1 /* 2 * Copyright (C) 2015 Google, Inc. 3 * 4 * Author: Sami Tolvanen <samitolvanen@google.com> 5 * 6 * This program is free software; you can redistribute it and/or modify it 7 * under the terms of the GNU General Public License as published by the Free 8 * Software Foundation; either version 2 of the License, or (at your option) 9 * any later version. 10 */ 11 12 #include "dm-verity-fec.h" 13 #include <linux/math64.h> 14 15 #define DM_MSG_PREFIX "verity-fec" 16 17 /* 18 * If error correction has been configured, returns true. 19 */ 20 bool verity_fec_is_enabled(struct dm_verity *v) 21 { 22 return v->fec && v->fec->dev; 23 } 24 25 /* 26 * Return a pointer to dm_verity_fec_io after dm_verity_io and its variable 27 * length fields. 28 */ 29 static inline struct dm_verity_fec_io *fec_io(struct dm_verity_io *io) 30 { 31 return (struct dm_verity_fec_io *) verity_io_digest_end(io->v, io); 32 } 33 34 /* 35 * Return an interleaved offset for a byte in RS block. 36 */ 37 static inline u64 fec_interleave(struct dm_verity *v, u64 offset) 38 { 39 u32 mod; 40 41 mod = do_div(offset, v->fec->rsn); 42 return offset + mod * (v->fec->rounds << v->data_dev_block_bits); 43 } 44 45 /* 46 * Decode an RS block using Reed-Solomon. 47 */ 48 static int fec_decode_rs8(struct dm_verity *v, struct dm_verity_fec_io *fio, 49 u8 *data, u8 *fec, int neras) 50 { 51 int i; 52 uint16_t par[DM_VERITY_FEC_RSM - DM_VERITY_FEC_MIN_RSN]; 53 54 for (i = 0; i < v->fec->roots; i++) 55 par[i] = fec[i]; 56 57 return decode_rs8(fio->rs, data, par, v->fec->rsn, NULL, neras, 58 fio->erasures, 0, NULL); 59 } 60 61 /* 62 * Read error-correcting codes for the requested RS block. Returns a pointer 63 * to the data block. Caller is responsible for releasing buf. 64 */ 65 static u8 *fec_read_parity(struct dm_verity *v, u64 rsb, int index, 66 unsigned *offset, struct dm_buffer **buf) 67 { 68 u64 position, block; 69 u8 *res; 70 71 position = (index + rsb) * v->fec->roots; 72 block = position >> v->data_dev_block_bits; 73 *offset = (unsigned)(position - (block << v->data_dev_block_bits)); 74 75 res = dm_bufio_read(v->fec->bufio, v->fec->start + block, buf); 76 if (unlikely(IS_ERR(res))) { 77 DMERR("%s: FEC %llu: parity read failed (block %llu): %ld", 78 v->data_dev->name, (unsigned long long)rsb, 79 (unsigned long long)(v->fec->start + block), 80 PTR_ERR(res)); 81 *buf = NULL; 82 } 83 84 return res; 85 } 86 87 /* Loop over each preallocated buffer slot. */ 88 #define fec_for_each_prealloc_buffer(__i) \ 89 for (__i = 0; __i < DM_VERITY_FEC_BUF_PREALLOC; __i++) 90 91 /* Loop over each extra buffer slot. */ 92 #define fec_for_each_extra_buffer(io, __i) \ 93 for (__i = DM_VERITY_FEC_BUF_PREALLOC; __i < DM_VERITY_FEC_BUF_MAX; __i++) 94 95 /* Loop over each allocated buffer. */ 96 #define fec_for_each_buffer(io, __i) \ 97 for (__i = 0; __i < (io)->nbufs; __i++) 98 99 /* Loop over each RS block in each allocated buffer. */ 100 #define fec_for_each_buffer_rs_block(io, __i, __j) \ 101 fec_for_each_buffer(io, __i) \ 102 for (__j = 0; __j < 1 << DM_VERITY_FEC_BUF_RS_BITS; __j++) 103 104 /* 105 * Return a pointer to the current RS block when called inside 106 * fec_for_each_buffer_rs_block. 