xref: /linux/drivers/md/dm-verity-target.c (revision 5c2e7736e20d9b348a44cafbfa639fe2653fbc34)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2012 Red Hat, Inc.
4  *
5  * Author: Mikulas Patocka <mpatocka@redhat.com>
6  *
7  * Based on Chromium dm-verity driver (C) 2011 The Chromium OS Authors
8  *
9  * In the file "/sys/module/dm_verity/parameters/prefetch_cluster" you can set
10  * default prefetch value. Data are read in "prefetch_cluster" chunks from the
11  * hash device. Setting this greatly improves performance when data and hash
12  * are on the same disk on different partitions on devices with poor random
13  * access behavior.
14  */
15 
16 #include "dm-verity.h"
17 #include "dm-verity-fec.h"
18 #include "dm-verity-verify-sig.h"
19 #include "dm-audit.h"
20 #include <linux/module.h>
21 #include <linux/reboot.h>
22 #include <linux/scatterlist.h>
23 #include <linux/string.h>
24 #include <linux/jump_label.h>
25 #include <linux/security.h>
26 
27 #define DM_MSG_PREFIX			"verity"
28 
29 #define DM_VERITY_ENV_LENGTH		42
30 #define DM_VERITY_ENV_VAR_NAME		"DM_VERITY_ERR_BLOCK_NR"
31 
32 #define DM_VERITY_DEFAULT_PREFETCH_SIZE	262144
33 
34 #define DM_VERITY_MAX_CORRUPTED_ERRS	100
35 
36 #define DM_VERITY_OPT_LOGGING		"ignore_corruption"
37 #define DM_VERITY_OPT_RESTART		"restart_on_corruption"
38 #define DM_VERITY_OPT_PANIC		"panic_on_corruption"
39 #define DM_VERITY_OPT_ERROR_RESTART	"restart_on_error"
40 #define DM_VERITY_OPT_ERROR_PANIC	"panic_on_error"
41 #define DM_VERITY_OPT_IGN_ZEROES	"ignore_zero_blocks"
42 #define DM_VERITY_OPT_AT_MOST_ONCE	"check_at_most_once"
43 #define DM_VERITY_OPT_TASKLET_VERIFY	"try_verify_in_tasklet"
44 
45 #define DM_VERITY_OPTS_MAX		(5 + DM_VERITY_OPTS_FEC + \
46 					 DM_VERITY_ROOT_HASH_VERIFICATION_OPTS)
47 
48 static unsigned int dm_verity_prefetch_cluster = DM_VERITY_DEFAULT_PREFETCH_SIZE;
49 
50 module_param_named(prefetch_cluster, dm_verity_prefetch_cluster, uint, 0644);
51 
52 static DEFINE_STATIC_KEY_FALSE(use_bh_wq_enabled);
53 
54 /* Is at least one dm-verity instance using ahash_tfm instead of shash_tfm? */
55 static DEFINE_STATIC_KEY_FALSE(ahash_enabled);
56 
57 struct dm_verity_prefetch_work {
58 	struct work_struct work;
59 	struct dm_verity *v;
60 	unsigned short ioprio;
61 	sector_t block;
62 	unsigned int n_blocks;
63 };
64 
65 /*
66  * Auxiliary structure appended to each dm-bufio buffer. If the value
67  * hash_verified is nonzero, hash of the block has been verified.
68  *
69  * The variable hash_verified is set to 0 when allocating the buffer, then
70  * it can be changed to 1 and it is never reset to 0 again.
71  *
72  * There is no lock around this value, a race condition can at worst cause
73  * that multiple processes verify the hash of the same buffer simultaneously
74  * and write 1 to hash_verified simultaneously.
75  * This condition is harmless, so we don't need locking.
76  */
77 struct buffer_aux {
78 	int hash_verified;
79 };
80 
81 /*
82  * Initialize struct buffer_aux for a freshly created buffer.
83  */
84 static void dm_bufio_alloc_callback(struct dm_buffer *buf)
85 {
86 	struct buffer_aux *aux = dm_bufio_get_aux_data(buf);
87 
88 	aux->hash_verified = 0;
89 }
90 
91 /*
92  * Translate input sector number to the sector number on the target device.
93  */
94 static sector_t verity_map_sector(struct dm_verity *v, sector_t bi_sector)
95 {
96 	return v->data_start + dm_target_offset(v->ti, bi_sector);
97 }
98 
99 /*
100  * Return hash position of a specified block at a specified tree level
101  * (0 is the lowest level).
102  * The lowest "hash_per_block_bits"-bits of the result denote hash position
103  * inside a hash block. The remaining bits denote location of the hash block.
104  */
105 static sector_t verity_position_at_level(struct dm_verity *v, sector_t block,
106 					 int level)
107 {
108 	return block >> (level * v->hash_per_block_bits);
109 }
110 
111 static int verity_ahash_update(struct dm_verity *v, struct ahash_request *req,
112 				const u8 *data, size_t len,
113 				struct crypto_wait *wait)
114 {
115 	struct scatterlist sg;
116 
117 	if (likely(!is_vmalloc_addr(data))) {
118 		sg_init_one(&sg, data, len);
119 		ahash_request_set_crypt(req, &sg, NULL, len);
120 		return crypto_wait_req(crypto_ahash_update(req), wait);
121 	}
122 
123 	do {
124 		int r;
125 		size_t this_step = min_t(size_t, len, PAGE_SIZE - offset_in_page(data));
126 
127 		flush_kernel_vmap_range((void *)data, this_step);
128 		sg_init_table(&sg, 1);
129 		sg_set_page(&sg, vmalloc_to_page(data), this_step, offset_in_page(data));
130 		ahash_request_set_crypt(req, &sg, NULL, this_step);
131 		r = crypto_wait_req(crypto_ahash_update(req), wait);
132 		if (unlikely(r))
133 			return r;
134 		data += this_step;
135 		len -= this_step;
136 	} while (len);
137 
138 	return 0;
139 }
140 
141 /*
142  * Wrapper for crypto_ahash_init, which handles verity salting.
143  */
144 static int verity_ahash_init(struct dm_verity *v, struct ahash_request *req,
145 				struct crypto_wait *wait, bool may_sleep)
146 {
147 	int r;
148 
149 	ahash_request_set_tfm(req, v->ahash_tfm);
150 	ahash_request_set_callback(req,
151 		may_sleep ? CRYPTO_TFM_REQ_MAY_SLEEP | CRYPTO_TFM_REQ_MAY_BACKLOG : 0,
152 		crypto_req_done, (void *)wait);
153 	crypto_init_wait(wait);
154 
155 	r = crypto_wait_req(crypto_ahash_init(req), wait);
156 
157 	if (unlikely(r < 0)) {
158 		if (r != -ENOMEM)
159 			DMERR("crypto_ahash_init failed: %d", r);
160 		return r;
161 	}
162 
163 	if (likely(v->salt_size && (v->version >= 1)))
164 		r = verity_ahash_update(v, req, v->salt, v->salt_size, wait);
165 
166 	return r;
167 }
168 
169 static int verity_ahash_final(struct dm_verity *v, struct ahash_request *req,
170 			      u8 *digest, struct crypto_wait *wait)
171 {
172 	int r;
173 
174 	if (unlikely(v->salt_size && (!v->version))) {
175 		r = verity_ahash_update(v, req, v->salt, v->salt_size, wait);
176 
177 		if (r < 0) {
178 			DMERR("%s failed updating salt: %d", __func__, r);
179 			goto out;
180 		}
181 	}
182 
183 	ahash_request_set_crypt(req, NULL, digest, 0);
184 	r = crypto_wait_req(crypto_ahash_final(req), wait);
185 out:
186 	return r;
187 }
188 
189 int verity_hash(struct dm_verity *v, struct dm_verity_io *io,
190 		const u8 *data, size_t len, u8 *digest, bool may_sleep)
191 {
192 	int r;
193 
194 	if (static_branch_unlikely(&ahash_enabled) && !v->shash_tfm) {
195 		struct ahash_request *req = verity_io_hash_req(v, io);
196 		struct crypto_wait wait;
197 
198 		r = verity_ahash_init(v, req, &wait, may_sleep) ?:
199 		    verity_ahash_update(v, req, data, len, &wait) ?:
200 		    verity_ahash_final(v, req, digest, &wait);
201 	} else {
202 		struct shash_desc *desc = verity_io_hash_req(v, io);
203 
204 		desc->tfm = v->shash_tfm;
205 		r = crypto_shash_import(desc, v->initial_hashstate) ?:
206 		    crypto_shash_finup(desc, data, len, digest);
207 	}
208 	if (unlikely(r))
209 		DMERR("Error hashing block: %d", r);
210 	return r;
211 }
212 
213 static void verity_hash_at_level(struct dm_verity *v, sector_t block, int level,
214 				 sector_t *hash_block, unsigned int *offset)
215 {
216 	sector_t position = verity_position_at_level(v, block, level);
217 	unsigned int idx;
218 
219 	*hash_block = v->hash_level_block[level] + (position >> v->hash_per_block_bits);
220 
221 	if (!offset)
222 		return;
223 
224 	idx = position & ((1 << v->hash_per_block_bits) - 1);
225 	if (!v->version)
226 		*offset = idx * v->digest_size;
227 	else
228 		*offset = idx << (v->hash_dev_block_bits - v->hash_per_block_bits);
229 }
230 
231 /*
232  * Handle verification errors.
