1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 2012 Red Hat, Inc. 4 * 5 * Author: Mikulas Patocka <mpatocka@redhat.com> 6 * 7 * Based on Chromium dm-verity driver (C) 2011 The Chromium OS Authors 8 * 9 * In the file "/sys/module/dm_verity/parameters/prefetch_cluster" you can set 10 * default prefetch value. Data are read in "prefetch_cluster" chunks from the 11 * hash device. Setting this greatly improves performance when data and hash 12 * are on the same disk on different partitions on devices with poor random 13 * access behavior. 14 */ 15 16 #include "dm-verity.h" 17 #include "dm-verity-fec.h" 18 #include "dm-verity-verify-sig.h" 19 #include "dm-audit.h" 20 #include <linux/module.h> 21 #include <linux/reboot.h> 22 #include <linux/scatterlist.h> 23 #include <linux/string.h> 24 #include <linux/jump_label.h> 25 #include <linux/security.h> 26 27 #define DM_MSG_PREFIX "verity" 28 29 #define DM_VERITY_ENV_LENGTH 42 30 #define DM_VERITY_ENV_VAR_NAME "DM_VERITY_ERR_BLOCK_NR" 31 32 #define DM_VERITY_DEFAULT_PREFETCH_SIZE 262144 33 34 #define DM_VERITY_MAX_CORRUPTED_ERRS 100 35 36 #define DM_VERITY_OPT_LOGGING "ignore_corruption" 37 #define DM_VERITY_OPT_RESTART "restart_on_corruption" 38 #define DM_VERITY_OPT_PANIC "panic_on_corruption" 39 #define DM_VERITY_OPT_ERROR_RESTART "restart_on_error" 40 #define DM_VERITY_OPT_ERROR_PANIC "panic_on_error" 41 #define DM_VERITY_OPT_IGN_ZEROES "ignore_zero_blocks" 42 #define DM_VERITY_OPT_AT_MOST_ONCE "check_at_most_once" 43 #define DM_VERITY_OPT_TASKLET_VERIFY "try_verify_in_tasklet" 44 45 #define DM_VERITY_OPTS_MAX (5 + DM_VERITY_OPTS_FEC + \ 46 DM_VERITY_ROOT_HASH_VERIFICATION_OPTS) 47 48 static unsigned int dm_verity_prefetch_cluster = DM_VERITY_DEFAULT_PREFETCH_SIZE; 49 50 module_param_named(prefetch_cluster, dm_verity_prefetch_cluster, uint, 0644); 51 52 static DEFINE_STATIC_KEY_FALSE(use_bh_wq_enabled); 53 54 /* Is at least one dm-verity instance using ahash_tfm instead of shash_tfm? */ 55 static DEFINE_STATIC_KEY_FALSE(ahash_enabled); 56 57 struct dm_verity_prefetch_work { 58 struct work_struct work; 59 struct dm_verity *v; 60 unsigned short ioprio; 61 sector_t block; 62 unsigned int n_blocks; 63 }; 64 65 /* 66 * Auxiliary structure appended to each dm-bufio buffer. If the value 67 * hash_verified is nonzero, hash of the block has been verified. 68 * 69 * The variable hash_verified is set to 0 when allocating the buffer, then 70 * it can be changed to 1 and it is never reset to 0 again. 71 * 72 * There is no lock around this value, a race condition can at worst cause 73 * that multiple processes verify the hash of the same buffer simultaneously 74 * and write 1 to hash_verified simultaneously. 75 * This condition is harmless, so we don't need locking. 76 */ 77 struct buffer_aux { 78 int hash_verified; 79 }; 80 81 /* 82 * Initialize struct buffer_aux for a freshly created buffer. 83 */ 84 static void dm_bufio_alloc_callback(struct dm_buffer *buf) 85 { 86 struct buffer_aux *aux = dm_bufio_get_aux_data(buf); 87 88 aux->hash_verified = 0; 89 } 90 91 /* 92 * Translate input sector number to the sector number on the target device. 93 */ 94 static sector_t verity_map_sector(struct dm_verity *v, sector_t bi_sector) 95 { 96 return v->data_start + dm_target_offset(v->ti, bi_sector); 97 } 98 99 /* 100 * Return hash position of a specified block at a specified tree level 101 * (0 is the lowest level). 102 * The lowest "hash_per_block_bits"-bits of the result denote hash position 103 * inside a hash block. The remaining bits denote location of the hash block. 104 */ 105 static sector_t verity_position_at_level(struct dm_verity *v, sector_t block, 106 int level) 107 { 108 return block >> (level * v->hash_per_block_bits); 109 } 110 111 static int verity_ahash_update(struct dm_verity *v, struct ahash_request *req, 112 const u8 *data, size_t len, 113 struct crypto_wait *wait) 114 { 115 struct scatterlist sg; 116 117 if (likely(!is_vmalloc_addr(data))) { 118 sg_init_one(&sg, data, len); 119 ahash_request_set_crypt(req, &sg, NULL, len); 120 return crypto_wait_req(crypto_ahash_update(req), wait); 121 } 122 123 do { 124 int r; 125 size_t this_step = min_t(size_t, len, PAGE_SIZE - offset_in_page(data)); 126 127 flush_kernel_vmap_range((void *)data, this_step); 128 sg_init_table(&sg, 1); 129 sg_set_page(&sg, vmalloc_to_page(data), this_step, offset_in_page(data)); 130 ahash_request_set_crypt(req, &sg, NULL, this_step); 131 r = crypto_wait_req(crypto_ahash_update(req), wait); 132 if (unlikely(r)) 133 return r; 134 data += this_step; 135 len -= this_step; 136 } while (len); 137 138 return 0; 139 } 140 141 /* 142 * Wrapper for crypto_ahash_init, which handles verity salting. 143 */ 144 static int verity_ahash_init(struct dm_verity *v, struct ahash_request *req, 145 struct crypto_wait *wait, bool may_sleep) 146 { 147 int r; 148 149 ahash_request_set_tfm(req, v->ahash_tfm); 150 ahash_request_set_callback(req, 151 may_sleep ? CRYPTO_TFM_REQ_MAY_SLEEP | CRYPTO_TFM_REQ_MAY_BACKLOG : 0, 152 crypto_req_done, (void *)wait); 153 crypto_init_wait(wait); 154 155 r = crypto_wait_req(crypto_ahash_init(req), wait); 156 157 if (unlikely(r < 0)) { 158 if (r != -ENOMEM) 159 DMERR("crypto_ahash_init failed: %d", r); 160 return r; 161 } 162 163 if (likely(v->salt_size && (v->version >= 1))) 164 r = verity_ahash_update(v, req, v->salt, v->salt_size, wait); 165 166 return r; 167 } 168 169 static int verity_ahash_final(struct dm_verity *v, struct ahash_request *req, 170 u8 *digest, struct crypto_wait *wait) 171 { 172 int r; 173 174 if (unlikely(v->salt_size && (!v->version))) { 175 r = verity_ahash_update(v, req, v->salt, v->salt_size, wait); 176 177 if (r < 0) { 178 DMERR("%s failed updating salt: %d", __func__, r); 179 goto out; 180 } 181 } 182 183 ahash_request_set_crypt(req, NULL, digest, 0); 184 r = crypto_wait_req(crypto_ahash_final(req), wait); 185 out: 186 return r; 187 } 188 189 int verity_hash(struct dm_verity *v, struct dm_verity_io *io, 190 const u8 *data, size_t len, u8 *digest, bool may_sleep) 191 { 192 int r; 193 194 if (static_branch_unlikely(&ahash_enabled) && !v->shash_tfm) { 195 struct ahash_request *req = verity_io_hash_req(v, io); 196 struct crypto_wait wait; 197 198 r = verity_ahash_init(v, req, &wait, may_sleep) ?: 199 verity_ahash_update(v, req, data, len, &wait) ?: 200 verity_ahash_final(v, req, digest, &wait); 201 } else { 202 struct shash_desc *desc = verity_io_hash_req(v, io); 203 204 desc->tfm = v->shash_tfm; 205 r = crypto_shash_import(desc, v->initial_hashstate) ?: 206 crypto_shash_finup(desc, data, len, digest); 207 } 208 if (unlikely(r)) 209 DMERR("Error hashing block: %d", r); 210 return r; 211 } 212 213 static void verity_hash_at_level(struct dm_verity *v, sector_t block, int level, 214 sector_t *hash_block, unsigned int *offset) 215 { 216 sector_t position = verity_position_at_level(v, block, level); 217 unsigned int idx; 218 219 *hash_block = v->hash_level_block[level] + (position >> v->hash_per_block_bits); 220 221 if (!offset) 222 return; 223 224 idx = position & ((1 << v->hash_per_block_bits) - 1); 225 if (!v->version) 226 *offset = idx * v->digest_size; 227 else 228 *offset = idx << (v->hash_dev_block_bits - v->hash_per_block_bits); 229 } 230 231 /* 232 * Handle verification errors. 