xref: /linux/drivers/md/dm-verity-fec.c (revision 80d443e8876602be2c130f79c4de81e12e2a700d)
1 /*
2  * Copyright (C) 2015 Google, Inc.
3  *
4  * Author: Sami Tolvanen <samitolvanen@google.com>
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License as published by the Free
8  * Software Foundation; either version 2 of the License, or (at your option)
9  * any later version.
10  */
11 
12 #include "dm-verity-fec.h"
13 #include <linux/math64.h>
14 
15 #define DM_MSG_PREFIX	"verity-fec"
16 
17 /*
18  * If error correction has been configured, returns true.
19  */
20 bool verity_fec_is_enabled(struct dm_verity *v)
21 {
22 	return v->fec && v->fec->dev;
23 }
24 
25 /*
26  * Return a pointer to dm_verity_fec_io after dm_verity_io and its variable
27  * length fields.
28  */
29 static inline struct dm_verity_fec_io *fec_io(struct dm_verity_io *io)
30 {
31 	return (struct dm_verity_fec_io *) verity_io_digest_end(io->v, io);
32 }
33 
34 /*
35  * Return an interleaved offset for a byte in RS block.
36  */
37 static inline u64 fec_interleave(struct dm_verity *v, u64 offset)
38 {
39 	u32 mod;
40 
41 	mod = do_div(offset, v->fec->rsn);
42 	return offset + mod * (v->fec->rounds << v->data_dev_block_bits);
43 }
44 
45 /*
46  * Decode an RS block using Reed-Solomon.
47  */
48 static int fec_decode_rs8(struct dm_verity *v, struct dm_verity_fec_io *fio,
49 			  u8 *data, u8 *fec, int neras)
50 {
51 	int i;
52 	uint16_t par[DM_VERITY_FEC_RSM - DM_VERITY_FEC_MIN_RSN];
53 
54 	for (i = 0; i < v->fec->roots; i++)
55 		par[i] = fec[i];
56 
57 	return decode_rs8(fio->rs, data, par, v->fec->rsn, NULL, neras,
58 			  fio->erasures, 0, NULL);
59 }
60 
61 /*
62  * Read error-correcting codes for the requested RS block. Returns a pointer
63  * to the data block. Caller is responsible for releasing buf.
64  */
65 static u8 *fec_read_parity(struct dm_verity *v, u64 rsb, int index,
66 			   unsigned *offset, struct dm_buffer **buf)
67 {
68 	u64 position, block;
69 	u8 *res;
70 
71 	position = (index + rsb) * v->fec->roots;
72 	block = position >> v->data_dev_block_bits;
73 	*offset = (unsigned)(position - (block << v->data_dev_block_bits));
74 
75 	res = dm_bufio_read(v->fec->bufio, v->fec->start + block, buf);
76 	if (unlikely(IS_ERR(res))) {
77 		DMERR("%s: FEC %llu: parity read failed (block %llu): %ld",
78 		      v->data_dev->name, (unsigned long long)rsb,
79 		      (unsigned long long)(v->fec->start + block),
80 		      PTR_ERR(res));
81 		*buf = NULL;
82 	}
83 
84 	return res;
85 }
86 
87 /* Loop over each preallocated buffer slot. */
88 #define fec_for_each_prealloc_buffer(__i) \
89 	for (__i = 0; __i < DM_VERITY_FEC_BUF_PREALLOC; __i++)
90 
91 /* Loop over each extra buffer slot. */
92 #define fec_for_each_extra_buffer(io, __i) \
93 	for (__i = DM_VERITY_FEC_BUF_PREALLOC; __i < DM_VERITY_FEC_BUF_MAX; __i++)
94 
95 /* Loop over each allocated buffer. */
96 #define fec_for_each_buffer(io, __i) \
97 	for (__i = 0; __i < (io)->nbufs; __i++)
98 
99 /* Loop over each RS block in each allocated buffer. */
100 #define fec_for_each_buffer_rs_block(io, __i, __j) \
101 	fec_for_each_buffer(io, __i) \
102 		for (__j = 0; __j < 1 << DM_VERITY_FEC_BUF_RS_BITS; __j++)
103 
104 /*
105  * Return a pointer to the current RS block when called inside
106  * fec_for_each_buffer_rs_block.
