xref: /linux/drivers/md/dm-verity-fec.c (revision 643e2e259c2b25a2af0ae4c23c6e16586d9fd19c)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Copyright (C) 2015 Google, Inc.
4  *
5  * Author: Sami Tolvanen <samitolvanen@google.com>
6  */
7 
8 #include "dm-verity-fec.h"
9 #include <linux/math64.h>
10 
11 #define DM_MSG_PREFIX	"verity-fec"
12 
13 /*
14  * If error correction has been configured, returns true.
15  */
16 bool verity_fec_is_enabled(struct dm_verity *v)
17 {
18 	return v->fec && v->fec->dev;
19 }
20 
21 /*
22  * Return a pointer to dm_verity_fec_io after dm_verity_io and its variable
23  * length fields.
24  */
25 static inline struct dm_verity_fec_io *fec_io(struct dm_verity_io *io)
26 {
27 	return (struct dm_verity_fec_io *)
28 		((char *)io + io->v->ti->per_io_data_size - sizeof(struct dm_verity_fec_io));
29 }
30 
31 /*
32  * Return an interleaved offset for a byte in RS block.
33  */
34 static inline u64 fec_interleave(struct dm_verity *v, u64 offset)
35 {
36 	u32 mod;
37 
38 	mod = do_div(offset, v->fec->rsn);
39 	return offset + mod * (v->fec->rounds << v->data_dev_block_bits);
40 }
41 
42 /*
43  * Read error-correcting codes for the requested RS block. Returns a pointer
44  * to the data block. Caller is responsible for releasing buf.
45  */
46 static u8 *fec_read_parity(struct dm_verity *v, u64 rsb, int index,
47 			   unsigned int *offset, unsigned int par_buf_offset,
48 			   struct dm_buffer **buf, unsigned short ioprio)
49 {
50 	u64 position, block, rem;
51 	u8 *res;
52 
53 	/* We have already part of parity bytes read, skip to the next block */
54 	if (par_buf_offset)
55 		index++;
56 
57 	position = (index + rsb) * v->fec->roots;
58 	block = div64_u64_rem(position, v->fec->io_size, &rem);
59 	*offset = par_buf_offset ? 0 : (unsigned int)rem;
60 
61 	res = dm_bufio_read_with_ioprio(v->fec->bufio, block, buf, ioprio);
62 	if (IS_ERR(res)) {
63 		DMERR("%s: FEC %llu: parity read failed (block %llu): %ld",
64 		      v->data_dev->name, (unsigned long long)rsb,
65 		      (unsigned long long)block, PTR_ERR(res));
66 		*buf = NULL;
67 	}
68 
69 	return res;
70 }
71 
72 /* Loop over each preallocated buffer slot. */
73 #define fec_for_each_prealloc_buffer(__i) \
74 	for (__i = 0; __i < DM_VERITY_FEC_BUF_PREALLOC; __i++)
75 
76 /* Loop over each extra buffer slot. */
77 #define fec_for_each_extra_buffer(io, __i) \
78 	for (__i = DM_VERITY_FEC_BUF_PREALLOC; __i < DM_VERITY_FEC_BUF_MAX; __i++)
79 
80 /* Loop over each allocated buffer. */
81 #define fec_for_each_buffer(io, __i) \
82 	for (__i = 0; __i < (io)->nbufs; __i++)
83 
84 /* Loop over each RS block in each allocated buffer. */
85 #define fec_for_each_buffer_rs_block(io, __i, __j) \
86 	fec_for_each_buffer(io, __i) \
87 		for (__j = 0; __j < 1 << DM_VERITY_FEC_BUF_RS_BITS; __j++)
88 
89 /*
90  * Return a pointer to the current RS block when called inside
91  * fec_for_each_buffer_rs_block.
92  */
93 static inline u8 *fec_buffer_rs_block(struct dm_verity *v,
94 				      struct dm_verity_fec_io *fio,
95 				      unsigned int i, unsigned int j)
96 {
97 	return &fio->bufs[i][j * v->fec->rsn];
98 }
99 
100 /*
101  * Return an index to the current RS block when called inside
102  * fec_for_each_buffer_rs_block.
