_size);
498 	unsigned int b;
499 
500 	if (static_branch_unlikely(&use_bh_wq_enabled) && io->in_bh) {
501 		/*
502 		 * Copy the iterator in case we need to restart
503 		 * verification in a work-queue.
504 		 */
505 		iter_copy = io->iter;
506 		iter = &iter_copy;
507 	} else
508 		iter = &io->iter;
509 
510 	for (b = 0; b < io->n_blocks;
511 	     b++, bio_advance_iter(bio, iter, block_size)) {
512 		int r;
513 		sector_t cur_block = io->block + b;
514 		bool is_zero;
515 		struct bio_vec bv;
516 		void *data;
517 
518 		if (v->validated_blocks && bio->bi_status == BLK_STS_OK &&
519 		    likely(test_bit(cur_block, v->validated_blocks)))
520 			continue;
521 
522 		r = verity_hash_for_block(v, io, cur_block,
523 					  verity_io_want_digest(v, io),
524 					  &is_zero);
525 		if (unlikely(r < 0))
526 			return r;
527 
528 		bv = bio_iter_iovec(bio, *iter);
529 		if (unlikely(bv.bv_len < block_size)) {
530 			/*
531 			 * Data block spans pages.  This should not happen,
532 			 * since dm-verity sets dma_alignment to the data block
533 			 * size minus 1, and dm-verity also doesn't allow the
534 			 * data block size to be greater than PAGE_SIZE.
535 			 */
536 			DMERR_LIMIT("unaligned io (data block spans pages)");
537 			return -EIO;
538 		}
539 
540 		data = bvec_kmap_local(&bv);
541 
542 		if (is_zero) {
543 			/*
544 			 * If we expect a zero block, don't validate, just
545 			 * return zeros.
546 			 */
547 			memset(data, 0, block_size);
548 			kunmap_local(data);
549 			continue;
550 		}
551 
552 		r = verity_hash(v, io, data, block_size,
553 				verity_io_real_digest(v, io), !io->in_bh);
554 		if (unlikely(r < 0)) {
555 			kunmap_local(data);
556 			return r;
557 		}
558 
559 		if (likely(memcmp(verity_io_real_digest(v, io),
560 				  verity_io_want_digest(v, io), v->digest_size) == 0)) {
561 			if (v->validated_blocks)
562 				set_bit(cur_block, v->validated_blocks);
563 			kunmap_local(data);
564 			continue;
565 		}
566 		r = verity_handle_data_hash_mismatch(v, io, bio, cur_block,
567 						     data);
568 		kunmap_local(data);
569 		if (unlikely(r))
570 			return r;
571 	}
572 
573 	return 0;
574 }
575 
576 /*
577  * Skip verity work in response to I/O error when system is shutting down.
578  */
579 static inline bool verity_is_system_shutting_down(void)
580 {
581 	return system_state == SYSTEM_HALT || system_state == SYSTEM_POWER_OFF
582 		|| system_state == SYSTEM_RESTART;
583 }
584 
585 /*
586  * End one "io" structure with a given error.
587  */
588 static void verity_finish_io(struct dm_verity_io *io, blk_status_t status)
589 {
590 	struct dm_verity *v = io->v;
591 	struct bio *bio = dm_bio_from_per_bio_data(io, v->ti->per_io_data_size);
592 
593 	bio->bi_end_io = io->orig_bi_end_io;
594 	bio->bi_status = status;
595 
596 	if (!static_branch_unlikely(&use_bh_wq_enabled) || !io->in_bh)
597 		verity_fec_finish_io(io);
598 
599 	bio_endio(bio);
600 }
601 
602 static void verity_work(struct work_struct *w)
603 {
604 	struct dm_verity_io *io = container_of(w, struct dm_verity_io, work);
605 
606 	io->in_bh = false;
607 
608 	verity_finish_io(io, errno_to_blk_status(verity_verify_io(io)));
609 }
610 
611 static void verity_bh_work(struct work_struct *w)
612 {
613 	struct dm_verity_io *io = container_of(w, struct dm_verity_io, bh_work);
614 	int err;
615 
616 	io->in_bh = true;
617 	err = verity_verify_io(io);
618 	if (err == -EAGAIN || err == -ENOMEM) {
619 		/* fallback to retrying with work-queue */
620 		INIT_WORK(&io->work, verity_work);
621 		queue_work(io->v->verify_wq, &io->work);
622 		return;
623 	}
624 
625 	verity_finish_io(io, errno_to_blk_status(err));
626 }
627 
628 static void verity_end_io(struct bio *bio)
629 {
630 	struct dm_verity_io *io = bio->bi_private;
631 
632 	if (bio->bi_status &&
633 	    (!verity_fec_is_enabled(io->v) ||
634 	     verity_is_system_shutting_down() ||
635 	     (bio->bi_opf & REQ_RAHEAD))) {
636 		verity_finish_io(io, bio->bi_status);
637 		return;
638 	}
639 
640 	if (static_branch_unlikely(&use_bh_wq_enabled) && io->v->use_bh_wq) {
641 		INIT_WORK(&io->bh_work, verity_bh_work);
642 		queue_work(system_bh_wq, &io->bh_work);
643 	} else {
644 		INIT_WORK(&io->work, verity_work);
645 		queue_work(io->v->verify_wq, &io->work);
646 	}
647 }
648 
649 /*
650  * Prefetch buffers for the specified io.
