xref: /linux/drivers/md/dm-verity-fec.c (revision 1d5198dd08ac04b13a8b7539131baf0980998032)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Copyright (C) 2015 Google, Inc.
4  *
5  * Author: Sami Tolvanen <samitolvanen@google.com>
6  */
7 
8 #include "dm-verity-fec.h"
9 #include <linux/math64.h>
10 
11 #define DM_MSG_PREFIX	"verity-fec"
12 
13 /*
14  * If error correction has been configured, returns true.
15  */
16 bool verity_fec_is_enabled(struct dm_verity *v)
17 {
18 	return v->fec && v->fec->dev;
19 }
20 
21 /*
22  * Return a pointer to dm_verity_fec_io after dm_verity_io and its variable
23  * length fields.
24  */
25 static inline struct dm_verity_fec_io *fec_io(struct dm_verity_io *io)
26 {
27 	return (struct dm_verity_fec_io *)
28 		((char *)io + io->v->ti->per_io_data_size - sizeof(struct dm_verity_fec_io));
29 }
30 
31 /*
32  * Return an interleaved offset for a byte in RS block.
33  */
34 static inline u64 fec_interleave(struct dm_verity *v, u64 offset)
35 {
36 	u32 mod;
37 
38 	mod = do_div(offset, v->fec->rsn);
39 	return offset + mod * (v->fec->rounds << v->data_dev_block_bits);
40 }
41 
42 /*
43  * Decode an RS block using Reed-Solomon.
44  */
45 static int fec_decode_rs8(struct dm_verity *v, struct dm_verity_fec_io *fio,
46 			  u8 *data, u8 *fec, int neras)
47 {
48 	int i;
49 	uint16_t par[DM_VERITY_FEC_RSM - DM_VERITY_FEC_MIN_RSN];
50 
51 	for (i = 0; i < v->fec->roots; i++)
52 		par[i] = fec[i];
53 
54 	return decode_rs8(fio->rs, data, par, v->fec->rsn, NULL, neras,
55 			  fio->erasures, 0, NULL);
56 }
57 
58 /*
59  * Read error-correcting codes for the requested RS block. Returns a pointer
60  * to the data block. Caller is responsible for releasing buf.
61  */
62 static u8 *fec_read_parity(struct dm_verity *v, u64 rsb, int index,
63 			   unsigned int *offset, struct dm_buffer **buf,
64 			   unsigned short ioprio)
65 {
66 	u64 position, block, rem;
67 	u8 *res;
68 
69 	position = (index + rsb) * v->fec->roots;
70 	block = div64_u64_rem(position, v->fec->io_size, &rem);
71 	*offset = (unsigned int)rem;
72 
73 	res = dm_bufio_read_with_ioprio(v->fec->bufio, block, buf, ioprio);
74 	if (IS_ERR(res)) {
75 		DMERR("%s: FEC %llu: parity read failed (block %llu): %ld",
76 		      v->data_dev->name, (unsigned long long)rsb,
77 		      (unsigned long long)block, PTR_ERR(res));
78 		*buf = NULL;
79 	}
80 
81 	return res;
82 }
83 
84 /* Loop over each preallocated buffer slot. */
85 #define fec_for_each_prealloc_buffer(__i) \
86 	for (__i = 0; __i < DM_VERITY_FEC_BUF_PREALLOC; __i++)
87 
88 /* Loop over each extra buffer slot. */
89 #define fec_for_each_extra_buffer(io, __i) \
90 	for (__i = DM_VERITY_FEC_BUF_PREALLOC; __i < DM_VERITY_FEC_BUF_MAX; __i++)
91 
92 /* Loop over each allocated buffer. */
93 #define fec_for_each_buffer(io, __i) \
94 	for (__i = 0; __i < (io)->nbufs; __i++)
95 
96 /* Loop over each RS block in each allocated buffer. */
97 #define fec_for_each_buffer_rs_block(io, __i, __j) \
98 	fec_for_each_buffer(io, __i) \
99 		for (__j = 0; __j < 1 << DM_VERITY_FEC_BUF_RS_BITS; __j++)
100 
101 /*
102  * Return a pointer to the current RS block when called inside
103  * fec_for_each_buffer_rs_block.