233 */ 234 static int verity_handle_err(struct dm_verity *v, enum verity_block_type type, 235 unsigned long long block) 236 { 237 char verity_env[DM_VERITY_ENV_LENGTH]; 238 char *envp[] = { verity_env, NULL }; 239 const char *type_str = ""; 240 struct mapped_device *md = dm_table_get_md(v->ti->table); 241 242 /* Corruption should be visible in device status in all modes */ 243 v->hash_failed = true; 244 245 if (v->corrupted_errs >= DM_VERITY_MAX_CORRUPTED_ERRS) 246 goto out; 247 248 v->corrupted_errs++; 249 250 switch (type) { 251 case DM_VERITY_BLOCK_TYPE_DATA: 252 type_str = "data"; 253 break; 254 case DM_VERITY_BLOCK_TYPE_METADATA: 255 type_str = "metadata"; 256 break; 257 default: 258 BUG(); 259 } 260 261 DMERR_LIMIT("%s: %s block %llu is corrupted", v->data_dev->name, 262 type_str, block); 263 264 if (v->corrupted_errs == DM_VERITY_MAX_CORRUPTED_ERRS) { 265 DMERR("%s: reached maximum errors", v->data_dev->name); 266 dm_audit_log_target(DM_MSG_PREFIX, "max-corrupted-errors", v->ti, 0); 267 } 268 269 snprintf(verity_env, DM_VERITY_ENV_LENGTH, "%s=%d,%llu", 270 DM_VERITY_ENV_VAR_NAME, type, block); 271 272 kobject_uevent_env(&disk_to_dev(dm_disk(md))->kobj, KOBJ_CHANGE, envp); 273 274 out: 275 if (v->mode == DM_VERITY_MODE_LOGGING) 276 return 0; 277 278 if (v->mode == DM_VERITY_MODE_RESTART) 279 kernel_restart("dm-verity device corrupted"); 280 281 if (v->mode == DM_VERITY_MODE_PANIC) 282 panic("dm-verity device corrupted"); 283 284 return 1; 285 } 286 287 /* 288 * Verify hash of a metadata block pertaining to the specified data block 289 * ("block" argument) at a specified level ("level" argument). 290 * 291 * On successful return, verity_io_want_digest(v, io) contains the hash value 292 * for a lower tree level or for the data block (if we're at the lowest level). 293 * 294 * If "skip_unverified" is true, unverified buffer is skipped and 1 is returned. 295 * If "skip_unverified" is false, unverified buffer is hashed and verified 296 * against current value of verity_io_want_digest(v, io). 297 */ 298 static int verity_verify_level(struct dm_verity *v, struct dm_verity_io *io, 299 sector_t block, int level, bool skip_unverified, 300 u8 *want_digest) 301 { 302 struct dm_buffer *buf; 303 struct buffer_aux *aux; 304 u8 *data; 305 int r; 306 sector_t hash_block; 307 unsigned int offset; 308 struct bio *bio = dm_bio_from_per_bio_data(io, v->ti->per_io_data_size); 309 310 verity_hash_at_level(v, block, level, &hash_block, &offset); 311 312 if (static_branch_unlikely(&use_bh_wq_enabled) && io->in_bh) { 313 data = dm_bufio_get(v->bufio, hash_block, &buf); 314 if (data == NULL) { 315 /* 316 * In tasklet and the hash was not in the bufio cache. 317 * Return early and resume execution from a work-queue 318 * to read the hash from disk. 319 */ 320 return -EAGAIN; 321 } 322 } else { 323 data = dm_bufio_read_with_ioprio(v->bufio, hash_block, 324 &buf, bio_prio(bio)); 325 } 326 327 if (IS_ERR(data)) 328 return PTR_ERR(data); 329 330 aux = dm_bufio_get_aux_data(buf); 331 332 if (!aux->hash_verified) { 333 if (skip_unverified) { 334 r = 1; 335 goto release_ret_r; 336 } 337 338 r = verity_hash(v, io, data, 1 << v->hash_dev_block_bits, 339 verity_io_real_digest(v, io), !io->in_bh); 340 if (unlikely(r < 0)) 341 goto release_ret_r; 342 343 if (likely(memcmp(verity_io_real_digest(v, io), want_digest, 344 v->digest_size) == 0)) 345 aux->hash_verified = 1; 346 else if (static_branch_unlikely(&use_bh_wq_enabled) && io->in_bh) { 347 /* 348 * Error handling code (FEC included) cannot be run in a 349 * tasklet since it may sleep, so fallback to work-queue. 350 */ 351 r = -EAGAIN; 352 goto release_ret_r; 353 } else if (verity_fec_decode(v, io, DM_VERITY_BLOCK_TYPE_METADATA, 354 hash_block, data) == 0) 355 aux->hash_verified = 1; 356 else if (verity_handle_err(v, 357 DM_VERITY_BLOCK_TYPE_METADATA, 358 hash_block)) { 359 struct bio *bio = 360 dm_bio_from_per_bio_data(io, 361 v->ti->per_io_data_size); 362 dm_audit_log_bio(DM_MSG_PREFIX, "verify-metadata", bio, 363 block, 0); 364 r = -EIO; 365 goto release_ret_r; 366 } 367 } 368 369 data += offset; 370 memcpy(want_digest, data, v->digest_size); 371 r = 0; 372 373 release_ret_r: 374 dm_bufio_release(buf); 375 return r; 376 } 377 378 /* 379 * Find a hash for a given block, write it to digest and verify the integrity 380 * of the hash tree if necessary. 381 */ 382 int verity_hash_for_block(struct dm_verity *v, struct dm_verity_io *io, 383 sector_t block, u8 *digest, bool *is_zero) 384 { 385 int r = 0, i; 386 387 if (likely(v->levels)) { 388 /* 389 * First, we try to get the requested hash for 390 * the current block. If the hash block itself is 391 * verified, zero is returned. If it isn't, this 392 * function returns 1 and we fall back to whole 393 * chain verification. 