xref: /linux/drivers/md/dm-verity-fec.c (revision 0883c2c06fb5bcf5b9e008270827e63c09a88c1e)
1 /*
2  * Copyright (C) 2015 Google, Inc.
3  *
4  * Author: Sami Tolvanen <samitolvanen@google.com>
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License as published by the Free
8  * Software Foundation; either version 2 of the License, or (at your option)
9  * any later version.
10  */
11 
12 #include "dm-verity-fec.h"
13 #include <linux/math64.h>
14 
15 #define DM_MSG_PREFIX	"verity-fec"
16 
17 /*
18  * If error correction has been configured, returns true.
19  */
20 bool verity_fec_is_enabled(struct dm_verity *v)
21 {
22 	return v->fec && v->fec->dev;
23 }
24 
25 /*
26  * Return a pointer to dm_verity_fec_io after dm_verity_io and its variable
27  * length fields.
28  */
29 static inline struct dm_verity_fec_io *fec_io(struct dm_verity_io *io)
30 {
31 	return (struct dm_verity_fec_io *) verity_io_digest_end(io->v, io);
32 }
33 
34 /*
35  * Return an interleaved offset for a byte in RS block.
36  */
37 static inline u64 fec_interleave(struct dm_verity *v, u64 offset)
38 {
39 	u32 mod;
40 
41 	mod = do_div(offset, v->fec->rsn);
42 	return offset + mod * (v->fec->rounds << v->data_dev_block_bits);
43 }
44 
45 /*
46  * Decode an RS block using Reed-Solomon.
47  */
48 static int fec_decode_rs8(struct dm_verity *v, struct dm_verity_fec_io *fio,
49 			  u8 *data, u8 *fec, int neras)
50 {
51 	int i;
52 	uint16_t par[DM_VERITY_FEC_RSM - DM_VERITY_FEC_MIN_RSN];
53 
54 	for (i = 0; i < v->fec->roots; i++)
55 		par[i] = fec[i];
56 
57 	return decode_rs8(fio->rs, data, par, v->fec->rsn, NULL, neras,
58 			  fio->erasures, 0, NULL);
59 }
60 
61 /*
62  * Read error-correcting codes for the requested RS block. Returns a pointer
63  * to the data block. Caller is responsible for releasing buf.
64  */
65 static u8 *fec_read_parity(struct dm_verity *v, u64 rsb, int index,
66 			   unsigned *offset, struct dm_buffer **buf)
67 {
68 	u64 position, block;
69 	u8 *res;
70 
71 	position = (index + rsb) * v->fec->roots;
72 	block = position >> v->data_dev_block_bits;
73 	*offset = (unsigned)(position - (block << v->data_dev_block_bits));
74 
75 	res = dm_bufio_read(v->fec->bufio, v->fec->start + block, buf);
76 	if (unlikely(IS_ERR(res))) {
77 		DMERR("%s: FEC %llu: parity read failed (block %llu): %ld",
78 		      v->data_dev->name, (unsigned long long)rsb,
79 		      (unsigned long long)(v->fec->start + block),
80 		      PTR_ERR(res));
81 		*buf = NULL;
82 	}
83 
84 	return res;
85 }
86 
87 /* Loop over each preallocated buffer slot. */
88 #define fec_for_each_prealloc_buffer(__i) \
89 	for (__i = 0; __i < DM_VERITY_FEC_BUF_PREALLOC; __i++)
90 
91 /* Loop over each extra buffer slot. */
92 #define fec_for_each_extra_buffer(io, __i) \
93 	for (__i = DM_VERITY_FEC_BUF_PREALLOC; __i < DM_VERITY_FEC_BUF_MAX; __i++)
94 
95 /* Loop over each allocated buffer. */
96 #define fec_for_each_buffer(io, __i) \
97 	for (__i = 0; __i < (io)->nbufs; __i++)
98 
99 /* Loop over each RS block in each allocated buffer. */
100 #define fec_for_each_buffer_rs_block(io, __i, __j) \
101 	fec_for_each_buffer(io, __i) \
102 		for (__j = 0; __j < 1 << DM_VERITY_FEC_BUF_RS_BITS; __j++)
103 
104 /*
105  * Return a pointer to the current RS block when called inside
106  * fec_for_each_buffer_rs_block.
