1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Copyright (C) 2015 Google, Inc. 4 * 5 * Author: Sami Tolvanen <samitolvanen@google.com> 6 */ 7 8 #include "dm-verity-fec.h" 9 #include <linux/math64.h> 10 11 #define DM_MSG_PREFIX "verity-fec" 12 13 /* 14 * If error correction has been configured, returns true. 15 */ 16 bool verity_fec_is_enabled(struct dm_verity *v) 17 { 18 return v->fec && v->fec->dev; 19 } 20 21 /* 22 * Return a pointer to dm_verity_fec_io after dm_verity_io and its variable 23 * length fields. 24 */ 25 static inline struct dm_verity_fec_io *fec_io(struct dm_verity_io *io) 26 { 27 return (struct dm_verity_fec_io *) 28 ((char *)io + io->v->ti->per_io_data_size - sizeof(struct dm_verity_fec_io)); 29 } 30 31 /* 32 * Return an interleaved offset for a byte in RS block. 33 */ 34 static inline u64 fec_interleave(struct dm_verity *v, u64 offset) 35 { 36 u32 mod; 37 38 mod = do_div(offset, v->fec->rsn); 39 return offset + mod * (v->fec->rounds << v->data_dev_block_bits); 40 } 41 42 /* 43 * Read error-correcting codes for the requested RS block. Returns a pointer 44 * to the data block. Caller is responsible for releasing buf. 45 */ 46 static u8 *fec_read_parity(struct dm_verity *v, u64 rsb, int index, 47 unsigned int *offset, unsigned int par_buf_offset, 48 struct dm_buffer **buf, unsigned short ioprio) 49 { 50 u64 position, block, rem; 51 u8 *res; 52 53 /* We have already part of parity bytes read, skip to the next block */ 54 if (par_buf_offset) 55 index++; 56 57 position = (index + rsb) * v->fec->roots; 58 block = div64_u64_rem(position, v->fec->io_size, &rem); 59 *offset = par_buf_offset ? 0 : (unsigned int)rem; 60 61 res = dm_bufio_read_with_ioprio(v->fec->bufio, block, buf, ioprio); 62 if (IS_ERR(res)) { 63 DMERR("%s: FEC %llu: parity read failed (block %llu): %ld", 64 v->data_dev->name, (unsigned long long)rsb, 65 (unsigned long long)block, PTR_ERR(res)); 66 *buf = NULL; 67 } 68 69 return res; 70 } 71 72 /* Loop over each preallocated buffer slot. */ 73 #define fec_for_each_prealloc_buffer(__i) \ 74 for (__i = 0; __i < DM_VERITY_FEC_BUF_PREALLOC; __i++) 75 76 /* Loop over each extra buffer slot. */ 77 #define fec_for_each_extra_buffer(io, __i) \ 78 for (__i = DM_VERITY_FEC_BUF_PREALLOC; __i < DM_VERITY_FEC_BUF_MAX; __i++) 79 80 /* Loop over each allocated buffer. */ 81 #define fec_for_each_buffer(io, __i) \ 82 for (__i = 0; __i < (io)->nbufs; __i++) 83 84 /* Loop over each RS block in each allocated buffer. */ 85 #define fec_for_each_buffer_rs_block(io, __i, __j) \ 86 fec_for_each_buffer(io, __i) \ 87 for (__j = 0; __j < 1 << DM_VERITY_FEC_BUF_RS_BITS; __j++) 88 89 /* 90 * Return a pointer to the current RS block when called inside 91 * fec_for_each_buffer_rs_block. 92 */ 93 static inline u8 *fec_buffer_rs_block(struct dm_verity *v, 94 struct dm_verity_fec_io *fio, 95 unsigned int i, unsigned int j) 96 { 97 return &fio->bufs[i][j * v->fec->rsn]; 98 } 99 100 /* 101 * Return an index to the current RS block when called inside 102 * fec_for_each_buffer_rs_block. 103 */ 104 static inline unsigned int fec_buffer_rs_index(unsigned int i, unsigned int j) 105 { 106 return (i << DM_VERITY_FEC_BUF_RS_BITS) + j; 107 } 108 109 /* 110 * Decode all RS blocks from buffers and copy corrected bytes into fio->output 111 * starting from block_offset. 