107 */ 108 static inline u8 *fec_buffer_rs_block(struct dm_verity *v, 109 struct dm_verity_fec_io *fio, 110 unsigned i, unsigned j) 111 { 112 return &fio->bufs[i][j * v->fec->rsn]; 113 } 114 115 /* 116 * Return an index to the current RS block when called inside 117 * fec_for_each_buffer_rs_block. 118 */ 119 static inline unsigned fec_buffer_rs_index(unsigned i, unsigned j) 120 { 121 return (i << DM_VERITY_FEC_BUF_RS_BITS) + j; 122 } 123 124 /* 125 * Decode all RS blocks from buffers and copy corrected bytes into fio->output 126 * starting from block_offset. 127 */ 128 static int fec_decode_bufs(struct dm_verity *v, struct dm_verity_fec_io *fio, 129 u64 rsb, int byte_index, unsigned block_offset, 130 int neras) 131 { 132 int r, corrected = 0, res; 133 struct dm_buffer *buf; 134 unsigned n, i, offset; 135 u8 *par, *block; 136 137 par = fec_read_parity(v, rsb, block_offset, &offset, &buf); 138 if (IS_ERR(par)) 139 return PTR_ERR(par); 140 141 /* 142 * Decode the RS blocks we have in bufs. Each RS block results in 143 * one corrected target byte and consumes fec->roots parity bytes. 144 */ 145 fec_for_each_buffer_rs_block(fio, n, i) { 146 block = fec_buffer_rs_block(v, fio, n, i); 147 res = fec_decode_rs8(v, fio, block, &par[offset], neras); 148 if (res < 0) { 149 dm_bufio_release(buf); 150 151 r = res; 152 goto error; 153 } 154 155 corrected += res; 156 fio->output[block_offset] = block[byte_index]; 157 158 block_offset++; 159 if (block_offset >= 1 << v->data_dev_block_bits) 160 goto done; 161 162 /* read the next block when we run out of parity bytes */ 163 offset += v->fec->roots; 164 if (offset >= 1 << v->data_dev_block_bits) { 165 dm_bufio_release(buf); 166 167 par = fec_read_parity(v, rsb, block_offset, &offset, &buf); 168 if (unlikely(IS_ERR(par))) 169 return PTR_ERR(par); 170 } 171 } 172 done: 173 r = corrected; 174 error: 175 if (r < 0 && neras) 176 DMERR_LIMIT("%s: FEC %llu: failed to correct: %d", 177 v->data_dev->name, (unsigned long long)rsb, r); 178 else if (r > 0) 179 DMWARN_LIMIT("%s: FEC %llu: corrected %d errors", 180 v->data_dev->name, (unsigned long long)rsb, r); 181 182 return r; 183 } 184 185 /* 186 * Locate data block erasures using verity hashes. 187 */ 188 static int fec_is_erasure(struct dm_verity *v, struct dm_verity_io *io, 189 u8 *want_digest, u8 *data) 190 { 191 if (unlikely(verity_hash(v, verity_io_hash_desc(v, io), 192 data, 1 << v->data_dev_block_bits, 193 verity_io_real_digest(v, io)))) 194 return 0; 195 196 return memcmp(verity_io_real_digest(v, io), want_digest, 197 v->digest_size) != 0; 198 } 199 200 /* 201 * Read data blocks that are part of the RS block and deinterleave as much as 202 * fits into buffers. Check for erasure locations if @neras is non-NULL. 203 */ 204 static int fec_read_bufs(struct dm_verity *v, struct dm_verity_io *io, 205 u64 rsb, u64 target, unsigned block_offset, 206 int *neras) 207 { 208 bool is_zero; 209 int i, j, target_index = -1; 210 struct dm_buffer *buf; 211 struct dm_bufio_client *bufio; 212 struct dm_verity_fec_io *fio = fec_io(io); 213 u64 block, ileaved; 214 u8 *bbuf, *rs_block; 215 u8 want_digest[v->digest_size]; 216 unsigned n, k; 217 218 if (neras) 219 *neras = 0; 220 221 /* 222 * read each of the rsn data blocks that are part of the RS block, and 223 * interleave contents to available bufs 