394 */ 395 r = verity_verify_level(v, io, block, 0, true, digest); 396 if (likely(r <= 0)) 397 goto out; 398 } 399 400 memcpy(digest, v->root_digest, v->digest_size); 401 402 for (i = v->levels - 1; i >= 0; i--) { 403 r = verity_verify_level(v, io, block, i, false, digest); 404 if (unlikely(r)) 405 goto out; 406 } 407 out: 408 if (!r && v->zero_digest) 409 *is_zero = !memcmp(v->zero_digest, digest, v->digest_size); 410 else 411 *is_zero = false; 412 413 return r; 414 } 415 416 static noinline int verity_recheck(struct dm_verity *v, struct dm_verity_io *io, 417 sector_t cur_block, u8 *dest) 418 { 419 struct page *page; 420 void *buffer; 421 int r; 422 struct dm_io_request io_req; 423 struct dm_io_region io_loc; 424 425 page = mempool_alloc(&v->recheck_pool, GFP_NOIO); 426 buffer = page_to_virt(page); 427 428 io_req.bi_opf = REQ_OP_READ; 429 io_req.mem.type = DM_IO_KMEM; 430 io_req.mem.ptr.addr = buffer; 431 io_req.notify.fn = NULL; 432 io_req.client = v->io; 433 io_loc.bdev = v->data_dev->bdev; 434 io_loc.sector = cur_block << (v->data_dev_block_bits - SECTOR_SHIFT); 435 io_loc.count = 1 << (v->data_dev_block_bits - SECTOR_SHIFT); 436 r = dm_io(&io_req, 1, &io_loc, NULL, IOPRIO_DEFAULT); 437 if (unlikely(r)) 438 goto free_ret; 439 440 r = verity_hash(v, io, buffer, 1 << v->data_dev_block_bits, 441 verity_io_real_digest(v, io), true); 442 if (unlikely(r)) 443 goto free_ret; 444 445 if (memcmp(verity_io_real_digest(v, io), 446 verity_io_want_digest(v, io), v->digest_size)) { 447 r = -EIO; 448 goto free_ret; 449 } 450 451 memcpy(dest, buffer, 1 << v->data_dev_block_bits); 452 r = 0; 453 free_ret: 454 mempool_free(page, &v->recheck_pool); 455 456 return r; 457 } 458 459 static int verity_handle_data_hash_mismatch(struct dm_verity *v, 460 struct dm_verity_io *io, 461 struct bio *bio, sector_t blkno, 462 u8 *data) 463 { 464 if (static_branch_unlikely(&use_bh_wq_enabled) && io->in_bh) { 465 /* 466 * Error handling code (FEC included) cannot be run in the 467 * BH workqueue, so fallback to a standard workqueue. 468 */ 469 return -EAGAIN; 470 } 471 if (verity_recheck(v, io, blkno, data) == 0) { 472 if (v->validated_blocks) 473 set_bit(blkno, v->validated_blocks); 474 return 0; 475 } 476 #if defined(CONFIG_DM_VERITY_FEC) 477 if (verity_fec_decode(v, io, DM_VERITY_BLOCK_TYPE_DATA, blkno, 478 data) == 0) 479 return 0; 480 #endif 481 if (bio->bi_status) 482 return -EIO; /* Error correction failed; Just return error */ 483 484 if (verity_handle_err(v, DM_VERITY_BLOCK_TYPE_DATA, blkno)) { 485 dm_audit_log_bio(DM_MSG_PREFIX, "verify-data", bio, blkno, 0); 486 return -EIO; 487 } 488 return 0; 489 } 490 491 /* 492 * Verify one "dm_verity_io" structure. 493 */ 494 static int verity_verify_io(struct dm_verity_io *io) 495 { 496 struct dm_verity *v = io->v; 497 const unsigned int block_size = 1 << v->data_dev_block_bits; 498 struct bvec_iter iter_copy; 499 struct bvec_iter *iter; 500 struct bio *bio = dm_bio_from_per_bio_data(io, v->ti->per_io_data_size); 501 unsigned int b; 502 503 if (static_branch_unlikely(&use_bh_wq_enabled) && io->in_bh) { 504 /* 505 * Copy the iterator in case we need to restart 506 * verification in a work-queue. 507 */ 508 iter_copy = io->iter; 509 iter = &iter_copy; 510 } else 511 iter = &io->iter; 512 513 for (b = 0; b < io->n_blocks; 514 b++, bio_advance_iter(bio, iter, block_size)) { 515 int r; 516 sector_t cur_block = io->block + b; 517 bool is_zero; 518 struct bio_vec bv; 519 void *data; 520 521 if (v->validated_blocks && bio->bi_status == BLK_STS_OK && 522 likely(test_bit(cur_block, v->validated_blocks))) 523 continue; 524 525 r = verity_hash_for_block(v, io, cur_block, 526 verity_io_want_digest(v, io), 527 &is_zero); 528 if (unlikely(r < 0)) 529 return r; 530 531 bv = bio_iter_iovec(bio, *iter); 532 if (unlikely(bv.bv_len < block_size)) { 533 /* 534 * Data block spans pages. This should not happen, 535 * since dm-verity sets dma_alignment to the data block 536 * size minus 1, and dm-verity also doesn't allow the 537 * data block size to be greater than PAGE_SIZE. 538 */ 539 DMERR_LIMIT("unaligned io (data block spans pages)"); 540 return -EIO; 541 } 542 543 data = bvec_kmap_local(&bv); 544 545 if (is_zero) { 546 /* 547 * If we expect a zero block, don't validate, just 548 * return zeros. 549 */ 550 memset(data, 0, block_size); 551 kunmap_local(data); 552 continue; 553 } 554 555 r = verity_hash(v, io, data, block_size, 556 verity_io_real_digest(v, io), !io->in_bh); 557 if (unlikely(r < 0)) { 558 kunmap_local(data); 559 return r; 560 } 561 562 if (likely(memcmp(verity_io_real_digest(v, io), 563 verity_io_want_digest(v, io), v->digest_size) == 0)) { 564 if (v->validated_blocks) 565 set_bit(cur_block, v->validated_blocks); 566 kunmap_local(data); 567 continue; 568 } 569 r = verity_handle_data_hash_mismatch(v, io, bio, cur_block, 570 data); 571 kunmap_local(data); 572 if (unlikely(r)) 573 return r; 574 } 575 576 return 0; 577 } 578 579 /* 580 * Skip verity work in response to I/O error when system is shutting down. 581 */ 582 static inline bool verity_is_system_shutting_down(void) 583 { 584 return system_state == SYSTEM_HALT || system_state == SYSTEM_POWER_OFF 585 || system_state == SYSTEM_RESTART; 586 } 587 588 static void restart_io_error(struct work_struct *w) 589 { 590 kernel_restart("dm-verity device has I/O error"); 591 } 592 593 /* 594 * End one "io" structure with a given error. 595 */ 596 static void verity_finish_io(struct dm_verity_io *io, blk_status_t status) 597 { 598 struct dm_verity *v = io->v; 599 struct bio *bio = dm_bio_from_per_bio_data(io, v->ti->per_io_data_size); 600 601 bio->bi_end_io = io->orig_bi_end_io; 602 bio->bi_status = status; 603 604 if (!static_branch_unlikely(&use_bh_wq_enabled) || !io->in_bh) 605 verity_fec_finish_io(io); 606 607 if (unlikely(status != BLK_STS_OK) && 608 unlikely(!(bio->bi_opf & REQ_RAHEAD)) && 609 !verity_is_system_shutting_down()) { 610 if (v->error_mode == DM_VERITY_MODE_PANIC) { 611 panic("dm-verity device has I/O error"); 612 } 613 if (v->error_mode == DM_VERITY_MODE_RESTART) { 614 static DECLARE_WORK(restart_work, restart_io_error); 615 queue_work(v->verify_wq, &restart_work); 616 /* 617 * We deliberately don't call bio_endio here, because 618 * the machine will be restarted anyway. 