112 */ 113 static int fec_decode_bufs(struct dm_verity *v, struct dm_verity_io *io, 114 struct dm_verity_fec_io *fio, u64 rsb, int byte_index, 115 unsigned int block_offset, int neras) 116 { 117 int r, corrected = 0, res; 118 struct dm_buffer *buf; 119 unsigned int n, i, j, offset, par_buf_offset = 0; 120 uint16_t par_buf[DM_VERITY_FEC_RSM - DM_VERITY_FEC_MIN_RSN]; 121 u8 *par, *block; 122 struct bio *bio = dm_bio_from_per_bio_data(io, v->ti->per_io_data_size); 123 124 par = fec_read_parity(v, rsb, block_offset, &offset, 125 par_buf_offset, &buf, bio_prio(bio)); 126 if (IS_ERR(par)) 127 return PTR_ERR(par); 128 129 /* 130 * Decode the RS blocks we have in bufs. Each RS block results in 131 * one corrected target byte and consumes fec->roots parity bytes. 132 */ 133 fec_for_each_buffer_rs_block(fio, n, i) { 134 block = fec_buffer_rs_block(v, fio, n, i); 135 for (j = 0; j < v->fec->roots - par_buf_offset; j++) 136 par_buf[par_buf_offset + j] = par[offset + j]; 137 /* Decode an RS block using Reed-Solomon */ 138 res = decode_rs8(fio->rs, block, par_buf, v->fec->rsn, 139 NULL, neras, fio->erasures, 0, NULL); 140 if (res < 0) { 141 r = res; 142 goto error; 143 } 144 145 corrected += res; 146 fio->output[block_offset] = block[byte_index]; 147 148 block_offset++; 149 if (block_offset >= 1 << v->data_dev_block_bits) 150 goto done; 151 152 /* Read the next block when we run out of parity bytes */ 153 offset += (v->fec->roots - par_buf_offset); 154 /* Check if parity bytes are split between blocks */ 155 if (offset < v->fec->io_size && (offset + v->fec->roots) > v->fec->io_size) { 156 par_buf_offset = v->fec->io_size - offset; 157 for (j = 0; j < par_buf_offset; j++) 158 par_buf[j] = par[offset + j]; 159 offset += par_buf_offset; 160 } else 161 par_buf_offset = 0; 162 163 if (offset >= v->fec->io_size) { 164 dm_bufio_release(buf); 165 166 par = fec_read_parity(v, rsb, block_offset, &offset, 167 par_buf_offset, &buf, bio_prio(bio)); 168 if (IS_ERR(par)) 169 return PTR_ERR(par); 170 } 171 } 172 done: 173 r = corrected; 174 error: 175 dm_bufio_release(buf); 176 177 if (r < 0 && neras) 178 DMERR_LIMIT("%s: FEC %llu: failed to correct: %d", 179 v->data_dev->name, (unsigned long long)rsb, r); 180 else if (r > 0) 181 DMWARN_LIMIT("%s: FEC %llu: corrected %d errors", 182 v->data_dev->name, (unsigned long long)rsb, r); 183 184 return r; 185 } 186 187 /* 188 * Locate data block erasures using verity hashes. 189 */ 190 static int fec_is_erasure(struct dm_verity *v, struct dm_verity_io *io, 191 u8 *want_digest, u8 *data) 192 { 193 if (unlikely(verity_hash(v, io, data, 1 << v->data_dev_block_bits, 194 verity_io_real_digest(v, io), true))) 195 return 0; 196 197 return memcmp(verity_io_real_digest(v, io), want_digest, 198 v->digest_size) != 0; 199 } 200 201 /* 202 * Read data blocks that are part of the RS block and deinterleave as much as 203 * fits into buffers. Check for erasure locations if @neras is non-NULL. 204 */ 205 static int fec_read_bufs(struct dm_verity *v, struct dm_verity_io *io, 206 u64 rsb, u64 target, unsigned int block_offset, 207 int *neras) 208 { 209 bool is_zero; 210 int i, j, target_index = -1; 211 struct dm_buffer *buf; 212 struct dm_bufio_client *bufio; 213 struct dm_verity_fec_io *fio = fec_io(io); 