1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright 2023 Red Hat 4 */ 5 6 #include "slab-depot.h" 7 8 #include <linux/atomic.h> 9 #include <linux/bio.h> 10 #include <linux/err.h> 11 #include <linux/log2.h> 12 #include <linux/min_heap.h> 13 #include <linux/minmax.h> 14 15 #include "logger.h" 16 #include "memory-alloc.h" 17 #include "numeric.h" 18 #include "permassert.h" 19 #include "string-utils.h" 20 21 #include "action-manager.h" 22 #include "admin-state.h" 23 #include "completion.h" 24 #include "constants.h" 25 #include "data-vio.h" 26 #include "encodings.h" 27 #include "io-submitter.h" 28 #include "physical-zone.h" 29 #include "priority-table.h" 30 #include "recovery-journal.h" 31 #include "repair.h" 32 #include "status-codes.h" 33 #include "types.h" 34 #include "vdo.h" 35 #include "vio.h" 36 #include "wait-queue.h" 37 38 static const u64 BYTES_PER_WORD = sizeof(u64); 39 static const bool NORMAL_OPERATION = true; 40 41 /** 42 * get_lock() - Get the lock object for a slab journal block by sequence number. 43 * @journal: vdo_slab journal to retrieve from. 44 * @sequence_number: Sequence number of the block. 45 * 46 * Return: The lock object for the given sequence number. 47 */ 48 static inline struct journal_lock * __must_check get_lock(struct slab_journal *journal, 49 sequence_number_t sequence_number) 50 { 51 return &journal->locks[sequence_number % journal->size]; 52 } 53 54 static bool is_slab_open(struct vdo_slab *slab) 55 { 56 return (!vdo_is_state_quiescing(&slab->state) && 57 !vdo_is_state_quiescent(&slab->state)); 58 } 59 60 /** 61 * must_make_entries_to_flush() - Check whether there are entry waiters which should delay a flush. 62 * @journal: The journal to check. 63 * 64 * Return: true if there are no entry waiters, or if the slab is unrecovered. 65 */ 66 static inline bool __must_check must_make_entries_to_flush(struct slab_journal *journal) 67 { 68 return ((journal->slab->status != VDO_SLAB_REBUILDING) && 69 vdo_waitq_has_waiters(&journal->entry_waiters)); 70 } 71 72 /** 73 * is_reaping() - Check whether a reap is currently in progress. 74 * @journal: The journal which may be reaping. 75 * 76 * Return: true if the journal is reaping. 77 */ 78 static inline bool __must_check is_reaping(struct slab_journal *journal) 79 { 80 return (journal->head != journal->unreapable); 81 } 82 83 /** 84 * initialize_tail_block() - Initialize tail block as a new block. 85 * @journal: The journal whose tail block is being initialized. 86 */ 87 static void initialize_tail_block(struct slab_journal *journal) 88 { 89 struct slab_journal_block_header *header = &journal->tail_header; 90 91 header->sequence_number = journal->tail; 92 header->entry_count = 0; 93 header->has_block_map_increments = false; 94 } 95 96 /** 97 * initialize_journal_state() - Set all journal fields appropriately to start journaling. 98 * @journal: The journal to be reset, based on its tail sequence number. 99 */ 100 static void initialize_journal_state(struct slab_journal *journal) 101 { 102 journal->unreapable = journal->head; 103 journal->reap_lock = get_lock(journal, journal->unreapable); 104 journal->next_commit = journal->tail; 105 journal->summarized = journal->last_summarized = journal->tail; 106 initialize_tail_block(journal); 107 } 108 109 /** 110 * block_is_full() - Check whether a journal block is full. 111 * @journal: The slab journal for the block. 112 * 113 * Return: true if the tail block is full. 114 */ 115 static bool __must_check block_is_full(struct slab_journal *journal) 116 { 117 journal_entry_count_t count = journal->tail_header.entry_count; 118 119 return (journal->tail_header.has_block_map_increments ? 120 (journal->full_entries_per_block == count) : 121 (journal->entries_per_block == count)); 122 } 123 124 static void add_entries(struct slab_journal *journal); 125 static void update_tail_block_location(struct slab_journal *journal); 126 static void release_journal_locks(struct vdo_waiter *waiter, void *context); 127 128 /** 129 * is_slab_journal_blank() - Check whether a slab's journal is blank. 130 * 131 * A slab journal is blank if it has never had any entries recorded in it. 132 * 133 * Return: true if the slab's journal has never been modified. 134 */ 135 static bool is_slab_journal_blank(const struct vdo_slab *slab) 136 { 137 return ((slab->journal.tail == 1) && 138 (slab->journal.tail_header.entry_count == 0)); 139 } 140 141 /** 142 * mark_slab_journal_dirty() - Put a slab journal on the dirty ring of its allocator in the correct 143 * order. 144 * @journal: The journal to be marked dirty. 145 * @lock: The recovery journal lock held by the slab journal. 146 */ 147 static void mark_slab_journal_dirty(struct slab_journal *journal, sequence_number_t lock) 148 { 149 struct slab_journal *dirty_journal; 150 struct list_head *dirty_list = &journal->slab->allocator->dirty_slab_journals; 151 152 VDO_ASSERT_LOG_ONLY(journal->recovery_lock == 0, "slab journal was clean"); 153 154 journal->recovery_lock = lock; 155 list_for_each_entry_reverse(dirty_journal, dirty_list, dirty_entry) { 156 if (dirty_journal->recovery_lock <= journal->recovery_lock) 157 break; 158 } 159 160 list_move_tail(&journal->dirty_entry, dirty_journal->dirty_entry.next); 161 } 162 163 static void mark_slab_journal_clean(struct slab_journal *journal) 164 { 165 journal->recovery_lock = 0; 166 list_del_init(&journal->dirty_entry); 167 } 168 169 static void check_if_slab_drained(struct vdo_slab *slab) 170 { 171 bool read_only; 172 struct slab_journal *journal = &slab->journal; 173 const struct admin_state_code *code; 174 175 if (!vdo_is_state_draining(&slab->state) || 176 must_make_entries_to_flush(journal) || 177 is_reaping(journal) || 178 journal->waiting_to_commit || 179 !list_empty(&journal->uncommitted_blocks) || 180 journal->updating_slab_summary || 181 (slab->active_count > 0)) 182 return; 183 184 /* When not suspending or recovering, the slab must be clean. */ 185 code = vdo_get_admin_state_code(&slab->state); 186 read_only = vdo_is_read_only(slab->allocator->depot->vdo); 187 if (!read_only && 188 vdo_waitq_has_waiters(&slab->dirty_blocks) && 189 (code != VDO_ADMIN_STATE_SUSPENDING) && 190 (code != VDO_ADMIN_STATE_RECOVERING)) 191 return; 192 193 vdo_finish_draining_with_result(&slab->state, 194 (read_only ? VDO_READ_ONLY : VDO_SUCCESS)); 195 } 196 197 /* FULLNESS HINT COMPUTATION */ 198 199 /** 200 * compute_fullness_hint() - Translate a slab's free block count into a 'fullness hint' that can be 201 * stored in a slab_summary_entry's 7 bits that are dedicated to its free 202 * count. 