xref: /linux/drivers/md/dm-verity-target.c (revision 570172569238c66a482ec3eb5d766cc9cf255f69)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2012 Red Hat, Inc.
4  *
5  * Author: Mikulas Patocka <mpatocka@redhat.com>
6  *
7  * Based on Chromium dm-verity driver (C) 2011 The Chromium OS Authors
8  *
9  * In the file "/sys/module/dm_verity/parameters/prefetch_cluster" you can set
10  * default prefetch value. Data are read in "prefetch_cluster" chunks from the
11  * hash device. Setting this greatly improves performance when data and hash
12  * are on the same disk on different partitions on devices with poor random
13  * access behavior.
14  */
15 
16 #include "dm-verity.h"
17 #include "dm-verity-fec.h"
18 #include "dm-verity-verify-sig.h"
19 #include "dm-audit.h"
20 #include <linux/module.h>
21 #include <linux/reboot.h>
22 #include <linux/scatterlist.h>
23 #include <linux/string.h>
24 #include <linux/jump_label.h>
25 #include <linux/security.h>
26 
27 #define DM_MSG_PREFIX			"verity"
28 
29 #define DM_VERITY_ENV_LENGTH		42
30 #define DM_VERITY_ENV_VAR_NAME		"DM_VERITY_ERR_BLOCK_NR"
31 
32 #define DM_VERITY_DEFAULT_PREFETCH_SIZE	262144
33 
34 #define DM_VERITY_MAX_CORRUPTED_ERRS	100
35 
36 #define DM_VERITY_OPT_LOGGING		"ignore_corruption"
37 #define DM_VERITY_OPT_RESTART		"restart_on_corruption"
38 #define DM_VERITY_OPT_PANIC		"panic_on_corruption"
39 #define DM_VERITY_OPT_IGN_ZEROES	"ignore_zero_blocks"
40 #define DM_VERITY_OPT_AT_MOST_ONCE	"check_at_most_once"
41 #define DM_VERITY_OPT_TASKLET_VERIFY	"try_verify_in_tasklet"
42 
43 #define DM_VERITY_OPTS_MAX		(4 + DM_VERITY_OPTS_FEC + \
44 					 DM_VERITY_ROOT_HASH_VERIFICATION_OPTS)
45 
46 static unsigned int dm_verity_prefetch_cluster = DM_VERITY_DEFAULT_PREFETCH_SIZE;
47 
48 module_param_named(prefetch_cluster, dm_verity_prefetch_cluster, uint, 0644);
49 
50 static DEFINE_STATIC_KEY_FALSE(use_bh_wq_enabled);
51 
52 /* Is at least one dm-verity instance using ahash_tfm instead of shash_tfm? */
53 static DEFINE_STATIC_KEY_FALSE(ahash_enabled);
54 
55 struct dm_verity_prefetch_work {
56 	struct work_struct work;
57 	struct dm_verity *v;
58 	unsigned short ioprio;
59 	sector_t block;
60 	unsigned int n_blocks;
61 };
62 
63 /*
64  * Auxiliary structure appended to each dm-bufio buffer. If the value
65  * hash_verified is nonzero, hash of the block has been verified.
66  *
67  * The variable hash_verified is set to 0 when allocating the buffer, then
68  * it can be changed to 1 and it is never reset to 0 again.
69  *
70  * There is no lock around this value, a race condition can at worst cause
71  * that multiple processes verify the hash of the same buffer simultaneously
72  * and write 1 to hash_verified simultaneously.
73  * This condition is harmless, so we don't need locking.
74  */
75 struct buffer_aux {
76 	int hash_verified;
77 };
78 
79 /*
80  * Initialize struct buffer_aux for a freshly created buffer.
81  */
82 static void dm_bufio_alloc_callback(struct dm_buffer *buf)
83 {
84 	struct buffer_aux *aux = dm_bufio_get_aux_data(buf);
85 
86 	aux->hash_verified = 0;
87 }
88 
89 /*
90  * Translate input sector number to the sector number on the target device.
91  */
92 static sector_t verity_map_sector(struct dm_verity *v, sector_t bi_sector)
93 {
94 	return v->data_start + dm_target_offset(v->ti, bi_sector);
95 }
96 
97 /*
98  * Return hash position of a specified block at a specified tree level
99  * (0 is the lowest level).
100  * The lowest "hash_per_block_bits"-bits of the result denote hash position
101  * inside a hash block. The remaining bits denote location of the hash block.
102  */
103 static sector_t verity_position_at_level(struct dm_verity *v, sector_t block,
104 					 int level)
105 {
106 	return block >> (level * v->hash_per_block_bits);
107 }
108 
109 static int verity_ahash_update(struct dm_verity *v, struct ahash_request *req,
110 				const u8 *data, size_t len,
111 				struct crypto_wait *wait)
112 {
113 	struct scatterlist sg;
114 
115 	if (likely(!is_vmalloc_addr(data))) {
116 		sg_init_one(&sg, data, len);
117 		ahash_request_set_crypt(req, &sg, NULL, len);
118 		return crypto_wait_req(crypto_ahash_update(req), wait);
119 	}
120 
121 	do {
122 		int r;
123 		size_t this_step = min_t(size_t, len, PAGE_SIZE - offset_in_page(data));
124 
125 		flush_kernel_vmap_range((void *)data, this_step);
126 		sg_init_table(&sg, 1);
127 		sg_set_page(&sg, vmalloc_to_page(data), this_step, offset_in_page(data));
128 		ahash_request_set_crypt(req, &sg, NULL, this_step);
129 		r = crypto_wait_req(crypto_ahash_update(req), wait);
130 		if (unlikely(r))
131 			return r;
132 		data += this_step;
133 		len -= this_step;
134 	} while (len);
135 
136 	return 0;
137 }
138 
139 /*
140  * Wrapper for crypto_ahash_init, which handles verity salting.
141  */
142 static int verity_ahash_init(struct dm_verity *v, struct ahash_request *req,
143 				struct crypto_wait *wait, bool may_sleep)
144 {
145 	int r;
146 
147 	ahash_request_set_tfm(req, v->ahash_tfm);
148 	ahash_request_set_callback(req,
149 		may_sleep ? CRYPTO_TFM_REQ_MAY_SLEEP | CRYPTO_TFM_REQ_MAY_BACKLOG : 0,
150 		crypto_req_done, (void *)wait);
151 	crypto_init_wait(wait);
152 
153 	r = crypto_wait_req(crypto_ahash_init(req), wait);
154 
155 	if (unlikely(r < 0)) {
156 		if (r != -ENOMEM)
157 			DMERR("crypto_ahash_init failed: %d", r);
158 		return r;
159 	}
160 
161 	if (likely(v->salt_size && (v->version >= 1)))
162 		r = verity_ahash_update(v, req, v->salt, v->salt_size, wait);
163 
164 	return r;
165 }
166 
167 static int verity_ahash_final(struct dm_verity *v, struct ahash_request *req,
168 			      u8 *digest, struct crypto_wait *wait)
169 {
170 	int r;
171 
172 	if (unlikely(v->salt_size && (!v->version))) {
173 		r = verity_ahash_update(v, req, v->salt, v->salt_size, wait);
174 
175 		if (r < 0) {
176 			DMERR("%s failed updating salt: %d", __func__, r);
177 			goto out;
178 		}
179 	}
180 
181 	ahash_request_set_crypt(req, NULL, digest, 0);
182 	r = crypto_wait_req(crypto_ahash_final(req), wait);
183 out:
184 	return r;
185 }
186 
187 int verity_hash(struct dm_verity *v, struct dm_verity_io *io,
188 		const u8 *data, size_t len, u8 *digest, bool may_sleep)
189 {
190 	int r;
191 
192 	if (static_branch_unlikely(&ahash_enabled) && !v->shash_tfm) {
193 		struct ahash_request *req = verity_io_hash_req(v, io);
194 		struct crypto_wait wait;
195 
196 		r = verity_ahash_init(v, req, &wait, may_sleep) ?:
197 		    verity_ahash_update(v, req, data, len, &wait) ?:
198 		    verity_ahash_final(v, req, digest, &wait);
199 	} else {
200 		struct shash_desc *desc = verity_io_hash_req(v, io);
201 
202 		desc->tfm = v->shash_tfm;
203 		r = crypto_shash_import(desc, v->initial_hashstate) ?:
204 		    crypto_shash_finup(desc, data, len, digest);
205 	}
206 	if (unlikely(r))
207 		DMERR("Error hashing block: %d", r);
208 	return r;
209 }
210 
211 static void verity_hash_at_level(struct dm_verity *v, sector_t block, int level,
212 				 sector_t *hash_block, unsigned int *offset)
213 {
214 	sector_t position = verity_position_at_level(v, block, level);
215 	unsigned int idx;
216 
217 	*hash_block = v->hash_level_block[level] + (position >> v->hash_per_block_bits);
218 
219 	if (!offset)
220 		return;
221 
222 	idx = position & ((1 << v->hash_per_block_bits) - 1);
223 	if (!v->version)
224 		*offset = idx * v->digest_size;
225 	else
226 		*offset = idx << (v->hash_dev_block_bits - v->hash_per_block_bits);
227 }
228 
229 /*
230  * Handle verification errors.