651  * The root buffer is not prefetched, it is assumed that it will be cached
652  * all the time.
653  */
654 static void verity_prefetch_io(struct work_struct *work)
655 {
656 	struct dm_verity_prefetch_work *pw =
657 		container_of(work, struct dm_verity_prefetch_work, work);
658 	struct dm_verity *v = pw->v;
659 	int i;
660 
661 	for (i = v->levels - 2; i >= 0; i--) {
662 		sector_t hash_block_start;
663 		sector_t hash_block_end;
664 
665 		verity_hash_at_level(v, pw->block, i, &hash_block_start, NULL);
666 		verity_hash_at_level(v, pw->block + pw->n_blocks - 1, i, &hash_block_end, NULL);
667 
668 		if (!i) {
669 			unsigned int cluster = READ_ONCE(dm_verity_prefetch_cluster);
670 
671 			cluster >>= v->data_dev_block_bits;
672 			if (unlikely(!cluster))
673 				goto no_prefetch_cluster;
674 
675 			if (unlikely(cluster & (cluster - 1)))
676 				cluster = 1 << __fls(cluster);
677 
678 			hash_block_start &= ~(sector_t)(cluster - 1);
679 			hash_block_end |= cluster - 1;
680 			if (unlikely(hash_block_end >= v->hash_blocks))
681 				hash_block_end = v->hash_blocks - 1;
682 		}
683 no_prefetch_cluster:
684 		dm_bufio_prefetch_with_ioprio(v->bufio, hash_block_start,
685 					hash_block_end - hash_block_start + 1,
686 					pw->ioprio);
687 	}
688 
689 	kfree(pw);
690 }
691 
692 static void verity_submit_prefetch(struct dm_verity *v, struct dm_verity_io *io,
693 				   unsigned short ioprio)
694 {
695 	sector_t block = io->block;
696 	unsigned int n_blocks = io->n_blocks;
697 	struct dm_verity_prefetch_work *pw;
698 
699 	if (v->validated_blocks) {
700 		while (n_blocks && test_bit(block, v->validated_blocks)) {
701 			block++;
702 			n_blocks--;
703 		}
704 		while (n_blocks && test_bit(block + n_blocks - 1,
705 					    v->validated_blocks))
706 			n_blocks--;
707 		if (!n_blocks)
708 			return;
709 	}
710 
711 	pw = kmalloc(sizeof(struct dm_verity_prefetch_work),
712 		GFP_NOIO | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN);
713 
714 	if (!pw)
715 		return;
716 
717 	INIT_WORK(&pw->work, verity_prefetch_io);
718 	pw->v = v;
719 	pw->block = block;
720 	pw->n_blocks = n_blocks;
721 	pw->ioprio = ioprio;
722 	queue_work(v->verify_wq, &pw->work);
723 }
724 
725 /*
726  * Bio map function. It allocates dm_verity_io structure and bio vector and
727  * fills them. Then it issues prefetches and the I/O.
728  */
729 static int verity_map(struct dm_target *ti, struct bio *bio)
730 {
731 	struct dm_verity *v = ti->private;
732 	struct dm_verity_io *io;
733 
734 	bio_set_dev(bio, v->data_dev->bdev);
735 	bio->bi_iter.bi_sector = verity_map_sector(v, bio->bi_iter.bi_sector);
736 
737 	if (((unsigned int)bio->bi_iter.bi_sector | bio_sectors(bio)) &
738 	    ((1 << (v->data_dev_block_bits - SECTOR_SHIFT)) - 1)) {
739 		DMERR_LIMIT("unaligned io");
740 		return DM_MAPIO_KILL;
741 	}
742 
743 	if (bio_end_sector(bio) >>
744 	    (v->data_dev_block_bits - SECTOR_SHIFT) > v->data_blocks) {
745 		DMERR_LIMIT("io out of range");
746 		return DM_MAPIO_KILL;
747 	}
748 
749 	if (bio_data_dir(bio) == WRITE)
750 		return DM_MAPIO_KILL;
751 
752 	io = dm_per_bio_data(bio, ti->per_io_data_size);
753 	io->v = v;
754 	io->orig_bi_end_io = bio->bi_end_io;
755 	io->block = bio->bi_iter.bi_sector >> (v->data_dev_block_bits - SECTOR_SHIFT);
756 	io->n_blocks = bio->bi_iter.bi_size >> v->data_dev_block_bits;
757 
758 	bio->bi_end_io = verity_end_io;
759 	bio->bi_private = io;
760 	io->iter = bio->bi_iter;
761 
762 	verity_fec_init_io(io);
763 
764 	verity_submit_prefetch(v, io, bio_prio(bio));
765 
766 	submit_bio_noacct(bio);
767 
768 	return DM_MAPIO_SUBMITTED;
769 }
770 
771 /*
772  * Status: V (valid) or C (corruption found)
773  */
774 static void verity_status(struct dm_target *ti, status_type_t type,
775 			  unsigned int status_flags, char *result, unsigned int maxlen)
776 {
777 	struct dm_verity *v = ti->private;
778 	unsigned int args = 0;
779 	unsigned int sz = 0;
780 	unsigned int x;
781 
782 	switch (type) {
783 	case STATUSTYPE_INFO:
784 		DMEMIT("%c", v->hash_failed ? 'C' : 'V');
785 		break;
786 	case STATUSTYPE_TABLE:
787 		DMEMIT("%u %s %s %u %u %llu %llu %s ",
788 			v->version,
789 			v->data_dev->name,
790 			v->hash_dev->name,
791 			1 << v->data_dev_block_bits,