107  */
108 static inline u8 *fec_buffer_rs_block(struct dm_verity *v,
109 				      struct dm_verity_fec_io *fio,
110 				      unsigned i, unsigned j)
111 {
112 	return &fio->bufs[i][j * v->fec->rsn];
113 }
114 
115 /*
116  * Return an index to the current RS block when called inside
117  * fec_for_each_buffer_rs_block.
118  */
119 static inline unsigned fec_buffer_rs_index(unsigned i, unsigned j)
120 {
121 	return (i << DM_VERITY_FEC_BUF_RS_BITS) + j;
122 }
123 
124 /*
125  * Decode all RS blocks from buffers and copy corrected bytes into fio->output
126  * starting from block_offset.
127  */
128 static int fec_decode_bufs(struct dm_verity *v, struct dm_verity_fec_io *fio,
129 			   u64 rsb, int byte_index, unsigned block_offset,
130 			   int neras)
131 {
132 	int r, corrected = 0, res;
133 	struct dm_buffer *buf;
134 	unsigned n, i, offset;
135 	u8 *par, *block;
136 
137 	par = fec_read_parity(v, rsb, block_offset, &offset, &buf);
138 	if (IS_ERR(par))
139 		return PTR_ERR(par);
140 
141 	/*
142 	 * Decode the RS blocks we have in bufs. Each RS block results in
143 	 * one corrected target byte and consumes fec->roots parity bytes.
144 	 */
145 	fec_for_each_buffer_rs_block(fio, n, i) {
146 		block = fec_buffer_rs_block(v, fio, n, i);
147 		res = fec_decode_rs8(v, fio, block, &par[offset], neras);
148 		if (res < 0) {
149 			dm_bufio_release(buf);
150 
151 			r = res;
152 			goto error;
153 		}
154 
155 		corrected += res;
156 		fio->output[block_offset] = block[byte_index];
157 
158 		block_offset++;
159 		if (block_offset >= 1 << v->data_dev_block_bits)
160 			goto done;
161 
162 		/* read the next block when we run out of parity bytes */
163 		offset += v->fec->roots;
164 		if (offset >= 1 << v->data_dev_block_bits) {
165 			dm_bufio_release(buf);
166 
167 			par = fec_read_parity(v, rsb, block_offset, &offset, &buf);
168 			if (unlikely(IS_ERR(par)))
169 				return PTR_ERR(par);
170 		}
171 	}
172 done:
173 	r = corrected;
174 error:
175 	if (r < 0 && neras)
176 		DMERR_LIMIT("%s: FEC %llu: failed to correct: %d",
177 			    v->data_dev->name, (unsigned long long)rsb, r);
178 	else if (r > 0)
179 		DMWARN_LIMIT("%s: FEC %llu: corrected %d errors",
180 			     v->data_dev->name, (unsigned long long)rsb, r);
181 
182 	return r;
183 }
184 
185 /*
186  * Locate data block erasures using verity hashes.
187  */
188 static int fec_is_erasure(struct dm_verity *v, struct dm_verity_io *io,
189 			  u8 *want_digest, u8 *data)
190 {
191 	if (unlikely(verity_hash(v, verity_io_hash_desc(v, io),
192 				 data, 1 << v->data_dev_block_bits,
193 				 verity_io_real_digest(v, io))))
194 		return 0;
195 
196 	return memcmp(verity_io_real_digest(v, io), want_digest,
197 		      v->digest_size) != 0;
198 }
199 
200 /*
201  * Read data blocks that are part of the RS block and deinterleave as much as
202  * fits into buffers. Check for erasure locations if @neras is non-NULL.