231  */
232 static int verity_handle_err(struct dm_verity *v, enum verity_block_type type,
233 			     unsigned long long block)
234 {
235 	char verity_env[DM_VERITY_ENV_LENGTH];
236 	char *envp[] = { verity_env, NULL };
237 	const char *type_str = "";
238 	struct mapped_device *md = dm_table_get_md(v->ti->table);
239 
240 	/* Corruption should be visible in device status in all modes */
241 	v->hash_failed = true;
242 
243 	if (v->corrupted_errs >= DM_VERITY_MAX_CORRUPTED_ERRS)
244 		goto out;
245 
246 	v->corrupted_errs++;
247 
248 	switch (type) {
249 	case DM_VERITY_BLOCK_TYPE_DATA:
250 		type_str = "data";
251 		break;
252 	case DM_VERITY_BLOCK_TYPE_METADATA:
253 		type_str = "metadata";
254 		break;
255 	default:
256 		BUG();
257 	}
258 
259 	DMERR_LIMIT("%s: %s block %llu is corrupted", v->data_dev->name,
260 		    type_str, block);
261 
262 	if (v->corrupted_errs == DM_VERITY_MAX_CORRUPTED_ERRS) {
263 		DMERR("%s: reached maximum errors", v->data_dev->name);
264 		dm_audit_log_target(DM_MSG_PREFIX, "max-corrupted-errors", v->ti, 0);
265 	}
266 
267 	snprintf(verity_env, DM_VERITY_ENV_LENGTH, "%s=%d,%llu",
268 		DM_VERITY_ENV_VAR_NAME, type, block);
269 
270 	kobject_uevent_env(&disk_to_dev(dm_disk(md))->kobj, KOBJ_CHANGE, envp);
271 
272 out:
273 	if (v->mode == DM_VERITY_MODE_LOGGING)
274 		return 0;
275 
276 	if (v->mode == DM_VERITY_MODE_RESTART)
277 		kernel_restart("dm-verity device corrupted");
278 
279 	if (v->mode == DM_VERITY_MODE_PANIC)
280 		panic("dm-verity device corrupted");
281 
282 	return 1;
283 }
284 
285 /*
286  * Verify hash of a metadata block pertaining to the specified data block
287  * ("block" argument) at a specified level ("level" argument).
288  *
289  * On successful return, verity_io_want_digest(v, io) contains the hash value
290  * for a lower tree level or for the data block (if we're at the lowest level).
291  *
292  * If "skip_unverified" is true, unverified buffer is skipped and 1 is returned.
293  * If "skip_unverified" is false, unverified buffer is hashed and verified
294  * against current value of verity_io_want_digest(v, io).
295  */
296 static int verity_verify_level(struct dm_verity *v, struct dm_verity_io *io,
297 			       sector_t block, int level, bool skip_unverified,
298 			       u8 *want_digest)
299 {
300 	struct dm_buffer *buf;
301 	struct buffer_aux *aux;
302 	u8 *data;
303 	int r;
304 	sector_t hash_block;
305 	unsigned int offset;
306 	struct bio *bio = dm_bio_from_per_bio_data(io, v->ti->per_io_data_size);
307 
308 	verity_hash_at_level(v, block, level, &hash_block, &offset);
309 
310 	if (static_branch_unlikely(&use_bh_wq_enabled) && io->in_bh) {
311 		data = dm_bufio_get(v->bufio, hash_block, &buf);
312 		if (data == NULL) {
313 			/*
314 			 * In tasklet and the hash was not in the bufio cache.
315 			 * Return early and resume execution from a work-queue
316 			 * to read the hash from disk.
317 			 */
318 			return -EAGAIN;
319 		}
320 	} else {
321 		data = dm_bufio_read_with_ioprio(v->bufio, hash_block,
322 						&buf, bio_prio(bio));
323 	}
324 
325 	if (IS_ERR(data))
326 		return PTR_ERR(data);
327 
328 	aux = dm_bufio_get_aux_data(buf);
329 
330 	if (!aux->hash_verified) {
331 		if (skip_unverified) {
332 			r = 1;
333 			goto release_ret_r;
334 		}
335 
336 		r = verity_hash(v, io, data, 1 << v->hash_dev_block_bits,
337 				verity_io_real_digest(v, io), !io->in_bh);
338 		if (unlikely(r < 0))
339 			goto release_ret_r;
340 
341 		if (likely(memcmp(verity_io_real_digest(v, io), want_digest,
342 				  v->digest_size) == 0))
343 			aux->hash_verified = 1;
344 		else if (static_branch_unlikely(&use_bh_wq_enabled) && io->in_bh) {
345 			/*
346 			 * Error handling code (FEC included) cannot be run in a
347 			 * tasklet since it may sleep, so fallback to work-queue.
348 			 */
349 			r = -EAGAIN;
350 			goto release_ret_r;
351 		} else if (verity_fec_decode(v, io, DM_VERITY_BLOCK_TYPE_METADATA,
352 					     hash_block, data) == 0)
353 			aux->hash_verified = 1;
354 		else if (verity_handle_err(v,
355 					   DM_VERITY_BLOCK_TYPE_METADATA,
356 					   hash_block)) {
357 			struct bio *bio =
358 				dm_bio_from_per_bio_data(io,
359 							 v->ti->per_io_data_size);
360 			dm_audit_log_bio(DM_MSG_PREFIX, "verify-metadata", bio,
361 					 block, 0);
362 			r = -EIO;
363 			goto release_ret_r;
364 		}
365 	}
366 
367 	data += offset;
368 	memcpy(want_digest, data, v->digest_size);
369 	r = 0;
370 
371 release_ret_r:
372 	dm_bufio_release(buf);
373 	return r;
374 }
375 
376 /*
377  * Find a hash for a given block, write it to digest and verify the integrity
378  * of the hash tree if necessary.
379  */
380 int verity_hash_for_block(struct dm_verity *v, struct dm_verity_io *io,
381 			  sector_t block, u8 *digest, bool *is_zero)
382 {
383 	int r = 0, i;
384 
385 	if (likely(v->levels)) {
386 		/*
387 		 * First, we try to get the requested hash for
388 		 * the current block. If the hash block itself is
389 		 * verified, zero is returned. If it isn't, this
390 		 * function returns 1 and we fall back to whole
391 		 * chain verification.