107  */
108 static inline u8 *fec_buffer_rs_block(struct dm_verity *v,
109 				      struct dm_verity_fec_io *fio,
110 				      unsigned i, unsigned j)
111 {
112 	return &fio->bufs[i][j * v->fec->rsn];
113 }
114 
115 /*
116  * Return an index to the current RS block when called inside
117  * fec_for_each_buffer_rs_block.
118  */
119 static inline unsigned fec_buffer_rs_index(unsigned i, unsigned j)
120 {
121 	return (i << DM_VERITY_FEC_BUF_RS_BITS) + j;
122 }
123 
124 /*
125  * Decode all RS blocks from buffers and copy corrected bytes into fio->output
126  * starting from block_offset.
127  */
128 static int fec_decode_bufs(struct dm_verity *v, struct dm_verity_fec_io *fio,
129 			   u64 rsb, int byte_index, unsigned block_offset,
130 			   int neras)
131 {
132 	int r, corrected = 0, res;
133 	struct dm_buffer *buf;
134 	unsigned n, i, offset;
135 	u8 *par, *block;
136 
137 	par = fec_read_parity(v, rsb, block_offset, &offset, &buf);
138 	if (IS_ERR(par))
139 		return PTR_ERR(par);
140 
141 	/*
142 	 * Decode the RS blocks we have in bufs. Each RS block results in
143 	 * one corrected target byte and consumes fec->roots parity bytes.
144 	 */
145 	fec_for_each_buffer_rs_block(fio, n, i) {
146 		block = fec_buffer_rs_block(v, fio, n, i);
147 		res = fec_decode_rs8(v, fio, block, &par[offset], neras);
148 		if (res < 0) {
149 			dm_bufio_release(buf);
150 
151 			r = res;
152 			goto error;
153 		}
154 
155 		corrected += res;
156 		fio->output[block_offset] = block[byte_index];
157 
158 		block_offset++;
159 		if (block_offset >= 1 << v->data_dev_block_bits)
160 			goto done;
161 
162 		/* read the next block when we run out of parity bytes */
163 		offset += v->fec->roots;
164 		if (offset >= 1 << v->data_dev_block_bits) {
165 			dm_bufio_release(buf);
166 
167 			par = fec_read_parity(v, rsb, block_offset, &offset, &buf);
168 			if (unlikely(IS_ERR(par)))
169 				return PTR_ERR(par);
170 		}
171 	}
172 done:
173 	r = corrected;
174 error:
175 	if (r < 0 && neras)
176 		DMERR_LIMIT("%s: FEC %llu: failed to correct: %d",
177 			    v->data_dev->name, (unsigned long long)rsb, r);
178 	else if (r > 0)
179 		DMWARN_LIMIT("%s: FEC %llu: corrected %d errors",
180 			     v->data_dev->name, (unsigned long long)rsb, r);
181 
182 	return r;
183 }
184 
185 /*
186  * Locate data block erasures using verity hashes.
187  */
188 static int fec_is_erasure(struct dm_verity *v, struct dm_verity_io *io,
189 			  u8 *want_digest, u8 *data)
190 {
191 	if (unlikely(verity_hash(v, verity_io_hash_desc(v, io),
192 				 data, 1 << v->data_dev_block_bits,
193 				 verity_io_real_digest(v, io))))
194 		return 0;
195 
196 	return memcmp(verity_io_real_digest(v, io), want_digest,
197 		      v->digest_size) != 0;
198 }
199 
200 /*
201  * Read data blocks that are part of the RS block and deinterleave as much as
202  * fits into buffers. Check for erasure locations if @neras is non-NULL.