214 u64 block, ileaved; 215 u8 *bbuf, *rs_block; 216 u8 want_digest[HASH_MAX_DIGESTSIZE]; 217 unsigned int n, k; 218 struct bio *bio = dm_bio_from_per_bio_data(io, v->ti->per_io_data_size); 219 220 if (neras) 221 *neras = 0; 222 223 if (WARN_ON(v->digest_size > sizeof(want_digest))) 224 return -EINVAL; 225 226 /* 227 * read each of the rsn data blocks that are part of the RS block, and 228 * interleave contents to available bufs 229 */ 230 for (i = 0; i < v->fec->rsn; i++) { 231 ileaved = fec_interleave(v, rsb * v->fec->rsn + i); 232 233 /* 234 * target is the data block we want to correct, target_index is 235 * the index of this block within the rsn RS blocks 236 */ 237 if (ileaved == target) 238 target_index = i; 239 240 block = ileaved >> v->data_dev_block_bits; 241 bufio = v->fec->data_bufio; 242 243 if (block >= v->data_blocks) { 244 block -= v->data_blocks; 245 246 /* 247 * blocks outside the area were assumed to contain 248 * zeros when encoding data was generated 249 */ 250 if (unlikely(block >= v->fec->hash_blocks)) 251 continue; 252 253 block += v->hash_start; 254 bufio = v->bufio; 255 } 256 257 bbuf = dm_bufio_read_with_ioprio(bufio, block, &buf, bio_prio(bio)); 258 if (IS_ERR(bbuf)) { 259 DMWARN_LIMIT("%s: FEC %llu: read failed (%llu): %ld", 260 v->data_dev->name, 261 (unsigned long long)rsb, 262 (unsigned long long)block, PTR_ERR(bbuf)); 263 264 /* assume the block is corrupted */ 265 if (neras && *neras <= v->fec->roots) 266 fio->erasures[(*neras)++] = i; 267 268 continue; 269 } 270 271 /* locate erasures if the block is on the data device */ 272 if (bufio == v->fec->data_bufio && 273 verity_hash_for_block(v, io, block, want_digest, 274 &is_zero) == 0) { 275 /* skip known zero blocks entirely */ 276 if (is_zero) 277 goto done; 278 279 /* 280 * skip if we have already found the theoretical 281 * maximum number (i.e. fec->roots) of erasures 282 */ 283 if (neras && *neras <= v->fec->roots && 284 fec_is_erasure(v, io, want_digest, bbuf)) 285 fio->erasures[(*neras)++] = i; 286 } 287 288 /* 289 * deinterleave and copy the bytes that fit into bufs, 290 * starting from block_offset 291 */ 292 fec_for_each_buffer_rs_block(fio, n, j) { 293 k = fec_buffer_rs_index(n, j) + block_offset; 294 295 if (k >= 1 << v->data_dev_block_bits) 296 goto done; 297 298 rs_block = fec_buffer_rs_block(v, fio, n, j); 299 rs_block[i] = bbuf[k]; 300 } 301 done: 302 dm_bufio_release(buf); 303 } 304 305 return target_index; 306 } 307 308 /* 309 * Allocate RS control structure and FEC buffers from preallocated mempools, 310 * and attempt to allocate as many extra buffers as available. 311 */ 312 static int fec_alloc_bufs(struct dm_verity *v, struct dm_verity_fec_io *fio) 313 { 314 unsigned int n; 315 316 if (!fio->rs) 317 fio->rs = mempool_alloc(&v->fec->rs_pool, GFP_NOIO); 318 319 fec_for_each_prealloc_buffer(n) { 320 if (fio->bufs[n]) 321 continue; 322 323 fio->bufs[n] = mempool_alloc(&v->fec->prealloc_pool, GFP_NOWAIT); 324 if (unlikely(!fio->bufs[n])) { 325 DMERR("failed to allocate FEC buffer"); 326 return -ENOMEM; 327 } 328 } 329 330 /* try to allocate the maximum number of buffers */ 331 fec_for_each_extra_buffer(fio, n) { 332 if (fio->bufs[n]) 333 continue; 334 335 fio->bufs[n] = mempool_alloc(&v->fec->extra_pool, GFP_NOWAIT); 336 /* we can manage with even one buffer if necessary */ 337 if (unlikely(!fio->bufs[n])) 338 break; 339 } 340 fio->nbufs = n; 341 342 if (!fio->output) 343 fio->output = mempool_alloc(&v->fec->output_pool, GFP_NOIO); 344 345 return 0; 346 } 347 348 /* 349 * Initialize buffers and clear erasures. fec_read_bufs() assumes buffers are 350 * zeroed before deinterleaving. 