792 			1 << v->hash_dev_block_bits,
793 			(unsigned long long)v->data_blocks,
794 			(unsigned long long)v->hash_start,
795 			v->alg_name
796 			);
797 		for (x = 0; x < v->digest_size; x++)
798 			DMEMIT("%02x", v->root_digest[x]);
799 		DMEMIT(" ");
800 		if (!v->salt_size)
801 			DMEMIT("-");
802 		else
803 			for (x = 0; x < v->salt_size; x++)
804 				DMEMIT("%02x", v->salt[x]);
805 		if (v->mode != DM_VERITY_MODE_EIO)
806 			args++;
807 		if (verity_fec_is_enabled(v))
808 			args += DM_VERITY_OPTS_FEC;
809 		if (v->zero_digest)
810 			args++;
811 		if (v->validated_blocks)
812 			args++;
813 		if (v->use_bh_wq)
814 			args++;
815 		if (v->signature_key_desc)
816 			args += DM_VERITY_ROOT_HASH_VERIFICATION_OPTS;
817 		if (!args)
818 			return;
819 		DMEMIT(" %u", args);
820 		if (v->mode != DM_VERITY_MODE_EIO) {
821 			DMEMIT(" ");
822 			switch (v->mode) {
823 			case DM_VERITY_MODE_LOGGING:
824 				DMEMIT(DM_VERITY_OPT_LOGGING);
825 				break;
826 			case DM_VERITY_MODE_RESTART:
827 				DMEMIT(DM_VERITY_OPT_RESTART);
828 				break;
829 			case DM_VERITY_MODE_PANIC:
830 				DMEMIT(DM_VERITY_OPT_PANIC);
831 				break;
832 			default:
833 				BUG();
834 			}
835 		}
836 		if (v->zero_digest)
837 			DMEMIT(" " DM_VERITY_OPT_IGN_ZEROES);
838 		if (v->validated_blocks)
839 			DMEMIT(" " DM_VERITY_OPT_AT_MOST_ONCE);
840 		if (v->use_bh_wq)
841 			DMEMIT(" " DM_VERITY_OPT_TASKLET_VERIFY);
842 		sz = verity_fec_status_table(v, sz, result, maxlen);
843 		if (v->signature_key_desc)
844 			DMEMIT(" " DM_VERITY_ROOT_HASH_VERIFICATION_OPT_SIG_KEY
845 				" %s", v->signature_key_desc);
846 		break;
847 
848 	case STATUSTYPE_IMA:
849 		DMEMIT_TARGET_NAME_VERSION(ti->type);
850 		DMEMIT(",hash_failed=%c", v->hash_failed ? 'C' : 'V');
851 		DMEMIT(",verity_version=%u", v->version);
852 		DMEMIT(",data_device_name=%s", v->data_dev->name);
853 		DMEMIT(",hash_device_name=%s", v->hash_dev->name);
854 		DMEMIT(",verity_algorithm=%s", v->alg_name);
855 
856 		DMEMIT(",root_digest=");
857 		for (x = 0; x < v->digest_size; x++)
858 			DMEMIT("%02x", v->root_digest[x]);
859 
860 		DMEMIT(",salt=");
861 		if (!v->salt_size)
862 			DMEMIT("-");
863 		else
864 			for (x = 0; x < v->salt_size; x++)
865 				DMEMIT("%02x", v->salt[x]);
866 
867 		DMEMIT(",ignore_zero_blocks=%c", v->zero_digest ? 'y' : 'n');
868 		DMEMIT(",check_at_most_once=%c", v->validated_blocks ? 'y' : 'n');
869 		if (v->signature_key_desc)
870 			DMEMIT(",root_hash_sig_key_desc=%s", v->signature_key_desc);
871 
872 		if (v->mode != DM_VERITY_MODE_EIO) {
873 			DMEMIT(",verity_mode=");
874 			switch (v->mode) {
875 			case DM_VERITY_MODE_LOGGING:
876 				DMEMIT(DM_VERITY_OPT_LOGGING);
877 				break;
878 			case DM_VERITY_MODE_RESTART:
879 				DMEMIT(DM_VERITY_OPT_RESTART);
880 				break;
881 			case DM_VERITY_MODE_PANIC:
882 				DMEMIT(DM_VERITY_OPT_PANIC);
883 				break;
884 			default:
885 				DMEMIT("invalid");
886 			}
887 		}
888 		DMEMIT(";");
889 		break;
890 	}
891 }
892 
893 static int verity_prepare_ioctl(struct dm_target *ti, struct block_device **bdev)
894 {
895 	struct dm_verity *v = ti->private;
896 
897 	*bdev = v->data_dev->bdev;
898 
899 	if (v->data_start || ti->len != bdev_nr_sectors(v->data_dev->bdev))
900 		return 1;
901 	return 0;
902 }
903 
904 static int verity_iterate_devices(struct dm_target *ti,
905 				  iterate_devices_callout_fn fn, void *data)
906 {
907 	struct dm_verity *v = ti->private;
908 
909 	return fn(ti, v->data_dev, v->data_start, ti->len, data);
910 }
911 
912 static void verity_io_hints(struct dm_target *ti, struct queue_limits *limits)
913 {
914 	struct dm_verity *v = ti->private;
915 
916 	if (limits->logical_block_size < 1 << v->data_dev_block_bits)
917 		limits->logical_block_size = 1 << v->data_dev_block_bits;
918 
919 	if (limits->physical_block_size < 1 << v->data_dev_block_bits)
920 		limits->physical_block_size = 1 << v->data_dev_block_bits;
921 
922 	limits->io_min = limits->logical_block_size;
923 
924 	/*
925 	 * Similar to what dm-crypt does, opt dm-verity out of support for
926 	 * direct I/O that is aligned to less than the traditional direct I/O
927 	 * alignment requirement of logical_block_size.  This prevents dm-verity
928 	 * data blocks from crossing pages, eliminating various edge cases.