104  */
105 static inline u8 *fec_buffer_rs_block(struct dm_verity *v,
106 				      struct dm_verity_fec_io *fio,
107 				      unsigned int i, unsigned int j)
108 {
109 	return &fio->bufs[i][j * v->fec->rsn];
110 }
111 
112 /*
113  * Return an index to the current RS block when called inside
114  * fec_for_each_buffer_rs_block.
115  */
116 static inline unsigned int fec_buffer_rs_index(unsigned int i, unsigned int j)
117 {
118 	return (i << DM_VERITY_FEC_BUF_RS_BITS) + j;
119 }
120 
121 /*
122  * Decode all RS blocks from buffers and copy corrected bytes into fio->output
123  * starting from block_offset.
124  */
125 static int fec_decode_bufs(struct dm_verity *v, struct dm_verity_io *io,
126 			   struct dm_verity_fec_io *fio, u64 rsb, int byte_index,
127 			   unsigned int block_offset, int neras)
128 {
129 	int r, corrected = 0, res;
130 	struct dm_buffer *buf;
131 	unsigned int n, i, offset;
132 	u8 *par, *block;
133 	struct bio *bio = dm_bio_from_per_bio_data(io, v->ti->per_io_data_size);
134 
135 	par = fec_read_parity(v, rsb, block_offset, &offset, &buf, bio_prio(bio));
136 	if (IS_ERR(par))
137 		return PTR_ERR(par);
138 
139 	/*
140 	 * Decode the RS blocks we have in bufs. Each RS block results in
141 	 * one corrected target byte and consumes fec->roots parity bytes.
142 	 */
143 	fec_for_each_buffer_rs_block(fio, n, i) {
144 		block = fec_buffer_rs_block(v, fio, n, i);
145 		res = fec_decode_rs8(v, fio, block, &par[offset], neras);
146 		if (res < 0) {
147 			r = res;
148 			goto error;
149 		}
150 
151 		corrected += res;
152 		fio->output[block_offset] = block[byte_index];
153 
154 		block_offset++;
155 		if (block_offset >= 1 << v->data_dev_block_bits)
156 			goto done;
157 
158 		/* read the next block when we run out of parity bytes */
159 		offset += v->fec->roots;
160 		if (offset >= v->fec->io_size) {
161 			dm_bufio_release(buf);
162 
163 			par = fec_read_parity(v, rsb, block_offset, &offset, &buf, bio_prio(bio));
164 			if (IS_ERR(par))
165 				return PTR_ERR(par);
166 		}
167 	}
168 done:
169 	r = corrected;
170 error:
171 	dm_bufio_release(buf);
172 
173 	if (r < 0 && neras)
174 		DMERR_LIMIT("%s: FEC %llu: failed to correct: %d",
175 			    v->data_dev->name, (unsigned long long)rsb, r);
176 	else if (r > 0)
177 		DMWARN_LIMIT("%s: FEC %llu: corrected %d errors",
178 			     v->data_dev->name, (unsigned long long)rsb, r);
179 
180 	return r;
181 }
182 
183 /*
184  * Locate data block erasures using verity hashes.
185  */
186 static int fec_is_erasure(struct dm_verity *v, struct dm_verity_io *io,
187 			  u8 *want_digest, u8 *data)
188 {
189 	if (unlikely(verity_hash(v, verity_io_hash_req(v, io),
190 				 data, 1 << v->data_dev_block_bits,
191 				 verity_io_real_digest(v, io), true)))
192 		return 0;
193 
194 	return memcmp(verity_io_real_digest(v, io), want_digest,
195 		      v->digest_size) != 0;
196 }
197 
198 /*
199  * Read data blocks that are part of the RS block and deinterleave as much as
200  * fits into buffers. Check for erasure locations if @neras is non-NULL.