233  */
234 static int verity_handle_err(struct dm_verity *v, enum verity_block_type type,
235 			     unsigned long long block)
236 {
237 	char verity_env[DM_VERITY_ENV_LENGTH];
238 	char *envp[] = { verity_env, NULL };
239 	const char *type_str = "";
240 	struct mapped_device *md = dm_table_get_md(v->ti->table);
241 
242 	/* Corruption should be visible in device status in all modes */
243 	v->hash_failed = true;
244 
245 	if (v->corrupted_errs >= DM_VERITY_MAX_CORRUPTED_ERRS)
246 		goto out;
247 
248 	v->corrupted_errs++;
249 
250 	switch (type) {
251 	case DM_VERITY_BLOCK_TYPE_DATA:
252 		type_str = "data";
253 		break;
254 	case DM_VERITY_BLOCK_TYPE_METADATA:
255 		type_str = "metadata";
256 		break;
257 	default:
258 		BUG();
259 	}
260 
261 	DMERR_LIMIT("%s: %s block %llu is corrupted", v->data_dev->name,
262 		    type_str, block);
263 
264 	if (v->corrupted_errs == DM_VERITY_MAX_CORRUPTED_ERRS) {
265 		DMERR("%s: reached maximum errors", v->data_dev->name);
266 		dm_audit_log_target(DM_MSG_PREFIX, "max-corrupted-errors", v->ti, 0);
267 	}
268 
269 	snprintf(verity_env, DM_VERITY_ENV_LENGTH, "%s=%d,%llu",
270 		DM_VERITY_ENV_VAR_NAME, type, block);
271 
272 	kobject_uevent_env(&disk_to_dev(dm_disk(md))->kobj, KOBJ_CHANGE, envp);
273 
274 out:
275 	if (v->mode == DM_VERITY_MODE_LOGGING)
276 		return 0;
277 
278 	if (v->mode == DM_VERITY_MODE_RESTART)
279 		kernel_restart("dm-verity device corrupted");
280 
281 	if (v->mode == DM_VERITY_MODE_PANIC)
282 		panic("dm-verity device corrupted");
283 
284 	return 1;
285 }
286 
287 /*
288  * Verify hash of a metadata block pertaining to the specified data block
289  * ("block" argument) at a specified level ("level" argument).
290  *
291  * On successful return, verity_io_want_digest(v, io) contains the hash value
292  * for a lower tree level or for the data block (if we're at the lowest level).
293  *
294  * If "skip_unverified" is true, unverified buffer is skipped and 1 is returned.
295  * If "skip_unverified" is false, unverified buffer is hashed and verified
296  * against current value of verity_io_want_digest(v, io).
297  */
298 static int verity_verify_level(struct dm_verity *v, struct dm_verity_io *io,
299 			       sector_t block, int level, bool skip_unverified,
300 			       u8 *want_digest)
301 {
302 	struct dm_buffer *buf;
303 	struct buffer_aux *aux;
304 	u8 *data;
305 	int r;
306 	sector_t hash_block;
307 	unsigned int offset;
308 	struct bio *bio = dm_bio_from_per_bio_data(io, v->ti->per_io_data_size);
309 
310 	verity_hash_at_level(v, block, level, &hash_block, &offset);
311 
312 	if (static_branch_unlikely(&use_bh_wq_enabled) && io->in_bh) {
313 		data = dm_bufio_get(v->bufio, hash_block, &buf);
314 		if (data == NULL) {
315 			/*
316 			 * In tasklet and the hash was not in the bufio cache.
317 			 * Return early and resume execution from a work-queue
318 			 * to read the hash from disk.
319 			 */
320 			return -EAGAIN;
321 		}
322 	} else {
323 		data = dm_bufio_read_with_ioprio(v->bufio, hash_block,
324 						&buf, bio_prio(bio));
325 	}
326 
327 	if (IS_ERR(data))
328 		return PTR_ERR(data);
329 
330 	aux = dm_bufio_get_aux_data(buf);
331 
332 	if (!aux->hash_verified) {
333 		if (skip_unverified) {
334 			r = 1;
335 			goto release_ret_r;
336 		}
337 
338 		r = verity_hash(v, io, data, 1 << v->hash_dev_block_bits,
339 				verity_io_real_digest(v, io), !io->in_bh);
340 		if (unlikely(r < 0))
341 			goto release_ret_r;
342 
343 		if (likely(memcmp(verity_io_real_digest(v, io), want_digest,
344 				  v->digest_size) == 0))
345 			aux->hash_verified = 1;
346 		else if (static_branch_unlikely(&use_bh_wq_enabled) && io->in_bh) {
347 			/*
348 			 * Error handling code (FEC included) cannot be run in a
349 			 * tasklet since it may sleep, so fallback to work-queue.
350 			 */
351 			r = -EAGAIN;
352 			goto release_ret_r;
353 		} else if (verity_fec_decode(v, io, DM_VERITY_BLOCK_TYPE_METADATA,
354 					     hash_block, data) == 0)
355 			aux->hash_verified = 1;
356 		else if (verity_handle_err(v,
357 					   DM_VERITY_BLOCK_TYPE_METADATA,
358 					   hash_block)) {
359 			struct bio *bio =
360 				dm_bio_from_per_bio_data(io,
361 							 v->ti->per_io_data_size);
362 			dm_audit_log_bio(DM_MSG_PREFIX, "verify-metadata", bio,
363 					 block, 0);
364 			r = -EIO;
365 			goto release_ret_r;
366 		}
367 	}
368 
369 	data += offset;
370 	memcpy(want_digest, data, v->digest_size);
371 	r = 0;
372 
373 release_ret_r:
374 	dm_bufio_release(buf);
375 	return r;
376 }
377 
378 /*
379  * Find a hash for a given block, write it to digest and verify the integrity
380  * of the hash tree if necessary.
381  */
382 int verity_hash_for_block(struct dm_verity *v, struct dm_verity_io *io,
383 			  sector_t block, u8 *digest, bool *is_zero)
384 {
385 	int r = 0, i;
386 
387 	if (likely(v->levels)) {
388 		/*
389 		 * First, we try to get the requested hash for
390 		 * the current block. If the hash block itself is
391 		 * verified, zero is returned. If it isn't, this
392 		 * function returns 1 and we fall back to whole
393 		 * chain verification.
394 		 */
395 		r = verity_verify_level(v, io, block, 0, true, digest);
396 		if (likely(r <= 0))
397 			goto out;
398 	}
399 
400 	memcpy(digest, v->root_digest, v->digest_size);
401 
402 	for (i = v->levels - 1; i >= 0; i--) {
403 		r = verity_verify_level(v, io, block, i, false, digest);
404 		if (unlikely(r))
405 			goto out;
406 	}
407 out:
408 	if (!r && v->zero_digest)
409 		*is_zero = !memcmp(v->zero_digest, digest, v->digest_size);
410 	else
411 		*is_zero = false;
412 
413 	return r;
414 }
415 
416 static noinline int verity_recheck(struct dm_verity *v, struct dm_verity_io *io,
417 				   sector_t cur_block, u8 *dest)
418 {
419 	struct page *page;
420 	void *buffer;
421 	int r;
422 	struct dm_io_request io_req;
423 	struct dm_io_region io_loc;
424 
425 	page = mempool_alloc(&v->recheck_pool, GFP_NOIO);
426 	buffer = page_to_virt(page);
427 
428 	io_req.bi_opf = REQ_OP_READ;
429 	io_req.mem.type = DM_IO_KMEM;
430 	io_req.mem.ptr.addr = buffer;
431 	io_req.notify.fn = NULL;
432 	io_req.client = v->io;
433 	io_loc.bdev = v->data_dev->bdev;
434 	io_loc.sector = cur_block << (v->data_dev_block_bits - SECTOR_SHIFT);
435 	io_loc.count = 1 << (v->data_dev_block_bits - SECTOR_SHIFT);
436 	r = dm_io(&io_req, 1, &io_loc, NULL, IOPRIO_DEFAULT);
437 	if (unlikely(r))
438 		goto free_ret;
439 
440 	r = verity_hash(v, io, buffer, 1 << v->data_dev_block_bits,
441 			verity_io_real_digest(v, io), true);
442 	if (unlikely(r))
443 		goto free_ret;
444 
445 	if (memcmp(verity_io_real_digest(v, io),
446 		   verity_io_want_digest(v, io), v->digest_size)) {
447 		r = -EIO;
448 		goto free_ret;
449 	}
450 
451 	memcpy(dest, buffer, 1 << v->data_dev_block_bits);
452 	r = 0;
453 free_ret:
454 	mempool_free(page, &v->recheck_pool);
455 
456 	return r;
457 }
458 
459 static int verity_handle_data_hash_mismatch(struct dm_verity *v,
460 					    struct dm_verity_io *io,
461 					    struct bio *bio, sector_t blkno,
462 					    u8 *data)
463 {
464 	if (static_branch_unlikely(&use_bh_wq_enabled) && io->in_bh) {
465 		/*
466 		 * Error handling code (FEC included) cannot be run in the
467 		 * BH workqueue, so fallback to a standard workqueue.