203  */
204 static int fec_read_bufs(struct dm_verity *v, struct dm_verity_io *io,
205 			 u64 rsb, u64 target, unsigned block_offset,
206 			 int *neras)
207 {
208 	bool is_zero;
209 	int i, j, target_index = -1;
210 	struct dm_buffer *buf;
211 	struct dm_bufio_client *bufio;
212 	struct dm_verity_fec_io *fio = fec_io(io);
213 	u64 block, ileaved;
214 	u8 *bbuf, *rs_block;
215 	u8 want_digest[v->digest_size];
216 	unsigned n, k;
217 
218 	if (neras)
219 		*neras = 0;
220 
221 	/*
222 	 * read each of the rsn data blocks that are part of the RS block, and
223 	 * interleave contents to available bufs
224 	 */
225 	for (i = 0; i < v->fec->rsn; i++) {
226 		ileaved = fec_interleave(v, rsb * v->fec->rsn + i);
227 
228 		/*
229 		 * target is the data block we want to correct, target_index is
230 		 * the index of this block within the rsn RS blocks
231 		 */
232 		if (ileaved == target)
233 			target_index = i;
234 
235 		block = ileaved >> v->data_dev_block_bits;
236 		bufio = v->fec->data_bufio;
237 
238 		if (block >= v->data_blocks) {
239 			block -= v->data_blocks;
240 
241 			/*
242 			 * blocks outside the area were assumed to contain
243 			 * zeros when encoding data was generated
244 			 */
245 			if (unlikely(block >= v->fec->hash_blocks))
246 				continue;
247 
248 			block += v->hash_start;
249 			bufio = v->bufio;
250 		}
251 
252 		bbuf = dm_bufio_read(bufio, block, &buf);
253 		if (unlikely(IS_ERR(bbuf))) {
254 			DMWARN_LIMIT("%s: FEC %llu: read failed (%llu): %ld",
255 				     v->data_dev->name,
256 				     (unsigned long long)rsb,
257 				     (unsigned long long)block, PTR_ERR(bbuf));
258 
259 			/* assume the block is corrupted */
260 			if (neras && *neras <= v->fec->roots)
261 				fio->erasures[(*neras)++] = i;
262 
263 			continue;
264 		}
265 
266 		/* locate erasures if the block is on the data device */
267 		if (bufio == v->fec->data_bufio &&
268 		    verity_hash_for_block(v, io, block, want_digest,
269 					  &is_zero) == 0) {
270 			/* skip known zero blocks entirely */
271 			if (is_zero)
272 				continue;
273 
274 			/*
275 			 * skip if we have already found the theoretical
276 			 * maximum number (i.e. fec->roots) of erasures
277 			 */
278 			if (neras && *neras <= v->fec->roots &&
279 			    fec_is_erasure(v, io, want_digest, bbuf))
280 				fio->erasures[(*neras)++] = i;
281 		}
282 
283 		/*
284 		 * deinterleave and copy the bytes that fit into bufs,
285 		 * starting from block_offset
286 		 */
287 		fec_for_each_buffer_rs_block(fio, n, j) {
288 			k = fec_buffer_rs_index(n, j) + block_offset;
289 
290 			if (k >= 1 << v->data_dev_block_bits)
291 				goto done;
292 
293 			rs_block = fec_buffer_rs_block(v, fio, n, j);
294 			rs_block[i] = bbuf[k];
295 		}
296 done:
297 		dm_bufio_release(buf);
298 	}
299 
300 	return target_index;
301 }
302 
303 /*
304  * Allocate RS control structure and FEC buffers from preallocated mempools,
305  * and attempt to allocate as many extra buffers as available.
