xref: /linux/drivers/md/dm-vdo/slab-depot.c (revision 7f71507851fc7764b36a3221839607d3a45c2025)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright 2023 Red Hat
4  */
5 
6 #include "slab-depot.h"
7 
8 #include <linux/atomic.h>
9 #include <linux/bio.h>
10 #include <linux/err.h>
11 #include <linux/log2.h>
12 #include <linux/min_heap.h>
13 #include <linux/minmax.h>
14 
15 #include "logger.h"
16 #include "memory-alloc.h"
17 #include "numeric.h"
18 #include "permassert.h"
19 #include "string-utils.h"
20 
21 #include "action-manager.h"
22 #include "admin-state.h"
23 #include "completion.h"
24 #include "constants.h"
25 #include "data-vio.h"
26 #include "encodings.h"
27 #include "io-submitter.h"
28 #include "physical-zone.h"
29 #include "priority-table.h"
30 #include "recovery-journal.h"
31 #include "repair.h"
32 #include "status-codes.h"
33 #include "types.h"
34 #include "vdo.h"
35 #include "vio.h"
36 #include "wait-queue.h"
37 
38 static const u64 BYTES_PER_WORD = sizeof(u64);
39 static const bool NORMAL_OPERATION = true;
40 
41 /**
42  * get_lock() - Get the lock object for a slab journal block by sequence number.
43  * @journal: vdo_slab journal to retrieve from.
44  * @sequence_number: Sequence number of the block.
45  *
46  * Return: The lock object for the given sequence number.
47  */
48 static inline struct journal_lock * __must_check get_lock(struct slab_journal *journal,
49 							  sequence_number_t sequence_number)
50 {
51 	return &journal->locks[sequence_number % journal->size];
52 }
53 
54 static bool is_slab_open(struct vdo_slab *slab)
55 {
56 	return (!vdo_is_state_quiescing(&slab->state) &&
57 		!vdo_is_state_quiescent(&slab->state));
58 }
59 
60 /**
61  * must_make_entries_to_flush() - Check whether there are entry waiters which should delay a flush.
62  * @journal: The journal to check.
63  *
64  * Return: true if there are no entry waiters, or if the slab is unrecovered.
65  */
66 static inline bool __must_check must_make_entries_to_flush(struct slab_journal *journal)
67 {
68 	return ((journal->slab->status != VDO_SLAB_REBUILDING) &&
69 		vdo_waitq_has_waiters(&journal->entry_waiters));
70 }
71 
72 /**
73  * is_reaping() - Check whether a reap is currently in progress.
74  * @journal: The journal which may be reaping.
75  *
76  * Return: true if the journal is reaping.
77  */
78 static inline bool __must_check is_reaping(struct slab_journal *journal)
79 {
80 	return (journal->head != journal->unreapable);
81 }
82 
83 /**
84  * initialize_tail_block() - Initialize tail block as a new block.
85  * @journal: The journal whose tail block is being initialized.
86  */
87 static void initialize_tail_block(struct slab_journal *journal)
88 {
89 	struct slab_journal_block_header *header = &journal->tail_header;
90 
91 	header->sequence_number = journal->tail;
92 	header->entry_count = 0;
93 	header->has_block_map_increments = false;
94 }
95 
96 /**
97  * initialize_journal_state() - Set all journal fields appropriately to start journaling.
98  * @journal: The journal to be reset, based on its tail sequence number.
99  */
100 static void initialize_journal_state(struct slab_journal *journal)
101 {
102 	journal->unreapable = journal->head;
103 	journal->reap_lock = get_lock(journal, journal->unreapable);
104 	journal->next_commit = journal->tail;
105 	journal->summarized = journal->last_summarized = journal->tail;
106 	initialize_tail_block(journal);
107 }
108 
109 /**
110  * block_is_full() - Check whether a journal block is full.
111  * @journal: The slab journal for the block.
112  *
113  * Return: true if the tail block is full.
114  */
115 static bool __must_check block_is_full(struct slab_journal *journal)
116 {
117 	journal_entry_count_t count = journal->tail_header.entry_count;
118 
119 	return (journal->tail_header.has_block_map_increments ?
120 		(journal->full_entries_per_block == count) :
121 		(journal->entries_per_block == count));
122 }
123 
124 static void add_entries(struct slab_journal *journal);
125 static void update_tail_block_location(struct slab_journal *journal);
126 static void release_journal_locks(struct vdo_waiter *waiter, void *context);
127 
128 /**
129  * is_slab_journal_blank() - Check whether a slab's journal is blank.
130  *
131  * A slab journal is blank if it has never had any entries recorded in it.
132  *
133  * Return: true if the slab's journal has never been modified.
134  */
135 static bool is_slab_journal_blank(const struct vdo_slab *slab)
136 {
137 	return ((slab->journal.tail == 1) &&
138 		(slab->journal.tail_header.entry_count == 0));
139 }
140 
141 /**
142  * mark_slab_journal_dirty() - Put a slab journal on the dirty ring of its allocator in the correct
143  *                             order.
144  * @journal: The journal to be marked dirty.
145  * @lock: The recovery journal lock held by the slab journal.
146  */
147 static void mark_slab_journal_dirty(struct slab_journal *journal, sequence_number_t lock)
148 {
149 	struct slab_journal *dirty_journal;
150 	struct list_head *dirty_list = &journal->slab->allocator->dirty_slab_journals;
151 
152 	VDO_ASSERT_LOG_ONLY(journal->recovery_lock == 0, "slab journal was clean");
153 
154 	journal->recovery_lock = lock;
155 	list_for_each_entry_reverse(dirty_journal, dirty_list, dirty_entry) {
156 		if (dirty_journal->recovery_lock <= journal->recovery_lock)
157 			break;
158 	}
159 
160 	list_move_tail(&journal->dirty_entry, dirty_journal->dirty_entry.next);
161 }
162 
163 static void mark_slab_journal_clean(struct slab_journal *journal)
164 {
165 	journal->recovery_lock = 0;
166 	list_del_init(&journal->dirty_entry);
167 }
168 
169 static void check_if_slab_drained(struct vdo_slab *slab)
170 {
171 	bool read_only;
172 	struct slab_journal *journal = &slab->journal;
173 	const struct admin_state_code *code;
174 
175 	if (!vdo_is_state_draining(&slab->state) ||
176 	    must_make_entries_to_flush(journal) ||
177 	    is_reaping(journal) ||
178 	    journal->waiting_to_commit ||
179 	    !list_empty(&journal->uncommitted_blocks) ||
180 	    journal->updating_slab_summary ||
181 	    (slab->active_count > 0))
182 		return;
183 
184 	/* When not suspending or recovering, the slab must be clean. */
185 	code = vdo_get_admin_state_code(&slab->state);
186 	read_only = vdo_is_read_only(slab->allocator->depot->vdo);
187 	if (!read_only &&
188 	    vdo_waitq_has_waiters(&slab->dirty_blocks) &&
189 	    (code != VDO_ADMIN_STATE_SUSPENDING) &&
190 	    (code != VDO_ADMIN_STATE_RECOVERING))
191 		return;
192 
193 	vdo_finish_draining_with_result(&slab->state,
194 					(read_only ? VDO_READ_ONLY : VDO_SUCCESS));
195 }
196 
197 /* FULLNESS HINT COMPUTATION */
198 
199 /**
200  * compute_fullness_hint() - Translate a slab's free block count into a 'fullness hint' that can be
201  *                           stored in a slab_summary_entry's 7 bits that are dedicated to its free
202  *                           count.
203  * @depot: The depot whose summary being updated.
204  * @free_blocks: The number of free blocks.
205  *
206  * Note: the number of free blocks must be strictly less than 2^23 blocks, even though
207  * theoretically slabs could contain precisely 2^23 blocks; there is an assumption that at least
208  * one block is used by metadata. This assumption is necessary; otherwise, the fullness hint might
209  * overflow. The fullness hint formula is roughly (fullness >> 16) & 0x7f, but (2^23 >> 16) & 0x7f
210  * is 0, which would make it impossible to distinguish completely full from completely empty.
211  *
212  * Return: A fullness hint, which can be stored in 7 bits.
213  */
214 static u8 __must_check compute_fullness_hint(struct slab_depot *depot,
215 					     block_count_t free_blocks)
216 {
217 	block_count_t hint;
218 
219 	VDO_ASSERT_LOG_ONLY((free_blocks < (1 << 23)), "free blocks must be less than 2^23");
220 
221 	if (free_blocks == 0)
222 		return 0;
223 
224 	hint = free_blocks >> depot->hint_shift;
225 	return ((hint == 0) ? 1 : hint);
226 }
227 
228 /**
229  * check_summary_drain_complete() - Check whether an allocators summary has finished draining.
230  */
231 static void check_summary_drain_complete(struct block_allocator *allocator)
232 {
233 	if (!vdo_is_state_draining(&allocator->summary_state) ||
234 	    (allocator->summary_write_count > 0))
235 		return;
236 
237 	vdo_finish_operation(&allocator->summary_state,
238 			     (vdo_is_read_only(allocator->depot->vdo) ?
239 			      VDO_READ_ONLY : VDO_SUCCESS));
240 }
241 
242 /**
243  * notify_summary_waiters() - Wake all the waiters in a given queue.
244  * @allocator: The block allocator summary which owns the queue.
245  * @queue: The queue to notify.
246  */
247 static void notify_summary_waiters(struct block_allocator *allocator,
248 				   struct vdo_wait_queue *queue)
249 {
250 	int result = (vdo_is_read_only(allocator->depot->vdo) ?
251 		      VDO_READ_ONLY : VDO_SUCCESS);
252 
253 	vdo_waitq_notify_all_waiters(queue, NULL, &result);
254 }
255 
256 static void launch_write(struct slab_summary_block *summary_block);
257 
258 /**
259  * finish_updating_slab_summary_block() - Finish processing a block which attempted to write,
260  *                                        whether or not the attempt succeeded.
261  * @block: The block.
262  */
263 static void finish_updating_slab_summary_block(struct slab_summary_block *block)
264 {
265 	notify_summary_waiters(block->allocator, &block->current_update_waiters);
266 	block->writing = false;
267 	block->allocator->summary_write_count--;
268 	if (vdo_waitq_has_waiters(&block->next_update_waiters))
269 		launch_write(block);
270 	else
271 		check_summary_drain_complete(block->allocator);
272 }
273 
274 /**
275  * finish_update() - This is the callback for a successful summary block write.
276  * @completion: The write vio.
277  */
278 static void finish_update(struct vdo_completion *completion)
279 {
280 	struct slab_summary_block *block =
281 		container_of(as_vio(completion), struct slab_summary_block, vio);
282 
283 	atomic64_inc(&block->allocator->depot->summary_statistics.blocks_written);
284 	finish_updating_slab_summary_block(block);
285 }
286 
287 /**
288  * handle_write_error() - Handle an error writing a slab summary block.
289  * @completion: The write VIO.
290  */
291 static void handle_write_error(struct vdo_completion *completion)
292 {
293 	struct slab_summary_block *block =
294 		container_of(as_vio(completion), struct slab_summary_block, vio);
295 
296 	vio_record_metadata_io_error(as_vio(completion));
297 	vdo_enter_read_only_mode(completion->vdo, completion->result);
298 	finish_updating_slab_summary_block(block);
299 }
300 
301 static void write_slab_summary_endio(struct bio *bio)
302 {
303 	struct vio *vio = bio->bi_private;
304 	struct slab_summary_block *block =
305 		container_of(vio, struct slab_summary_block, vio);
306 
307 	continue_vio_after_io(vio, finish_update, block->allocator->thread_id);
308 }
309 
310 /**
311  * launch_write() - Write a slab summary block unless it is currently out for writing.
312  * @block: The block that needs to be committed.
313  */
314 static void launch_write(struct slab_summary_block *block)
315 {
316 	struct block_allocator *allocator = block->allocator;
317 	struct slab_depot *depot = allocator->depot;
318 	physical_block_number_t pbn;
319 
320 	if (block->writing)
321 		return;
322 
323 	allocator->summary_write_count++;
324 	vdo_waitq_transfer_all_waiters(&block->next_update_waiters,
325 				       &block->current_update_waiters);
326 	block->writing = true;
327 
328 	if (vdo_is_read_only(depot->vdo)) {
329 		finish_updating_slab_summary_block(block);
330 		return;
331 	}
332 
333 	memcpy(block->outgoing_entries, block->entries, VDO_BLOCK_SIZE);
334 
335 	/*
336 	 * Flush before writing to ensure that the slab journal tail blocks and reference updates
337 	 * covered by this summary update are stable. Otherwise, a subsequent recovery could
338 	 * encounter a slab summary update that refers to a slab journal tail block that has not
339 	 * actually been written. In such cases, the slab journal referenced will be treated as
340 	 * empty, causing any data within the slab which predates the existing recovery journal
341 	 * entries to be lost.
342 	 */
343 	pbn = (depot->summary_origin +
344 	       (VDO_SLAB_SUMMARY_BLOCKS_PER_ZONE * allocator->zone_number) +
345 	       block->index);
346 	vdo_submit_metadata_vio(&block->vio, pbn, write_slab_summary_endio,
347 				handle_write_error, REQ_OP_WRITE | REQ_PREFLUSH);
348 }
349 
350 /**
351  * update_slab_summary_entry() - Update the entry for a slab.
352  * @slab: The slab whose entry is to be updated
353  * @waiter: The waiter that is updating the summary.
354  * @tail_block_offset: The offset of the slab journal's tail block.
355  * @load_ref_counts: Whether the reference counts must be loaded from disk on the vdo load.
356  * @is_clean: Whether the slab is clean.
357  * @free_blocks: The number of free blocks.
358  */
359 static void update_slab_summary_entry(struct vdo_slab *slab, struct vdo_waiter *waiter,
360 				      tail_block_offset_t tail_block_offset,
361 				      bool load_ref_counts, bool is_clean,
362 				      block_count_t free_blocks)
363 {
364 	u8 index = slab->slab_number / VDO_SLAB_SUMMARY_ENTRIES_PER_BLOCK;
365 	struct block_allocator *allocator = slab->allocator;
366 	struct slab_summary_block *block = &allocator->summary_blocks[index];
367 	int result;
368 	struct slab_summary_entry *entry;
369 
370 	if (vdo_is_read_only(block->vio.completion.vdo)) {
371 		result = VDO_READ_ONLY;
372 		waiter->callback(waiter, &result);
373 		return;
374 	}
375 
376 	if (vdo_is_state_draining(&allocator->summary_state) ||
377 	    vdo_is_state_quiescent(&allocator->summary_state)) {
378 		result = VDO_INVALID_ADMIN_STATE;
379 		waiter->callback(waiter, &result);
380 		return;
381 	}
382 
383 	entry = &allocator->summary_entries[slab->slab_number];
384 	*entry = (struct slab_summary_entry) {
385 		.tail_block_offset = tail_block_offset,
386 		.load_ref_counts = (entry->load_ref_counts || load_ref_counts),
387 		.is_dirty = !is_clean,
388 		.fullness_hint = compute_fullness_hint(allocator->depot, free_blocks),
389 	};
390 	vdo_waitq_enqueue_waiter(&block->next_update_waiters, waiter);
391 	launch_write(block);
392 }
393 
394 /**
395  * finish_reaping() - Actually advance the head of the journal now that any necessary flushes are
396  *                    complete.
397  * @journal: The journal to be reaped.
398  */
399 static void finish_reaping(struct slab_journal *journal)
400 {
401 	journal->head = journal->unreapable;
402 	add_entries(journal);
403 	check_if_slab_drained(journal->slab);
404 }
405 
406 static void reap_slab_journal(struct slab_journal *journal);
407 
408 /**
409  * complete_reaping() - Finish reaping now that we have flushed the lower layer and then try
410  *                      reaping again in case we deferred reaping due to an outstanding vio.
411  * @completion: The flush vio.
412  */
413 static void complete_reaping(struct vdo_completion *completion)
414 {
415 	struct slab_journal *journal = completion->parent;
416 
417 	return_vio_to_pool(journal->slab->allocator->vio_pool,
418 			   vio_as_pooled_vio(as_vio(vdo_forget(completion))));
419 	finish_reaping(journal);
420 	reap_slab_journal(journal);
421 }
422 
423 /**
424  * handle_flush_error() - Handle an error flushing the lower layer.
425  * @completion: The flush vio.
426  */
427 static void handle_flush_error(struct vdo_completion *completion)
428 {
429 	vio_record_metadata_io_error(as_vio(completion));
430 	vdo_enter_read_only_mode(completion->vdo, completion->result);
431 	complete_reaping(completion);
432 }
433 
434 static void flush_endio(struct bio *bio)
435 {
436 	struct vio *vio = bio->bi_private;
437 	struct slab_journal *journal = vio->completion.parent;
438 
439 	continue_vio_after_io(vio, complete_reaping,
440 			      journal->slab->allocator->thread_id);
441 }
442 
443 /**
444  * flush_for_reaping() - A waiter callback for getting a vio with which to flush the lower layer
445  *                       prior to reaping.
446  * @waiter: The journal as a flush waiter.
447  * @context: The newly acquired flush vio.
448  */
449 static void flush_for_reaping(struct vdo_waiter *waiter, void *context)
450 {
451 	struct slab_journal *journal =
452 		container_of(waiter, struct slab_journal, flush_waiter);
453 	struct pooled_vio *pooled = context;
454 	struct vio *vio = &pooled->vio;
455 
456 	vio->completion.parent = journal;
457 	vdo_submit_flush_vio(vio, flush_endio, handle_flush_error);
458 }
459 
460 /**
461  * reap_slab_journal() - Conduct a reap on a slab journal to reclaim unreferenced blocks.
462  * @journal: The slab journal.
463  */
464 static void reap_slab_journal(struct slab_journal *journal)
465 {
466 	bool reaped = false;
467 
468 	if (is_reaping(journal)) {
469 		/* We already have a reap in progress so wait for it to finish. */
470 		return;
471 	}
472 
473 	if ((journal->slab->status != VDO_SLAB_REBUILT) ||
474 	    !vdo_is_state_normal(&journal->slab->state) ||
475 	    vdo_is_read_only(journal->slab->allocator->depot->vdo)) {
476 		/*
477 		 * We must not reap in the first two cases, and there's no point in read-only mode.
478 		 */
479 		return;
480 	}
481 
482 	/*
483 	 * Start reclaiming blocks only when the journal head has no references. Then stop when a
484 	 * block is referenced or reap reaches the most recently written block, referenced by the
485 	 * slab summary, which has the sequence number just before the tail.
486 	 */
487 	while ((journal->unreapable < journal->tail) && (journal->reap_lock->count == 0)) {
488 		reaped = true;
489 		journal->unreapable++;
490 		journal->reap_lock++;
491 		if (journal->reap_lock == &journal->locks[journal->size])
492 			journal->reap_lock = &journal->locks[0];
493 	}
494 
495 	if (!reaped)
496 		return;
497 
498 	/*
499 	 * It is never safe to reap a slab journal block without first issuing a flush, regardless
500 	 * of whether a user flush has been received or not. In the absence of the flush, the
501 	 * reference block write which released the locks allowing the slab journal to reap may not
502 	 * be persisted. Although slab summary writes will eventually issue flushes, multiple slab
503 	 * journal block writes can be issued while previous slab summary updates have not yet been
504 	 * made. Even though those slab journal block writes will be ignored if the slab summary
505 	 * update is not persisted, they may still overwrite the to-be-reaped slab journal block
506 	 * resulting in a loss of reference count updates.
507 	 */
508 	journal->flush_waiter.callback = flush_for_reaping;
509 	acquire_vio_from_pool(journal->slab->allocator->vio_pool,
510 			      &journal->flush_waiter);
511 }
512 
513 /**
514  * adjust_slab_journal_block_reference() - Adjust the reference count for a slab journal block.
515  * @journal: The slab journal.
516  * @sequence_number: The journal sequence number of the referenced block.
517  * @adjustment: Amount to adjust the reference counter.
518  *
519  * Note that when the adjustment is negative, the slab journal will be reaped.
520  */
521 static void adjust_slab_journal_block_reference(struct slab_journal *journal,
522 						sequence_number_t sequence_number,
523 						int adjustment)
524 {
525 	struct journal_lock *lock;
526 
527 	if (sequence_number == 0)
528 		return;
529 
530 	if (journal->slab->status == VDO_SLAB_REPLAYING) {
531 		/* Locks should not be used during offline replay. */
532 		return;
533 	}
534 
535 	VDO_ASSERT_LOG_ONLY((adjustment != 0), "adjustment must be non-zero");
536 	lock = get_lock(journal, sequence_number);
537 	if (adjustment < 0) {
538 		VDO_ASSERT_LOG_ONLY((-adjustment <= lock->count),
539 				    "adjustment %d of lock count %u for slab journal block %llu must not underflow",
540 				    adjustment, lock->count,
541 				    (unsigned long long) sequence_number);
542 	}
543 
544 	lock->count += adjustment;
545 	if (lock->count == 0)
546 		reap_slab_journal(journal);
547 }
548 
549 /**
550  * release_journal_locks() - Callback invoked after a slab summary update completes.
551  * @waiter: The slab summary waiter that has just been notified.
552  * @context: The result code of the update.
553  *
554  * Registered in the constructor on behalf of update_tail_block_location().
555  *
556  * Implements waiter_callback_fn.
557  */
558 static void release_journal_locks(struct vdo_waiter *waiter, void *context)
559 {
560 	sequence_number_t first, i;
561 	struct slab_journal *journal =
562 		container_of(waiter, struct slab_journal, slab_summary_waiter);
563 	int result = *((int *) context);
564 
565 	if (result != VDO_SUCCESS) {
566 		if (result != VDO_READ_ONLY) {
567 			/*
568 			 * Don't bother logging what might be lots of errors if we are already in
569 			 * read-only mode.
570 			 */
571 			vdo_log_error_strerror(result, "failed slab summary update %llu",
572 					       (unsigned long long) journal->summarized);
573 		}
574 
575 		journal->updating_slab_summary = false;
576 		vdo_enter_read_only_mode(journal->slab->allocator->depot->vdo, result);
577 		check_if_slab_drained(journal->slab);
578 		return;
579 	}
580 
581 	if (journal->partial_write_in_progress && (journal->summarized == journal->tail)) {
582 		journal->partial_write_in_progress = false;
583 		add_entries(journal);
584 	}
585 
586 	first = journal->last_summarized;
587 	journal->last_summarized = journal->summarized;
588 	for (i = journal->summarized - 1; i >= first; i--) {
589 		/*
590 		 * Release the lock the summarized block held on the recovery journal. (During
591 		 * replay, recovery_start will always be 0.)
592 		 */
593 		if (journal->recovery_journal != NULL) {
594 			zone_count_t zone_number = journal->slab->allocator->zone_number;
595 			struct journal_lock *lock = get_lock(journal, i);
596 
597 			vdo_release_recovery_journal_block_reference(journal->recovery_journal,
598 								     lock->recovery_start,
599 								     VDO_ZONE_TYPE_PHYSICAL,
600 								     zone_number);
601 		}
602 
603 		/*
604 		 * Release our own lock against reaping for blocks that are committed. (This
605 		 * function will not change locks during replay.)
606 		 */
607 		adjust_slab_journal_block_reference(journal, i, -1);
608 	}
609 
610 	journal->updating_slab_summary = false;
611 
612 	reap_slab_journal(journal);
613 
614 	/* Check if the slab summary needs to be updated again. */
615 	update_tail_block_location(journal);
616 }
617 
618 /**
619  * update_tail_block_location() - Update the tail block location in the slab summary, if necessary.
620  * @journal: The slab journal that is updating its tail block location.
621  */
622 static void update_tail_block_location(struct slab_journal *journal)
623 {
624 	block_count_t free_block_count;
625 	struct vdo_slab *slab = journal->slab;
626 
627 	if (journal->updating_slab_summary ||
628 	    vdo_is_read_only(journal->slab->allocator->depot->vdo) ||
629 	    (journal->last_summarized >= journal->next_commit)) {
630 		check_if_slab_drained(slab);
631 		return;
632 	}
633 
634 	if (slab->status != VDO_SLAB_REBUILT) {
635 		u8 hint = slab->allocator->summary_entries[slab->slab_number].fullness_hint;
636 
637 		free_block_count = ((block_count_t) hint) << slab->allocator->depot->hint_shift;
638 	} else {
639 		free_block_count = slab->free_blocks;
640 	}
641 
642 	journal->summarized = journal->next_commit;
643 	journal->updating_slab_summary = true;
644 
645 	/*
646 	 * Update slab summary as dirty.
647 	 * vdo_slab journal can only reap past sequence number 1 when all the ref counts for this
648 	 * slab have been written to the layer. Therefore, indicate that the ref counts must be
649 	 * loaded when the journal head has reaped past sequence number 1.
650 	 */
651 	update_slab_summary_entry(slab, &journal->slab_summary_waiter,
652 				  journal->summarized % journal->size,
653 				  (journal->head > 1), false, free_block_count);
654 }
655 
656 /**
657  * reopen_slab_journal() - Reopen a slab's journal by emptying it and then adding pending entries.
658  */
659 static void reopen_slab_journal(struct vdo_slab *slab)
660 {
661 	struct slab_journal *journal = &slab->journal;
662 	sequence_number_t block;
663 
664 	VDO_ASSERT_LOG_ONLY(journal->tail_header.entry_count == 0,
665 			    "vdo_slab journal's active block empty before reopening");
666 	journal->head = journal->tail;
667 	initialize_journal_state(journal);
668 
669 	/* Ensure no locks are spuriously held on an empty journal. */
670 	for (block = 1; block <= journal->size; block++) {
671 		VDO_ASSERT_LOG_ONLY((get_lock(journal, block)->count == 0),
672 				    "Scrubbed journal's block %llu is not locked",
673 				    (unsigned long long) block);
674 	}
675 
676 	add_entries(journal);
677 }
678 
679 static sequence_number_t get_committing_sequence_number(const struct pooled_vio *vio)
680 {
681 	const struct packed_slab_journal_block *block =
682 		(const struct packed_slab_journal_block *) vio->vio.data;
683 
684 	return __le64_to_cpu(block->header.sequence_number);
685 }
686 
687 /**
688  * complete_write() - Handle post-commit processing.