203 * @depot: The depot whose summary being updated. 204 * @free_blocks: The number of free blocks. 205 * 206 * Note: the number of free blocks must be strictly less than 2^23 blocks, even though 207 * theoretically slabs could contain precisely 2^23 blocks; there is an assumption that at least 208 * one block is used by metadata. This assumption is necessary; otherwise, the fullness hint might 209 * overflow. The fullness hint formula is roughly (fullness >> 16) & 0x7f, but (2^23 >> 16) & 0x7f 210 * is 0, which would make it impossible to distinguish completely full from completely empty. 211 * 212 * Return: A fullness hint, which can be stored in 7 bits. 213 */ 214 static u8 __must_check compute_fullness_hint(struct slab_depot *depot, 215 block_count_t free_blocks) 216 { 217 block_count_t hint; 218 219 VDO_ASSERT_LOG_ONLY((free_blocks < (1 << 23)), "free blocks must be less than 2^23"); 220 221 if (free_blocks == 0) 222 return 0; 223 224 hint = free_blocks >> depot->hint_shift; 225 return ((hint == 0) ? 1 : hint); 226 } 227 228 /** 229 * check_summary_drain_complete() - Check whether an allocators summary has finished draining. 230 */ 231 static void check_summary_drain_complete(struct block_allocator *allocator) 232 { 233 if (!vdo_is_state_draining(&allocator->summary_state) || 234 (allocator->summary_write_count > 0)) 235 return; 236 237 vdo_finish_operation(&allocator->summary_state, 238 (vdo_is_read_only(allocator->depot->vdo) ? 239 VDO_READ_ONLY : VDO_SUCCESS)); 240 } 241 242 /** 243 * notify_summary_waiters() - Wake all the waiters in a given queue. 244 * @allocator: The block allocator summary which owns the queue. 245 * @queue: The queue to notify. 246 */ 247 static void notify_summary_waiters(struct block_allocator *allocator, 248 struct vdo_wait_queue *queue) 249 { 250 int result = (vdo_is_read_only(allocator->depot->vdo) ? 251 VDO_READ_ONLY : VDO_SUCCESS); 252 253 vdo_waitq_notify_all_waiters(queue, NULL, &result); 254 } 255 256 static void launch_write(struct slab_summary_block *summary_block); 257 258 /** 259 * finish_updating_slab_summary_block() - Finish processing a block which attempted to write, 260 * whether or not the attempt succeeded. 261 * @block: The block. 262 */ 263 static void finish_updating_slab_summary_block(struct slab_summary_block *block) 264 { 265 notify_summary_waiters(block->allocator, &block->current_update_waiters); 266 block->writing = false; 267 block->allocator->summary_write_count--; 268 if (vdo_waitq_has_waiters(&block->next_update_waiters)) 269 launch_write(block); 270 else 271 check_summary_drain_complete(block->allocator); 272 } 273 274 /** 275 * finish_update() - This is the callback for a successful summary block write. 276 * @completion: The write vio. 277 */ 278 static void finish_update(struct vdo_completion *completion) 279 { 280 struct slab_summary_block *block = 281 container_of(as_vio(completion), struct slab_summary_block, vio); 282 283 atomic64_inc(&block->allocator->depot->summary_statistics.blocks_written); 284 finish_updating_slab_summary_block(block); 285 } 286 287 /** 288 * handle_write_error() - Handle an error writing a slab summary block. 289 * @completion: The write VIO. 290 */ 291 static void handle_write_error(struct vdo_completion *completion) 292 { 293 struct slab_summary_block *block = 294 container_of(as_vio(completion), struct slab_summary_block, vio); 295 296 vio_record_metadata_io_error(as_vio(completion)); 297 vdo_enter_read_only_mode(completion->vdo, completion->result); 298 finish_updating_slab_summary_block(block); 299 } 300 301 static void write_slab_summary_endio(struct bio *bio) 302 { 303 struct vio *vio = bio->bi_private; 304 struct slab_summary_block *block = 305 container_of(vio, struct slab_summary_block, vio); 306 307 continue_vio_after_io(vio, finish_update, block->allocator->thread_id); 308 } 309 310 /** 311 * launch_write() - Write a slab summary block unless it is currently out for writing. 312 * @block: The block that needs to be committed. 313 */ 314 static void launch_write(struct slab_summary_block *block) 315 { 316 struct block_allocator *allocator = block->allocator; 317 struct slab_depot *depot = allocator->depot; 318 physical_block_number_t pbn; 319 320 if (block->writing) 321 return; 322 323 allocator->summary_write_count++; 324 vdo_waitq_transfer_all_waiters(&block->next_update_waiters, 325 &block->current_update_waiters); 326 block->writing = true; 327 328 if (vdo_is_read_only(depot->vdo)) { 329 finish_updating_slab_summary_block(block); 330 return; 331 } 332 333 memcpy(block->outgoing_entries, block->entries, VDO_BLOCK_SIZE); 334 335 /* 336 * Flush before writing to ensure that the slab journal tail blocks and reference updates 337 * covered by this summary update are stable. Otherwise, a subsequent recovery could 338 * encounter a slab summary update that refers to a slab journal tail block that has not 339 * actually been written. In such cases, the slab journal referenced will be treated as 340 * empty, causing any data within the slab which predates the existing recovery journal 341 * entries to be lost. 342 */ 343 pbn = (depot->summary_origin + 344 (VDO_SLAB_SUMMARY_BLOCKS_PER_ZONE * allocator->zone_number) + 345 block->index); 346 vdo_submit_metadata_vio(&block->vio, pbn, write_slab_summary_endio, 347 handle_write_error, REQ_OP_WRITE | REQ_PREFLUSH); 348 } 349 350 /** 351 * update_slab_summary_entry() - Update the entry for a slab. 352 * @slab: The slab whose entry is to be updated 353 * @waiter: The waiter that is updating the summary. 