929 	 */
930 	limits->dma_alignment = limits->logical_block_size - 1;
931 }
932 
933 static void verity_dtr(struct dm_target *ti)
934 {
935 	struct dm_verity *v = ti->private;
936 
937 	if (v->verify_wq)
938 		destroy_workqueue(v->verify_wq);
939 
940 	mempool_exit(&v->recheck_pool);
941 	if (v->io)
942 		dm_io_client_destroy(v->io);
943 
944 	if (v->bufio)
945 		dm_bufio_client_destroy(v->bufio);
946 
947 	kvfree(v->validated_blocks);
948 	kfree(v->salt);
949 	kfree(v->initial_hashstate);
950 	kfree(v->root_digest);
951 	kfree(v->zero_digest);
952 
953 	if (v->ahash_tfm) {
954 		static_branch_dec(&ahash_enabled);
955 		crypto_free_ahash(v->ahash_tfm);
956 	} else {
957 		crypto_free_shash(v->shash_tfm);
958 	}
959 
960 	kfree(v->alg_name);
961 
962 	if (v->hash_dev)
963 		dm_put_device(ti, v->hash_dev);
964 
965 	if (v->data_dev)
966 		dm_put_device(ti, v->data_dev);
967 
968 	verity_fec_dtr(v);
969 
970 	kfree(v->signature_key_desc);
971 
972 	if (v->use_bh_wq)
973 		static_branch_dec(&use_bh_wq_enabled);
974 
975 	kfree(v);
976 
977 	dm_audit_log_dtr(DM_MSG_PREFIX, ti, 1);
978 }
979 
980 static int verity_alloc_most_once(struct dm_verity *v)
981 {
982 	struct dm_target *ti = v->ti;
983 
984 	/* the bitset can only handle INT_MAX blocks */
985 	if (v->data_blocks > INT_MAX) {
986 		ti->error = "device too large to use check_at_most_once";
987 		return -E2BIG;
988 	}
989 
990 	v->validated_blocks = kvcalloc(BITS_TO_LONGS(v->data_blocks),
991 				       sizeof(unsigned long),
992 				       GFP_KERNEL);
993 	if (!v->validated_blocks) {
994 		ti->error = "failed to allocate bitset for check_at_most_once";
995 		return -ENOMEM;
996 	}
997 
998 	return 0;
999 }
1000 
1001 static int verity_alloc_zero_digest(struct dm_verity *v)
1002 {
1003 	int r = -ENOMEM;
1004 	struct dm_verity_io *io;
1005 	u8 *zero_data;
1006 
1007 	v->zero_digest = kmalloc(v->digest_size, GFP_KERNEL);
1008 
1009 	if (!v->zero_digest)
1010 		return r;
1011 
1012 	io = kmalloc(sizeof(*io) + v->hash_reqsize, GFP_KERNEL);
1013 
1014 	if (!io)
1015 		return r; /* verity_dtr will free zero_digest */
1016 
1017 	zero_data = kzalloc(1 << v->data_dev_block_bits, GFP_KERNEL);
1018 
1019 	if (!zero_data)
1020 		goto out;
1021 
1022 	r = verity_hash(v, io, zero_data, 1 << v->data_dev_block_bits,
1023 			v->zero_digest, true);
1024 
1025 out:
1026 	kfree(io);
1027 	kfree(zero_data);
1028 
1029 	return r;
1030 }
1031 
1032 static inline bool verity_is_verity_mode(const char *arg_name)
1033 {
1034 	return (!strcasecmp(arg_name, DM_VERITY_OPT_LOGGING) ||
1035 		!strcasecmp(arg_name, DM_VERITY_OPT_RESTART) ||
1036 		!strcasecmp(arg_name, DM_VERITY_OPT_PANIC));
1037 }
1038 
1039 static int verity_parse_verity_mode(struct dm_verity *v, const char *arg_name)
1040 {
1041 	if (v->mode)
1042 		return -EINVAL;
1043 
1044 	if (!strcasecmp(arg_name, DM_VERITY_OPT_LOGGING))
1045 		v->mode = DM_VERITY_MODE_LOGGING;
1046 	else if (!strcasecmp(arg_name, DM_VERITY_OPT_RESTART))
1047 		v->mode = DM_VERITY_MODE_RESTART;
1048 	else if (!strcasecmp(arg_name, DM_VERITY_OPT_PANIC))
1049 		v->mode = DM_VERITY_MODE_PANIC;
1050 
1051 	return 0;
1052 }
1053 
1054 static int verity_parse_opt_args(struct dm_arg_set *as, struct dm_verity *v,
1055 				 struct dm_verity_sig_opts *verify_args,
1056 				 bool only_modifier_opts)
1057 {
1058 	int r = 0;
1059 	unsigned int argc;
1060 	struct dm_target *ti = v->ti;
1061 	const char *arg_name;
1062 
1063 	static const struct dm_arg _args[] = {
1064 		{0, DM_VERITY_OPTS_MAX, "Invalid number of feature args"},
1065 	};
1066 
1067 	r = dm_read_arg_group(_args, as, &argc, &ti->error);
1068 	if (r)
1069 		return -EINVAL;
1070 
1071 	if (!argc)