468 		 */
469 		return -EAGAIN;
470 	}
471 	if (verity_recheck(v, io, blkno, data) == 0) {
472 		if (v->validated_blocks)
473 			set_bit(blkno, v->validated_blocks);
474 		return 0;
475 	}
476 #if defined(CONFIG_DM_VERITY_FEC)
477 	if (verity_fec_decode(v, io, DM_VERITY_BLOCK_TYPE_DATA, blkno,
478 			      data) == 0)
479 		return 0;
480 #endif
481 	if (bio->bi_status)
482 		return -EIO; /* Error correction failed; Just return error */
483 
484 	if (verity_handle_err(v, DM_VERITY_BLOCK_TYPE_DATA, blkno)) {
485 		dm_audit_log_bio(DM_MSG_PREFIX, "verify-data", bio, blkno, 0);
486 		return -EIO;
487 	}
488 	return 0;
489 }
490 
491 /*
492  * Verify one "dm_verity_io" structure.
493  */
494 static int verity_verify_io(struct dm_verity_io *io)
495 {
496 	struct dm_verity *v = io->v;
497 	const unsigned int block_size = 1 << v->data_dev_block_bits;
498 	struct bvec_iter iter_copy;
499 	struct bvec_iter *iter;
500 	struct bio *bio = dm_bio_from_per_bio_data(io, v->ti->per_io_data_size);
501 	unsigned int b;
502 
503 	if (static_branch_unlikely(&use_bh_wq_enabled) && io->in_bh) {
504 		/*
505 		 * Copy the iterator in case we need to restart
506 		 * verification in a work-queue.
507 		 */
508 		iter_copy = io->iter;
509 		iter = &iter_copy;
510 	} else
511 		iter = &io->iter;
512 
513 	for (b = 0; b < io->n_blocks;
514 	     b++, bio_advance_iter(bio, iter, block_size)) {
515 		int r;
516 		sector_t cur_block = io->block + b;
517 		bool is_zero;
518 		struct bio_vec bv;
519 		void *data;
520 
521 		if (v->validated_blocks && bio->bi_status == BLK_STS_OK &&
522 		    likely(test_bit(cur_block, v->validated_blocks)))
523 			continue;
524 
525 		r = verity_hash_for_block(v, io, cur_block,
526 					  verity_io_want_digest(v, io),
527 					  &is_zero);
528 		if (unlikely(r < 0))
529 			return r;
530 
531 		bv = bio_iter_iovec(bio, *iter);
532 		if (unlikely(bv.bv_len < block_size)) {
533 			/*
534 			 * Data block spans pages.  This should not happen,
535 			 * since dm-verity sets dma_alignment to the data block
536 			 * size minus 1, and dm-verity also doesn't allow the
537 			 * data block size to be greater than PAGE_SIZE.
538 			 */
539 			DMERR_LIMIT("unaligned io (data block spans pages)");
540 			return -EIO;
541 		}
542 
543 		data = bvec_kmap_local(&bv);
544 
545 		if (is_zero) {
546 			/*
547 			 * If we expect a zero block, don't validate, just
548 			 * return zeros.
549 			 */
550 			memset(data, 0, block_size);
551 			kunmap_local(data);
552 			continue;
553 		}
554 
555 		r = verity_hash(v, io, data, block_size,
556 				verity_io_real_digest(v, io), !io->in_bh);
557 		if (unlikely(r < 0)) {
558 			kunmap_local(data);
559 			return r;
560 		}
561 
562 		if (likely(memcmp(verity_io_real_digest(v, io),
563 				  verity_io_want_digest(v, io), v->digest_size) == 0)) {
564 			if (v->validated_blocks)
565 				set_bit(cur_block, v->validated_blocks);
566 			kunmap_local(data);
567 			continue;
568 		}
569 		r = verity_handle_data_hash_mismatch(v, io, bio, cur_block,
570 						     data);
571 		kunmap_local(data);
572 		if (unlikely(r))
573 			return r;
574 	}
575 
576 	return 0;
577 }
578 
579 /*
580  * Skip verity work in response to I/O error when system is shutting down.
581  */
582 static inline bool verity_is_system_shutting_down(void)
583 {
584 	return system_state == SYSTEM_HALT || system_state == SYSTEM_POWER_OFF
585 		|| system_state == SYSTEM_RESTART;
586 }
587 
588 static void restart_io_error(struct work_struct *w)
589 {
590 	kernel_restart("dm-verity device has I/O error");
591 }
592 
593 /*
594  * End one "io" structure with a given error.
595  */
596 static void verity_finish_io(struct dm_verity_io *io, blk_status_t status)
597 {
598 	struct dm_verity *v = io->v;
599 	struct bio *bio = dm_bio_from_per_bio_data(io, v->ti->per_io_data_size);
600 
601 	bio->bi_end_io = io->orig_bi_end_io;
602 	bio->bi_status = status;
603 
604 	if (!static_branch_unlikely(&use_bh_wq_enabled) || !io->in_bh)
605 		verity_fec_finish_io(io);
606 
607 	if (unlikely(status != BLK_STS_OK) &&
608 	    unlikely(!(bio->bi_opf & REQ_RAHEAD)) &&
609 	    !verity_is_system_shutting_down()) {
610 		if (v->error_mode == DM_VERITY_MODE_PANIC) {
611 			panic("dm-verity device has I/O error");
612 		}
613 		if (v->error_mode == DM_VERITY_MODE_RESTART) {
614 			static DECLARE_WORK(restart_work, restart_io_error);
615 			queue_work(v->verify_wq, &restart_work);
616 			/*
617 			 * We deliberately don't call bio_endio here, because
618 			 * the machine will be restarted anyway.
619 			 */
620 			return;
621 		}
622 	}
623 
624 	bio_endio(bio);
625 }
626 
627 static void verity_work(struct work_struct *w)
628 {
629 	struct dm_verity_io *io = container_of(w, struct dm_verity_io, work);
630 
631 	io->in_bh = false;
632 
633 	verity_finish_io(io, errno_to_blk_status(verity_verify_io(io)));
634 }
635 
636 static void verity_bh_work(struct work_struct *w)
637 {
638 	struct dm_verity_io *io = container_of(w, struct dm_verity_io, bh_work);
639 	int err;
640 
641 	io->in_bh = true;
642 	err = verity_verify_io(io);
643 	if (err == -EAGAIN || err == -ENOMEM) {
644 		/* fallback to retrying with work-queue */
645 		INIT_WORK(&io->work, verity_work);
646 		queue_work(io->v->verify_wq, &io->work);
647 		return;
648 	}
649 
650 	verity_finish_io(io, errno_to_blk_status(err));
651 }
652 
653 static void verity_end_io(struct bio *bio)
654 {
655 	struct dm_verity_io *io = bio->bi_private;
656 
657 	if (bio->bi_status &&
658 	    (!verity_fec_is_enabled(io->v) ||
659 	     verity_is_system_shutting_down() ||
660 	     (bio->bi_opf & REQ_RAHEAD))) {
661 		verity_finish_io(io, bio->bi_status);
662 		return;
663 	}
664 
665 	if (static_branch_unlikely(&use_bh_wq_enabled) && io->v->use_bh_wq) {
666 		INIT_WORK(&io->bh_work, verity_bh_work);
667 		queue_work(system_bh_wq, &io->bh_work);
668 	} else {
669 		INIT_WORK(&io->work, verity_work);
670 		queue_work(io->v->verify_wq, &io->work);
671 	}
672 }
673 
674 /*
675  * Prefetch buffers for the specified io.
676  * The root buffer is not prefetched, it is assumed that it will be cached
677  * all the time.