689  * @completion: The write vio as a completion.
690  *
691  * This is the callback registered by write_slab_journal_block().
692  */
693 static void complete_write(struct vdo_completion *completion)
694 {
695 	int result = completion->result;
696 	struct pooled_vio *pooled = vio_as_pooled_vio(as_vio(completion));
697 	struct slab_journal *journal = completion->parent;
698 	sequence_number_t committed = get_committing_sequence_number(pooled);
699 
700 	list_del_init(&pooled->list_entry);
701 	return_vio_to_pool(journal->slab->allocator->vio_pool, vdo_forget(pooled));
702 
703 	if (result != VDO_SUCCESS) {
704 		vio_record_metadata_io_error(as_vio(completion));
705 		vdo_log_error_strerror(result, "cannot write slab journal block %llu",
706 				       (unsigned long long) committed);
707 		vdo_enter_read_only_mode(journal->slab->allocator->depot->vdo, result);
708 		check_if_slab_drained(journal->slab);
709 		return;
710 	}
711 
712 	WRITE_ONCE(journal->events->blocks_written, journal->events->blocks_written + 1);
713 
714 	if (list_empty(&journal->uncommitted_blocks)) {
715 		/* If no blocks are outstanding, then the commit point is at the tail. */
716 		journal->next_commit = journal->tail;
717 	} else {
718 		/* The commit point is always the beginning of the oldest incomplete block. */
719 		pooled = container_of(journal->uncommitted_blocks.next,
720 				      struct pooled_vio, list_entry);
721 		journal->next_commit = get_committing_sequence_number(pooled);
722 	}
723 
724 	update_tail_block_location(journal);
725 }
726 
727 static void write_slab_journal_endio(struct bio *bio)
728 {
729 	struct vio *vio = bio->bi_private;
730 	struct slab_journal *journal = vio->completion.parent;
731 
732 	continue_vio_after_io(vio, complete_write, journal->slab->allocator->thread_id);
733 }
734 
735 /**
736  * write_slab_journal_block() - Write a slab journal block.
737  * @waiter: The vio pool waiter which was just notified.
738  * @context: The vio pool entry for the write.
739  *
740  * Callback from acquire_vio_from_pool() registered in commit_tail().
741  */
742 static void write_slab_journal_block(struct vdo_waiter *waiter, void *context)
743 {
744 	struct pooled_vio *pooled = context;
745 	struct vio *vio = &pooled->vio;
746 	struct slab_journal *journal =
747 		container_of(waiter, struct slab_journal, resource_waiter);
748 	struct slab_journal_block_header *header = &journal->tail_header;
749 	int unused_entries = journal->entries_per_block - header->entry_count;
750 	physical_block_number_t block_number;
751 	const struct admin_state_code *operation;
752 
753 	header->head = journal->head;
754 	list_add_tail(&pooled->list_entry, &journal->uncommitted_blocks);
755 	vdo_pack_slab_journal_block_header(header, &journal->block->header);
756 
757 	/* Copy the tail block into the vio. */
758 	memcpy(pooled->vio.data, journal->block, VDO_BLOCK_SIZE);
759 
760 	VDO_ASSERT_LOG_ONLY(unused_entries >= 0, "vdo_slab journal block is not overfull");
761 	if (unused_entries > 0) {
762 		/*
763 		 * Release the per-entry locks for any unused entries in the block we are about to
764 		 * write.
765 		 */
766 		adjust_slab_journal_block_reference(journal, header->sequence_number,
767 						    -unused_entries);
768 		journal->partial_write_in_progress = !block_is_full(journal);
769 	}
770 
771 	block_number = journal->slab->journal_origin +
772 		(header->sequence_number % journal->size);
773 	vio->completion.parent = journal;
774 
775 	/*
776 	 * This block won't be read in recovery until the slab summary is updated to refer to it.
777 	 * The slab summary update does a flush which is sufficient to protect us from corruption
778 	 * due to out of order slab journal, reference block, or block map writes.
779 	 */
780 	vdo_submit_metadata_vio(vdo_forget(vio), block_number, write_slab_journal_endio,
781 				complete_write, REQ_OP_WRITE);
782 
783 	/* Since the write is submitted, the tail block structure can be reused. */
784 	journal->tail++;
785 	initialize_tail_block(journal);
786 	journal->waiting_to_commit = false;
787 
788 	operation = vdo_get_admin_state_code(&journal->slab->state);
789 	if (operation == VDO_ADMIN_STATE_WAITING_FOR_RECOVERY) {
790 		vdo_finish_operation(&journal->slab->state,
791 				     (vdo_is_read_only(journal->slab->allocator->depot->vdo) ?
792 				      VDO_READ_ONLY : VDO_SUCCESS));
793 		return;
794 	}
795 
796 	add_entries(journal);
797 }
798 
799 /**
800  * commit_tail() - Commit the tail block of the slab journal.
801  * @journal: The journal whose tail block should be committed.
802  */
803 static void commit_tail(struct slab_journal *journal)
804 {
805 	if ((journal->tail_header.entry_count == 0) && must_make_entries_to_flush(journal)) {
806 		/*
807 		 * There are no entries at the moment, but there are some waiters, so defer
808 		 * initiating the flush until those entries are ready to write.
809 		 */
810 		return;
811 	}
812 
813 	if (vdo_is_read_only(journal->slab->allocator->depot->vdo) ||
814 	    journal->waiting_to_commit ||
815 	    (journal->tail_header.entry_count == 0)) {
816 		/*
817 		 * There is nothing to do since the tail block is empty, or writing, or the journal
818 		 * is in read-only mode.
819 		 */
820 		return;
821 	}
822 
823 	/*
824 	 * Since we are about to commit the tail block, this journal no longer needs to be on the
825 	 * ring of journals which the recovery journal might ask to commit.
826 	 */
827 	mark_slab_journal_clean(journal);
828 
829 	journal->waiting_to_commit = true;
830 
831 	journal->resource_waiter.callback = write_slab_journal_block;
832 	acquire_vio_from_pool(journal->slab->allocator->vio_pool,
833 			      &journal->resource_waiter);
834 }
835 
836 /**
837  * encode_slab_journal_entry() - Encode a slab journal entry.
838  * @tail_header: The unpacked header for the block.
839  * @payload: The journal block payload to hold the entry.
840  * @sbn: The slab block number of the entry to encode.
841  * @operation: The type of the entry.
842  * @increment: True if this is an increment.
843  *
844  * Exposed for unit tests.
845  */
846 static void encode_slab_journal_entry(struct slab_journal_block_header *tail_header,
847 				      slab_journal_payload *payload,
848 				      slab_block_number sbn,
849 				      enum journal_operation operation,
850 				      bool increment)
851 {
852 	journal_entry_count_t entry_number = tail_header->entry_count++;
853 
854 	if (operation == VDO_JOURNAL_BLOCK_MAP_REMAPPING) {
855 		if (!tail_header->has_block_map_increments) {
856 			memset(payload->full_entries.entry_types, 0,
857 			       VDO_SLAB_JOURNAL_ENTRY_TYPES_SIZE);
858 			tail_header->has_block_map_increments = true;
859 		}
860 
861 		payload->full_entries.entry_types[entry_number / 8] |=
862 			((u8)1 << (entry_number % 8));
863 	}
864 
865 	vdo_pack_slab_journal_entry(&payload->entries[entry_number], sbn, increment);
866 }
867 
868 /**
869  * expand_journal_point() - Convert a recovery journal journal_point which refers to both an
870  *                          increment and a decrement to a single point which refers to one or the
871  *                          other.
872  * @recovery_point: The journal point to convert.
873  * @increment: Whether the current entry is an increment.
874  *
875  * Return: The expanded journal point
876  *
877  * Because each data_vio has but a single recovery journal point, but may need to make both
878  * increment and decrement entries in the same slab journal. In order to distinguish the two
879  * entries, the entry count of the expanded journal point is twice the actual recovery journal
880  * entry count for increments, and one more than that for decrements.
881  */
882 static struct journal_point expand_journal_point(struct journal_point recovery_point,
883 						 bool increment)
884 {
885 	recovery_point.entry_count *= 2;
886 	if (!increment)
887 		recovery_point.entry_count++;
888 
889 	return recovery_point;
890 }
891 
892 /**
893  * add_entry() - Actually add an entry to the slab journal, potentially firing off a write if a
894  *               block becomes full.
895  * @journal: The slab journal to append to.
896  * @pbn: The pbn being adjusted.
897  * @operation: The type of entry to make.
898  * @increment: True if this is an increment.
899  * @recovery_point: The expanded recovery point.
900  *
901  * This function is synchronous.
902  */
903 static void add_entry(struct slab_journal *journal, physical_block_number_t pbn,
904 		      enum journal_operation operation, bool increment,
905 		      struct journal_point recovery_point)
906 {
907 	struct packed_slab_journal_block *block = journal->block;
908 	int result;
909 
910 	result = VDO_ASSERT(vdo_before_journal_point(&journal->tail_header.recovery_point,
911 						     &recovery_point),
912 			    "recovery journal point is monotonically increasing, recovery point: %llu.%u, block recovery point: %llu.%u",
913 			    (unsigned long long) recovery_point.sequence_number,
914 			    recovery_point.entry_count,
915 			    (unsigned long long) journal->tail_header.recovery_point.sequence_number,
916 			    journal->tail_header.recovery_point.entry_count);
917 	if (result != VDO_SUCCESS) {
918 		vdo_enter_read_only_mode(journal->slab->allocator->depot->vdo, result);
919 		return;
920 	}
921 
922 	if (operation == VDO_JOURNAL_BLOCK_MAP_REMAPPING) {
923 		result = VDO_ASSERT((journal->tail_header.entry_count <
924 				     journal->full_entries_per_block),
925 				    "block has room for full entries");
926 		if (result != VDO_SUCCESS) {
927 			vdo_enter_read_only_mode(journal->slab->allocator->depot->vdo,
928 						 result);
929 			return;
930 		}
931 	}
932 
933 	encode_slab_journal_entry(&journal->tail_header, &block->payload,
934 				  pbn - journal->slab->start, operation, increment);
935 	journal->tail_header.recovery_point = recovery_point;
936 	if (block_is_full(journal))
937 		commit_tail(journal);
938 }
939 
940 static inline block_count_t journal_length(const struct slab_journal *journal)
941 {
942 	return journal->tail - journal->head;
943 }
944 
945 /**
946  * vdo_attempt_replay_into_slab() - Replay a recovery journal entry into a slab's journal.
947  * @slab: The slab to play into.
948  * @pbn: The PBN for the entry.
949  * @operation: The type of entry to add.
950  * @increment: True if this entry is an increment.
951  * @recovery_point: The recovery journal point corresponding to this entry.
952  * @parent: The completion to notify when there is space to add the entry if the entry could not be
953  *          added immediately.
954  *
955  * Return: true if the entry was added immediately.
956  */
957 bool vdo_attempt_replay_into_slab(struct vdo_slab *slab, physical_block_number_t pbn,
958 				  enum journal_operation operation, bool increment,
959 				  struct journal_point *recovery_point,
960 				  struct vdo_completion *parent)
961 {
962 	struct slab_journal *journal = &slab->journal;
963 	struct slab_journal_block_header *header = &journal->tail_header;
964 	struct journal_point expanded = expand_journal_point(*recovery_point, increment);
965 
966 	/* Only accept entries after the current recovery point. */
967 	if (!vdo_before_journal_point(&journal->tail_header.recovery_point, &expanded))
968 		return true;
969 
970 	if ((header->entry_count >= journal->full_entries_per_block) &&
971 	    (header->has_block_map_increments || (operation == VDO_JOURNAL_BLOCK_MAP_REMAPPING))) {
972 		/*
973 		 * The tail block does not have room for the entry we are attempting to add so
974 		 * commit the tail block now.
975 		 */
976 		commit_tail(journal);
977 	}
978 
979 	if (journal->waiting_to_commit) {
980 		vdo_start_operation_with_waiter(&journal->slab->state,
981 						VDO_ADMIN_STATE_WAITING_FOR_RECOVERY,
982 						parent, NULL);
983 		return false;
984 	}
985 
986 	if (journal_length(journal) >= journal->size) {
987 		/*
988 		 * We must have reaped the current head before the crash, since the blocked
989 		 * threshold keeps us from having more entries than fit in a slab journal; hence we
990 		 * can just advance the head (and unreapable block), as needed.
991 		 */
992 		journal->head++;
993 		journal->unreapable++;
994 	}
995 
996 	if (journal->slab->status == VDO_SLAB_REBUILT)
997 		journal->slab->status = VDO_SLAB_REPLAYING;
998 
999 	add_entry(journal, pbn, operation, increment, expanded);
1000 	return true;
1001 }
1002 
1003 /**
1004  * requires_reaping() - Check whether the journal must be reaped before adding new entries.
1005  * @journal: The journal to check.
1006  *
1007  * Return: true if the journal must be reaped.
1008  */
1009 static bool requires_reaping(const struct slab_journal *journal)
1010 {
1011 	return (journal_length(journal) >= journal->blocking_threshold);
1012 }
1013 
1014 /** finish_summary_update() - A waiter callback that resets the writing state of a slab. */
1015 static void finish_summary_update(struct vdo_waiter *waiter, void *context)
1016 {
1017 	struct vdo_slab *slab = container_of(waiter, struct vdo_slab, summary_waiter);
1018 	int result = *((int *) context);
1019 
1020 	slab->active_count--;
1021 
1022 	if ((result != VDO_SUCCESS) && (result != VDO_READ_ONLY)) {
1023 		vdo_log_error_strerror(result, "failed to update slab summary");
1024 		vdo_enter_read_only_mode(slab->allocator->depot->vdo, result);
1025 	}
1026 
1027 	check_if_slab_drained(slab);
1028 }
1029 
1030 static void write_reference_block(struct vdo_waiter *waiter, void *context);
1031 
1032 /**
1033  * launch_reference_block_write() - Launch the write of a dirty reference block by first acquiring
1034  *                                  a VIO for it from the pool.
1035  * @waiter: The waiter of the block which is starting to write.
1036  * @context: The parent slab of the block.
1037  *
1038  * This can be asynchronous since the writer will have to wait if all VIOs in the pool are
1039  * currently in use.
1040  */
1041 static void launch_reference_block_write(struct vdo_waiter *waiter, void *context)
1042 {
1043 	struct vdo_slab *slab = context;
1044 
1045 	if (vdo_is_read_only(slab->allocator->depot->vdo))
1046 		return;
1047 
1048 	slab->active_count++;
1049 	container_of(waiter, struct reference_block, waiter)->is_writing = true;
1050 	waiter->callback = write_reference_block;
1051 	acquire_vio_from_pool(slab->allocator->vio_pool, waiter);
1052 }
1053 
1054 static void save_dirty_reference_blocks(struct vdo_slab *slab)
1055 {
1056 	vdo_waitq_notify_all_waiters(&slab->dirty_blocks,
1057 				     launch_reference_block_write, slab);
1058 	check_if_slab_drained(slab);
1059 }
1060 
1061 /**
1062  * finish_reference_block_write() - After a reference block has written, clean it, release its
1063  *                                  locks, and return its VIO to the pool.
1064  * @completion: The VIO that just finished writing.
1065  */
1066 static void finish_reference_block_write(struct vdo_completion *completion)
1067 {
1068 	struct vio *vio = as_vio(completion);
1069 	struct pooled_vio *pooled = vio_as_pooled_vio(vio);
1070 	struct reference_block *block = completion->parent;
1071 	struct vdo_slab *slab = block->slab;
1072 	tail_block_offset_t offset;
1073 
1074 	slab->active_count--;
1075 
1076 	/* Release the slab journal lock. */
1077 	adjust_slab_journal_block_reference(&slab->journal,
1078 					    block->slab_journal_lock_to_release, -1);
1079 	return_vio_to_pool(slab->allocator->vio_pool, pooled);
1080 
1081 	/*
1082 	 * We can't clear the is_writing flag earlier as releasing the slab journal lock may cause
1083 	 * us to be dirtied again, but we don't want to double enqueue.
1084 	 */
1085 	block->is_writing = false;
1086 
1087 	if (vdo_is_read_only(completion->vdo)) {
1088 		check_if_slab_drained(slab);
1089 		return;
1090 	}
1091 
1092 	/* Re-queue the block if it was re-dirtied while it was writing. */
1093 	if (block->is_dirty) {
1094 		vdo_waitq_enqueue_waiter(&block->slab->dirty_blocks, &block->waiter);
1095 		if (vdo_is_state_draining(&slab->state)) {
1096 			/* We must be saving, and this block will otherwise not be relaunched. */
1097 			save_dirty_reference_blocks(slab);
1098 		}
1099 
1100 		return;
1101 	}
1102 
1103 	/*
1104 	 * Mark the slab as clean in the slab summary if there are no dirty or writing blocks
1105 	 * and no summary update in progress.
1106 	 */
1107 	if ((slab->active_count > 0) || vdo_waitq_has_waiters(&slab->dirty_blocks)) {
1108 		check_if_slab_drained(slab);
1109 		return;
1110 	}
1111 
1112 	offset = slab->allocator->summary_entries[slab->slab_number].tail_block_offset;
1113 	slab->active_count++;
1114 	slab->summary_waiter.callback = finish_summary_update;
1115 	update_slab_summary_entry(slab, &slab->summary_waiter, offset,
1116 				  true, true, slab->free_blocks);
1117 }
1118 
1119 /**
1120  * get_reference_counters_for_block() - Find the reference counters for a given block.
1121  * @block: The reference_block in question.
1122  *
1123  * Return: A pointer to the reference counters for this block.
1124  */
1125 static vdo_refcount_t * __must_check get_reference_counters_for_block(struct reference_block *block)
1126 {
1127 	size_t block_index = block - block->slab->reference_blocks;
1128 
1129 	return &block->slab->counters[block_index * COUNTS_PER_BLOCK];
1130 }
1131 
1132 /**
1133  * pack_reference_block() - Copy data from a reference block to a buffer ready to be written out.
1134  * @block: The block to copy.
1135  * @buffer: The char buffer to fill with the packed block.
1136  */
1137 static void pack_reference_block(struct reference_block *block, void *buffer)
1138 {
1139 	struct packed_reference_block *packed = buffer;
1140 	vdo_refcount_t *counters = get_reference_counters_for_block(block);
1141 	sector_count_t i;
1142 	struct packed_journal_point commit_point;
1143 
1144 	vdo_pack_journal_point(&block->slab->slab_journal_point, &commit_point);
1145 
1146 	for (i = 0; i < VDO_SECTORS_PER_BLOCK; i++) {
1147 		packed->sectors[i].commit_point = commit_point;
1148 		memcpy(packed->sectors[i].counts, counters + (i * COUNTS_PER_SECTOR),
1149 		       (sizeof(vdo_refcount_t) * COUNTS_PER_SECTOR));
1150 	}
1151 }
1152 
1153 static void write_reference_block_endio(struct bio *bio)
1154 {
1155 	struct vio *vio = bio->bi_private;
1156 	struct reference_block *block = vio->completion.parent;
1157 	thread_id_t thread_id = block->slab->allocator->thread_id;
1158 
1159 	continue_vio_after_io(vio, finish_reference_block_write, thread_id);
1160 }
1161 
1162 /**
1163  * handle_io_error() - Handle an I/O error reading or writing a reference count block.
1164  * @completion: The VIO doing the I/O as a completion.
1165  */
1166 static void handle_io_error(struct vdo_completion *completion)
1167 {
1168 	int result = completion->result;
1169 	struct vio *vio = as_vio(completion);
1170 	struct vdo_slab *slab = ((struct reference_block *) completion->parent)->slab;
1171 
1172 	vio_record_metadata_io_error(vio);
1173 	return_vio_to_pool(slab->allocator->vio_pool, vio_as_pooled_vio(vio));
1174 	slab->active_count--;
1175 	vdo_enter_read_only_mode(slab->allocator->depot->vdo, result);
1176 	check_if_slab_drained(slab);
1177 }
1178 
1179 /**
1180  * write_reference_block() - After a dirty block waiter has gotten a VIO from the VIO pool, copy
1181  *                           its counters and associated data into the VIO, and launch the write.
1182  * @waiter: The waiter of the dirty block.
1183  * @context: The VIO returned by the pool.
1184  */
1185 static void write_reference_block(struct vdo_waiter *waiter, void *context)
1186 {
1187 	size_t block_offset;
1188 	physical_block_number_t pbn;
1189 	struct pooled_vio *pooled = context;
1190 	struct vdo_completion *completion = &pooled->vio.completion;
1191 	struct reference_block *block = container_of(waiter, struct reference_block,
1192 						     waiter);
1193 
1194 	pack_reference_block(block, pooled->vio.data);
1195 	block_offset = (block - block->slab->reference_blocks);
1196 	pbn = (block->slab->ref_counts_origin + block_offset);
1197 	block->slab_journal_lock_to_release = block->slab_journal_lock;
1198 	completion->parent = block;
1199 
1200 	/*
1201 	 * Mark the block as clean, since we won't be committing any updates that happen after this
1202 	 * moment. As long as VIO order is preserved, two VIOs updating this block at once will not
1203 	 * cause complications.
1204 	 */
1205 	block->is_dirty = false;
1206 
1207 	/*
1208 	 * Flush before writing to ensure that the recovery journal and slab journal entries which
1209 	 * cover this reference update are stable. This prevents data corruption that can be caused
1210 	 * by out of order writes.
1211 	 */
1212 	WRITE_ONCE(block->slab->allocator->ref_counts_statistics.blocks_written,
1213 		   block->slab->allocator->ref_counts_statistics.blocks_written + 1);
1214 
1215 	completion->callback_thread_id = ((struct block_allocator *) pooled->context)->thread_id;
1216 	vdo_submit_metadata_vio(&pooled->vio, pbn, write_reference_block_endio,
1217 				handle_io_error, REQ_OP_WRITE | REQ_PREFLUSH);
1218 }
1219 
1220 static void reclaim_journal_space(struct slab_journal *journal)
1221 {
1222 	block_count_t length = journal_length(journal);
1223 	struct vdo_slab *slab = journal->slab;
1224 	block_count_t write_count = vdo_waitq_num_waiters(&slab->dirty_blocks);
1225 	block_count_t written;
1226 
1227 	if ((length < journal->flushing_threshold) || (write_count == 0))
1228 		return;
1229 
1230 	/* The slab journal is over the first threshold, schedule some reference block writes. */
1231 	WRITE_ONCE(journal->events->flush_count, journal->events->flush_count + 1);
1232 	if (length < journal->flushing_deadline) {
1233 		/* Schedule more writes the closer to the deadline we get. */
1234 		write_count /= journal->flushing_deadline - length + 1;
1235 		write_count = max_t(block_count_t, write_count, 1);
1236 	}
1237 
1238 	for (written = 0; written < write_count; written++) {
1239 		vdo_waitq_notify_next_waiter(&slab->dirty_blocks,
1240 					     launch_reference_block_write, slab);
1241 	}
1242 }
1243 
1244 /**
1245  * reference_count_to_status() - Convert a reference count to a reference status.
1246  * @count: The count to convert.
1247  *
1248  * Return: The appropriate reference status.
1249  */
1250 static enum reference_status __must_check reference_count_to_status(vdo_refcount_t count)
1251 {
1252 	if (count == EMPTY_REFERENCE_COUNT)
1253 		return RS_FREE;
1254 	else if (count == 1)
1255 		return RS_SINGLE;
1256 	else if (count == PROVISIONAL_REFERENCE_COUNT)
1257 		return RS_PROVISIONAL;
1258 	else
1259 		return RS_SHARED;
1260 }
1261 
1262 /**
1263  * dirty_block() - Mark a reference count block as dirty, potentially adding it to the dirty queue
1264  *                 if it wasn't already dirty.
1265  * @block: The reference block to mark as dirty.
1266  */
1267 static void dirty_block(struct reference_block *block)
1268 {
1269 	if (block->is_dirty)
1270 		return;
1271 
1272 	block->is_dirty = true;
1273 	if (!block->is_writing)
1274 		vdo_waitq_enqueue_waiter(&block->slab->dirty_blocks, &block->waiter);
1275 }
1276 
1277 /**
1278  * get_reference_block() - Get the reference block that covers the given block index.
1279  */
1280 static struct reference_block * __must_check get_reference_block(struct vdo_slab *slab,
1281 								 slab_block_number index)
1282 {
1283 	return &slab->reference_blocks[index / COUNTS_PER_BLOCK];
1284 }
1285 
1286 /**
1287  * slab_block_number_from_pbn() - Determine the index within the slab of a particular physical
1288  *                                block number.
1289  * @slab: The slab.
1290  * @pbn: The physical block number.
1291  * @slab_block_number_ptr: A pointer to the slab block number.
1292  *
1293  * Return: VDO_SUCCESS or an error code.
1294  */
1295 static int __must_check slab_block_number_from_pbn(struct vdo_slab *slab,
1296 						   physical_block_number_t pbn,
1297 						   slab_block_number *slab_block_number_ptr)
1298 {
1299 	u64 slab_block_number;
1300 
1301 	if (pbn < slab->start)
1302 		return VDO_OUT_OF_RANGE;
1303 
1304 	slab_block_number = pbn - slab->start;
1305 	if (slab_block_number >= slab->allocator->depot->slab_config.data_blocks)
1306 		return VDO_OUT_OF_RANGE;
1307 
1308 	*slab_block_number_ptr = slab_block_number;
1309 	return VDO_SUCCESS;
1310 }
1311 
1312 /**
1313  * get_reference_counter() - Get the reference counter that covers the given physical block number.
1314  * @slab: The slab to query.
1315  * @pbn: The physical block number.
1316  * @counter_ptr: A pointer to the reference counter.
