1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Copyright (C) 2015 Google, Inc. 4 * 5 * Author: Sami Tolvanen <samitolvanen@google.com> 6 */ 7 8 #include "dm-verity-fec.h" 9 #include <linux/math64.h> 10 11 #define DM_MSG_PREFIX "verity-fec" 12 13 /* 14 * If error correction has been configured, returns true. 15 */ 16 bool verity_fec_is_enabled(struct dm_verity *v) 17 { 18 return v->fec && v->fec->dev; 19 } 20 21 /* 22 * Return a pointer to dm_verity_fec_io after dm_verity_io and its variable 23 * length fields. 24 */ 25 static inline struct dm_verity_fec_io *fec_io(struct dm_verity_io *io) 26 { 27 return (struct dm_verity_fec_io *) 28 ((char *)io + io->v->ti->per_io_data_size - sizeof(struct dm_verity_fec_io)); 29 } 30 31 /* 32 * Return an interleaved offset for a byte in RS block. 33 */ 34 static inline u64 fec_interleave(struct dm_verity *v, u64 offset) 35 { 36 u32 mod; 37 38 mod = do_div(offset, v->fec->rsn); 39 return offset + mod * (v->fec->rounds << v->data_dev_block_bits); 40 } 41 42 /* 43 * Decode an RS block using Reed-Solomon. 44 */ 45 static int fec_decode_rs8(struct dm_verity *v, struct dm_verity_fec_io *fio, 46 u8 *data, u8 *fec, int neras) 47 { 48 int i; 49 uint16_t par[DM_VERITY_FEC_RSM - DM_VERITY_FEC_MIN_RSN]; 50 51 for (i = 0; i < v->fec->roots; i++) 52 par[i] = fec[i]; 53 54 return decode_rs8(fio->rs, data, par, v->fec->rsn, NULL, neras, 55 fio->erasures, 0, NULL); 56 } 57 58 /* 59 * Read error-correcting codes for the requested RS block. Returns a pointer 60 * to the data block. Caller is responsible for releasing buf. 61 */ 62 static u8 *fec_read_parity(struct dm_verity *v, u64 rsb, int index, 63 unsigned int *offset, struct dm_buffer **buf) 64 { 65 u64 position, block, rem; 66 u8 *res; 67 68 position = (index + rsb) * v->fec->roots; 69 block = div64_u64_rem(position, v->fec->io_size, &rem); 70 *offset = (unsigned int)rem; 71 72 res = dm_bufio_read(v->fec->bufio, block, buf); 73 if (IS_ERR(res)) { 74 DMERR("%s: FEC %llu: parity read failed (block %llu): %ld", 75 v->data_dev->name, (unsigned long long)rsb, 76 (unsigned long long)block, PTR_ERR(res)); 77 *buf = NULL; 78 } 79 80 return res; 81 } 82 83 /* Loop over each preallocated buffer slot. */ 84 #define fec_for_each_prealloc_buffer(__i) \ 85 for (__i = 0; __i < DM_VERITY_FEC_BUF_PREALLOC; __i++) 86 87 /* Loop over each extra buffer slot. */ 88 #define fec_for_each_extra_buffer(io, __i) \ 89 for (__i = DM_VERITY_FEC_BUF_PREALLOC; __i < DM_VERITY_FEC_BUF_MAX; __i++) 90 91 /* Loop over each allocated buffer. */ 92 #define fec_for_each_buffer(io, __i) \ 93 for (__i = 0; __i < (io)->nbufs; __i++) 94 95 /* Loop over each RS block in each allocated buffer. */ 96 #define fec_for_each_buffer_rs_block(io, __i, __j) \ 97 fec_for_each_buffer(io, __i) \ 98 for (__j = 0; __j < 1 << DM_VERITY_FEC_BUF_RS_BITS; __j++) 99 100 /* 101 * Return a pointer to the current RS block when called inside 102 * fec_for_each_buffer_rs_block. 103 */ 104 static inline u8 *fec_buffer_rs_block(struct dm_verity *v, 105 struct dm_verity_fec_io *fio, 106 unsigned int i, unsigned int j) 107 { 108 return &fio->bufs[i][j * v->fec->rsn]; 109 } 110 111 /* 112 * Return an index to the current RS block when called inside 113 * fec_for_each_buffer_rs_block. 