103  */
104 static inline unsigned int fec_buffer_rs_index(unsigned int i, unsigned int j)
105 {
106 	return (i << DM_VERITY_FEC_BUF_RS_BITS) + j;
107 }
108 
109 /*
110  * Decode all RS blocks from buffers and copy corrected bytes into fio->output
111  * starting from block_offset.
112  */
113 static int fec_decode_bufs(struct dm_verity *v, struct dm_verity_io *io,
114 			   struct dm_verity_fec_io *fio, u64 rsb, int byte_index,
115 			   unsigned int block_offset, int neras)
116 {
117 	int r, corrected = 0, res;
118 	struct dm_buffer *buf;
119 	unsigned int n, i, j, offset, par_buf_offset = 0;
120 	uint16_t par_buf[DM_VERITY_FEC_RSM - DM_VERITY_FEC_MIN_RSN];
121 	u8 *par, *block;
122 	struct bio *bio = dm_bio_from_per_bio_data(io, v->ti->per_io_data_size);
123 
124 	par = fec_read_parity(v, rsb, block_offset, &offset,
125 			      par_buf_offset, &buf, bio_prio(bio));
126 	if (IS_ERR(par))
127 		return PTR_ERR(par);
128 
129 	/*
130 	 * Decode the RS blocks we have in bufs. Each RS block results in
131 	 * one corrected target byte and consumes fec->roots parity bytes.
132 	 */
133 	fec_for_each_buffer_rs_block(fio, n, i) {
134 		block = fec_buffer_rs_block(v, fio, n, i);
135 		for (j = 0; j < v->fec->roots - par_buf_offset; j++)
136 			par_buf[par_buf_offset + j] = par[offset + j];
137 		/* Decode an RS block using Reed-Solomon */
138 		res = decode_rs8(fio->rs, block, par_buf, v->fec->rsn,
139 				 NULL, neras, fio->erasures, 0, NULL);
140 		if (res < 0) {
141 			r = res;
142 			goto error;
143 		}
144 
145 		corrected += res;
146 		fio->output[block_offset] = block[byte_index];
147 
148 		block_offset++;
149 		if (block_offset >= 1 << v->data_dev_block_bits)
150 			goto done;
151 
152 		/* Read the next block when we run out of parity bytes */
153 		offset += (v->fec->roots - par_buf_offset);
154 		/* Check if parity bytes are split between blocks */
155 		if (offset < v->fec->io_size && (offset + v->fec->roots) > v->fec->io_size) {
156 			par_buf_offset = v->fec->io_size - offset;
157 			for (j = 0; j < par_buf_offset; j++)
158 				par_buf[j] = par[offset + j];
159 			offset += par_buf_offset;
160 		} else
161 			par_buf_offset = 0;
162 
163 		if (offset >= v->fec->io_size) {
164 			dm_bufio_release(buf);
165 
166 			par = fec_read_parity(v, rsb, block_offset, &offset,
167 					      par_buf_offset, &buf, bio_prio(bio));
168 			if (IS_ERR(par))
169 				return PTR_ERR(par);
170 		}
171 	}
172 done:
173 	r = corrected;
174 error:
175 	dm_bufio_release(buf);
176 
177 	if (r < 0 && neras)
178 		DMERR_LIMIT("%s: FEC %llu: failed to correct: %d",
179 			    v->data_dev->name, (unsigned long long)rsb, r);
180 	else if (r > 0)
181 		DMWARN_LIMIT("%s: FEC %llu: corrected %d errors",
182 			     v->data_dev->name, (unsigned long long)rsb, r);
183 
184 	return r;
185 }
186 
187 /*
188  * Locate data block erasures using verity hashes.