619 */ 620 return; 621 } 622 } 623 624 bio_endio(bio); 625 } 626 627 static void verity_work(struct work_struct *w) 628 { 629 struct dm_verity_io *io = container_of(w, struct dm_verity_io, work); 630 631 io->in_bh = false; 632 633 verity_finish_io(io, errno_to_blk_status(verity_verify_io(io))); 634 } 635 636 static void verity_bh_work(struct work_struct *w) 637 { 638 struct dm_verity_io *io = container_of(w, struct dm_verity_io, bh_work); 639 int err; 640 641 io->in_bh = true; 642 err = verity_verify_io(io); 643 if (err == -EAGAIN || err == -ENOMEM) { 644 /* fallback to retrying with work-queue */ 645 INIT_WORK(&io->work, verity_work); 646 queue_work(io->v->verify_wq, &io->work); 647 return; 648 } 649 650 verity_finish_io(io, errno_to_blk_status(err)); 651 } 652 653 static void verity_end_io(struct bio *bio) 654 { 655 struct dm_verity_io *io = bio->bi_private; 656 657 if (bio->bi_status && 658 (!verity_fec_is_enabled(io->v) || 659 verity_is_system_shutting_down() || 660 (bio->bi_opf & REQ_RAHEAD))) { 661 verity_finish_io(io, bio->bi_status); 662 return; 663 } 664 665 if (static_branch_unlikely(&use_bh_wq_enabled) && io->v->use_bh_wq) { 666 INIT_WORK(&io->bh_work, verity_bh_work); 667 queue_work(system_bh_wq, &io->bh_work); 668 } else { 669 INIT_WORK(&io->work, verity_work); 670 queue_work(io->v->verify_wq, &io->work); 671 } 672 } 673 674 /* 675 * Prefetch buffers for the specified io. 676 * The root buffer is not prefetched, it is assumed that it will be cached 677 * all the time. 678 */ 679 static void verity_prefetch_io(struct work_struct *work) 680 { 681 struct dm_verity_prefetch_work *pw = 682 container_of(work, struct dm_verity_prefetch_work, work); 683 struct dm_verity *v = pw->v; 684 int i; 685 686 for (i = v->levels - 2; i >= 0; i--) { 687 sector_t hash_block_start; 688 sector_t hash_block_end; 689 690 verity_hash_at_level(v, pw->block, i, &hash_block_start, NULL); 691 verity_hash_at_level(v, pw->block + pw->n_blocks - 1, i, &hash_block_end, NULL); 692 693 if (!i) { 694 unsigned int cluster = READ_ONCE(dm_verity_prefetch_cluster); 695 696 cluster >>= v->data_dev_block_bits; 697 if (unlikely(!cluster)) 698 goto no_prefetch_cluster; 699 700 if (unlikely(cluster & (cluster - 1))) 701 cluster = 1 << __fls(cluster); 702 703 hash_block_start &= ~(sector_t)(cluster - 1); 704 hash_block_end |= cluster - 1; 705 if (unlikely(hash_block_end >= v->hash_blocks)) 706 hash_block_end = v->hash_blocks - 1; 707 } 708 no_prefetch_cluster: 709 dm_bufio_prefetch_with_ioprio(v->bufio, hash_block_start, 710 hash_block_end - hash_block_start + 1, 711 pw->ioprio); 712 } 713 714 kfree(pw); 715 } 716 717 static void verity_submit_prefetch(struct dm_verity *v, struct dm_verity_io *io, 718 unsigned short ioprio) 719 { 720 sector_t block = io->block; 721 unsigned int n_blocks = io->n_blocks; 722 struct dm_verity_prefetch_work *pw; 723 724 if (v->validated_blocks) { 725 while (n_blocks && test_bit(block, v->validated_blocks)) { 726 block++; 727 n_blocks--; 728 } 729 while (n_blocks && test_bit(block + n_blocks - 1, 730 v->validated_blocks)) 731 n_blocks--; 732 if (!n_blocks) 733 return; 734 } 735 736 pw = kmalloc(sizeof(struct dm_verity_prefetch_work), 737 GFP_NOIO | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN); 738 739 if (!pw) 740 return; 741 742 INIT_WORK(&pw->work, verity_prefetch_io); 743 pw->v = v; 744 pw->block = block; 745 pw->n_blocks = n_blocks; 746 pw->ioprio = ioprio; 747 queue_work(v->verify_wq, &pw->work); 748 } 749 750 /* 751 * Bio map function. It allocates dm_verity_io structure and bio vector and 752 * fills them. Then it issues prefetches and the I/O. 753 */ 754 static int verity_map(struct dm_target *ti, struct bio *bio) 755 { 756 struct dm_verity *v = ti->private; 757 struct dm_verity_io *io; 758 759 bio_set_dev(bio, v->data_dev->bdev); 760 bio->bi_iter.bi_sector = verity_map_sector(v, bio->bi_iter.bi_sector); 761 762 if (((unsigned int)bio->bi_iter.bi_sector | bio_sectors(bio)) & 763 ((1 << (v->data_dev_block_bits - SECTOR_SHIFT)) - 1)) { 764 DMERR_LIMIT("unaligned io"); 765 return DM_MAPIO_KILL; 766 } 767 768 if (bio_end_sector(bio) >> 769 (v->data_dev_block_bits - SECTOR_SHIFT) > v->data_blocks) { 770 DMERR_LIMIT("io out of range"); 771 return DM_MAPIO_KILL; 772 } 773 774 if (bio_data_dir(bio) == WRITE) 775 return DM_MAPIO_KILL; 776 777 io = dm_per_bio_data(bio, ti->per_io_data_size); 778 io->v = v; 779 io->orig_bi_end_io = bio->bi_end_io; 780 io->block = bio->bi_iter.bi_sector >> (v->data_dev_block_bits - SECTOR_SHIFT); 781 io->n_blocks = bio->bi_iter.bi_size >> v->data_dev_block_bits; 782 783 bio->bi_end_io = verity_end_io; 784 bio->bi_private = io; 785 io->iter = bio->bi_iter; 786 787 verity_fec_init_io(io); 788 789 verity_submit_prefetch(v, io, bio_prio(bio)); 790 791 submit_bio_noacct(bio); 792 793 return DM_MAPIO_SUBMITTED; 794 } 795 796 /* 797 * Status: V (valid) or C (corruption found) 798 */ 799 static void verity_status(struct dm_target *ti, status_type_t type, 800 unsigned int status_flags, char *result, unsigned int maxlen) 801 { 802 struct dm_verity *v = ti->private; 803 unsigned int args = 0; 804 unsigned int sz = 0; 805 unsigned int x; 806 807 switch (type) { 808 case STATUSTYPE_INFO: 809 DMEMIT("%c", v->hash_failed ? 'C' : 'V'); 810 break; 811 case STATUSTYPE_TABLE: 812 DMEMIT("%u %s %s %u %u %llu %llu %s ", 813 v->version, 814 v->data_dev->name, 815 v->hash_dev->name, 816 1 << v->data_dev_block_bits, 817 1 << v->hash_dev_block_bits, 818 (unsigned long long)v->data_blocks, 819 (unsigned long long)v->hash_start, 820 v->alg_name 821 ); 822 for (x = 0; x < v->digest_size; x++) 823 DMEMIT("%02x", v->root_digest[x]); 824 DMEMIT(" "); 825 if (!v->salt_size) 826 DMEMIT("-"); 827 else 828 for (x = 0; x < v->salt_size; x++) 829 DMEMIT("%02x", v->salt[x]); 830 if (v->mode != DM_VERITY_MODE_EIO) 831 args++; 832 if (v->error_mode != DM_VERITY_MODE_EIO) 833 args++; 834 if (verity_fec_is_enabled(v)) 835 args += DM_VERITY_OPTS_FEC; 836 if (v->zero_digest) 837 args++; 838 if (v->validated_blocks) 839 args++; 840 if (v->use_bh_wq) 841 args++; 842 if (v->signature_key_desc) 843 args += DM_VERITY_ROOT_HASH_VERIFICATION_OPTS; 844 if (!args) 845 return; 846 DMEMIT(" %u", args); 847 if (v->mode != DM_VERITY_MODE_EIO) { 848 DMEMIT(" "); 849 switch (v->mode) { 850 case DM_VERITY_MODE_LOGGING: 851 DMEMIT(DM_VERITY_OPT_LOGGING); 852 break; 853 case DM_VERITY_MODE_RESTART: 854 DMEMIT(DM_VERITY_OPT_RESTART); 855 break; 856 case DM_VERITY_MODE_PANIC: 857 DMEMIT(DM_VERITY_OPT_PANIC); 858 break; 859 default: 860 BUG(); 861 } 862 } 863 if (v->error_mode != DM_VERITY_MODE_EIO) { 864 DMEMIT(" "); 865 switch (v->error_mode) { 866 case DM_VERITY_MODE_RESTART: 867 DMEMIT(DM_VERITY_OPT_ERROR_RESTART); 868 break; 869 case DM_VERITY_MODE_PANIC: 870 DMEMIT(DM_VERITY_OPT_ERROR_PANIC); 871 break; 872 default: 873 BUG(); 874 } 875 } 876 if (v->zero_digest) 877 DMEMIT(" " DM_VERITY_OPT_IGN_ZEROES); 878 if (v->validated_blocks) 879 DMEMIT(" " DM_VERITY_OPT_AT_MOST_ONCE); 880 if (v->use_bh_wq) 881 DMEMIT(" " DM_VERITY_OPT_TASKLET_VERIFY); 882 sz = verity_fec_status_table(v, sz, result, maxlen); 883 if (v->signature_key_desc) 884 DMEMIT(" " DM_VERITY_ROOT_HASH_VERIFICATION_OPT_SIG_KEY 885 " %s", v->signature_key_desc); 886 break; 887 888 case STATUSTYPE_IMA: 889 DMEMIT_TARGET_NAME_VERSION(ti->type); 890 DMEMIT(",hash_failed=%c", v->hash_failed ? 