224 */ 225 for (i = 0; i < v->fec->rsn; i++) { 226 ileaved = fec_interleave(v, rsb * v->fec->rsn + i); 227 228 /* 229 * target is the data block we want to correct, target_index is 230 * the index of this block within the rsn RS blocks 231 */ 232 if (ileaved == target) 233 target_index = i; 234 235 block = ileaved >> v->data_dev_block_bits; 236 bufio = v->fec->data_bufio; 237 238 if (block >= v->data_blocks) { 239 block -= v->data_blocks; 240 241 /* 242 * blocks outside the area were assumed to contain 243 * zeros when encoding data was generated 244 */ 245 if (unlikely(block >= v->fec->hash_blocks)) 246 continue; 247 248 block += v->hash_start; 249 bufio = v->bufio; 250 } 251 252 bbuf = dm_bufio_read(bufio, block, &buf); 253 if (unlikely(IS_ERR(bbuf))) { 254 DMWARN_LIMIT("%s: FEC %llu: read failed (%llu): %ld", 255 v->data_dev->name, 256 (unsigned long long)rsb, 257 (unsigned long long)block, PTR_ERR(bbuf)); 258 259 /* assume the block is corrupted */ 260 if (neras && *neras <= v->fec->roots) 261 fio->erasures[(*neras)++] = i; 262 263 continue; 264 } 265 266 /* locate erasures if the block is on the data device */ 267 if (bufio == v->fec->data_bufio && 268 verity_hash_for_block(v, io, block, want_digest, 269 &is_zero) == 0) { 270 /* skip known zero blocks entirely */ 271 if (is_zero) 272 continue; 273 274 /* 275 * skip if we have already found the theoretical 276 * maximum number (i.e. fec->roots) of erasures 277 */ 278 if (neras && *neras <= v->fec->roots && 279 fec_is_erasure(v, io, want_digest, bbuf)) 280 fio->erasures[(*neras)++] = i; 281 } 282 283 /* 284 * deinterleave and copy the bytes that fit into bufs, 285 * starting from block_offset 286 */ 287 fec_for_each_buffer_rs_block(fio, n, j) { 288 k = fec_buffer_rs_index(n, j) + block_offset; 289 290 if (k >= 1 << v->data_dev_block_bits) 291 goto done; 292 293 rs_block = fec_buffer_rs_block(v, fio, n, j); 294 rs_block[i] = bbuf[k]; 295 } 296 done: 297 dm_bufio_release(buf); 298 } 299 300 return target_index; 301 } 302 303 /* 304 * Allocate RS control structure and FEC buffers from preallocated mempools, 305 * and attempt to allocate as many extra buffers as available. 306 */ 307 static int fec_alloc_bufs(struct dm_verity *v, struct dm_verity_fec_io *fio) 308 { 309 unsigned n; 310 311 if (!fio->rs) { 312 fio->rs = mempool_alloc(v->fec->rs_pool, 0); 313 if (unlikely(!fio->rs)) { 314 DMERR("failed to allocate RS"); 315 return -ENOMEM; 316 } 317 } 318 319 fec_for_each_prealloc_buffer(n) { 320 if (fio->bufs[n]) 321 continue; 322 323 fio->bufs[n] = mempool_alloc(v->fec->prealloc_pool, GFP_NOIO); 324 if (unlikely(!fio->bufs[n])) { 325 DMERR("failed to allocate FEC buffer"); 326 return -ENOMEM; 327 } 328 } 329 330 /* try to allocate the maximum number of buffers */ 331 fec_for_each_extra_buffer(fio, n) { 332 if (fio->bufs[n]) 333 continue; 334 335 fio->bufs[n] = mempool_alloc(v->fec->extra_pool, GFP_NOIO); 336 /* we can manage with even one buffer if necessary */ 337 if (unlikely(!fio->bufs[n])) 338 break; 339 } 340 fio->nbufs = n; 341 342 if (!fio->output) { 343 fio->output = mempool_alloc(v->fec->output_pool, GFP_NOIO); 344 345 if (!fio->output) { 346 DMERR("failed to allocate FEC page"); 347 return -ENOMEM; 348 } 349 } 350 351 return 0; 352 } 353 354 /* 355 * Initialize buffers and clear erasures. fec_read_bufs() assumes buffers are 356 * zeroed before deinterleaving. 