306  */
307 static int fec_alloc_bufs(struct dm_verity *v, struct dm_verity_fec_io *fio)
308 {
309 	unsigned n;
310 
311 	if (!fio->rs) {
312 		fio->rs = mempool_alloc(v->fec->rs_pool, 0);
313 		if (unlikely(!fio->rs)) {
314 			DMERR("failed to allocate RS");
315 			return -ENOMEM;
316 		}
317 	}
318 
319 	fec_for_each_prealloc_buffer(n) {
320 		if (fio->bufs[n])
321 			continue;
322 
323 		fio->bufs[n] = mempool_alloc(v->fec->prealloc_pool, GFP_NOIO);
324 		if (unlikely(!fio->bufs[n])) {
325 			DMERR("failed to allocate FEC buffer");
326 			return -ENOMEM;
327 		}
328 	}
329 
330 	/* try to allocate the maximum number of buffers */
331 	fec_for_each_extra_buffer(fio, n) {
332 		if (fio->bufs[n])
333 			continue;
334 
335 		fio->bufs[n] = mempool_alloc(v->fec->extra_pool, GFP_NOIO);
336 		/* we can manage with even one buffer if necessary */
337 		if (unlikely(!fio->bufs[n]))
338 			break;
339 	}
340 	fio->nbufs = n;
341 
342 	if (!fio->output) {
343 		fio->output = mempool_alloc(v->fec->output_pool, GFP_NOIO);
344 
345 		if (!fio->output) {
346 			DMERR("failed to allocate FEC page");
347 			return -ENOMEM;
348 		}
349 	}
350 
351 	return 0;
352 }
353 
354 /*
355  * Initialize buffers and clear erasures. fec_read_bufs() assumes buffers are
356  * zeroed before deinterleaving.
357  */
358 static void fec_init_bufs(struct dm_verity *v, struct dm_verity_fec_io *fio)
359 {
360 	unsigned n;
361 
362 	fec_for_each_buffer(fio, n)
363 		memset(fio->bufs[n], 0, v->fec->rsn << DM_VERITY_FEC_BUF_RS_BITS);
364 
365 	memset(fio->erasures, 0, sizeof(fio->erasures));
366 }
367 
368 /*
369  * Decode all RS blocks in a single data block and return the target block
370  * (indicated by @offset) in fio->output. If @use_erasures is non-zero, uses
371  * hashes to locate erasures.
372  */
373 static int fec_decode_rsb(struct dm_verity *v, struct dm_verity_io *io,
374 			  struct dm_verity_fec_io *fio, u64 rsb, u64 offset,
375 			  bool use_erasures)
376 {
377 	int r, neras = 0;
378 	unsigned pos;
379 
380 	r = fec_alloc_bufs(v, fio);
381 	if (unlikely(r < 0))
382 		return r;
383 
384 	for (pos = 0; pos < 1 << v->data_dev_block_bits; ) {
385 		fec_init_bufs(v, fio);
386 
387 		r = fec_read_bufs(v, io, rsb, offset, pos,
388 				  use_erasures ? &neras : NULL);
389 		if (unlikely(r < 0))
390 			return r;
391 
392 		r = fec_decode_bufs(v, fio, rsb, r, pos, neras);
393 		if (r < 0)
394 			return r;
395 
396 		pos += fio->nbufs << DM_VERITY_FEC_BUF_RS_BITS;
397 	}
398 
399 	/* Always re-validate the corrected block against the expected hash */
400 	r = verity_hash(v, verity_io_hash_desc(v, io), fio->output,
401 			1 << v->data_dev_block_bits,
402 			verity_io_real_digest(v, io));
403 	if (unlikely(r < 0))
404 		return r;
405 
406 	if (memcmp(verity_io_real_digest(v, io), verity_io_want_digest(v, io),
407 		   v->digest_size)) {
408 		DMERR_LIMIT("%s: FEC %llu: failed to correct (%d erasures)",
409 			    v->data_dev->name, (unsigned long long)rsb, neras);
410 		return -EILSEQ;
411 	}
412 
413 	return 0;
414 }
415 
416 static int fec_bv_copy(struct dm_verity *v, struct dm_verity_io *io, u8 *data,
417 		       size_t len)
418 {
419 	struct dm_verity_fec_io *fio = fec_io(io);
420 
421 	memcpy(data, &fio->output[fio->output_pos], len);
422 	fio->output_pos += len;
423 
424 	return 0;
425 }
426 
427 /*
428  * Correct errors in a block. Copies corrected block to dest if non-NULL,
429  * otherwise to a bio_vec starting from iter.