203  */
204 static int fec_read_bufs(struct dm_verity *v, struct dm_verity_io *io,
205 			 u64 rsb, u64 target, unsigned block_offset,
206 			 int *neras)
207 {
208 	bool is_zero;
209 	int i, j, target_index = -1;
210 	struct dm_buffer *buf;
211 	struct dm_bufio_client *bufio;
212 	struct dm_verity_fec_io *fio = fec_io(io);
213 	u64 block, ileaved;
214 	u8 *bbuf, *rs_block;
215 	u8 want_digest[v->digest_size];
216 	unsigned n, k;
217 
218 	if (neras)
219 		*neras = 0;
220 
221 	/*
222 	 * read each of the rsn data blocks that are part of the RS block, and
223 	 * interleave contents to available bufs
224 	 */
225 	for (i = 0; i < v->fec->rsn; i++) {
226 		ileaved = fec_interleave(v, rsb * v->fec->rsn + i);
227 
228 		/*
229 		 * target is the data block we want to correct, target_index is
230 		 * the index of this block within the rsn RS blocks
231 		 */
232 		if (ileaved == target)
233 			target_index = i;
234 
235 		block = ileaved >> v->data_dev_block_bits;
236 		bufio = v->fec->data_bufio;
237 
238 		if (block >= v->data_blocks) {
239 			block -= v->data_blocks;
240 
241 			/*
242 			 * blocks outside the area were assumed to contain
243 			 * zeros when encoding data was generated
244 			 */
245 			if (unlikely(block >= v->fec->hash_blocks))
246 				continue;
247 
248 			block += v->hash_start;
249 			bufio = v->bufio;
250 		}
251 
252 		bbuf = dm_bufio_read(bufio, block, &buf);
253 		if (unlikely(IS_ERR(bbuf))) {
254 			DMWARN_LIMIT("%s: FEC %llu: read failed (%llu): %ld",
255 				     v->data_dev->name,
256 				     (unsigned long long)rsb,
257 				     (unsigned long long)block, PTR_ERR(bbuf));
258 
259 			/* assume the block is corrupted */
260 			if (neras && *neras <= v->fec->roots)
261 				fio->erasures[(*neras)++] = i;
262 
263 			continue;
264 		}
265 
266 		/* locate erasures if the block is on the data device */
267 		if (bufio == v->fec->data_bufio &&
268 		    verity_hash_for_block(v, io, block, want_digest,
269 					  &is_zero) == 0) {
270 			/* skip known zero blocks entirely */
271 			if (is_zero)
272 				continue;
273 
274 			/*
275 			 * skip if we have already found the theoretical
276 			 * maximum number (i.e. fec->roots) of erasures
277 			 */
278 			if (neras && *neras <= v->fec->roots &&
279 			    fec_is_erasure(v, io, want_digest, bbuf))
280 				fio->erasures[(*neras)++] = i;
281 		}
282 
283 		/*
284 		 * deinterleave and copy the bytes that fit into bufs,
285 		 * starting from block_offset
286 		 */
287 		fec_for_each_buffer_rs_block(fio, n, j) {
288 			k = fec_buffer_rs_index(n, j) + block_offset;
289 
290 			if (k >= 1 << v->data_dev_block_bits)
291 				goto done;
292 
293 			rs_block = fec_buffer_rs_block(v, fio, n, j);
294 			rs_block[i] = bbuf[k];
295 		}
296 done:
297 		dm_bufio_release(buf);
298 	}
299 
300 	return target_index;
301 }
302 
303 /*
304  * Allocate RS control structure and FEC buffers from preallocated mempools,
305  * and attempt to allocate as many extra buffers as available.