357 */ 358 static void fec_init_bufs(struct dm_verity *v, struct dm_verity_fec_io *fio) 359 { 360 unsigned n; 361 362 fec_for_each_buffer(fio, n) 363 memset(fio->bufs[n], 0, v->fec->rsn << DM_VERITY_FEC_BUF_RS_BITS); 364 365 memset(fio->erasures, 0, sizeof(fio->erasures)); 366 } 367 368 /* 369 * Decode all RS blocks in a single data block and return the target block 370 * (indicated by @offset) in fio->output. If @use_erasures is non-zero, uses 371 * hashes to locate erasures. 372 */ 373 static int fec_decode_rsb(struct dm_verity *v, struct dm_verity_io *io, 374 struct dm_verity_fec_io *fio, u64 rsb, u64 offset, 375 bool use_erasures) 376 { 377 int r, neras = 0; 378 unsigned pos; 379 380 r = fec_alloc_bufs(v, fio); 381 if (unlikely(r < 0)) 382 return r; 383 384 for (pos = 0; pos < 1 << v->data_dev_block_bits; ) { 385 fec_init_bufs(v, fio); 386 387 r = fec_read_bufs(v, io, rsb, offset, pos, 388 use_erasures ? &neras : NULL); 389 if (unlikely(r < 0)) 390 return r; 391 392 r = fec_decode_bufs(v, fio, rsb, r, pos, neras); 393 if (r < 0) 394 return r; 395 396 pos += fio->nbufs << DM_VERITY_FEC_BUF_RS_BITS; 397 } 398 399 /* Always re-validate the corrected block against the expected hash */ 400 r = verity_hash(v, verity_io_hash_desc(v, io), fio->output, 401 1 << v->data_dev_block_bits, 402 verity_io_real_digest(v, io)); 403 if (unlikely(r < 0)) 404 return r; 405 406 if (memcmp(verity_io_real_digest(v, io), verity_io_want_digest(v, io), 407 v->digest_size)) { 408 DMERR_LIMIT("%s: FEC %llu: failed to correct (%d erasures)", 409 v->data_dev->name, (unsigned long long)rsb, neras); 410 return -EILSEQ; 411 } 412 413 return 0; 414 } 415 416 static int fec_bv_copy(struct dm_verity *v, struct dm_verity_io *io, u8 *data, 417 size_t len) 418 { 419 struct dm_verity_fec_io *fio = fec_io(io); 420 421 memcpy(data, &fio->output[fio->output_pos], len); 422 fio->output_pos += len; 423 424 return 0; 425 } 426 427 /* 428 * Correct errors in a block. Copies corrected block to dest if non-NULL, 429 * otherwise to a bio_vec starting from iter. 430 */ 431 int verity_fec_decode(struct dm_verity *v, struct dm_verity_io *io, 432 enum verity_block_type type, sector_t block, u8 *dest, 433 struct bvec_iter *iter) 434 { 435 int r; 436 struct dm_verity_fec_io *fio = fec_io(io); 437 u64 offset, res, rsb; 438 439 if (!verity_fec_is_enabled(v)) 440 return -EOPNOTSUPP; 441 442 if (type == DM_VERITY_BLOCK_TYPE_METADATA) 443 block += v->data_blocks; 444 445 /* 446 * For RS(M, N), the continuous FEC data is divided into blocks of N 447 * bytes. Since block size may not be divisible by N, the last block 448 * is zero padded when decoding. 449 * 450 * Each byte of the block is covered by a different RS(M, N) code, 451 * and each code is interleaved over N blocks to make it less likely 452 * that bursty corruption will leave us in unrecoverable state. 453 */ 454 455 offset = block << v->data_dev_block_bits; 456 457 res = offset; 458 div64_u64(res, v->fec->rounds << v->data_dev_block_bits); 459 460 /* 461 * The base RS block we can feed to the interleaver to find out all 462 * blocks required for decoding. 