430  */
431 int verity_fec_decode(struct dm_verity *v, struct dm_verity_io *io,
432 		      enum verity_block_type type, sector_t block, u8 *dest,
433 		      struct bvec_iter *iter)
434 {
435 	int r;
436 	struct dm_verity_fec_io *fio = fec_io(io);
437 	u64 offset, res, rsb;
438 
439 	if (!verity_fec_is_enabled(v))
440 		return -EOPNOTSUPP;
441 
442 	if (type == DM_VERITY_BLOCK_TYPE_METADATA)
443 		block += v->data_blocks;
444 
445 	/*
446 	 * For RS(M, N), the continuous FEC data is divided into blocks of N
447 	 * bytes. Since block size may not be divisible by N, the last block
448 	 * is zero padded when decoding.
449 	 *
450 	 * Each byte of the block is covered by a different RS(M, N) code,
451 	 * and each code is interleaved over N blocks to make it less likely
452 	 * that bursty corruption will leave us in unrecoverable state.
453 	 */
454 
455 	offset = block << v->data_dev_block_bits;
456 	res = div64_u64(offset, v->fec->rounds << v->data_dev_block_bits);
457 
458 	/*
459 	 * The base RS block we can feed to the interleaver to find out all
460 	 * blocks required for decoding.
461 	 */
462 	rsb = offset - res * (v->fec->rounds << v->data_dev_block_bits);
463 
464 	/*
465 	 * Locating erasures is slow, so attempt to recover the block without
466 	 * them first. Do a second attempt with erasures if the corruption is
467 	 * bad enough.
468 	 */
469 	r = fec_decode_rsb(v, io, fio, rsb, offset, false);
470 	if (r < 0) {
471 		r = fec_decode_rsb(v, io, fio, rsb, offset, true);
472 		if (r < 0)
473 			return r;
474 	}
475 
476 	if (dest)
477 		memcpy(dest, fio->output, 1 << v->data_dev_block_bits);
478 	else if (iter) {
479 		fio->output_pos = 0;
480 		r = verity_for_bv_block(v, io, iter, fec_bv_copy);
481 	}
482 
483 	return r;
484 }
485 
486 /*
487  * Clean up per-bio data.
488  */
489 void verity_fec_finish_io(struct dm_verity_io *io)
490 {
491 	unsigned n;
492 	struct dm_verity_fec *f = io->v->fec;
493 	struct dm_verity_fec_io *fio = fec_io(io);
494 
495 	if (!verity_fec_is_enabled(io->v))
496 		return;
497 
498 	mempool_free(fio->rs, f->rs_pool);
499 
500 	fec_for_each_prealloc_buffer(n)
501 		mempool_free(fio->bufs[n], f->prealloc_pool);
502 
503 	fec_for_each_extra_buffer(fio, n)
504 		mempool_free(fio->bufs[n], f->extra_pool);
505 
506 	mempool_free(fio->output, f->output_pool);
507 }
508 
509 /*
510  * Initialize per-bio data.
511  */
512 void verity_fec_init_io(struct dm_verity_io *io)
513 {
514 	struct dm_verity_fec_io *fio = fec_io(io);
515 
516 	if (!verity_fec_is_enabled(io->v))
517 		return;
518 
519 	fio->rs = NULL;
520 	memset(fio->bufs, 0, sizeof(fio->bufs));
521 	fio->nbufs = 0;
522 	fio->output = NULL;
523 }
524 
525 /*
526  * Append feature arguments and values to the status table.