351 */ 352 static void fec_init_bufs(struct dm_verity *v, struct dm_verity_fec_io *fio) 353 { 354 unsigned int n; 355 356 fec_for_each_buffer(fio, n) 357 memset(fio->bufs[n], 0, v->fec->rsn << DM_VERITY_FEC_BUF_RS_BITS); 358 359 memset(fio->erasures, 0, sizeof(fio->erasures)); 360 } 361 362 /* 363 * Decode all RS blocks in a single data block and return the target block 364 * (indicated by @offset) in fio->output. If @use_erasures is non-zero, uses 365 * hashes to locate erasures. 366 */ 367 static int fec_decode_rsb(struct dm_verity *v, struct dm_verity_io *io, 368 struct dm_verity_fec_io *fio, u64 rsb, u64 offset, 369 bool use_erasures) 370 { 371 int r, neras = 0; 372 unsigned int pos; 373 374 r = fec_alloc_bufs(v, fio); 375 if (unlikely(r < 0)) 376 return r; 377 378 for (pos = 0; pos < 1 << v->data_dev_block_bits; ) { 379 fec_init_bufs(v, fio); 380 381 r = fec_read_bufs(v, io, rsb, offset, pos, 382 use_erasures ? &neras : NULL); 383 if (unlikely(r < 0)) 384 return r; 385 386 r = fec_decode_bufs(v, io, fio, rsb, r, pos, neras); 387 if (r < 0) 388 return r; 389 390 pos += fio->nbufs << DM_VERITY_FEC_BUF_RS_BITS; 391 } 392 393 /* Always re-validate the corrected block against the expected hash */ 394 r = verity_hash(v, io, fio->output, 1 << v->data_dev_block_bits, 395 verity_io_real_digest(v, io), true); 396 if (unlikely(r < 0)) 397 return r; 398 399 if (memcmp(verity_io_real_digest(v, io), verity_io_want_digest(v, io), 400 v->digest_size)) { 401 DMERR_LIMIT("%s: FEC %llu: failed to correct (%d erasures)", 402 v->data_dev->name, (unsigned long long)rsb, neras); 403 return -EILSEQ; 404 } 405 406 return 0; 407 } 408 409 /* Correct errors in a block. Copies corrected block to dest. */ 410 int verity_fec_decode(struct dm_verity *v, struct dm_verity_io *io, 411 enum verity_block_type type, sector_t block, u8 *dest) 412 { 413 int r; 414 struct dm_verity_fec_io *fio = fec_io(io); 415 u64 offset, res, rsb; 416 417 if (!verity_fec_is_enabled(v)) 418 return -EOPNOTSUPP; 419 420 if (fio->level >= DM_VERITY_FEC_MAX_RECURSION) { 421 DMWARN_LIMIT("%s: FEC: recursion too deep", v->data_dev->name); 422 return -EIO; 423 } 424 425 fio->level++; 426 427 if (type == DM_VERITY_BLOCK_TYPE_METADATA) 428 block = block - v->hash_start + v->data_blocks; 429 430 /* 431 * For RS(M, N), the continuous FEC data is divided into blocks of N 432 * bytes. Since block size may not be divisible by N, the last block 433 * is zero padded when decoding. 434 * 435 * Each byte of the block is covered by a different RS(M, N) code, 436 * and each code is interleaved over N blocks to make it less likely 437 * that bursty corruption will leave us in unrecoverable state. 438 */ 439 440 offset = block << v->data_dev_block_bits; 441 res = div64_u64(offset, v->fec->rounds << v->data_dev_block_bits); 442 443 /* 444 * The base RS block we can feed to the interleaver to find out all 445 * blocks required for decoding. 