354 * @tail_block_offset: The offset of the slab journal's tail block. 355 * @load_ref_counts: Whether the reference counts must be loaded from disk on the vdo load. 356 * @is_clean: Whether the slab is clean. 357 * @free_blocks: The number of free blocks. 358 */ 359 static void update_slab_summary_entry(struct vdo_slab *slab, struct vdo_waiter *waiter, 360 tail_block_offset_t tail_block_offset, 361 bool load_ref_counts, bool is_clean, 362 block_count_t free_blocks) 363 { 364 u8 index = slab->slab_number / VDO_SLAB_SUMMARY_ENTRIES_PER_BLOCK; 365 struct block_allocator *allocator = slab->allocator; 366 struct slab_summary_block *block = &allocator->summary_blocks[index]; 367 int result; 368 struct slab_summary_entry *entry; 369 370 if (vdo_is_read_only(block->vio.completion.vdo)) { 371 result = VDO_READ_ONLY; 372 waiter->callback(waiter, &result); 373 return; 374 } 375 376 if (vdo_is_state_draining(&allocator->summary_state) || 377 vdo_is_state_quiescent(&allocator->summary_state)) { 378 result = VDO_INVALID_ADMIN_STATE; 379 waiter->callback(waiter, &result); 380 return; 381 } 382 383 entry = &allocator->summary_entries[slab->slab_number]; 384 *entry = (struct slab_summary_entry) { 385 .tail_block_offset = tail_block_offset, 386 .load_ref_counts = (entry->load_ref_counts || load_ref_counts), 387 .is_dirty = !is_clean, 388 .fullness_hint = compute_fullness_hint(allocator->depot, free_blocks), 389 }; 390 vdo_waitq_enqueue_waiter(&block->next_update_waiters, waiter); 391 launch_write(block); 392 } 393 394 /** 395 * finish_reaping() - Actually advance the head of the journal now that any necessary flushes are 396 * complete. 397 * @journal: The journal to be reaped. 398 */ 399 static void finish_reaping(struct slab_journal *journal) 400 { 401 journal->head = journal->unreapable; 402 add_entries(journal); 403 check_if_slab_drained(journal->slab); 404 } 405 406 static void reap_slab_journal(struct slab_journal *journal); 407 408 /** 409 * complete_reaping() - Finish reaping now that we have flushed the lower layer and then try 410 * reaping again in case we deferred reaping due to an outstanding vio. 411 * @completion: The flush vio. 412 */ 413 static void complete_reaping(struct vdo_completion *completion) 414 { 415 struct slab_journal *journal = completion->parent; 416 417 return_vio_to_pool(journal->slab->allocator->vio_pool, 418 vio_as_pooled_vio(as_vio(vdo_forget(completion)))); 419 finish_reaping(journal); 420 reap_slab_journal(journal); 421 } 422 423 /** 424 * handle_flush_error() - Handle an error flushing the lower layer. 425 * @completion: The flush vio. 426 */ 427 static void handle_flush_error(struct vdo_completion *completion) 428 { 429 vio_record_metadata_io_error(as_vio(completion)); 430 vdo_enter_read_only_mode(completion->vdo, completion->result); 431 complete_reaping(completion); 432 } 433 434 static void flush_endio(struct bio *bio) 435 { 436 struct vio *vio = bio->bi_private; 437 struct slab_journal *journal = vio->completion.parent; 438 439 continue_vio_after_io(vio, complete_reaping, 440 journal->slab->allocator->thread_id); 441 } 442 443 /** 444 * flush_for_reaping() - A waiter callback for getting a vio with which to flush the lower layer 445 * prior to reaping. 446 * @waiter: The journal as a flush waiter. 447 * @context: The newly acquired flush vio. 448 */ 449 static void flush_for_reaping(struct vdo_waiter *waiter, void *context) 450 { 451 struct slab_journal *journal = 452 container_of(waiter, struct slab_journal, flush_waiter); 453 struct pooled_vio *pooled = context; 454 struct vio *vio = &pooled->vio; 455 456 vio->completion.parent = journal; 457 vdo_submit_flush_vio(vio, flush_endio, handle_flush_error); 458 } 459 460 /** 461 * reap_slab_journal() - Conduct a reap on a slab journal to reclaim unreferenced blocks. 462 * @journal: The slab journal. 463 */ 464 static void reap_slab_journal(struct slab_journal *journal) 465 { 466 bool reaped = false; 467 468 if (is_reaping(journal)) { 469 /* We already have a reap in progress so wait for it to finish. */ 470 return; 471 } 472 473 if ((journal->slab->status != VDO_SLAB_REBUILT) || 474 !vdo_is_state_normal(&journal->slab->state) || 475 vdo_is_read_only(journal->slab->allocator->depot->vdo)) { 476 /* 477 * We must not reap in the first two cases, and there's no point in read-only mode. 478 */ 479 return; 480 } 481 482 /* 483 * Start reclaiming blocks only when the journal head has no references. Then stop when a 484 * block is referenced or reap reaches the most recently written block, referenced by the 485 * slab summary, which has the sequence number just before the tail. 486 */ 487 while ((journal->unreapable < journal->tail) && (journal->reap_lock->count == 0)) { 488 reaped = true; 489 journal->unreapable++; 490 journal->reap_lock++; 491 if (journal->reap_lock == &journal->locks[journal->size]) 492 journal->reap_lock = &journal->locks[0]; 493 } 494 495 if (!reaped) 496 return; 497 498 /* 499 * It is never safe to reap a slab journal block without first issuing a flush, regardless 500 * of whether a user flush has been received or not. In the absence of the flush, the 501 * reference block write which released the locks allowing the slab journal to reap may not 502 * be persisted. Although slab summary writes will eventually issue flushes, multiple slab 503 * journal block writes can be issued while previous slab summary updates have not yet been 504 * made. Even though those slab journal block writes will be ignored if the slab summary 505 * update is not persisted, they may still overwrite the to-be-reaped slab journal block 506 * resulting in a loss of reference count updates. 