678  */
679 static void verity_prefetch_io(struct work_struct *work)
680 {
681 	struct dm_verity_prefetch_work *pw =
682 		container_of(work, struct dm_verity_prefetch_work, work);
683 	struct dm_verity *v = pw->v;
684 	int i;
685 
686 	for (i = v->levels - 2; i >= 0; i--) {
687 		sector_t hash_block_start;
688 		sector_t hash_block_end;
689 
690 		verity_hash_at_level(v, pw->block, i, &hash_block_start, NULL);
691 		verity_hash_at_level(v, pw->block + pw->n_blocks - 1, i, &hash_block_end, NULL);
692 
693 		if (!i) {
694 			unsigned int cluster = READ_ONCE(dm_verity_prefetch_cluster);
695 
696 			cluster >>= v->data_dev_block_bits;
697 			if (unlikely(!cluster))
698 				goto no_prefetch_cluster;
699 
700 			if (unlikely(cluster & (cluster - 1)))
701 				cluster = 1 << __fls(cluster);
702 
703 			hash_block_start &= ~(sector_t)(cluster - 1);
704 			hash_block_end |= cluster - 1;
705 			if (unlikely(hash_block_end >= v->hash_blocks))
706 				hash_block_end = v->hash_blocks - 1;
707 		}
708 no_prefetch_cluster:
709 		dm_bufio_prefetch_with_ioprio(v->bufio, hash_block_start,
710 					hash_block_end - hash_block_start + 1,
711 					pw->ioprio);
712 	}
713 
714 	kfree(pw);
715 }
716 
717 static void verity_submit_prefetch(struct dm_verity *v, struct dm_verity_io *io,
718 				   unsigned short ioprio)
719 {
720 	sector_t block = io->block;
721 	unsigned int n_blocks = io->n_blocks;
722 	struct dm_verity_prefetch_work *pw;
723 
724 	if (v->validated_blocks) {
725 		while (n_blocks && test_bit(block, v->validated_blocks)) {
726 			block++;
727 			n_blocks--;
728 		}
729 		while (n_blocks && test_bit(block + n_blocks - 1,
730 					    v->validated_blocks))
731 			n_blocks--;
732 		if (!n_blocks)
733 			return;
734 	}
735 
736 	pw = kmalloc(sizeof(struct dm_verity_prefetch_work),
737 		GFP_NOIO | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN);
738 
739 	if (!pw)
740 		return;
741 
742 	INIT_WORK(&pw->work, verity_prefetch_io);
743 	pw->v = v;
744 	pw->block = block;
745 	pw->n_blocks = n_blocks;
746 	pw->ioprio = ioprio;
747 	queue_work(v->verify_wq, &pw->work);
748 }
749 
750 /*
751  * Bio map function. It allocates dm_verity_io structure and bio vector and
752  * fills them. Then it issues prefetches and the I/O.
753  */
754 static int verity_map(struct dm_target *ti, struct bio *bio)
755 {
756 	struct dm_verity *v = ti->private;
757 	struct dm_verity_io *io;
758 
759 	bio_set_dev(bio, v->data_dev->bdev);
760 	bio->bi_iter.bi_sector = verity_map_sector(v, bio->bi_iter.bi_sector);
761 
762 	if (((unsigned int)bio->bi_iter.bi_sector | bio_sectors(bio)) &
763 	    ((1 << (v->data_dev_block_bits - SECTOR_SHIFT)) - 1)) {
764 		DMERR_LIMIT("unaligned io");
765 		return DM_MAPIO_KILL;
766 	}
767 
768 	if (bio_end_sector(bio) >>
769 	    (v->data_dev_block_bits - SECTOR_SHIFT) > v->data_blocks) {
770 		DMERR_LIMIT("io out of range");
771 		return DM_MAPIO_KILL;
772 	}
773 
774 	if (bio_data_dir(bio) == WRITE)
775 		return DM_MAPIO_KILL;
776 
777 	io = dm_per_bio_data(bio, ti->per_io_data_size);
778 	io->v = v;
779 	io->orig_bi_end_io = bio->bi_end_io;
780 	io->block = bio->bi_iter.bi_sector >> (v->data_dev_block_bits - SECTOR_SHIFT);
781 	io->n_blocks = bio->bi_iter.bi_size >> v->data_dev_block_bits;
782 
783 	bio->bi_end_io = verity_end_io;
784 	bio->bi_private = io;
785 	io->iter = bio->bi_iter;
786 
787 	verity_fec_init_io(io);
788 
789 	verity_submit_prefetch(v, io, bio_prio(bio));
790 
791 	submit_bio_noacct(bio);
792 
793 	return DM_MAPIO_SUBMITTED;
794 }
795 
796 /*
797  * Status: V (valid) or C (corruption found)
798  */
799 static void verity_status(struct dm_target *ti, status_type_t type,
800 			  unsigned int status_flags, char *result, unsigned int maxlen)
801 {
802 	struct dm_verity *v = ti->private;
803 	unsigned int args = 0;
804 	unsigned int sz = 0;
805 	unsigned int x;
806 
807 	switch (type) {
808 	case STATUSTYPE_INFO:
809 		DMEMIT("%c", v->hash_failed ? 'C' : 'V');
810 		break;
811 	case STATUSTYPE_TABLE:
812 		DMEMIT("%u %s %s %u %u %llu %llu %s ",
813 			v->version,
814 			v->data_dev->name,
815 			v->hash_dev->name,
816 			1 << v->data_dev_block_bits,
817 			1 << v->hash_dev_block_bits,
818 			(unsigned long long)v->data_blocks,
819 			(unsigned long long)v->hash_start,
820 			v->alg_name
821 			);
822 		for (x = 0; x < v->digest_size; x++)
823 			DMEMIT("%02x", v->root_digest[x]);
824 		DMEMIT(" ");
825 		if (!v->salt_size)
826 			DMEMIT("-");
827 		else
828 			for (x = 0; x < v->salt_size; x++)
829 				DMEMIT("%02x", v->salt[x]);
830 		if (v->mode != DM_VERITY_MODE_EIO)
831 			args++;
832 		if (v->error_mode != DM_VERITY_MODE_EIO)
833 			args++;
834 		if (verity_fec_is_enabled(v))
835 			args += DM_VERITY_OPTS_FEC;
836 		if (v->zero_digest)
837 			args++;
838 		if (v->validated_blocks)
839 			args++;
840 		if (v->use_bh_wq)
841 			args++;
842 		if (v->signature_key_desc)
843 			args += DM_VERITY_ROOT_HASH_VERIFICATION_OPTS;
844 		if (!args)
845 			return;
846 		DMEMIT(" %u", args);
847 		if (v->mode != DM_VERITY_MODE_EIO) {
848 			DMEMIT(" ");
849 			switch (v->mode) {
850 			case DM_VERITY_MODE_LOGGING:
851 				DMEMIT(DM_VERITY_OPT_LOGGING);
852 				break;
853 			case DM_VERITY_MODE_RESTART:
854 				DMEMIT(DM_VERITY_OPT_RESTART);
855 				break;
856 			case DM_VERITY_MODE_PANIC:
857 				DMEMIT(DM_VERITY_OPT_PANIC);
858 				break;
859 			default:
860 				BUG();
861 			}
862 		}
863 		if (v->error_mode != DM_VERITY_MODE_EIO) {
864 			DMEMIT(" ");
865 			switch (v->error_mode) {
866 			case DM_VERITY_MODE_RESTART:
867 				DMEMIT(DM_VERITY_OPT_ERROR_RESTART);
868 				break;
869 			case DM_VERITY_MODE_PANIC:
870 				DMEMIT(DM_VERITY_OPT_ERROR_PANIC);
871 				break;
872 			default:
873 				BUG();
874 			}
875 		}
876 		if (v->zero_digest)
877 			DMEMIT(" " DM_VERITY_OPT_IGN_ZEROES);
878 		if (v->validated_blocks)
879 			DMEMIT(" " DM_VERITY_OPT_AT_MOST_ONCE);
880 		if (v->use_bh_wq)
881 			DMEMIT(" " DM_VERITY_OPT_TASKLET_VERIFY);
882 		sz = verity_fec_status_table(v, sz, result, maxlen);
883 		if (v->signature_key_desc)
884 			DMEMIT(" " DM_VERITY_ROOT_HASH_VERIFICATION_OPT_SIG_KEY
885 				" %s", v->signature_key_desc);
886 		break;
887 
888 	case STATUSTYPE_IMA:
889 		DMEMIT_TARGET_NAME_VERSION(ti->type);
890 		DMEMIT(",hash_failed=%c", v->hash_failed ? 'C' : 'V');
891 		DMEMIT(",verity_version=%u", v->version);
892 		DMEMIT(",data_device_name=%s", v->data_dev->name);
893 		DMEMIT(",hash_device_name=%s", v->hash_dev->name);
894 		DMEMIT(",verity_algorithm=%s", v->alg_name);
895 
896 		DMEMIT(",root_digest=");
897 		for (x = 0; x < v->digest_size; x++)
898 			DMEMIT("%02x", v->root_digest[x]);
899 