446 */ 447 rsb = offset - res * (v->fec->rounds << v->data_dev_block_bits); 448 449 /* 450 * Locating erasures is slow, so attempt to recover the block without 451 * them first. Do a second attempt with erasures if the corruption is 452 * bad enough. 453 */ 454 r = fec_decode_rsb(v, io, fio, rsb, offset, false); 455 if (r < 0) { 456 r = fec_decode_rsb(v, io, fio, rsb, offset, true); 457 if (r < 0) 458 goto done; 459 } 460 461 memcpy(dest, fio->output, 1 << v->data_dev_block_bits); 462 463 done: 464 fio->level--; 465 return r; 466 } 467 468 /* 469 * Clean up per-bio data. 470 */ 471 void verity_fec_finish_io(struct dm_verity_io *io) 472 { 473 unsigned int n; 474 struct dm_verity_fec *f = io->v->fec; 475 struct dm_verity_fec_io *fio = fec_io(io); 476 477 if (!verity_fec_is_enabled(io->v)) 478 return; 479 480 mempool_free(fio->rs, &f->rs_pool); 481 482 fec_for_each_prealloc_buffer(n) 483 mempool_free(fio->bufs[n], &f->prealloc_pool); 484 485 fec_for_each_extra_buffer(fio, n) 486 mempool_free(fio->bufs[n], &f->extra_pool); 487 488 mempool_free(fio->output, &f->output_pool); 489 } 490 491 /* 492 * Initialize per-bio data. 493 */ 494 void verity_fec_init_io(struct dm_verity_io *io) 495 { 496 struct dm_verity_fec_io *fio = fec_io(io); 497 498 if (!verity_fec_is_enabled(io->v)) 499 return; 500 501 fio->rs = NULL; 502 memset(fio->bufs, 0, sizeof(fio->bufs)); 503 fio->nbufs = 0; 504 fio->output = NULL; 505 fio->level = 0; 506 } 507 508 /* 509 * Append feature arguments and values to the status table. 510 */ 511 unsigned int verity_fec_status_table(struct dm_verity *v, unsigned int sz, 512 char *result, unsigned int maxlen) 513 { 514 if (!verity_fec_is_enabled(v)) 515 return sz; 516 517 DMEMIT(" " DM_VERITY_OPT_FEC_DEV " %s " 518 DM_VERITY_OPT_FEC_BLOCKS " %llu " 519 DM_VERITY_OPT_FEC_START " %llu " 520 DM_VERITY_OPT_FEC_ROOTS " %d", 521 v->fec->dev->name, 522 (unsigned long long)v->fec->blocks, 523 (unsigned long long)v->fec->start, 524 v->fec->roots); 525 526 return sz; 527 } 528 529 void verity_fec_dtr(struct dm_verity *v) 530 { 531 struct dm_verity_fec *f = v->fec; 532 533 if (!verity_fec_is_enabled(v)) 534 goto out; 535 536 mempool_exit(&f->rs_pool); 537 mempool_exit(&f->prealloc_pool); 538 mempool_exit(&f->extra_pool); 539 mempool_exit(&f->output_pool); 540 kmem_cache_destroy(f->cache); 541 542 if (f->data_bufio) 543 dm_bufio_client_destroy(f->data_bufio); 544 if (f->bufio) 545 dm_bufio_client_destroy(f->bufio); 546 547 if (f->dev) 548 dm_put_device(v->ti, f->dev); 549 out: 550 kfree(f); 551 v->fec = NULL; 552 } 553 554 static void *fec_rs_alloc(gfp_t gfp_mask, void *pool_data) 555 { 556 struct dm_verity *v = pool_data; 557 558 return init_rs_gfp(8, 0x11d, 0, 1, v->fec->roots, gfp_mask); 559 } 560 561 static void fec_rs_free(void *element, void *pool_data) 562 { 563 struct rs_control *rs = element; 564 565 if (rs) 566 free_rs(rs); 567 } 568 569 bool verity_is_fec_opt_arg(const char *arg_name) 570 { 571 return (!strcasecmp(arg_name, DM_VERITY_OPT_FEC_DEV) || 572 !strcasecmp(arg_name, DM_VERITY_OPT_FEC_BLOCKS) || 573 !strcasecmp(arg_name, DM_VERITY_OPT_FEC_START) || 574 !strcasecmp(arg_name, DM_VERITY_OPT_FEC_ROOTS)); 575 } 576 577 int verity_fec_parse_opt_args(struct dm_arg_set *as, struct dm_verity *v, 578 unsigned int *argc, const char *arg_name) 579 { 580 int r; 581 struct dm_target *ti = v->ti; 582 const char *arg_value; 583 unsigned long long num_ll; 584 unsigned char num_c; 585 char dummy; 586 587 if (!