507 */ 508 journal->flush_waiter.callback = flush_for_reaping; 509 acquire_vio_from_pool(journal->slab->allocator->vio_pool, 510 &journal->flush_waiter); 511 } 512 513 /** 514 * adjust_slab_journal_block_reference() - Adjust the reference count for a slab journal block. 515 * @journal: The slab journal. 516 * @sequence_number: The journal sequence number of the referenced block. 517 * @adjustment: Amount to adjust the reference counter. 518 * 519 * Note that when the adjustment is negative, the slab journal will be reaped. 520 */ 521 static void adjust_slab_journal_block_reference(struct slab_journal *journal, 522 sequence_number_t sequence_number, 523 int adjustment) 524 { 525 struct journal_lock *lock; 526 527 if (sequence_number == 0) 528 return; 529 530 if (journal->slab->status == VDO_SLAB_REPLAYING) { 531 /* Locks should not be used during offline replay. */ 532 return; 533 } 534 535 VDO_ASSERT_LOG_ONLY((adjustment != 0), "adjustment must be non-zero"); 536 lock = get_lock(journal, sequence_number); 537 if (adjustment < 0) { 538 VDO_ASSERT_LOG_ONLY((-adjustment <= lock->count), 539 "adjustment %d of lock count %u for slab journal block %llu must not underflow", 540 adjustment, lock->count, 541 (unsigned long long) sequence_number); 542 } 543 544 lock->count += adjustment; 545 if (lock->count == 0) 546 reap_slab_journal(journal); 547 } 548 549 /** 550 * release_journal_locks() - Callback invoked after a slab summary update completes. 551 * @waiter: The slab summary waiter that has just been notified. 552 * @context: The result code of the update. 553 * 554 * Registered in the constructor on behalf of update_tail_block_location(). 555 * 556 * Implements waiter_callback_fn. 557 */ 558 static void release_journal_locks(struct vdo_waiter *waiter, void *context) 559 { 560 sequence_number_t first, i; 561 struct slab_journal *journal = 562 container_of(waiter, struct slab_journal, slab_summary_waiter); 563 int result = *((int *) context); 564 565 if (result != VDO_SUCCESS) { 566 if (result != VDO_READ_ONLY) { 567 /* 568 * Don't bother logging what might be lots of errors if we are already in 569 * read-only mode. 570 */ 571 vdo_log_error_strerror(result, "failed slab summary update %llu", 572 (unsigned long long) journal->summarized); 573 } 574 575 journal->updating_slab_summary = false; 576 vdo_enter_read_only_mode(journal->slab->allocator->depot->vdo, result); 577 check_if_slab_drained(journal->slab); 578 return; 579 } 580 581 if (journal->partial_write_in_progress && (journal->summarized == journal->tail)) { 582 journal->partial_write_in_progress = false; 583 add_entries(journal); 584 } 585 586 first = journal->last_summarized; 587 journal->last_summarized = journal->summarized; 588 for (i = journal->summarized - 1; i >= first; i--) { 589 /* 590 * Release the lock the summarized block held on the recovery journal. (During 591 * replay, recovery_start will always be 0.) 592 */ 593 if (journal->recovery_journal != NULL) { 594 zone_count_t zone_number = journal->slab->allocator->zone_number; 595 struct journal_lock *lock = get_lock(journal, i); 596 597 vdo_release_recovery_journal_block_reference(journal->recovery_journal, 598 lock->recovery_start, 599 VDO_ZONE_TYPE_PHYSICAL, 600 zone_number); 601 } 602 603 /* 604 * Release our own lock against reaping for blocks that are committed. (This 605 * function will not change locks during replay.) 606 */ 607 adjust_slab_journal_block_reference(journal, i, -1); 608 } 609 610 journal->updating_slab_summary = false; 611 612 reap_slab_journal(journal); 613 614 /* Check if the slab summary needs to be updated again. */ 615 update_tail_block_location(journal); 616 } 617 618 /** 619 * update_tail_block_location() - Update the tail block location in the slab summary, if necessary. 620 * @journal: The slab journal that is updating its tail block location. 621 */ 622 static void update_tail_block_location(struct slab_journal *journal) 623 { 624 block_count_t free_block_count; 625 struct vdo_slab *slab = journal->slab; 626 627 if (journal->updating_slab_summary || 628 vdo_is_read_only(journal->slab->allocator->depot->vdo) || 629 (journal->last_summarized >= journal->next_commit)) { 630 check_if_slab_drained(slab); 631 return; 632 } 633 634 if (slab->status != VDO_SLAB_REBUILT) { 635 u8 hint = slab->allocator->summary_entries[slab->slab_number].fullness_hint; 636 637 free_block_count = ((block_count_t) hint) << slab->allocator->depot->hint_shift; 638 } else { 639 free_block_count = slab->free_blocks; 640 } 641 642 journal->summarized = journal->next_commit; 643 journal->updating_slab_summary = true; 644 645 /* 646 * Update slab summary as dirty. 647 * vdo_slab journal can only reap past sequence number 1 when all the ref counts for this 648 * slab have been written to the layer. Therefore, indicate that the ref counts must be 649 * loaded when the journal head has reaped past sequence number 1. 650 */ 651 update_slab_summary_entry(slab, &journal->slab_summary_waiter, 652 journal->summarized % journal->size, 653 (journal->head > 1), false, free_block_count); 654 } 655 656 /** 657 * reopen_slab_journal() - Reopen a slab's journal by emptying it and then adding pending entries. 