900 		DMEMIT(",salt=");
901 		if (!v->salt_size)
902 			DMEMIT("-");
903 		else
904 			for (x = 0; x < v->salt_size; x++)
905 				DMEMIT("%02x", v->salt[x]);
906 
907 		DMEMIT(",ignore_zero_blocks=%c", v->zero_digest ? 'y' : 'n');
908 		DMEMIT(",check_at_most_once=%c", v->validated_blocks ? 'y' : 'n');
909 		if (v->signature_key_desc)
910 			DMEMIT(",root_hash_sig_key_desc=%s", v->signature_key_desc);
911 
912 		if (v->mode != DM_VERITY_MODE_EIO) {
913 			DMEMIT(",verity_mode=");
914 			switch (v->mode) {
915 			case DM_VERITY_MODE_LOGGING:
916 				DMEMIT(DM_VERITY_OPT_LOGGING);
917 				break;
918 			case DM_VERITY_MODE_RESTART:
919 				DMEMIT(DM_VERITY_OPT_RESTART);
920 				break;
921 			case DM_VERITY_MODE_PANIC:
922 				DMEMIT(DM_VERITY_OPT_PANIC);
923 				break;
924 			default:
925 				DMEMIT("invalid");
926 			}
927 		}
928 		if (v->error_mode != DM_VERITY_MODE_EIO) {
929 			DMEMIT(",verity_error_mode=");
930 			switch (v->error_mode) {
931 			case DM_VERITY_MODE_RESTART:
932 				DMEMIT(DM_VERITY_OPT_ERROR_RESTART);
933 				break;
934 			case DM_VERITY_MODE_PANIC:
935 				DMEMIT(DM_VERITY_OPT_ERROR_PANIC);
936 				break;
937 			default:
938 				DMEMIT("invalid");
939 			}
940 		}
941 		DMEMIT(";");
942 		break;
943 	}
944 }
945 
946 static int verity_prepare_ioctl(struct dm_target *ti, struct block_device **bdev)
947 {
948 	struct dm_verity *v = ti->private;
949 
950 	*bdev = v->data_dev->bdev;
951 
952 	if (v->data_start || ti->len != bdev_nr_sectors(v->data_dev->bdev))
953 		return 1;
954 	return 0;
955 }
956 
957 static int verity_iterate_devices(struct dm_target *ti,
958 				  iterate_devices_callout_fn fn, void *data)
959 {
960 	struct dm_verity *v = ti->private;
961 
962 	return fn(ti, v->data_dev, v->data_start, ti->len, data);
963 }
964 
965 static void verity_io_hints(struct dm_target *ti, struct queue_limits *limits)
966 {
967 	struct dm_verity *v = ti->private;
968 
969 	if (limits->logical_block_size < 1 << v->data_dev_block_bits)
970 		limits->logical_block_size = 1 << v->data_dev_block_bits;
971 
972 	if (limits->physical_block_size < 1 << v->data_dev_block_bits)
973 		limits->physical_block_size = 1 << v->data_dev_block_bits;
974 
975 	limits->io_min = limits->logical_block_size;
976 
977 	/*
978 	 * Similar to what dm-crypt does, opt dm-verity out of support for
979 	 * direct I/O that is aligned to less than the traditional direct I/O
980 	 * alignment requirement of logical_block_size.  This prevents dm-verity
981 	 * data blocks from crossing pages, eliminating various edge cases.
982 	 */
983 	limits->dma_alignment = limits->logical_block_size - 1;
984 }
985 
986 #ifdef CONFIG_SECURITY
987 
988 static int verity_init_sig(struct dm_verity *v, const void *sig,
989 			   size_t sig_size)
990 {
991 	v->sig_size = sig_size;
992 
993 	if (sig) {
994 		v->root_digest_sig = kmemdup(sig, v->sig_size, GFP_KERNEL);
995 		if (!v->root_digest_sig)
996 			return -ENOMEM;
997 	}
998 
999 	return 0;
1000 }
1001 
1002 static void verity_free_sig(struct dm_verity *v)
1003 {
1004 	kfree(v->root_digest_sig);
1005 }
1006 
1007 #else
1008 
1009 static inline int verity_init_sig(struct dm_verity *v, const void *sig,
1010 				  size_t sig_size)
1011 {
1012 	return 0;
1013 }
1014 
1015 static inline void verity_free_sig(struct dm_verity *v)
1016 {
1017 }
1018 
1019 #endif /* CONFIG_SECURITY */
1020 
1021 static void verity_dtr(struct dm_target *ti)
1022 {
1023 	struct dm_verity *v = ti->private;
1024 
1025 	if (v->verify_wq)
1026 		destroy_workqueue(v->verify_wq);
1027 
1028 	mempool_exit(&v->recheck_pool);
1029 	if (v->io)
1030 		dm_io_client_destroy(v->io);
1031 
1032 	if (v->bufio)
1033 		dm_bufio_client_destroy(v->bufio);
1034 
1035 	kvfree(v->validated_blocks);
1036 	kfree(v->salt);
1037 	kfree(v->initial_hashstate);
1038 	kfree(v->root_digest);
1039 	kfree(v->zero_digest);
1040 	verity_free_sig(v);
1041 
1042 	if (v->ahash_tfm) {
1043 		static_branch_dec(&ahash_enabled);
1044 		crypto_free_ahash(v->ahash_tfm);
1045 	} else {
1046 		crypto_free_shash(v->shash_tfm);
1047 	}
1048 
1049 	kfree(v->alg_name);
1050 
1051 	if (v->hash_dev)
1052 		dm_put_device(ti, v->hash_dev);
1053 
1054 	if (v->data_dev)
1055 		dm_put_device(ti, v->data_dev);
1056 
1057 	verity_fec_dtr(v);
1058 
1059 	kfree(v->signature_key_desc);
1060 
1061 	if (v->use_bh_wq)
1062 		static_branch_dec(&use_bh_wq_enabled);
1063 
1064 	kfree(v);
1065 
1066 	dm_audit_log_dtr(DM_MSG_PREFIX, ti, 1);
1067 }
1068 
1069 static int verity_alloc_most_once(struct dm_verity *v)
1070 {
1071 	struct dm_target *ti = v->ti;
1072 
1073 	/* the bitset can only handle INT_MAX blocks */
1074 	if (v->data_blocks > INT_MAX) {
1075 		ti->error = "device too large to use check_at_most_once";
1076 		return -E2BIG;
1077 	}
1078 
1079 	v->validated_blocks = kvcalloc(BITS_TO_LONGS(v->data_blocks),
1080 				       sizeof(unsigned long),
1081 				       GFP_KERNEL);
1082 	if (!v->validated_blocks) {
1083 		ti->error = "failed to allocate bitset for check_at_most_once";
1084 		return -ENOMEM;
1085 	}
1086 
1087 	return 0;
1088 }
1089 
1090 static int verity_alloc_zero_digest(struct dm_verity *v)
1091 {
1092 	int r = -ENOMEM;
1093 	struct dm_verity_io *io;
1094 	u8 *zero_data;
1095 
1096 	v->zero_digest = kmalloc(v->digest_size, GFP_KERNEL);
1097 
1098 	if (!v->zero_digest)
1099 		return r;
1100 
1101 	io = kmalloc(sizeof(*io) + v->hash_reqsize, GFP_KERNEL);
1102 
1103 	if (!io)
1104 		return r; /* verity_dtr will free zero_digest */
1105 
1106 	zero_data = kzalloc(1 << v->data_dev_block_bits, GFP_KERNEL);
1107 
1108 	if (!zero_data)
1109 		goto out;
1110 
1111 	r = verity_hash(v, io, zero_data, 1 << v->data_dev_block_bits,
1112 			v->zero_digest, true);
1113 
1114 out:
1115 	kfree(io);
1116 	kfree(zero_data);
1117 
1118 	return r;
1119 }
1120 
1121 static inline bool verity_is_verity_mode(const char *arg_name)
1122 {
1123 	return (!strcasecmp(arg_name, DM_VERITY_OPT_LOGGING) ||
1124 		!strcasecmp(arg_name, DM_VERITY_OPT_RESTART) ||
1125 		!strcasecmp(arg_name, DM_VERITY_OPT_PANIC));
1126 }
1127 
1128 static int verity_parse_verity_mode(struct dm_verity *v, const char *arg_name)
1129 {
1130 	if (v->mode)
1131 		return -EINVAL;
1132 
1133 	if (!strcasecmp(arg_name, DM_VERITY_OPT_LOGGING))
1134 		v->mode = DM_VERITY_MODE_LOGGING;
1135 	else if (!strcasecmp(arg_name, DM_VERITY_OPT_RESTART))
1136 		v->mode = DM_VERITY_MODE_RESTART;
1137 	else if (!strcasecmp(arg_name, DM_VERITY_OPT_PANIC))
1138 		v->mode = DM_VERITY_MODE_PANIC;
1139 
1140 	return 0;
1141 }
1142 
1143 static inline bool verity_is_verity_error_mode(const char *arg_name)
1144 {
1145 	return (!strcasecmp(arg_name, DM_VERITY_OPT_ERROR_RESTART) ||