201  */
202 static int fec_read_bufs(struct dm_verity *v, struct dm_verity_io *io,
203 			 u64 rsb, u64 target, unsigned int block_offset,
204 			 int *neras)
205 {
206 	bool is_zero;
207 	int i, j, target_index = -1;
208 	struct dm_buffer *buf;
209 	struct dm_bufio_client *bufio;
210 	struct dm_verity_fec_io *fio = fec_io(io);
211 	u64 block, ileaved;
212 	u8 *bbuf, *rs_block;
213 	u8 want_digest[HASH_MAX_DIGESTSIZE];
214 	unsigned int n, k;
215 	struct bio *bio = dm_bio_from_per_bio_data(io, v->ti->per_io_data_size);
216 
217 	if (neras)
218 		*neras = 0;
219 
220 	if (WARN_ON(v->digest_size > sizeof(want_digest)))
221 		return -EINVAL;
222 
223 	/*
224 	 * read each of the rsn data blocks that are part of the RS block, and
225 	 * interleave contents to available bufs
226 	 */
227 	for (i = 0; i < v->fec->rsn; i++) {
228 		ileaved = fec_interleave(v, rsb * v->fec->rsn + i);
229 
230 		/*
231 		 * target is the data block we want to correct, target_index is
232 		 * the index of this block within the rsn RS blocks
233 		 */
234 		if (ileaved == target)
235 			target_index = i;
236 
237 		block = ileaved >> v->data_dev_block_bits;
238 		bufio = v->fec->data_bufio;
239 
240 		if (block >= v->data_blocks) {
241 			block -= v->data_blocks;
242 
243 			/*
244 			 * blocks outside the area were assumed to contain
245 			 * zeros when encoding data was generated
246 			 */
247 			if (unlikely(block >= v->fec->hash_blocks))
248 				continue;
249 
250 			block += v->hash_start;
251 			bufio = v->bufio;
252 		}
253 
254 		bbuf = dm_bufio_read_with_ioprio(bufio, block, &buf, bio_prio(bio));
255 		if (IS_ERR(bbuf)) {
256 			DMWARN_LIMIT("%s: FEC %llu: read failed (%llu): %ld",
257 				     v->data_dev->name,
258 				     (unsigned long long)rsb,
259 				     (unsigned long long)block, PTR_ERR(bbuf));
260 
261 			/* assume the block is corrupted */
262 			if (neras && *neras <= v->fec->roots)
263 				fio->erasures[(*neras)++] = i;
264 
265 			continue;
266 		}
267 
268 		/* locate erasures if the block is on the data device */
269 		if (bufio == v->fec->data_bufio &&
270 		    verity_hash_for_block(v, io, block, want_digest,
271 					  &is_zero) == 0) {
272 			/* skip known zero blocks entirely */
273 			if (is_zero)
274 				goto done;
275 
276 			/*
277 			 * skip if we have already found the theoretical
278 			 * maximum number (i.e. fec->roots) of erasures
279 			 */
280 			if (neras && *neras <= v->fec->roots &&
281 			    fec_is_erasure(v, io, want_digest, bbuf))
282 				fio->erasures[(*neras)++] = i;
283 		}
284 
285 		/*
286 		 * deinterleave and copy the bytes that fit into bufs,
287 		 * starting from block_offset
288 		 */
289 		fec_for_each_buffer_rs_block(fio, n, j) {
290 			k = fec_buffer_rs_index(n, j) + block_offset;
291 
292 			if (k >= 1 << v->data_dev_block_bits)
293 				goto done;
294 
295 			rs_block = fec_buffer_rs_block(v, fio, n, j);
296 			rs_block[i] = bbuf[k];
297 		}
298 done:
299 		dm_bufio_release(buf);
300 	}
301 
302 	return target_index;
303 }
304 
305 /*
306  * Allocate RS control structure and FEC buffers from preallocated mempools,
307  * and attempt to allocate as many extra buffers as available.