1072 		return 0;
1073 
1074 	do {
1075 		arg_name = dm_shift_arg(as);
1076 		argc--;
1077 
1078 		if (verity_is_verity_mode(arg_name)) {
1079 			if (only_modifier_opts)
1080 				continue;
1081 			r = verity_parse_verity_mode(v, arg_name);
1082 			if (r) {
1083 				ti->error = "Conflicting error handling parameters";
1084 				return r;
1085 			}
1086 			continue;
1087 
1088 		} else if (!strcasecmp(arg_name, DM_VERITY_OPT_IGN_ZEROES)) {
1089 			if (only_modifier_opts)
1090 				continue;
1091 			r = verity_alloc_zero_digest(v);
1092 			if (r) {
1093 				ti->error = "Cannot allocate zero digest";
1094 				return r;
1095 			}
1096 			continue;
1097 
1098 		} else if (!strcasecmp(arg_name, DM_VERITY_OPT_AT_MOST_ONCE)) {
1099 			if (only_modifier_opts)
1100 				continue;
1101 			r = verity_alloc_most_once(v);
1102 			if (r)
1103 				return r;
1104 			continue;
1105 
1106 		} else if (!strcasecmp(arg_name, DM_VERITY_OPT_TASKLET_VERIFY)) {
1107 			v->use_bh_wq = true;
1108 			static_branch_inc(&use_bh_wq_enabled);
1109 			continue;
1110 
1111 		} else if (verity_is_fec_opt_arg(arg_name)) {
1112 			if (only_modifier_opts)
1113 				continue;
1114 			r = verity_fec_parse_opt_args(as, v, &argc, arg_name);
1115 			if (r)
1116 				return r;
1117 			continue;
1118 
1119 		} else if (verity_verify_is_sig_opt_arg(arg_name)) {
1120 			if (only_modifier_opts)
1121 				continue;
1122 			r = verity_verify_sig_parse_opt_args(as, v,
1123 							     verify_args,
1124 							     &argc, arg_name);
1125 			if (r)
1126 				return r;
1127 			continue;
1128 
1129 		} else if (only_modifier_opts) {
1130 			/*
1131 			 * Ignore unrecognized opt, could easily be an extra
1132 			 * argument to an option whose parsing was skipped.
1133 			 * Normal parsing (@only_modifier_opts=false) will
1134 			 * properly parse all options (and their extra args).
1135 			 */
1136 			continue;
1137 		}
1138 
1139 		DMERR("Unrecognized verity feature request: %s", arg_name);
1140 		ti->error = "Unrecognized verity feature request";
1141 		return -EINVAL;
1142 	} while (argc && !r);
1143 
1144 	return r;
1145 }
1146 
1147 static int verity_setup_hash_alg(struct dm_verity *v, const char *alg_name)
1148 {
1149 	struct dm_target *ti = v->ti;
1150 	struct crypto_ahash *ahash;
1151 	struct crypto_shash *shash = NULL;
1152 	const char *driver_name;
1153 
1154 	v->alg_name = kstrdup(alg_name, GFP_KERNEL);
1155 	if (!v->alg_name) {
1156 		ti->error = "Cannot allocate algorithm name";
1157 		return -ENOMEM;
1158 	}
1159 
1160 	/*
1161 	 * Allocate the hash transformation object that this dm-verity instance
1162 	 * will use.  The vast majority of dm-verity users use CPU-based
1163 	 * hashing, so when possible use the shash API to minimize the crypto
1164 	 * API overhead.  If the ahash API resolves to a different driver
1165 	 * (likely an off-CPU hardware offload), use ahash instead.  Also use
1166 	 * ahash if the obsolete dm-verity format with the appended salt is
1167 	 * being used, so that quirk only needs to be handled in one place.
1168 	 */
1169 	ahash = crypto_alloc_ahash(alg_name, 0,
1170 				   v->use_bh_wq ? CRYPTO_ALG_ASYNC : 0);
1171 	if (IS_ERR(ahash)) {
1172 		ti->error = "Cannot initialize hash function";
1173 		return PTR_ERR(ahash);
1174 	}
1175 	driver_name = crypto_ahash_driver_name(ahash);
1176 	if (v->version >= 1 /* salt prepended, not appended? */) {
1177 		shash = crypto_alloc_shash(alg_name, 0, 0);
1178 		if (!IS_ERR(shash) &&
1179 		    strcmp(crypto_shash_driver_name(shash), driver_name) != 0) {
1180 			/*
1181 			 * ahash gave a different driver than shash, so probably
1182 			 * this is a case of real hardware offload.  Use ahash.