392 		 */
393 		r = verity_verify_level(v, io, block, 0, true, digest);
394 		if (likely(r <= 0))
395 			goto out;
396 	}
397 
398 	memcpy(digest, v->root_digest, v->digest_size);
399 
400 	for (i = v->levels - 1; i >= 0; i--) {
401 		r = verity_verify_level(v, io, block, i, false, digest);
402 		if (unlikely(r))
403 			goto out;
404 	}
405 out:
406 	if (!r && v->zero_digest)
407 		*is_zero = !memcmp(v->zero_digest, digest, v->digest_size);
408 	else
409 		*is_zero = false;
410 
411 	return r;
412 }
413 
414 static noinline int verity_recheck(struct dm_verity *v, struct dm_verity_io *io,
415 				   sector_t cur_block, u8 *dest)
416 {
417 	struct page *page;
418 	void *buffer;
419 	int r;
420 	struct dm_io_request io_req;
421 	struct dm_io_region io_loc;
422 
423 	page = mempool_alloc(&v->recheck_pool, GFP_NOIO);
424 	buffer = page_to_virt(page);
425 
426 	io_req.bi_opf = REQ_OP_READ;
427 	io_req.mem.type = DM_IO_KMEM;
428 	io_req.mem.ptr.addr = buffer;
429 	io_req.notify.fn = NULL;
430 	io_req.client = v->io;
431 	io_loc.bdev = v->data_dev->bdev;
432 	io_loc.sector = cur_block << (v->data_dev_block_bits - SECTOR_SHIFT);
433 	io_loc.count = 1 << (v->data_dev_block_bits - SECTOR_SHIFT);
434 	r = dm_io(&io_req, 1, &io_loc, NULL, IOPRIO_DEFAULT);
435 	if (unlikely(r))
436 		goto free_ret;
437 
438 	r = verity_hash(v, io, buffer, 1 << v->data_dev_block_bits,
439 			verity_io_real_digest(v, io), true);
440 	if (unlikely(r))
441 		goto free_ret;
442 
443 	if (memcmp(verity_io_real_digest(v, io),
444 		   verity_io_want_digest(v, io), v->digest_size)) {
445 		r = -EIO;
446 		goto free_ret;
447 	}
448 
449 	memcpy(dest, buffer, 1 << v->data_dev_block_bits);
450 	r = 0;
451 free_ret:
452 	mempool_free(page, &v->recheck_pool);
453 
454 	return r;
455 }
456 
457 static int verity_handle_data_hash_mismatch(struct dm_verity *v,
458 					    struct dm_verity_io *io,
459 					    struct bio *bio, sector_t blkno,
460 					    u8 *data)
461 {
462 	if (static_branch_unlikely(&use_bh_wq_enabled) && io->in_bh) {
463 		/*
464 		 * Error handling code (FEC included) cannot be run in the
465 		 * BH workqueue, so fallback to a standard workqueue.
466 		 */
467 		return -EAGAIN;
468 	}
469 	if (verity_recheck(v, io, blkno, data) == 0) {
470 		if (v->validated_blocks)
471 			set_bit(blkno, v->validated_blocks);
472 		return 0;
473 	}
474 #if defined(CONFIG_DM_VERITY_FEC)
475 	if (verity_fec_decode(v, io, DM_VERITY_BLOCK_TYPE_DATA, blkno,
476 			      data) == 0)
477 		return 0;
478 #endif
479 	if (bio->bi_status)
480 		return -EIO; /* Error correction failed; Just return error */
481 
482 	if (verity_handle_err(v, DM_VERITY_BLOCK_TYPE_DATA, blkno)) {
483 		dm_audit_log_bio(DM_MSG_PREFIX, "verify-data", bio, blkno, 0);
484 		return -EIO;
485 	}
486 	return 0;
487 }
488 
489 /*
490  * Verify one "dm_verity_io" structure.
491  */
492 static int verity_verify_io(struct dm_verity_io *io)
493 {
494 	struct dm_verity *v = io->v;
495 	const unsigned int block_size = 1 << v->data_dev_block_bits;
496 	struct bvec_iter iter_copy;
497 	struct bvec_iter *iter;
498 	struct bio *bio = dm_bio_from_per_bio_data(io, v->ti->per_io_data_size);
499 	unsigned int b;
500 
501 	if (static_branch_unlikely(&use_bh_wq_enabled) && io->in_bh) {
502 		/*
503 		 * Copy the iterator in case we need to restart
504 		 * verification in a work-queue.
505 		 */
506 		iter_copy = io->iter;
507 		iter = &iter_copy;
508 	} else
509 		iter = &io->iter;
510 
511 	for (b = 0; b < io->n_blocks;
512 	     b++, bio_advance_iter(bio, iter, block_size)) {
513 		int r;
514 		sector_t cur_block = io->block + b;
515 		bool is_zero;
516 		struct bio_vec bv;
517 		void *data;
518 
519 		if (v->validated_blocks && bio->bi_status == BLK_STS_OK &&
520 		    likely(test_bit(cur_block, v->validated_blocks)))
521 			continue;
522 
523 		r = verity_hash_for_block(v, io, cur_block,
524 					  verity_io_want_digest(v, io),
525 					  &is_zero);
526 		if (unlikely(r < 0))
527 			return r;
528 
529 		bv = bio_iter_iovec(bio, *iter);
530 		if (unlikely(bv.bv_len < block_size)) {
531 			/*
532 			 * Data block spans pages.  This should not happen,
533 			 * since dm-verity sets dma_alignment to the data block
534 			 * size minus 1, and dm-verity also doesn't allow the
535 			 * data block size to be greater than PAGE_SIZE.
536 			 */
537 			DMERR_LIMIT("unaligned io (data block spans pages)");
538 			return -EIO;
539 		}
540 
541 		data = bvec_kmap_local(&bv);
542 
543 		if (is_zero) {
544 			/*
545 			 * If we expect a zero block, don't validate, just
546 			 * return zeros.
547 			 */
548 			memset(data, 0, block_size);
549 			kunmap_local(data);
550 			continue;
551 		}
552 
553 		r = verity_hash(v, io, data, block_size,
554 				verity_io_real_digest(v, io), !io->in_bh);
555 		if (unlikely(r < 0)) {
556 			kunmap_local(data);
557 			return r;
558 		}
559 
560 		if (likely(memcmp(verity_io_real_digest(v, io),
561 				  verity_io_want_digest(v, io), v->digest_size) == 0)) {
562 			if (v->validated_blocks)
563 				set_bit(cur_block, v->validated_blocks);
564 			kunmap_local(data);
565 			continue;
566 		}
567 		r = verity_handle_data_hash_mismatch(v, io, bio, cur_block,
568 						     data);
569 		kunmap_local(data);
570 		if (unlikely(r))
571 			return r;
572 	}
573 
574 	return 0;
575 }
576 
577 /*
578  * Skip verity work in response to I/O error when system is shutting down.
579  */
580 static inline bool verity_is_system_shutting_down(void)
581 {
582 	return system_state == SYSTEM_HALT || system_state == SYSTEM_POWER_OFF
583 		|| system_state == SYSTEM_RESTART;
584 }
585 
586 /*
587  * End one "io" structure with a given error.
588  */
589 static void verity_finish_io(struct dm_verity_io *io, blk_status_t status)
590 {
591 	struct dm_verity *v = io->v;
592 	struct bio *bio = dm_bio_from_per_bio_data(io, v->ti->per_io_data_size);
593 
594 	bio->bi_end_io = io->orig_bi_end_io;
595 	bio->bi_status = status;
596 
597 	if (!static_branch_unlikely(&use_bh_wq_enabled) || !io->in_bh)
598 		verity_fec_finish_io(io);
599 
600 	bio_endio(bio);
601 }
602 
603 static void verity_work(struct work_struct *w)
604 {
605 	struct dm_verity_io *io = container_of(w, struct dm_verity_io, work);
606 
607 	io->in_bh = false;
608 
609 	verity_finish_io(io, errno_to_blk_status(verity_verify_io(io)));
610 }
611 
612 static void verity_bh_work(struct work_struct *w)
613 {
614 	struct dm_verity_io *io = container_of(w, struct dm_verity_io, bh_work);
615 	int err;
616 
617 	io->in_bh = true;
618 	err = verity_verify_io(io);
619 	if (err == -EAGAIN || err == -ENOMEM) {
620 		/* fallback to retrying with work-queue */
621 		INIT_WORK(&io->work, verity_work);
622 		queue_work(io->v->verify_wq, &io->work);
623 		return;
624 	}
625 
626 	verity_finish_io(io, errno_to_blk_status(err));
627 }
628 
629 static void verity_end_io(struct bio *bio)
630 {
631 	struct dm_verity_io *io = bio->bi_private;
632 
633 	if (bio->bi_status &&
634 	    (!verity_fec_is_enabled(io->v) ||
635 	     verity_is_system_shutting_down() ||
636 	     (bio->bi_opf & REQ_RAHEAD))) {
637 		verity_finish_io(io, bio->bi_status);
638 		return;
639 	}
640 
641 	if (static_branch_unlikely(&use_bh_wq_enabled) && io->v->use_bh_wq) {
642 		INIT_WORK(&io->bh_work, verity_bh_work);
643 		queue_work(system_bh_wq, &io->bh_work);
644 	} else {
645 		INIT_WORK(&io->work, verity_work);
646 		queue_work(io->v->verify_wq, &io->work);
647 	}
648 }
649 
650 /*
651  * Prefetch buffers for the specified io.