463 */ 464 rsb = offset - res * (v->fec->rounds << v->data_dev_block_bits); 465 466 /* 467 * Locating erasures is slow, so attempt to recover the block without 468 * them first. Do a second attempt with erasures if the corruption is 469 * bad enough. 470 */ 471 r = fec_decode_rsb(v, io, fio, rsb, offset, false); 472 if (r < 0) { 473 r = fec_decode_rsb(v, io, fio, rsb, offset, true); 474 if (r < 0) 475 return r; 476 } 477 478 if (dest) 479 memcpy(dest, fio->output, 1 << v->data_dev_block_bits); 480 else if (iter) { 481 fio->output_pos = 0; 482 r = verity_for_bv_block(v, io, iter, fec_bv_copy); 483 } 484 485 return r; 486 } 487 488 /* 489 * Clean up per-bio data. 490 */ 491 void verity_fec_finish_io(struct dm_verity_io *io) 492 { 493 unsigned n; 494 struct dm_verity_fec *f = io->v->fec; 495 struct dm_verity_fec_io *fio = fec_io(io); 496 497 if (!verity_fec_is_enabled(io->v)) 498 return; 499 500 mempool_free(fio->rs, f->rs_pool); 501 502 fec_for_each_prealloc_buffer(n) 503 mempool_free(fio->bufs[n], f->prealloc_pool); 504 505 fec_for_each_extra_buffer(fio, n) 506 mempool_free(fio->bufs[n], f->extra_pool); 507 508 mempool_free(fio->output, f->output_pool); 509 } 510 511 /* 512 * Initialize per-bio data. 513 */ 514 void verity_fec_init_io(struct dm_verity_io *io) 515 { 516 struct dm_verity_fec_io *fio = fec_io(io); 517 518 if (!verity_fec_is_enabled(io->v)) 519 return; 520 521 fio->rs = NULL; 522 memset(fio->bufs, 0, sizeof(fio->bufs)); 523 fio->nbufs = 0; 524 fio->output = NULL; 525 } 526 527 /* 528 * Append feature arguments and values to the status table. 529 */ 530 unsigned verity_fec_status_table(struct dm_verity *v, unsigned sz, 531 char *result, unsigned maxlen) 532 { 533 if (!verity_fec_is_enabled(v)) 534 return sz; 535 536 DMEMIT(" " DM_VERITY_OPT_FEC_DEV " %s " 537 DM_VERITY_OPT_FEC_BLOCKS " %llu " 538 DM_VERITY_OPT_FEC_START " %llu " 539 DM_VERITY_OPT_FEC_ROOTS " %d", 540 v->fec->dev->name, 541 (unsigned long long)v->fec->blocks, 542 (unsigned long long)v->fec->start, 543 v->fec->roots); 544 545 return sz; 546 } 547 548 void verity_fec_dtr(struct dm_verity *v) 549 { 550 struct dm_verity_fec *f = v->fec; 551 552 if (!verity_fec_is_enabled(v)) 553 goto out; 554 555 mempool_destroy(f->rs_pool); 556 mempool_destroy(f->prealloc_pool); 557 mempool_destroy(f->extra_pool); 558 kmem_cache_destroy(f->cache); 559 560 if (f->data_bufio) 561 dm_bufio_client_destroy(f->data_bufio); 562 if (f->bufio) 563 dm_bufio_client_destroy(f->bufio); 564 565 if (f->dev) 566 dm_put_device(v->ti, f->dev); 567 out: 568 kfree(f); 569 v->fec = NULL; 570 } 571 572 static void *fec_rs_alloc(gfp_t gfp_mask, void *pool_data) 573 { 574 struct dm_verity *v = (struct dm_verity *)pool_data; 575 576 return init_rs(8, 0x11d, 0, 1, v->fec->roots); 577 } 578 579 static void fec_rs_free(void *element, void *pool_data) 580 { 581 struct rs_control *rs = (struct rs_control *)element; 582 583 if (rs) 584 free_rs(rs); 585 } 586 587 bool verity_is_fec_opt_arg(const char *arg_name) 588 { 589 return (!strcasecmp(arg_name, DM_VERITY_OPT_FEC_DEV) || 590 !strcasecmp(arg_name, DM_VERITY_OPT_FEC_BLOCKS) || 591 !strcasecmp(arg_name, DM_VERITY_OPT_FEC_START) || 592 !strcasecmp(arg_name, DM_VERITY_OPT_FEC_ROOTS)); 593 } 594 595 int verity_fec_parse_opt_args(struct dm_arg_set *as, struct dm_verity *v, 596 unsigned *argc, const char *arg_name) 597 { 598 int r; 599 struct dm_target *ti = v->ti; 600 const char *arg_value; 601 unsigned long long num_ll; 602 unsigned char num_c; 603 char dummy; 604 605 if (!