1183 			 */
1184 			crypto_free_shash(shash);
1185 			shash = NULL;
1186 		}
1187 	}
1188 	if (!IS_ERR_OR_NULL(shash)) {
1189 		crypto_free_ahash(ahash);
1190 		ahash = NULL;
1191 		v->shash_tfm = shash;
1192 		v->digest_size = crypto_shash_digestsize(shash);
1193 		v->hash_reqsize = sizeof(struct shash_desc) +
1194 				  crypto_shash_descsize(shash);
1195 		DMINFO("%s using shash \"%s\"", alg_name, driver_name);
1196 	} else {
1197 		v->ahash_tfm = ahash;
1198 		static_branch_inc(&ahash_enabled);
1199 		v->digest_size = crypto_ahash_digestsize(ahash);
1200 		v->hash_reqsize = sizeof(struct ahash_request) +
1201 				  crypto_ahash_reqsize(ahash);
1202 		DMINFO("%s using ahash \"%s\"", alg_name, driver_name);
1203 	}
1204 	if ((1 << v->hash_dev_block_bits) < v->digest_size * 2) {
1205 		ti->error = "Digest size too big";
1206 		return -EINVAL;
1207 	}
1208 	return 0;
1209 }
1210 
1211 static int verity_setup_salt_and_hashstate(struct dm_verity *v, const char *arg)
1212 {
1213 	struct dm_target *ti = v->ti;
1214 
1215 	if (strcmp(arg, "-") != 0) {
1216 		v->salt_size = strlen(arg) / 2;
1217 		v->salt = kmalloc(v->salt_size, GFP_KERNEL);
1218 		if (!v->salt) {
1219 			ti->error = "Cannot allocate salt";
1220 			return -ENOMEM;
1221 		}
1222 		if (strlen(arg) != v->salt_size * 2 ||
1223 		    hex2bin(v->salt, arg, v->salt_size)) {
1224 			ti->error = "Invalid salt";
1225 			return -EINVAL;
1226 		}
1227 	}
1228 	if (v->shash_tfm) {
1229 		SHASH_DESC_ON_STACK(desc, v->shash_tfm);
1230 		int r;
1231 
1232 		/*
1233 		 * Compute the pre-salted hash state that can be passed to
1234 		 * crypto_shash_import() for each block later.
1235 		 */
1236 		v->initial_hashstate = kmalloc(
1237 			crypto_shash_statesize(v->shash_tfm), GFP_KERNEL);
1238 		if (!v->initial_hashstate) {
1239 			ti->error = "Cannot allocate initial hash state";
1240 			return -ENOMEM;
1241 		}
1242 		desc->tfm = v->shash_tfm;
1243 		r = crypto_shash_init(desc) ?:
1244 		    crypto_shash_update(desc, v->salt, v->salt_size) ?:
1245 		    crypto_shash_export(desc, v->initial_hashstate);
1246 		if (r) {
1247 			ti->error = "Cannot set up initial hash state";
1248 			return r;
1249 		}
1250 	}
1251 	return 0;
1252 }
1253 
1254 /*
1255  * Target parameters:
1256  *	<version>	The current format is version 1.
1257  *			Vsn 0 is compatible with original Chromium OS releases.
1258  *	<data device>
1259  *	<hash device>
1260  *	<data block size>
1261  *	<hash block size>
1262  *	<the number of data blocks>
1263  *	<hash start block>
1264  *	<algorithm>
1265  *	<digest>
1266  *	<salt>		Hex string or "-" if no salt.
1267  */
1268 static int verity_ctr(struct dm_target *ti, unsigned int argc, char **argv)
1269 {
1270 	struct dm_verity *v;
1271 	struct dm_verity_sig_opts verify_args = {0};
1272 	struct dm_arg_set as;
1273 	unsigned int num;
1274 	unsigned long long num_ll;
1275 	int r;
1276 	int i;
1277 	sector_t hash_position;
1278 	char dummy;
1279 	char *root_hash_digest_to_validate;
1280 
1281 	v = kzalloc(sizeof(struct dm_verity), GFP_KERNEL);
1282 	if (!v) {
1283 		ti->error = "Cannot allocate verity structure";
1284 		return -ENOMEM;
1285 	}
1286 	ti->private = v;
1287 	v->ti = ti;
1288 
1289 	r = verity_fec_ctr_alloc(v);
1290 	if (r)
1291 		goto bad;
1292 
1293 	if ((dm_table_get_mode(ti->table) & ~BLK_OPEN_READ)) {
1294 		ti->error = "Device must be readonly";
1295 		r = -EINVAL;
1296 		goto bad;
1297 	}
1298 
1299 	if (argc < 10) {
1300 		ti->error = "Not enough arguments";
1301 		r = -EINVAL;
1302 		goto bad;
1303 	}
1304 
1305 	/* Parse optional parameters that modify primary args */
1306 	if (argc > 10) {
1307 		as.argc = argc - 10;
1308 		as.argv = argv + 10;
1309 		r = verity_parse_opt_args(&as, v, &verify_args, true);
1310 		if (r < 0)
1311 			goto bad;
1312 	}
1313 
1314 	if (sscanf(argv[0], "%u%c", &num, &dummy) != 1 ||
1315 	    num > 1) {
1316 		ti->error = "Invalid version";
1317 		r = -EINVAL;
1318 		goto bad;
1319 	}
1320 	v->version = num;
1321 
1322 	r = dm_get_device(ti, argv[1], BLK_OPEN_READ, &v->data_dev);
1323 	if (r) {
1324 		ti->error = "Data device lookup failed";
1325 		goto bad;
1326 	}
1327 
1328 	r = dm_get_device(ti, argv[2], BLK_OPEN_READ, &v->hash_dev);
1329 	if (r) {
1330 		ti->error = "Hash device lookup failed";
1331 		goto bad;
1332 	}
1333 
1334 	if (sscanf(argv[3], "%u%c", &num, &dummy) != 1 ||
1335 	    !num || (num & (num - 1)) ||
1336 	    num < bdev_logical_block_size(v->data_dev->bdev) ||
1337 	    num > PAGE_SIZE) {