658 */ 659 static void reopen_slab_journal(struct vdo_slab *slab) 660 { 661 struct slab_journal *journal = &slab->journal; 662 sequence_number_t block; 663 664 VDO_ASSERT_LOG_ONLY(journal->tail_header.entry_count == 0, 665 "vdo_slab journal's active block empty before reopening"); 666 journal->head = journal->tail; 667 initialize_journal_state(journal); 668 669 /* Ensure no locks are spuriously held on an empty journal. */ 670 for (block = 1; block <= journal->size; block++) { 671 VDO_ASSERT_LOG_ONLY((get_lock(journal, block)->count == 0), 672 "Scrubbed journal's block %llu is not locked", 673 (unsigned long long) block); 674 } 675 676 add_entries(journal); 677 } 678 679 static sequence_number_t get_committing_sequence_number(const struct pooled_vio *vio) 680 { 681 const struct packed_slab_journal_block *block = 682 (const struct packed_slab_journal_block *) vio->vio.data; 683 684 return __le64_to_cpu(block->header.sequence_number); 685 } 686 687 /** 688 * complete_write() - Handle post-commit processing. 689 * @completion: The write vio as a completion. 690 * 691 * This is the callback registered by write_slab_journal_block(). 692 */ 693 static void complete_write(struct vdo_completion *completion) 694 { 695 int result = completion->result; 696 struct pooled_vio *pooled = vio_as_pooled_vio(as_vio(completion)); 697 struct slab_journal *journal = completion->parent; 698 sequence_number_t committed = get_committing_sequence_number(pooled); 699 700 list_del_init(&pooled->list_entry); 701 return_vio_to_pool(journal->slab->allocator->vio_pool, vdo_forget(pooled)); 702 703 if (result != VDO_SUCCESS) { 704 vio_record_metadata_io_error(as_vio(completion)); 705 vdo_log_error_strerror(result, "cannot write slab journal block %llu", 706 (unsigned long long) committed); 707 vdo_enter_read_only_mode(journal->slab->allocator->depot->vdo, result); 708 check_if_slab_drained(journal->slab); 709 return; 710 } 711 712 WRITE_ONCE(journal->events->blocks_written, journal->events->blocks_written + 1); 713 714 if (list_empty(&journal->uncommitted_blocks)) { 715 /* If no blocks are outstanding, then the commit point is at the tail. */ 716 journal->next_commit = journal->tail; 717 } else { 718 /* The commit point is always the beginning of the oldest incomplete block. */ 719 pooled = container_of(journal->uncommitted_blocks.next, 720 struct pooled_vio, list_entry); 721 journal->next_commit = get_committing_sequence_number(pooled); 722 } 723 724 update_tail_block_location(journal); 725 } 726 727 static void write_slab_journal_endio(struct bio *bio) 728 { 729 struct vio *vio = bio->bi_private; 730 struct slab_journal *journal = vio->completion.parent; 731 732 continue_vio_after_io(vio, complete_write, journal->slab->allocator->thread_id); 733 } 734 735 /** 736 * write_slab_journal_block() - Write a slab journal block. 737 * @waiter: The vio pool waiter which was just notified. 738 * @context: The vio pool entry for the write. 739 * 740 * Callback from acquire_vio_from_pool() registered in commit_tail(). 741 */ 742 static void write_slab_journal_block(struct vdo_waiter *waiter, void *context) 743 { 744 struct pooled_vio *pooled = context; 745 struct vio *vio = &pooled->vio; 746 struct slab_journal *journal = 747 container_of(waiter, struct slab_journal, resource_waiter); 748 struct slab_journal_block_header *header = &journal->tail_header; 749 int unused_entries = journal->entries_per_block - header->entry_count; 750 physical_block_number_t block_number; 751 const struct admin_state_code *operation; 752 753 header->head = journal->head; 754 list_add_tail(&pooled->list_entry, &journal->uncommitted_blocks); 755 vdo_pack_slab_journal_block_header(header, &journal->block->header); 756 757 /* Copy the tail block into the vio. */ 758 memcpy(pooled->vio.data, journal->block, VDO_BLOCK_SIZE); 759 760 VDO_ASSERT_LOG_ONLY(unused_entries >= 0, "vdo_slab journal block is not overfull"); 761 if (unused_entries > 0) { 762 /* 763 * Release the per-entry locks for any unused entries in the block we are about to 764 * write. 765 */ 766 adjust_slab_journal_block_reference(journal, header->sequence_number, 767 -unused_entries); 768 journal->partial_write_in_progress = !block_is_full(journal); 769 } 770 771 block_number = journal->slab->journal_origin + 772 (header->sequence_number % journal->size); 773 vio->completion.parent = journal; 774 775 /* 776 * This block won't be read in recovery until the slab summary is updated to refer to it. 777 * The slab summary update does a flush which is sufficient to protect us from corruption 778 * due to out of order slab journal, reference block, or block map writes. 779 */ 780 vdo_submit_metadata_vio(vdo_forget(vio), block_number, write_slab_journal_endio, 781 complete_write, REQ_OP_WRITE); 782 783 /* Since the write is submitted, the tail block structure can be reused. */ 784 journal->tail++; 785 initialize_tail_block(journal); 786 journal->waiting_to_commit = false; 787 788 operation = vdo_get_admin_state_code(&journal->slab->state); 789 if (operation == VDO_ADMIN_STATE_WAITING_FOR_RECOVERY) { 790 vdo_finish_operation(&journal->slab->state, 791 (vdo_is_read_only(journal->slab->allocator->depot->vdo) ? 792 VDO_READ_ONLY : VDO_SUCCESS)); 793 return; 794 } 795 796 add_entries(journal); 797 } 798 799 /** 800 * commit_tail() - Commit the tail block of the slab journal. 801 * @journal: The journal whose tail block should be committed. 802 */ 803 static void commit_tail(struct slab_journal *journal) 804 { 805 if ((journal->tail_header.entry_count == 0) && must_make_entries_to_flush(journal)) { 806 /* 807 * There are no entries at the moment, but there are some waiters, so defer 808 * initiating the flush until those entries are ready to write. 809 */ 810 return; 811 } 812 813 if (vdo_is_read_only(journal->slab->allocator->depot->vdo) || 814 journal->waiting_to_commit || 815 (journal->tail_header.entry_count == 0)) { 816 /* 817 * There is nothing to do since the tail block is empty, or writing, or the journal 818 * is in read-only mode. 819 */ 820 return; 821 } 822 823 /* 824 * Since we are about to commit the tail block, this journal no longer needs to be on the 825 * ring of journals which the recovery journal might ask to commit. 