1317  */
1318 static int __must_check get_reference_counter(struct vdo_slab *slab,
1319 					      physical_block_number_t pbn,
1320 					      vdo_refcount_t **counter_ptr)
1321 {
1322 	slab_block_number index;
1323 	int result = slab_block_number_from_pbn(slab, pbn, &index);
1324 
1325 	if (result != VDO_SUCCESS)
1326 		return result;
1327 
1328 	*counter_ptr = &slab->counters[index];
1329 
1330 	return VDO_SUCCESS;
1331 }
1332 
1333 static unsigned int calculate_slab_priority(struct vdo_slab *slab)
1334 {
1335 	block_count_t free_blocks = slab->free_blocks;
1336 	unsigned int unopened_slab_priority = slab->allocator->unopened_slab_priority;
1337 	unsigned int priority;
1338 
1339 	/*
1340 	 * Wholly full slabs must be the only ones with lowest priority, 0.
1341 	 *
1342 	 * Slabs that have never been opened (empty, newly initialized, and never been written to)
1343 	 * have lower priority than previously opened slabs that have a significant number of free
1344 	 * blocks. This ranking causes VDO to avoid writing physical blocks for the first time
1345 	 * unless there are very few free blocks that have been previously written to.
1346 	 *
1347 	 * Since VDO doesn't discard blocks currently, reusing previously written blocks makes VDO
1348 	 * a better client of any underlying storage that is thinly-provisioned (though discarding
1349 	 * would be better).
1350 	 *
1351 	 * For all other slabs, the priority is derived from the logarithm of the number of free
1352 	 * blocks. Slabs with the same order of magnitude of free blocks have the same priority.
1353 	 * With 2^23 blocks, the priority will range from 1 to 25. The reserved
1354 	 * unopened_slab_priority divides the range and is skipped by the logarithmic mapping.
1355 	 */
1356 
1357 	if (free_blocks == 0)
1358 		return 0;
1359 
1360 	if (is_slab_journal_blank(slab))
1361 		return unopened_slab_priority;
1362 
1363 	priority = (1 + ilog2(free_blocks));
1364 	return ((priority < unopened_slab_priority) ? priority : priority + 1);
1365 }
1366 
1367 /*
1368  * Slabs are essentially prioritized by an approximation of the number of free blocks in the slab
1369  * so slabs with lots of free blocks will be opened for allocation before slabs that have few free
1370  * blocks.
1371  */
1372 static void prioritize_slab(struct vdo_slab *slab)
1373 {
1374 	VDO_ASSERT_LOG_ONLY(list_empty(&slab->allocq_entry),
1375 			    "a slab must not already be on a ring when prioritizing");
1376 	slab->priority = calculate_slab_priority(slab);
1377 	vdo_priority_table_enqueue(slab->allocator->prioritized_slabs,
1378 				   slab->priority, &slab->allocq_entry);
1379 }
1380 
1381 /**
1382  * adjust_free_block_count() - Adjust the free block count and (if needed) reprioritize the slab.
1383  * @incremented: true if the free block count went up.
1384  */
1385 static void adjust_free_block_count(struct vdo_slab *slab, bool incremented)
1386 {
1387 	struct block_allocator *allocator = slab->allocator;
1388 
1389 	WRITE_ONCE(allocator->allocated_blocks,
1390 		   allocator->allocated_blocks + (incremented ? -1 : 1));
1391 
1392 	/* The open slab doesn't need to be reprioritized until it is closed. */
1393 	if (slab == allocator->open_slab)
1394 		return;
1395 
1396 	/* Don't bother adjusting the priority table if unneeded. */
1397 	if (slab->priority == calculate_slab_priority(slab))
1398 		return;
1399 
1400 	/*
1401 	 * Reprioritize the slab to reflect the new free block count by removing it from the table
1402 	 * and re-enqueuing it with the new priority.
1403 	 */
1404 	vdo_priority_table_remove(allocator->prioritized_slabs, &slab->allocq_entry);
1405 	prioritize_slab(slab);
1406 }
1407 
1408 /**
1409  * increment_for_data() - Increment the reference count for a data block.
1410  * @slab: The slab which owns the block.
1411  * @block: The reference block which contains the block being updated.
1412  * @block_number: The block to update.
1413  * @old_status: The reference status of the data block before this increment.
1414  * @lock: The pbn_lock associated with this increment (may be NULL).
1415  * @counter_ptr: A pointer to the count for the data block (in, out).
1416  * @adjust_block_count: Whether to update the allocator's free block count.
1417  *
1418  * Return: VDO_SUCCESS or an error.
1419  */
1420 static int increment_for_data(struct vdo_slab *slab, struct reference_block *block,
1421 			      slab_block_number block_number,
1422 			      enum reference_status old_status,
1423 			      struct pbn_lock *lock, vdo_refcount_t *counter_ptr,
1424 			      bool adjust_block_count)
1425 {
1426 	switch (old_status) {
1427 	case RS_FREE:
1428 		*counter_ptr = 1;
1429 		block->allocated_count++;
1430 		slab->free_blocks--;
1431 		if (adjust_block_count)
1432 			adjust_free_block_count(slab, false);
1433 
1434 		break;
1435 
1436 	case RS_PROVISIONAL:
1437 		*counter_ptr = 1;
1438 		break;
1439 
1440 	default:
1441 		/* Single or shared */
1442 		if (*counter_ptr >= MAXIMUM_REFERENCE_COUNT) {
1443 			return vdo_log_error_strerror(VDO_REF_COUNT_INVALID,
1444 						      "Incrementing a block already having 254 references (slab %u, offset %u)",
1445 						      slab->slab_number, block_number);
1446 		}
1447 		(*counter_ptr)++;
1448 	}
1449 
1450 	if (lock != NULL)
1451 		vdo_unassign_pbn_lock_provisional_reference(lock);
1452 	return VDO_SUCCESS;
1453 }
1454 
1455 /**
1456  * decrement_for_data() - Decrement the reference count for a data block.
1457  * @slab: The slab which owns the block.
1458  * @block: The reference block which contains the block being updated.
1459  * @block_number: The block to update.
1460  * @old_status: The reference status of the data block before this decrement.
1461  * @updater: The reference updater doing this operation in case we need to look up the pbn lock.
1462  * @counter_ptr: A pointer to the count for the data block (in, out).
1463  * @adjust_block_count: Whether to update the allocator's free block count.
1464  *
1465  * Return: VDO_SUCCESS or an error.
1466  */
1467 static int decrement_for_data(struct vdo_slab *slab, struct reference_block *block,
1468 			      slab_block_number block_number,
1469 			      enum reference_status old_status,
1470 			      struct reference_updater *updater,
1471 			      vdo_refcount_t *counter_ptr, bool adjust_block_count)
1472 {
1473 	switch (old_status) {
1474 	case RS_FREE:
1475 		return vdo_log_error_strerror(VDO_REF_COUNT_INVALID,
1476 					      "Decrementing free block at offset %u in slab %u",
1477 					      block_number, slab->slab_number);
1478 
1479 	case RS_PROVISIONAL:
1480 	case RS_SINGLE:
1481 		if (updater->zpbn.zone != NULL) {
1482 			struct pbn_lock *lock = vdo_get_physical_zone_pbn_lock(updater->zpbn.zone,
1483 									       updater->zpbn.pbn);
1484 
1485 			if (lock != NULL) {
1486 				/*
1487 				 * There is a read lock on this block, so the block must not become
1488 				 * unreferenced.
1489 				 */
1490 				*counter_ptr = PROVISIONAL_REFERENCE_COUNT;
1491 				vdo_assign_pbn_lock_provisional_reference(lock);
1492 				break;
1493 			}
1494 		}
1495 
1496 		*counter_ptr = EMPTY_REFERENCE_COUNT;
1497 		block->allocated_count--;
1498 		slab->free_blocks++;
1499 		if (adjust_block_count)
1500 			adjust_free_block_count(slab, true);
1501 
1502 		break;
1503 
1504 	default:
1505 		/* Shared */
1506 		(*counter_ptr)--;
1507 	}
1508 
1509 	return VDO_SUCCESS;
1510 }
1511 
1512 /**
1513  * increment_for_block_map() - Increment the reference count for a block map page.
1514  * @slab: The slab which owns the block.
1515  * @block: The reference block which contains the block being updated.
1516  * @block_number: The block to update.
1517  * @old_status: The reference status of the block before this increment.
1518  * @lock: The pbn_lock associated with this increment (may be NULL).
1519  * @normal_operation: Whether we are in normal operation vs. recovery or rebuild.
1520  * @counter_ptr: A pointer to the count for the block (in, out).
1521  * @adjust_block_count: Whether to update the allocator's free block count.
1522  *
1523  * All block map increments should be from provisional to MAXIMUM_REFERENCE_COUNT. Since block map
1524  * blocks never dedupe they should never be adjusted from any other state. The adjustment always
1525  * results in MAXIMUM_REFERENCE_COUNT as this value is used to prevent dedupe against block map
1526  * blocks.
1527  *
1528  * Return: VDO_SUCCESS or an error.
1529  */
1530 static int increment_for_block_map(struct vdo_slab *slab, struct reference_block *block,
1531 				   slab_block_number block_number,
1532 				   enum reference_status old_status,
1533 				   struct pbn_lock *lock, bool normal_operation,
1534 				   vdo_refcount_t *counter_ptr, bool adjust_block_count)
1535 {
1536 	switch (old_status) {
1537 	case RS_FREE:
1538 		if (normal_operation) {
1539 			return vdo_log_error_strerror(VDO_REF_COUNT_INVALID,
1540 						      "Incrementing unallocated block map block (slab %u, offset %u)",
1541 						      slab->slab_number, block_number);
1542 		}
1543 
1544 		*counter_ptr = MAXIMUM_REFERENCE_COUNT;
1545 		block->allocated_count++;
1546 		slab->free_blocks--;
1547 		if (adjust_block_count)
1548 			adjust_free_block_count(slab, false);
1549 
1550 		return VDO_SUCCESS;
1551 
1552 	case RS_PROVISIONAL:
1553 		if (!normal_operation)
1554 			return vdo_log_error_strerror(VDO_REF_COUNT_INVALID,
1555 						      "Block map block had provisional reference during replay (slab %u, offset %u)",
1556 						      slab->slab_number, block_number);
1557 
1558 		*counter_ptr = MAXIMUM_REFERENCE_COUNT;
1559 		if (lock != NULL)
1560 			vdo_unassign_pbn_lock_provisional_reference(lock);
1561 		return VDO_SUCCESS;
1562 
1563 	default:
1564 		return vdo_log_error_strerror(VDO_REF_COUNT_INVALID,
1565 					      "Incrementing a block map block which is already referenced %u times (slab %u, offset %u)",
1566 					      *counter_ptr, slab->slab_number,
1567 					      block_number);
1568 	}
1569 }
1570 
1571 static bool __must_check is_valid_journal_point(const struct journal_point *point)
1572 {
1573 	return ((point != NULL) && (point->sequence_number > 0));
1574 }
1575 
1576 /**
1577  * update_reference_count() - Update the reference count of a block.
1578  * @slab: The slab which owns the block.
1579  * @block: The reference block which contains the block being updated.
1580  * @block_number: The block to update.
1581  * @slab_journal_point: The slab journal point at which this update is journaled.
1582  * @updater: The reference updater.
1583  * @normal_operation: Whether we are in normal operation vs. recovery or rebuild.
1584  * @adjust_block_count: Whether to update the slab's free block count.
1585  * @provisional_decrement_ptr: A pointer which will be set to true if this update was a decrement
1586  *                             of a provisional reference.
1587  *
1588  * Return: VDO_SUCCESS or an error.
1589  */
1590 static int update_reference_count(struct vdo_slab *slab, struct reference_block *block,
1591 				  slab_block_number block_number,
1592 				  const struct journal_point *slab_journal_point,
1593 				  struct reference_updater *updater,
1594 				  bool normal_operation, bool adjust_block_count,
1595 				  bool *provisional_decrement_ptr)
1596 {
1597 	vdo_refcount_t *counter_ptr = &slab->counters[block_number];
1598 	enum reference_status old_status = reference_count_to_status(*counter_ptr);
1599 	int result;
1600 
1601 	if (!updater->increment) {
1602 		result = decrement_for_data(slab, block, block_number, old_status,
1603 					    updater, counter_ptr, adjust_block_count);
1604 		if ((result == VDO_SUCCESS) && (old_status == RS_PROVISIONAL)) {
1605 			if (provisional_decrement_ptr != NULL)
1606 				*provisional_decrement_ptr = true;
1607 			return VDO_SUCCESS;
1608 		}
1609 	} else if (updater->operation == VDO_JOURNAL_DATA_REMAPPING) {
1610 		result = increment_for_data(slab, block, block_number, old_status,
1611 					    updater->lock, counter_ptr, adjust_block_count);
1612 	} else {
1613 		result = increment_for_block_map(slab, block, block_number, old_status,
1614 						 updater->lock, normal_operation,
1615 						 counter_ptr, adjust_block_count);
1616 	}
1617 
1618 	if (result != VDO_SUCCESS)
1619 		return result;
1620 
1621 	if (is_valid_journal_point(slab_journal_point))
1622 		slab->slab_journal_point = *slab_journal_point;
1623 
1624 	return VDO_SUCCESS;
1625 }
1626 
1627 static int __must_check adjust_reference_count(struct vdo_slab *slab,
1628 					       struct reference_updater *updater,
1629 					       const struct journal_point *slab_journal_point)
1630 {
1631 	slab_block_number block_number;
1632 	int result;
1633 	struct reference_block *block;
1634 	bool provisional_decrement = false;
1635 
1636 	if (!is_slab_open(slab))
1637 		return VDO_INVALID_ADMIN_STATE;
1638 
1639 	result = slab_block_number_from_pbn(slab, updater->zpbn.pbn, &block_number);
1640 	if (result != VDO_SUCCESS)
1641 		return result;
1642 
1643 	block = get_reference_block(slab, block_number);
1644 	result = update_reference_count(slab, block, block_number, slab_journal_point,
1645 					updater, NORMAL_OPERATION, true,
1646 					&provisional_decrement);
1647 	if ((result != VDO_SUCCESS) || provisional_decrement)
1648 		return result;
1649 
1650 	if (block->is_dirty && (block->slab_journal_lock > 0)) {
1651 		sequence_number_t entry_lock = slab_journal_point->sequence_number;
1652 		/*
1653 		 * This block is already dirty and a slab journal entry has been made for it since
1654 		 * the last time it was clean. We must release the per-entry slab journal lock for
1655 		 * the entry associated with the update we are now doing.
1656 		 */
1657 		result = VDO_ASSERT(is_valid_journal_point(slab_journal_point),
1658 				    "Reference count adjustments need slab journal points.");
1659 		if (result != VDO_SUCCESS)
1660 			return result;
1661 
1662 		adjust_slab_journal_block_reference(&slab->journal, entry_lock, -1);
1663 		return VDO_SUCCESS;
1664 	}
1665 
1666 	/*
1667 	 * This may be the first time we are applying an update for which there is a slab journal
1668 	 * entry to this block since the block was cleaned. Therefore, we convert the per-entry
1669 	 * slab journal lock to an uncommitted reference block lock, if there is a per-entry lock.
1670 	 */
1671 	if (is_valid_journal_point(slab_journal_point))
1672 		block->slab_journal_lock = slab_journal_point->sequence_number;
1673 	else
1674 		block->slab_journal_lock = 0;
1675 
1676 	dirty_block(block);
1677 	return VDO_SUCCESS;
1678 }
1679 
1680 /**
1681  * add_entry_from_waiter() - Add an entry to the slab journal.
1682  * @waiter: The vio which should make an entry now.
1683  * @context: The slab journal to make an entry in.
1684  *
1685  * This callback is invoked by add_entries() once it has determined that we are ready to make
1686  * another entry in the slab journal. Implements waiter_callback_fn.
1687  */
1688 static void add_entry_from_waiter(struct vdo_waiter *waiter, void *context)
1689 {
1690 	int result;
1691 	struct reference_updater *updater =
1692 		container_of(waiter, struct reference_updater, waiter);
1693 	struct data_vio *data_vio = data_vio_from_reference_updater(updater);
1694 	struct slab_journal *journal = context;
1695 	struct slab_journal_block_header *header = &journal->tail_header;
1696 	struct journal_point slab_journal_point = {
1697 		.sequence_number = header->sequence_number,
1698 		.entry_count = header->entry_count,
1699 	};
1700 	sequence_number_t recovery_block = data_vio->recovery_journal_point.sequence_number;
1701 
1702 	if (header->entry_count == 0) {
1703 		/*
1704 		 * This is the first entry in the current tail block, so get a lock on the recovery
1705 		 * journal which we will hold until this tail block is committed.
1706 		 */
1707 		get_lock(journal, header->sequence_number)->recovery_start = recovery_block;
1708 		if (journal->recovery_journal != NULL) {
1709 			zone_count_t zone_number = journal->slab->allocator->zone_number;
1710 
1711 			vdo_acquire_recovery_journal_block_reference(journal->recovery_journal,
1712 								     recovery_block,
1713 								     VDO_ZONE_TYPE_PHYSICAL,
1714 								     zone_number);
1715 		}
1716 
1717 		mark_slab_journal_dirty(journal, recovery_block);
1718 		reclaim_journal_space(journal);
1719 	}
1720 
1721 	add_entry(journal, updater->zpbn.pbn, updater->operation, updater->increment,
1722 		  expand_journal_point(data_vio->recovery_journal_point,
1723 				       updater->increment));
1724 
1725 	if (journal->slab->status != VDO_SLAB_REBUILT) {
1726 		/*
1727 		 * If the slab is unrecovered, scrubbing will take care of the count since the
1728 		 * update is now recorded in the journal.
1729 		 */
1730 		adjust_slab_journal_block_reference(journal,
1731 						    slab_journal_point.sequence_number, -1);
1732 		result = VDO_SUCCESS;
1733 	} else {
1734 		/* Now that an entry has been made in the slab journal, update the counter. */
1735 		result = adjust_reference_count(journal->slab, updater,
1736 						&slab_journal_point);
1737 	}
1738 
1739 	if (updater->increment)
1740 		continue_data_vio_with_error(data_vio, result);
1741 	else
1742 		vdo_continue_completion(&data_vio->decrement_completion, result);
1743 }
1744 
1745 /**
1746  * is_next_entry_a_block_map_increment() - Check whether the next entry to be made is a block map
1747  *                                         increment.
1748  * @journal: The journal.
1749  *
1750  * Return: true if the first entry waiter's operation is a block map increment.
1751  */
1752 static inline bool is_next_entry_a_block_map_increment(struct slab_journal *journal)
1753 {
1754 	struct vdo_waiter *waiter = vdo_waitq_get_first_waiter(&journal->entry_waiters);
1755 	struct reference_updater *updater =
1756 		container_of(waiter, struct reference_updater, waiter);
1757 
1758 	return (updater->operation == VDO_JOURNAL_BLOCK_MAP_REMAPPING);
1759 }
1760 
1761 /**
1762  * add_entries() - Add as many entries as possible from the queue of vios waiting to make entries.
1763  * @journal: The journal to which entries may be added.
1764  *
1765  * By processing the queue in order, we ensure that slab journal entries are made in the same order
1766  * as recovery journal entries for the same increment or decrement.
1767  */
1768 static void add_entries(struct slab_journal *journal)
1769 {
1770 	if (journal->adding_entries) {
1771 		/* Protect against re-entrancy. */
1772 		return;
1773 	}
1774 
1775 	journal->adding_entries = true;
1776 	while (vdo_waitq_has_waiters(&journal->entry_waiters)) {
1777 		struct slab_journal_block_header *header = &journal->tail_header;
1778 
1779 		if (journal->partial_write_in_progress ||
1780 		    (journal->slab->status == VDO_SLAB_REBUILDING)) {
1781 			/*
1782 			 * Don't add entries while rebuilding or while a partial write is
1783 			 * outstanding, as it could result in reference count corruption.
1784 			 */
1785 			break;
1786 		}
1787 
1788 		if (journal->waiting_to_commit) {
1789 			/*
1790 			 * If we are waiting for resources to write the tail block, and the tail
1791 			 * block is full, we can't make another entry.
1792 			 */
1793 			WRITE_ONCE(journal->events->tail_busy_count,
1794 				   journal->events->tail_busy_count + 1);
1795 			break;
1796 		} else if (is_next_entry_a_block_map_increment(journal) &&
1797 			   (header->entry_count >= journal->full_entries_per_block)) {
1798 			/*
1799 			 * The tail block does not have room for a block map increment, so commit
1800 			 * it now.
1801 			 */
1802 			commit_tail(journal);
1803 			if (journal->waiting_to_commit) {
1804 				WRITE_ONCE(journal->events->tail_busy_count,
1805 					   journal->events->tail_busy_count + 1);
1806 				break;
1807 			}
1808 		}
1809 
1810 		/* If the slab is over the blocking threshold, make the vio wait. */
1811 		if (requires_reaping(journal)) {
1812 			WRITE_ONCE(journal->events->blocked_count,
1813 				   journal->events->blocked_count + 1);
1814 			save_dirty_reference_blocks(journal->slab);
1815 			break;
1816 		}
1817 
1818 		if (header->entry_count == 0) {
1819 			struct journal_lock *lock =
1820 				get_lock(journal, header->sequence_number);
1821 
1822 			/*
1823 			 * Check if the on disk slab journal is full. Because of the blocking and
1824 			 * scrubbing thresholds, this should never happen.
1825 			 */
1826 			if (lock->count > 0) {
1827 				VDO_ASSERT_LOG_ONLY((journal->head + journal->size) == journal->tail,
1828 						    "New block has locks, but journal is not full");
1829 
1830 				/*
1831 				 * The blocking threshold must let the journal fill up if the new
1832 				 * block has locks; if the blocking threshold is smaller than the
1833 				 * journal size, the new block cannot possibly have locks already.
1834 				 */
1835 				VDO_ASSERT_LOG_ONLY((journal->blocking_threshold >= journal->size),
1836 						    "New block can have locks already iff blocking threshold is at the end of the journal");
1837 
1838 				WRITE_ONCE(journal->events->disk_full_count,
1839 					   journal->events->disk_full_count + 1);
1840 				save_dirty_reference_blocks(journal->slab);
1841 				break;
1842 			}
1843 
1844 			/*
1845 			 * Don't allow the new block to be reaped until all of the reference count
1846 			 * blocks are written and the journal block has been fully committed as
1847 			 * well.
1848 			 */
1849 			lock->count = journal->entries_per_block + 1;
1850 
1851 			if (header->sequence_number == 1) {
1852 				struct vdo_slab *slab = journal->slab;
1853 				block_count_t i;
1854 
1855 				/*
1856 				 * This is the first entry in this slab journal, ever. Dirty all of
1857 				 * the reference count blocks. Each will acquire a lock on the tail
1858 				 * block so that the journal won't be reaped until the reference
1859 				 * counts are initialized. The lock acquisition must be done by the
1860 				 * ref_counts since here we don't know how many reference blocks
1861 				 * the ref_counts has.
1862 				 */
1863 				for (i = 0; i < slab->reference_block_count; i++) {
1864 					slab->reference_blocks[i].slab_journal_lock = 1;
1865 					dirty_block(&slab->reference_blocks[i]);
1866 				}
1867 
1868 				adjust_slab_journal_block_reference(journal, 1,
1869 								    slab->reference_block_count);
1870 			}
1871 		}
1872 
1873 		vdo_waitq_notify_next_waiter(&journal->entry_waiters,
1874 					     add_entry_from_waiter, journal);
1875 	}
1876 
1877 	journal->adding_entries = false;
1878 
1879 	/* If there are no waiters, and we are flushing or saving, commit the tail block. */
1880 	if (vdo_is_state_draining(&journal->slab->state) &&
1881 	    !vdo_is_state_suspending(&journal->slab->state) &&
1882 	    !vdo_waitq_has_waiters(&journal->entry_waiters))
1883 		commit_tail(journal);
1884 }
1885 
1886 /**
1887  * reset_search_cursor() - Reset the free block search back to the first reference counter in the
1888  *                         first reference block of a slab.
1889  */
1890 static void reset_search_cursor(struct vdo_slab *slab)
1891 {
1892 	struct search_cursor *cursor = &slab->search_cursor;
1893 
1894 	cursor->block = cursor->first_block;
1895 	cursor->index = 0;
1896 	/* Unit tests have slabs with only one reference block (and it's a runt). */
1897 	cursor->end_index = min_t(u32, COUNTS_PER_BLOCK, slab->block_count);
1898 }
1899 
1900 /**
1901  * advance_search_cursor() - Advance the search cursor to the start of the next reference block in
1902  *                           a slab,
1903  *
1904  * Wraps around to the first reference block if the current block is the last reference block.
1905  *
1906  * Return: true unless the cursor was at the last reference block.
1907  */
1908 static bool advance_search_cursor(struct vdo_slab *slab)
1909 {
1910 	struct search_cursor *cursor = &slab->search_cursor;
1911 
1912 	/*
1913 	 * If we just finished searching the last reference block, then wrap back around to the
1914 	 * start of the array.
1915 	 */
1916 	if (cursor->block == cursor->last_block) {
1917 		reset_search_cursor(slab);
1918 		return false;
1919 	}
1920 
1921 	/* We're not already at the end, so advance to cursor to the next block. */
1922 	cursor->block++;
1923 	cursor->index = cursor->end_index;
1924 
1925 	if (cursor->block == cursor->last_block) {
1926 		/* The last reference block will usually be a runt. */
1927 		cursor->end_index = slab->block_count;
1928 	} else {
1929 		cursor->end_index += COUNTS_PER_BLOCK;
1930 	}
1931 
1932 	return true;
1933 }
1934 
1935 /**
1936  * vdo_adjust_reference_count_for_rebuild() - Adjust the reference count of a block during rebuild.
1937  *
1938  * Return: VDO_SUCCESS or an error.