189  */
190 static int fec_is_erasure(struct dm_verity *v, struct dm_verity_io *io,
191 			  u8 *want_digest, u8 *data)
192 {
193 	if (unlikely(verity_hash(v, io, data, 1 << v->data_dev_block_bits,
194 				 verity_io_real_digest(v, io), true)))
195 		return 0;
196 
197 	return memcmp(verity_io_real_digest(v, io), want_digest,
198 		      v->digest_size) != 0;
199 }
200 
201 /*
202  * Read data blocks that are part of the RS block and deinterleave as much as
203  * fits into buffers. Check for erasure locations if @neras is non-NULL.
204  */
205 static int fec_read_bufs(struct dm_verity *v, struct dm_verity_io *io,
206 			 u64 rsb, u64 target, unsigned int block_offset,
207 			 int *neras)
208 {
209 	bool is_zero;
210 	int i, j, target_index = -1;
211 	struct dm_buffer *buf;
212 	struct dm_bufio_client *bufio;
213 	struct dm_verity_fec_io *fio = fec_io(io);
214 	u64 block, ileaved;
215 	u8 *bbuf, *rs_block;
216 	u8 want_digest[HASH_MAX_DIGESTSIZE];
217 	unsigned int n, k;
218 	struct bio *bio = dm_bio_from_per_bio_data(io, v->ti->per_io_data_size);
219 
220 	if (neras)
221 		*neras = 0;
222 
223 	if (WARN_ON(v->digest_size > sizeof(want_digest)))
224 		return -EINVAL;
225 
226 	/*
227 	 * read each of the rsn data blocks that are part of the RS block, and
228 	 * interleave contents to available bufs
229 	 */
230 	for (i = 0; i < v->fec->rsn; i++) {
231 		ileaved = fec_interleave(v, rsb * v->fec->rsn + i);
232 
233 		/*
234 		 * target is the data block we want to correct, target_index is
235 		 * the index of this block within the rsn RS blocks
236 		 */
237 		if (ileaved == target)
238 			target_index = i;
239 
240 		block = ileaved >> v->data_dev_block_bits;
241 		bufio = v->fec->data_bufio;
242 
243 		if (block >= v->data_blocks) {
244 			block -= v->data_blocks;
245 
246 			/*
247 			 * blocks outside the area were assumed to contain
248 			 * zeros when encoding data was generated
249 			 */
250 			if (unlikely(block >= v->fec->hash_blocks))
251 				continue;
252 
253 			block += v->hash_start;
254 			bufio = v->bufio;
255 		}
256 
257 		bbuf = dm_bufio_read_with_ioprio(bufio, block, &buf, bio_prio(bio));
258 		if (IS_ERR(bbuf)) {
259 			DMWARN_LIMIT("%s: FEC %llu: read failed (%llu): %ld",
260 				     v->data_dev->name,
261 				     (unsigned long long)rsb,
262 				     (unsigned long long)block, PTR_ERR(bbuf));
263 
264 			/* assume the block is corrupted */
265 			if (neras && *neras <= v->fec->roots)
266 				fio->erasures[(*neras)++] = i;
267 
268 			continue;
269 		}
270 
271 		/* locate erasures if the block is on the data device */
272 		if (bufio == v->fec->data_bufio &&
273 		    verity_hash_for_block(v, io, block, want_digest,
274 					  &is_zero) == 0) {
275 			/* skip known zero blocks entirely */
276 			if (is_zero)
277 				goto done;
278 
279 			/*
280 			 * skip if we have already found the theoretical
281 			 * maximum number (i.e. fec->roots) of erasures
282 			 */
283 			if (neras && *neras <= v->fec->roots &&
284 			    fec_is_erasure(v, io, want_digest, bbuf))
285 				fio->erasures[(*neras)++] = i;
286 		}
287 
288 		/*
289 		 * deinterleave and copy the bytes that fit into bufs,
290 		 * starting from block_offset
291 		 */
292 		fec_for_each_buffer_rs_block(fio, n, j) {
293 			k = fec_buffer_rs_index(n, j) + block_offset;
294 
295 			if (k >= 1 << v->data_dev_block_bits)
296 				goto done;
297 
298 			rs_block = fec_buffer_rs_block(v, fio, n, j);
299 			rs_block[i] = bbuf[k];
300 		}
301 done:
302 		dm_bufio_release(buf);
303 	}
304 
305 	return target_index;
306 }
307 
308 /*
309  * Allocate RS control structure and FEC buffers from preallocated mempools,
310  * and attempt to allocate as many extra buffers as available.