826 */ 827 mark_slab_journal_clean(journal); 828 829 journal->waiting_to_commit = true; 830 831 journal->resource_waiter.callback = write_slab_journal_block; 832 acquire_vio_from_pool(journal->slab->allocator->vio_pool, 833 &journal->resource_waiter); 834 } 835 836 /** 837 * encode_slab_journal_entry() - Encode a slab journal entry. 838 * @tail_header: The unpacked header for the block. 839 * @payload: The journal block payload to hold the entry. 840 * @sbn: The slab block number of the entry to encode. 841 * @operation: The type of the entry. 842 * @increment: True if this is an increment. 843 * 844 * Exposed for unit tests. 845 */ 846 static void encode_slab_journal_entry(struct slab_journal_block_header *tail_header, 847 slab_journal_payload *payload, 848 slab_block_number sbn, 849 enum journal_operation operation, 850 bool increment) 851 { 852 journal_entry_count_t entry_number = tail_header->entry_count++; 853 854 if (operation == VDO_JOURNAL_BLOCK_MAP_REMAPPING) { 855 if (!tail_header->has_block_map_increments) { 856 memset(payload->full_entries.entry_types, 0, 857 VDO_SLAB_JOURNAL_ENTRY_TYPES_SIZE); 858 tail_header->has_block_map_increments = true; 859 } 860 861 payload->full_entries.entry_types[entry_number / 8] |= 862 ((u8)1 << (entry_number % 8)); 863 } 864 865 vdo_pack_slab_journal_entry(&payload->entries[entry_number], sbn, increment); 866 } 867 868 /** 869 * expand_journal_point() - Convert a recovery journal journal_point which refers to both an 870 * increment and a decrement to a single point which refers to one or the 871 * other. 872 * @recovery_point: The journal point to convert. 873 * @increment: Whether the current entry is an increment. 874 * 875 * Return: The expanded journal point 876 * 877 * Because each data_vio has but a single recovery journal point, but may need to make both 878 * increment and decrement entries in the same slab journal. In order to distinguish the two 879 * entries, the entry count of the expanded journal point is twice the actual recovery journal 880 * entry count for increments, and one more than that for decrements. 881 */ 882 static struct journal_point expand_journal_point(struct journal_point recovery_point, 883 bool increment) 884 { 885 recovery_point.entry_count *= 2; 886 if (!increment) 887 recovery_point.entry_count++; 888 889 return recovery_point; 890 } 891 892 /** 893 * add_entry() - Actually add an entry to the slab journal, potentially firing off a write if a 894 * block becomes full. 895 * @journal: The slab journal to append to. 896 * @pbn: The pbn being adjusted. 897 * @operation: The type of entry to make. 898 * @increment: True if this is an increment. 899 * @recovery_point: The expanded recovery point. 900 * 901 * This function is synchronous. 902 */ 903 static void add_entry(struct slab_journal *journal, physical_block_number_t pbn, 904 enum journal_operation operation, bool increment, 905 struct journal_point recovery_point) 906 { 907 struct packed_slab_journal_block *block = journal->block; 908 int result; 909 910 result = VDO_ASSERT(vdo_before_journal_point(&journal->tail_header.recovery_point, 911 &recovery_point), 912 "recovery journal point is monotonically increasing, recovery point: %llu.%u, block recovery point: %llu.%u", 913 (unsigned long long) recovery_point.sequence_number, 914 recovery_point.entry_count, 915 (unsigned long long) journal->tail_header.recovery_point.sequence_number, 916 journal->tail_header.recovery_point.entry_count); 917 if (result != VDO_SUCCESS) { 918 vdo_enter_read_only_mode(journal->slab->allocator->depot->vdo, result); 919 return; 920 } 921 922 if (operation == VDO_JOURNAL_BLOCK_MAP_REMAPPING) { 923 result = VDO_ASSERT((journal->tail_header.entry_count < 924 journal->full_entries_per_block), 925 "block has room for full entries"); 926 if (result != VDO_SUCCESS) { 927 vdo_enter_read_only_mode(journal->slab->allocator->depot->vdo, 928 result); 929 return; 930 } 931 } 932 933 encode_slab_journal_entry(&journal->tail_header, &block->payload, 934 pbn - journal->slab->start, operation, increment); 935 journal->tail_header.recovery_point = recovery_point; 936 if (block_is_full(journal)) 937 commit_tail(journal); 938 } 939 940 static inline block_count_t journal_length(const struct slab_journal *journal) 941 { 942 return journal->tail - journal->head; 943 } 944 945 /** 946 * vdo_attempt_replay_into_slab() - Replay a recovery journal entry into a slab's journal. 947 * @slab: The slab to play into. 948 * @pbn: The PBN for the entry. 949 * @operation: The type of entry to add. 950 * @increment: True if this entry is an increment. 951 * @recovery_point: The recovery journal point corresponding to this entry. 952 * @parent: The completion to notify when there is space to add the entry if the entry could not be 953 * added immediately. 954 * 955 * Return: true if the entry was added immediately. 956 */ 957 bool vdo_attempt_replay_into_slab(struct vdo_slab *slab, physical_block_number_t pbn, 958 enum journal_operation operation, bool increment, 959 struct journal_point *recovery_point, 960 struct vdo_completion *parent) 961 { 962 struct slab_journal *journal = &slab->journal; 963 struct slab_journal_block_header *header = &journal->tail_header; 964 struct journal_point expanded = expand_journal_point(*recovery_point, increment); 965 966 /* Only accept entries after the current recovery point. */ 967 if (!vdo_before_journal_point(&journal->tail_header.recovery_point, &expanded)) 968 return true; 969 970 if ((header->entry_count >= journal->full_entries_per_block) && 971 (header->has_block_map_increments || (operation == VDO_JOURNAL_BLOCK_MAP_REMAPPING))) { 972 /* 973 * The tail block does not have room for the entry we are attempting to add so 974 * commit the tail block now. 975 */ 976 commit_tail(journal); 977 } 978 979 if (journal->waiting_to_commit) { 980 vdo_start_operation_with_waiter(&journal->slab->state, 981 VDO_ADMIN_STATE_WAITING_FOR_RECOVERY, 982 parent, NULL); 983 return false; 984 } 985 986 if (journal_length(journal) >= journal->size) { 987 /* 988 * We must have reaped the current head before the crash, since the blocked 989 * threshold keeps us from having more entries than fit in a slab journal; hence we 990 * can just advance the head (and unreapable block), as needed. 