308  */
309 static int fec_alloc_bufs(struct dm_verity *v, struct dm_verity_fec_io *fio)
310 {
311 	unsigned int n;
312 
313 	if (!fio->rs)
314 		fio->rs = mempool_alloc(&v->fec->rs_pool, GFP_NOIO);
315 
316 	fec_for_each_prealloc_buffer(n) {
317 		if (fio->bufs[n])
318 			continue;
319 
320 		fio->bufs[n] = mempool_alloc(&v->fec->prealloc_pool, GFP_NOWAIT);
321 		if (unlikely(!fio->bufs[n])) {
322 			DMERR("failed to allocate FEC buffer");
323 			return -ENOMEM;
324 		}
325 	}
326 
327 	/* try to allocate the maximum number of buffers */
328 	fec_for_each_extra_buffer(fio, n) {
329 		if (fio->bufs[n])
330 			continue;
331 
332 		fio->bufs[n] = mempool_alloc(&v->fec->extra_pool, GFP_NOWAIT);
333 		/* we can manage with even one buffer if necessary */
334 		if (unlikely(!fio->bufs[n]))
335 			break;
336 	}
337 	fio->nbufs = n;
338 
339 	if (!fio->output)
340 		fio->output = mempool_alloc(&v->fec->output_pool, GFP_NOIO);
341 
342 	return 0;
343 }
344 
345 /*
346  * Initialize buffers and clear erasures. fec_read_bufs() assumes buffers are
347  * zeroed before deinterleaving.
348  */
349 static void fec_init_bufs(struct dm_verity *v, struct dm_verity_fec_io *fio)
350 {
351 	unsigned int n;
352 
353 	fec_for_each_buffer(fio, n)
354 		memset(fio->bufs[n], 0, v->fec->rsn << DM_VERITY_FEC_BUF_RS_BITS);
355 
356 	memset(fio->erasures, 0, sizeof(fio->erasures));
357 }
358 
359 /*
360  * Decode all RS blocks in a single data block and return the target block
361  * (indicated by @offset) in fio->output. If @use_erasures is non-zero, uses
362  * hashes to locate erasures.
363  */
364 static int fec_decode_rsb(struct dm_verity *v, struct dm_verity_io *io,
365 			  struct dm_verity_fec_io *fio, u64 rsb, u64 offset,
366 			  bool use_erasures)
367 {
368 	int r, neras = 0;
369 	unsigned int pos;
370 
371 	r = fec_alloc_bufs(v, fio);
372 	if (unlikely(r < 0))
373 		return r;
374 
375 	for (pos = 0; pos < 1 << v->data_dev_block_bits; ) {
376 		fec_init_bufs(v, fio);
377 
378 		r = fec_read_bufs(v, io, rsb, offset, pos,
379 				  use_erasures ? &neras : NULL);
380 		if (unlikely(r < 0))
381 			return r;
382 
383 		r = fec_decode_bufs(v, io, fio, rsb, r, pos, neras);
384 		if (r < 0)
385 			return r;
386 
387 		pos += fio->nbufs << DM_VERITY_FEC_BUF_RS_BITS;
388 	}
389 
390 	/* Always re-validate the corrected block against the expected hash */
391 	r = verity_hash(v, verity_io_hash_req(v, io), fio->output,
392 			1 << v->data_dev_block_bits,
393 			verity_io_real_digest(v, io), true);
394 	if (unlikely(r < 0))
395 		return r;
396 
397 	if (memcmp(verity_io_real_digest(v, io), verity_io_want_digest(v, io),
398 		   v->digest_size)) {
399 		DMERR_LIMIT("%s: FEC %llu: failed to correct (%d erasures)",
400 			    v->data_dev->name, (unsigned long long)rsb, neras);
401 		return -EILSEQ;
402 	}
403 
404 	return 0;
405 }
406 
407 static int fec_bv_copy(struct dm_verity *v, struct dm_verity_io *io, u8 *data,
408 		       size_t len)
409 {
410 	struct dm_verity_fec_io *fio = fec_io(io);
411 
412 	memcpy(data, &fio->output[fio->output_pos], len);
413 	fio->output_pos += len;
414 
415 	return 0;
416 }
417 
418 /*
419  * Correct errors in a block. Copies corrected block to dest if non-NULL,
420  * otherwise to a bio_vec starting from iter.