311  */
312 static int fec_alloc_bufs(struct dm_verity *v, struct dm_verity_fec_io *fio)
313 {
314 	unsigned int n;
315 
316 	if (!fio->rs)
317 		fio->rs = mempool_alloc(&v->fec->rs_pool, GFP_NOIO);
318 
319 	fec_for_each_prealloc_buffer(n) {
320 		if (fio->bufs[n])
321 			continue;
322 
323 		fio->bufs[n] = mempool_alloc(&v->fec->prealloc_pool, GFP_NOWAIT);
324 		if (unlikely(!fio->bufs[n])) {
325 			DMERR("failed to allocate FEC buffer");
326 			return -ENOMEM;
327 		}
328 	}
329 
330 	/* try to allocate the maximum number of buffers */
331 	fec_for_each_extra_buffer(fio, n) {
332 		if (fio->bufs[n])
333 			continue;
334 
335 		fio->bufs[n] = mempool_alloc(&v->fec->extra_pool, GFP_NOWAIT);
336 		/* we can manage with even one buffer if necessary */
337 		if (unlikely(!fio->bufs[n]))
338 			break;
339 	}
340 	fio->nbufs = n;
341 
342 	if (!fio->output)
343 		fio->output = mempool_alloc(&v->fec->output_pool, GFP_NOIO);
344 
345 	return 0;
346 }
347 
348 /*
349  * Initialize buffers and clear erasures. fec_read_bufs() assumes buffers are
350  * zeroed before deinterleaving.
351  */
352 static void fec_init_bufs(struct dm_verity *v, struct dm_verity_fec_io *fio)
353 {
354 	unsigned int n;
355 
356 	fec_for_each_buffer(fio, n)
357 		memset(fio->bufs[n], 0, v->fec->rsn << DM_VERITY_FEC_BUF_RS_BITS);
358 
359 	memset(fio->erasures, 0, sizeof(fio->erasures));
360 }
361 
362 /*
363  * Decode all RS blocks in a single data block and return the target block
364  * (indicated by @offset) in fio->output. If @use_erasures is non-zero, uses
365  * hashes to locate erasures.
366  */
367 static int fec_decode_rsb(struct dm_verity *v, struct dm_verity_io *io,
368 			  struct dm_verity_fec_io *fio, u64 rsb, u64 offset,
369 			  bool use_erasures)
370 {
371 	int r, neras = 0;
372 	unsigned int pos;
373 
374 	r = fec_alloc_bufs(v, fio);
375 	if (unlikely(r < 0))
376 		return r;
377 
378 	for (pos = 0; pos < 1 << v->data_dev_block_bits; ) {
379 		fec_init_bufs(v, fio);
380 
381 		r = fec_read_bufs(v, io, rsb, offset, pos,
382 				  use_erasures ? &neras : NULL);
383 		if (unlikely(r < 0))
384 			return r;
385 
386 		r = fec_decode_bufs(v, io, fio, rsb, r, pos, neras);
387 		if (r < 0)
388 			return r;
389 
390 		pos += fio->nbufs << DM_VERITY_FEC_BUF_RS_BITS;
391 	}
392 
393 	/* Always re-validate the corrected block against the expected hash */
394 	r = verity_hash(v, io, fio->output, 1 << v->data_dev_block_bits,
395 			verity_io_real_digest(v, io), true);
396 	if (unlikely(r < 0))
397 		return r;
398 
399 	if (memcmp(verity_io_real_digest(v, io), verity_io_want_digest(v, io),
400 		   v->digest_size)) {
401 		DMERR_LIMIT("%s: FEC %llu: failed to correct (%d erasures)",
402 			    v->data_dev->name, (unsigned long long)rsb, neras);
403 		return -EILSEQ;
404 	}
405 
406 	return 0;
407 }
408 
409 /* Correct errors in a block. Copies corrected block to dest. */