652  * The root buffer is not prefetched, it is assumed that it will be cached
653  * all the time.
654  */
655 static void verity_prefetch_io(struct work_struct *work)
656 {
657 	struct dm_verity_prefetch_work *pw =
658 		container_of(work, struct dm_verity_prefetch_work, work);
659 	struct dm_verity *v = pw->v;
660 	int i;
661 
662 	for (i = v->levels - 2; i >= 0; i--) {
663 		sector_t hash_block_start;
664 		sector_t hash_block_end;
665 
666 		verity_hash_at_level(v, pw->block, i, &hash_block_start, NULL);
667 		verity_hash_at_level(v, pw->block + pw->n_blocks - 1, i, &hash_block_end, NULL);
668 
669 		if (!i) {
670 			unsigned int cluster = READ_ONCE(dm_verity_prefetch_cluster);
671 
672 			cluster >>= v->data_dev_block_bits;
673 			if (unlikely(!cluster))
674 				goto no_prefetch_cluster;
675 
676 			if (unlikely(cluster & (cluster - 1)))
677 				cluster = 1 << __fls(cluster);
678 
679 			hash_block_start &= ~(sector_t)(cluster - 1);
680 			hash_block_end |= cluster - 1;
681 			if (unlikely(hash_block_end >= v->hash_blocks))
682 				hash_block_end = v->hash_blocks - 1;
683 		}
684 no_prefetch_cluster:
685 		dm_bufio_prefetch_with_ioprio(v->bufio, hash_block_start,
686 					hash_block_end - hash_block_start + 1,
687 					pw->ioprio);
688 	}
689 
690 	kfree(pw);
691 }
692 
693 static void verity_submit_prefetch(struct dm_verity *v, struct dm_verity_io *io,
694 				   unsigned short ioprio)
695 {
696 	sector_t block = io->block;
697 	unsigned int n_blocks = io->n_blocks;
698 	struct dm_verity_prefetch_work *pw;
699 
700 	if (v->validated_blocks) {
701 		while (n_blocks && test_bit(block, v->validated_blocks)) {
702 			block++;
703 			n_blocks--;
704 		}
705 		while (n_blocks && test_bit(block + n_blocks - 1,
706 					    v->validated_blocks))
707 			n_blocks--;
708 		if (!n_blocks)
709 			return;
710 	}
711 
712 	pw = kmalloc(sizeof(struct dm_verity_prefetch_work),
713 		GFP_NOIO | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN);
714 
715 	if (!pw)
716 		return;
717 
718 	INIT_WORK(&pw->work, verity_prefetch_io);
719 	pw->v = v;
720 	pw->block = block;
721 	pw->n_blocks = n_blocks;
722 	pw->ioprio = ioprio;
723 	queue_work(v->verify_wq, &pw->work);
724 }
725 
726 /*
727  * Bio map function. It allocates dm_verity_io structure and bio vector and
728  * fills them. Then it issues prefetches and the I/O.
729  */
730 static int verity_map(struct dm_target *ti, struct bio *bio)
731 {
732 	struct dm_verity *v = ti->private;
733 	struct dm_verity_io *io;
734 
735 	bio_set_dev(bio, v->data_dev->bdev);
736 	bio->bi_iter.bi_sector = verity_map_sector(v, bio->bi_iter.bi_sector);
737 
738 	if (((unsigned int)bio->bi_iter.bi_sector | bio_sectors(bio)) &
739 	    ((1 << (v->data_dev_block_bits - SECTOR_SHIFT)) - 1)) {
740 		DMERR_LIMIT("unaligned io");
741 		return DM_MAPIO_KILL;
742 	}
743 
744 	if (bio_end_sector(bio) >>
745 	    (v->data_dev_block_bits - SECTOR_SHIFT) > v->data_blocks) {
746 		DMERR_LIMIT("io out of range");
747 		return DM_MAPIO_KILL;
748 	}
749 
750 	if (bio_data_dir(bio) == WRITE)
751 		return DM_MAPIO_KILL;
752 
753 	io = dm_per_bio_data(bio, ti->per_io_data_size);
754 	io->v = v;
755 	io->orig_bi_end_io = bio->bi_end_io;
756 	io->block = bio->bi_iter.bi_sector >> (v->data_dev_block_bits - SECTOR_SHIFT);
757 	io->n_blocks = bio->bi_iter.bi_size >> v->data_dev_block_bits;
758 
759 	bio->bi_end_io = verity_end_io;
760 	bio->bi_private = io;
761 	io->iter = bio->bi_iter;
762 
763 	verity_fec_init_io(io);
764 
765 	verity_submit_prefetch(v, io, bio_prio(bio));
766 
767 	submit_bio_noacct(bio);
768 
769 	return DM_MAPIO_SUBMITTED;
770 }
771 
772 /*
773  * Status: V (valid) or C (corruption found)
774  */
775 static void verity_status(struct dm_target *ti, status_type_t type,
776 			  unsigned int status_flags, char *result, unsigned int maxlen)
777 {
778 	struct dm_verity *v = ti->private;
779 	unsigned int args = 0;
780 	unsigned int sz = 0;
781 	unsigned int x;
782 
783 	switch (type) {
784 	case STATUSTYPE_INFO:
785 		DMEMIT("%c", v->hash_failed ? 'C' : 'V');
786 		break;
787 	case STATUSTYPE_TABLE:
788 		DMEMIT("%u %s %s %u %u %llu %llu %s ",
789 			v->version,
790 			v->data_dev->name,
791 			v->hash_dev->name,
792 			1 << v->data_dev_block_bits,
793 			1 << v->hash_dev_block_bits,
794 			(unsigned long long)v->data_blocks,
795 			(unsigned long long)v->hash_start,
796 			v->alg_name
797 			);
798 		for (x = 0; x < v->digest_size; x++)
799 			DMEMIT("%02x", v->root_digest[x]);
800 		DMEMIT(" ");
801 		if (!v->salt_size)
802 			DMEMIT("-");
803 		else
804 			for (x = 0; x < v->salt_size; x++)
805 				DMEMIT("%02x", v->salt[x]);
806 		if (v->mode != DM_VERITY_MODE_EIO)
807 			args++;
808 		if (verity_fec_is_enabled(v))
809 			args += DM_VERITY_OPTS_FEC;
810 		if (v->zero_digest)
811 			args++;
812 		if (v->validated_blocks)
813 			args++;
814 		if (v->use_bh_wq)
815 			args++;
816 		if (v->signature_key_desc)
817 			args += DM_VERITY_ROOT_HASH_VERIFICATION_OPTS;
818 		if (!args)
819 			return;
820 		DMEMIT(" %u", args);
821 		if (v->mode != DM_VERITY_MODE_EIO) {
822 			DMEMIT(" ");
823 			switch (v->mode) {
824 			case DM_VERITY_MODE_LOGGING:
825 				DMEMIT(DM_VERITY_OPT_LOGGING);
826 				break;
827 			case DM_VERITY_MODE_RESTART:
828 				DMEMIT(DM_VERITY_OPT_RESTART);
829 				break;
830 			case DM_VERITY_MODE_PANIC:
831 				DMEMIT(DM_VERITY_OPT_PANIC);
832 				break;
833 			default:
834 				BUG();
835 			}
836 		}
837 		if (v->zero_digest)
838 			DMEMIT(" " DM_VERITY_OPT_IGN_ZEROES);
839 		if (v->validated_blocks)
840 			DMEMIT(" " DM_VERITY_OPT_AT_MOST_ONCE);
841 		if (v->use_bh_wq)
842 			DMEMIT(" " DM_VERITY_OPT_TASKLET_VERIFY);
843 		sz = verity_fec_status_table(v, sz, result, maxlen);
844 		if (v->signature_key_desc)
845 			DMEMIT(" " DM_VERITY_ROOT_HASH_VERIFICATION_OPT_SIG_KEY
846 				" %s", v->signature_key_desc);
847 		break;
848 
849 	case STATUSTYPE_IMA:
850 		DMEMIT_TARGET_NAME_VERSION(ti->type);
851 		DMEMIT(",hash_failed=%c", v->hash_failed ? 'C' : 'V');
852 		DMEMIT(",verity_version=%u", v->version);
853 		DMEMIT(",data_device_name=%s", v->data_dev->name);
854 		DMEMIT(",hash_device_name=%s", v->hash_dev->name);
855 		DMEMIT(",verity_algorithm=%s", v->alg_name);
856 
857 		DMEMIT(",root_digest=");
858 		for (x = 0; x < v->digest_size; x++)
859 			DMEMIT("%02x", v->root_digest[x]);