'C' : 'V'); 891 DMEMIT(",verity_version=%u", v->version); 892 DMEMIT(",data_device_name=%s", v->data_dev->name); 893 DMEMIT(",hash_device_name=%s", v->hash_dev->name); 894 DMEMIT(",verity_algorithm=%s", v->alg_name); 895 896 DMEMIT(",root_digest="); 897 for (x = 0; x < v->digest_size; x++) 898 DMEMIT("%02x", v->root_digest[x]); 899 900 DMEMIT(",salt="); 901 if (!v->salt_size) 902 DMEMIT("-"); 903 else 904 for (x = 0; x < v->salt_size; x++) 905 DMEMIT("%02x", v->salt[x]); 906 907 DMEMIT(",ignore_zero_blocks=%c", v->zero_digest ? 'y' : 'n'); 908 DMEMIT(",check_at_most_once=%c", v->validated_blocks ? 'y' : 'n'); 909 if (v->signature_key_desc) 910 DMEMIT(",root_hash_sig_key_desc=%s", v->signature_key_desc); 911 912 if (v->mode != DM_VERITY_MODE_EIO) { 913 DMEMIT(",verity_mode="); 914 switch (v->mode) { 915 case DM_VERITY_MODE_LOGGING: 916 DMEMIT(DM_VERITY_OPT_LOGGING); 917 break; 918 case DM_VERITY_MODE_RESTART: 919 DMEMIT(DM_VERITY_OPT_RESTART); 920 break; 921 case DM_VERITY_MODE_PANIC: 922 DMEMIT(DM_VERITY_OPT_PANIC); 923 break; 924 default: 925 DMEMIT("invalid"); 926 } 927 } 928 if (v->error_mode != DM_VERITY_MODE_EIO) { 929 DMEMIT(",verity_error_mode="); 930 switch (v->error_mode) { 931 case DM_VERITY_MODE_RESTART: 932 DMEMIT(DM_VERITY_OPT_ERROR_RESTART); 933 break; 934 case DM_VERITY_MODE_PANIC: 935 DMEMIT(DM_VERITY_OPT_ERROR_PANIC); 936 break; 937 default: 938 DMEMIT("invalid"); 939 } 940 } 941 DMEMIT(";"); 942 break; 943 } 944 } 945 946 static int verity_prepare_ioctl(struct dm_target *ti, struct block_device **bdev) 947 { 948 struct dm_verity *v = ti->private; 949 950 *bdev = v->data_dev->bdev; 951 952 if (v->data_start || ti->len != bdev_nr_sectors(v->data_dev->bdev)) 953 return 1; 954 return 0; 955 } 956 957 static int verity_iterate_devices(struct dm_target *ti, 958 iterate_devices_callout_fn fn, void *data) 959 { 960 struct dm_verity *v = ti->private; 961 962 return fn(ti, v->data_dev, v->data_start, ti->len, data); 963 } 964 965 static void verity_io_hints(struct dm_target *ti, struct queue_limits *limits) 966 { 967 struct dm_verity *v = ti->private; 968 969 if (limits->logical_block_size < 1 << v->data_dev_block_bits) 970 limits->logical_block_size = 1 << v->data_dev_block_bits; 971 972 if (limits->physical_block_size < 1 << v->data_dev_block_bits) 973 limits->physical_block_size = 1 << v->data_dev_block_bits; 974 975 limits->io_min = limits->logical_block_size; 976 977 /* 978 * Similar to what dm-crypt does, opt dm-verity out of support for 979 * direct I/O that is aligned to less than the traditional direct I/O 980 * alignment requirement of logical_block_size. This prevents dm-verity 981 * data blocks from crossing pages, eliminating various edge cases. 982 */ 983 limits->dma_alignment = limits->logical_block_size - 1; 984 } 985 986 #ifdef CONFIG_SECURITY 987 988 static int verity_init_sig(struct dm_verity *v, const void *sig, 989 size_t sig_size) 990 { 991 v->sig_size = sig_size; 992 993 if (sig) { 994 v->root_digest_sig = kmemdup(sig, v->sig_size, GFP_KERNEL); 995 if (!v->root_digest_sig) 996 return -ENOMEM; 997 } 998 999 return 0; 1000 } 1001 1002 static void verity_free_sig(struct dm_verity *v) 1003 { 1004 kfree(v->root_digest_sig); 1005 } 1006 1007 #else 1008 1009 static inline int verity_init_sig(struct dm_verity *v, const void *sig, 1010 size_t sig_size) 1011 { 1012 return 0; 1013 } 1014 1015 static inline void verity_free_sig(struct dm_verity *v) 1016 { 1017 } 1018 1019 #endif /* CONFIG_SECURITY */ 1020 1021 static void verity_dtr(struct dm_target *ti) 1022 { 1023 struct dm_verity *v = ti->private; 1024 1025 if (v->verify_wq) 1026 destroy_workqueue(v->verify_wq); 1027 1028 mempool_exit(&v->recheck_pool); 1029 if (v->io) 1030 dm_io_client_destroy(v->io); 1031 1032 if (v->bufio) 1033 dm_bufio_client_destroy(v->bufio); 1034 1035 kvfree(v->validated_blocks); 1036 kfree(v->salt); 1037 kfree(v->initial_hashstate); 1038 kfree(v->root_digest); 1039 kfree(v->zero_digest); 1040 verity_free_sig(v); 1041 1042 if (v->ahash_tfm) { 1043 static_branch_dec(&ahash_enabled); 1044 crypto_free_ahash(v->ahash_tfm); 1045 } else { 1046 crypto_free_shash(v->shash_tfm); 1047 } 1048 1049 kfree(v->alg_name); 1050 1051 if (v->hash_dev) 1052 dm_put_device(ti, v->hash_dev); 1053 1054 if (v->data_dev) 1055 dm_put_device(ti, v->data_dev); 1056 1057 verity_fec_dtr(v); 1058 1059 kfree(v->signature_key_desc); 1060 1061 if (v->use_bh_wq) 1062 static_branch_dec(&use_bh_wq_enabled); 1063 1064 kfree(v); 1065 1066 dm_audit_log_dtr(DM_MSG_PREFIX, ti, 1); 1067 } 1068 1069 static int verity_alloc_most_once(struct dm_verity *v) 1070 { 1071 struct dm_target *ti = v->ti; 1072 1073 /* the bitset can only handle INT_MAX blocks */ 1074 if (v->data_blocks > INT_MAX) { 1075 ti->error = "device too large to use check_at_most_once"; 1076 return -E2BIG; 1077 } 1078 1079 v->validated_blocks = kvcalloc(BITS_TO_LONGS(v->data_blocks), 1080 sizeof(unsigned long), 1081 GFP_KERNEL); 1082 if (!v->validated_blocks) { 1083 ti->error = "failed to allocate bitset for check_at_most_once"; 1084 return -ENOMEM; 1085 } 1086 1087 return 0; 1088 } 1089 1090 static int verity_alloc_zero_digest(struct dm_verity *v) 1091 { 1092 int r = -ENOMEM; 1093 struct dm_verity_io *io; 1094 u8 *zero_data; 1095 1096 v->zero_digest = kmalloc(v->digest_size, GFP_KERNEL); 1097 1098 if (!v->zero_digest) 1099 return r; 1100 1101 io = kmalloc(sizeof(*io) + v->hash_reqsize, GFP_KERNEL); 1102 1103 if (!io) 1104 return r; /* verity_dtr will free zero_digest */ 1105 1106 zero_data = kzalloc(1 << v->data_dev_block_bits, GFP_KERNEL); 1107 1108 if (!zero_data) 1109 goto out; 1110 1111 r = verity_hash(v, io, zero_data, 1 << v->data_dev_block_bits, 1112 v->zero_digest, true); 1113 1114 out: 1115 kfree(io); 1116 kfree(zero_data); 1117 1118 return r; 1119 } 1120 1121 static inline bool verity_is_verity_mode(const char *arg_name) 1122 { 1123 return (!strcasecmp(arg_name, DM_VERITY_OPT_LOGGING) || 1124 !strcasecmp(arg_name, DM_VERITY_OPT_RESTART) || 