114 */ 115 static inline unsigned int fec_buffer_rs_index(unsigned int i, unsigned int j) 116 { 117 return (i << DM_VERITY_FEC_BUF_RS_BITS) + j; 118 } 119 120 /* 121 * Decode all RS blocks from buffers and copy corrected bytes into fio->output 122 * starting from block_offset. 123 */ 124 static int fec_decode_bufs(struct dm_verity *v, struct dm_verity_fec_io *fio, 125 u64 rsb, int byte_index, unsigned int block_offset, 126 int neras) 127 { 128 int r, corrected = 0, res; 129 struct dm_buffer *buf; 130 unsigned int n, i, offset; 131 u8 *par, *block; 132 133 par = fec_read_parity(v, rsb, block_offset, &offset, &buf); 134 if (IS_ERR(par)) 135 return PTR_ERR(par); 136 137 /* 138 * Decode the RS blocks we have in bufs. Each RS block results in 139 * one corrected target byte and consumes fec->roots parity bytes. 140 */ 141 fec_for_each_buffer_rs_block(fio, n, i) { 142 block = fec_buffer_rs_block(v, fio, n, i); 143 res = fec_decode_rs8(v, fio, block, &par[offset], neras); 144 if (res < 0) { 145 r = res; 146 goto error; 147 } 148 149 corrected += res; 150 fio->output[block_offset] = block[byte_index]; 151 152 block_offset++; 153 if (block_offset >= 1 << v->data_dev_block_bits) 154 goto done; 155 156 /* read the next block when we run out of parity bytes */ 157 offset += v->fec->roots; 158 if (offset >= v->fec->io_size) { 159 dm_bufio_release(buf); 160 161 par = fec_read_parity(v, rsb, block_offset, &offset, &buf); 162 if (IS_ERR(par)) 163 return PTR_ERR(par); 164 } 165 } 166 done: 167 r = corrected; 168 error: 169 dm_bufio_release(buf); 170 171 if (r < 0 && neras) 172 DMERR_LIMIT("%s: FEC %llu: failed to correct: %d", 173 v->data_dev->name, (unsigned long long)rsb, r); 174 else if (r > 0) 175 DMWARN_LIMIT("%s: FEC %llu: corrected %d errors", 176 v->data_dev->name, (unsigned long long)rsb, r); 177 178 return r; 179 } 180 181 /* 182 * Locate data block erasures using verity hashes. 183 */ 184 static int fec_is_erasure(struct dm_verity *v, struct dm_verity_io *io, 185 u8 *want_digest, u8 *data) 186 { 187 if (unlikely(verity_hash(v, verity_io_hash_req(v, io), 188 data, 1 << v->data_dev_block_bits, 189 verity_io_real_digest(v, io), true))) 190 return 0; 191 192 return memcmp(verity_io_real_digest(v, io), want_digest, 193 v->digest_size) != 0; 194 } 195 196 /* 197 * Read data blocks that are part of the RS block and deinterleave as much as 198 * fits into buffers. Check for erasure locations if @neras is non-NULL. 199 */ 200 static int fec_read_bufs(struct dm_verity *v, struct dm_verity_io *io, 201 u64 rsb, u64 target, unsigned int block_offset, 202 int *neras) 203 { 204 bool is_zero; 205 int i, j, target_index = -1; 206 struct dm_buffer *buf; 207 struct dm_bufio_client *bufio; 208 struct dm_verity_fec_io *fio = fec_io(io); 209 u64 block, ileaved; 210 u8 *bbuf, *rs_block; 211 u8 want_digest[HASH_MAX_DIGESTSIZE]; 212 unsigned int n, k; 213 214 if (neras) 215 *neras = 0; 216 217 if (WARN_ON(v->digest_size > sizeof(want_digest))) 218 return -EINVAL; 219 220 /* 221 * read each of the rsn data blocks that are part of the RS block, and 222 * interleave contents to available bufs 223 */ 224 for (i = 0; i < v->fec->rsn; i++) { 225 ileaved = fec_interleave(v, rsb * v->fec->rsn + i); 226 227 /* 228 * target is the data block we want to correct, target_index is 229 * the index