1146 		!strcasecmp(arg_name, DM_VERITY_OPT_ERROR_PANIC));
1147 }
1148 
1149 static int verity_parse_verity_error_mode(struct dm_verity *v, const char *arg_name)
1150 {
1151 	if (v->error_mode)
1152 		return -EINVAL;
1153 
1154 	if (!strcasecmp(arg_name, DM_VERITY_OPT_ERROR_RESTART))
1155 		v->error_mode = DM_VERITY_MODE_RESTART;
1156 	else if (!strcasecmp(arg_name, DM_VERITY_OPT_ERROR_PANIC))
1157 		v->error_mode = DM_VERITY_MODE_PANIC;
1158 
1159 	return 0;
1160 }
1161 
1162 static int verity_parse_opt_args(struct dm_arg_set *as, struct dm_verity *v,
1163 				 struct dm_verity_sig_opts *verify_args,
1164 				 bool only_modifier_opts)
1165 {
1166 	int r = 0;
1167 	unsigned int argc;
1168 	struct dm_target *ti = v->ti;
1169 	const char *arg_name;
1170 
1171 	static const struct dm_arg _args[] = {
1172 		{0, DM_VERITY_OPTS_MAX, "Invalid number of feature args"},
1173 	};
1174 
1175 	r = dm_read_arg_group(_args, as, &argc, &ti->error);
1176 	if (r)
1177 		return -EINVAL;
1178 
1179 	if (!argc)
1180 		return 0;
1181 
1182 	do {
1183 		arg_name = dm_shift_arg(as);
1184 		argc--;
1185 
1186 		if (verity_is_verity_mode(arg_name)) {
1187 			if (only_modifier_opts)
1188 				continue;
1189 			r = verity_parse_verity_mode(v, arg_name);
1190 			if (r) {
1191 				ti->error = "Conflicting error handling parameters";
1192 				return r;
1193 			}
1194 			continue;
1195 
1196 		} else if (verity_is_verity_error_mode(arg_name)) {
1197 			if (only_modifier_opts)
1198 				continue;
1199 			r = verity_parse_verity_error_mode(v, arg_name);
1200 			if (r) {
1201 				ti->error = "Conflicting error handling parameters";
1202 				return r;
1203 			}
1204 			continue;
1205 
1206 		} else if (!strcasecmp(arg_name, DM_VERITY_OPT_IGN_ZEROES)) {
1207 			if (only_modifier_opts)
1208 				continue;
1209 			r = verity_alloc_zero_digest(v);
1210 			if (r) {
1211 				ti->error = "Cannot allocate zero digest";
1212 				return r;
1213 			}
1214 			continue;
1215 
1216 		} else if (!strcasecmp(arg_name, DM_VERITY_OPT_AT_MOST_ONCE)) {
1217 			if (only_modifier_opts)
1218 				continue;
1219 			r = verity_alloc_most_once(v);
1220 			if (r)
1221 				return r;
1222 			continue;
1223 
1224 		} else if (!strcasecmp(arg_name, DM_VERITY_OPT_TASKLET_VERIFY)) {
1225 			v->use_bh_wq = true;
1226 			static_branch_inc(&use_bh_wq_enabled);
1227 			continue;
1228 
1229 		} else if (verity_is_fec_opt_arg(arg_name)) {
1230 			if (only_modifier_opts)
1231 				continue;
1232 			r = verity_fec_parse_opt_args(as, v, &argc, arg_name);
1233 			if (r)
1234 				return r;
1235 			continue;
1236 
1237 		} else if (verity_verify_is_sig_opt_arg(arg_name)) {
1238 			if (only_modifier_opts)
1239 				continue;
1240 			r = verity_verify_sig_parse_opt_args(as, v,
1241 							     verify_args,
1242 							     &argc, arg_name);
1243 			if (r)
1244 				return r;
1245 			continue;
1246 
1247 		} else if (only_modifier_opts) {
1248 			/*
1249 			 * Ignore unrecognized opt, could easily be an extra
1250 			 * argument to an option whose parsing was skipped.
1251 			 * Normal parsing (@only_modifier_opts=false) will
1252 			 * properly parse all options (and their extra args).
1253 			 */
1254 			continue;
1255 		}
1256 
1257 		DMERR("Unrecognized verity feature request: %s", arg_name);
1258 		ti->error = "Unrecognized verity feature request";
1259 		return -EINVAL;
1260 	} while (argc && !r);
1261 
1262 	return r;
1263 }
1264 
1265 static int verity_setup_hash_alg(struct dm_verity *v, const char *alg_name)
1266 {
1267 	struct dm_target *ti = v->ti;
1268 	struct crypto_ahash *ahash;
1269 	struct crypto_shash *shash = NULL;
1270 	const char *driver_name;
1271 
1272 	v->alg_name = kstrdup(alg_name, GFP_KERNEL);
1273 	if (!v->alg_name) {
1274 		ti->error = "Cannot allocate algorithm name";
1275 		return -ENOMEM;
1276 	}
1277 
1278 	/*
1279 	 * Allocate the hash transformation object that this dm-verity instance
1280 	 * will use.  The vast majority of dm-verity users use CPU-based
1281 	 * hashing, so when possible use the shash API to minimize the crypto
1282 	 * API overhead.  If the ahash API resolves to a different driver
1283 	 * (likely an off-CPU hardware offload), use ahash instead.  Also use
1284 	 * ahash if the obsolete dm-verity format with the appended salt is
1285 	 * being used, so that quirk only needs to be handled in one place.
1286 	 */
1287 	ahash = crypto_alloc_ahash(alg_name, 0,
1288 				   v->use_bh_wq ? CRYPTO_ALG_ASYNC : 0);
1289 	if (IS_ERR(ahash)) {
1290 		ti->error = "Cannot initialize hash function";
1291 		return PTR_ERR(ahash);
1292 	}
1293 	driver_name = crypto_ahash_driver_name(ahash);
1294 	if (v->version >= 1 /* salt prepended, not appended? */) {
1295 		shash = crypto_alloc_shash(alg_name, 0, 0);
1296 		if (!IS_ERR(shash) &&
1297 		    strcmp(crypto_shash_driver_name(shash), driver_name) != 0) {
1298 			/*
1299 			 * ahash gave a different driver than shash, so probably
1300 			 * this is a case of real hardware offload.  Use ahash.
1301 			 */
1302 			crypto_free_shash(shash);
1303 			shash = NULL;
1304 		}
1305 	}
1306 	if (!IS_ERR_OR_NULL(shash)) {
1307 		crypto_free_ahash(ahash);
1308 		ahash = NULL;
1309 		v->shash_tfm = shash;
1310 		v->digest_size = crypto_shash_digestsize(shash);
1311 		v->hash_reqsize = sizeof(struct shash_desc) +
1312 				  crypto_shash_descsize(shash);
1313 		DMINFO("%s using shash \"%s\"", alg_name, driver_name);
1314 	} else {
1315 		v->ahash_tfm = ahash;
1316 		static_branch_inc(&ahash_enabled);
1317 		v->digest_size = crypto_ahash_digestsize(ahash);
1318 		v->hash_reqsize = sizeof(struct ahash_request) +
1319 				  crypto_ahash_reqsize(ahash);
1320 		DMINFO("%s using ahash \"%s\"", alg_name, driver_name);
1321 	}
1322 	if ((1 << v->hash_dev_block_bits) < v->digest_size * 2) {
1323 		ti->error = "Digest size too big";
1324 		return -EINVAL;
1325 	}
1326 	return 0;
1327 }
1328 
1329 static int verity_setup_salt_and_hashstate(struct dm_verity *v, const char *arg)
1330 {
1331 	struct dm_target *ti = v->ti;
1332 
1333 	if (strcmp(arg, "-") != 0) {
1334 		v->salt_size = strlen(arg) / 2;
1335 		v->salt = kmalloc(v->salt_size, GFP_KERNEL);
1336 		if (!v->salt) {
1337 			ti->error = "Cannot allocate salt";
1338 			return -ENOMEM;
1339 		}
1340 		if (strlen(arg) != v->salt_size * 2 ||
1341 		    hex2bin(v->salt, arg, v->salt_size)) {
1342 			ti->error = "Invalid salt";
1343 			return -EINVAL;
1344 		}
1345 	}
1346 	if (v->shash_tfm) {
1347 		SHASH_DESC_ON_STACK(desc, v->shash_tfm);
1348 		int r;
1349 
1350 		/*
1351 		 * Compute the pre-salted hash state that can be passed to
1352 		 * crypto_shash_import() for each block later.