860 
861 		DMEMIT(",salt=");
862 		if (!v->salt_size)
863 			DMEMIT("-");
864 		else
865 			for (x = 0; x < v->salt_size; x++)
866 				DMEMIT("%02x", v->salt[x]);
867 
868 		DMEMIT(",ignore_zero_blocks=%c", v->zero_digest ? 'y' : 'n');
869 		DMEMIT(",check_at_most_once=%c", v->validated_blocks ? 'y' : 'n');
870 		if (v->signature_key_desc)
871 			DMEMIT(",root_hash_sig_key_desc=%s", v->signature_key_desc);
872 
873 		if (v->mode != DM_VERITY_MODE_EIO) {
874 			DMEMIT(",verity_mode=");
875 			switch (v->mode) {
876 			case DM_VERITY_MODE_LOGGING:
877 				DMEMIT(DM_VERITY_OPT_LOGGING);
878 				break;
879 			case DM_VERITY_MODE_RESTART:
880 				DMEMIT(DM_VERITY_OPT_RESTART);
881 				break;
882 			case DM_VERITY_MODE_PANIC:
883 				DMEMIT(DM_VERITY_OPT_PANIC);
884 				break;
885 			default:
886 				DMEMIT("invalid");
887 			}
888 		}
889 		DMEMIT(";");
890 		break;
891 	}
892 }
893 
894 static int verity_prepare_ioctl(struct dm_target *ti, struct block_device **bdev)
895 {
896 	struct dm_verity *v = ti->private;
897 
898 	*bdev = v->data_dev->bdev;
899 
900 	if (v->data_start || ti->len != bdev_nr_sectors(v->data_dev->bdev))
901 		return 1;
902 	return 0;
903 }
904 
905 static int verity_iterate_devices(struct dm_target *ti,
906 				  iterate_devices_callout_fn fn, void *data)
907 {
908 	struct dm_verity *v = ti->private;
909 
910 	return fn(ti, v->data_dev, v->data_start, ti->len, data);
911 }
912 
913 static void verity_io_hints(struct dm_target *ti, struct queue_limits *limits)
914 {
915 	struct dm_verity *v = ti->private;
916 
917 	if (limits->logical_block_size < 1 << v->data_dev_block_bits)
918 		limits->logical_block_size = 1 << v->data_dev_block_bits;
919 
920 	if (limits->physical_block_size < 1 << v->data_dev_block_bits)
921 		limits->physical_block_size = 1 << v->data_dev_block_bits;
922 
923 	limits->io_min = limits->logical_block_size;
924 
925 	/*
926 	 * Similar to what dm-crypt does, opt dm-verity out of support for
927 	 * direct I/O that is aligned to less than the traditional direct I/O
928 	 * alignment requirement of logical_block_size.  This prevents dm-verity
929 	 * data blocks from crossing pages, eliminating various edge cases.
930 	 */
931 	limits->dma_alignment = limits->logical_block_size - 1;
932 }
933 
934 #ifdef CONFIG_SECURITY
935 
936 static int verity_init_sig(struct dm_verity *v, const void *sig,
937 			   size_t sig_size)
938 {
939 	v->sig_size = sig_size;
940 
941 	if (sig) {
942 		v->root_digest_sig = kmemdup(sig, v->sig_size, GFP_KERNEL);
943 		if (!v->root_digest_sig)
944 			return -ENOMEM;
945 	}
946 
947 	return 0;
948 }
949 
950 static void verity_free_sig(struct dm_verity *v)
951 {
952 	kfree(v->root_digest_sig);
953 }
954 
955 #else
956 
957 static inline int verity_init_sig(struct dm_verity *v, const void *sig,
958 				  size_t sig_size)
959 {
960 	return 0;
961 }
962 
963 static inline void verity_free_sig(struct dm_verity *v)
964 {
965 }
966 
967 #endif /* CONFIG_SECURITY */
968 
969 static void verity_dtr(struct dm_target *ti)
970 {
971 	struct dm_verity *v = ti->private;
972 
973 	if (v->verify_wq)
974 		destroy_workqueue(v->verify_wq);
975 
976 	mempool_exit(&v->recheck_pool);
977 	if (v->io)
978 		dm_io_client_destroy(v->io);
979 
980 	if (v->bufio)
981 		dm_bufio_client_destroy(v->bufio);
982 
983 	kvfree(v->validated_blocks);
984 	kfree(v->salt);
985 	kfree(v->initial_hashstate);
986 	kfree(v->root_digest);
987 	kfree(v->zero_digest);
988 	verity_free_sig(v);
989 
990 	if (v->ahash_tfm) {
991 		static_branch_dec(&ahash_enabled);
992 		crypto_free_ahash(v->ahash_tfm);
993 	} else {
994 		crypto_free_shash(v->shash_tfm);
995 	}
996 
997 	kfree(v->alg_name);
998 
999 	if (v->hash_dev)
1000 		dm_put_device(ti, v->hash_dev);
1001 
1002 	if (v->data_dev)
1003 		dm_put_device(ti, v->data_dev);
1004 
1005 	verity_fec_dtr(v);
1006 
1007 	kfree(v->signature_key_desc);
1008 
1009 	if (v->use_bh_wq)
1010 		static_branch_dec(&use_bh_wq_enabled);
1011 
1012 	kfree(v);
1013 
1014 	dm_audit_log_dtr(DM_MSG_PREFIX, ti, 1);
1015 }
1016 
1017 static int verity_alloc_most_once(struct dm_verity *v)
1018 {
1019 	struct dm_target *ti = v->ti;
1020 
1021 	/* the bitset can only handle INT_MAX blocks */
1022 	if (v->data_blocks > INT_MAX) {
1023 		ti->error = "device too large to use check_at_most_once";
1024 		return -E2BIG;
1025 	}
1026 
1027 	v->validated_blocks = kvcalloc(BITS_TO_LONGS(v->data_blocks),
1028 				       sizeof(unsigned long),
1029 				       GFP_KERNEL);
1030 	if (!v->validated_blocks) {
1031 		ti->error = "failed to allocate bitset for check_at_most_once";
1032 		return -ENOMEM;
1033 	}
1034 
1035 	return 0;
1036 }
1037 
1038 static int verity_alloc_zero_digest(struct dm_verity *v)
1039 {
1040 	int r = -ENOMEM;
1041 	struct dm_verity_io *io;
1042 	u8 *zero_data;
1043 
1044 	v->zero_digest = kmalloc(v->digest_size, GFP_KERNEL);
1045 
1046 	if (!v->zero_digest)
1047 		return r;
1048 
1049 	io = kmalloc(sizeof(*io) + v->hash_reqsize, GFP_KERNEL);
1050 
1051 	if (!io)
1052 		return r; /* verity_dtr will free zero_digest */
1053 
1054 	zero_data = kzalloc(1 << v->data_dev_block_bits, GFP_KERNEL);
1055 
1056 	if (!zero_data)
1057 		goto out;
1058 
1059 	r = verity_hash(v, io, zero_data, 1 << v->data_dev_block_bits,
1060 			v->zero_digest, true);
1061 
1062 out:
1063 	kfree(io);
1064 	kfree(zero_data);
1065 
1066 	return r;
1067 }
1068 
1069 static inline bool verity_is_verity_mode(const char *arg_name)
1070 {
1071 	return (!strcasecmp(arg_name, DM_VERITY_OPT_LOGGING) ||
1072 		!strcasecmp(arg_name, DM_VERITY_OPT_RESTART) ||
1073 		!strcasecmp(arg_name, DM_VERITY_OPT_PANIC));
1074 }
1075 
1076 static int verity_parse_verity_mode(struct dm_verity *v, const char *arg_name)
1077 {
1078 	if (v->mode)
1079 		return -EINVAL;
1080 
1081 	if (!strcasecmp(arg_name, DM_VERITY_OPT_LOGGING))
1082 		v->mode = DM_VERITY_MODE_LOGGING;
1083 	else if (!strcasecmp(arg_name, DM_VERITY_OPT_RESTART))
1084 		v->mode = DM_VERITY_MODE_RESTART;
1085 	else if (!strcasecmp(arg_name, DM_VERITY_OPT_PANIC))
1086 		v->mode = DM_VERITY_MODE_PANIC;
1087 
1088 	return 0;
1089 }
1090 
1091 static int verity_parse_opt_args(struct dm_arg_set *as, struct dm_verity *v,
1092 				 struct dm_verity_sig_opts *verify_args,
1093 				 bool only_modifier_opts)
1094 {
1095 	int r = 0;