of this block within the rsn RS blocks 230 */ 231 if (ileaved == target) 232 target_index = i; 233 234 block = ileaved >> v->data_dev_block_bits; 235 bufio = v->fec->data_bufio; 236 237 if (block >= v->data_blocks) { 238 block -= v->data_blocks; 239 240 /* 241 * blocks outside the area were assumed to contain 242 * zeros when encoding data was generated 243 */ 244 if (unlikely(block >= v->fec->hash_blocks)) 245 continue; 246 247 block += v->hash_start; 248 bufio = v->bufio; 249 } 250 251 bbuf = dm_bufio_read(bufio, block, &buf); 252 if (IS_ERR(bbuf)) { 253 DMWARN_LIMIT("%s: FEC %llu: read failed (%llu): %ld", 254 v->data_dev->name, 255 (unsigned long long)rsb, 256 (unsigned long long)block, PTR_ERR(bbuf)); 257 258 /* assume the block is corrupted */ 259 if (neras && *neras <= v->fec->roots) 260 fio->erasures[(*neras)++] = i; 261 262 continue; 263 } 264 265 /* locate erasures if the block is on the data device */ 266 if (bufio == v->fec->data_bufio && 267 verity_hash_for_block(v, io, block, want_digest, 268 &is_zero) == 0) { 269 /* skip known zero blocks entirely */ 270 if (is_zero) 271 goto done; 272 273 /* 274 * skip if we have already found the theoretical 275 * maximum number (i.e. fec->roots) of erasures 276 */ 277 if (neras && *neras <= v->fec->roots && 278 fec_is_erasure(v, io, want_digest, bbuf)) 279 fio->erasures[(*neras)++] = i; 280 } 281 282 /* 283 * deinterleave and copy the bytes that fit into bufs, 284 * starting from block_offset 285 */ 286 fec_for_each_buffer_rs_block(fio, n, j) { 287 k = fec_buffer_rs_index(n, j) + block_offset; 288 289 if (k >= 1 << v->data_dev_block_bits) 290 goto done; 291 292 rs_block = fec_buffer_rs_block(v, fio, n, j); 293 rs_block[i] = bbuf[k]; 294 } 295 done: 296 dm_bufio_release(buf); 297 } 298 299 return target_index; 300 } 301 302 /* 303 * Allocate RS control structure and FEC buffers from preallocated mempools, 304 * and attempt to allocate as many extra buffers as available. 305 */ 306 static int fec_alloc_bufs(struct dm_verity *v, struct dm_verity_fec_io *fio) 307 { 308 unsigned int n; 309 310 if (!fio->rs) 311 fio->rs = mempool_alloc(&v->fec->rs_pool, GFP_NOIO); 312 313 fec_for_each_prealloc_buffer(n) { 314 if (fio->bufs[n]) 315 continue; 316 317 fio->bufs[n] = mempool_alloc(&v->fec->prealloc_pool, GFP_NOWAIT); 318 if (unlikely(!fio->bufs[n])) { 319 DMERR("failed to allocate FEC buffer"); 320 return -ENOMEM; 321 } 322 } 323 324 /* try to allocate the maximum number of buffers */ 325 fec_for_each_extra_buffer(fio, n) { 326 if (fio->bufs[n]) 327 continue; 328 329 fio->bufs[n] = mempool_alloc(&v->fec->extra_pool, GFP_NOWAIT); 330 /* we can manage with even one buffer if necessary */ 331 if (unlikely(!fio->bufs[n])) 332 break; 333 } 334 fio->nbufs = n; 335 336 if (!fio->output) 337 fio->output = mempool_alloc(&v->fec->output_pool, GFP_NOIO); 338 339 return 0; 340 } 341 342 /* 343 * Initialize buffers and clear erasures. fec_read_bufs() assumes buffers are 344 * zeroed before deinterleaving. 345 */ 346 static void fec_init_bufs(struct dm_verity *v, struct dm_verity_fec_io *fio) 347 { 348 unsigned int n; 349 350 fec_for_each_buffer(fio, n) 351 memset(fio->bufs[n], 0, v->fec->rsn << DM_VERITY_FEC_BUF_RS_BITS); 352 353 memset(fio->erasures, 0, sizeof(fio->erasures)); 354 } 355 356 /* 357 * Decode all RS blocks in a single data block and return the target block 358 * (indicated by @offset) in fio->output. If @use_erasures is non-zero, uses 359 * hashes to locate erasures. 