1338 		ti->error = "Invalid data device block size";
1339 		r = -EINVAL;
1340 		goto bad;
1341 	}
1342 	v->data_dev_block_bits = __ffs(num);
1343 
1344 	if (sscanf(argv[4], "%u%c", &num, &dummy) != 1 ||
1345 	    !num || (num & (num - 1)) ||
1346 	    num < bdev_logical_block_size(v->hash_dev->bdev) ||
1347 	    num > INT_MAX) {
1348 		ti->error = "Invalid hash device block size";
1349 		r = -EINVAL;
1350 		goto bad;
1351 	}
1352 	v->hash_dev_block_bits = __ffs(num);
1353 
1354 	if (sscanf(argv[5], "%llu%c", &num_ll, &dummy) != 1 ||
1355 	    (sector_t)(num_ll << (v->data_dev_block_bits - SECTOR_SHIFT))
1356 	    >> (v->data_dev_block_bits - SECTOR_SHIFT) != num_ll) {
1357 		ti->error = "Invalid data blocks";
1358 		r = -EINVAL;
1359 		goto bad;
1360 	}
1361 	v->data_blocks = num_ll;
1362 
1363 	if (ti->len > (v->data_blocks << (v->data_dev_block_bits - SECTOR_SHIFT))) {
1364 		ti->error = "Data device is too small";
1365 		r = -EINVAL;
1366 		goto bad;
1367 	}
1368 
1369 	if (sscanf(argv[6], "%llu%c", &num_ll, &dummy) != 1 ||
1370 	    (sector_t)(num_ll << (v->hash_dev_block_bits - SECTOR_SHIFT))
1371 	    >> (v->hash_dev_block_bits - SECTOR_SHIFT) != num_ll) {
1372 		ti->error = "Invalid hash start";
1373 		r = -EINVAL;
1374 		goto bad;
1375 	}
1376 	v->hash_start = num_ll;
1377 
1378 	r = verity_setup_hash_alg(v, argv[7]);
1379 	if (r)
1380 		goto bad;
1381 
1382 	v->root_digest = kmalloc(v->digest_size, GFP_KERNEL);
1383 	if (!v->root_digest) {
1384 		ti->error = "Cannot allocate root digest";
1385 		r = -ENOMEM;
1386 		goto bad;
1387 	}
1388 	if (strlen(argv[8]) != v->digest_size * 2 ||
1389 	    hex2bin(v->root_digest, argv[8], v->digest_size)) {
1390 		ti->error = "Invalid root digest";
1391 		r = -EINVAL;
1392 		goto bad;
1393 	}
1394 	root_hash_digest_to_validate = argv[8];
1395 
1396 	r = verity_setup_salt_and_hashstate(v, argv[9]);
1397 	if (r)
1398 		goto bad;
1399 
1400 	argv += 10;
1401 	argc -= 10;
1402 
1403 	/* Optional parameters */
1404 	if (argc) {
1405 		as.argc = argc;
1406 		as.argv = argv;
1407 		r = verity_parse_opt_args(&as, v, &verify_args, false);
1408 		if (r < 0)
1409 			goto bad;
1410 	}
1411 
1412 	/* Root hash signature is  a optional parameter*/
1413 	r = verity_verify_root_hash(root_hash_digest_to_validate,
1414 				    strlen(root_hash_digest_to_validate),
1415 				    verify_args.sig,
1416 				    verify_args.sig_size);
1417 	if (r < 0) {
1418 		ti->error = "Root hash verification failed";
1419 		goto bad;
1420 	}
1421 	v->hash_per_block_bits =
1422 		__fls((1 << v->hash_dev_block_bits) / v->digest_size);
1423 
1424 	v->levels = 0;
1425 	if (v->data_blocks)
1426 		while (v->hash_per_block_bits * v->levels < 64 &&
1427 		       (unsigned long long)(v->data_blocks - 1) >>
1428 		       (v->hash_per_block_bits * v->levels))
1429 			v->levels++;
1430 
1431 	if (v->levels > DM_VERITY_MAX_LEVELS) {
1432 		ti->error = "Too many tree levels";
1433 		r = -E2BIG;
1434 		goto bad;
1435 	}
1436 
1437 	hash_position = v->hash_start;
1438 	for (i = v->levels - 1; i >= 0; i--) {
1439 		sector_t s;
1440 
1441 		v->hash_level_block[i] = hash_position;
1442 		s = (v->data_blocks + ((sector_t)1 << ((i + 1) * v->hash_per_block_bits)) - 1)
1443 					>> ((i + 1) * v->hash_per_block_bits);
1444 		if (hash_position + s < hash_position) {
1445 			ti->error = "Hash device offset overflow";
1446 			r = -E2BIG;
1447 			goto bad;
1448 		}
1449 		hash_position += s;
1450 	}
1451 	v->hash_blocks = hash_position;
1452 
1453 	r = mempool_init_page_pool(&v->recheck_pool, 1, 0);
1454 	if (unlikely(r)) {
1455 		ti->error = "Cannot allocate mempool";
1456 		goto bad;
1457 	}
1458 
1459 	v->io = dm_io_client_create();
1460 	if (IS_ERR(v->io)) {
1461 		r = PTR_ERR(v->io);
1462 		v->io = NULL;
1463 		ti->error = "Cannot allocate dm io";
1464 		goto bad;
1465 	}
1466 
1467 	v->bufio = dm_bufio_client_create(v->hash_dev->bdev,
1468 		1 << v->hash_dev_block_bits, 1, sizeof(struct buffer_aux),
1469 		dm_bufio_alloc_callback, NULL,
1470 		v->use_bh_wq ? DM_BUFIO_CLIENT_NO_SLEEP : 0);
1471 	if (IS_ERR(v->bufio)) {
1472 		ti->error = "Cannot initialize dm-bufio";
1473 		r = PTR_ERR(v->bufio);
1474 		v->bufio = NULL;
1475 		goto bad;
1476 	}
1477 
1478 	if (dm_bufio_get_device_size(v->bufio) < v->hash_blocks) {
1479 		ti->error = "Hash device is too small";
1480 		r = -E2BIG;
1481 		goto bad;
1482 	}
1483 
1484 	/*
1485 	 * Using WQ_HIGHPRI improves throughput and completion latency by
1486 	 * reducing wait times when reading from a dm-verity device.