306  */
307 static int fec_alloc_bufs(struct dm_verity *v, struct dm_verity_fec_io *fio)
308 {
309 	unsigned n;
310 
311 	if (!fio->rs) {
312 		fio->rs = mempool_alloc(v->fec->rs_pool, 0);
313 		if (unlikely(!fio->rs)) {
314 			DMERR("failed to allocate RS");
315 			return -ENOMEM;
316 		}
317 	}
318 
319 	fec_for_each_prealloc_buffer(n) {
320 		if (fio->bufs[n])
321 			continue;
322 
323 		fio->bufs[n] = mempool_alloc(v->fec->prealloc_pool, GFP_NOIO);
324 		if (unlikely(!fio->bufs[n])) {
325 			DMERR("failed to allocate FEC buffer");
326 			return -ENOMEM;
327 		}
328 	}
329 
330 	/* try to allocate the maximum number of buffers */
331 	fec_for_each_extra_buffer(fio, n) {
332 		if (fio->bufs[n])
333 			continue;
334 
335 		fio->bufs[n] = mempool_alloc(v->fec->extra_pool, GFP_NOIO);
336 		/* we can manage with even one buffer if necessary */
337 		if (unlikely(!fio->bufs[n]))
338 			break;
339 	}
340 	fio->nbufs = n;
341 
342 	if (!fio->output) {
343 		fio->output = mempool_alloc(v->fec->output_pool, GFP_NOIO);
344 
345 		if (!fio->output) {
346 			DMERR("failed to allocate FEC page");
347 			return -ENOMEM;
348 		}
349 	}
350 
351 	return 0;
352 }
353 
354 /*
355  * Initialize buffers and clear erasures. fec_read_bufs() assumes buffers are
356  * zeroed before deinterleaving.
357  */
358 static void fec_init_bufs(struct dm_verity *v, struct dm_verity_fec_io *fio)
359 {
360 	unsigned n;
361 
362 	fec_for_each_buffer(fio, n)
363 		memset(fio->bufs[n], 0, v->fec->rsn << DM_VERITY_FEC_BUF_RS_BITS);
364 
365 	memset(fio->erasures, 0, sizeof(fio->erasures));
366 }
367 
368 /*
369  * Decode all RS blocks in a single data block and return the target block
370  * (indicated by @offset) in fio->output. If @use_erasures is non-zero, uses
371  * hashes to locate erasures.
372  */
373 static int fec_decode_rsb(struct dm_verity *v, struct dm_verity_io *io,
374 			  struct dm_verity_fec_io *fio, u64 rsb, u64 offset,
375 			  bool use_erasures)
376 {
377 	int r, neras = 0;
378 	unsigned pos;
379 
380 	r = fec_alloc_bufs(v, fio);
381 	if (unlikely(r < 0))
382 		return r;
383 
384 	for (pos = 0; pos < 1 << v->data_dev_block_bits; ) {
385 		fec_init_bufs(v, fio);
386 
387 		r = fec_read_bufs(v, io, rsb, offset, pos,
388 				  use_erasures ? &neras : NULL);
389 		if (unlikely(r < 0))
390 			return r;
391 
392 		r = fec_decode_bufs(v, fio, rsb, r, pos, neras);
393 		if (r < 0)
394 			return r;
395 
396 		pos += fio->nbufs << DM_VERITY_FEC_BUF_RS_BITS;
397 	}
398 
399 	/* Always re-validate the corrected block against the expected hash */
400 	r = verity_hash(v, verity_io_hash_desc(v, io), fio->output,
401 			1 << v->data_dev_block_bits,
402 			verity_io_real_digest(v, io));
403 	if (unlikely(r < 0))
404 		return r;
405 
406 	if (memcmp(verity_io_real_digest(v, io), verity_io_want_digest(v, io),
407 		   v->digest_size)) {
408 		DMERR_LIMIT("%s: FEC %llu: failed to correct (%d erasures)",
409 			    v->data_dev->name, (unsigned long long)rsb, neras);
410 		return -EILSEQ;
411 	}
412 
413 	return 0;
414 }
415 
416 static int fec_bv_copy(struct dm_verity *v, struct dm_verity_io *io, u8 *data,
417 		       size_t len)
418 {
419 	struct dm_verity_fec_io *fio = fec_io(io);
420 
421 	memcpy(data, &fio->output[fio->output_pos], len);
422 	fio->output_pos += len;
423 
424 	return 0;
425 }
426 
427 /*
428  * Correct errors in a block. Copies corrected block to dest if non-NULL,
429  * otherwise to a bio_vec starting from iter.