421  */
422 int verity_fec_decode(struct dm_verity *v, struct dm_verity_io *io,
423 		      enum verity_block_type type, sector_t block, u8 *dest,
424 		      struct bvec_iter *iter)
425 {
426 	int r;
427 	struct dm_verity_fec_io *fio = fec_io(io);
428 	u64 offset, res, rsb;
429 
430 	if (!verity_fec_is_enabled(v))
431 		return -EOPNOTSUPP;
432 
433 	if (fio->level >= DM_VERITY_FEC_MAX_RECURSION) {
434 		DMWARN_LIMIT("%s: FEC: recursion too deep", v->data_dev->name);
435 		return -EIO;
436 	}
437 
438 	fio->level++;
439 
440 	if (type == DM_VERITY_BLOCK_TYPE_METADATA)
441 		block = block - v->hash_start + v->data_blocks;
442 
443 	/*
444 	 * For RS(M, N), the continuous FEC data is divided into blocks of N
445 	 * bytes. Since block size may not be divisible by N, the last block
446 	 * is zero padded when decoding.
447 	 *
448 	 * Each byte of the block is covered by a different RS(M, N) code,
449 	 * and each code is interleaved over N blocks to make it less likely
450 	 * that bursty corruption will leave us in unrecoverable state.
451 	 */
452 
453 	offset = block << v->data_dev_block_bits;
454 	res = div64_u64(offset, v->fec->rounds << v->data_dev_block_bits);
455 
456 	/*
457 	 * The base RS block we can feed to the interleaver to find out all
458 	 * blocks required for decoding.
459 	 */
460 	rsb = offset - res * (v->fec->rounds << v->data_dev_block_bits);
461 
462 	/*
463 	 * Locating erasures is slow, so attempt to recover the block without
464 	 * them first. Do a second attempt with erasures if the corruption is
465 	 * bad enough.
466 	 */
467 	r = fec_decode_rsb(v, io, fio, rsb, offset, false);
468 	if (r < 0) {
469 		r = fec_decode_rsb(v, io, fio, rsb, offset, true);
470 		if (r < 0)
471 			goto done;
472 	}
473 
474 	if (dest)
475 		memcpy(dest, fio->output, 1 << v->data_dev_block_bits);
476 	else if (iter) {
477 		fio->output_pos = 0;
478 		r = verity_for_bv_block(v, io, iter, fec_bv_copy);
479 	}
480 
481 done:
482 	fio->level--;
483 	return r;
484 }
485 
486 /*
487  * Clean up per-bio data.
488  */
489 void verity_fec_finish_io(struct dm_verity_io *io)
490 {
491 	unsigned int n;
492 	struct dm_verity_fec *f = io->v->fec;
493 	struct dm_verity_fec_io *fio = fec_io(io);
494 
495 	if (!verity_fec_is_enabled(io->v))
496 		return;
497 
498 	mempool_free(fio->rs, &f->rs_pool);
499 
500 	fec_for_each_prealloc_buffer(n)
501 		mempool_free(fio->bufs[n], &f->prealloc_pool);
502 
503 	fec_for_each_extra_buffer(fio, n)
504 		mempool_free(fio->bufs[n], &f->extra_pool);
505 
506 	mempool_free(fio->output, &f->output_pool);
507 }
508 
509 /*
510  * Initialize per-bio data.
511  */
512 void verity_fec_init_io(struct dm_verity_io *io)
513 {
514 	struct dm_verity_fec_io *fio = fec_io(io);
515 
516 	if (!verity_fec_is_enabled(io->v))
517 		return;
518 
519 	fio->rs = NULL;
520 	memset(fio->bufs, 0, sizeof(fio->bufs));
521 	fio->nbufs = 0;
522 	fio->output = NULL;
523 	fio->level = 0;
524 }
525 
526 /*
527  * Append feature arguments and values to the status table.