991 */ 992 journal->head++; 993 journal->unreapable++; 994 } 995 996 if (journal->slab->status == VDO_SLAB_REBUILT) 997 journal->slab->status = VDO_SLAB_REPLAYING; 998 999 add_entry(journal, pbn, operation, increment, expanded); 1000 return true; 1001 } 1002 1003 /** 1004 * requires_reaping() - Check whether the journal must be reaped before adding new entries. 1005 * @journal: The journal to check. 1006 * 1007 * Return: true if the journal must be reaped. 1008 */ 1009 static bool requires_reaping(const struct slab_journal *journal) 1010 { 1011 return (journal_length(journal) >= journal->blocking_threshold); 1012 } 1013 1014 /** finish_summary_update() - A waiter callback that resets the writing state of a slab. */ 1015 static void finish_summary_update(struct vdo_waiter *waiter, void *context) 1016 { 1017 struct vdo_slab *slab = container_of(waiter, struct vdo_slab, summary_waiter); 1018 int result = *((int *) context); 1019 1020 slab->active_count--; 1021 1022 if ((result != VDO_SUCCESS) && (result != VDO_READ_ONLY)) { 1023 vdo_log_error_strerror(result, "failed to update slab summary"); 1024 vdo_enter_read_only_mode(slab->allocator->depot->vdo, result); 1025 } 1026 1027 check_if_slab_drained(slab); 1028 } 1029 1030 static void write_reference_block(struct vdo_waiter *waiter, void *context); 1031 1032 /** 1033 * launch_reference_block_write() - Launch the write of a dirty reference block by first acquiring 1034 * a VIO for it from the pool. 1035 * @waiter: The waiter of the block which is starting to write. 1036 * @context: The parent slab of the block. 1037 * 1038 * This can be asynchronous since the writer will have to wait if all VIOs in the pool are 1039 * currently in use. 1040 */ 1041 static void launch_reference_block_write(struct vdo_waiter *waiter, void *context) 1042 { 1043 struct vdo_slab *slab = context; 1044 1045 if (vdo_is_read_only(slab->allocator->depot->vdo)) 1046 return; 1047 1048 slab->active_count++; 1049 container_of(waiter, struct reference_block, waiter)->is_writing = true; 1050 waiter->callback = write_reference_block; 1051 acquire_vio_from_pool(slab->allocator->vio_pool, waiter); 1052 } 1053 1054 static void save_dirty_reference_blocks(struct vdo_slab *slab) 1055 { 1056 vdo_waitq_notify_all_waiters(&slab->dirty_blocks, 1057 launch_reference_block_write, slab); 1058 check_if_slab_drained(slab); 1059 } 1060 1061 /** 1062 * finish_reference_block_write() - After a reference block has written, clean it, release its 1063 * locks, and return its VIO to the pool. 1064 * @completion: The VIO that just finished writing. 1065 */ 1066 static void finish_reference_block_write(struct vdo_completion *completion) 1067 { 1068 struct vio *vio = as_vio(completion); 1069 struct pooled_vio *pooled = vio_as_pooled_vio(vio); 1070 struct reference_block *block = completion->parent; 1071 struct vdo_slab *slab = block->slab; 1072 tail_block_offset_t offset; 1073 1074 slab->active_count--; 1075 1076 /* Release the slab journal lock. */ 1077 adjust_slab_journal_block_reference(&slab->journal, 1078 block->slab_journal_lock_to_release, -1); 1079 return_vio_to_pool(slab->allocator->vio_pool, pooled); 1080 1081 /* 1082 * We can't clear the is_writing flag earlier as releasing the slab journal lock may cause 1083 * us to be dirtied again, but we don't want to double enqueue. 1084 */ 1085 block->is_writing = false; 1086 1087 if (vdo_is_read_only(completion->vdo)) { 1088 check_if_slab_drained(slab); 1089 return; 1090 } 1091 1092 /* Re-queue the block if it was re-dirtied while it was writing. */ 1093 if (block->is_dirty) { 1094 vdo_waitq_enqueue_waiter(&block->slab->dirty_blocks, &block->waiter); 1095 if (vdo_is_state_draining(&slab->state)) { 1096 /* We must be saving, and this block will otherwise not be relaunched. */ 1097 save_dirty_reference_blocks(slab); 1098 } 1099 1100 return; 1101 } 1102 1103 /* 1104 * Mark the slab as clean in the slab summary if there are no dirty or writing blocks 1105 * and no summary update in progress. 1106 */ 1107 if ((slab->active_count > 0) || vdo_waitq_has_waiters(&slab->dirty_blocks)) { 1108 check_if_slab_drained(slab); 1109 return; 1110 } 1111 1112 offset = slab->allocator->summary_entries[slab->slab_number].tail_block_offset; 1113 slab->active_count++; 1114 slab->summary_waiter.callback = finish_summary_update; 1115 update_slab_summary_entry(slab, &slab->summary_waiter, offset, 1116 true, true, slab->free_blocks); 1117 } 1118 1119 /** 1120 * get_reference_counters_for_block() - Find the reference counters for a given block. 1121 * @block: The reference_block in question. 1122 * 1123 * Return: A pointer to the reference counters for this block. 1124 */ 1125 static vdo_refcount_t * __must_check get_reference_counters_for_block(struct reference_block *block) 1126 { 1127 size_t block_index = block - block->slab->reference_blocks; 1128 1129 return &block->slab->counters[block_index * COUNTS_PER_BLOCK]; 1130 } 1131 1132 /** 1133 * pack_reference_block() - Copy data from a reference block to a buffer ready to be written out. 1134 * @block: The block to copy. 1135 * @buffer: The char buffer to fill with the packed block. 