1939  */
1940 int vdo_adjust_reference_count_for_rebuild(struct slab_depot *depot,
1941 					   physical_block_number_t pbn,
1942 					   enum journal_operation operation)
1943 {
1944 	int result;
1945 	slab_block_number block_number;
1946 	struct reference_block *block;
1947 	struct vdo_slab *slab = vdo_get_slab(depot, pbn);
1948 	struct reference_updater updater = {
1949 		.operation = operation,
1950 		.increment = true,
1951 	};
1952 
1953 	result = slab_block_number_from_pbn(slab, pbn, &block_number);
1954 	if (result != VDO_SUCCESS)
1955 		return result;
1956 
1957 	block = get_reference_block(slab, block_number);
1958 	result = update_reference_count(slab, block, block_number, NULL,
1959 					&updater, !NORMAL_OPERATION, false, NULL);
1960 	if (result != VDO_SUCCESS)
1961 		return result;
1962 
1963 	dirty_block(block);
1964 	return VDO_SUCCESS;
1965 }
1966 
1967 /**
1968  * replay_reference_count_change() - Replay the reference count adjustment from a slab journal
1969  *                                   entry into the reference count for a block.
1970  * @slab: The slab.
1971  * @entry_point: The slab journal point for the entry.
1972  * @entry: The slab journal entry being replayed.
1973  *
1974  * The adjustment will be ignored if it was already recorded in the reference count.
1975  *
1976  * Return: VDO_SUCCESS or an error code.
1977  */
1978 static int replay_reference_count_change(struct vdo_slab *slab,
1979 					 const struct journal_point *entry_point,
1980 					 struct slab_journal_entry entry)
1981 {
1982 	int result;
1983 	struct reference_block *block = get_reference_block(slab, entry.sbn);
1984 	sector_count_t sector = (entry.sbn % COUNTS_PER_BLOCK) / COUNTS_PER_SECTOR;
1985 	struct reference_updater updater = {
1986 		.operation = entry.operation,
1987 		.increment = entry.increment,
1988 	};
1989 
1990 	if (!vdo_before_journal_point(&block->commit_points[sector], entry_point)) {
1991 		/* This entry is already reflected in the existing counts, so do nothing. */
1992 		return VDO_SUCCESS;
1993 	}
1994 
1995 	/* This entry is not yet counted in the reference counts. */
1996 	result = update_reference_count(slab, block, entry.sbn, entry_point,
1997 					&updater, !NORMAL_OPERATION, false, NULL);
1998 	if (result != VDO_SUCCESS)
1999 		return result;
2000 
2001 	dirty_block(block);
2002 	return VDO_SUCCESS;
2003 }
2004 
2005 /**
2006  * find_zero_byte_in_word() - Find the array index of the first zero byte in word-sized range of
2007  *                            reference counters.
2008  * @word_ptr: A pointer to the eight counter bytes to check.
2009  * @start_index: The array index corresponding to word_ptr[0].
2010  * @fail_index: The array index to return if no zero byte is found.
2011  *
2012  * The search does no bounds checking; the function relies on the array being sufficiently padded.
2013  *
2014  * Return: The array index of the first zero byte in the word, or the value passed as fail_index if
2015  *         no zero byte was found.
2016  */
2017 static inline slab_block_number find_zero_byte_in_word(const u8 *word_ptr,
2018 						       slab_block_number start_index,
2019 						       slab_block_number fail_index)
2020 {
2021 	u64 word = get_unaligned_le64(word_ptr);
2022 
2023 	/* This looks like a loop, but GCC will unroll the eight iterations for us. */
2024 	unsigned int offset;
2025 
2026 	for (offset = 0; offset < BYTES_PER_WORD; offset++) {
2027 		/* Assumes little-endian byte order, which we have on X86. */
2028 		if ((word & 0xFF) == 0)
2029 			return (start_index + offset);
2030 		word >>= 8;
2031 	}
2032 
2033 	return fail_index;
2034 }
2035 
2036 /**
2037  * find_free_block() - Find the first block with a reference count of zero in the specified
2038  *                     range of reference counter indexes.
2039  * @slab: The slab counters to scan.
2040  * @index_ptr: A pointer to hold the array index of the free block.
2041  *
2042  * Exposed for unit testing.
2043  *
2044  * Return: true if a free block was found in the specified range.
2045  */
2046 static bool find_free_block(const struct vdo_slab *slab, slab_block_number *index_ptr)
2047 {
2048 	slab_block_number zero_index;
2049 	slab_block_number next_index = slab->search_cursor.index;
2050 	slab_block_number end_index = slab->search_cursor.end_index;
2051 	u8 *next_counter = &slab->counters[next_index];
2052 	u8 *end_counter = &slab->counters[end_index];
2053 
2054 	/*
2055 	 * Search every byte of the first unaligned word. (Array is padded so reading past end is
2056 	 * safe.)
2057 	 */
2058 	zero_index = find_zero_byte_in_word(next_counter, next_index, end_index);
2059 	if (zero_index < end_index) {
2060 		*index_ptr = zero_index;
2061 		return true;
2062 	}
2063 
2064 	/*
2065 	 * On architectures where unaligned word access is expensive, this would be a good place to
2066 	 * advance to an alignment boundary.
2067 	 */
2068 	next_index += BYTES_PER_WORD;
2069 	next_counter += BYTES_PER_WORD;
2070 
2071 	/*
2072 	 * Now we're word-aligned; check an word at a time until we find a word containing a zero.
2073 	 * (Array is padded so reading past end is safe.)
2074 	 */
2075 	while (next_counter < end_counter) {
2076 		/*
2077 		 * The following code is currently an exact copy of the code preceding the loop,
2078 		 * but if you try to merge them by using a do loop, it runs slower because a jump
2079 		 * instruction gets added at the start of the iteration.
2080 		 */
2081 		zero_index = find_zero_byte_in_word(next_counter, next_index, end_index);
2082 		if (zero_index < end_index) {
2083 			*index_ptr = zero_index;
2084 			return true;
2085 		}
2086 
2087 		next_index += BYTES_PER_WORD;
2088 		next_counter += BYTES_PER_WORD;
2089 	}
2090 
2091 	return false;
2092 }
2093 
2094 /**
2095  * search_current_reference_block() - Search the reference block currently saved in the search
2096  *                                    cursor for a reference count of zero, starting at the saved
2097  *                                    counter index.
2098  * @slab: The slab to search.
2099  * @free_index_ptr: A pointer to receive the array index of the zero reference count.
2100  *
2101  * Return: true if an unreferenced counter was found.
2102  */
2103 static bool search_current_reference_block(const struct vdo_slab *slab,
2104 					   slab_block_number *free_index_ptr)
2105 {
2106 	/* Don't bother searching if the current block is known to be full. */
2107 	return ((slab->search_cursor.block->allocated_count < COUNTS_PER_BLOCK) &&
2108 		find_free_block(slab, free_index_ptr));
2109 }
2110 
2111 /**
2112  * search_reference_blocks() - Search each reference block for a reference count of zero.
2113  * @slab: The slab to search.
2114  * @free_index_ptr: A pointer to receive the array index of the zero reference count.
2115  *
2116  * Searches each reference block for a reference count of zero, starting at the reference block and
2117  * counter index saved in the search cursor and searching up to the end of the last reference
2118  * block. The search does not wrap.
2119  *
2120  * Return: true if an unreferenced counter was found.
2121  */
2122 static bool search_reference_blocks(struct vdo_slab *slab,
2123 				    slab_block_number *free_index_ptr)
2124 {
2125 	/* Start searching at the saved search position in the current block. */
2126 	if (search_current_reference_block(slab, free_index_ptr))
2127 		return true;
2128 
2129 	/* Search each reference block up to the end of the slab. */
2130 	while (advance_search_cursor(slab)) {
2131 		if (search_current_reference_block(slab, free_index_ptr))
2132 			return true;
2133 	}
2134 
2135 	return false;
2136 }
2137 
2138 /**
2139  * make_provisional_reference() - Do the bookkeeping for making a provisional reference.
2140  */
2141 static void make_provisional_reference(struct vdo_slab *slab,
2142 				       slab_block_number block_number)
2143 {
2144 	struct reference_block *block = get_reference_block(slab, block_number);
2145 
2146 	/*
2147 	 * Make the initial transition from an unreferenced block to a
2148 	 * provisionally allocated block.
2149 	 */
2150 	slab->counters[block_number] = PROVISIONAL_REFERENCE_COUNT;
2151 
2152 	/* Account for the allocation. */
2153 	block->allocated_count++;
2154 	slab->free_blocks--;
2155 }
2156 
2157 /**
2158  * dirty_all_reference_blocks() - Mark all reference count blocks in a slab as dirty.
2159  */
2160 static void dirty_all_reference_blocks(struct vdo_slab *slab)
2161 {
2162 	block_count_t i;
2163 
2164 	for (i = 0; i < slab->reference_block_count; i++)
2165 		dirty_block(&slab->reference_blocks[i]);
2166 }
2167 
2168 /**
2169  * clear_provisional_references() - Clear the provisional reference counts from a reference block.
2170  * @block: The block to clear.
2171  */
2172 static void clear_provisional_references(struct reference_block *block)
2173 {
2174 	vdo_refcount_t *counters = get_reference_counters_for_block(block);
2175 	block_count_t j;
2176 
2177 	for (j = 0; j < COUNTS_PER_BLOCK; j++) {
2178 		if (counters[j] == PROVISIONAL_REFERENCE_COUNT) {
2179 			counters[j] = EMPTY_REFERENCE_COUNT;
2180 			block->allocated_count--;
2181 		}
2182 	}
2183 }
2184 
2185 static inline bool journal_points_equal(struct journal_point first,
2186 					struct journal_point second)
2187 {
2188 	return ((first.sequence_number == second.sequence_number) &&
2189 		(first.entry_count == second.entry_count));
2190 }
2191 
2192 /**
2193  * unpack_reference_block() - Unpack reference counts blocks into the internal memory structure.
2194  * @packed: The written reference block to be unpacked.
2195  * @block: The internal reference block to be loaded.
2196  */
2197 static void unpack_reference_block(struct packed_reference_block *packed,
2198 				   struct reference_block *block)
2199 {
2200 	block_count_t index;
2201 	sector_count_t i;
2202 	struct vdo_slab *slab = block->slab;
2203 	vdo_refcount_t *counters = get_reference_counters_for_block(block);
2204 
2205 	for (i = 0; i < VDO_SECTORS_PER_BLOCK; i++) {
2206 		struct packed_reference_sector *sector = &packed->sectors[i];
2207 
2208 		vdo_unpack_journal_point(&sector->commit_point, &block->commit_points[i]);
2209 		memcpy(counters + (i * COUNTS_PER_SECTOR), sector->counts,
2210 		       (sizeof(vdo_refcount_t) * COUNTS_PER_SECTOR));
2211 		/* The slab_journal_point must be the latest point found in any sector. */
2212 		if (vdo_before_journal_point(&slab->slab_journal_point,
2213 					     &block->commit_points[i]))
2214 			slab->slab_journal_point = block->commit_points[i];
2215 
2216 		if ((i > 0) &&
2217 		    !journal_points_equal(block->commit_points[0],
2218 					  block->commit_points[i])) {
2219 			size_t block_index = block - block->slab->reference_blocks;
2220 
2221 			vdo_log_warning("Torn write detected in sector %u of reference block %zu of slab %u",
2222 					i, block_index, block->slab->slab_number);
2223 		}
2224 	}
2225 
2226 	block->allocated_count = 0;
2227 	for (index = 0; index < COUNTS_PER_BLOCK; index++) {
2228 		if (counters[index] != EMPTY_REFERENCE_COUNT)
2229 			block->allocated_count++;
2230 	}
2231 }
2232 
2233 /**
2234  * finish_reference_block_load() - After a reference block has been read, unpack it.
2235  * @completion: The VIO that just finished reading.
2236  */
2237 static void finish_reference_block_load(struct vdo_completion *completion)
2238 {
2239 	struct vio *vio = as_vio(completion);
2240 	struct pooled_vio *pooled = vio_as_pooled_vio(vio);
2241 	struct reference_block *block = completion->parent;
2242 	struct vdo_slab *slab = block->slab;
2243 
2244 	unpack_reference_block((struct packed_reference_block *) vio->data, block);
2245 	return_vio_to_pool(slab->allocator->vio_pool, pooled);
2246 	slab->active_count--;
2247 	clear_provisional_references(block);
2248 
2249 	slab->free_blocks -= block->allocated_count;
2250 	check_if_slab_drained(slab);
2251 }
2252 
2253 static void load_reference_block_endio(struct bio *bio)
2254 {
2255 	struct vio *vio = bio->bi_private;
2256 	struct reference_block *block = vio->completion.parent;
2257 
2258 	continue_vio_after_io(vio, finish_reference_block_load,
2259 			      block->slab->allocator->thread_id);
2260 }
2261 
2262 /**
2263  * load_reference_block() - After a block waiter has gotten a VIO from the VIO pool, load the
2264  *                          block.
2265  * @waiter: The waiter of the block to load.
2266  * @context: The VIO returned by the pool.
2267  */
2268 static void load_reference_block(struct vdo_waiter *waiter, void *context)
2269 {
2270 	struct pooled_vio *pooled = context;
2271 	struct vio *vio = &pooled->vio;
2272 	struct reference_block *block =
2273 		container_of(waiter, struct reference_block, waiter);
2274 	size_t block_offset = (block - block->slab->reference_blocks);
2275 
2276 	vio->completion.parent = block;
2277 	vdo_submit_metadata_vio(vio, block->slab->ref_counts_origin + block_offset,
2278 				load_reference_block_endio, handle_io_error,
2279 				REQ_OP_READ);
2280 }
2281 
2282 /**
2283  * load_reference_blocks() - Load a slab's reference blocks from the underlying storage into a
2284  *                           pre-allocated reference counter.
2285  */
2286 static void load_reference_blocks(struct vdo_slab *slab)
2287 {
2288 	block_count_t i;
2289 
2290 	slab->free_blocks = slab->block_count;
2291 	slab->active_count = slab->reference_block_count;
2292 	for (i = 0; i < slab->reference_block_count; i++) {
2293 		struct vdo_waiter *waiter = &slab->reference_blocks[i].waiter;
2294 
2295 		waiter->callback = load_reference_block;
2296 		acquire_vio_from_pool(slab->allocator->vio_pool, waiter);
2297 	}
2298 }
2299 
2300 /**
2301  * drain_slab() - Drain all reference count I/O.
2302  *
2303  * Depending upon the type of drain being performed (as recorded in the ref_count's vdo_slab), the
2304  * reference blocks may be loaded from disk or dirty reference blocks may be written out.
2305  */
2306 static void drain_slab(struct vdo_slab *slab)
2307 {
2308 	bool save;
2309 	bool load;
2310 	const struct admin_state_code *state = vdo_get_admin_state_code(&slab->state);
2311 
2312 	if (state == VDO_ADMIN_STATE_SUSPENDING)
2313 		return;
2314 
2315 	if ((state != VDO_ADMIN_STATE_REBUILDING) &&
2316 	    (state != VDO_ADMIN_STATE_SAVE_FOR_SCRUBBING))
2317 		commit_tail(&slab->journal);
2318 
2319 	if ((state == VDO_ADMIN_STATE_RECOVERING) || (slab->counters == NULL))
2320 		return;
2321 
2322 	save = false;
2323 	load = slab->allocator->summary_entries[slab->slab_number].load_ref_counts;
2324 	if (state == VDO_ADMIN_STATE_SCRUBBING) {
2325 		if (load) {
2326 			load_reference_blocks(slab);
2327 			return;
2328 		}
2329 	} else if (state == VDO_ADMIN_STATE_SAVE_FOR_SCRUBBING) {
2330 		if (!load) {
2331 			/* These reference counts were never written, so mark them all dirty. */
2332 			dirty_all_reference_blocks(slab);
2333 		}
2334 		save = true;
2335 	} else if (state == VDO_ADMIN_STATE_REBUILDING) {
2336 		/*
2337 		 * Write out the counters if the slab has written them before, or it has any
2338 		 * non-zero reference counts, or there are any slab journal blocks.
2339 		 */
2340 		block_count_t data_blocks = slab->allocator->depot->slab_config.data_blocks;
2341 
2342 		if (load || (slab->free_blocks != data_blocks) ||
2343 		    !is_slab_journal_blank(slab)) {
2344 			dirty_all_reference_blocks(slab);
2345 			save = true;
2346 		}
2347 	} else if (state == VDO_ADMIN_STATE_SAVING) {
2348 		save = (slab->status == VDO_SLAB_REBUILT);
2349 	} else {
2350 		vdo_finish_draining_with_result(&slab->state, VDO_SUCCESS);
2351 		return;
2352 	}
2353 
2354 	if (save)
2355 		save_dirty_reference_blocks(slab);
2356 }
2357 
2358 static int allocate_slab_counters(struct vdo_slab *slab)
2359 {
2360 	int result;
2361 	size_t index, bytes;
2362 
2363 	result = VDO_ASSERT(slab->reference_blocks == NULL,
2364 			    "vdo_slab %u doesn't allocate refcounts twice",
2365 			    slab->slab_number);
2366 	if (result != VDO_SUCCESS)
2367 		return result;
2368 
2369 	result = vdo_allocate(slab->reference_block_count, struct reference_block,
2370 			      __func__, &slab->reference_blocks);
2371 	if (result != VDO_SUCCESS)
2372 		return result;
2373 
2374 	/*
2375 	 * Allocate such that the runt slab has a full-length memory array, plus a little padding
2376 	 * so we can word-search even at the very end.
2377 	 */
2378 	bytes = (slab->reference_block_count * COUNTS_PER_BLOCK) + (2 * BYTES_PER_WORD);
2379 	result = vdo_allocate(bytes, vdo_refcount_t, "ref counts array",
2380 			      &slab->counters);
2381 	if (result != VDO_SUCCESS) {
2382 		vdo_free(vdo_forget(slab->reference_blocks));
2383 		return result;
2384 	}
2385 
2386 	slab->search_cursor.first_block = slab->reference_blocks;
2387 	slab->search_cursor.last_block = &slab->reference_blocks[slab->reference_block_count - 1];
2388 	reset_search_cursor(slab);
2389 
2390 	for (index = 0; index < slab->reference_block_count; index++) {
2391 		slab->reference_blocks[index] = (struct reference_block) {
2392 			.slab = slab,
2393 		};
2394 	}
2395 
2396 	return VDO_SUCCESS;
2397 }
2398 
2399 static int allocate_counters_if_clean(struct vdo_slab *slab)
2400 {
2401 	if (vdo_is_state_clean_load(&slab->state))
2402 		return allocate_slab_counters(slab);
2403 
2404 	return VDO_SUCCESS;
2405 }
2406 
2407 static void finish_loading_journal(struct vdo_completion *completion)
2408 {
2409 	struct vio *vio = as_vio(completion);
2410 	struct slab_journal *journal = completion->parent;
2411 	struct vdo_slab *slab = journal->slab;
2412 	struct packed_slab_journal_block *block = (struct packed_slab_journal_block *) vio->data;
2413 	struct slab_journal_block_header header;
2414 
2415 	vdo_unpack_slab_journal_block_header(&block->header, &header);
2416 
2417 	/* FIXME: should it be an error if the following conditional fails? */
2418 	if ((header.metadata_type == VDO_METADATA_SLAB_JOURNAL) &&
2419 	    (header.nonce == slab->allocator->nonce)) {
2420 		journal->tail = header.sequence_number + 1;
2421 
2422 		/*
2423 		 * If the slab is clean, this implies the slab journal is empty, so advance the
2424 		 * head appropriately.
2425 		 */
2426 		journal->head = (slab->allocator->summary_entries[slab->slab_number].is_dirty ?
2427 				 header.head : journal->tail);
2428 		journal->tail_header = header;
2429 		initialize_journal_state(journal);
2430 	}
2431 
2432 	return_vio_to_pool(slab->allocator->vio_pool, vio_as_pooled_vio(vio));
2433 	vdo_finish_loading_with_result(&slab->state, allocate_counters_if_clean(slab));
2434 }
2435 
2436 static void read_slab_journal_tail_endio(struct bio *bio)
2437 {
2438 	struct vio *vio = bio->bi_private;
2439 	struct slab_journal *journal = vio->completion.parent;
2440 
2441 	continue_vio_after_io(vio, finish_loading_journal,
2442 			      journal->slab->allocator->thread_id);
2443 }
2444 
2445 static void handle_load_error(struct vdo_completion *completion)
2446 {
2447 	int result = completion->result;
2448 	struct slab_journal *journal = completion->parent;
2449 	struct vio *vio = as_vio(completion);
2450 
2451 	vio_record_metadata_io_error(vio);
2452 	return_vio_to_pool(journal->slab->allocator->vio_pool, vio_as_pooled_vio(vio));
2453 	vdo_finish_loading_with_result(&journal->slab->state, result);
2454 }
2455 
2456 /**
2457  * read_slab_journal_tail() - Read the slab journal tail block by using a vio acquired from the vio
2458  *                            pool.
2459  * @waiter: The vio pool waiter which has just been notified.
2460  * @context: The vio pool entry given to the waiter.
2461  *
2462  * This is the success callback from acquire_vio_from_pool() when loading a slab journal.
2463  */
2464 static void read_slab_journal_tail(struct vdo_waiter *waiter, void *context)
2465 {
2466 	struct slab_journal *journal =
2467 		container_of(waiter, struct slab_journal, resource_waiter);
2468 	struct vdo_slab *slab = journal->slab;
2469 	struct pooled_vio *pooled = context;
2470 	struct vio *vio = &pooled->vio;
2471 	tail_block_offset_t last_commit_point =
2472 		slab->allocator->summary_entries[slab->slab_number].tail_block_offset;
2473 
2474 	/*
2475 	 * Slab summary keeps the commit point offset, so the tail block is the block before that.
2476 	 * Calculation supports small journals in unit tests.
2477 	 */
2478 	tail_block_offset_t tail_block = ((last_commit_point == 0) ?
2479 					  (tail_block_offset_t)(journal->size - 1) :
2480 					  (last_commit_point - 1));
2481 
2482 	vio->completion.parent = journal;
2483 	vio->completion.callback_thread_id = slab->allocator->thread_id;
2484 	vdo_submit_metadata_vio(vio, slab->journal_origin + tail_block,
2485 				read_slab_journal_tail_endio, handle_load_error,
2486 				REQ_OP_READ);
2487 }
2488 
2489 /**
2490  * load_slab_journal() - Load a slab's journal by reading the journal's tail.
2491  */
2492 static void load_slab_journal(struct vdo_slab *slab)
2493 {
2494 	struct slab_journal *journal = &slab->journal;
2495 	tail_block_offset_t last_commit_point;
2496 
2497 	last_commit_point = slab->allocator->summary_entries[slab->slab_number].tail_block_offset;
2498 	if ((last_commit_point == 0) &&
2499 	    !slab->allocator->summary_entries[slab->slab_number].load_ref_counts) {
2500 		/*
2501 		 * This slab claims that it has a tail block at (journal->size - 1), but a head of
2502 		 * 1. This is impossible, due to the scrubbing threshold, on a real system, so
2503 		 * don't bother reading the (bogus) data off disk.
2504 		 */
2505 		VDO_ASSERT_LOG_ONLY(((journal->size < 16) ||
2506 				     (journal->scrubbing_threshold < (journal->size - 1))),
2507 				    "Scrubbing threshold protects against reads of unwritten slab journal blocks");
2508 		vdo_finish_loading_with_result(&slab->state,
2509 					       allocate_counters_if_clean(slab));
2510 		return;
2511 	}
2512 
2513 	journal->resource_waiter.callback = read_slab_journal_tail;
2514 	acquire_vio_from_pool(slab->allocator->vio_pool, &journal->resource_waiter);
2515 }
2516 
2517 static void register_slab_for_scrubbing(struct vdo_slab *slab, bool high_priority)
2518 {
2519 	struct slab_scrubber *scrubber = &slab->allocator->scrubber;
2520 
2521 	VDO_ASSERT_LOG_ONLY((slab->status != VDO_SLAB_REBUILT),
2522 			    "slab to be scrubbed is unrecovered");
2523 
2524 	if (slab->status != VDO_SLAB_REQUIRES_SCRUBBING)
2525 		return;
2526 
2527 	list_del_init(&slab->allocq_entry);
2528 	if (!slab->was_queued_for_scrubbing) {
2529 		WRITE_ONCE(scrubber->slab_count, scrubber->slab_count + 1);
2530 		slab->was_queued_for_scrubbing = true;
2531 	}
2532 
2533 	if (high_priority) {
2534 		slab->status = VDO_SLAB_REQUIRES_HIGH_PRIORITY_SCRUBBING;
2535 		list_add_tail(&slab->allocq_entry, &scrubber->high_priority_slabs);
2536 		return;
2537 	}
2538 
2539 	list_add_tail(&slab->allocq_entry, &scrubber->slabs);
2540 }
2541 
2542 /* Queue a slab for allocation or scrubbing. */
2543 static void queue_slab(struct vdo_slab *slab)
2544 {
2545 	struct block_allocator *allocator = slab->allocator;
2546 	block_count_t free_blocks;
2547 	int result;
2548 
2549 	VDO_ASSERT_LOG_ONLY(list_empty(&slab->allocq_entry),
2550 			"a requeued slab must not already be on a ring");
2551 
2552 	if (vdo_is_read_only(allocator->depot->vdo))
2553 		return;
2554 
2555 	free_blocks = slab->free_blocks;
2556 	result = VDO_ASSERT((free_blocks <= allocator->depot->slab_config.data_blocks),
2557 			    "rebuilt slab %u must have a valid free block count (has %llu, expected maximum %llu)",
2558 			    slab->slab_number, (unsigned long long) free_blocks,
2559 			    (unsigned long long) allocator->depot->slab_config.data_blocks);
2560 	if (result != VDO_SUCCESS) {
2561 		vdo_enter_read_only_mode(allocator->depot->vdo, result);
2562 		return;
2563 	}
2564 
2565 	if (slab->status != VDO_SLAB_REBUILT) {
2566 		register_slab_for_scrubbing(slab, false);
2567 		return;
2568 	}
2569 
2570 	if (!vdo_is_state_resuming(&slab->state)) {
2571 		/*
2572 		 * If the slab is resuming, we've already accounted for it here, so don't do it
2573 		 * again.