360 */ 361 static int fec_decode_rsb(struct dm_verity *v, struct dm_verity_io *io, 362 struct dm_verity_fec_io *fio, u64 rsb, u64 offset, 363 bool use_erasures) 364 { 365 int r, neras = 0; 366 unsigned int pos; 367 368 r = fec_alloc_bufs(v, fio); 369 if (unlikely(r < 0)) 370 return r; 371 372 for (pos = 0; pos < 1 << v->data_dev_block_bits; ) { 373 fec_init_bufs(v, fio); 374 375 r = fec_read_bufs(v, io, rsb, offset, pos, 376 use_erasures ? &neras : NULL); 377 if (unlikely(r < 0)) 378 return r; 379 380 r = fec_decode_bufs(v, fio, rsb, r, pos, neras); 381 if (r < 0) 382 return r; 383 384 pos += fio->nbufs << DM_VERITY_FEC_BUF_RS_BITS; 385 } 386 387 /* Always re-validate the corrected block against the expected hash */ 388 r = verity_hash(v, verity_io_hash_req(v, io), fio->output, 389 1 << v->data_dev_block_bits, 390 verity_io_real_digest(v, io), true); 391 if (unlikely(r < 0)) 392 return r; 393 394 if (memcmp(verity_io_real_digest(v, io), verity_io_want_digest(v, io), 395 v->digest_size)) { 396 DMERR_LIMIT("%s: FEC %llu: failed to correct (%d erasures)", 397 v->data_dev->name, (unsigned long long)rsb, neras); 398 return -EILSEQ; 399 } 400 401 return 0; 402 } 403 404 static int fec_bv_copy(struct dm_verity *v, struct dm_verity_io *io, u8 *data, 405 size_t len) 406 { 407 struct dm_verity_fec_io *fio = fec_io(io); 408 409 memcpy(data, &fio->output[fio->output_pos], len); 410 fio->output_pos += len; 411 412 return 0; 413 } 414 415 /* 416 * Correct errors in a block. Copies corrected block to dest if non-NULL, 417 * otherwise to a bio_vec starting from iter. 418 */ 419 int verity_fec_decode(struct dm_verity *v, struct dm_verity_io *io, 420 enum verity_block_type type, sector_t block, u8 *dest, 421 struct bvec_iter *iter) 422 { 423 int r; 424 struct dm_verity_fec_io *fio = fec_io(io); 425 u64 offset, res, rsb; 426 427 if (!verity_fec_is_enabled(v)) 428 return -EOPNOTSUPP; 429 430 if (fio->level >= DM_VERITY_FEC_MAX_RECURSION) { 431 DMWARN_LIMIT("%s: FEC: recursion too deep", v->data_dev->name); 432 return -EIO; 433 } 434 435 fio->level++; 436 437 if (type == DM_VERITY_BLOCK_TYPE_METADATA) 438 block = block - v->hash_start + v->data_blocks; 439 440 /* 441 * For RS(M, N), the continuous FEC data is divided into blocks of N 442 * bytes. Since block size may not be divisible by N, the last block 443 * is zero padded when decoding. 444 * 445 * Each byte of the block is covered by a different RS(M, N) code, 446 * and each code is interleaved over N blocks to make it less likely 447 * that bursty corruption will leave us in unrecoverable state. 448 */ 449 450 offset = block << v->data_dev_block_bits; 451 res = div64_u64(offset, v->fec->rounds << v->data_dev_block_bits); 452 453 /* 454 * The base RS block we can feed to the interleaver to find out all 455 * blocks required for decoding. 456 */ 457 rsb = offset - res * (v->fec->rounds << v->data_dev_block_bits); 458 459 /* 460 * Locating erasures is slow, so attempt to recover the block without 461 * them first. Do a second attempt with erasures if the corruption is 462 * bad enough. 