*argc) { 588 ti->error = "FEC feature arguments require a value"; 589 return -EINVAL; 590 } 591 592 arg_value = dm_shift_arg(as); 593 (*argc)--; 594 595 if (!strcasecmp(arg_name, DM_VERITY_OPT_FEC_DEV)) { 596 r = dm_get_device(ti, arg_value, BLK_OPEN_READ, &v->fec->dev); 597 if (r) { 598 ti->error = "FEC device lookup failed"; 599 return r; 600 } 601 602 } else if (!strcasecmp(arg_name, DM_VERITY_OPT_FEC_BLOCKS)) { 603 if (sscanf(arg_value, "%llu%c", &num_ll, &dummy) != 1 || 604 ((sector_t)(num_ll << (v->data_dev_block_bits - SECTOR_SHIFT)) 605 >> (v->data_dev_block_bits - SECTOR_SHIFT) != num_ll)) { 606 ti->error = "Invalid " DM_VERITY_OPT_FEC_BLOCKS; 607 return -EINVAL; 608 } 609 v->fec->blocks = num_ll; 610 611 } else if (!strcasecmp(arg_name, DM_VERITY_OPT_FEC_START)) { 612 if (sscanf(arg_value, "%llu%c", &num_ll, &dummy) != 1 || 613 ((sector_t)(num_ll << (v->data_dev_block_bits - SECTOR_SHIFT)) >> 614 (v->data_dev_block_bits - SECTOR_SHIFT) != num_ll)) { 615 ti->error = "Invalid " DM_VERITY_OPT_FEC_START; 616 return -EINVAL; 617 } 618 v->fec->start = num_ll; 619 620 } else if (!strcasecmp(arg_name, DM_VERITY_OPT_FEC_ROOTS)) { 621 if (sscanf(arg_value, "%hhu%c", &num_c, &dummy) != 1 || !num_c || 622 num_c < (DM_VERITY_FEC_RSM - DM_VERITY_FEC_MAX_RSN) || 623 num_c > (DM_VERITY_FEC_RSM - DM_VERITY_FEC_MIN_RSN)) { 624 ti->error = "Invalid " DM_VERITY_OPT_FEC_ROOTS; 625 return -EINVAL; 626 } 627 v->fec->roots = num_c; 628 629 } else { 630 ti->error = "Unrecognized verity FEC feature request"; 631 return -EINVAL; 632 } 633 634 return 0; 635 } 636 637 /* 638 * Allocate dm_verity_fec for v->fec. Must be called before verity_fec_ctr. 639 */ 640 int verity_fec_ctr_alloc(struct dm_verity *v) 641 { 642 struct dm_verity_fec *f; 643 644 f = kzalloc(sizeof(struct dm_verity_fec), GFP_KERNEL); 645 if (!f) { 646 v->ti->error = "Cannot allocate FEC structure"; 647 return -ENOMEM; 648 } 649 v->fec = f; 650 651 return 0; 652 } 653 654 /* 655 * Validate arguments and preallocate memory. Must be called after arguments 656 * have been parsed using verity_fec_parse_opt_args. 657 */ 658 int verity_fec_ctr(struct dm_verity *v) 659 { 660 struct dm_verity_fec *f = v->fec; 661 struct dm_target *ti = v->ti; 662 u64 hash_blocks, fec_blocks; 663 int ret; 664 665 if (!verity_fec_is_enabled(v)) { 666 verity_fec_dtr(v); 667 return 0; 668 } 669 670 /* 671 * FEC is computed over data blocks, possible metadata, and 672 * hash blocks. In other words, FEC covers total of fec_blocks 673 * blocks consisting of the following: 674 * 675 * data blocks | hash blocks | metadata (optional) 676 * 677 * We allow metadata after hash blocks to support a use case 678 * where all data is stored on the same device and FEC covers 679 * the entire area. 680 * 681 * If metadata is included, we require it to be available on the 682 * hash device after the hash blocks. 683 */ 684 685 hash_blocks = v->hash_blocks - v->hash_start; 686 687 /* 688 * Require matching block sizes for data and hash devices for 689 * simplicity. 