1487 	 *
1488 	 * Also as required for the "try_verify_in_tasklet" feature: WQ_HIGHPRI
1489 	 * allows verify_wq to preempt softirq since verification in BH workqueue
1490 	 * will fall-back to using it for error handling (or if the bufio cache
1491 	 * doesn't have required hashes).
1492 	 */
1493 	v->verify_wq = alloc_workqueue("kverityd", WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
1494 	if (!v->verify_wq) {
1495 		ti->error = "Cannot allocate workqueue";
1496 		r = -ENOMEM;
1497 		goto bad;
1498 	}
1499 
1500 	ti->per_io_data_size = sizeof(struct dm_verity_io) + v->hash_reqsize;
1501 
1502 	r = verity_fec_ctr(v);
1503 	if (r)
1504 		goto bad;
1505 
1506 	ti->per_io_data_size = roundup(ti->per_io_data_size,
1507 				       __alignof__(struct dm_verity_io));
1508 
1509 	verity_verify_sig_opts_cleanup(&verify_args);
1510 
1511 	dm_audit_log_ctr(DM_MSG_PREFIX, ti, 1);
1512 
1513 	return 0;
1514 
1515 bad:
1516 
1517 	verity_verify_sig_opts_cleanup(&verify_args);
1518 	dm_audit_log_ctr(DM_MSG_PREFIX, ti, 0);
1519 	verity_dtr(ti);
1520 
1521 	return r;
1522 }
1523 
1524 /*
1525  * Get the verity mode (error behavior) of a verity target.
1526  *
1527  * Returns the verity mode of the target, or -EINVAL if 'ti' is not a verity
1528  * target.
1529  */
1530 int dm_verity_get_mode(struct dm_target *ti)
1531 {
1532 	struct dm_verity *v = ti->private;
1533 
1534 	if (!dm_is_verity_target(ti))
1535 		return -EINVAL;
1536 
1537 	return v->mode;
1538 }
1539 
1540 /*
1541  * Get the root digest of a verity target.
1542  *
1543  * Returns a copy of the root digest, the caller is responsible for
1544  * freeing the memory of the digest.
1545  */
1546 int dm_verity_get_root_digest(struct dm_target *ti, u8 **root_digest, unsigned int *digest_size)
1547 {
1548 	struct dm_verity *v = ti->private;
1549 
1550 	if (!dm_is_verity_target(ti))
1551 		return -EINVAL;
1552 
1553 	*root_digest = kmemdup(v->root_digest, v->digest_size, GFP_KERNEL);
1554 	if (*root_digest == NULL)
1555 		return -ENOMEM;
1556 
1557 	*digest_size = v->digest_size;
1558 
1559 	return 0;
1560 }
1561 
1562 static struct target_type verity_target = {
1563 	.name		= "verity",
1564 	.features	= DM_TARGET_SINGLETON | DM_TARGET_IMMUTABLE,
1565 	.version	= {1, 10, 0},
1566 	.module		= THIS_MODULE,
1567 	.ctr		= verity_ctr,
1568 	.dtr		= verity_dtr,
1569 	.map		= verity_map,
1570 	.status		= verity_status,
1571 	.prepare_ioctl	= verity_prepare_ioctl,
1572 	.iterate_devices = verity_iterate_devices,
1573 	.io_hints	= verity_io_hints,
1574 };
1575 module_dm(verity);
1576 
1577 /*
1578  * Check whether a DM target is a verity target.
1579  */
1580 bool dm_is_verity_target(struct dm_target *ti)
1581 {
1582 	return ti->type == &verity_target;
1583 }
1584 
1585 MODULE_AUTHOR("Mikulas Patocka <mpatocka@redhat.com>");
1586 MODULE_AUTHOR("Mandeep Baines <msb@chromium.org>");
1587 MODULE_AUTHOR("Will Drewry <wad@chromium.org>");
1588 MODULE_DESCRIPTION(DM_NAME " target for transparent disk integrity checking");
1589 MODULE_LICENSE("GPL");
1590