1125 !strcasecmp(arg_name, DM_VERITY_OPT_PANIC)); 1126 } 1127 1128 static int verity_parse_verity_mode(struct dm_verity *v, const char *arg_name) 1129 { 1130 if (v->mode) 1131 return -EINVAL; 1132 1133 if (!strcasecmp(arg_name, DM_VERITY_OPT_LOGGING)) 1134 v->mode = DM_VERITY_MODE_LOGGING; 1135 else if (!strcasecmp(arg_name, DM_VERITY_OPT_RESTART)) 1136 v->mode = DM_VERITY_MODE_RESTART; 1137 else if (!strcasecmp(arg_name, DM_VERITY_OPT_PANIC)) 1138 v->mode = DM_VERITY_MODE_PANIC; 1139 1140 return 0; 1141 } 1142 1143 static inline bool verity_is_verity_error_mode(const char *arg_name) 1144 { 1145 return (!strcasecmp(arg_name, DM_VERITY_OPT_ERROR_RESTART) || 1146 !strcasecmp(arg_name, DM_VERITY_OPT_ERROR_PANIC)); 1147 } 1148 1149 static int verity_parse_verity_error_mode(struct dm_verity *v, const char *arg_name) 1150 { 1151 if (v->error_mode) 1152 return -EINVAL; 1153 1154 if (!strcasecmp(arg_name, DM_VERITY_OPT_ERROR_RESTART)) 1155 v->error_mode = DM_VERITY_MODE_RESTART; 1156 else if (!strcasecmp(arg_name, DM_VERITY_OPT_ERROR_PANIC)) 1157 v->error_mode = DM_VERITY_MODE_PANIC; 1158 1159 return 0; 1160 } 1161 1162 static int verity_parse_opt_args(struct dm_arg_set *as, struct dm_verity *v, 1163 struct dm_verity_sig_opts *verify_args, 1164 bool only_modifier_opts) 1165 { 1166 int r = 0; 1167 unsigned int argc; 1168 struct dm_target *ti = v->ti; 1169 const char *arg_name; 1170 1171 static const struct dm_arg _args[] = { 1172 {0, DM_VERITY_OPTS_MAX, "Invalid number of feature args"}, 1173 }; 1174 1175 r = dm_read_arg_group(_args, as, &argc, &ti->error); 1176 if (r) 1177 return -EINVAL; 1178 1179 if (!argc) 1180 return 0; 1181 1182 do { 1183 arg_name = dm_shift_arg(as); 1184 argc--; 1185 1186 if (verity_is_verity_mode(arg_name)) { 1187 if (only_modifier_opts) 1188 continue; 1189 r = verity_parse_verity_mode(v, arg_name); 1190 if (r) { 1191 ti->error = "Conflicting error handling parameters"; 1192 return r; 1193 } 1194 continue; 1195 1196 } else if (verity_is_verity_error_mode(arg_name)) { 1197 if (only_modifier_opts) 1198 continue; 1199 r = verity_parse_verity_error_mode(v, arg_name); 1200 if (r) { 1201 ti->error = "Conflicting error handling parameters"; 1202 return r; 1203 } 1204 continue; 1205 1206 } else if (!strcasecmp(arg_name, DM_VERITY_OPT_IGN_ZEROES)) { 1207 if (only_modifier_opts) 1208 continue; 1209 r = verity_alloc_zero_digest(v); 1210 if (r) { 1211 ti->error = "Cannot allocate zero digest"; 1212 return r; 1213 } 1214 continue; 1215 1216 } else if (!strcasecmp(arg_name, DM_VERITY_OPT_AT_MOST_ONCE)) { 1217 if (only_modifier_opts) 1218 continue; 1219 r = verity_alloc_most_once(v); 1220 if (r) 1221 return r; 1222 continue; 1223 1224 } else if (!strcasecmp(arg_name, DM_VERITY_OPT_TASKLET_VERIFY)) { 1225 v->use_bh_wq = true; 1226 static_branch_inc(&use_bh_wq_enabled); 1227 continue; 1228 1229 } else if (verity_is_fec_opt_arg(arg_name)) { 1230 if (only_modifier_opts) 1231 continue; 1232 r = verity_fec_parse_opt_args(as, v, &argc, arg_name); 1233 if (r) 1234 return r; 1235 continue; 1236 1237 } else if (verity_verify_is_sig_opt_arg(arg_name)) { 1238 if (only_modifier_opts) 1239 continue; 1240 r = verity_verify_sig_parse_opt_args(as, v, 1241 verify_args, 1242 &argc, arg_name); 1243 if (r) 1244 return r; 1245 continue; 1246 1247 } else if (only_modifier_opts) { 1248 /* 1249 * Ignore unrecognized opt, could easily be an extra 1250 * argument to an option whose parsing was skipped. 1251 * Normal parsing (@only_modifier_opts=false) will 1252 * properly parse all options (and their extra args). 1253 */ 1254 continue; 1255 } 1256 1257 DMERR("Unrecognized verity feature request: %s", arg_name); 1258 ti->error = "Unrecognized verity feature request"; 1259 return -EINVAL; 1260 } while (argc && !r); 1261 1262 return r; 1263 } 1264 1265 static int verity_setup_hash_alg(struct dm_verity *v, const char *alg_name) 1266 { 1267 struct dm_target *ti = v->ti; 1268 struct crypto_ahash *ahash; 1269 struct crypto_shash *shash = NULL; 1270 const char *driver_name; 1271 1272 v->alg_name = kstrdup(alg_name, GFP_KERNEL); 1273 if (!v->alg_name) { 1274 ti->error = "Cannot allocate algorithm name"; 1275 return -ENOMEM; 1276 } 1277 1278 /* 1279 * Allocate the hash transformation object that this dm-verity instance 1280 * will use. The vast majority of dm-verity users use CPU-based 1281 * hashing, so when possible use the shash API to minimize the crypto 1282 * API overhead. If the ahash API resolves to a different driver 1283 * (likely an off-CPU hardware offload), use ahash instead. Also use 1284 * ahash if the obsolete dm-verity format with the appended salt is 1285 * being used, so that quirk only needs to be handled in one place. 1286 */ 1287 ahash = crypto_alloc_ahash(alg_name, 0, 1288 v->use_bh_wq ? CRYPTO_ALG_ASYNC : 0); 1289 if (IS_ERR(ahash)) { 1290 ti->error = "Cannot initialize hash function"; 1291 return PTR_ERR(ahash); 1292 } 1293 driver_name = crypto_ahash_driver_name(ahash); 1294 if (v->version >= 1 /* salt prepended, not appended? */) { 1295 shash = crypto_alloc_shash(alg_name, 0, 0); 1296 if (!IS_ERR(shash) && 1297 strcmp(crypto_shash_driver_name(shash), driver_name) != 0) { 1298 /* 1299 * ahash gave a different driver than shash, so probably 1300 * this is a case of real hardware offload. Use ahash. 1301 */ 1302 crypto_free_shash(shash); 1303 shash = NULL; 1304 } 1305 } 1306 if (!IS_ERR_OR_NULL(shash)) { 1307 crypto_free_ahash(ahash); 1308 ahash = NULL; 1309 v->shash_tfm = shash; 1310 v->digest_size = crypto_shash_digestsize(shash); 1311 v->hash_reqsize = sizeof(struct shash_desc) + 1312 crypto_shash_descsize(shash); 1313 DMINFO("%s using shash \"%s\"", alg_name, driver_name); 1314 } else { 1315 v->ahash_tfm = ahash; 1316 static_branch_inc(&ahash_enabled); 1317 v->digest_size = crypto_ahash_digestsize(ahash); 1318 v->hash_reqsize = sizeof(struct ahash_request) + 1319 crypto_ahash_reqsize(ahash); 1320 DMINFO("%s using ahash \"%s\"", alg_name, driver_name); 1321 } 1322 if ((1 << v->hash_dev_block_bits) < v->digest_size * 2) { 1323 ti->error = "Digest size too big"; 1324 return -EINVAL; 1325 } 1326 return 0; 1327 } 1328 1329 static int verity_setup_salt_and_hashstate(struct dm_verity *v, const char *arg) 1330 { 1331 struct dm_target *ti = v->ti; 1332 1333 if (strcmp(arg, "-") != 0) { 1334 v->salt_size = strlen(arg) / 2; 1335 v->salt = kmalloc(v->salt_size, GFP_KERNEL); 1336 if (!v->salt) { 1337 ti->error = "Cannot allocate salt"; 1338 return -ENOMEM; 1339 } 1340 if (strlen(arg) != v->salt_size * 2 || 1341 hex2bin(v->salt, arg, v->salt_size)) { 1342 ti->error = "Invalid salt"; 1343 return -EINVAL; 1344 } 1345 } 1346 if (v->shash_tfm) { 1347 SHASH_DESC_ON_STACK(desc, v->shash_tfm); 1348 int r; 1349 1350 /* 1351 * Compute the pre-salted hash state that can be passed to 1352 * crypto_shash_import() for each block later. 