463 */ 464 r = fec_decode_rsb(v, io, fio, rsb, offset, false); 465 if (r < 0) { 466 r = fec_decode_rsb(v, io, fio, rsb, offset, true); 467 if (r < 0) 468 goto done; 469 } 470 471 if (dest) 472 memcpy(dest, fio->output, 1 << v->data_dev_block_bits); 473 else if (iter) { 474 fio->output_pos = 0; 475 r = verity_for_bv_block(v, io, iter, fec_bv_copy); 476 } 477 478 done: 479 fio->level--; 480 return r; 481 } 482 483 /* 484 * Clean up per-bio data. 485 */ 486 void verity_fec_finish_io(struct dm_verity_io *io) 487 { 488 unsigned int n; 489 struct dm_verity_fec *f = io->v->fec; 490 struct dm_verity_fec_io *fio = fec_io(io); 491 492 if (!verity_fec_is_enabled(io->v)) 493 return; 494 495 mempool_free(fio->rs, &f->rs_pool); 496 497 fec_for_each_prealloc_buffer(n) 498 mempool_free(fio->bufs[n], &f->prealloc_pool); 499 500 fec_for_each_extra_buffer(fio, n) 501 mempool_free(fio->bufs[n], &f->extra_pool); 502 503 mempool_free(fio->output, &f->output_pool); 504 } 505 506 /* 507 * Initialize per-bio data. 508 */ 509 void verity_fec_init_io(struct dm_verity_io *io) 510 { 511 struct dm_verity_fec_io *fio = fec_io(io); 512 513 if (!verity_fec_is_enabled(io->v)) 514 return; 515 516 fio->rs = NULL; 517 memset(fio->bufs, 0, sizeof(fio->bufs)); 518 fio->nbufs = 0; 519 fio->output = NULL; 520 fio->level = 0; 521 } 522 523 /* 524 * Append feature arguments and values to the status table. 525 */ 526 unsigned int verity_fec_status_table(struct dm_verity *v, unsigned int sz, 527 char *result, unsigned int maxlen) 528 { 529 if (!verity_fec_is_enabled(v)) 530 return sz; 531 532 DMEMIT(" " DM_VERITY_OPT_FEC_DEV " %s " 533 DM_VERITY_OPT_FEC_BLOCKS " %llu " 534 DM_VERITY_OPT_FEC_START " %llu " 535 DM_VERITY_OPT_FEC_ROOTS " %d", 536 v->fec->dev->name, 537 (unsigned long long)v->fec->blocks, 538 (unsigned long long)v->fec->start, 539 v->fec->roots); 540 541 return sz; 542 } 543 544 void verity_fec_dtr(struct dm_verity *v) 545 { 546 struct dm_verity_fec *f = v->fec; 547 548 if (!verity_fec_is_enabled(v)) 549 goto out; 550 551 mempool_exit(&f->rs_pool); 552 mempool_exit(&f->prealloc_pool); 553 mempool_exit(&f->extra_pool); 554 mempool_exit(&f->output_pool); 555 kmem_cache_destroy(f->cache); 556 557 if (f->data_bufio) 558 dm_bufio_client_destroy(f->data_bufio); 559 if (f->bufio) 560 dm_bufio_client_destroy(f->bufio); 561 562 if (f->dev) 563 dm_put_device(v->ti, f->dev); 564 out: 565 kfree(f); 566 v->fec = NULL; 567 } 568 569 static void *fec_rs_alloc(gfp_t gfp_mask, void *pool_data) 570 { 571 struct dm_verity *v = pool_data; 572 573 return init_rs_gfp(8, 0x11d, 0, 1, v->fec->roots, gfp_mask); 574 } 575 576 static void fec_rs_free(void *element, void *pool_data) 577 { 578 struct rs_control *rs = element; 579 580 if (rs) 581 free_rs(rs); 582 } 583 584 bool verity_is_fec_opt_arg(const char *arg_name) 585 { 586 return (!strcasecmp(arg_name, DM_VERITY_OPT_FEC_DEV) || 587 !strcasecmp(arg_name, DM_VERITY_OPT_FEC_BLOCKS) || 588 !strcasecmp(arg_name, DM_VERITY_OPT_FEC_START) || 589 !strcasecmp(arg_name, DM_VERITY_OPT_FEC_ROOTS)); 590 } 591 592 int verity_fec_parse_opt_args(struct dm_arg_set *as, struct dm_verity *v, 593 unsigned int *argc, const char *arg_name) 594 { 595 int r; 596 struct dm_target *ti = v->ti; 597 const char *arg_value; 598 unsigned long long num_ll; 599 unsigned char num_c; 600 char dummy; 601 602 if (!