527  */
528 unsigned verity_fec_status_table(struct dm_verity *v, unsigned sz,
529 				 char *result, unsigned maxlen)
530 {
531 	if (!verity_fec_is_enabled(v))
532 		return sz;
533 
534 	DMEMIT(" " DM_VERITY_OPT_FEC_DEV " %s "
535 	       DM_VERITY_OPT_FEC_BLOCKS " %llu "
536 	       DM_VERITY_OPT_FEC_START " %llu "
537 	       DM_VERITY_OPT_FEC_ROOTS " %d",
538 	       v->fec->dev->name,
539 	       (unsigned long long)v->fec->blocks,
540 	       (unsigned long long)v->fec->start,
541 	       v->fec->roots);
542 
543 	return sz;
544 }
545 
546 void verity_fec_dtr(struct dm_verity *v)
547 {
548 	struct dm_verity_fec *f = v->fec;
549 
550 	if (!verity_fec_is_enabled(v))
551 		goto out;
552 
553 	mempool_destroy(f->rs_pool);
554 	mempool_destroy(f->prealloc_pool);
555 	mempool_destroy(f->extra_pool);
556 	kmem_cache_destroy(f->cache);
557 
558 	if (f->data_bufio)
559 		dm_bufio_client_destroy(f->data_bufio);
560 	if (f->bufio)
561 		dm_bufio_client_destroy(f->bufio);
562 
563 	if (f->dev)
564 		dm_put_device(v->ti, f->dev);
565 out:
566 	kfree(f);
567 	v->fec = NULL;
568 }
569 
570 static void *fec_rs_alloc(gfp_t gfp_mask, void *pool_data)
571 {
572 	struct dm_verity *v = (struct dm_verity *)pool_data;
573 
574 	return init_rs(8, 0x11d, 0, 1, v->fec->roots);
575 }
576 
577 static void fec_rs_free(void *element, void *pool_data)
578 {
579 	struct rs_control *rs = (struct rs_control *)element;
580 
581 	if (rs)
582 		free_rs(rs);
583 }
584 
585 bool verity_is_fec_opt_arg(const char *arg_name)
586 {
587 	return (!strcasecmp(arg_name, DM_VERITY_OPT_FEC_DEV) ||
588 		!strcasecmp(arg_name, DM_VERITY_OPT_FEC_BLOCKS) ||
589 		!strcasecmp(arg_name, DM_VERITY_OPT_FEC_START) ||
590 		!strcasecmp(arg_name, DM_VERITY_OPT_FEC_ROOTS));
591 }
592 
593 int verity_fec_parse_opt_args(struct dm_arg_set *as, struct dm_verity *v,
594 			      unsigned *argc, const char *arg_name)
595 {
596 	int r;
597 	struct dm_target *ti = v->ti;
598 	const char *arg_value;
599 	unsigned long long num_ll;
600 	unsigned char num_c;
601 	char dummy;
602 
603 	if (!*argc) {
604 		ti->error = "FEC feature arguments require a value";
605 		return -EINVAL;
606 	}
607 
608 	arg_value = dm_shift_arg(as);
609 	(*argc)--;
610 
611 	if (!strcasecmp(arg_name, DM_VERITY_OPT_FEC_DEV)) {
612 		r = dm_get_device(ti, arg_value, FMODE_READ, &v->fec->dev);
613 		if (r) {
614 			ti->error = "FEC device lookup failed";
615 			return r;
616 		}
617 
618 	} else if (!strcasecmp(arg_name, DM_VERITY_OPT_FEC_BLOCKS)) {
619 		if (sscanf(arg_value, "%llu%c", &num_ll, &dummy) != 1 ||
620 		    ((sector_t)(num_ll << (v->data_dev_block_bits - SECTOR_SHIFT))
621 		     >> (v->data_dev_block_bits - SECTOR_SHIFT) != num_ll)) {
622 			ti->error = "Invalid " DM_VERITY_OPT_FEC_BLOCKS;
623 			return -EINVAL;
624 		}
625 		v->fec->blocks = num_ll;
626 
627 	} else if (!strcasecmp(arg_name, DM_VERITY_OPT_FEC_START)) {
628 		if (sscanf(arg_value, "%llu%c", &num_ll, &dummy) != 1 ||