*argc) { 606 ti->error = "FEC feature arguments require a value"; 607 return -EINVAL; 608 } 609 610 arg_value = dm_shift_arg(as); 611 (*argc)--; 612 613 if (!strcasecmp(arg_name, DM_VERITY_OPT_FEC_DEV)) { 614 r = dm_get_device(ti, arg_value, FMODE_READ, &v->fec->dev); 615 if (r) { 616 ti->error = "FEC device lookup failed"; 617 return r; 618 } 619 620 } else if (!strcasecmp(arg_name, DM_VERITY_OPT_FEC_BLOCKS)) { 621 if (sscanf(arg_value, "%llu%c", &num_ll, &dummy) != 1 || 622 ((sector_t)(num_ll << (v->data_dev_block_bits - SECTOR_SHIFT)) 623 >> (v->data_dev_block_bits - SECTOR_SHIFT) != num_ll)) { 624 ti->error = "Invalid " DM_VERITY_OPT_FEC_BLOCKS; 625 return -EINVAL; 626 } 627 v->fec->blocks = num_ll; 628 629 } else if (!strcasecmp(arg_name, DM_VERITY_OPT_FEC_START)) { 630 if (sscanf(arg_value, "%llu%c", &num_ll, &dummy) != 1 || 631 ((sector_t)(num_ll << (v->data_dev_block_bits - SECTOR_SHIFT)) >> 632 (v->data_dev_block_bits - SECTOR_SHIFT) != num_ll)) { 633 ti->error = "Invalid " DM_VERITY_OPT_FEC_START; 634 return -EINVAL; 635 } 636 v->fec->start = num_ll; 637 638 } else if (!strcasecmp(arg_name, DM_VERITY_OPT_FEC_ROOTS)) { 639 if (sscanf(arg_value, "%hhu%c", &num_c, &dummy) != 1 || !num_c || 640 num_c < (DM_VERITY_FEC_RSM - DM_VERITY_FEC_MAX_RSN) || 641 num_c > (DM_VERITY_FEC_RSM - DM_VERITY_FEC_MIN_RSN)) { 642 ti->error = "Invalid " DM_VERITY_OPT_FEC_ROOTS; 643 return -EINVAL; 644 } 645 v->fec->roots = num_c; 646 647 } else { 648 ti->error = "Unrecognized verity FEC feature request"; 649 return -EINVAL; 650 } 651 652 return 0; 653 } 654 655 /* 656 * Allocate dm_verity_fec for v->fec. Must be called before verity_fec_ctr. 657 */ 658 int verity_fec_ctr_alloc(struct dm_verity *v) 659 { 660 struct dm_verity_fec *f; 661 662 f = kzalloc(sizeof(struct dm_verity_fec), GFP_KERNEL); 663 if (!f) { 664 v->ti->error = "Cannot allocate FEC structure"; 665 return -ENOMEM; 666 } 667 v->fec = f; 668 669 return 0; 670 } 671 672 /* 673 * Validate arguments and preallocate memory. Must be called after arguments 674 * have been parsed using verity_fec_parse_opt_args. 675 */ 676 int verity_fec_ctr(struct dm_verity *v) 677 { 678 struct dm_verity_fec *f = v->fec; 679 struct dm_target *ti = v->ti; 680 u64 hash_blocks; 681 682 if (!verity_fec_is_enabled(v)) { 683 verity_fec_dtr(v); 684 return 0; 685 } 686 687 /* 688 * FEC is computed over data blocks, possible metadata, and 689 * hash blocks. In other words, FEC covers total of fec_blocks 690 * blocks consisting of the following: 691 * 692 * data blocks | hash blocks | metadata (optional) 693 * 694 * We allow metadata after hash blocks to support a use case 695 * where all data is stored on the same device and FEC covers 696 * the entire area. 697 * 698 * If metadata is included, we require it to be available on the 699 * hash device after the hash blocks. 700 */ 701 702 hash_blocks = v->hash_blocks - v->hash_start; 703 704 /* 705 * Require matching block sizes for data and hash devices for 706 * simplicity. 