1353 		 */
1354 		v->initial_hashstate = kmalloc(
1355 			crypto_shash_statesize(v->shash_tfm), GFP_KERNEL);
1356 		if (!v->initial_hashstate) {
1357 			ti->error = "Cannot allocate initial hash state";
1358 			return -ENOMEM;
1359 		}
1360 		desc->tfm = v->shash_tfm;
1361 		r = crypto_shash_init(desc) ?:
1362 		    crypto_shash_update(desc, v->salt, v->salt_size) ?:
1363 		    crypto_shash_export(desc, v->initial_hashstate);
1364 		if (r) {
1365 			ti->error = "Cannot set up initial hash state";
1366 			return r;
1367 		}
1368 	}
1369 	return 0;
1370 }
1371 
1372 /*
1373  * Target parameters:
1374  *	<version>	The current format is version 1.
1375  *			Vsn 0 is compatible with original Chromium OS releases.
1376  *	<data device>
1377  *	<hash device>
1378  *	<data block size>
1379  *	<hash block size>
1380  *	<the number of data blocks>
1381  *	<hash start block>
1382  *	<algorithm>
1383  *	<digest>
1384  *	<salt>		Hex string or "-" if no salt.
1385  */
1386 static int verity_ctr(struct dm_target *ti, unsigned int argc, char **argv)
1387 {
1388 	struct dm_verity *v;
1389 	struct dm_verity_sig_opts verify_args = {0};
1390 	struct dm_arg_set as;
1391 	unsigned int num;
1392 	unsigned long long num_ll;
1393 	int r;
1394 	int i;
1395 	sector_t hash_position;
1396 	char dummy;
1397 	char *root_hash_digest_to_validate;
1398 
1399 	v = kzalloc(sizeof(struct dm_verity), GFP_KERNEL);
1400 	if (!v) {
1401 		ti->error = "Cannot allocate verity structure";
1402 		return -ENOMEM;
1403 	}
1404 	ti->private = v;
1405 	v->ti = ti;
1406 
1407 	r = verity_fec_ctr_alloc(v);
1408 	if (r)
1409 		goto bad;
1410 
1411 	if ((dm_table_get_mode(ti->table) & ~BLK_OPEN_READ)) {
1412 		ti->error = "Device must be readonly";
1413 		r = -EINVAL;
1414 		goto bad;
1415 	}
1416 
1417 	if (argc < 10) {
1418 		ti->error = "Not enough arguments";
1419 		r = -EINVAL;
1420 		goto bad;
1421 	}
1422 
1423 	/* Parse optional parameters that modify primary args */
1424 	if (argc > 10) {
1425 		as.argc = argc - 10;
1426 		as.argv = argv + 10;
1427 		r = verity_parse_opt_args(&as, v, &verify_args, true);
1428 		if (r < 0)
1429 			goto bad;
1430 	}
1431 
1432 	if (sscanf(argv[0], "%u%c", &num, &dummy) != 1 ||
1433 	    num > 1) {
1434 		ti->error = "Invalid version";
1435 		r = -EINVAL;
1436 		goto bad;
1437 	}
1438 	v->version = num;
1439 
1440 	r = dm_get_device(ti, argv[1], BLK_OPEN_READ, &v->data_dev);
1441 	if (r) {
1442 		ti->error = "Data device lookup failed";
1443 		goto bad;
1444 	}
1445 
1446 	r = dm_get_device(ti, argv[2], BLK_OPEN_READ, &v->hash_dev);
1447 	if (r) {
1448 		ti->error = "Hash device lookup failed";
1449 		goto bad;
1450 	}
1451 
1452 	if (sscanf(argv[3], "%u%c", &num, &dummy) != 1 ||
1453 	    !num || (num & (num - 1)) ||
1454 	    num < bdev_logical_block_size(v->data_dev->bdev) ||
1455 	    num > PAGE_SIZE) {
1456 		ti->error = "Invalid data device block size";
1457 		r = -EINVAL;
1458 		goto bad;
1459 	}
1460 	v->data_dev_block_bits = __ffs(num);
1461 
1462 	if (sscanf(argv[4], "%u%c", &num, &dummy) != 1 ||
1463 	    !num || (num & (num - 1)) ||
1464 	    num < bdev_logical_block_size(v->hash_dev->bdev) ||
1465 	    num > INT_MAX) {
1466 		ti->error = "Invalid hash device block size";
1467 		r = -EINVAL;
1468 		goto bad;
1469 	}
1470 	v->hash_dev_block_bits = __ffs(num);
1471 
1472 	if (sscanf(argv[5], "%llu%c", &num_ll, &dummy) != 1 ||
1473 	    (sector_t)(num_ll << (v->data_dev_block_bits - SECTOR_SHIFT))
1474 	    >> (v->data_dev_block_bits - SECTOR_SHIFT) != num_ll) {
1475 		ti->error = "Invalid data blocks";
1476 		r = -EINVAL;
1477 		goto bad;
1478 	}
1479 	v->data_blocks = num_ll;
1480 
1481 	if (ti->len > (v->data_blocks << (v->data_dev_block_bits - SECTOR_SHIFT))) {
1482 		ti->error = "Data device is too small";
1483 		r = -EINVAL;
1484 		goto bad;
1485 	}
1486 
1487 	if (sscanf(argv[6], "%llu%c", &num_ll, &dummy) != 1 ||
1488 	    (sector_t)(num_ll << (v->hash_dev_block_bits - SECTOR_SHIFT))
1489 	    >> (v->hash_dev_block_bits - SECTOR_SHIFT) != num_ll) {
1490 		ti->error = "Invalid hash start";
1491 		r = -EINVAL;
1492 		goto bad;
1493 	}
1494 	v->hash_start = num_ll;
1495 
1496 	r = verity_setup_hash_alg(v, argv[7]);
1497 	if (r)
1498 		goto bad;
1499 
1500 	v->root_digest = kmalloc(v->digest_size, GFP_KERNEL);
1501 	if (!v->root_digest) {
1502 		ti->error = "Cannot allocate root digest";
1503 		r = -ENOMEM;
1504 		goto bad;
1505 	}
1506 	if (strlen(argv[8]) != v->digest_size * 2 ||
1507 	    hex2bin(v->root_digest, argv[8], v->digest_size)) {
1508 		ti->error = "Invalid root digest";
1509 		r = -EINVAL;
1510 		goto bad;
1511 	}
1512 	root_hash_digest_to_validate = argv[8];
1513 
1514 	r = verity_setup_salt_and_hashstate(v, argv[9]);
1515 	if (r)
1516 		goto bad;
1517 
1518 	argv += 10;
1519 	argc -= 10;
1520 
1521 	/* Optional parameters */
1522 	if (argc) {
1523 		as.argc = argc;
1524 		as.argv = argv;
1525 		r = verity_parse_opt_args(&as, v, &verify_args, false);
1526 		if (r < 0)
1527 			goto bad;
1528 	}
1529 
1530 	/* Root hash signature is  a optional parameter*/
1531 	r = verity_verify_root_hash(root_hash_digest_to_validate,
1532 				    strlen(root_hash_digest_to_validate),
1533 				    verify_args.sig,
1534 				    verify_args.sig_size);
1535 	if (r < 0) {
1536 		ti->error = "Root hash verification failed";
1537 		goto bad;
1538 	}
1539 
1540 	r = verity_init_sig(v, verify_args.sig, verify_args.sig_size);
1541 	if (r < 0) {
1542 		ti->error = "Cannot allocate root digest signature";
1543 		goto bad;
1544 	}
1545 
1546 	v->hash_per_block_bits =
1547 		__fls((1 << v->hash_dev_block_bits) / v->digest_size);
1548 
1549 	v->levels = 0;
1550 	if (v->data_blocks)
1551 		while (v->hash_per_block_bits * v->levels < 64 &&
1552 		       (unsigned long long)(v->data_blocks - 1) >>
1553 		       (v->hash_per_block_bits * v->levels))
1554 			v->levels++;
1555 
1556 	if (v->levels > DM_VERITY_MAX_LEVELS) {
1557 		ti->error = "Too many tree levels";
1558 		r = -E2BIG;
1559 		goto bad;
1560 	}
1561 
1562 	hash_position = v->hash_start;
1563 	for (i = v->levels - 1; i >= 0; i--) {
1564 		sector_t s;
1565 
1566 		v->hash_level_block[i] = hash_position;
1567 		s = (v->data_blocks + ((sector_t)1 << ((i + 1) * v->hash_per_block_bits)) - 1)
1568 					>> ((i + 1) * v->hash_per_block_bits);
1569 		if (hash_position + s < hash_position) {
1570 			ti->error = "Hash device offset overflow";
1571 			r = -E2BIG;
1572 			goto bad;
1573 		}
1574 		hash_position += s;
1575 	}
1576 	v->hash_blocks = hash_position;
1577 
1578 	r = mempool_init_page_pool(&v->recheck_pool, 1, 0);
1579 	if (unlikely(r)) {
1580 		ti->error = "Cannot allocate mempool";
1581 		goto bad;
1582 	}
1583 
1584 	v->io = dm_io_client_create();
1585 	if (IS_ERR(v->io)) {
1586 		r = PTR_ERR(v->io);
1587 		v->io = NULL;
1588 		ti->error = "Cannot allocate dm io";
1589 		goto bad;
1590 	}
1591 
1592 	v->bufio = dm_bufio_client_create(v->hash_dev->bdev,
1593 		1 << v->hash_dev_block_bits, 1, sizeof(struct buffer_aux),
1594 		dm_bufio_alloc_callback, NULL,
1595 		v->use_bh_wq ? DM_BUFIO_CLIENT_NO_SLEEP : 0);
1596 	if (IS_ERR(v->bufio)) {
1597 		ti->error = "Cannot initialize dm-bufio";
1598 		r = PTR_ERR(v->bufio);
1599 		v->bufio = NULL;
1600 		goto bad;
1601 	}
1602 
1603 	if (dm_bufio_get_device_size(v->bufio) < v->hash_blocks) {
1604 		ti->error = "Hash device is too small";
1605 		r = -E2BIG;
1606 		goto bad;
1607 	}
1608 
1609 	/*
1610 	 * Using WQ_HIGHPRI improves throughput and completion latency by
1611 	 * reducing wait times when reading from a dm-verity device.