2574 		 * FIXME: under what situation would the slab be resuming here?
2575 		 */
2576 		WRITE_ONCE(allocator->allocated_blocks,
2577 			   allocator->allocated_blocks - free_blocks);
2578 		if (!is_slab_journal_blank(slab)) {
2579 			WRITE_ONCE(allocator->statistics.slabs_opened,
2580 				   allocator->statistics.slabs_opened + 1);
2581 		}
2582 	}
2583 
2584 	if (allocator->depot->vdo->suspend_type == VDO_ADMIN_STATE_SAVING)
2585 		reopen_slab_journal(slab);
2586 
2587 	prioritize_slab(slab);
2588 }
2589 
2590 /**
2591  * initiate_slab_action() - Initiate a slab action.
2592  *
2593  * Implements vdo_admin_initiator_fn.
2594  */
2595 static void initiate_slab_action(struct admin_state *state)
2596 {
2597 	struct vdo_slab *slab = container_of(state, struct vdo_slab, state);
2598 
2599 	if (vdo_is_state_draining(state)) {
2600 		const struct admin_state_code *operation = vdo_get_admin_state_code(state);
2601 
2602 		if (operation == VDO_ADMIN_STATE_SCRUBBING)
2603 			slab->status = VDO_SLAB_REBUILDING;
2604 
2605 		drain_slab(slab);
2606 		check_if_slab_drained(slab);
2607 		return;
2608 	}
2609 
2610 	if (vdo_is_state_loading(state)) {
2611 		load_slab_journal(slab);
2612 		return;
2613 	}
2614 
2615 	if (vdo_is_state_resuming(state)) {
2616 		queue_slab(slab);
2617 		vdo_finish_resuming(state);
2618 		return;
2619 	}
2620 
2621 	vdo_finish_operation(state, VDO_INVALID_ADMIN_STATE);
2622 }
2623 
2624 /**
2625  * get_next_slab() - Get the next slab to scrub.
2626  * @scrubber: The slab scrubber.
2627  *
2628  * Return: The next slab to scrub or NULL if there are none.
2629  */
2630 static struct vdo_slab *get_next_slab(struct slab_scrubber *scrubber)
2631 {
2632 	struct vdo_slab *slab;
2633 
2634 	slab = list_first_entry_or_null(&scrubber->high_priority_slabs,
2635 					struct vdo_slab, allocq_entry);
2636 	if (slab != NULL)
2637 		return slab;
2638 
2639 	return list_first_entry_or_null(&scrubber->slabs, struct vdo_slab,
2640 					allocq_entry);
2641 }
2642 
2643 /**
2644  * has_slabs_to_scrub() - Check whether a scrubber has slabs to scrub.
2645  * @scrubber: The scrubber to check.
2646  *
2647  * Return: true if the scrubber has slabs to scrub.
2648  */
2649 static inline bool __must_check has_slabs_to_scrub(struct slab_scrubber *scrubber)
2650 {
2651 	return (get_next_slab(scrubber) != NULL);
2652 }
2653 
2654 /**
2655  * uninitialize_scrubber_vio() - Clean up the slab_scrubber's vio.
2656  * @scrubber: The scrubber.
2657  */
2658 static void uninitialize_scrubber_vio(struct slab_scrubber *scrubber)
2659 {
2660 	vdo_free(vdo_forget(scrubber->vio.data));
2661 	free_vio_components(&scrubber->vio);
2662 }
2663 
2664 /**
2665  * finish_scrubbing() - Stop scrubbing, either because there are no more slabs to scrub or because
2666  *                      there's been an error.
2667  * @scrubber: The scrubber.
2668  */
2669 static void finish_scrubbing(struct slab_scrubber *scrubber, int result)
2670 {
2671 	bool notify = vdo_waitq_has_waiters(&scrubber->waiters);
2672 	bool done = !has_slabs_to_scrub(scrubber);
2673 	struct block_allocator *allocator =
2674 		container_of(scrubber, struct block_allocator, scrubber);
2675 
2676 	if (done)
2677 		uninitialize_scrubber_vio(scrubber);
2678 
2679 	if (scrubber->high_priority_only) {
2680 		scrubber->high_priority_only = false;
2681 		vdo_fail_completion(vdo_forget(scrubber->vio.completion.parent), result);
2682 	} else if (done && (atomic_add_return(-1, &allocator->depot->zones_to_scrub) == 0)) {
2683 		/* All of our slabs were scrubbed, and we're the last allocator to finish. */
2684 		enum vdo_state prior_state =
2685 			atomic_cmpxchg(&allocator->depot->vdo->state, VDO_RECOVERING,
2686 				       VDO_DIRTY);
2687 
2688 		/*
2689 		 * To be safe, even if the CAS failed, ensure anything that follows is ordered with
2690 		 * respect to whatever state change did happen.
2691 		 */
2692 		smp_mb__after_atomic();
2693 
2694 		/*
2695 		 * We must check the VDO state here and not the depot's read_only_notifier since
2696 		 * the compare-swap-above could have failed due to a read-only entry which our own
2697 		 * thread does not yet know about.
2698 		 */
2699 		if (prior_state == VDO_DIRTY)
2700 			vdo_log_info("VDO commencing normal operation");
2701 		else if (prior_state == VDO_RECOVERING)
2702 			vdo_log_info("Exiting recovery mode");
2703 	}
2704 
2705 	/*
2706 	 * Note that the scrubber has stopped, and inform anyone who might be waiting for that to
2707 	 * happen.
2708 	 */
2709 	if (!vdo_finish_draining(&scrubber->admin_state))
2710 		WRITE_ONCE(scrubber->admin_state.current_state,
2711 			   VDO_ADMIN_STATE_SUSPENDED);
2712 
2713 	/*
2714 	 * We can't notify waiters until after we've finished draining or they'll just requeue.
2715 	 * Fortunately if there were waiters, we can't have been freed yet.
2716 	 */
2717 	if (notify)
2718 		vdo_waitq_notify_all_waiters(&scrubber->waiters, NULL, NULL);
2719 }
2720 
2721 static void scrub_next_slab(struct slab_scrubber *scrubber);
2722 
2723 /**
2724  * slab_scrubbed() - Notify the scrubber that a slab has been scrubbed.
2725  * @completion: The slab rebuild completion.
2726  *
2727  * This callback is registered in apply_journal_entries().
2728  */
2729 static void slab_scrubbed(struct vdo_completion *completion)
2730 {
2731 	struct slab_scrubber *scrubber =
2732 		container_of(as_vio(completion), struct slab_scrubber, vio);
2733 	struct vdo_slab *slab = scrubber->slab;
2734 
2735 	slab->status = VDO_SLAB_REBUILT;
2736 	queue_slab(slab);
2737 	reopen_slab_journal(slab);
2738 	WRITE_ONCE(scrubber->slab_count, scrubber->slab_count - 1);
2739 	scrub_next_slab(scrubber);
2740 }
2741 
2742 /**
2743  * abort_scrubbing() - Abort scrubbing due to an error.
2744  * @scrubber: The slab scrubber.
2745  * @result: The error.
2746  */
2747 static void abort_scrubbing(struct slab_scrubber *scrubber, int result)
2748 {
2749 	vdo_enter_read_only_mode(scrubber->vio.completion.vdo, result);
2750 	finish_scrubbing(scrubber, result);
2751 }
2752 
2753 /**
2754  * handle_scrubber_error() - Handle errors while rebuilding a slab.
2755  * @completion: The slab rebuild completion.
2756  */
2757 static void handle_scrubber_error(struct vdo_completion *completion)
2758 {
2759 	struct vio *vio = as_vio(completion);
2760 
2761 	vio_record_metadata_io_error(vio);
2762 	abort_scrubbing(container_of(vio, struct slab_scrubber, vio),
2763 			completion->result);
2764 }
2765 
2766 /**
2767  * apply_block_entries() - Apply all the entries in a block to the reference counts.
2768  * @block: A block with entries to apply.
2769  * @entry_count: The number of entries to apply.
2770  * @block_number: The sequence number of the block.
2771  * @slab: The slab to apply the entries to.
2772  *
2773  * Return: VDO_SUCCESS or an error code.
2774  */
2775 static int apply_block_entries(struct packed_slab_journal_block *block,
2776 			       journal_entry_count_t entry_count,
2777 			       sequence_number_t block_number, struct vdo_slab *slab)
2778 {
2779 	struct journal_point entry_point = {
2780 		.sequence_number = block_number,
2781 		.entry_count = 0,
2782 	};
2783 	int result;
2784 	slab_block_number max_sbn = slab->end - slab->start;
2785 
2786 	while (entry_point.entry_count < entry_count) {
2787 		struct slab_journal_entry entry =
2788 			vdo_decode_slab_journal_entry(block, entry_point.entry_count);
2789 
2790 		if (entry.sbn > max_sbn) {
2791 			/* This entry is out of bounds. */
2792 			return vdo_log_error_strerror(VDO_CORRUPT_JOURNAL,
2793 						      "vdo_slab journal entry (%llu, %u) had invalid offset %u in slab (size %u blocks)",
2794 						      (unsigned long long) block_number,
2795 						      entry_point.entry_count,
2796 						      entry.sbn, max_sbn);
2797 		}
2798 
2799 		result = replay_reference_count_change(slab, &entry_point, entry);
2800 		if (result != VDO_SUCCESS) {
2801 			vdo_log_error_strerror(result,
2802 					       "vdo_slab journal entry (%llu, %u) (%s of offset %u) could not be applied in slab %u",
2803 					       (unsigned long long) block_number,
2804 					       entry_point.entry_count,
2805 					       vdo_get_journal_operation_name(entry.operation),
2806 					       entry.sbn, slab->slab_number);
2807 			return result;
2808 		}
2809 		entry_point.entry_count++;
2810 	}
2811 
2812 	return VDO_SUCCESS;
2813 }
2814 
2815 /**
2816  * apply_journal_entries() - Find the relevant vio of the slab journal and apply all valid entries.
2817  * @completion: The metadata read vio completion.
2818  *
2819  * This is a callback registered in start_scrubbing().
2820  */
2821 static void apply_journal_entries(struct vdo_completion *completion)
2822 {
2823 	int result;
2824 	struct slab_scrubber *scrubber =
2825 		container_of(as_vio(completion), struct slab_scrubber, vio);
2826 	struct vdo_slab *slab = scrubber->slab;
2827 	struct slab_journal *journal = &slab->journal;
2828 
2829 	/* Find the boundaries of the useful part of the journal. */
2830 	sequence_number_t tail = journal->tail;
2831 	tail_block_offset_t end_index = (tail - 1) % journal->size;
2832 	char *end_data = scrubber->vio.data + (end_index * VDO_BLOCK_SIZE);
2833 	struct packed_slab_journal_block *end_block =
2834 		(struct packed_slab_journal_block *) end_data;
2835 
2836 	sequence_number_t head = __le64_to_cpu(end_block->header.head);
2837 	tail_block_offset_t head_index = head % journal->size;
2838 	block_count_t index = head_index;
2839 
2840 	struct journal_point ref_counts_point = slab->slab_journal_point;
2841 	struct journal_point last_entry_applied = ref_counts_point;
2842 	sequence_number_t sequence;
2843 
2844 	for (sequence = head; sequence < tail; sequence++) {
2845 		char *block_data = scrubber->vio.data + (index * VDO_BLOCK_SIZE);
2846 		struct packed_slab_journal_block *block =
2847 			(struct packed_slab_journal_block *) block_data;
2848 		struct slab_journal_block_header header;
2849 
2850 		vdo_unpack_slab_journal_block_header(&block->header, &header);
2851 
2852 		if ((header.nonce != slab->allocator->nonce) ||
2853 		    (header.metadata_type != VDO_METADATA_SLAB_JOURNAL) ||
2854 		    (header.sequence_number != sequence) ||
2855 		    (header.entry_count > journal->entries_per_block) ||
2856 		    (header.has_block_map_increments &&
2857 		     (header.entry_count > journal->full_entries_per_block))) {
2858 			/* The block is not what we expect it to be. */
2859 			vdo_log_error("vdo_slab journal block for slab %u was invalid",
2860 				      slab->slab_number);
2861 			abort_scrubbing(scrubber, VDO_CORRUPT_JOURNAL);
2862 			return;
2863 		}
2864 
2865 		result = apply_block_entries(block, header.entry_count, sequence, slab);
2866 		if (result != VDO_SUCCESS) {
2867 			abort_scrubbing(scrubber, result);
2868 			return;
2869 		}
2870 
2871 		last_entry_applied.sequence_number = sequence;
2872 		last_entry_applied.entry_count = header.entry_count - 1;
2873 		index++;
2874 		if (index == journal->size)
2875 			index = 0;
2876 	}
2877 
2878 	/*
2879 	 * At the end of rebuild, the reference counters should be accurate to the end of the
2880 	 * journal we just applied.
2881 	 */
2882 	result = VDO_ASSERT(!vdo_before_journal_point(&last_entry_applied,
2883 						      &ref_counts_point),
2884 			    "Refcounts are not more accurate than the slab journal");
2885 	if (result != VDO_SUCCESS) {
2886 		abort_scrubbing(scrubber, result);
2887 		return;
2888 	}
2889 
2890 	/* Save out the rebuilt reference blocks. */
2891 	vdo_prepare_completion(completion, slab_scrubbed, handle_scrubber_error,
2892 			       slab->allocator->thread_id, completion->parent);
2893 	vdo_start_operation_with_waiter(&slab->state,
2894 					VDO_ADMIN_STATE_SAVE_FOR_SCRUBBING,
2895 					completion, initiate_slab_action);
2896 }
2897 
2898 static void read_slab_journal_endio(struct bio *bio)
2899 {
2900 	struct vio *vio = bio->bi_private;
2901 	struct slab_scrubber *scrubber = container_of(vio, struct slab_scrubber, vio);
2902 
2903 	continue_vio_after_io(bio->bi_private, apply_journal_entries,
2904 			      scrubber->slab->allocator->thread_id);
2905 }
2906 
2907 /**
2908  * start_scrubbing() - Read the current slab's journal from disk now that it has been flushed.
2909  * @completion: The scrubber's vio completion.
2910  *
2911  * This callback is registered in scrub_next_slab().
2912  */
2913 static void start_scrubbing(struct vdo_completion *completion)
2914 {
2915 	struct slab_scrubber *scrubber =
2916 		container_of(as_vio(completion), struct slab_scrubber, vio);
2917 	struct vdo_slab *slab = scrubber->slab;
2918 
2919 	if (!slab->allocator->summary_entries[slab->slab_number].is_dirty) {
2920 		slab_scrubbed(completion);
2921 		return;
2922 	}
2923 
2924 	vdo_submit_metadata_vio(&scrubber->vio, slab->journal_origin,
2925 				read_slab_journal_endio, handle_scrubber_error,
2926 				REQ_OP_READ);
2927 }
2928 
2929 /**
2930  * scrub_next_slab() - Scrub the next slab if there is one.
2931  * @scrubber: The scrubber.
2932  */
2933 static void scrub_next_slab(struct slab_scrubber *scrubber)
2934 {
2935 	struct vdo_completion *completion = &scrubber->vio.completion;
2936 	struct vdo_slab *slab;
2937 
2938 	/*
2939 	 * Note: this notify call is always safe only because scrubbing can only be started when
2940 	 * the VDO is quiescent.
2941 	 */
2942 	vdo_waitq_notify_all_waiters(&scrubber->waiters, NULL, NULL);
2943 
2944 	if (vdo_is_read_only(completion->vdo)) {
2945 		finish_scrubbing(scrubber, VDO_READ_ONLY);
2946 		return;
2947 	}
2948 
2949 	slab = get_next_slab(scrubber);
2950 	if ((slab == NULL) ||
2951 	    (scrubber->high_priority_only && list_empty(&scrubber->high_priority_slabs))) {
2952 		finish_scrubbing(scrubber, VDO_SUCCESS);
2953 		return;
2954 	}
2955 
2956 	if (vdo_finish_draining(&scrubber->admin_state))
2957 		return;
2958 
2959 	list_del_init(&slab->allocq_entry);
2960 	scrubber->slab = slab;
2961 	vdo_prepare_completion(completion, start_scrubbing, handle_scrubber_error,
2962 			       slab->allocator->thread_id, completion->parent);
2963 	vdo_start_operation_with_waiter(&slab->state, VDO_ADMIN_STATE_SCRUBBING,
2964 					completion, initiate_slab_action);
2965 }
2966 
2967 /**
2968  * scrub_slabs() - Scrub all of an allocator's slabs that are eligible for scrubbing.
2969  * @allocator: The block_allocator to scrub.
2970  * @parent: The completion to notify when scrubbing is done, implies high_priority, may be NULL.
2971  */
2972 static void scrub_slabs(struct block_allocator *allocator, struct vdo_completion *parent)
2973 {
2974 	struct slab_scrubber *scrubber = &allocator->scrubber;
2975 
2976 	scrubber->vio.completion.parent = parent;
2977 	scrubber->high_priority_only = (parent != NULL);
2978 	if (!has_slabs_to_scrub(scrubber)) {
2979 		finish_scrubbing(scrubber, VDO_SUCCESS);
2980 		return;
2981 	}
2982 
2983 	if (scrubber->high_priority_only &&
2984 	    vdo_is_priority_table_empty(allocator->prioritized_slabs) &&
2985 	    list_empty(&scrubber->high_priority_slabs))
2986 		register_slab_for_scrubbing(get_next_slab(scrubber), true);
2987 
2988 	vdo_resume_if_quiescent(&scrubber->admin_state);
2989 	scrub_next_slab(scrubber);
2990 }
2991 
2992 static inline void assert_on_allocator_thread(thread_id_t thread_id,
2993 					      const char *function_name)
2994 {
2995 	VDO_ASSERT_LOG_ONLY((vdo_get_callback_thread_id() == thread_id),
2996 			    "%s called on correct thread", function_name);
2997 }
2998 
2999 static void register_slab_with_allocator(struct block_allocator *allocator,
3000 					 struct vdo_slab *slab)
3001 {
3002 	allocator->slab_count++;
3003 	allocator->last_slab = slab->slab_number;
3004 }
3005 
3006 /**
3007  * get_depot_slab_iterator() - Return a slab_iterator over the slabs in a slab_depot.
3008  * @depot: The depot over which to iterate.
3009  * @start: The number of the slab to start iterating from.
3010  * @end: The number of the last slab which may be returned.
3011  * @stride: The difference in slab number between successive slabs.
3012  *
3013  * Iteration always occurs from higher to lower numbered slabs.
3014  *
3015  * Return: An initialized iterator structure.
3016  */
3017 static struct slab_iterator get_depot_slab_iterator(struct slab_depot *depot,
3018 						    slab_count_t start, slab_count_t end,
3019 						    slab_count_t stride)
3020 {
3021 	struct vdo_slab **slabs = depot->slabs;
3022 
3023 	return (struct slab_iterator) {
3024 		.slabs = slabs,
3025 		.next = (((slabs == NULL) || (start < end)) ? NULL : slabs[start]),
3026 		.end = end,
3027 		.stride = stride,
3028 	};
3029 }
3030 
3031 static struct slab_iterator get_slab_iterator(const struct block_allocator *allocator)
3032 {
3033 	return get_depot_slab_iterator(allocator->depot, allocator->last_slab,
3034 				       allocator->zone_number,
3035 				       allocator->depot->zone_count);
3036 }
3037 
3038 /**
3039  * next_slab() - Get the next slab from a slab_iterator and advance the iterator
3040  * @iterator: The slab_iterator.
3041  *
3042  * Return: The next slab or NULL if the iterator is exhausted.
3043  */
3044 static struct vdo_slab *next_slab(struct slab_iterator *iterator)
3045 {
3046 	struct vdo_slab *slab = iterator->next;
3047 
3048 	if ((slab == NULL) || (slab->slab_number < iterator->end + iterator->stride))
3049 		iterator->next = NULL;
3050 	else
3051 		iterator->next = iterator->slabs[slab->slab_number - iterator->stride];
3052 
3053 	return slab;
3054 }
3055 
3056 /**
3057  * abort_waiter() - Abort vios waiting to make journal entries when read-only.
3058  *
3059  * This callback is invoked on all vios waiting to make slab journal entries after the VDO has gone
3060  * into read-only mode. Implements waiter_callback_fn.
3061  */
3062 static void abort_waiter(struct vdo_waiter *waiter, void *context __always_unused)
3063 {
3064 	struct reference_updater *updater =
3065 		container_of(waiter, struct reference_updater, waiter);
3066 	struct data_vio *data_vio = data_vio_from_reference_updater(updater);
3067 
3068 	if (updater->increment) {
3069 		continue_data_vio_with_error(data_vio, VDO_READ_ONLY);
3070 		return;
3071 	}
3072 
3073 	vdo_continue_completion(&data_vio->decrement_completion, VDO_READ_ONLY);
3074 }
3075 
3076 /* Implements vdo_read_only_notification_fn. */
3077 static void notify_block_allocator_of_read_only_mode(void *listener,
3078 						     struct vdo_completion *parent)
3079 {
3080 	struct block_allocator *allocator = listener;
3081 	struct slab_iterator iterator;
3082 
3083 	assert_on_allocator_thread(allocator->thread_id, __func__);
3084 	iterator = get_slab_iterator(allocator);
3085 	while (iterator.next != NULL) {
3086 		struct vdo_slab *slab = next_slab(&iterator);
3087 
3088 		vdo_waitq_notify_all_waiters(&slab->journal.entry_waiters,
3089 					     abort_waiter, &slab->journal);
3090 		check_if_slab_drained(slab);
3091 	}
3092 
3093 	vdo_finish_completion(parent);
3094 }
3095 
3096 /**
3097  * vdo_acquire_provisional_reference() - Acquire a provisional reference on behalf of a PBN lock if
3098  *                                       the block it locks is unreferenced.
3099  * @slab: The slab which contains the block.
3100  * @pbn: The physical block to reference.
3101  * @lock: The lock.
3102  *
3103  * Return: VDO_SUCCESS or an error.
3104  */
3105 int vdo_acquire_provisional_reference(struct vdo_slab *slab, physical_block_number_t pbn,
3106 				      struct pbn_lock *lock)
3107 {
3108 	slab_block_number block_number;
3109 	int result;
3110 
3111 	if (vdo_pbn_lock_has_provisional_reference(lock))
3112 		return VDO_SUCCESS;
3113 
3114 	if (!is_slab_open(slab))
3115 		return VDO_INVALID_ADMIN_STATE;
3116 
3117 	result = slab_block_number_from_pbn(slab, pbn, &block_number);
3118 	if (result != VDO_SUCCESS)
3119 		return result;
3120 
3121 	if (slab->counters[block_number] == EMPTY_REFERENCE_COUNT) {
3122 		make_provisional_reference(slab, block_number);
3123 		if (lock != NULL)
3124 			vdo_assign_pbn_lock_provisional_reference(lock);
3125 	}
3126 
3127 	if (vdo_pbn_lock_has_provisional_reference(lock))
3128 		adjust_free_block_count(slab, false);
3129 
3130 	return VDO_SUCCESS;
3131 }
3132 
3133 static int __must_check allocate_slab_block(struct vdo_slab *slab,
3134 					    physical_block_number_t *block_number_ptr)
3135 {
3136 	slab_block_number free_index;
3137 
3138 	if (!is_slab_open(slab))
3139 		return VDO_INVALID_ADMIN_STATE;
3140 
3141 	if (!search_reference_blocks(slab, &free_index))
3142 		return VDO_NO_SPACE;
3143 
3144 	VDO_ASSERT_LOG_ONLY((slab->counters[free_index] == EMPTY_REFERENCE_COUNT),
3145 			    "free block must have ref count of zero");
3146 	make_provisional_reference(slab, free_index);
3147 	adjust_free_block_count(slab, false);
3148 
3149 	/*
3150 	 * Update the search hint so the next search will start at the array index just past the
3151 	 * free block we just found.
3152 	 */
3153 	slab->search_cursor.index = (free_index + 1);
3154 
3155 	*block_number_ptr = slab->start + free_index;
3156 	return VDO_SUCCESS;
3157 }
3158 
3159 /**
3160  * open_slab() - Prepare a slab to be allocated from.
3161  * @slab: The slab.
3162  */
3163 static void open_slab(struct vdo_slab *slab)
3164 {
3165 	reset_search_cursor(slab);
3166 	if (is_slab_journal_blank(slab)) {
3167 		WRITE_ONCE(slab->allocator->statistics.slabs_opened,
3168 			   slab->allocator->statistics.slabs_opened + 1);
3169 		dirty_all_reference_blocks(slab);
3170 	} else {
3171 		WRITE_ONCE(slab->allocator->statistics.slabs_reopened,
3172 			   slab->allocator->statistics.slabs_reopened + 1);
3173 	}
3174 
3175 	slab->allocator->open_slab = slab;
3176 }
3177 
3178 
3179 /*
3180  * The block allocated will have a provisional reference and the reference must be either confirmed
3181  * with a subsequent increment or vacated with a subsequent decrement via
3182  * vdo_release_block_reference().
3183  */
3184 int vdo_allocate_block(struct block_allocator *allocator,
3185 		       physical_block_number_t *block_number_ptr)
3186 {
3187 	int result;
3188 
3189 	if (allocator->open_slab != NULL) {
3190 		/* Try to allocate the next block in the currently open slab. */
3191 		result = allocate_slab_block(allocator->open_slab, block_number_ptr);
3192 		if ((result == VDO_SUCCESS) || (result != VDO_NO_SPACE))
3193 			return result;
3194 
3195 		/* Put the exhausted open slab back into the priority table. */
3196 		prioritize_slab(allocator->open_slab);
3197 	}
3198 
3199 	/* Remove the highest priority slab from the priority table and make it the open slab. */
3200 	open_slab(list_entry(vdo_priority_table_dequeue(allocator->prioritized_slabs),
3201 			     struct vdo_slab, allocq_entry));
3202 
3203 	/*
3204 	 * Try allocating again. If we're out of space immediately after opening a slab, then every
3205 	 * slab must be fully allocated.