629 		    ((sector_t)(num_ll << (v->data_dev_block_bits - SECTOR_SHIFT)) >>
630 		     (v->data_dev_block_bits - SECTOR_SHIFT) != num_ll)) {
631 			ti->error = "Invalid " DM_VERITY_OPT_FEC_START;
632 			return -EINVAL;
633 		}
634 		v->fec->start = num_ll;
635 
636 	} else if (!strcasecmp(arg_name, DM_VERITY_OPT_FEC_ROOTS)) {
637 		if (sscanf(arg_value, "%hhu%c", &num_c, &dummy) != 1 || !num_c ||
638 		    num_c < (DM_VERITY_FEC_RSM - DM_VERITY_FEC_MAX_RSN) ||
639 		    num_c > (DM_VERITY_FEC_RSM - DM_VERITY_FEC_MIN_RSN)) {
640 			ti->error = "Invalid " DM_VERITY_OPT_FEC_ROOTS;
641 			return -EINVAL;
642 		}
643 		v->fec->roots = num_c;
644 
645 	} else {
646 		ti->error = "Unrecognized verity FEC feature request";
647 		return -EINVAL;
648 	}
649 
650 	return 0;
651 }
652 
653 /*
654  * Allocate dm_verity_fec for v->fec. Must be called before verity_fec_ctr.
655  */
656 int verity_fec_ctr_alloc(struct dm_verity *v)
657 {
658 	struct dm_verity_fec *f;
659 
660 	f = kzalloc(sizeof(struct dm_verity_fec), GFP_KERNEL);
661 	if (!f) {
662 		v->ti->error = "Cannot allocate FEC structure";
663 		return -ENOMEM;
664 	}
665 	v->fec = f;
666 
667 	return 0;
668 }
669 
670 /*
671  * Validate arguments and preallocate memory. Must be called after arguments
672  * have been parsed using verity_fec_parse_opt_args.
673  */
674 int verity_fec_ctr(struct dm_verity *v)
675 {
676 	struct dm_verity_fec *f = v->fec;
677 	struct dm_target *ti = v->ti;
678 	u64 hash_blocks;
679 
680 	if (!verity_fec_is_enabled(v)) {
681 		verity_fec_dtr(v);
682 		return 0;
683 	}
684 
685 	/*
686 	 * FEC is computed over data blocks, possible metadata, and
687 	 * hash blocks. In other words, FEC covers total of fec_blocks
688 	 * blocks consisting of the following:
689 	 *
690 	 *  data blocks | hash blocks | metadata (optional)
691 	 *
692 	 * We allow metadata after hash blocks to support a use case
693 	 * where all data is stored on the same device and FEC covers
694 	 * the entire area.
695 	 *
696 	 * If metadata is included, we require it to be available on the
697 	 * hash device after the hash blocks.
698 	 */
699 
700 	hash_blocks = v->hash_blocks - v->hash_start;
701 
702 	/*
703 	 * Require matching block sizes for data and hash devices for
704 	 * simplicity.
705 	 */
706 	if (v->data_dev_block_bits != v->hash_dev_block_bits) {
707 		ti->error = "Block sizes must match to use FEC";
708 		return -EINVAL;
709 	}
710 
711 	if (!f->roots) {
712 		ti->error = "Missing " DM_VERITY_OPT_FEC_ROOTS;
713 		return -EINVAL;
714 	}
715 	f->rsn = DM_VERITY_FEC_RSM - f->roots;
716 
717 	if (!f->blocks) {
718 		ti->error = "Missing " DM_VERITY_OPT_FEC_BLOCKS;
719 		return -EINVAL;
720 	}
721 
722 	f->rounds = f->blocks;
723 	if (sector_div(f->rounds, f->rsn))
724 		f->rounds++;
725 
726 	/*
727 	 * Due to optional metadata, f->blocks can be larger than
728 	 * data_blocks and hash_blocks combined.