430  */
431 int verity_fec_decode(struct dm_verity *v, struct dm_verity_io *io,
432 		      enum verity_block_type type, sector_t block, u8 *dest,
433 		      struct bvec_iter *iter)
434 {
435 	int r;
436 	struct dm_verity_fec_io *fio = fec_io(io);
437 	u64 offset, res, rsb;
438 
439 	if (!verity_fec_is_enabled(v))
440 		return -EOPNOTSUPP;
441 
442 	if (type == DM_VERITY_BLOCK_TYPE_METADATA)
443 		block += v->data_blocks;
444 
445 	/*
446 	 * For RS(M, N), the continuous FEC data is divided into blocks of N
447 	 * bytes. Since block size may not be divisible by N, the last block
448 	 * is zero padded when decoding.
449 	 *
450 	 * Each byte of the block is covered by a different RS(M, N) code,
451 	 * and each code is interleaved over N blocks to make it less likely
452 	 * that bursty corruption will leave us in unrecoverable state.
453 	 */
454 
455 	offset = block << v->data_dev_block_bits;
456 
457 	res = offset;
458 	div64_u64(res, v->fec->rounds << v->data_dev_block_bits);
459 
460 	/*
461 	 * The base RS block we can feed to the interleaver to find out all
462 	 * blocks required for decoding.
463 	 */
464 	rsb = offset - res * (v->fec->rounds << v->data_dev_block_bits);
465 
466 	/*
467 	 * Locating erasures is slow, so attempt to recover the block without
468 	 * them first. Do a second attempt with erasures if the corruption is
469 	 * bad enough.
470 	 */
471 	r = fec_decode_rsb(v, io, fio, rsb, offset, false);
472 	if (r < 0) {
473 		r = fec_decode_rsb(v, io, fio, rsb, offset, true);
474 		if (r < 0)
475 			return r;
476 	}
477 
478 	if (dest)
479 		memcpy(dest, fio->output, 1 << v->data_dev_block_bits);
480 	else if (iter) {
481 		fio->output_pos = 0;
482 		r = verity_for_bv_block(v, io, iter, fec_bv_copy);
483 	}
484 
485 	return r;
486 }
487 
488 /*
489  * Clean up per-bio data.
490  */
491 void verity_fec_finish_io(struct dm_verity_io *io)
492 {
493 	unsigned n;
494 	struct dm_verity_fec *f = io->v->fec;
495 	struct dm_verity_fec_io *fio = fec_io(io);
496 
497 	if (!verity_fec_is_enabled(io->v))
498 		return;
499 
500 	mempool_free(fio->rs, f->rs_pool);
501 
502 	fec_for_each_prealloc_buffer(n)
503 		mempool_free(fio->bufs[n], f->prealloc_pool);
504 
505 	fec_for_each_extra_buffer(fio, n)
506 		mempool_free(fio->bufs[n], f->extra_pool);
507 
508 	mempool_free(fio->output, f->output_pool);
509 }
510 
511 /*
512  * Initialize per-bio data.
513  */
514 void verity_fec_init_io(struct dm_verity_io *io)
515 {
516 	struct dm_verity_fec_io *fio = fec_io(io);
517 
518 	if (!verity_fec_is_enabled(io->v))
519 		return;
520 
521 	fio->rs = NULL;
522 	memset(fio->bufs, 0, sizeof(fio->bufs));
523 	fio->nbufs = 0;
524 	fio->output = NULL;
525 }
526 
527 /*
528  * Append feature arguments and values to the status table.