1612 	 *
1613 	 * Also as required for the "try_verify_in_tasklet" feature: WQ_HIGHPRI
1614 	 * allows verify_wq to preempt softirq since verification in BH workqueue
1615 	 * will fall-back to using it for error handling (or if the bufio cache
1616 	 * doesn't have required hashes).
1617 	 */
1618 	v->verify_wq = alloc_workqueue("kverityd", WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
1619 	if (!v->verify_wq) {
1620 		ti->error = "Cannot allocate workqueue";
1621 		r = -ENOMEM;
1622 		goto bad;
1623 	}
1624 
1625 	ti->per_io_data_size = sizeof(struct dm_verity_io) + v->hash_reqsize;
1626 
1627 	r = verity_fec_ctr(v);
1628 	if (r)
1629 		goto bad;
1630 
1631 	ti->per_io_data_size = roundup(ti->per_io_data_size,
1632 				       __alignof__(struct dm_verity_io));
1633 
1634 	verity_verify_sig_opts_cleanup(&verify_args);
1635 
1636 	dm_audit_log_ctr(DM_MSG_PREFIX, ti, 1);
1637 
1638 	return 0;
1639 
1640 bad:
1641 
1642 	verity_verify_sig_opts_cleanup(&verify_args);
1643 	dm_audit_log_ctr(DM_MSG_PREFIX, ti, 0);
1644 	verity_dtr(ti);
1645 
1646 	return r;
1647 }
1648 
1649 /*
1650  * Get the verity mode (error behavior) of a verity target.
1651  *
1652  * Returns the verity mode of the target, or -EINVAL if 'ti' is not a verity
1653  * target.
1654  */
1655 int dm_verity_get_mode(struct dm_target *ti)
1656 {
1657 	struct dm_verity *v = ti->private;
1658 
1659 	if (!dm_is_verity_target(ti))
1660 		return -EINVAL;
1661 
1662 	return v->mode;
1663 }
1664 
1665 /*
1666  * Get the root digest of a verity target.
1667  *
1668  * Returns a copy of the root digest, the caller is responsible for
1669  * freeing the memory of the digest.
1670  */
1671 int dm_verity_get_root_digest(struct dm_target *ti, u8 **root_digest, unsigned int *digest_size)
1672 {
1673 	struct dm_verity *v = ti->private;
1674 
1675 	if (!dm_is_verity_target(ti))
1676 		return -EINVAL;
1677 
1678 	*root_digest = kmemdup(v->root_digest, v->digest_size, GFP_KERNEL);
1679 	if (*root_digest == NULL)
1680 		return -ENOMEM;
1681 
1682 	*digest_size = v->digest_size;
1683 
1684 	return 0;
1685 }
1686 
1687 #ifdef CONFIG_SECURITY
1688 
1689 #ifdef CONFIG_DM_VERITY_VERIFY_ROOTHASH_SIG
1690 
1691 static int verity_security_set_signature(struct block_device *bdev,
1692 					 struct dm_verity *v)
1693 {
1694 	/*
1695 	 * if the dm-verity target is unsigned, v->root_digest_sig will
1696 	 * be NULL, and the hook call is still required to let LSMs mark
1697 	 * the device as unsigned. This information is crucial for LSMs to
1698 	 * block operations such as execution on unsigned files
1699 	 */
1700 	return security_bdev_setintegrity(bdev,
1701 					  LSM_INT_DMVERITY_SIG_VALID,
1702 					  v->root_digest_sig,
1703 					  v->sig_size);
1704 }
1705 
1706 #else
1707 
1708 static inline int verity_security_set_signature(struct block_device *bdev,
1709 						struct dm_verity *v)
1710 {
1711 	return 0;
1712 }
1713 
1714 #endif /* CONFIG_DM_VERITY_VERIFY_ROOTHASH_SIG */
1715 
1716 /*
1717  * Expose verity target's root hash and signature data to LSMs before resume.
1718  *
1719  * Returns 0 on success, or -ENOMEM if the system is out of memory.
1720  */
1721 static int verity_preresume(struct dm_target *ti)
1722 {
1723 	struct block_device *bdev;
1724 	struct dm_verity_digest root_digest;
1725 	struct dm_verity *v;
1726 	int r;
1727 
1728 	v = ti->private;
1729 	bdev = dm_disk(dm_table_get_md(ti->table))->part0;
1730 	root_digest.digest = v->root_digest;
1731 	root_digest.digest_len = v->digest_size;
1732 	if (static_branch_unlikely(&ahash_enabled) && !v->shash_tfm)
1733 		root_digest.alg = crypto_ahash_alg_name(v->ahash_tfm);
1734 	else
1735 		root_digest.alg = crypto_shash_alg_name(v->shash_tfm);
1736 
1737 	r = security_bdev_setintegrity(bdev, LSM_INT_DMVERITY_ROOTHASH, &root_digest,
1738 				       sizeof(root_digest));
1739 	if (r)
1740 		return r;
1741 
1742 	r =  verity_security_set_signature(bdev, v);
1743 	if (r)
1744 		goto bad;
1745 
1746 	return 0;
1747 
1748 bad:
1749 
1750 	security_bdev_setintegrity(bdev, LSM_INT_DMVERITY_ROOTHASH, NULL, 0);
1751 
1752 	return r;
1753 }
1754 
1755 #endif /* CONFIG_SECURITY */
1756 
1757 static struct target_type verity_target = {
1758 	.name		= "verity",
1759 /* Note: the LSMs depend on the singleton and immutable features */
1760 	.features	= DM_TARGET_SINGLETON | DM_TARGET_IMMUTABLE,
1761 	.version	= {1, 10, 0},
1762 	.module		= THIS_MODULE,
1763 	.ctr		= verity_ctr,
1764 	.dtr		= verity_dtr,
1765 	.map		= verity_map,
1766 	.status		= verity_status,
1767 	.prepare_ioctl	= verity_prepare_ioctl,
1768 	.iterate_devices = verity_iterate_devices,
1769 	.io_hints	= verity_io_hints,
1770 #ifdef CONFIG_SECURITY
1771 	.preresume	= verity_preresume,
1772 #endif /* CONFIG_SECURITY */
1773 };
1774 module_dm(verity);
1775 
1776 /*
1777  * Check whether a DM target is a verity target.
1778  */
1779 bool dm_is_verity_target(struct dm_target *ti)
1780 {
1781 	return ti->type == &verity_target;
1782 }
1783 
1784 MODULE_AUTHOR("Mikulas Patocka <mpatocka@redhat.com>");
1785 MODULE_AUTHOR("Mandeep Baines <msb@chromium.org>");
1786 MODULE_AUTHOR("Will Drewry <wad@chromium.org>");
1787 MODULE_DESCRIPTION(DM_NAME " target for transparent disk integrity checking");
1788 MODULE_LICENSE("GPL");
1789