690 */ 691 if (v->data_dev_block_bits != v->hash_dev_block_bits) { 692 ti->error = "Block sizes must match to use FEC"; 693 return -EINVAL; 694 } 695 696 if (!f->roots) { 697 ti->error = "Missing " DM_VERITY_OPT_FEC_ROOTS; 698 return -EINVAL; 699 } 700 f->rsn = DM_VERITY_FEC_RSM - f->roots; 701 702 if (!f->blocks) { 703 ti->error = "Missing " DM_VERITY_OPT_FEC_BLOCKS; 704 return -EINVAL; 705 } 706 707 f->rounds = f->blocks; 708 if (sector_div(f->rounds, f->rsn)) 709 f->rounds++; 710 711 /* 712 * Due to optional metadata, f->blocks can be larger than 713 * data_blocks and hash_blocks combined. 714 */ 715 if (f->blocks < v->data_blocks + hash_blocks || !f->rounds) { 716 ti->error = "Invalid " DM_VERITY_OPT_FEC_BLOCKS; 717 return -EINVAL; 718 } 719 720 /* 721 * Metadata is accessed through the hash device, so we require 722 * it to be large enough. 723 */ 724 f->hash_blocks = f->blocks - v->data_blocks; 725 if (dm_bufio_get_device_size(v->bufio) < f->hash_blocks) { 726 ti->error = "Hash device is too small for " 727 DM_VERITY_OPT_FEC_BLOCKS; 728 return -E2BIG; 729 } 730 731 f->io_size = 1 << v->data_dev_block_bits; 732 733 f->bufio = dm_bufio_client_create(f->dev->bdev, 734 f->io_size, 735 1, 0, NULL, NULL, 0); 736 if (IS_ERR(f->bufio)) { 737 ti->error = "Cannot initialize FEC bufio client"; 738 return PTR_ERR(f->bufio); 739 } 740 741 dm_bufio_set_sector_offset(f->bufio, f->start << (v->data_dev_block_bits - SECTOR_SHIFT)); 742 743 fec_blocks = div64_u64(f->rounds * f->roots, v->fec->roots << SECTOR_SHIFT); 744 if (dm_bufio_get_device_size(f->bufio) < fec_blocks) { 745 ti->error = "FEC device is too small"; 746 return -E2BIG; 747 } 748 749 f->data_bufio = dm_bufio_client_create(v->data_dev->bdev, 750 1 << v->data_dev_block_bits, 751 1, 0, NULL, NULL, 0); 752 if (IS_ERR(f->data_bufio)) { 753 ti->error = "Cannot initialize FEC data bufio client"; 754 return PTR_ERR(f->data_bufio); 755 } 756 757 if (dm_bufio_get_device_size(f->data_bufio) < v->data_blocks) { 758 ti->error = "Data device is too small"; 759 return -E2BIG; 760 } 761 762 /* Preallocate an rs_control structure for each worker thread */ 763 ret = mempool_init(&f->rs_pool, num_online_cpus(), fec_rs_alloc, 764 fec_rs_free, (void *) v); 765 if (ret) { 766 ti->error = "Cannot allocate RS pool"; 767 return ret; 768 } 769 770 f->cache = kmem_cache_create("dm_verity_fec_buffers", 771 f->rsn << DM_VERITY_FEC_BUF_RS_BITS, 772 0, 0, NULL); 773 if (!f->cache) { 774 ti->error = "Cannot create FEC buffer cache"; 775 return -ENOMEM; 776 } 777 778 /* Preallocate DM_VERITY_FEC_BUF_PREALLOC buffers for each thread */ 779 ret = mempool_init_slab_pool(&f->prealloc_pool, num_online_cpus() * 780 DM_VERITY_FEC_BUF_PREALLOC, 781 f->cache); 782 if (ret) { 783 ti->error = "Cannot allocate FEC buffer prealloc pool"; 784 return ret; 785 } 786 787 ret = mempool_init_slab_pool(&f->extra_pool, 0, f->cache); 788 if (ret) { 789 ti->error = "Cannot allocate FEC buffer extra pool"; 790 return ret; 791 } 792 793 /* Preallocate an output buffer for each thread */ 794 ret = mempool_init_kmalloc_pool(&f->output_pool, num_online_cpus(), 795 1 << v->data_dev_block_bits); 796 if (ret) { 797 ti->error = "Cannot allocate FEC output pool"; 798 return ret; 799 } 800 801 /* Reserve space for our per-bio data */ 802 ti->per_io_data_size += sizeof(struct dm_verity_fec_io); 803 804 return 0; 805 } 806