528  */
529 unsigned int verity_fec_status_table(struct dm_verity *v, unsigned int sz,
530 				 char *result, unsigned int maxlen)
531 {
532 	if (!verity_fec_is_enabled(v))
533 		return sz;
534 
535 	DMEMIT(" " DM_VERITY_OPT_FEC_DEV " %s "
536 	       DM_VERITY_OPT_FEC_BLOCKS " %llu "
537 	       DM_VERITY_OPT_FEC_START " %llu "
538 	       DM_VERITY_OPT_FEC_ROOTS " %d",
539 	       v->fec->dev->name,
540 	       (unsigned long long)v->fec->blocks,
541 	       (unsigned long long)v->fec->start,
542 	       v->fec->roots);
543 
544 	return sz;
545 }
546 
547 void verity_fec_dtr(struct dm_verity *v)
548 {
549 	struct dm_verity_fec *f = v->fec;
550 
551 	if (!verity_fec_is_enabled(v))
552 		goto out;
553 
554 	mempool_exit(&f->rs_pool);
555 	mempool_exit(&f->prealloc_pool);
556 	mempool_exit(&f->extra_pool);
557 	mempool_exit(&f->output_pool);
558 	kmem_cache_destroy(f->cache);
559 
560 	if (f->data_bufio)
561 		dm_bufio_client_destroy(f->data_bufio);
562 	if (f->bufio)
563 		dm_bufio_client_destroy(f->bufio);
564 
565 	if (f->dev)
566 		dm_put_device(v->ti, f->dev);
567 out:
568 	kfree(f);
569 	v->fec = NULL;
570 }
571 
572 static void *fec_rs_alloc(gfp_t gfp_mask, void *pool_data)
573 {
574 	struct dm_verity *v = pool_data;
575 
576 	return init_rs_gfp(8, 0x11d, 0, 1, v->fec->roots, gfp_mask);
577 }
578 
579 static void fec_rs_free(void *element, void *pool_data)
580 {
581 	struct rs_control *rs = element;
582 
583 	if (rs)
584 		free_rs(rs);
585 }
586 
587 bool verity_is_fec_opt_arg(const char *arg_name)
588 {
589 	return (!strcasecmp(arg_name, DM_VERITY_OPT_FEC_DEV) ||
590 		!strcasecmp(arg_name, DM_VERITY_OPT_FEC_BLOCKS) ||
591 		!strcasecmp(arg_name, DM_VERITY_OPT_FEC_START) ||
592 		!strcasecmp(arg_name, DM_VERITY_OPT_FEC_ROOTS));
593 }
594 
595 int verity_fec_parse_opt_args(struct dm_arg_set *as, struct dm_verity *v,
596 			      unsigned int *argc, const char *arg_name)
597 {
598 	int r;
599 	struct dm_target *ti = v->ti;
600 	const char *arg_value;
601 	unsigned long long num_ll;
602 	unsigned char num_c;
603 	char dummy;
604 
605 	if (!*argc) {
606 		ti->error = "FEC feature arguments require a value";
607 		return -EINVAL;
608 	}
609 
610 	arg_value = dm_shift_arg(as);
611 	(*argc)--;
612 
613 	if (!strcasecmp(arg_name, DM_VERITY_OPT_FEC_DEV)) {
614 		r = dm_get_device(ti, arg_value, BLK_OPEN_READ, &v->fec->dev);
615 		if (r) {
616 			ti->error = "FEC device lookup failed";
617 			return r;
618 		}
619 
620 	} else if (!strcasecmp(arg_name, DM_VERITY_OPT_FEC_BLOCKS)) {
621 		if (sscanf(arg_value, "%llu%c", &num_ll, &dummy) != 1 ||
622 		    ((sector_t)(num_ll << (v->data_dev_block_bits - SECTOR_SHIFT))
623 		     >> (v->data_dev_block_bits - SECTOR_SHIFT) != num_ll)) {
624 			ti->error = "Invalid " DM_VERITY_OPT_FEC_BLOCKS;
625 			return -EINVAL;
626 		}
627 		v->fec->blocks = num_ll;
628 
629 	} else if (!strcasecmp(arg_name, DM_VERITY_OPT_FEC_START)) {
630 		if (sscanf(arg_value, "%llu%c", &num_ll, &dummy) != 1 ||