529  */
530 unsigned verity_fec_status_table(struct dm_verity *v, unsigned sz,
531 				 char *result, unsigned maxlen)
532 {
533 	if (!verity_fec_is_enabled(v))
534 		return sz;
535 
536 	DMEMIT(" " DM_VERITY_OPT_FEC_DEV " %s "
537 	       DM_VERITY_OPT_FEC_BLOCKS " %llu "
538 	       DM_VERITY_OPT_FEC_START " %llu "
539 	       DM_VERITY_OPT_FEC_ROOTS " %d",
540 	       v->fec->dev->name,
541 	       (unsigned long long)v->fec->blocks,
542 	       (unsigned long long)v->fec->start,
543 	       v->fec->roots);
544 
545 	return sz;
546 }
547 
548 void verity_fec_dtr(struct dm_verity *v)
549 {
550 	struct dm_verity_fec *f = v->fec;
551 
552 	if (!verity_fec_is_enabled(v))
553 		goto out;
554 
555 	mempool_destroy(f->rs_pool);
556 	mempool_destroy(f->prealloc_pool);
557 	mempool_destroy(f->extra_pool);
558 	kmem_cache_destroy(f->cache);
559 
560 	if (f->data_bufio)
561 		dm_bufio_client_destroy(f->data_bufio);
562 	if (f->bufio)
563 		dm_bufio_client_destroy(f->bufio);
564 
565 	if (f->dev)
566 		dm_put_device(v->ti, f->dev);
567 out:
568 	kfree(f);
569 	v->fec = NULL;
570 }
571 
572 static void *fec_rs_alloc(gfp_t gfp_mask, void *pool_data)
573 {
574 	struct dm_verity *v = (struct dm_verity *)pool_data;
575 
576 	return init_rs(8, 0x11d, 0, 1, v->fec->roots);
577 }
578 
579 static void fec_rs_free(void *element, void *pool_data)
580 {
581 	struct rs_control *rs = (struct rs_control *)element;
582 
583 	if (rs)
584 		free_rs(rs);
585 }
586 
587 bool verity_is_fec_opt_arg(const char *arg_name)
588 {
589 	return (!strcasecmp(arg_name, DM_VERITY_OPT_FEC_DEV) ||
590 		!strcasecmp(arg_name, DM_VERITY_OPT_FEC_BLOCKS) ||
591 		!strcasecmp(arg_name, DM_VERITY_OPT_FEC_START) ||
592 		!strcasecmp(arg_name, DM_VERITY_OPT_FEC_ROOTS));
593 }
594 
595 int verity_fec_parse_opt_args(struct dm_arg_set *as, struct dm_verity *v,
596 			      unsigned *argc, const char *arg_name)
597 {
598 	int r;
599 	struct dm_target *ti = v->ti;
600 	const char *arg_value;
601 	unsigned long long num_ll;
602 	unsigned char num_c;
603 	char dummy;
604 
605 	if (!*argc) {
606 		ti->error = "FEC feature arguments require a value";
607 		return -EINVAL;
608 	}
609 
610 	arg_value = dm_shift_arg(as);
611 	(*argc)--;
612 
613 	if (!strcasecmp(arg_name, DM_VERITY_OPT_FEC_DEV)) {
614 		r = dm_get_device(ti, arg_value, FMODE_READ, &v->fec->dev);
615 		if (r) {
616 			ti->error = "FEC device lookup failed";
617 			return r;
618 		}
619 
620 	} else if (!strcasecmp(arg_name, DM_VERITY_OPT_FEC_BLOCKS)) {
621 		if (sscanf(arg_value, "%llu%c", &num_ll, &dummy) != 1 ||
622 		    ((sector_t)(num_ll << (v->data_dev_block_bits - SECTOR_SHIFT))
623 		     >> (v->data_dev_block_bits - SECTOR_SHIFT) != num_ll)) {
624 			ti->error = "Invalid " DM_VERITY_OPT_FEC_BLOCKS;
625 			return -EINVAL;
626 		}
627 		v->fec->blocks = num_ll;
628 
629 	} else if (!strcasecmp(arg_name, DM_VERITY_OPT_FEC_START)) {
630 		if (sscanf(arg_value, "%llu%c", &num_ll, &dummy) != 1 ||