410 int verity_fec_decode(struct dm_verity *v, struct dm_verity_io *io,
411 		      enum verity_block_type type, sector_t block, u8 *dest)
412 {
413 	int r;
414 	struct dm_verity_fec_io *fio = fec_io(io);
415 	u64 offset, res, rsb;
416 
417 	if (!verity_fec_is_enabled(v))
418 		return -EOPNOTSUPP;
419 
420 	if (fio->level >= DM_VERITY_FEC_MAX_RECURSION) {
421 		DMWARN_LIMIT("%s: FEC: recursion too deep", v->data_dev->name);
422 		return -EIO;
423 	}
424 
425 	fio->level++;
426 
427 	if (type == DM_VERITY_BLOCK_TYPE_METADATA)
428 		block = block - v->hash_start + v->data_blocks;
429 
430 	/*
431 	 * For RS(M, N), the continuous FEC data is divided into blocks of N
432 	 * bytes. Since block size may not be divisible by N, the last block
433 	 * is zero padded when decoding.
434 	 *
435 	 * Each byte of the block is covered by a different RS(M, N) code,
436 	 * and each code is interleaved over N blocks to make it less likely
437 	 * that bursty corruption will leave us in unrecoverable state.
438 	 */
439 
440 	offset = block << v->data_dev_block_bits;
441 	res = div64_u64(offset, v->fec->rounds << v->data_dev_block_bits);
442 
443 	/*
444 	 * The base RS block we can feed to the interleaver to find out all
445 	 * blocks required for decoding.
446 	 */
447 	rsb = offset - res * (v->fec->rounds << v->data_dev_block_bits);
448 
449 	/*
450 	 * Locating erasures is slow, so attempt to recover the block without
451 	 * them first. Do a second attempt with erasures if the corruption is
452 	 * bad enough.
453 	 */
454 	r = fec_decode_rsb(v, io, fio, rsb, offset, false);
455 	if (r < 0) {
456 		r = fec_decode_rsb(v, io, fio, rsb, offset, true);
457 		if (r < 0)
458 			goto done;
459 	}
460 
461 	memcpy(dest, fio->output, 1 << v->data_dev_block_bits);
462 
463 done:
464 	fio->level--;
465 	return r;
466 }
467 
468 /*
469  * Clean up per-bio data.
470  */
471 void verity_fec_finish_io(struct dm_verity_io *io)
472 {
473 	unsigned int n;
474 	struct dm_verity_fec *f = io->v->fec;
475 	struct dm_verity_fec_io *fio = fec_io(io);
476 
477 	if (!verity_fec_is_enabled(io->v))
478 		return;
479 
480 	mempool_free(fio->rs, &f->rs_pool);
481 
482 	fec_for_each_prealloc_buffer(n)
483 		mempool_free(fio->bufs[n], &f->prealloc_pool);
484 
485 	fec_for_each_extra_buffer(fio, n)
486 		mempool_free(fio->bufs[n], &f->extra_pool);
487 
488 	mempool_free(fio->output, &f->output_pool);
489 }
490 
491 /*
492  * Initialize per-bio data.
493  */
494 void verity_fec_init_io(struct dm_verity_io *io)
495 {
496 	struct dm_verity_fec_io *fio = fec_io(io);
497 
498 	if (!verity_fec_is_enabled(io->v))
499 		return;
500 
501 	fio->rs = NULL;
502 	memset(fio->bufs, 0, sizeof(fio->bufs));
503 	fio->nbufs = 0;
504 	fio->output = NULL;
505 	fio->level = 0;
506 }
507 
508 /*
509  * Append feature arguments and values to the status table.