*argc) { 603 ti->error = "FEC feature arguments require a value"; 604 return -EINVAL; 605 } 606 607 arg_value = dm_shift_arg(as); 608 (*argc)--; 609 610 if (!strcasecmp(arg_name, DM_VERITY_OPT_FEC_DEV)) { 611 r = dm_get_device(ti, arg_value, BLK_OPEN_READ, &v->fec->dev); 612 if (r) { 613 ti->error = "FEC device lookup failed"; 614 return r; 615 } 616 617 } else if (!strcasecmp(arg_name, DM_VERITY_OPT_FEC_BLOCKS)) { 618 if (sscanf(arg_value, "%llu%c", &num_ll, &dummy) != 1 || 619 ((sector_t)(num_ll << (v->data_dev_block_bits - SECTOR_SHIFT)) 620 >> (v->data_dev_block_bits - SECTOR_SHIFT) != num_ll)) { 621 ti->error = "Invalid " DM_VERITY_OPT_FEC_BLOCKS; 622 return -EINVAL; 623 } 624 v->fec->blocks = num_ll; 625 626 } else if (!strcasecmp(arg_name, DM_VERITY_OPT_FEC_START)) { 627 if (sscanf(arg_value, "%llu%c", &num_ll, &dummy) != 1 || 628 ((sector_t)(num_ll << (v->data_dev_block_bits - SECTOR_SHIFT)) >> 629 (v->data_dev_block_bits - SECTOR_SHIFT) != num_ll)) { 630 ti->error = "Invalid " DM_VERITY_OPT_FEC_START; 631 return -EINVAL; 632 } 633 v->fec->start = num_ll; 634 635 } else if (!strcasecmp(arg_name, DM_VERITY_OPT_FEC_ROOTS)) { 636 if (sscanf(arg_value, "%hhu%c", &num_c, &dummy) != 1 || !num_c || 637 num_c < (DM_VERITY_FEC_RSM - DM_VERITY_FEC_MAX_RSN) || 638 num_c > (DM_VERITY_FEC_RSM - DM_VERITY_FEC_MIN_RSN)) { 639 ti->error = "Invalid " DM_VERITY_OPT_FEC_ROOTS; 640 return -EINVAL; 641 } 642 v->fec->roots = num_c; 643 644 } else { 645 ti->error = "Unrecognized verity FEC feature request"; 646 return -EINVAL; 647 } 648 649 return 0; 650 } 651 652 /* 653 * Allocate dm_verity_fec for v->fec. Must be called before verity_fec_ctr. 654 */ 655 int verity_fec_ctr_alloc(struct dm_verity *v) 656 { 657 struct dm_verity_fec *f; 658 659 f = kzalloc(sizeof(struct dm_verity_fec), GFP_KERNEL); 660 if (!f) { 661 v->ti->error = "Cannot allocate FEC structure"; 662 return -ENOMEM; 663 } 664 v->fec = f; 665 666 return 0; 667 } 668 669 /* 670 * Validate arguments and preallocate memory. Must be called after arguments 671 * have been parsed using verity_fec_parse_opt_args. 672 */ 673 int verity_fec_ctr(struct dm_verity *v) 674 { 675 struct dm_verity_fec *f = v->fec; 676 struct dm_target *ti = v->ti; 677 u64 hash_blocks, fec_blocks; 678 int ret; 679 680 if (!verity_fec_is_enabled(v)) { 681 verity_fec_dtr(v); 682 return 0; 683 } 684 685 /* 686 * FEC is computed over data blocks, possible metadata, and 687 * hash blocks. In other words, FEC covers total of fec_blocks 688 * blocks consisting of the following: 689 * 690 * data blocks | hash blocks | metadata (optional) 691 * 692 * We allow metadata after hash blocks to support a use case 693 * where all data is stored on the same device and FEC covers 694 * the entire area. 695 * 696 * If metadata is included, we require it to be available on the 697 * hash device after the hash blocks. 698 */ 699 700 hash_blocks = v->hash_blocks - v->hash_start; 701 702 /* 703 * Require matching block sizes for data and hash devices for 704 * simplicity. 