729 	 */
730 	if (f->blocks < v->data_blocks + hash_blocks || !f->rounds) {
731 		ti->error = "Invalid " DM_VERITY_OPT_FEC_BLOCKS;
732 		return -EINVAL;
733 	}
734 
735 	/*
736 	 * Metadata is accessed through the hash device, so we require
737 	 * it to be large enough.
738 	 */
739 	f->hash_blocks = f->blocks - v->data_blocks;
740 	if (dm_bufio_get_device_size(v->bufio) < f->hash_blocks) {
741 		ti->error = "Hash device is too small for "
742 			DM_VERITY_OPT_FEC_BLOCKS;
743 		return -E2BIG;
744 	}
745 
746 	f->bufio = dm_bufio_client_create(f->dev->bdev,
747 					  1 << v->data_dev_block_bits,
748 					  1, 0, NULL, NULL);
749 	if (IS_ERR(f->bufio)) {
750 		ti->error = "Cannot initialize FEC bufio client";
751 		return PTR_ERR(f->bufio);
752 	}
753 
754 	if (dm_bufio_get_device_size(f->bufio) <
755 	    ((f->start + f->rounds * f->roots) >> v->data_dev_block_bits)) {
756 		ti->error = "FEC device is too small";
757 		return -E2BIG;
758 	}
759 
760 	f->data_bufio = dm_bufio_client_create(v->data_dev->bdev,
761 					       1 << v->data_dev_block_bits,
762 					       1, 0, NULL, NULL);
763 	if (IS_ERR(f->data_bufio)) {
764 		ti->error = "Cannot initialize FEC data bufio client";
765 		return PTR_ERR(f->data_bufio);
766 	}
767 
768 	if (dm_bufio_get_device_size(f->data_bufio) < v->data_blocks) {
769 		ti->error = "Data device is too small";
770 		return -E2BIG;
771 	}
772 
773 	/* Preallocate an rs_control structure for each worker thread */
774 	f->rs_pool = mempool_create(num_online_cpus(), fec_rs_alloc,
775 				    fec_rs_free, (void *) v);
776 	if (!f->rs_pool) {
777 		ti->error = "Cannot allocate RS pool";
778 		return -ENOMEM;
779 	}
780 
781 	f->cache = kmem_cache_create("dm_verity_fec_buffers",
782 				     f->rsn << DM_VERITY_FEC_BUF_RS_BITS,
783 				     0, 0, NULL);
784 	if (!f->cache) {
785 		ti->error = "Cannot create FEC buffer cache";
786 		return -ENOMEM;
787 	}
788 
789 	/* Preallocate DM_VERITY_FEC_BUF_PREALLOC buffers for each thread */
790 	f->prealloc_pool = mempool_create_slab_pool(num_online_cpus() *
791 						    DM_VERITY_FEC_BUF_PREALLOC,
792 						    f->cache);
793 	if (!f->prealloc_pool) {
794 		ti->error = "Cannot allocate FEC buffer prealloc pool";
795 		return -ENOMEM;
796 	}
797 
798 	f->extra_pool = mempool_create_slab_pool(0, f->cache);
799 	if (!f->extra_pool) {
800 		ti->error = "Cannot allocate FEC buffer extra pool";
801 		return -ENOMEM;
802 	}
803 
804 	/* Preallocate an output buffer for each thread */
805 	f->output_pool = mempool_create_kmalloc_pool(num_online_cpus(),
806 						     1 << v->data_dev_block_bits);
807 	if (!f->output_pool) {
808 		ti->error = "Cannot allocate FEC output pool";
809 		return -ENOMEM;
810 	}
811 
812 	/* Reserve space for our per-bio data */
813 	ti->per_io_data_size += sizeof(struct dm_verity_fec_io);
814 
815 	return 0;
816 }
817