510  */
511 unsigned int verity_fec_status_table(struct dm_verity *v, unsigned int sz,
512 				 char *result, unsigned int maxlen)
513 {
514 	if (!verity_fec_is_enabled(v))
515 		return sz;
516 
517 	DMEMIT(" " DM_VERITY_OPT_FEC_DEV " %s "
518 	       DM_VERITY_OPT_FEC_BLOCKS " %llu "
519 	       DM_VERITY_OPT_FEC_START " %llu "
520 	       DM_VERITY_OPT_FEC_ROOTS " %d",
521 	       v->fec->dev->name,
522 	       (unsigned long long)v->fec->blocks,
523 	       (unsigned long long)v->fec->start,
524 	       v->fec->roots);
525 
526 	return sz;
527 }
528 
529 void verity_fec_dtr(struct dm_verity *v)
530 {
531 	struct dm_verity_fec *f = v->fec;
532 
533 	if (!verity_fec_is_enabled(v))
534 		goto out;
535 
536 	mempool_exit(&f->rs_pool);
537 	mempool_exit(&f->prealloc_pool);
538 	mempool_exit(&f->extra_pool);
539 	mempool_exit(&f->output_pool);
540 	kmem_cache_destroy(f->cache);
541 
542 	if (f->data_bufio)
543 		dm_bufio_client_destroy(f->data_bufio);
544 	if (f->bufio)
545 		dm_bufio_client_destroy(f->bufio);
546 
547 	if (f->dev)
548 		dm_put_device(v->ti, f->dev);
549 out:
550 	kfree(f);
551 	v->fec = NULL;
552 }
553 
554 static void *fec_rs_alloc(gfp_t gfp_mask, void *pool_data)
555 {
556 	struct dm_verity *v = pool_data;
557 
558 	return init_rs_gfp(8, 0x11d, 0, 1, v->fec->roots, gfp_mask);
559 }
560 
561 static void fec_rs_free(void *element, void *pool_data)
562 {
563 	struct rs_control *rs = element;
564 
565 	if (rs)
566 		free_rs(rs);
567 }
568 
569 bool verity_is_fec_opt_arg(const char *arg_name)
570 {
571 	return (!strcasecmp(arg_name, DM_VERITY_OPT_FEC_DEV) ||
572 		!strcasecmp(arg_name, DM_VERITY_OPT_FEC_BLOCKS) ||
573 		!strcasecmp(arg_name, DM_VERITY_OPT_FEC_START) ||
574 		!strcasecmp(arg_name, DM_VERITY_OPT_FEC_ROOTS));
575 }
576 
577 int verity_fec_parse_opt_args(struct dm_arg_set *as, struct dm_verity *v,
578 			      unsigned int *argc, const char *arg_name)
579 {
580 	int r;
581 	struct dm_target *ti = v->ti;
582 	const char *arg_value;
583 	unsigned long long num_ll;
584 	unsigned char num_c;
585 	char dummy;
586 
587 	if (!*argc) {
588 		ti->error = "FEC feature arguments require a value";
589 		return -EINVAL;
590 	}
591 
592 	arg_value = dm_shift_arg(as);
593 	(*argc)--;
594 
595 	if (!strcasecmp(arg_name, DM_VERITY_OPT_FEC_DEV)) {
596 		r = dm_get_device(ti, arg_value, BLK_OPEN_READ, &v->fec->dev);
597 		if (r) {
598 			ti->error = "FEC device lookup failed";
599 			return r;
600 		}
601 
602 	} else if (!strcasecmp(arg_name, DM_VERITY_OPT_FEC_BLOCKS)) {
603 		if (sscanf(arg_value, "%llu%c", &num_ll, &dummy) != 1 ||
604 		    ((sector_t)(num_ll << (v->data_dev_block_bits - SECTOR_SHIFT))
605 		     >> (v->data_dev_block_bits - SECTOR_SHIFT) != num_ll)) {
606 			ti->error = "Invalid " DM_VERITY_OPT_FEC_BLOCKS;
607 			return -EINVAL;
608 		}
609 		v->fec->blocks = num_ll;
610 
611 	} else if (!strcasecmp(arg_name, DM_VERITY_OPT_FEC_START)) {
612 		if (sscanf(arg_value, "%llu%c", &num_ll, &dummy) != 1 ||