3206 	 */
3207 	return allocate_slab_block(allocator->open_slab, block_number_ptr);
3208 }
3209 
3210 /**
3211  * vdo_enqueue_clean_slab_waiter() - Wait for a clean slab.
3212  * @allocator: The block_allocator on which to wait.
3213  * @waiter: The waiter.
3214  *
3215  * Return: VDO_SUCCESS if the waiter was queued, VDO_NO_SPACE if there are no slabs to scrub, and
3216  *         some other error otherwise.
3217  */
3218 int vdo_enqueue_clean_slab_waiter(struct block_allocator *allocator,
3219 				  struct vdo_waiter *waiter)
3220 {
3221 	if (vdo_is_read_only(allocator->depot->vdo))
3222 		return VDO_READ_ONLY;
3223 
3224 	if (vdo_is_state_quiescent(&allocator->scrubber.admin_state))
3225 		return VDO_NO_SPACE;
3226 
3227 	vdo_waitq_enqueue_waiter(&allocator->scrubber.waiters, waiter);
3228 	return VDO_SUCCESS;
3229 }
3230 
3231 /**
3232  * vdo_modify_reference_count() - Modify the reference count of a block by first making a slab
3233  *                                journal entry and then updating the reference counter.
3234  * @completion: The data_vio completion for which to add the entry.
3235  * @updater: Which of the data_vio's reference updaters is being submitted.
3236  */
3237 void vdo_modify_reference_count(struct vdo_completion *completion,
3238 				struct reference_updater *updater)
3239 {
3240 	struct vdo_slab *slab = vdo_get_slab(completion->vdo->depot, updater->zpbn.pbn);
3241 
3242 	if (!is_slab_open(slab)) {
3243 		vdo_continue_completion(completion, VDO_INVALID_ADMIN_STATE);
3244 		return;
3245 	}
3246 
3247 	if (vdo_is_read_only(completion->vdo)) {
3248 		vdo_continue_completion(completion, VDO_READ_ONLY);
3249 		return;
3250 	}
3251 
3252 	vdo_waitq_enqueue_waiter(&slab->journal.entry_waiters, &updater->waiter);
3253 	if ((slab->status != VDO_SLAB_REBUILT) && requires_reaping(&slab->journal))
3254 		register_slab_for_scrubbing(slab, true);
3255 
3256 	add_entries(&slab->journal);
3257 }
3258 
3259 /* Release an unused provisional reference. */
3260 int vdo_release_block_reference(struct block_allocator *allocator,
3261 				physical_block_number_t pbn)
3262 {
3263 	struct reference_updater updater;
3264 
3265 	if (pbn == VDO_ZERO_BLOCK)
3266 		return VDO_SUCCESS;
3267 
3268 	updater = (struct reference_updater) {
3269 		.operation = VDO_JOURNAL_DATA_REMAPPING,
3270 		.increment = false,
3271 		.zpbn = {
3272 			.pbn = pbn,
3273 		},
3274 	};
3275 
3276 	return adjust_reference_count(vdo_get_slab(allocator->depot, pbn),
3277 				      &updater, NULL);
3278 }
3279 
3280 /*
3281  * This is a min_heap callback function orders slab_status structures using the 'is_clean' field as
3282  * the primary key and the 'emptiness' field as the secondary key.
3283  *
3284  * Slabs need to be pushed onto the rings in the same order they are to be popped off. Popping
3285  * should always get the most empty first, so pushing should be from most empty to least empty.
3286  * Thus, the ordering is reversed from the usual sense since min_heap returns smaller elements
3287  * before larger ones.
3288  */
3289 static bool slab_status_is_less_than(const void *item1, const void *item2,
3290 					void __always_unused *args)
3291 {
3292 	const struct slab_status *info1 = item1;
3293 	const struct slab_status *info2 = item2;
3294 
3295 	if (info1->is_clean != info2->is_clean)
3296 		return info1->is_clean;
3297 	if (info1->emptiness != info2->emptiness)
3298 		return info1->emptiness > info2->emptiness;
3299 	return info1->slab_number < info2->slab_number;
3300 }
3301 
3302 static const struct min_heap_callbacks slab_status_min_heap = {
3303 	.less = slab_status_is_less_than,
3304 	.swp = NULL,
3305 };
3306 
3307 /* Inform the slab actor that a action has finished on some slab; used by apply_to_slabs(). */
3308 static void slab_action_callback(struct vdo_completion *completion)
3309 {
3310 	struct block_allocator *allocator = vdo_as_block_allocator(completion);
3311 	struct slab_actor *actor = &allocator->slab_actor;
3312 
3313 	if (--actor->slab_action_count == 0) {
3314 		actor->callback(completion);
3315 		return;
3316 	}
3317 
3318 	vdo_reset_completion(completion);
3319 }
3320 
3321 /* Preserve the error from part of an action and continue. */
3322 static void handle_operation_error(struct vdo_completion *completion)
3323 {
3324 	struct block_allocator *allocator = vdo_as_block_allocator(completion);
3325 
3326 	if (allocator->state.waiter != NULL)
3327 		vdo_set_completion_result(allocator->state.waiter, completion->result);
3328 	completion->callback(completion);
3329 }
3330 
3331 /* Perform an action on each of an allocator's slabs in parallel. */
3332 static void apply_to_slabs(struct block_allocator *allocator, vdo_action_fn callback)
3333 {
3334 	struct slab_iterator iterator;
3335 
3336 	vdo_prepare_completion(&allocator->completion, slab_action_callback,
3337 			       handle_operation_error, allocator->thread_id, NULL);
3338 	allocator->completion.requeue = false;
3339 
3340 	/*
3341 	 * Since we are going to dequeue all of the slabs, the open slab will become invalid, so
3342 	 * clear it.
3343 	 */
3344 	allocator->open_slab = NULL;
3345 
3346 	/* Ensure that we don't finish before we're done starting. */
3347 	allocator->slab_actor = (struct slab_actor) {
3348 		.slab_action_count = 1,
3349 		.callback = callback,
3350 	};
3351 
3352 	iterator = get_slab_iterator(allocator);
3353 	while (iterator.next != NULL) {
3354 		const struct admin_state_code *operation =
3355 			vdo_get_admin_state_code(&allocator->state);
3356 		struct vdo_slab *slab = next_slab(&iterator);
3357 
3358 		list_del_init(&slab->allocq_entry);
3359 		allocator->slab_actor.slab_action_count++;
3360 		vdo_start_operation_with_waiter(&slab->state, operation,
3361 						&allocator->completion,
3362 						initiate_slab_action);
3363 	}
3364 
3365 	slab_action_callback(&allocator->completion);
3366 }
3367 
3368 static void finish_loading_allocator(struct vdo_completion *completion)
3369 {
3370 	struct block_allocator *allocator = vdo_as_block_allocator(completion);
3371 	const struct admin_state_code *operation =
3372 		vdo_get_admin_state_code(&allocator->state);
3373 
3374 	if (allocator->eraser != NULL)
3375 		dm_kcopyd_client_destroy(vdo_forget(allocator->eraser));
3376 
3377 	if (operation == VDO_ADMIN_STATE_LOADING_FOR_RECOVERY) {
3378 		void *context =
3379 			vdo_get_current_action_context(allocator->depot->action_manager);
3380 
3381 		vdo_replay_into_slab_journals(allocator, context);
3382 		return;
3383 	}
3384 
3385 	vdo_finish_loading(&allocator->state);
3386 }
3387 
3388 static void erase_next_slab_journal(struct block_allocator *allocator);
3389 
3390 static void copy_callback(int read_err, unsigned long write_err, void *context)
3391 {
3392 	struct block_allocator *allocator = context;
3393 	int result = (((read_err == 0) && (write_err == 0)) ? VDO_SUCCESS : -EIO);
3394 
3395 	if (result != VDO_SUCCESS) {
3396 		vdo_fail_completion(&allocator->completion, result);
3397 		return;
3398 	}
3399 
3400 	erase_next_slab_journal(allocator);
3401 }
3402 
3403 /* erase_next_slab_journal() - Erase the next slab journal. */
3404 static void erase_next_slab_journal(struct block_allocator *allocator)
3405 {
3406 	struct vdo_slab *slab;
3407 	physical_block_number_t pbn;
3408 	struct dm_io_region regions[1];
3409 	struct slab_depot *depot = allocator->depot;
3410 	block_count_t blocks = depot->slab_config.slab_journal_blocks;
3411 
3412 	if (allocator->slabs_to_erase.next == NULL) {
3413 		vdo_finish_completion(&allocator->completion);
3414 		return;
3415 	}
3416 
3417 	slab = next_slab(&allocator->slabs_to_erase);
3418 	pbn = slab->journal_origin - depot->vdo->geometry.bio_offset;
3419 	regions[0] = (struct dm_io_region) {
3420 		.bdev = vdo_get_backing_device(depot->vdo),
3421 		.sector = pbn * VDO_SECTORS_PER_BLOCK,
3422 		.count = blocks * VDO_SECTORS_PER_BLOCK,
3423 	};
3424 	dm_kcopyd_zero(allocator->eraser, 1, regions, 0, copy_callback, allocator);
3425 }
3426 
3427 /* Implements vdo_admin_initiator_fn. */
3428 static void initiate_load(struct admin_state *state)
3429 {
3430 	struct block_allocator *allocator =
3431 		container_of(state, struct block_allocator, state);
3432 	const struct admin_state_code *operation = vdo_get_admin_state_code(state);
3433 
3434 	if (operation == VDO_ADMIN_STATE_LOADING_FOR_REBUILD) {
3435 		/*
3436 		 * Must requeue because the kcopyd client cannot be freed in the same stack frame
3437 		 * as the kcopyd callback, lest it deadlock.
3438 		 */
3439 		vdo_prepare_completion_for_requeue(&allocator->completion,
3440 						   finish_loading_allocator,
3441 						   handle_operation_error,
3442 						   allocator->thread_id, NULL);
3443 		allocator->eraser = dm_kcopyd_client_create(NULL);
3444 		if (IS_ERR(allocator->eraser)) {
3445 			vdo_fail_completion(&allocator->completion,
3446 					    PTR_ERR(allocator->eraser));
3447 			allocator->eraser = NULL;
3448 			return;
3449 		}
3450 		allocator->slabs_to_erase = get_slab_iterator(allocator);
3451 
3452 		erase_next_slab_journal(allocator);
3453 		return;
3454 	}
3455 
3456 	apply_to_slabs(allocator, finish_loading_allocator);
3457 }
3458 
3459 /**
3460  * vdo_notify_slab_journals_are_recovered() - Inform a block allocator that its slab journals have
3461  *                                            been recovered from the recovery journal.
3462  * @completion The allocator completion
3463  */
3464 void vdo_notify_slab_journals_are_recovered(struct vdo_completion *completion)
3465 {
3466 	struct block_allocator *allocator = vdo_as_block_allocator(completion);
3467 
3468 	vdo_finish_loading_with_result(&allocator->state, completion->result);
3469 }
3470 
3471 static int get_slab_statuses(struct block_allocator *allocator,
3472 			     struct slab_status **statuses_ptr)
3473 {
3474 	int result;
3475 	struct slab_status *statuses;
3476 	struct slab_iterator iterator = get_slab_iterator(allocator);
3477 
3478 	result = vdo_allocate(allocator->slab_count, struct slab_status, __func__,
3479 			      &statuses);
3480 	if (result != VDO_SUCCESS)
3481 		return result;
3482 
3483 	*statuses_ptr = statuses;
3484 
3485 	while (iterator.next != NULL)  {
3486 		slab_count_t slab_number = next_slab(&iterator)->slab_number;
3487 
3488 		*statuses++ = (struct slab_status) {
3489 			.slab_number = slab_number,
3490 			.is_clean = !allocator->summary_entries[slab_number].is_dirty,
3491 			.emptiness = allocator->summary_entries[slab_number].fullness_hint,
3492 		};
3493 	}
3494 
3495 	return VDO_SUCCESS;
3496 }
3497 
3498 /* Prepare slabs for allocation or scrubbing. */
3499 static int __must_check vdo_prepare_slabs_for_allocation(struct block_allocator *allocator)
3500 {
3501 	struct slab_status current_slab_status;
3502 	DEFINE_MIN_HEAP(struct slab_status, heap) heap;
3503 	int result;
3504 	struct slab_status *slab_statuses;
3505 	struct slab_depot *depot = allocator->depot;
3506 
3507 	WRITE_ONCE(allocator->allocated_blocks,
3508 		   allocator->slab_count * depot->slab_config.data_blocks);
3509 	result = get_slab_statuses(allocator, &slab_statuses);
3510 	if (result != VDO_SUCCESS)
3511 		return result;
3512 
3513 	/* Sort the slabs by cleanliness, then by emptiness hint. */
3514 	heap = (struct heap) {
3515 		.data = slab_statuses,
3516 		.nr = allocator->slab_count,
3517 		.size = allocator->slab_count,
3518 	};
3519 	min_heapify_all(&heap, &slab_status_min_heap, NULL);
3520 
3521 	while (heap.nr > 0) {
3522 		bool high_priority;
3523 		struct vdo_slab *slab;
3524 		struct slab_journal *journal;
3525 
3526 		current_slab_status = slab_statuses[0];
3527 		min_heap_pop(&heap, &slab_status_min_heap, NULL);
3528 		slab = depot->slabs[current_slab_status.slab_number];
3529 
3530 		if ((depot->load_type == VDO_SLAB_DEPOT_REBUILD_LOAD) ||
3531 		    (!allocator->summary_entries[slab->slab_number].load_ref_counts &&
3532 		     current_slab_status.is_clean)) {
3533 			queue_slab(slab);
3534 			continue;
3535 		}
3536 
3537 		slab->status = VDO_SLAB_REQUIRES_SCRUBBING;
3538 		journal = &slab->journal;
3539 		high_priority = ((current_slab_status.is_clean &&
3540 				 (depot->load_type == VDO_SLAB_DEPOT_NORMAL_LOAD)) ||
3541 				 (journal_length(journal) >= journal->scrubbing_threshold));
3542 		register_slab_for_scrubbing(slab, high_priority);
3543 	}
3544 
3545 	vdo_free(slab_statuses);
3546 	return VDO_SUCCESS;
3547 }
3548 
3549 static const char *status_to_string(enum slab_rebuild_status status)
3550 {
3551 	switch (status) {
3552 	case VDO_SLAB_REBUILT:
3553 		return "REBUILT";
3554 	case VDO_SLAB_REQUIRES_SCRUBBING:
3555 		return "SCRUBBING";
3556 	case VDO_SLAB_REQUIRES_HIGH_PRIORITY_SCRUBBING:
3557 		return "PRIORITY_SCRUBBING";
3558 	case VDO_SLAB_REBUILDING:
3559 		return "REBUILDING";
3560 	case VDO_SLAB_REPLAYING:
3561 		return "REPLAYING";
3562 	default:
3563 		return "UNKNOWN";
3564 	}
3565 }
3566 
3567 void vdo_dump_block_allocator(const struct block_allocator *allocator)
3568 {
3569 	unsigned int pause_counter = 0;
3570 	struct slab_iterator iterator = get_slab_iterator(allocator);
3571 	const struct slab_scrubber *scrubber = &allocator->scrubber;
3572 
3573 	vdo_log_info("block_allocator zone %u", allocator->zone_number);
3574 	while (iterator.next != NULL) {
3575 		struct vdo_slab *slab = next_slab(&iterator);
3576 		struct slab_journal *journal = &slab->journal;
3577 
3578 		if (slab->reference_blocks != NULL) {
3579 			/* Terse because there are a lot of slabs to dump and syslog is lossy. */
3580 			vdo_log_info("slab %u: P%u, %llu free", slab->slab_number,
3581 				     slab->priority,
3582 				     (unsigned long long) slab->free_blocks);
3583 		} else {
3584 			vdo_log_info("slab %u: status %s", slab->slab_number,
3585 				     status_to_string(slab->status));
3586 		}
3587 
3588 		vdo_log_info("  slab journal: entry_waiters=%zu waiting_to_commit=%s updating_slab_summary=%s head=%llu unreapable=%llu tail=%llu next_commit=%llu summarized=%llu last_summarized=%llu recovery_lock=%llu dirty=%s",
3589 			     vdo_waitq_num_waiters(&journal->entry_waiters),
3590 			     vdo_bool_to_string(journal->waiting_to_commit),
3591 			     vdo_bool_to_string(journal->updating_slab_summary),
3592 			     (unsigned long long) journal->head,
3593 			     (unsigned long long) journal->unreapable,
3594 			     (unsigned long long) journal->tail,
3595 			     (unsigned long long) journal->next_commit,
3596 			     (unsigned long long) journal->summarized,
3597 			     (unsigned long long) journal->last_summarized,
3598 			     (unsigned long long) journal->recovery_lock,
3599 			     vdo_bool_to_string(journal->recovery_lock != 0));
3600 		/*
3601 		 * Given the frequency with which the locks are just a tiny bit off, it might be
3602 		 * worth dumping all the locks, but that might be too much logging.
3603 		 */
3604 
3605 		if (slab->counters != NULL) {
3606 			/* Terse because there are a lot of slabs to dump and syslog is lossy. */
3607 			vdo_log_info("  slab: free=%u/%u blocks=%u dirty=%zu active=%zu journal@(%llu,%u)",
3608 				     slab->free_blocks, slab->block_count,
3609 				     slab->reference_block_count,
3610 				     vdo_waitq_num_waiters(&slab->dirty_blocks),
3611 				     slab->active_count,
3612 				     (unsigned long long) slab->slab_journal_point.sequence_number,
3613 				     slab->slab_journal_point.entry_count);
3614 		} else {
3615 			vdo_log_info("  no counters");
3616 		}
3617 
3618 		/*
3619 		 * Wait for a while after each batch of 32 slabs dumped, an arbitrary number,
3620 		 * allowing the kernel log a chance to be flushed instead of being overrun.
3621 		 */
3622 		if (pause_counter++ == 31) {
3623 			pause_counter = 0;
3624 			vdo_pause_for_logger();
3625 		}
3626 	}
3627 
3628 	vdo_log_info("slab_scrubber slab_count %u waiters %zu %s%s",
3629 		     READ_ONCE(scrubber->slab_count),
3630 		     vdo_waitq_num_waiters(&scrubber->waiters),
3631 		     vdo_get_admin_state_code(&scrubber->admin_state)->name,
3632 		     scrubber->high_priority_only ? ", high_priority_only " : "");
3633 }
3634 
3635 static void free_slab(struct vdo_slab *slab)
3636 {
3637 	if (slab == NULL)
3638 		return;
3639 
3640 	list_del(&slab->allocq_entry);
3641 	vdo_free(vdo_forget(slab->journal.block));
3642 	vdo_free(vdo_forget(slab->journal.locks));
3643 	vdo_free(vdo_forget(slab->counters));
3644 	vdo_free(vdo_forget(slab->reference_blocks));
3645 	vdo_free(slab);
3646 }
3647 
3648 static int initialize_slab_journal(struct vdo_slab *slab)
3649 {
3650 	struct slab_journal *journal = &slab->journal;
3651 	const struct slab_config *slab_config = &slab->allocator->depot->slab_config;
3652 	int result;
3653 
3654 	result = vdo_allocate(slab_config->slab_journal_blocks, struct journal_lock,
3655 			      __func__, &journal->locks);
3656 	if (result != VDO_SUCCESS)
3657 		return result;
3658 
3659 	result = vdo_allocate(VDO_BLOCK_SIZE, char, "struct packed_slab_journal_block",
3660 			      (char **) &journal->block);
3661 	if (result != VDO_SUCCESS)
3662 		return result;
3663 
3664 	journal->slab = slab;
3665 	journal->size = slab_config->slab_journal_blocks;
3666 	journal->flushing_threshold = slab_config->slab_journal_flushing_threshold;
3667 	journal->blocking_threshold = slab_config->slab_journal_blocking_threshold;
3668 	journal->scrubbing_threshold = slab_config->slab_journal_scrubbing_threshold;
3669 	journal->entries_per_block = VDO_SLAB_JOURNAL_ENTRIES_PER_BLOCK;
3670 	journal->full_entries_per_block = VDO_SLAB_JOURNAL_FULL_ENTRIES_PER_BLOCK;
3671 	journal->events = &slab->allocator->slab_journal_statistics;
3672 	journal->recovery_journal = slab->allocator->depot->vdo->recovery_journal;
3673 	journal->tail = 1;
3674 	journal->head = 1;
3675 
3676 	journal->flushing_deadline = journal->flushing_threshold;
3677 	/*
3678 	 * Set there to be some time between the deadline and the blocking threshold, so that
3679 	 * hopefully all are done before blocking.
3680 	 */
3681 	if ((journal->blocking_threshold - journal->flushing_threshold) > 5)
3682 		journal->flushing_deadline = journal->blocking_threshold - 5;
3683 
3684 	journal->slab_summary_waiter.callback = release_journal_locks;
3685 
3686 	INIT_LIST_HEAD(&journal->dirty_entry);
3687 	INIT_LIST_HEAD(&journal->uncommitted_blocks);
3688 
3689 	journal->tail_header.nonce = slab->allocator->nonce;
3690 	journal->tail_header.metadata_type = VDO_METADATA_SLAB_JOURNAL;
3691 	initialize_journal_state(journal);
3692 	return VDO_SUCCESS;
3693 }
3694 
3695 /**
3696  * make_slab() - Construct a new, empty slab.
3697  * @slab_origin: The physical block number within the block allocator partition of the first block
3698  *               in the slab.
3699  * @allocator: The block allocator to which the slab belongs.
3700  * @slab_number: The slab number of the slab.
3701  * @is_new: true if this slab is being allocated as part of a resize.
3702  * @slab_ptr: A pointer to receive the new slab.
3703  *
3704  * Return: VDO_SUCCESS or an error code.
3705  */
3706 static int __must_check make_slab(physical_block_number_t slab_origin,
3707 				  struct block_allocator *allocator,
3708 				  slab_count_t slab_number, bool is_new,
3709 				  struct vdo_slab **slab_ptr)
3710 {
3711 	const struct slab_config *slab_config = &allocator->depot->slab_config;
3712 	struct vdo_slab *slab;
3713 	int result;
3714 
3715 	result = vdo_allocate(1, struct vdo_slab, __func__, &slab);
3716 	if (result != VDO_SUCCESS)
3717 		return result;
3718 
3719 	*slab = (struct vdo_slab) {
3720 		.allocator = allocator,
3721 		.start = slab_origin,
3722 		.end = slab_origin + slab_config->slab_blocks,
3723 		.slab_number = slab_number,
3724 		.ref_counts_origin = slab_origin + slab_config->data_blocks,
3725 		.journal_origin =
3726 			vdo_get_slab_journal_start_block(slab_config, slab_origin),
3727 		.block_count = slab_config->data_blocks,
3728 		.free_blocks = slab_config->data_blocks,
3729 		.reference_block_count =
3730 			vdo_get_saved_reference_count_size(slab_config->data_blocks),
3731 	};
3732 	INIT_LIST_HEAD(&slab->allocq_entry);
3733 
3734 	result = initialize_slab_journal(slab);
3735 	if (result != VDO_SUCCESS) {
3736 		free_slab(slab);
3737 		return result;
3738 	}
3739 
3740 	if (is_new) {
3741 		vdo_set_admin_state_code(&slab->state, VDO_ADMIN_STATE_NEW);
3742 		result = allocate_slab_counters(slab);
3743 		if (result != VDO_SUCCESS) {
3744 			free_slab(slab);
3745 			return result;
3746 		}
3747 	} else {
3748 		vdo_set_admin_state_code(&slab->state, VDO_ADMIN_STATE_NORMAL_OPERATION);
3749 	}
3750 
3751 	*slab_ptr = slab;
3752 	return VDO_SUCCESS;
3753 }
3754 
3755 /**
3756  * allocate_slabs() - Allocate a new slab pointer array.
3757  * @depot: The depot.
3758  * @slab_count: The number of slabs the depot should have in the new array.
3759  *
3760  * Any existing slab pointers will be copied into the new array, and slabs will be allocated as
3761  * needed. The newly allocated slabs will not be distributed for use by the block allocators.
3762  *
3763  * Return: VDO_SUCCESS or an error code.
3764  */
3765 static int allocate_slabs(struct slab_depot *depot, slab_count_t slab_count)
3766 {
3767 	block_count_t slab_size;
3768 	bool resizing = false;
3769 	physical_block_number_t slab_origin;
3770 	int result;
3771 
3772 	result = vdo_allocate(slab_count, struct vdo_slab *,
3773 			      "slab pointer array", &depot->new_slabs);
3774 	if (result != VDO_SUCCESS)
3775 		return result;
3776 
3777 	if (depot->slabs != NULL) {
3778 		memcpy(depot->new_slabs, depot->slabs,
3779 		       depot->slab_count * sizeof(struct vdo_slab *));
3780 		resizing = true;
3781 	}
3782 
3783 	slab_size = depot->slab_config.slab_blocks;
3784 	slab_origin = depot->first_block + (depot->slab_count * slab_size);
3785 
3786 	for (depot->new_slab_count = depot->slab_count;
3787 	     depot->new_slab_count < slab_count;
3788 	     depot->new_slab_count++, slab_origin += slab_size) {
3789 		struct block_allocator *allocator =
3790 			&depot->allocators[depot->new_slab_count % depot->zone_count];
3791 		struct vdo_slab **slab_ptr = &depot->new_slabs[depot->new_slab_count];
3792 
3793 		result = make_slab(slab_origin, allocator, depot->new_slab_count,
3794 				   resizing, slab_ptr);
3795 		if (result != VDO_SUCCESS)
3796 			return result;
3797 	}
3798 
3799 	return VDO_SUCCESS;
3800 }
3801 
3802 /**
3803  * vdo_abandon_new_slabs() - Abandon any new slabs in this depot, freeing them as needed.
3804  * @depot: The depot.