705 */ 706 if (v->data_dev_block_bits != v->hash_dev_block_bits) { 707 ti->error = "Block sizes must match to use FEC"; 708 return -EINVAL; 709 } 710 711 if (!f->roots) { 712 ti->error = "Missing " DM_VERITY_OPT_FEC_ROOTS; 713 return -EINVAL; 714 } 715 f->rsn = DM_VERITY_FEC_RSM - f->roots; 716 717 if (!f->blocks) { 718 ti->error = "Missing " DM_VERITY_OPT_FEC_BLOCKS; 719 return -EINVAL; 720 } 721 722 f->rounds = f->blocks; 723 if (sector_div(f->rounds, f->rsn)) 724 f->rounds++; 725 726 /* 727 * Due to optional metadata, f->blocks can be larger than 728 * data_blocks and hash_blocks combined. 729 */ 730 if (f->blocks < v->data_blocks + hash_blocks || !f->rounds) { 731 ti->error = "Invalid " DM_VERITY_OPT_FEC_BLOCKS; 732 return -EINVAL; 733 } 734 735 /* 736 * Metadata is accessed through the hash device, so we require 737 * it to be large enough. 738 */ 739 f->hash_blocks = f->blocks - v->data_blocks; 740 if (dm_bufio_get_device_size(v->bufio) < f->hash_blocks) { 741 ti->error = "Hash device is too small for " 742 DM_VERITY_OPT_FEC_BLOCKS; 743 return -E2BIG; 744 } 745 746 if ((f->roots << SECTOR_SHIFT) & ((1 << v->data_dev_block_bits) - 1)) 747 f->io_size = 1 << v->data_dev_block_bits; 748 else 749 f->io_size = v->fec->roots << SECTOR_SHIFT; 750 751 f->bufio = dm_bufio_client_create(f->dev->bdev, 752 f->io_size, 753 1, 0, NULL, NULL, 0); 754 if (IS_ERR(f->bufio)) { 755 ti->error = "Cannot initialize FEC bufio client"; 756 return PTR_ERR(f->bufio); 757 } 758 759 dm_bufio_set_sector_offset(f->bufio, f->start << (v->data_dev_block_bits - SECTOR_SHIFT)); 760 761 fec_blocks = div64_u64(f->rounds * f->roots, v->fec->roots << SECTOR_SHIFT); 762 if (dm_bufio_get_device_size(f->bufio) < fec_blocks) { 763 ti->error = "FEC device is too small"; 764 return -E2BIG; 765 } 766 767 f->data_bufio = dm_bufio_client_create(v->data_dev->bdev, 768 1 << v->data_dev_block_bits, 769 1, 0, NULL, NULL, 0); 770 if (IS_ERR(f->data_bufio)) { 771 ti->error = "Cannot initialize FEC data bufio client"; 772 return PTR_ERR(f->data_bufio); 773 } 774 775 if (dm_bufio_get_device_size(f->data_bufio) < v->data_blocks) { 776 ti->error = "Data device is too small"; 777 return -E2BIG; 778 } 779 780 /* Preallocate an rs_control structure for each worker thread */ 781 ret = mempool_init(&f->rs_pool, num_online_cpus(), fec_rs_alloc, 782 fec_rs_free, (void *) v); 783 if (ret) { 784 ti->error = "Cannot allocate RS pool"; 785 return ret; 786 } 787 788 f->cache = kmem_cache_create("dm_verity_fec_buffers", 789 f->rsn << DM_VERITY_FEC_BUF_RS_BITS, 790 0, 0, NULL); 791 if (!f->cache) { 792 ti->error = "Cannot create FEC buffer cache"; 793 return -ENOMEM; 794 } 795 796 /* Preallocate DM_VERITY_FEC_BUF_PREALLOC buffers for each thread */ 797 ret = mempool_init_slab_pool(&f->prealloc_pool, num_online_cpus() * 798 DM_VERITY_FEC_BUF_PREALLOC, 799 f->cache); 800 if (ret) { 801 ti->error = "Cannot allocate FEC buffer prealloc pool"; 802 return ret; 803 } 804 805 ret = mempool_init_slab_pool(&f->extra_pool, 0, f->cache); 806 if (ret) { 807 ti->error = "Cannot allocate FEC buffer extra pool"; 808 return ret; 809 } 810 811 /* Preallocate an output buffer for each thread */ 812 ret = mempool_init_kmalloc_pool(&f->output_pool, num_online_cpus(), 813 1 << v->data_dev_block_bits); 814 if (ret) { 815 ti->error = "Cannot allocate FEC output pool"; 816 return ret; 817 } 818 819 /* Reserve space for our per-bio data */ 820 ti->per_io_data_size += sizeof(struct dm_verity_fec_io); 821 822 return 0; 823 } 824