707 */ 708 if (v->data_dev_block_bits != v->hash_dev_block_bits) { 709 ti->error = "Block sizes must match to use FEC"; 710 return -EINVAL; 711 } 712 713 if (!f->roots) { 714 ti->error = "Missing " DM_VERITY_OPT_FEC_ROOTS; 715 return -EINVAL; 716 } 717 f->rsn = DM_VERITY_FEC_RSM - f->roots; 718 719 if (!f->blocks) { 720 ti->error = "Missing " DM_VERITY_OPT_FEC_BLOCKS; 721 return -EINVAL; 722 } 723 724 f->rounds = f->blocks; 725 if (sector_div(f->rounds, f->rsn)) 726 f->rounds++; 727 728 /* 729 * Due to optional metadata, f->blocks can be larger than 730 * data_blocks and hash_blocks combined. 731 */ 732 if (f->blocks < v->data_blocks + hash_blocks || !f->rounds) { 733 ti->error = "Invalid " DM_VERITY_OPT_FEC_BLOCKS; 734 return -EINVAL; 735 } 736 737 /* 738 * Metadata is accessed through the hash device, so we require 739 * it to be large enough. 740 */ 741 f->hash_blocks = f->blocks - v->data_blocks; 742 if (dm_bufio_get_device_size(v->bufio) < f->hash_blocks) { 743 ti->error = "Hash device is too small for " 744 DM_VERITY_OPT_FEC_BLOCKS; 745 return -E2BIG; 746 } 747 748 f->bufio = dm_bufio_client_create(f->dev->bdev, 749 1 << v->data_dev_block_bits, 750 1, 0, NULL, NULL); 751 if (IS_ERR(f->bufio)) { 752 ti->error = "Cannot initialize FEC bufio client"; 753 return PTR_ERR(f->bufio); 754 } 755 756 if (dm_bufio_get_device_size(f->bufio) < 757 ((f->start + f->rounds * f->roots) >> v->data_dev_block_bits)) { 758 ti->error = "FEC device is too small"; 759 return -E2BIG; 760 } 761 762 f->data_bufio = dm_bufio_client_create(v->data_dev->bdev, 763 1 << v->data_dev_block_bits, 764 1, 0, NULL, NULL); 765 if (IS_ERR(f->data_bufio)) { 766 ti->error = "Cannot initialize FEC data bufio client"; 767 return PTR_ERR(f->data_bufio); 768 } 769 770 if (dm_bufio_get_device_size(f->data_bufio) < v->data_blocks) { 771 ti->error = "Data device is too small"; 772 return -E2BIG; 773 } 774 775 /* Preallocate an rs_control structure for each worker thread */ 776 f->rs_pool = mempool_create(num_online_cpus(), fec_rs_alloc, 777 fec_rs_free, (void *) v); 778 if (!f->rs_pool) { 779 ti->error = "Cannot allocate RS pool"; 780 return -ENOMEM; 781 } 782 783 f->cache = kmem_cache_create("dm_verity_fec_buffers", 784 f->rsn << DM_VERITY_FEC_BUF_RS_BITS, 785 0, 0, NULL); 786 if (!f->cache) { 787 ti->error = "Cannot create FEC buffer cache"; 788 return -ENOMEM; 789 } 790 791 /* Preallocate DM_VERITY_FEC_BUF_PREALLOC buffers for each thread */ 792 f->prealloc_pool = mempool_create_slab_pool(num_online_cpus() * 793 DM_VERITY_FEC_BUF_PREALLOC, 794 f->cache); 795 if (!f->prealloc_pool) { 796 ti->error = "Cannot allocate FEC buffer prealloc pool"; 797 return -ENOMEM; 798 } 799 800 f->extra_pool = mempool_create_slab_pool(0, f->cache); 801 if (!f->extra_pool) { 802 ti->error = "Cannot allocate FEC buffer extra pool"; 803 return -ENOMEM; 804 } 805 806 /* Preallocate an output buffer for each thread */ 807 f->output_pool = mempool_create_kmalloc_pool(num_online_cpus(), 808 1 << v->data_dev_block_bits); 809 if (!f->output_pool) { 810 ti->error = "Cannot allocate FEC output pool"; 811 return -ENOMEM; 812 } 813 814 /* Reserve space for our per-bio data */ 815 ti->per_io_data_size += sizeof(struct dm_verity_fec_io); 816 817 return 0; 818 } 819