1096 	unsigned int argc;
1097 	struct dm_target *ti = v->ti;
1098 	const char *arg_name;
1099 
1100 	static const struct dm_arg _args[] = {
1101 		{0, DM_VERITY_OPTS_MAX, "Invalid number of feature args"},
1102 	};
1103 
1104 	r = dm_read_arg_group(_args, as, &argc, &ti->error);
1105 	if (r)
1106 		return -EINVAL;
1107 
1108 	if (!argc)
1109 		return 0;
1110 
1111 	do {
1112 		arg_name = dm_shift_arg(as);
1113 		argc--;
1114 
1115 		if (verity_is_verity_mode(arg_name)) {
1116 			if (only_modifier_opts)
1117 				continue;
1118 			r = verity_parse_verity_mode(v, arg_name);
1119 			if (r) {
1120 				ti->error = "Conflicting error handling parameters";
1121 				return r;
1122 			}
1123 			continue;
1124 
1125 		} else if (!strcasecmp(arg_name, DM_VERITY_OPT_IGN_ZEROES)) {
1126 			if (only_modifier_opts)
1127 				continue;
1128 			r = verity_alloc_zero_digest(v);
1129 			if (r) {
1130 				ti->error = "Cannot allocate zero digest";
1131 				return r;
1132 			}
1133 			continue;
1134 
1135 		} else if (!strcasecmp(arg_name, DM_VERITY_OPT_AT_MOST_ONCE)) {
1136 			if (only_modifier_opts)
1137 				continue;
1138 			r = verity_alloc_most_once(v);
1139 			if (r)
1140 				return r;
1141 			continue;
1142 
1143 		} else if (!strcasecmp(arg_name, DM_VERITY_OPT_TASKLET_VERIFY)) {
1144 			v->use_bh_wq = true;
1145 			static_branch_inc(&use_bh_wq_enabled);
1146 			continue;
1147 
1148 		} else if (verity_is_fec_opt_arg(arg_name)) {
1149 			if (only_modifier_opts)
1150 				continue;
1151 			r = verity_fec_parse_opt_args(as, v, &argc, arg_name);
1152 			if (r)
1153 				return r;
1154 			continue;
1155 
1156 		} else if (verity_verify_is_sig_opt_arg(arg_name)) {
1157 			if (only_modifier_opts)
1158 				continue;
1159 			r = verity_verify_sig_parse_opt_args(as, v,
1160 							     verify_args,
1161 							     &argc, arg_name);
1162 			if (r)
1163 				return r;
1164 			continue;
1165 
1166 		} else if (only_modifier_opts) {
1167 			/*
1168 			 * Ignore unrecognized opt, could easily be an extra
1169 			 * argument to an option whose parsing was skipped.
1170 			 * Normal parsing (@only_modifier_opts=false) will
1171 			 * properly parse all options (and their extra args).
1172 			 */
1173 			continue;
1174 		}
1175 
1176 		DMERR("Unrecognized verity feature request: %s", arg_name);
1177 		ti->error = "Unrecognized verity feature request";
1178 		return -EINVAL;
1179 	} while (argc && !r);
1180 
1181 	return r;
1182 }
1183 
1184 static int verity_setup_hash_alg(struct dm_verity *v, const char *alg_name)
1185 {
1186 	struct dm_target *ti = v->ti;
1187 	struct crypto_ahash *ahash;
1188 	struct crypto_shash *shash = NULL;
1189 	const char *driver_name;
1190 
1191 	v->alg_name = kstrdup(alg_name, GFP_KERNEL);
1192 	if (!v->alg_name) {
1193 		ti->error = "Cannot allocate algorithm name";
1194 		return -ENOMEM;
1195 	}
1196 
1197 	/*
1198 	 * Allocate the hash transformation object that this dm-verity instance
1199 	 * will use.  The vast majority of dm-verity users use CPU-based
1200 	 * hashing, so when possible use the shash API to minimize the crypto
1201 	 * API overhead.  If the ahash API resolves to a different driver
1202 	 * (likely an off-CPU hardware offload), use ahash instead.  Also use
1203 	 * ahash if the obsolete dm-verity format with the appended salt is
1204 	 * being used, so that quirk only needs to be handled in one place.
1205 	 */
1206 	ahash = crypto_alloc_ahash(alg_name, 0,
1207 				   v->use_bh_wq ? CRYPTO_ALG_ASYNC : 0);
1208 	if (IS_ERR(ahash)) {
1209 		ti->error = "Cannot initialize hash function";
1210 		return PTR_ERR(ahash);
1211 	}
1212 	driver_name = crypto_ahash_driver_name(ahash);
1213 	if (v->version >= 1 /* salt prepended, not appended? */) {
1214 		shash = crypto_alloc_shash(alg_name, 0, 0);
1215 		if (!IS_ERR(shash) &&
1216 		    strcmp(crypto_shash_driver_name(shash), driver_name) != 0) {
1217 			/*
1218 			 * ahash gave a different driver than shash, so probably
1219 			 * this is a case of real hardware offload.  Use ahash.
1220 			 */
1221 			crypto_free_shash(shash);
1222 			shash = NULL;
1223 		}
1224 	}
1225 	if (!IS_ERR_OR_NULL(shash)) {
1226 		crypto_free_ahash(ahash);
1227 		ahash = NULL;
1228 		v->shash_tfm = shash;
1229 		v->digest_size = crypto_shash_digestsize(shash);
1230 		v->hash_reqsize = sizeof(struct shash_desc) +
1231 				  crypto_shash_descsize(shash);
1232 		DMINFO("%s using shash \"%s\"", alg_name, driver_name);
1233 	} else {
1234 		v->ahash_tfm = ahash;
1235 		static_branch_inc(&ahash_enabled);
1236 		v->digest_size = crypto_ahash_digestsize(ahash);
1237 		v->hash_reqsize = sizeof(struct ahash_request) +
1238 				  crypto_ahash_reqsize(ahash);
1239 		DMINFO("%s using ahash \"%s\"", alg_name, driver_name);
1240 	}
1241 	if ((1 << v->hash_dev_block_bits) < v->digest_size * 2) {
1242 		ti->error = "Digest size too big";
1243 		return -EINVAL;
1244 	}
1245 	return 0;
1246 }
1247 
1248 static int verity_setup_salt_and_hashstate(struct dm_verity *v, const char *arg)
1249 {
1250 	struct dm_target *ti = v->ti;
1251 
1252 	if (strcmp(arg, "-") != 0) {
1253 		v->salt_size = strlen(arg) / 2;
1254 		v->salt = kmalloc(v->salt_size, GFP_KERNEL);
1255 		if (!v->salt) {
1256 			ti->error = "Cannot allocate salt";
1257 			return -ENOMEM;
1258 		}
1259 		if (strlen(arg) != v->salt_size * 2 ||
1260 		    hex2bin(v->salt, arg, v->salt_size)) {
1261 			ti->error = "Invalid salt";
1262 			return -EINVAL;
1263 		}
1264 	}
1265 	if (v->shash_tfm) {
1266 		SHASH_DESC_ON_STACK(desc, v->shash_tfm);
1267 		int r;
1268 
1269 		/*
1270 		 * Compute the pre-salted hash state that can be passed to
1271 		 * crypto_shash_import() for each block later.
1272 		 */
1273 		v->initial_hashstate = kmalloc(
1274 			crypto_shash_statesize(v->shash_tfm), GFP_KERNEL);
1275 		if (!v->initial_hashstate) {
1276 			ti->error = "Cannot allocate initial hash state";
1277 			return -ENOMEM;
1278 		}
1279 		desc->tfm = v->shash_tfm;
1280 		r = crypto_shash_init(desc) ?:
1281 		    crypto_shash_update(desc, v->salt, v->salt_size) ?:
1282 		    crypto_shash_export(desc, v->initial_hashstate);
1283 		if (r) {
1284 			ti->error = "Cannot set up initial hash state";
1285 			return r;
1286 		}
1287 	}
1288 	return 0;
1289 }
1290 
1291 /*
1292  * Target parameters:
1293  *	<version>	The current format is version 1.