1353 */ 1354 v->initial_hashstate = kmalloc( 1355 crypto_shash_statesize(v->shash_tfm), GFP_KERNEL); 1356 if (!v->initial_hashstate) { 1357 ti->error = "Cannot allocate initial hash state"; 1358 return -ENOMEM; 1359 } 1360 desc->tfm = v->shash_tfm; 1361 r = crypto_shash_init(desc) ?: 1362 crypto_shash_update(desc, v->salt, v->salt_size) ?: 1363 crypto_shash_export(desc, v->initial_hashstate); 1364 if (r) { 1365 ti->error = "Cannot set up initial hash state"; 1366 return r; 1367 } 1368 } 1369 return 0; 1370 } 1371 1372 /* 1373 * Target parameters: 1374 * <version> The current format is version 1. 1375 * Vsn 0 is compatible with original Chromium OS releases. 1376 * <data device> 1377 * <hash device> 1378 * <data block size> 1379 * <hash block size> 1380 * <the number of data blocks> 1381 * <hash start block> 1382 * <algorithm> 1383 * <digest> 1384 * <salt> Hex string or "-" if no salt. 1385 */ 1386 static int verity_ctr(struct dm_target *ti, unsigned int argc, char **argv) 1387 { 1388 struct dm_verity *v; 1389 struct dm_verity_sig_opts verify_args = {0}; 1390 struct dm_arg_set as; 1391 unsigned int num; 1392 unsigned long long num_ll; 1393 int r; 1394 int i; 1395 sector_t hash_position; 1396 char dummy; 1397 char *root_hash_digest_to_validate; 1398 1399 v = kzalloc(sizeof(struct dm_verity), GFP_KERNEL); 1400 if (!v) { 1401 ti->error = "Cannot allocate verity structure"; 1402 return -ENOMEM; 1403 } 1404 ti->private = v; 1405 v->ti = ti; 1406 1407 r = verity_fec_ctr_alloc(v); 1408 if (r) 1409 goto bad; 1410 1411 if ((dm_table_get_mode(ti->table) & ~BLK_OPEN_READ)) { 1412 ti->error = "Device must be readonly"; 1413 r = -EINVAL; 1414 goto bad; 1415 } 1416 1417 if (argc < 10) { 1418 ti->error = "Not enough arguments"; 1419 r = -EINVAL; 1420 goto bad; 1421 } 1422 1423 /* Parse optional parameters that modify primary args */ 1424 if (argc > 10) { 1425 as.argc = argc - 10; 1426 as.argv = argv + 10; 1427 r = verity_parse_opt_args(&as, v, &verify_args, true); 1428 if (r < 0) 1429 goto bad; 1430 } 1431 1432 if (sscanf(argv[0], "%u%c", &num, &dummy) != 1 || 1433 num > 1) { 1434 ti->error = "Invalid version"; 1435 r = -EINVAL; 1436 goto bad; 1437 } 1438 v->version = num; 1439 1440 r = dm_get_device(ti, argv[1], BLK_OPEN_READ, &v->data_dev); 1441 if (r) { 1442 ti->error = "Data device lookup failed"; 1443 goto bad; 1444 } 1445 1446 r = dm_get_device(ti, argv[2], BLK_OPEN_READ, &v->hash_dev); 1447 if (r) { 1448 ti->error = "Hash device lookup failed"; 1449 goto bad; 1450 } 1451 1452 if (sscanf(argv[3], "%u%c", &num, &dummy) != 1 || 1453 !num || (num & (num - 1)) || 1454 num < bdev_logical_block_size(v->data_dev->bdev) || 1455 num > PAGE_SIZE) { 1456 ti->error = "Invalid data device block size"; 1457 r = -EINVAL; 1458 goto bad; 1459 } 1460 v->data_dev_block_bits = __ffs(num); 1461 1462 if (sscanf(argv[4], "%u%c", &num, &dummy) != 1 || 1463 !num || (num & (num - 1)) || 1464 num < bdev_logical_block_size(v->hash_dev->bdev) || 1465 num > INT_MAX) { 1466 ti->error = "Invalid hash device block size"; 1467 r = -EINVAL; 1468 goto bad; 1469 } 1470 v->hash_dev_block_bits = __ffs(num); 1471 1472 if (sscanf(argv[5], "%llu%c", &num_ll, &dummy) != 1 || 1473 (sector_t)(num_ll << (v->data_dev_block_bits - SECTOR_SHIFT)) 1474 >> (v->data_dev_block_bits - SECTOR_SHIFT) != num_ll) { 1475 ti->error = "Invalid data blocks"; 1476 r = -EINVAL; 1477 goto bad; 1478 } 1479 v->data_blocks = num_ll; 1480 1481 if (ti->len > (v->data_blocks << (v->data_dev_block_bits - SECTOR_SHIFT))) { 1482 ti->error = "Data device is too small"; 1483 r = -EINVAL; 1484 goto bad; 1485 } 1486 1487 if (sscanf(argv[6], "%llu%c", &num_ll, &dummy) != 1 || 1488 (sector_t)(num_ll << (v->hash_dev_block_bits - SECTOR_SHIFT)) 1489 >> (v->hash_dev_block_bits - SECTOR_SHIFT) != num_ll) { 1490 ti->error = "Invalid hash start"; 1491 r = -EINVAL; 1492 goto bad; 1493 } 1494 v->hash_start = num_ll; 1495 1496 r = verity_setup_hash_alg(v, argv[7]); 1497 if (r) 1498 goto bad; 1499 1500 v->root_digest = kmalloc(v->digest_size, GFP_KERNEL); 1501 if (!v->root_digest) { 1502 ti->error = "Cannot allocate root digest"; 1503 r = -ENOMEM; 1504 goto bad; 1505 } 1506 if (strlen(argv[8]) != v->digest_size * 2 || 1507 hex2bin(v->root_digest, argv[8], v->digest_size)) { 1508 ti->error = "Invalid root digest"; 1509 r = -EINVAL; 1510 goto bad; 1511 } 1512 root_hash_digest_to_validate = argv[8]; 1513 1514 r = verity_setup_salt_and_hashstate(v, argv[9]); 1515 if (r) 1516 goto bad; 1517 1518 argv += 10; 1519 argc -= 10; 1520 1521 /* Optional parameters */ 1522 if (argc) { 1523 as.argc = argc; 1524 as.argv = argv; 1525 r = verity_parse_opt_args(&as, v, &verify_args, false); 1526 if (r < 0) 1527 goto bad; 1528 } 1529 1530 /* Root hash signature is a optional parameter*/ 1531 r = verity_verify_root_hash(root_hash_digest_to_validate, 1532 strlen(root_hash_digest_to_validate), 1533 verify_args.sig, 1534 verify_args.sig_size); 1535 if (r < 0) { 1536 ti->error = "Root hash verification failed"; 1537 goto bad; 1538 } 1539 1540 r = verity_init_sig(v, verify_args.sig, verify_args.sig_size); 1541 if (r < 0) { 1542 ti->error = "Cannot allocate root digest signature"; 1543 goto bad; 1544 } 1545 1546 v->hash_per_block_bits = 1547 __fls((1 << v->hash_dev_block_bits) / v->digest_size); 1548 1549 v->levels = 0; 1550 if (v->data_blocks) 1551 while (v->hash_per_block_bits * v->levels < 64 && 1552 (unsigned long long)(v->data_blocks - 1) >> 1553 (v->hash_per_block_bits * v->levels)) 1554 v->levels++; 1555 1556 if (v->levels > DM_VERITY_MAX_LEVELS) { 1557 ti->error = "Too many tree levels"; 1558 r = -E2BIG; 1559 goto bad; 1560 } 1561 1562 hash_position = v->hash_start; 1563 for (i = v->levels - 1; i >= 0; i--) { 1564 sector_t s; 1565 1566 v->hash_level_block[i] = hash_position; 1567 s = (v->data_blocks + ((sector_t)1 << ((i + 1) * v->hash_per_block_bits)) - 1) 1568 >> ((i + 1) * v->hash_per_block_bits); 1569 if (hash_position + s < hash_position) { 1570 ti->error = "Hash device offset overflow"; 1571 r = -E2BIG; 1572 goto bad; 1573 } 1574 hash_position += s; 1575 } 1576 v->hash_blocks = hash_position; 1577 1578 r = mempool_init_page_pool(&v->recheck_pool, 1, 0); 1579 if (unlikely(r)) { 1580 ti->error = "Cannot allocate mempool"; 1581 goto bad; 1582 } 1583 1584 v->io = dm_io_client_create(); 1585 if (IS_ERR(v->io)) { 1586 r = PTR_ERR(v->io); 1587 v->io = NULL; 1588 ti->error = "Cannot allocate dm io"; 1589 goto bad; 1590 } 1591 1592 v->bufio = dm_bufio_client_create(v->hash_dev->bdev, 1593 1 << v->hash_dev_block_bits, 1, sizeof(struct buffer_aux), 1594 dm_bufio_alloc_callback, NULL, 1595 v->use_bh_wq ? DM_BUFIO_CLIENT_NO_SLEEP : 0); 1596 if (IS_ERR(v->bufio)) { 1597 ti->error = "Cannot initialize dm-bufio"; 1598 r = PTR_ERR(v->bufio); 1599 v->bufio = NULL; 1600 goto bad; 1601 } 1602 1603 if (dm_bufio_get_device_size(v->bufio) < v->hash_blocks) { 1604 ti->error = "Hash device is too small"; 1605 r = -E2BIG; 1606 goto bad; 1607 } 1608 1609 /* 1610 * Using WQ_HIGHPRI improves throughput and completion latency by 1611 * reducing wait times when reading from a dm-verity device. 1612 * 1613 * Also as required for the "try_verify_in_tasklet" feature: WQ_HIGHPRI 1614 * allows verify_wq to preempt softirq since verification in BH workqueue 1615 * will fall-back to using it for error handling (or if the bufio cache 1616 * doesn't have required hashes). 1617 */ 1618 v->verify_wq = alloc_workqueue("kverityd", WQ_MEM_RECLAIM | WQ_HIGHPRI, 0); 1619 if (!v->verify_wq) { 1620 ti->error = "Cannot allocate workqueue"; 1621 r = -ENOMEM; 1622 goto bad; 1623 } 1624 1625 ti->per_io_data_size = sizeof(struct dm_verity_io) + v->hash_reqsize; 1626 1627 r = verity_fec_ctr(v); 1628 if (r) 1629 goto bad; 1630 1631 ti->per_io_data_size = roundup(ti->per_io_data_size, 1632 __alignof__(struct dm_verity_io)); 1633 1634 verity_verify_sig_opts_cleanup(&verify_args); 1635 1636 dm_audit_log_ctr(DM_MSG_PREFIX, ti, 1); 1637 1638 return 0; 1639 1640 bad: 1641 1642 verity_verify_sig_opts_cleanup(&verify_args); 1643 dm_audit_log_ctr(DM_MSG_PREFIX, ti, 0); 1644 verity_dtr(ti); 1645 1646 return r; 1647 } 1648 1649 /* 1650 * Get the verity mode (error behavior) of a verity target. 1651 * 1652 * Returns the verity mode of the target, or -EINVAL if 'ti' is not a verity 1653 * target. 1654 */ 1655 int dm_verity_get_mode(struct dm_target *ti) 1656 { 1657 struct dm_verity *v = ti->private; 1658 1659 if (!dm_is_verity_target(ti)) 1660 return -EINVAL; 1661 1662 return v->mode; 1663 } 1664 1665 /* 1666 * Get the root digest of a verity target. 1667 * 1668 * Returns a copy of the root digest, the caller is responsible for 1669 * freeing the memory of the digest. 1670 */ 1671 int dm_verity_get_root_digest(struct dm_target *ti, u8 **root_digest, unsigned int *digest_size) 1672 { 1673 struct dm_verity *v = ti->private; 1674 1675 if (!dm_is_verity_target(ti)) 1676 return -EINVAL; 1677 1678 *root_digest = kmemdup(v->root_digest, v->digest_size, GFP_KERNEL); 1679 if (*root_digest == NULL) 1680 return -ENOMEM; 1681 1682 *digest_size = v->digest_size; 1683 1684 return 0; 1685 } 1686 1687 #ifdef CONFIG_SECURITY 1688 1689 #ifdef CONFIG_DM_VERITY_VERIFY_ROOTHASH_SIG 1690 1691 static int verity_security_set_signature(struct block_device *bdev, 1692 struct dm_verity *v) 1693 { 1694 /* 1695 * if the dm-verity target is unsigned, v->root_digest_sig will 1696 * be NULL, and the hook call is still required to let LSMs mark 1697 * the device as unsigned. This information is crucial for LSMs to 1698 * block operations such as execution on unsigned files 1699 */ 1700 return security_bdev_setintegrity(bdev, 1701 LSM_INT_DMVERITY_SIG_VALID, 1702 v->root_digest_sig, 1703 v->sig_size); 1704 } 1705 1706 #else 1707 1708 static inline int verity_security_set_signature(struct block_device *bdev, 1709 struct dm_verity *v) 1710 { 1711 return 0; 1712 } 1713 1714 #endif /* CONFIG_DM_VERITY_VERIFY_ROOTHASH_SIG */ 1715 1716 /* 1717 * Expose verity target's root hash and signature data to LSMs before resume. 1718 * 1719 * Returns 0 on success, or -ENOMEM if the system is out of memory. 1720 */ 1721 static int verity_preresume(struct dm_target *ti) 1722 { 1723 struct block_device *bdev; 1724 struct dm_verity_digest root_digest; 1725 struct dm_verity *v; 1726 int r; 1727 1728 v = ti->private; 1729 bdev = dm_disk(dm_table_get_md(ti->table))->part0; 1730 root_digest.digest = v->root_digest; 1731 root_digest.digest_len = v->digest_size; 1732 if (static_branch_unlikely(&ahash_enabled) && !v->shash_tfm) 1733 root_digest.alg = crypto_ahash_alg_name(v->ahash_tfm); 1734 else 1735 root_digest.alg = crypto_shash_alg_name(v->shash_tfm); 1736 1737 r = security_bdev_setintegrity(bdev, LSM_INT_DMVERITY_ROOTHASH, &root_digest, 1738 sizeof(root_digest)); 1739 if (r) 1740 return r; 1741 1742 r = verity_security_set_signature(bdev, v); 1743 if (r) 1744 goto bad; 1745 1746 return 0; 1747 1748 bad: 1749 1750 security_bdev_setintegrity(bdev, LSM_INT_DMVERITY_ROOTHASH, NULL, 0); 1751 1752 return r; 1753 } 1754 1755 #endif /* CONFIG_SECURITY */ 1756 1757 static struct target_type verity_target = { 1758 .name = "verity", 1759 /* Note: the LSMs depend on the singleton and immutable features */ 1760 .features = DM_TARGET_SINGLETON | DM_TARGET_IMMUTABLE, 1761 .version = {1, 10, 0}, 1762 .module = THIS_MODULE, 1763 .ctr = verity_ctr, 1764 .dtr = verity_dtr, 1765 .map = verity_map, 1766 .status = verity_status, 1767 .prepare_ioctl = verity_prepare_ioctl, 1768 .iterate_devices = verity_iterate_devices, 1769 .io_hints = verity_io_hints, 1770 #ifdef CONFIG_SECURITY 1771 .preresume = verity_preresume, 1772 #endif /* CONFIG_SECURITY */ 1773 }; 1774 module_dm(verity); 1775 1776 /* 1777 * Check whether a DM target is a verity target. 1778 */ 1779 bool dm_is_verity_target(struct dm_target *ti) 1780 { 1781 return ti->type == &verity_target; 1782 } 1783 1784 MODULE_AUTHOR("Mikulas Patocka <mpatocka@redhat.com>"); 1785 MODULE_AUTHOR("Mandeep Baines <msb@chromium.org>"); 1786 MODULE_AUTHOR("Will Drewry <wad@chromium.org>"); 1787 MODULE_DESCRIPTION(DM_NAME " target for transparent disk integrity checking"); 1788 MODULE_LICENSE("GPL"); 1789