631 		    ((sector_t)(num_ll << (v->data_dev_block_bits - SECTOR_SHIFT)) >>
632 		     (v->data_dev_block_bits - SECTOR_SHIFT) != num_ll)) {
633 			ti->error = "Invalid " DM_VERITY_OPT_FEC_START;
634 			return -EINVAL;
635 		}
636 		v->fec->start = num_ll;
637 
638 	} else if (!strcasecmp(arg_name, DM_VERITY_OPT_FEC_ROOTS)) {
639 		if (sscanf(arg_value, "%hhu%c", &num_c, &dummy) != 1 || !num_c ||
640 		    num_c < (DM_VERITY_FEC_RSM - DM_VERITY_FEC_MAX_RSN) ||
641 		    num_c > (DM_VERITY_FEC_RSM - DM_VERITY_FEC_MIN_RSN)) {
642 			ti->error = "Invalid " DM_VERITY_OPT_FEC_ROOTS;
643 			return -EINVAL;
644 		}
645 		v->fec->roots = num_c;
646 
647 	} else {
648 		ti->error = "Unrecognized verity FEC feature request";
649 		return -EINVAL;
650 	}
651 
652 	return 0;
653 }
654 
655 /*
656  * Allocate dm_verity_fec for v->fec. Must be called before verity_fec_ctr.
657  */
658 int verity_fec_ctr_alloc(struct dm_verity *v)
659 {
660 	struct dm_verity_fec *f;
661 
662 	f = kzalloc(sizeof(struct dm_verity_fec), GFP_KERNEL);
663 	if (!f) {
664 		v->ti->error = "Cannot allocate FEC structure";
665 		return -ENOMEM;
666 	}
667 	v->fec = f;
668 
669 	return 0;
670 }
671 
672 /*
673  * Validate arguments and preallocate memory. Must be called after arguments
674  * have been parsed using verity_fec_parse_opt_args.
675  */
676 int verity_fec_ctr(struct dm_verity *v)
677 {
678 	struct dm_verity_fec *f = v->fec;
679 	struct dm_target *ti = v->ti;
680 	u64 hash_blocks, fec_blocks;
681 	int ret;
682 
683 	if (!verity_fec_is_enabled(v)) {
684 		verity_fec_dtr(v);
685 		return 0;
686 	}
687 
688 	/*
689 	 * FEC is computed over data blocks, possible metadata, and
690 	 * hash blocks. In other words, FEC covers total of fec_blocks
691 	 * blocks consisting of the following:
692 	 *
693 	 *  data blocks | hash blocks | metadata (optional)
694 	 *
695 	 * We allow metadata after hash blocks to support a use case
696 	 * where all data is stored on the same device and FEC covers
697 	 * the entire area.
698 	 *
699 	 * If metadata is included, we require it to be available on the
700 	 * hash device after the hash blocks.
701 	 */
702 
703 	hash_blocks = v->hash_blocks - v->hash_start;
704 
705 	/*
706 	 * Require matching block sizes for data and hash devices for
707 	 * simplicity.
708 	 */
709 	if (v->data_dev_block_bits != v->hash_dev_block_bits) {
710 		ti->error = "Block sizes must match to use FEC";
711 		return -EINVAL;
712 	}
713 
714 	if (!f->roots) {
715 		ti->error = "Missing " DM_VERITY_OPT_FEC_ROOTS;
716 		return -EINVAL;
717 	}
718 	f->rsn = DM_VERITY_FEC_RSM - f->roots;
719 
720 	if (!f->blocks) {
721 		ti->error = "Missing " DM_VERITY_OPT_FEC_BLOCKS;
722 		return -EINVAL;
723 	}
724 
725 	f->rounds = f->blocks;
726 	if (sector_div(f->rounds, f->rsn))
727 		f->rounds++;
728 
729 	/*
730 	 * Due to optional metadata, f->blocks can be larger than
731 	 * data_blocks and hash_blocks combined.