1294  *			Vsn 0 is compatible with original Chromium OS releases.
1295  *	<data device>
1296  *	<hash device>
1297  *	<data block size>
1298  *	<hash block size>
1299  *	<the number of data blocks>
1300  *	<hash start block>
1301  *	<algorithm>
1302  *	<digest>
1303  *	<salt>		Hex string or "-" if no salt.
1304  */
1305 static int verity_ctr(struct dm_target *ti, unsigned int argc, char **argv)
1306 {
1307 	struct dm_verity *v;
1308 	struct dm_verity_sig_opts verify_args = {0};
1309 	struct dm_arg_set as;
1310 	unsigned int num;
1311 	unsigned long long num_ll;
1312 	int r;
1313 	int i;
1314 	sector_t hash_position;
1315 	char dummy;
1316 	char *root_hash_digest_to_validate;
1317 
1318 	v = kzalloc(sizeof(struct dm_verity), GFP_KERNEL);
1319 	if (!v) {
1320 		ti->error = "Cannot allocate verity structure";
1321 		return -ENOMEM;
1322 	}
1323 	ti->private = v;
1324 	v->ti = ti;
1325 
1326 	r = verity_fec_ctr_alloc(v);
1327 	if (r)
1328 		goto bad;
1329 
1330 	if ((dm_table_get_mode(ti->table) & ~BLK_OPEN_READ)) {
1331 		ti->error = "Device must be readonly";
1332 		r = -EINVAL;
1333 		goto bad;
1334 	}
1335 
1336 	if (argc < 10) {
1337 		ti->error = "Not enough arguments";
1338 		r = -EINVAL;
1339 		goto bad;
1340 	}
1341 
1342 	/* Parse optional parameters that modify primary args */
1343 	if (argc > 10) {
1344 		as.argc = argc - 10;
1345 		as.argv = argv + 10;
1346 		r = verity_parse_opt_args(&as, v, &verify_args, true);
1347 		if (r < 0)
1348 			goto bad;
1349 	}
1350 
1351 	if (sscanf(argv[0], "%u%c", &num, &dummy) != 1 ||
1352 	    num > 1) {
1353 		ti->error = "Invalid version";
1354 		r = -EINVAL;
1355 		goto bad;
1356 	}
1357 	v->version = num;
1358 
1359 	r = dm_get_device(ti, argv[1], BLK_OPEN_READ, &v->data_dev);
1360 	if (r) {
1361 		ti->error = "Data device lookup failed";
1362 		goto bad;
1363 	}
1364 
1365 	r = dm_get_device(ti, argv[2], BLK_OPEN_READ, &v->hash_dev);
1366 	if (r) {
1367 		ti->error = "Hash device lookup failed";
1368 		goto bad;
1369 	}
1370 
1371 	if (sscanf(argv[3], "%u%c", &num, &dummy) != 1 ||
1372 	    !num || (num & (num - 1)) ||
1373 	    num < bdev_logical_block_size(v->data_dev->bdev) ||
1374 	    num > PAGE_SIZE) {
1375 		ti->error = "Invalid data device block size";
1376 		r = -EINVAL;
1377 		goto bad;
1378 	}
1379 	v->data_dev_block_bits = __ffs(num);
1380 
1381 	if (sscanf(argv[4], "%u%c", &num, &dummy) != 1 ||
1382 	    !num || (num & (num - 1)) ||
1383 	    num < bdev_logical_block_size(v->hash_dev->bdev) ||
1384 	    num > INT_MAX) {
1385 		ti->error = "Invalid hash device block size";
1386 		r = -EINVAL;
1387 		goto bad;
1388 	}
1389 	v->hash_dev_block_bits = __ffs(num);
1390 
1391 	if (sscanf(argv[5], "%llu%c", &num_ll, &dummy) != 1 ||
1392 	    (sector_t)(num_ll << (v->data_dev_block_bits - SECTOR_SHIFT))
1393 	    >> (v->data_dev_block_bits - SECTOR_SHIFT) != num_ll) {
1394 		ti->error = "Invalid data blocks";
1395 		r = -EINVAL;
1396 		goto bad;
1397 	}
1398 	v->data_blocks = num_ll;
1399 
1400 	if (ti->len > (v->data_blocks << (v->data_dev_block_bits - SECTOR_SHIFT))) {
1401 		ti->error = "Data device is too small";
1402 		r = -EINVAL;
1403 		goto bad;
1404 	}
1405 
1406 	if (sscanf(argv[6], "%llu%c", &num_ll, &dummy) != 1 ||
1407 	    (sector_t)(num_ll << (v->hash_dev_block_bits - SECTOR_SHIFT))
1408 	    >> (v->hash_dev_block_bits - SECTOR_SHIFT) != num_ll) {
1409 		ti->error = "Invalid hash start";
1410 		r = -EINVAL;
1411 		goto bad;
1412 	}
1413 	v->hash_start = num_ll;
1414 
1415 	r = verity_setup_hash_alg(v, argv[7]);
1416 	if (r)
1417 		goto bad;
1418 
1419 	v->root_digest = kmalloc(v->digest_size, GFP_KERNEL);
1420 	if (!v->root_digest) {
1421 		ti->error = "Cannot allocate root digest";
1422 		r = -ENOMEM;
1423 		goto bad;
1424 	}
1425 	if (strlen(argv[8]) != v->digest_size * 2 ||
1426 	    hex2bin(v->root_digest, argv[8], v->digest_size)) {
1427 		ti->error = "Invalid root digest";
1428 		r = -EINVAL;
1429 		goto bad;
1430 	}
1431 	root_hash_digest_to_validate = argv[8];
1432 
1433 	r = verity_setup_salt_and_hashstate(v, argv[9]);
1434 	if (r)
1435 		goto bad;
1436 
1437 	argv += 10;
1438 	argc -= 10;
1439 
1440 	/* Optional parameters */
1441 	if (argc) {
1442 		as.argc = argc;
1443 		as.argv = argv;
1444 		r = verity_parse_opt_args(&as, v, &verify_args, false);
1445 		if (r < 0)
1446 			goto bad;
1447 	}
1448 
1449 	/* Root hash signature is  a optional parameter*/
1450 	r = verity_verify_root_hash(root_hash_digest_to_validate,
1451 				    strlen(root_hash_digest_to_validate),
1452 				    verify_args.sig,
1453 				    verify_args.sig_size);
1454 	if (r < 0) {
1455 		ti->error = "Root hash verification failed";
1456 		goto bad;
1457 	}
1458 
1459 	r = verity_init_sig(v, verify_args.sig, verify_args.sig_size);
1460 	if (r < 0) {
1461 		ti->error = "Cannot allocate root digest signature";
1462 		goto bad;
1463 	}
1464 
1465 	v->hash_per_block_bits =
1466 		__fls((1 << v->hash_dev_block_bits) / v->digest_size);
1467 
1468 	v->levels = 0;
1469 	if (v->data_blocks)
1470 		while (v->hash_per_block_bits * v->levels < 64 &&
1471 		       (unsigned long long)(v->data_blocks - 1) >>
1472 		       (v->hash_per_block_bits * v->levels))
1473 			v->levels++;
1474 
1475 	if (v->levels > DM_VERITY_MAX_LEVELS) {
1476 		ti->error = "Too many tree levels";
1477 		r = -E2BIG;
1478 		goto bad;
1479 	}
1480 
1481 	hash_position = v->hash_start;
1482 	for (i = v->levels - 1; i >= 0; i--) {
1483 		sector_t s;
1484 
1485 		v->hash_level_block[i] = hash_position;
1486 		s = (v->data_blocks + ((sector_t)1 << ((i + 1) * v->hash_per_block_bits)) - 1)
1487 					>> ((i + 1) * v->hash_per_block_bits);
1488 		if (hash_position + s < hash_position) {
1489 			ti->error = "Hash device offset overflow";
1490 			r = -E2BIG;
1491 			goto bad;
1492 		}
1493 		hash_position += s;
1494 	}
1495 	v->hash_blocks = hash_position;
1496 
1497 	r = mempool_init_page_pool(&v->recheck_pool, 1, 0);
1498 	if (unlikely(r)) {
1499 		ti->error = "Cannot allocate mempool";
1500 		goto bad;
1501 	}
1502 
1503 	v->io = dm_io_client_create();
1504 	if (IS_ERR(v->io)) {
1505 		r = PTR_ERR(v->io);
1506 		v->io = NULL;
1507 		ti->error = "Cannot allocate dm io";
1508 		goto bad;
1509 	}
1510 
1511 	v->bufio = dm_bufio_client_create(v->hash_dev->bdev,
1512 		1 << v->hash_dev_block_bits, 1, sizeof(struct buffer_aux),
1513 		dm_bufio_alloc_callback, NULL,
1514 		v->use_bh_wq ? DM_BUFIO_CLIENT_NO_SLEEP : 0);
1515 	if (IS_ERR(v->bufio)) {
1516 		ti->error = "Cannot initialize dm-bufio";
1517 		r = PTR_ERR(v->bufio);
1518 		v->bufio = NULL;
1519 		goto bad;
1520 	}
1521 
1522 	if (dm_bufio_get_device_size(v->bufio) < v->hash_blocks) {
1523 		ti->error = "Hash device is too small";
1524 		r = -E2BIG;
1525 		goto bad;
1526 	}
1527 
1528 	/*
1529 	 * Using WQ_HIGHPRI improves throughput and completion latency by
1530 	 * reducing wait times when reading from a dm-verity device.