613 		    ((sector_t)(num_ll << (v->data_dev_block_bits - SECTOR_SHIFT)) >>
614 		     (v->data_dev_block_bits - SECTOR_SHIFT) != num_ll)) {
615 			ti->error = "Invalid " DM_VERITY_OPT_FEC_START;
616 			return -EINVAL;
617 		}
618 		v->fec->start = num_ll;
619 
620 	} else if (!strcasecmp(arg_name, DM_VERITY_OPT_FEC_ROOTS)) {
621 		if (sscanf(arg_value, "%hhu%c", &num_c, &dummy) != 1 || !num_c ||
622 		    num_c < (DM_VERITY_FEC_RSM - DM_VERITY_FEC_MAX_RSN) ||
623 		    num_c > (DM_VERITY_FEC_RSM - DM_VERITY_FEC_MIN_RSN)) {
624 			ti->error = "Invalid " DM_VERITY_OPT_FEC_ROOTS;
625 			return -EINVAL;
626 		}
627 		v->fec->roots = num_c;
628 
629 	} else {
630 		ti->error = "Unrecognized verity FEC feature request";
631 		return -EINVAL;
632 	}
633 
634 	return 0;
635 }
636 
637 /*
638  * Allocate dm_verity_fec for v->fec. Must be called before verity_fec_ctr.
639  */
640 int verity_fec_ctr_alloc(struct dm_verity *v)
641 {
642 	struct dm_verity_fec *f;
643 
644 	f = kzalloc(sizeof(struct dm_verity_fec), GFP_KERNEL);
645 	if (!f) {
646 		v->ti->error = "Cannot allocate FEC structure";
647 		return -ENOMEM;
648 	}
649 	v->fec = f;
650 
651 	return 0;
652 }
653 
654 /*
655  * Validate arguments and preallocate memory. Must be called after arguments
656  * have been parsed using verity_fec_parse_opt_args.
657  */
658 int verity_fec_ctr(struct dm_verity *v)
659 {
660 	struct dm_verity_fec *f = v->fec;
661 	struct dm_target *ti = v->ti;
662 	u64 hash_blocks, fec_blocks;
663 	int ret;
664 
665 	if (!verity_fec_is_enabled(v)) {
666 		verity_fec_dtr(v);
667 		return 0;
668 	}
669 
670 	/*
671 	 * FEC is computed over data blocks, possible metadata, and
672 	 * hash blocks. In other words, FEC covers total of fec_blocks
673 	 * blocks consisting of the following:
674 	 *
675 	 *  data blocks | hash blocks | metadata (optional)
676 	 *
677 	 * We allow metadata after hash blocks to support a use case
678 	 * where all data is stored on the same device and FEC covers
679 	 * the entire area.
680 	 *
681 	 * If metadata is included, we require it to be available on the
682 	 * hash device after the hash blocks.
683 	 */
684 
685 	hash_blocks = v->hash_blocks - v->hash_start;
686 
687 	/*
688 	 * Require matching block sizes for data and hash devices for
689 	 * simplicity.
690 	 */
691 	if (v->data_dev_block_bits != v->hash_dev_block_bits) {
692 		ti->error = "Block sizes must match to use FEC";
693 		return -EINVAL;
694 	}
695 
696 	if (!f->roots) {
697 		ti->error = "Missing " DM_VERITY_OPT_FEC_ROOTS;
698 		return -EINVAL;
699 	}
700 	f->rsn = DM_VERITY_FEC_RSM - f->roots;
701 
702 	if (!f->blocks) {
703 		ti->error = "Missing " DM_VERITY_OPT_FEC_BLOCKS;
704 		return -EINVAL;
705 	}
706 
707 	f->rounds = f->blocks;
708 	if (sector_div(f->rounds, f->rsn))
709 		f->rounds++;
710 
711 	/*
712 	 * Due to optional metadata, f->blocks can be larger than
713 	 * data_blocks and hash_blocks combined.