631 		    ((sector_t)(num_ll << (v->data_dev_block_bits - SECTOR_SHIFT)) >>
632 		     (v->data_dev_block_bits - SECTOR_SHIFT) != num_ll)) {
633 			ti->error = "Invalid " DM_VERITY_OPT_FEC_START;
634 			return -EINVAL;
635 		}
636 		v->fec->start = num_ll;
637 
638 	} else if (!strcasecmp(arg_name, DM_VERITY_OPT_FEC_ROOTS)) {
639 		if (sscanf(arg_value, "%hhu%c", &num_c, &dummy) != 1 || !num_c ||
640 		    num_c < (DM_VERITY_FEC_RSM - DM_VERITY_FEC_MAX_RSN) ||
641 		    num_c > (DM_VERITY_FEC_RSM - DM_VERITY_FEC_MIN_RSN)) {
642 			ti->error = "Invalid " DM_VERITY_OPT_FEC_ROOTS;
643 			return -EINVAL;
644 		}
645 		v->fec->roots = num_c;
646 
647 	} else {
648 		ti->error = "Unrecognized verity FEC feature request";
649 		return -EINVAL;
650 	}
651 
652 	return 0;
653 }
654 
655 /*
656  * Allocate dm_verity_fec for v->fec. Must be called before verity_fec_ctr.
657  */
658 int verity_fec_ctr_alloc(struct dm_verity *v)
659 {
660 	struct dm_verity_fec *f;
661 
662 	f = kzalloc(sizeof(struct dm_verity_fec), GFP_KERNEL);
663 	if (!f) {
664 		v->ti->error = "Cannot allocate FEC structure";
665 		return -ENOMEM;
666 	}
667 	v->fec = f;
668 
669 	return 0;
670 }
671 
672 /*
673  * Validate arguments and preallocate memory. Must be called after arguments
674  * have been parsed using verity_fec_parse_opt_args.
675  */
676 int verity_fec_ctr(struct dm_verity *v)
677 {
678 	struct dm_verity_fec *f = v->fec;
679 	struct dm_target *ti = v->ti;
680 	u64 hash_blocks;
681 
682 	if (!verity_fec_is_enabled(v)) {
683 		verity_fec_dtr(v);
684 		return 0;
685 	}
686 
687 	/*
688 	 * FEC is computed over data blocks, possible metadata, and
689 	 * hash blocks. In other words, FEC covers total of fec_blocks
690 	 * blocks consisting of the following:
691 	 *
692 	 *  data blocks | hash blocks | metadata (optional)
693 	 *
694 	 * We allow metadata after hash blocks to support a use case
695 	 * where all data is stored on the same device and FEC covers
696 	 * the entire area.
697 	 *
698 	 * If metadata is included, we require it to be available on the
699 	 * hash device after the hash blocks.
700 	 */
701 
702 	hash_blocks = v->hash_blocks - v->hash_start;
703 
704 	/*
705 	 * Require matching block sizes for data and hash devices for
706 	 * simplicity.
707 	 */
708 	if (v->data_dev_block_bits != v->hash_dev_block_bits) {
709 		ti->error = "Block sizes must match to use FEC";
710 		return -EINVAL;
711 	}
712 
713 	if (!f->roots) {
714 		ti->error = "Missing " DM_VERITY_OPT_FEC_ROOTS;
715 		return -EINVAL;
716 	}
717 	f->rsn = DM_VERITY_FEC_RSM - f->roots;
718 
719 	if (!f->blocks) {
720 		ti->error = "Missing " DM_VERITY_OPT_FEC_BLOCKS;
721 		return -EINVAL;
722 	}
723 
724 	f->rounds = f->blocks;
725 	if (sector_div(f->rounds, f->rsn))
726 		f->rounds++;
727 
728 	/*
729 	 * Due to optional metadata, f->blocks can be larger than
730 	 * data_blocks and hash_blocks combined.