1531 	 *
1532 	 * Also as required for the "try_verify_in_tasklet" feature: WQ_HIGHPRI
1533 	 * allows verify_wq to preempt softirq since verification in BH workqueue
1534 	 * will fall-back to using it for error handling (or if the bufio cache
1535 	 * doesn't have required hashes).
1536 	 */
1537 	v->verify_wq = alloc_workqueue("kverityd", WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
1538 	if (!v->verify_wq) {
1539 		ti->error = "Cannot allocate workqueue";
1540 		r = -ENOMEM;
1541 		goto bad;
1542 	}
1543 
1544 	ti->per_io_data_size = sizeof(struct dm_verity_io) + v->hash_reqsize;
1545 
1546 	r = verity_fec_ctr(v);
1547 	if (r)
1548 		goto bad;
1549 
1550 	ti->per_io_data_size = roundup(ti->per_io_data_size,
1551 				       __alignof__(struct dm_verity_io));
1552 
1553 	verity_verify_sig_opts_cleanup(&verify_args);
1554 
1555 	dm_audit_log_ctr(DM_MSG_PREFIX, ti, 1);
1556 
1557 	return 0;
1558 
1559 bad:
1560 
1561 	verity_verify_sig_opts_cleanup(&verify_args);
1562 	dm_audit_log_ctr(DM_MSG_PREFIX, ti, 0);
1563 	verity_dtr(ti);
1564 
1565 	return r;
1566 }
1567 
1568 /*
1569  * Get the verity mode (error behavior) of a verity target.
1570  *
1571  * Returns the verity mode of the target, or -EINVAL if 'ti' is not a verity
1572  * target.
1573  */
1574 int dm_verity_get_mode(struct dm_target *ti)
1575 {
1576 	struct dm_verity *v = ti->private;
1577 
1578 	if (!dm_is_verity_target(ti))
1579 		return -EINVAL;
1580 
1581 	return v->mode;
1582 }
1583 
1584 /*
1585  * Get the root digest of a verity target.
1586  *
1587  * Returns a copy of the root digest, the caller is responsible for
1588  * freeing the memory of the digest.
1589  */
1590 int dm_verity_get_root_digest(struct dm_target *ti, u8 **root_digest, unsigned int *digest_size)
1591 {
1592 	struct dm_verity *v = ti->private;
1593 
1594 	if (!dm_is_verity_target(ti))
1595 		return -EINVAL;
1596 
1597 	*root_digest = kmemdup(v->root_digest, v->digest_size, GFP_KERNEL);
1598 	if (*root_digest == NULL)
1599 		return -ENOMEM;
1600 
1601 	*digest_size = v->digest_size;
1602 
1603 	return 0;
1604 }
1605 
1606 #ifdef CONFIG_SECURITY
1607 
1608 #ifdef CONFIG_DM_VERITY_VERIFY_ROOTHASH_SIG
1609 
1610 static int verity_security_set_signature(struct block_device *bdev,
1611 					 struct dm_verity *v)
1612 {
1613 	/*
1614 	 * if the dm-verity target is unsigned, v->root_digest_sig will
1615 	 * be NULL, and the hook call is still required to let LSMs mark
1616 	 * the device as unsigned. This information is crucial for LSMs to
1617 	 * block operations such as execution on unsigned files
1618 	 */
1619 	return security_bdev_setintegrity(bdev,
1620 					  LSM_INT_DMVERITY_SIG_VALID,
1621 					  v->root_digest_sig,
1622 					  v->sig_size);
1623 }
1624 
1625 #else
1626 
1627 static inline int verity_security_set_signature(struct block_device *bdev,
1628 						struct dm_verity *v)
1629 {
1630 	return 0;
1631 }
1632 
1633 #endif /* CONFIG_DM_VERITY_VERIFY_ROOTHASH_SIG */
1634 
1635 /*
1636  * Expose verity target's root hash and signature data to LSMs before resume.
1637  *
1638  * Returns 0 on success, or -ENOMEM if the system is out of memory.
1639  */
1640 static int verity_preresume(struct dm_target *ti)
1641 {
1642 	struct block_device *bdev;
1643 	struct dm_verity_digest root_digest;
1644 	struct dm_verity *v;
1645 	int r;
1646 
1647 	v = ti->private;
1648 	bdev = dm_disk(dm_table_get_md(ti->table))->part0;
1649 	root_digest.digest = v->root_digest;
1650 	root_digest.digest_len = v->digest_size;
1651 	if (static_branch_unlikely(&ahash_enabled) && !v->shash_tfm)
1652 		root_digest.alg = crypto_ahash_alg_name(v->ahash_tfm);
1653 	else
1654 		root_digest.alg = crypto_shash_alg_name(v->shash_tfm);
1655 
1656 	r = security_bdev_setintegrity(bdev, LSM_INT_DMVERITY_ROOTHASH, &root_digest,
1657 				       sizeof(root_digest));
1658 	if (r)
1659 		return r;
1660 
1661 	r =  verity_security_set_signature(bdev, v);
1662 	if (r)
1663 		goto bad;
1664 
1665 	return 0;
1666 
1667 bad:
1668 
1669 	security_bdev_setintegrity(bdev, LSM_INT_DMVERITY_ROOTHASH, NULL, 0);
1670 
1671 	return r;
1672 }
1673 
1674 #endif /* CONFIG_SECURITY */
1675 
1676 static struct target_type verity_target = {
1677 	.name		= "verity",
1678 /* Note: the LSMs depend on the singleton and immutable features */
1679 	.features	= DM_TARGET_SINGLETON | DM_TARGET_IMMUTABLE,
1680 	.version	= {1, 10, 0},
1681 	.module		= THIS_MODULE,
1682 	.ctr		= verity_ctr,
1683 	.dtr		= verity_dtr,
1684 	.map		= verity_map,
1685 	.status		= verity_status,
1686 	.prepare_ioctl	= verity_prepare_ioctl,
1687 	.iterate_devices = verity_iterate_devices,
1688 	.io_hints	= verity_io_hints,
1689 #ifdef CONFIG_SECURITY
1690 	.preresume	= verity_preresume,
1691 #endif /* CONFIG_SECURITY */
1692 };
1693 module_dm(verity);
1694 
1695 /*
1696  * Check whether a DM target is a verity target.
1697  */
1698 bool dm_is_verity_target(struct dm_target *ti)
1699 {
1700 	return ti->type == &verity_target;
1701 }
1702 
1703 MODULE_AUTHOR("Mikulas Patocka <mpatocka@redhat.com>");
1704 MODULE_AUTHOR("Mandeep Baines <msb@chromium.org>");
1705 MODULE_AUTHOR("Will Drewry <wad@chromium.org>");
1706 MODULE_DESCRIPTION(DM_NAME " target for transparent disk integrity checking");
1707 MODULE_LICENSE("GPL");
1708