3805  */
3806 void vdo_abandon_new_slabs(struct slab_depot *depot)
3807 {
3808 	slab_count_t i;
3809 
3810 	if (depot->new_slabs == NULL)
3811 		return;
3812 
3813 	for (i = depot->slab_count; i < depot->new_slab_count; i++)
3814 		free_slab(vdo_forget(depot->new_slabs[i]));
3815 	depot->new_slab_count = 0;
3816 	depot->new_size = 0;
3817 	vdo_free(vdo_forget(depot->new_slabs));
3818 }
3819 
3820 /**
3821  * get_allocator_thread_id() - Get the ID of the thread on which a given allocator operates.
3822  *
3823  * Implements vdo_zone_thread_getter_fn.
3824  */
3825 static thread_id_t get_allocator_thread_id(void *context, zone_count_t zone_number)
3826 {
3827 	return ((struct slab_depot *) context)->allocators[zone_number].thread_id;
3828 }
3829 
3830 /**
3831  * release_recovery_journal_lock() - Request the slab journal to release the recovery journal lock
3832  *                                   it may hold on a specified recovery journal block.
3833  * @journal: The slab journal.
3834  * @recovery_lock: The sequence number of the recovery journal block whose locks should be
3835  *                 released.
3836  *
3837  * Return: true if the journal does hold a lock on the specified block (which it will release).
3838  */
3839 static bool __must_check release_recovery_journal_lock(struct slab_journal *journal,
3840 						       sequence_number_t recovery_lock)
3841 {
3842 	if (recovery_lock > journal->recovery_lock) {
3843 		VDO_ASSERT_LOG_ONLY((recovery_lock < journal->recovery_lock),
3844 				    "slab journal recovery lock is not older than the recovery journal head");
3845 		return false;
3846 	}
3847 
3848 	if ((recovery_lock < journal->recovery_lock) ||
3849 	    vdo_is_read_only(journal->slab->allocator->depot->vdo))
3850 		return false;
3851 
3852 	/* All locks are held by the block which is in progress; write it. */
3853 	commit_tail(journal);
3854 	return true;
3855 }
3856 
3857 /*
3858  * Request a commit of all dirty tail blocks which are locking the recovery journal block the depot
3859  * is seeking to release.
3860  *
3861  * Implements vdo_zone_action_fn.
3862  */
3863 static void release_tail_block_locks(void *context, zone_count_t zone_number,
3864 				     struct vdo_completion *parent)
3865 {
3866 	struct slab_journal *journal, *tmp;
3867 	struct slab_depot *depot = context;
3868 	struct list_head *list = &depot->allocators[zone_number].dirty_slab_journals;
3869 
3870 	list_for_each_entry_safe(journal, tmp, list, dirty_entry) {
3871 		if (!release_recovery_journal_lock(journal,
3872 						   depot->active_release_request))
3873 			break;
3874 	}
3875 
3876 	vdo_finish_completion(parent);
3877 }
3878 
3879 /**
3880  * prepare_for_tail_block_commit() - Prepare to commit oldest tail blocks.
3881  *
3882  * Implements vdo_action_preamble_fn.
3883  */
3884 static void prepare_for_tail_block_commit(void *context, struct vdo_completion *parent)
3885 {
3886 	struct slab_depot *depot = context;
3887 
3888 	depot->active_release_request = depot->new_release_request;
3889 	vdo_finish_completion(parent);
3890 }
3891 
3892 /**
3893  * schedule_tail_block_commit() - Schedule a tail block commit if necessary.
3894  *
3895  * This method should not be called directly. Rather, call vdo_schedule_default_action() on the
3896  * depot's action manager.
3897  *
3898  * Implements vdo_action_scheduler_fn.
3899  */
3900 static bool schedule_tail_block_commit(void *context)
3901 {
3902 	struct slab_depot *depot = context;
3903 
3904 	if (depot->new_release_request == depot->active_release_request)
3905 		return false;
3906 
3907 	return vdo_schedule_action(depot->action_manager,
3908 				   prepare_for_tail_block_commit,
3909 				   release_tail_block_locks,
3910 				   NULL, NULL);
3911 }
3912 
3913 /**
3914  * initialize_slab_scrubber() - Initialize an allocator's slab scrubber.
3915  * @allocator: The allocator being initialized
3916  *
3917  * Return: VDO_SUCCESS or an error.
3918  */
3919 static int initialize_slab_scrubber(struct block_allocator *allocator)
3920 {
3921 	struct slab_scrubber *scrubber = &allocator->scrubber;
3922 	block_count_t slab_journal_size =
3923 		allocator->depot->slab_config.slab_journal_blocks;
3924 	char *journal_data;
3925 	int result;
3926 
3927 	result = vdo_allocate(VDO_BLOCK_SIZE * slab_journal_size,
3928 			      char, __func__, &journal_data);
3929 	if (result != VDO_SUCCESS)
3930 		return result;
3931 
3932 	result = allocate_vio_components(allocator->completion.vdo,
3933 					 VIO_TYPE_SLAB_JOURNAL,
3934 					 VIO_PRIORITY_METADATA,
3935 					 allocator, slab_journal_size,
3936 					 journal_data, &scrubber->vio);
3937 	if (result != VDO_SUCCESS) {
3938 		vdo_free(journal_data);
3939 		return result;
3940 	}
3941 
3942 	INIT_LIST_HEAD(&scrubber->high_priority_slabs);
3943 	INIT_LIST_HEAD(&scrubber->slabs);
3944 	vdo_set_admin_state_code(&scrubber->admin_state, VDO_ADMIN_STATE_SUSPENDED);
3945 	return VDO_SUCCESS;
3946 }
3947 
3948 /**
3949  * initialize_slab_summary_block() - Initialize a slab_summary_block.
3950  * @allocator: The allocator which owns the block.
3951  * @index: The index of this block in its zone's summary.
3952  *
3953  * Return: VDO_SUCCESS or an error.
3954  */
3955 static int __must_check initialize_slab_summary_block(struct block_allocator *allocator,
3956 						      block_count_t index)
3957 {
3958 	struct slab_summary_block *block = &allocator->summary_blocks[index];
3959 	int result;
3960 
3961 	result = vdo_allocate(VDO_BLOCK_SIZE, char, __func__, &block->outgoing_entries);
3962 	if (result != VDO_SUCCESS)
3963 		return result;
3964 
3965 	result = allocate_vio_components(allocator->depot->vdo, VIO_TYPE_SLAB_SUMMARY,
3966 					 VIO_PRIORITY_METADATA, NULL, 1,
3967 					 block->outgoing_entries, &block->vio);
3968 	if (result != VDO_SUCCESS)
3969 		return result;
3970 
3971 	block->allocator = allocator;
3972 	block->entries = &allocator->summary_entries[VDO_SLAB_SUMMARY_ENTRIES_PER_BLOCK * index];
3973 	block->index = index;
3974 	return VDO_SUCCESS;
3975 }
3976 
3977 static int __must_check initialize_block_allocator(struct slab_depot *depot,
3978 						   zone_count_t zone)
3979 {
3980 	int result;
3981 	block_count_t i;
3982 	struct block_allocator *allocator = &depot->allocators[zone];
3983 	struct vdo *vdo = depot->vdo;
3984 	block_count_t max_free_blocks = depot->slab_config.data_blocks;
3985 	unsigned int max_priority = (2 + ilog2(max_free_blocks));
3986 
3987 	*allocator = (struct block_allocator) {
3988 		.depot = depot,
3989 		.zone_number = zone,
3990 		.thread_id = vdo->thread_config.physical_threads[zone],
3991 		.nonce = vdo->states.vdo.nonce,
3992 	};
3993 
3994 	INIT_LIST_HEAD(&allocator->dirty_slab_journals);
3995 	vdo_set_admin_state_code(&allocator->state, VDO_ADMIN_STATE_NORMAL_OPERATION);
3996 	result = vdo_register_read_only_listener(vdo, allocator,
3997 						 notify_block_allocator_of_read_only_mode,
3998 						 allocator->thread_id);
3999 	if (result != VDO_SUCCESS)
4000 		return result;
4001 
4002 	vdo_initialize_completion(&allocator->completion, vdo, VDO_BLOCK_ALLOCATOR_COMPLETION);
4003 	result = make_vio_pool(vdo, BLOCK_ALLOCATOR_VIO_POOL_SIZE, allocator->thread_id,
4004 			       VIO_TYPE_SLAB_JOURNAL, VIO_PRIORITY_METADATA,
4005 			       allocator, &allocator->vio_pool);
4006 	if (result != VDO_SUCCESS)
4007 		return result;
4008 
4009 	result = initialize_slab_scrubber(allocator);
4010 	if (result != VDO_SUCCESS)
4011 		return result;
4012 
4013 	result = vdo_make_priority_table(max_priority, &allocator->prioritized_slabs);
4014 	if (result != VDO_SUCCESS)
4015 		return result;
4016 
4017 	result = vdo_allocate(VDO_SLAB_SUMMARY_BLOCKS_PER_ZONE,
4018 			      struct slab_summary_block, __func__,
4019 			      &allocator->summary_blocks);
4020 	if (result != VDO_SUCCESS)
4021 		return result;
4022 
4023 	vdo_set_admin_state_code(&allocator->summary_state,
4024 				 VDO_ADMIN_STATE_NORMAL_OPERATION);
4025 	allocator->summary_entries = depot->summary_entries + (MAX_VDO_SLABS * zone);
4026 
4027 	/* Initialize each summary block. */
4028 	for (i = 0; i < VDO_SLAB_SUMMARY_BLOCKS_PER_ZONE; i++) {
4029 		result = initialize_slab_summary_block(allocator, i);
4030 		if (result != VDO_SUCCESS)
4031 			return result;
4032 	}
4033 
4034 	/*
4035 	 * Performing well atop thin provisioned storage requires either that VDO discards freed
4036 	 * blocks, or that the block allocator try to use slabs that already have allocated blocks
4037 	 * in preference to slabs that have never been opened. For reasons we have not been able to
4038 	 * fully understand, some SSD machines have been have been very sensitive (50% reduction in
4039 	 * test throughput) to very slight differences in the timing and locality of block
4040 	 * allocation. Assigning a low priority to unopened slabs (max_priority/2, say) would be
4041 	 * ideal for the story, but anything less than a very high threshold (max_priority - 1)
4042 	 * hurts on these machines.
4043 	 *
4044 	 * This sets the free block threshold for preferring to open an unopened slab to the binary
4045 	 * floor of 3/4ths the total number of data blocks in a slab, which will generally evaluate
4046 	 * to about half the slab size.
4047 	 */
4048 	allocator->unopened_slab_priority = (1 + ilog2((max_free_blocks * 3) / 4));
4049 
4050 	return VDO_SUCCESS;
4051 }
4052 
4053 static int allocate_components(struct slab_depot *depot,
4054 			       struct partition *summary_partition)
4055 {
4056 	int result;
4057 	zone_count_t zone;
4058 	slab_count_t slab_count;
4059 	u8 hint;
4060 	u32 i;
4061 	const struct thread_config *thread_config = &depot->vdo->thread_config;
4062 
4063 	result = vdo_make_action_manager(depot->zone_count, get_allocator_thread_id,
4064 					 thread_config->journal_thread, depot,
4065 					 schedule_tail_block_commit,
4066 					 depot->vdo, &depot->action_manager);
4067 	if (result != VDO_SUCCESS)
4068 		return result;
4069 
4070 	depot->origin = depot->first_block;
4071 
4072 	/* block size must be a multiple of entry size */
4073 	BUILD_BUG_ON((VDO_BLOCK_SIZE % sizeof(struct slab_summary_entry)) != 0);
4074 
4075 	depot->summary_origin = summary_partition->offset;
4076 	depot->hint_shift = vdo_get_slab_summary_hint_shift(depot->slab_size_shift);
4077 	result = vdo_allocate(MAXIMUM_VDO_SLAB_SUMMARY_ENTRIES,
4078 			      struct slab_summary_entry, __func__,
4079 			      &depot->summary_entries);
4080 	if (result != VDO_SUCCESS)
4081 		return result;
4082 
4083 
4084 	/* Initialize all the entries. */
4085 	hint = compute_fullness_hint(depot, depot->slab_config.data_blocks);
4086 	for (i = 0; i < MAXIMUM_VDO_SLAB_SUMMARY_ENTRIES; i++) {
4087 		/*
4088 		 * This default tail block offset must be reflected in
4089 		 * slabJournal.c::read_slab_journal_tail().
4090 		 */
4091 		depot->summary_entries[i] = (struct slab_summary_entry) {
4092 			.tail_block_offset = 0,
4093 			.fullness_hint = hint,
4094 			.load_ref_counts = false,
4095 			.is_dirty = false,
4096 		};
4097 	}
4098 
4099 	slab_count = vdo_compute_slab_count(depot->first_block, depot->last_block,
4100 					    depot->slab_size_shift);
4101 	if (thread_config->physical_zone_count > slab_count) {
4102 		return vdo_log_error_strerror(VDO_BAD_CONFIGURATION,
4103 					      "%u physical zones exceeds slab count %u",
4104 					      thread_config->physical_zone_count,
4105 					      slab_count);
4106 	}
4107 
4108 	/* Initialize the block allocators. */
4109 	for (zone = 0; zone < depot->zone_count; zone++) {
4110 		result = initialize_block_allocator(depot, zone);
4111 		if (result != VDO_SUCCESS)
4112 			return result;
4113 	}
4114 
4115 	/* Allocate slabs. */
4116 	result = allocate_slabs(depot, slab_count);
4117 	if (result != VDO_SUCCESS)
4118 		return result;
4119 
4120 	/* Use the new slabs. */
4121 	for (i = depot->slab_count; i < depot->new_slab_count; i++) {
4122 		struct vdo_slab *slab = depot->new_slabs[i];
4123 
4124 		register_slab_with_allocator(slab->allocator, slab);
4125 		WRITE_ONCE(depot->slab_count, depot->slab_count + 1);
4126 	}
4127 
4128 	depot->slabs = depot->new_slabs;
4129 	depot->new_slabs = NULL;
4130 	depot->new_slab_count = 0;
4131 
4132 	return VDO_SUCCESS;
4133 }
4134 
4135 /**
4136  * vdo_decode_slab_depot() - Make a slab depot and configure it with the state read from the super
4137  *                           block.
4138  * @state: The slab depot state from the super block.
4139  * @vdo: The VDO which will own the depot.
4140  * @summary_partition: The partition which holds the slab summary.
4141  * @depot_ptr: A pointer to hold the depot.
4142  *
4143  * Return: A success or error code.
4144  */
4145 int vdo_decode_slab_depot(struct slab_depot_state_2_0 state, struct vdo *vdo,
4146 			  struct partition *summary_partition,
4147 			  struct slab_depot **depot_ptr)
4148 {
4149 	unsigned int slab_size_shift;
4150 	struct slab_depot *depot;
4151 	int result;
4152 
4153 	/*
4154 	 * Calculate the bit shift for efficiently mapping block numbers to slabs. Using a shift
4155 	 * requires that the slab size be a power of two.
4156 	 */
4157 	block_count_t slab_size = state.slab_config.slab_blocks;
4158 
4159 	if (!is_power_of_2(slab_size)) {
4160 		return vdo_log_error_strerror(UDS_INVALID_ARGUMENT,
4161 					      "slab size must be a power of two");
4162 	}
4163 	slab_size_shift = ilog2(slab_size);
4164 
4165 	result = vdo_allocate_extended(struct slab_depot,
4166 				       vdo->thread_config.physical_zone_count,
4167 				       struct block_allocator, __func__, &depot);
4168 	if (result != VDO_SUCCESS)
4169 		return result;
4170 
4171 	depot->vdo = vdo;
4172 	depot->old_zone_count = state.zone_count;
4173 	depot->zone_count = vdo->thread_config.physical_zone_count;
4174 	depot->slab_config = state.slab_config;
4175 	depot->first_block = state.first_block;
4176 	depot->last_block = state.last_block;
4177 	depot->slab_size_shift = slab_size_shift;
4178 
4179 	result = allocate_components(depot, summary_partition);
4180 	if (result != VDO_SUCCESS) {
4181 		vdo_free_slab_depot(depot);
4182 		return result;
4183 	}
4184 
4185 	*depot_ptr = depot;
4186 	return VDO_SUCCESS;
4187 }
4188 
4189 static void uninitialize_allocator_summary(struct block_allocator *allocator)
4190 {
4191 	block_count_t i;
4192 
4193 	if (allocator->summary_blocks == NULL)
4194 		return;
4195 
4196 	for (i = 0; i < VDO_SLAB_SUMMARY_BLOCKS_PER_ZONE; i++) {
4197 		free_vio_components(&allocator->summary_blocks[i].vio);
4198 		vdo_free(vdo_forget(allocator->summary_blocks[i].outgoing_entries));
4199 	}
4200 
4201 	vdo_free(vdo_forget(allocator->summary_blocks));
4202 }
4203 
4204 /**
4205  * vdo_free_slab_depot() - Destroy a slab depot.
4206  * @depot: The depot to destroy.
4207  */
4208 void vdo_free_slab_depot(struct slab_depot *depot)
4209 {
4210 	zone_count_t zone = 0;
4211 
4212 	if (depot == NULL)
4213 		return;
4214 
4215 	vdo_abandon_new_slabs(depot);
4216 
4217 	for (zone = 0; zone < depot->zone_count; zone++) {
4218 		struct block_allocator *allocator = &depot->allocators[zone];
4219 
4220 		if (allocator->eraser != NULL)
4221 			dm_kcopyd_client_destroy(vdo_forget(allocator->eraser));
4222 
4223 		uninitialize_allocator_summary(allocator);
4224 		uninitialize_scrubber_vio(&allocator->scrubber);
4225 		free_vio_pool(vdo_forget(allocator->vio_pool));
4226 		vdo_free_priority_table(vdo_forget(allocator->prioritized_slabs));
4227 	}
4228 
4229 	if (depot->slabs != NULL) {
4230 		slab_count_t i;
4231 
4232 		for (i = 0; i < depot->slab_count; i++)
4233 			free_slab(vdo_forget(depot->slabs[i]));
4234 	}
4235 
4236 	vdo_free(vdo_forget(depot->slabs));
4237 	vdo_free(vdo_forget(depot->action_manager));
4238 	vdo_free(vdo_forget(depot->summary_entries));
4239 	vdo_free(depot);
4240 }
4241 
4242 /**
4243  * vdo_record_slab_depot() - Record the state of a slab depot for encoding into the super block.
4244  * @depot: The depot to encode.
4245  *
4246  * Return: The depot state.
4247  */
4248 struct slab_depot_state_2_0 vdo_record_slab_depot(const struct slab_depot *depot)
4249 {
4250 	/*
4251 	 * If this depot is currently using 0 zones, it must have been synchronously loaded by a
4252 	 * tool and is now being saved. We did not load and combine the slab summary, so we still
4253 	 * need to do that next time we load with the old zone count rather than 0.
4254 	 */
4255 	struct slab_depot_state_2_0 state;
4256 	zone_count_t zones_to_record = depot->zone_count;
4257 
4258 	if (depot->zone_count == 0)
4259 		zones_to_record = depot->old_zone_count;
4260 
4261 	state = (struct slab_depot_state_2_0) {
4262 		.slab_config = depot->slab_config,
4263 		.first_block = depot->first_block,
4264 		.last_block = depot->last_block,
4265 		.zone_count = zones_to_record,
4266 	};
4267 
4268 	return state;
4269 }
4270 
4271 /**
4272  * vdo_allocate_reference_counters() - Allocate the reference counters for all slabs in the depot.
4273  *
4274  * Context: This method may be called only before entering normal operation from the load thread.
4275  *
4276  * Return: VDO_SUCCESS or an error.
4277  */
4278 int vdo_allocate_reference_counters(struct slab_depot *depot)
4279 {
4280 	struct slab_iterator iterator =
4281 		get_depot_slab_iterator(depot, depot->slab_count - 1, 0, 1);
4282 
4283 	while (iterator.next != NULL) {
4284 		int result = allocate_slab_counters(next_slab(&iterator));
4285 
4286 		if (result != VDO_SUCCESS)
4287 			return result;
4288 	}
4289 
4290 	return VDO_SUCCESS;
4291 }
4292 
4293 /**
4294  * get_slab_number() - Get the number of the slab that contains a specified block.
4295  * @depot: The slab depot.
4296  * @pbn: The physical block number.
4297  * @slab_number_ptr: A pointer to hold the slab number.
4298  *
4299  * Return: VDO_SUCCESS or an error.
4300  */
4301 static int __must_check get_slab_number(const struct slab_depot *depot,
4302 					physical_block_number_t pbn,
4303 					slab_count_t *slab_number_ptr)
4304 {
4305 	slab_count_t slab_number;
4306 
4307 	if (pbn < depot->first_block)
4308 		return VDO_OUT_OF_RANGE;
4309 
4310 	slab_number = (pbn - depot->first_block) >> depot->slab_size_shift;
4311 	if (slab_number >= depot->slab_count)
4312 		return VDO_OUT_OF_RANGE;
4313 
4314 	*slab_number_ptr = slab_number;
4315 	return VDO_SUCCESS;
4316 }
4317 
4318 /**
4319  * vdo_get_slab() - Get the slab object for the slab that contains a specified block.
4320  * @depot: The slab depot.
4321  * @pbn: The physical block number.
4322  *
4323  * Will put the VDO in read-only mode if the PBN is not a valid data block nor the zero block.
4324  *
4325  * Return: The slab containing the block, or NULL if the block number is the zero block or
4326  * otherwise out of range.
4327  */
4328 struct vdo_slab *vdo_get_slab(const struct slab_depot *depot,
4329 			      physical_block_number_t pbn)
4330 {
4331 	slab_count_t slab_number;
4332 	int result;
4333 
4334 	if (pbn == VDO_ZERO_BLOCK)
4335 		return NULL;
4336 
4337 	result = get_slab_number(depot, pbn, &slab_number);
4338 	if (result != VDO_SUCCESS) {
4339 		vdo_enter_read_only_mode(depot->vdo, result);
4340 		return NULL;
4341 	}
4342 
4343 	return depot->slabs[slab_number];
4344 }
4345 
4346 /**
4347  * vdo_get_increment_limit() - Determine how many new references a block can acquire.
4348  * @depot: The slab depot.
4349  * @pbn: The physical block number that is being queried.
4350  *
4351  * Context: This method must be called from the physical zone thread of the PBN.
4352  *
4353  * Return: The number of available references.
4354  */
4355 u8 vdo_get_increment_limit(struct slab_depot *depot, physical_block_number_t pbn)
4356 {
4357 	struct vdo_slab *slab = vdo_get_slab(depot, pbn);
4358 	vdo_refcount_t *counter_ptr = NULL;
4359 	int result;
4360 
4361 	if ((slab == NULL) || (slab->status != VDO_SLAB_REBUILT))
4362 		return 0;
4363 
4364 	result = get_reference_counter(slab, pbn, &counter_ptr);
4365 	if (result != VDO_SUCCESS)
4366 		return 0;
4367 
4368 	if (*counter_ptr == PROVISIONAL_REFERENCE_COUNT)
4369 		return (MAXIMUM_REFERENCE_COUNT - 1);
4370 
4371 	return (MAXIMUM_REFERENCE_COUNT - *counter_ptr);
4372 }
4373 
4374 /**
4375  * vdo_is_physical_data_block() - Determine whether the given PBN refers to a data block.
4376  * @depot: The depot.
4377  * @pbn: The physical block number to ask about.
4378  *
4379  * Return: True if the PBN corresponds to a data block.
4380  */
4381 bool vdo_is_physical_data_block(const struct slab_depot *depot,
4382 				physical_block_number_t pbn)
4383 {
4384 	slab_count_t slab_number;
4385 	slab_block_number sbn;
4386 
4387 	return ((pbn == VDO_ZERO_BLOCK) ||
4388 		((get_slab_number(depot, pbn, &slab_number) == VDO_SUCCESS) &&
4389 		 (slab_block_number_from_pbn(depot->slabs[slab_number], pbn, &sbn) ==
4390 		  VDO_SUCCESS)));
4391 }
4392 
4393 /**
4394  * vdo_get_slab_depot_allocated_blocks() - Get the total number of data blocks allocated across all
4395  * the slabs in the depot.
4396  * @depot: The slab depot.
4397  *
4398  * This is the total number of blocks with a non-zero reference count.
4399  *
4400  * Context: This may be called from any thread.
4401  *
4402  * Return: The total number of blocks with a non-zero reference count.
4403  */
4404 block_count_t vdo_get_slab_depot_allocated_blocks(const struct slab_depot *depot)
4405 {
4406 	block_count_t total = 0;
4407 	zone_count_t zone;
4408 
4409 	for (zone = 0; zone < depot->zone_count; zone++) {
4410 		/* The allocators are responsible for thread safety. */
4411 		total += READ_ONCE(depot->allocators[zone].allocated_blocks);
4412 	}
4413 
4414 	return total;
4415 }
4416 
4417 /**
4418  * vdo_get_slab_depot_data_blocks() - Get the total number of data blocks in all the slabs in the
4419  *                                    depot.
4420  * @depot: The slab depot.
4421  *
4422  * Context: This may be called from any thread.
4423  *
4424  * Return: The total number of data blocks in all slabs.
4425  */
4426 block_count_t vdo_get_slab_depot_data_blocks(const struct slab_depot *depot)
4427 {
4428 	return (READ_ONCE(depot->slab_count) * depot->slab_config.data_blocks);
4429 }
4430 
4431 /**
4432  * finish_combining_zones() - Clean up after saving out the combined slab summary.
4433  * @completion: The vio which was used to write the summary data.
4434  */
4435 static void finish_combining_zones(struct vdo_completion *completion)
4436 {
4437 	int result = completion->result;
4438 	struct vdo_completion *parent = completion->parent;
4439 
4440 	free_vio(as_vio(vdo_forget(completion)));
4441 	vdo_fail_completion(parent, result);
4442 }
4443 
4444 static void handle_combining_error(struct vdo_completion *completion)
4445 {
4446 	vio_record_metadata_io_error(as_vio(completion));
4447 	finish_combining_zones(completion);
4448 }
4449 
4450 static void write_summary_endio(struct bio *bio)
4451 {
4452 	struct vio *vio = bio->bi_private;
4453 	struct vdo *vdo = vio->completion.vdo;
4454 
4455 	continue_vio_after_io(vio, finish_combining_zones,
4456 			      vdo->thread_config.admin_thread);
4457 }
4458 
4459 /**
4460  * combine_summaries() - Treating the current entries buffer as the on-disk value of all zones,
4461  *                       update every zone to the correct values for every slab.