714 	 */
715 	if (f->blocks < v->data_blocks + hash_blocks || !f->rounds) {
716 		ti->error = "Invalid " DM_VERITY_OPT_FEC_BLOCKS;
717 		return -EINVAL;
718 	}
719 
720 	/*
721 	 * Metadata is accessed through the hash device, so we require
722 	 * it to be large enough.
723 	 */
724 	f->hash_blocks = f->blocks - v->data_blocks;
725 	if (dm_bufio_get_device_size(v->bufio) < f->hash_blocks) {
726 		ti->error = "Hash device is too small for "
727 			DM_VERITY_OPT_FEC_BLOCKS;
728 		return -E2BIG;
729 	}
730 
731 	f->io_size = 1 << v->data_dev_block_bits;
732 
733 	f->bufio = dm_bufio_client_create(f->dev->bdev,
734 					  f->io_size,
735 					  1, 0, NULL, NULL, 0);
736 	if (IS_ERR(f->bufio)) {
737 		ti->error = "Cannot initialize FEC bufio client";
738 		return PTR_ERR(f->bufio);
739 	}
740 
741 	dm_bufio_set_sector_offset(f->bufio, f->start << (v->data_dev_block_bits - SECTOR_SHIFT));
742 
743 	fec_blocks = div64_u64(f->rounds * f->roots, v->fec->roots << SECTOR_SHIFT);
744 	if (dm_bufio_get_device_size(f->bufio) < fec_blocks) {
745 		ti->error = "FEC device is too small";
746 		return -E2BIG;
747 	}
748 
749 	f->data_bufio = dm_bufio_client_create(v->data_dev->bdev,
750 					       1 << v->data_dev_block_bits,
751 					       1, 0, NULL, NULL, 0);
752 	if (IS_ERR(f->data_bufio)) {
753 		ti->error = "Cannot initialize FEC data bufio client";
754 		return PTR_ERR(f->data_bufio);
755 	}
756 
757 	if (dm_bufio_get_device_size(f->data_bufio) < v->data_blocks) {
758 		ti->error = "Data device is too small";
759 		return -E2BIG;
760 	}
761 
762 	/* Preallocate an rs_control structure for each worker thread */
763 	ret = mempool_init(&f->rs_pool, num_online_cpus(), fec_rs_alloc,
764 			   fec_rs_free, (void *) v);
765 	if (ret) {
766 		ti->error = "Cannot allocate RS pool";
767 		return ret;
768 	}
769 
770 	f->cache = kmem_cache_create("dm_verity_fec_buffers",
771 				     f->rsn << DM_VERITY_FEC_BUF_RS_BITS,
772 				     0, 0, NULL);
773 	if (!f->cache) {
774 		ti->error = "Cannot create FEC buffer cache";
775 		return -ENOMEM;
776 	}
777 
778 	/* Preallocate DM_VERITY_FEC_BUF_PREALLOC buffers for each thread */
779 	ret = mempool_init_slab_pool(&f->prealloc_pool, num_online_cpus() *
780 				     DM_VERITY_FEC_BUF_PREALLOC,
781 				     f->cache);
782 	if (ret) {
783 		ti->error = "Cannot allocate FEC buffer prealloc pool";
784 		return ret;
785 	}
786 
787 	ret = mempool_init_slab_pool(&f->extra_pool, 0, f->cache);
788 	if (ret) {
789 		ti->error = "Cannot allocate FEC buffer extra pool";
790 		return ret;
791 	}
792 
793 	/* Preallocate an output buffer for each thread */
794 	ret = mempool_init_kmalloc_pool(&f->output_pool, num_online_cpus(),
795 					1 << v->data_dev_block_bits);
796 	if (ret) {
797 		ti->error = "Cannot allocate FEC output pool";
798 		return ret;
799 	}
800 
801 	/* Reserve space for our per-bio data */
802 	ti->per_io_data_size += sizeof(struct dm_verity_fec_io);
803 
804 	return 0;
805 }
806