732 	 */
733 	if (f->blocks < v->data_blocks + hash_blocks || !f->rounds) {
734 		ti->error = "Invalid " DM_VERITY_OPT_FEC_BLOCKS;
735 		return -EINVAL;
736 	}
737 
738 	/*
739 	 * Metadata is accessed through the hash device, so we require
740 	 * it to be large enough.
741 	 */
742 	f->hash_blocks = f->blocks - v->data_blocks;
743 	if (dm_bufio_get_device_size(v->bufio) < f->hash_blocks) {
744 		ti->error = "Hash device is too small for "
745 			DM_VERITY_OPT_FEC_BLOCKS;
746 		return -E2BIG;
747 	}
748 
749 	if ((f->roots << SECTOR_SHIFT) & ((1 << v->data_dev_block_bits) - 1))
750 		f->io_size = 1 << v->data_dev_block_bits;
751 	else
752 		f->io_size = v->fec->roots << SECTOR_SHIFT;
753 
754 	f->bufio = dm_bufio_client_create(f->dev->bdev,
755 					  f->io_size,
756 					  1, 0, NULL, NULL, 0);
757 	if (IS_ERR(f->bufio)) {
758 		ti->error = "Cannot initialize FEC bufio client";
759 		return PTR_ERR(f->bufio);
760 	}
761 
762 	dm_bufio_set_sector_offset(f->bufio, f->start << (v->data_dev_block_bits - SECTOR_SHIFT));
763 
764 	fec_blocks = div64_u64(f->rounds * f->roots, v->fec->roots << SECTOR_SHIFT);
765 	if (dm_bufio_get_device_size(f->bufio) < fec_blocks) {
766 		ti->error = "FEC device is too small";
767 		return -E2BIG;
768 	}
769 
770 	f->data_bufio = dm_bufio_client_create(v->data_dev->bdev,
771 					       1 << v->data_dev_block_bits,
772 					       1, 0, NULL, NULL, 0);
773 	if (IS_ERR(f->data_bufio)) {
774 		ti->error = "Cannot initialize FEC data bufio client";
775 		return PTR_ERR(f->data_bufio);
776 	}
777 
778 	if (dm_bufio_get_device_size(f->data_bufio) < v->data_blocks) {
779 		ti->error = "Data device is too small";
780 		return -E2BIG;
781 	}
782 
783 	/* Preallocate an rs_control structure for each worker thread */
784 	ret = mempool_init(&f->rs_pool, num_online_cpus(), fec_rs_alloc,
785 			   fec_rs_free, (void *) v);
786 	if (ret) {
787 		ti->error = "Cannot allocate RS pool";
788 		return ret;
789 	}
790 
791 	f->cache = kmem_cache_create("dm_verity_fec_buffers",
792 				     f->rsn << DM_VERITY_FEC_BUF_RS_BITS,
793 				     0, 0, NULL);
794 	if (!f->cache) {
795 		ti->error = "Cannot create FEC buffer cache";
796 		return -ENOMEM;
797 	}
798 
799 	/* Preallocate DM_VERITY_FEC_BUF_PREALLOC buffers for each thread */
800 	ret = mempool_init_slab_pool(&f->prealloc_pool, num_online_cpus() *
801 				     DM_VERITY_FEC_BUF_PREALLOC,
802 				     f->cache);
803 	if (ret) {
804 		ti->error = "Cannot allocate FEC buffer prealloc pool";
805 		return ret;
806 	}
807 
808 	ret = mempool_init_slab_pool(&f->extra_pool, 0, f->cache);
809 	if (ret) {
810 		ti->error = "Cannot allocate FEC buffer extra pool";
811 		return ret;
812 	}
813 
814 	/* Preallocate an output buffer for each thread */
815 	ret = mempool_init_kmalloc_pool(&f->output_pool, num_online_cpus(),
816 					1 << v->data_dev_block_bits);
817 	if (ret) {
818 		ti->error = "Cannot allocate FEC output pool";
819 		return ret;
820 	}
821 
822 	/* Reserve space for our per-bio data */
823 	ti->per_io_data_size += sizeof(struct dm_verity_fec_io);
824 
825 	return 0;
826 }
827