4462  * @depot: The depot whose summary entries should be combined.
4463  */
4464 static void combine_summaries(struct slab_depot *depot)
4465 {
4466 	/*
4467 	 * Combine all the old summary data into the portion of the buffer corresponding to the
4468 	 * first zone.
4469 	 */
4470 	zone_count_t zone = 0;
4471 	struct slab_summary_entry *entries = depot->summary_entries;
4472 
4473 	if (depot->old_zone_count > 1) {
4474 		slab_count_t entry_number;
4475 
4476 		for (entry_number = 0; entry_number < MAX_VDO_SLABS; entry_number++) {
4477 			if (zone != 0) {
4478 				memcpy(entries + entry_number,
4479 				       entries + (zone * MAX_VDO_SLABS) + entry_number,
4480 				       sizeof(struct slab_summary_entry));
4481 			}
4482 
4483 			zone++;
4484 			if (zone == depot->old_zone_count)
4485 				zone = 0;
4486 		}
4487 	}
4488 
4489 	/* Copy the combined data to each zones's region of the buffer. */
4490 	for (zone = 1; zone < MAX_VDO_PHYSICAL_ZONES; zone++) {
4491 		memcpy(entries + (zone * MAX_VDO_SLABS), entries,
4492 		       MAX_VDO_SLABS * sizeof(struct slab_summary_entry));
4493 	}
4494 }
4495 
4496 /**
4497  * finish_loading_summary() - Finish loading slab summary data.
4498  * @completion: The vio which was used to read the summary data.
4499  *
4500  * Combines the slab summary data from all the previously written zones and copies the combined
4501  * summary to each partition's data region. Then writes the combined summary back out to disk. This
4502  * callback is registered in load_summary_endio().
4503  */
4504 static void finish_loading_summary(struct vdo_completion *completion)
4505 {
4506 	struct slab_depot *depot = completion->vdo->depot;
4507 
4508 	/* Combine the summary from each zone so each zone is correct for all slabs. */
4509 	combine_summaries(depot);
4510 
4511 	/* Write the combined summary back out. */
4512 	vdo_submit_metadata_vio(as_vio(completion), depot->summary_origin,
4513 				write_summary_endio, handle_combining_error,
4514 				REQ_OP_WRITE);
4515 }
4516 
4517 static void load_summary_endio(struct bio *bio)
4518 {
4519 	struct vio *vio = bio->bi_private;
4520 	struct vdo *vdo = vio->completion.vdo;
4521 
4522 	continue_vio_after_io(vio, finish_loading_summary,
4523 			      vdo->thread_config.admin_thread);
4524 }
4525 
4526 /**
4527  * load_slab_summary() - The preamble of a load operation.
4528  *
4529  * Implements vdo_action_preamble_fn.
4530  */
4531 static void load_slab_summary(void *context, struct vdo_completion *parent)
4532 {
4533 	int result;
4534 	struct vio *vio;
4535 	struct slab_depot *depot = context;
4536 	const struct admin_state_code *operation =
4537 		vdo_get_current_manager_operation(depot->action_manager);
4538 
4539 	result = create_multi_block_metadata_vio(depot->vdo, VIO_TYPE_SLAB_SUMMARY,
4540 						 VIO_PRIORITY_METADATA, parent,
4541 						 VDO_SLAB_SUMMARY_BLOCKS,
4542 						 (char *) depot->summary_entries, &vio);
4543 	if (result != VDO_SUCCESS) {
4544 		vdo_fail_completion(parent, result);
4545 		return;
4546 	}
4547 
4548 	if ((operation == VDO_ADMIN_STATE_FORMATTING) ||
4549 	    (operation == VDO_ADMIN_STATE_LOADING_FOR_REBUILD)) {
4550 		finish_loading_summary(&vio->completion);
4551 		return;
4552 	}
4553 
4554 	vdo_submit_metadata_vio(vio, depot->summary_origin, load_summary_endio,
4555 				handle_combining_error, REQ_OP_READ);
4556 }
4557 
4558 /* Implements vdo_zone_action_fn. */
4559 static void load_allocator(void *context, zone_count_t zone_number,
4560 			   struct vdo_completion *parent)
4561 {
4562 	struct slab_depot *depot = context;
4563 
4564 	vdo_start_loading(&depot->allocators[zone_number].state,
4565 			  vdo_get_current_manager_operation(depot->action_manager),
4566 			  parent, initiate_load);
4567 }
4568 
4569 /**
4570  * vdo_load_slab_depot() - Asynchronously load any slab depot state that isn't included in the
4571  *                         super_block component.
4572  * @depot: The depot to load.
4573  * @operation: The type of load to perform.
4574  * @parent: The completion to notify when the load is complete.
4575  * @context: Additional context for the load operation; may be NULL.
4576  *
4577  * This method may be called only before entering normal operation from the load thread.
4578  */
4579 void vdo_load_slab_depot(struct slab_depot *depot,
4580 			 const struct admin_state_code *operation,
4581 			 struct vdo_completion *parent, void *context)
4582 {
4583 	if (!vdo_assert_load_operation(operation, parent))
4584 		return;
4585 
4586 	vdo_schedule_operation_with_context(depot->action_manager, operation,
4587 					    load_slab_summary, load_allocator,
4588 					    NULL, context, parent);
4589 }
4590 
4591 /* Implements vdo_zone_action_fn. */
4592 static void prepare_to_allocate(void *context, zone_count_t zone_number,
4593 				struct vdo_completion *parent)
4594 {
4595 	struct slab_depot *depot = context;
4596 	struct block_allocator *allocator = &depot->allocators[zone_number];
4597 	int result;
4598 
4599 	result = vdo_prepare_slabs_for_allocation(allocator);
4600 	if (result != VDO_SUCCESS) {
4601 		vdo_fail_completion(parent, result);
4602 		return;
4603 	}
4604 
4605 	scrub_slabs(allocator, parent);
4606 }
4607 
4608 /**
4609  * vdo_prepare_slab_depot_to_allocate() - Prepare the slab depot to come online and start
4610  *                                        allocating blocks.
4611  * @depot: The depot to prepare.
4612  * @load_type: The load type.
4613  * @parent: The completion to notify when the operation is complete.
4614  *
4615  * This method may be called only before entering normal operation from the load thread. It must be
4616  * called before allocation may proceed.
4617  */
4618 void vdo_prepare_slab_depot_to_allocate(struct slab_depot *depot,
4619 					enum slab_depot_load_type load_type,
4620 					struct vdo_completion *parent)
4621 {
4622 	depot->load_type = load_type;
4623 	atomic_set(&depot->zones_to_scrub, depot->zone_count);
4624 	vdo_schedule_action(depot->action_manager, NULL,
4625 			    prepare_to_allocate, NULL, parent);
4626 }
4627 
4628 /**
4629  * vdo_update_slab_depot_size() - Update the slab depot to reflect its new size in memory.
4630  * @depot: The depot to update.
4631  *
4632  * This size is saved to disk as part of the super block.
4633  */
4634 void vdo_update_slab_depot_size(struct slab_depot *depot)
4635 {
4636 	depot->last_block = depot->new_last_block;
4637 }
4638 
4639 /**
4640  * vdo_prepare_to_grow_slab_depot() - Allocate new memory needed for a resize of a slab depot to
4641  *                                    the given size.
4642  * @depot: The depot to prepare to resize.
4643  * @partition: The new depot partition
4644  *
4645  * Return: VDO_SUCCESS or an error.
4646  */
4647 int vdo_prepare_to_grow_slab_depot(struct slab_depot *depot,
4648 				   const struct partition *partition)
4649 {
4650 	struct slab_depot_state_2_0 new_state;
4651 	int result;
4652 	slab_count_t new_slab_count;
4653 
4654 	if ((partition->count >> depot->slab_size_shift) <= depot->slab_count)
4655 		return VDO_INCREMENT_TOO_SMALL;
4656 
4657 	/* Generate the depot configuration for the new block count. */
4658 	VDO_ASSERT_LOG_ONLY(depot->first_block == partition->offset,
4659 			    "New slab depot partition doesn't change origin");
4660 	result = vdo_configure_slab_depot(partition, depot->slab_config,
4661 					  depot->zone_count, &new_state);
4662 	if (result != VDO_SUCCESS)
4663 		return result;
4664 
4665 	new_slab_count = vdo_compute_slab_count(depot->first_block,
4666 						new_state.last_block,
4667 						depot->slab_size_shift);
4668 	if (new_slab_count <= depot->slab_count)
4669 		return vdo_log_error_strerror(VDO_INCREMENT_TOO_SMALL,
4670 					      "Depot can only grow");
4671 	if (new_slab_count == depot->new_slab_count) {
4672 		/* Check it out, we've already got all the new slabs allocated! */
4673 		return VDO_SUCCESS;
4674 	}
4675 
4676 	vdo_abandon_new_slabs(depot);
4677 	result = allocate_slabs(depot, new_slab_count);
4678 	if (result != VDO_SUCCESS) {
4679 		vdo_abandon_new_slabs(depot);
4680 		return result;
4681 	}
4682 
4683 	depot->new_size = partition->count;
4684 	depot->old_last_block = depot->last_block;
4685 	depot->new_last_block = new_state.last_block;
4686 
4687 	return VDO_SUCCESS;
4688 }
4689 
4690 /**
4691  * finish_registration() - Finish registering new slabs now that all of the allocators have
4692  *                         received their new slabs.
4693  *
4694  * Implements vdo_action_conclusion_fn.
4695  */
4696 static int finish_registration(void *context)
4697 {
4698 	struct slab_depot *depot = context;
4699 
4700 	WRITE_ONCE(depot->slab_count, depot->new_slab_count);
4701 	vdo_free(depot->slabs);
4702 	depot->slabs = depot->new_slabs;
4703 	depot->new_slabs = NULL;
4704 	depot->new_slab_count = 0;
4705 	return VDO_SUCCESS;
4706 }
4707 
4708 /* Implements vdo_zone_action_fn. */
4709 static void register_new_slabs(void *context, zone_count_t zone_number,
4710 			       struct vdo_completion *parent)
4711 {
4712 	struct slab_depot *depot = context;
4713 	struct block_allocator *allocator = &depot->allocators[zone_number];
4714 	slab_count_t i;
4715 
4716 	for (i = depot->slab_count; i < depot->new_slab_count; i++) {
4717 		struct vdo_slab *slab = depot->new_slabs[i];
4718 
4719 		if (slab->allocator == allocator)
4720 			register_slab_with_allocator(allocator, slab);
4721 	}
4722 
4723 	vdo_finish_completion(parent);
4724 }
4725 
4726 /**
4727  * vdo_use_new_slabs() - Use the new slabs allocated for resize.
4728  * @depot: The depot.
4729  * @parent: The object to notify when complete.
4730  */
4731 void vdo_use_new_slabs(struct slab_depot *depot, struct vdo_completion *parent)
4732 {
4733 	VDO_ASSERT_LOG_ONLY(depot->new_slabs != NULL, "Must have new slabs to use");
4734 	vdo_schedule_operation(depot->action_manager,
4735 			       VDO_ADMIN_STATE_SUSPENDED_OPERATION,
4736 			       NULL, register_new_slabs,
4737 			       finish_registration, parent);
4738 }
4739 
4740 /**
4741  * stop_scrubbing() - Tell the scrubber to stop scrubbing after it finishes the slab it is
4742  *                    currently working on.
4743  * @allocator: The block allocator owning the scrubber to stop.
4744  */
4745 static void stop_scrubbing(struct block_allocator *allocator)
4746 {
4747 	struct slab_scrubber *scrubber = &allocator->scrubber;
4748 
4749 	if (vdo_is_state_quiescent(&scrubber->admin_state)) {
4750 		vdo_finish_completion(&allocator->completion);
4751 	} else {
4752 		vdo_start_draining(&scrubber->admin_state,
4753 				   VDO_ADMIN_STATE_SUSPENDING,
4754 				   &allocator->completion, NULL);
4755 	}
4756 }
4757 
4758 /* Implements vdo_admin_initiator_fn. */
4759 static void initiate_summary_drain(struct admin_state *state)
4760 {
4761 	check_summary_drain_complete(container_of(state, struct block_allocator,
4762 						  summary_state));
4763 }
4764 
4765 static void do_drain_step(struct vdo_completion *completion)
4766 {
4767 	struct block_allocator *allocator = vdo_as_block_allocator(completion);
4768 
4769 	vdo_prepare_completion_for_requeue(&allocator->completion, do_drain_step,
4770 					   handle_operation_error, allocator->thread_id,
4771 					   NULL);
4772 	switch (++allocator->drain_step) {
4773 	case VDO_DRAIN_ALLOCATOR_STEP_SCRUBBER:
4774 		stop_scrubbing(allocator);
4775 		return;
4776 
4777 	case VDO_DRAIN_ALLOCATOR_STEP_SLABS:
4778 		apply_to_slabs(allocator, do_drain_step);
4779 		return;
4780 
4781 	case VDO_DRAIN_ALLOCATOR_STEP_SUMMARY:
4782 		vdo_start_draining(&allocator->summary_state,
4783 				   vdo_get_admin_state_code(&allocator->state),
4784 				   completion, initiate_summary_drain);
4785 		return;
4786 
4787 	case VDO_DRAIN_ALLOCATOR_STEP_FINISHED:
4788 		VDO_ASSERT_LOG_ONLY(!is_vio_pool_busy(allocator->vio_pool),
4789 				    "vio pool not busy");
4790 		vdo_finish_draining_with_result(&allocator->state, completion->result);
4791 		return;
4792 
4793 	default:
4794 		vdo_finish_draining_with_result(&allocator->state, UDS_BAD_STATE);
4795 	}
4796 }
4797 
4798 /* Implements vdo_admin_initiator_fn. */
4799 static void initiate_drain(struct admin_state *state)
4800 {
4801 	struct block_allocator *allocator =
4802 		container_of(state, struct block_allocator, state);
4803 
4804 	allocator->drain_step = VDO_DRAIN_ALLOCATOR_START;
4805 	do_drain_step(&allocator->completion);
4806 }
4807 
4808 /*
4809  * Drain all allocator I/O. Depending upon the type of drain, some or all dirty metadata may be
4810  * written to disk. The type of drain will be determined from the state of the allocator's depot.
4811  *
4812  * Implements vdo_zone_action_fn.
4813  */
4814 static void drain_allocator(void *context, zone_count_t zone_number,
4815 			    struct vdo_completion *parent)
4816 {
4817 	struct slab_depot *depot = context;
4818 
4819 	vdo_start_draining(&depot->allocators[zone_number].state,
4820 			   vdo_get_current_manager_operation(depot->action_manager),
4821 			   parent, initiate_drain);
4822 }
4823 
4824 /**
4825  * vdo_drain_slab_depot() - Drain all slab depot I/O.
4826  * @depot: The depot to drain.
4827  * @operation: The drain operation (flush, rebuild, suspend, or save).
4828  * @parent: The completion to finish when the drain is complete.
4829  *
4830  * If saving, or flushing, all dirty depot metadata will be written out. If saving or suspending,
4831  * the depot will be left in a suspended state.
4832  */
4833 void vdo_drain_slab_depot(struct slab_depot *depot,
4834 			  const struct admin_state_code *operation,
4835 			  struct vdo_completion *parent)
4836 {
4837 	vdo_schedule_operation(depot->action_manager, operation,
4838 			       NULL, drain_allocator, NULL, parent);
4839 }
4840 
4841 /**
4842  * resume_scrubbing() - Tell the scrubber to resume scrubbing if it has been stopped.
4843  * @allocator: The allocator being resumed.
4844  */
4845 static void resume_scrubbing(struct block_allocator *allocator)
4846 {
4847 	int result;
4848 	struct slab_scrubber *scrubber = &allocator->scrubber;
4849 
4850 	if (!has_slabs_to_scrub(scrubber)) {
4851 		vdo_finish_completion(&allocator->completion);
4852 		return;
4853 	}
4854 
4855 	result = vdo_resume_if_quiescent(&scrubber->admin_state);
4856 	if (result != VDO_SUCCESS) {
4857 		vdo_fail_completion(&allocator->completion, result);
4858 		return;
4859 	}
4860 
4861 	scrub_next_slab(scrubber);
4862 	vdo_finish_completion(&allocator->completion);
4863 }
4864 
4865 static void do_resume_step(struct vdo_completion *completion)
4866 {
4867 	struct block_allocator *allocator = vdo_as_block_allocator(completion);
4868 
4869 	vdo_prepare_completion_for_requeue(&allocator->completion, do_resume_step,
4870 					   handle_operation_error,
4871 					   allocator->thread_id, NULL);
4872 	switch (--allocator->drain_step) {
4873 	case VDO_DRAIN_ALLOCATOR_STEP_SUMMARY:
4874 		vdo_fail_completion(completion,
4875 				    vdo_resume_if_quiescent(&allocator->summary_state));
4876 		return;
4877 
4878 	case VDO_DRAIN_ALLOCATOR_STEP_SLABS:
4879 		apply_to_slabs(allocator, do_resume_step);
4880 		return;
4881 
4882 	case VDO_DRAIN_ALLOCATOR_STEP_SCRUBBER:
4883 		resume_scrubbing(allocator);
4884 		return;
4885 
4886 	case VDO_DRAIN_ALLOCATOR_START:
4887 		vdo_finish_resuming_with_result(&allocator->state, completion->result);
4888 		return;
4889 
4890 	default:
4891 		vdo_finish_resuming_with_result(&allocator->state, UDS_BAD_STATE);
4892 	}
4893 }
4894 
4895 /* Implements vdo_admin_initiator_fn. */
4896 static void initiate_resume(struct admin_state *state)
4897 {
4898 	struct block_allocator *allocator =
4899 		container_of(state, struct block_allocator, state);
4900 
4901 	allocator->drain_step = VDO_DRAIN_ALLOCATOR_STEP_FINISHED;
4902 	do_resume_step(&allocator->completion);
4903 }
4904 
4905 /* Implements vdo_zone_action_fn. */
4906 static void resume_allocator(void *context, zone_count_t zone_number,
4907 			     struct vdo_completion *parent)
4908 {
4909 	struct slab_depot *depot = context;
4910 
4911 	vdo_start_resuming(&depot->allocators[zone_number].state,
4912 			   vdo_get_current_manager_operation(depot->action_manager),
4913 			   parent, initiate_resume);
4914 }
4915 
4916 /**
4917  * vdo_resume_slab_depot() - Resume a suspended slab depot.
4918  * @depot: The depot to resume.
4919  * @parent: The completion to finish when the depot has resumed.
4920  */
4921 void vdo_resume_slab_depot(struct slab_depot *depot, struct vdo_completion *parent)
4922 {
4923 	if (vdo_is_read_only(depot->vdo)) {
4924 		vdo_continue_completion(parent, VDO_READ_ONLY);
4925 		return;
4926 	}
4927 
4928 	vdo_schedule_operation(depot->action_manager, VDO_ADMIN_STATE_RESUMING,
4929 			       NULL, resume_allocator, NULL, parent);
4930 }
4931 
4932 /**
4933  * vdo_commit_oldest_slab_journal_tail_blocks() - Commit all dirty tail blocks which are locking a
4934  *                                                given recovery journal block.
4935  * @depot: The depot.
4936  * @recovery_block_number: The sequence number of the recovery journal block whose locks should be
4937  *                         released.
4938  *
4939  * Context: This method must be called from the journal zone thread.
4940  */
4941 void vdo_commit_oldest_slab_journal_tail_blocks(struct slab_depot *depot,
4942 						sequence_number_t recovery_block_number)
4943 {
4944 	if (depot == NULL)
4945 		return;
4946 
4947 	depot->new_release_request = recovery_block_number;
4948 	vdo_schedule_default_action(depot->action_manager);
4949 }
4950 
4951 /* Implements vdo_zone_action_fn. */
4952 static void scrub_all_unrecovered_slabs(void *context, zone_count_t zone_number,
4953 					struct vdo_completion *parent)
4954 {
4955 	struct slab_depot *depot = context;
4956 
4957 	scrub_slabs(&depot->allocators[zone_number], NULL);
4958 	vdo_launch_completion(parent);
4959 }
4960 
4961 /**
4962  * vdo_scrub_all_unrecovered_slabs() - Scrub all unrecovered slabs.
4963  * @depot: The depot to scrub.
4964  * @parent: The object to notify when scrubbing has been launched for all zones.
4965  */
4966 void vdo_scrub_all_unrecovered_slabs(struct slab_depot *depot,
4967 				     struct vdo_completion *parent)
4968 {
4969 	vdo_schedule_action(depot->action_manager, NULL,
4970 			    scrub_all_unrecovered_slabs,
4971 			    NULL, parent);
4972 }
4973 
4974 /**
4975  * get_block_allocator_statistics() - Get the total of the statistics from all the block allocators
4976  *                                    in the depot.
4977  * @depot: The slab depot.
4978  *
4979  * Return: The statistics from all block allocators in the depot.
4980  */
4981 static struct block_allocator_statistics __must_check
4982 get_block_allocator_statistics(const struct slab_depot *depot)
4983 {
4984 	struct block_allocator_statistics totals;
4985 	zone_count_t zone;
4986 
4987 	memset(&totals, 0, sizeof(totals));
4988 
4989 	for (zone = 0; zone < depot->zone_count; zone++) {
4990 		const struct block_allocator *allocator = &depot->allocators[zone];
4991 		const struct block_allocator_statistics *stats = &allocator->statistics;
4992 
4993 		totals.slab_count += allocator->slab_count;
4994 		totals.slabs_opened += READ_ONCE(stats->slabs_opened);
4995 		totals.slabs_reopened += READ_ONCE(stats->slabs_reopened);
4996 	}
4997 
4998 	return totals;
4999 }
5000 
5001 /**
5002  * get_ref_counts_statistics() - Get the cumulative ref_counts statistics for the depot.
5003  * @depot: The slab depot.
5004  *
5005  * Return: The cumulative statistics for all ref_counts in the depot.
5006  */
5007 static struct ref_counts_statistics __must_check
5008 get_ref_counts_statistics(const struct slab_depot *depot)
5009 {
5010 	struct ref_counts_statistics totals;
5011 	zone_count_t zone;
5012 
5013 	memset(&totals, 0, sizeof(totals));
5014 
5015 	for (zone = 0; zone < depot->zone_count; zone++) {
5016 		totals.blocks_written +=
5017 			READ_ONCE(depot->allocators[zone].ref_counts_statistics.blocks_written);
5018 	}
5019 
5020 	return totals;
5021 }
5022 
5023 /**
5024  * get_slab_journal_statistics() - Get the aggregated slab journal statistics for the depot.
5025  * @depot: The slab depot.
5026  *
5027  * Return: The aggregated statistics for all slab journals in the depot.
5028  */
5029 static struct slab_journal_statistics __must_check
5030 get_slab_journal_statistics(const struct slab_depot *depot)
5031 {
5032 	struct slab_journal_statistics totals;
5033 	zone_count_t zone;
5034 
5035 	memset(&totals, 0, sizeof(totals));
5036 
5037 	for (zone = 0; zone < depot->zone_count; zone++) {
5038 		const struct slab_journal_statistics *stats =
5039 			&depot->allocators[zone].slab_journal_statistics;
5040 
5041 		totals.disk_full_count += READ_ONCE(stats->disk_full_count);
5042 		totals.flush_count += READ_ONCE(stats->flush_count);
5043 		totals.blocked_count += READ_ONCE(stats->blocked_count);
5044 		totals.blocks_written += READ_ONCE(stats->blocks_written);
5045 		totals.tail_busy_count += READ_ONCE(stats->tail_busy_count);
5046 	}
5047 
5048 	return totals;
5049 }
5050 
5051 /**
5052  * vdo_get_slab_depot_statistics() - Get all the vdo_statistics fields that are properties of the
5053  *                                   slab depot.
5054  * @depot: The slab depot.
5055  * @stats: The vdo statistics structure to partially fill.
5056  */
5057 void vdo_get_slab_depot_statistics(const struct slab_depot *depot,
5058 				   struct vdo_statistics *stats)
5059 {
5060 	slab_count_t slab_count = READ_ONCE(depot->slab_count);
5061 	slab_count_t unrecovered = 0;
5062 	zone_count_t zone;
5063 
5064 	for (zone = 0; zone < depot->zone_count; zone++) {
5065 		/* The allocators are responsible for thread safety. */
5066 		unrecovered += READ_ONCE(depot->allocators[zone].scrubber.slab_count);
5067 	}
5068 
5069 	stats->recovery_percentage = (slab_count - unrecovered) * 100 / slab_count;
5070 	stats->allocator = get_block_allocator_statistics(depot);
5071 	stats->ref_counts = get_ref_counts_statistics(depot);
5072 	stats->slab_journal = get_slab_journal_statistics(depot);
5073 	stats->slab_summary = (struct slab_summary_statistics) {
5074 		.blocks_written = atomic64_read(&depot->summary_statistics.blocks_written),
5075 	};
5076 }
5077 
5078 /**
5079  * vdo_dump_slab_depot() - Dump the slab depot, in a thread-unsafe fashion.
5080  * @depot: The slab depot.
5081  */
5082 void vdo_dump_slab_depot(const struct slab_depot *depot)
5083 {
5084 	vdo_log_info("vdo slab depot");
5085 	vdo_log_info("  zone_count=%u old_zone_count=%u slabCount=%u active_release_request=%llu new_release_request=%llu",
5086 		     (unsigned int) depot->zone_count,
5087 		     (unsigned int) depot->old_zone_count, READ_ONCE(depot->slab_count),
5088 		     (unsigned long long) depot->active_release_request,
5089 		     (unsigned long long) depot->new_release_request);
5090 }
5091