731 	 */
732 	if (f->blocks < v->data_blocks + hash_blocks || !f->rounds) {
733 		ti->error = "Invalid " DM_VERITY_OPT_FEC_BLOCKS;
734 		return -EINVAL;
735 	}
736 
737 	/*
738 	 * Metadata is accessed through the hash device, so we require
739 	 * it to be large enough.
740 	 */
741 	f->hash_blocks = f->blocks - v->data_blocks;
742 	if (dm_bufio_get_device_size(v->bufio) < f->hash_blocks) {
743 		ti->error = "Hash device is too small for "
744 			DM_VERITY_OPT_FEC_BLOCKS;
745 		return -E2BIG;
746 	}
747 
748 	f->bufio = dm_bufio_client_create(f->dev->bdev,
749 					  1 << v->data_dev_block_bits,
750 					  1, 0, NULL, NULL);
751 	if (IS_ERR(f->bufio)) {
752 		ti->error = "Cannot initialize FEC bufio client";
753 		return PTR_ERR(f->bufio);
754 	}
755 
756 	if (dm_bufio_get_device_size(f->bufio) <
757 	    ((f->start + f->rounds * f->roots) >> v->data_dev_block_bits)) {
758 		ti->error = "FEC device is too small";
759 		return -E2BIG;
760 	}
761 
762 	f->data_bufio = dm_bufio_client_create(v->data_dev->bdev,
763 					       1 << v->data_dev_block_bits,
764 					       1, 0, NULL, NULL);
765 	if (IS_ERR(f->data_bufio)) {
766 		ti->error = "Cannot initialize FEC data bufio client";
767 		return PTR_ERR(f->data_bufio);
768 	}
769 
770 	if (dm_bufio_get_device_size(f->data_bufio) < v->data_blocks) {
771 		ti->error = "Data device is too small";
772 		return -E2BIG;
773 	}
774 
775 	/* Preallocate an rs_control structure for each worker thread */
776 	f->rs_pool = mempool_create(num_online_cpus(), fec_rs_alloc,
777 				    fec_rs_free, (void *) v);
778 	if (!f->rs_pool) {
779 		ti->error = "Cannot allocate RS pool";
780 		return -ENOMEM;
781 	}
782 
783 	f->cache = kmem_cache_create("dm_verity_fec_buffers",
784 				     f->rsn << DM_VERITY_FEC_BUF_RS_BITS,
785 				     0, 0, NULL);
786 	if (!f->cache) {
787 		ti->error = "Cannot create FEC buffer cache";
788 		return -ENOMEM;
789 	}
790 
791 	/* Preallocate DM_VERITY_FEC_BUF_PREALLOC buffers for each thread */
792 	f->prealloc_pool = mempool_create_slab_pool(num_online_cpus() *
793 						    DM_VERITY_FEC_BUF_PREALLOC,
794 						    f->cache);
795 	if (!f->prealloc_pool) {
796 		ti->error = "Cannot allocate FEC buffer prealloc pool";
797 		return -ENOMEM;
798 	}
799 
800 	f->extra_pool = mempool_create_slab_pool(0, f->cache);
801 	if (!f->extra_pool) {
802 		ti->error = "Cannot allocate FEC buffer extra pool";
803 		return -ENOMEM;
804 	}
805 
806 	/* Preallocate an output buffer for each thread */
807 	f->output_pool = mempool_create_kmalloc_pool(num_online_cpus(),
808 						     1 << v->data_dev_block_bits);
809 	if (!f->output_pool) {
810 		ti->error = "Cannot allocate FEC output pool";
811 		return -ENOMEM;
812 	}
813 
814 	/* Reserve space for our per-bio data */
815 	ti->per_io_data_size += sizeof(struct dm_verity_fec_io);
816 
817 	return 0;
818 }
819