1136 */ 1137 static void pack_reference_block(struct reference_block *block, void *buffer) 1138 { 1139 struct packed_reference_block *packed = buffer; 1140 vdo_refcount_t *counters = get_reference_counters_for_block(block); 1141 sector_count_t i; 1142 struct packed_journal_point commit_point; 1143 1144 vdo_pack_journal_point(&block->slab->slab_journal_point, &commit_point); 1145 1146 for (i = 0; i < VDO_SECTORS_PER_BLOCK; i++) { 1147 packed->sectors[i].commit_point = commit_point; 1148 memcpy(packed->sectors[i].counts, counters + (i * COUNTS_PER_SECTOR), 1149 (sizeof(vdo_refcount_t) * COUNTS_PER_SECTOR)); 1150 } 1151 } 1152 1153 static void write_reference_block_endio(struct bio *bio) 1154 { 1155 struct vio *vio = bio->bi_private; 1156 struct reference_block *block = vio->completion.parent; 1157 thread_id_t thread_id = block->slab->allocator->thread_id; 1158 1159 continue_vio_after_io(vio, finish_reference_block_write, thread_id); 1160 } 1161 1162 /** 1163 * handle_io_error() - Handle an I/O error reading or writing a reference count block. 1164 * @completion: The VIO doing the I/O as a completion. 1165 */ 1166 static void handle_io_error(struct vdo_completion *completion) 1167 { 1168 int result = completion->result; 1169 struct vio *vio = as_vio(completion); 1170 struct vdo_slab *slab = ((struct reference_block *) completion->parent)->slab; 1171 1172 vio_record_metadata_io_error(vio); 1173 return_vio_to_pool(slab->allocator->vio_pool, vio_as_pooled_vio(vio)); 1174 slab->active_count--; 1175 vdo_enter_read_only_mode(slab->allocator->depot->vdo, result); 1176 check_if_slab_drained(slab); 1177 } 1178 1179 /** 1180 * write_reference_block() - After a dirty block waiter has gotten a VIO from the VIO pool, copy 1181 * its counters and associated data into the VIO, and launch the write. 1182 * @waiter: The waiter of the dirty block. 1183 * @context: The VIO returned by the pool. 1184 */ 1185 static void write_reference_block(struct vdo_waiter *waiter, void *context) 1186 { 1187 size_t block_offset; 1188 physical_block_number_t pbn; 1189 struct pooled_vio *pooled = context; 1190 struct vdo_completion *completion = &pooled->vio.completion; 1191 struct reference_block *block = container_of(waiter, struct reference_block, 1192 waiter); 1193 1194 pack_reference_block(block, pooled->vio.data); 1195 block_offset = (block - block->slab->reference_blocks); 1196 pbn = (block->slab->ref_counts_origin + block_offset); 1197 block->slab_journal_lock_to_release = block->slab_journal_lock; 1198 completion->parent = block; 1199 1200 /* 1201 * Mark the block as clean, since we won't be committing any updates that happen after this 1202 * moment. As long as VIO order is preserved, two VIOs updating this block at once will not 1203 * cause complications. 1204 */ 1205 block->is_dirty = false; 1206 1207 /* 1208 * Flush before writing to ensure that the recovery journal and slab journal entries which 1209 * cover this reference update are stable. This prevents data corruption that can be caused 1210 * by out of order writes. 1211 */ 1212 WRITE_ONCE(block->slab->allocator->ref_counts_statistics.blocks_written, 1213 block->slab->allocator->ref_counts_statistics.blocks_written + 1); 1214 1215 completion->callback_thread_id = ((struct block_allocator *) pooled->context)->thread_id; 1216 vdo_submit_metadata_vio(&pooled->vio, pbn, write_reference_block_endio, 1217 handle_io_error, REQ_OP_WRITE | REQ_PREFLUSH); 1218 } 1219 1220 static void reclaim_journal_space(struct slab_journal *journal) 1221 { 1222 block_count_t length = journal_length(journal); 1223 struct vdo_slab *slab = journal->slab; 1224 block_count_t write_count = vdo_waitq_num_waiters(&slab->dirty_blocks); 1225 block_count_t written; 1226 1227 if ((length < journal->flushing_threshold) || (write_count == 0)) 1228 return; 1229 1230 /* The slab journal is over the first threshold, schedule some reference block writes. */ 1231 WRITE_ONCE(journal->events->flush_count, journal->events->flush_count + 1); 1232 if (length < journal->flushing_deadline) { 1233 /* Schedule more writes the closer to the deadline we get. */ 1234 write_count /= journal->flushing_deadline - length + 1; 1235 write_count = max_t(block_count_t, write_count, 1); 1236 } 1237 1238 for (written = 0; written < write_count; written++) { 1239 vdo_waitq_notify_next_waiter(&slab->dirty_blocks, 1240 launch_reference_block_write, slab); 1241 } 1242 } 1243 1244 /** 1245 * reference_count_to_status() - Convert a reference count to a reference status. 1246 * @count: The count to convert. 1247 * 1248 * Return: The appropriate reference status. 1249 */ 1250 static enum reference_status __must_check reference_count_to_status(vdo_refcount_t count) 1251 { 1252 if (count == EMPTY_REFERENCE_COUNT) 1253 return RS_FREE; 1254 else if (count == 1) 1255 return RS_SINGLE; 1256 else if (count == PROVISIONAL_REFERENCE_COUNT) 1257 return RS_PROVISIONAL; 1258 else 1259 return RS_SHARED; 1260 } 1261 1262 /** 1263 * dirty_block() - Mark a reference count block as dirty, potentially adding it to the dirty queue 1264 * if it wasn't already dirty. 1265 * @block: The reference block to mark as dirty. 1266 */ 1267 static void dirty_block(struct reference_block *block) 1268 { 1269 if (block->is_dirty) 1270 return; 1271 1272 block->is_dirty = true; 1273 if (!block->is_writing) 1274 vdo_waitq_enqueue_waiter(&block->slab->dirty_blocks, &block->waiter); 1275 } 1276 1277 /** 1278 * get_reference_block() - Get the reference block that covers the given block index. 1279 */ 1280 static struct reference_block * __must_check get_reference_block(struct vdo_slab *slab, 1281 slab_block_number index) 1282 { 1283 return &slab->reference_blocks[index / COUNTS_PER_BLOCK]; 1284 } 1285 1286 /** 1287 * slab_block_number_from_pbn() - Determine the index within the slab of a particular physical 1288 * block number. 1289 * @slab: The slab. 1290 * @pbn: The physical block number. 1291 * @slab_block_number_ptr: A pointer to the slab block number. 1292 * 1293 * Return: VDO_SUCCESS or an error code. 1294 */ 1295 static int __must_check slab_block_number_from_pbn(struct vdo_slab *slab, 1296 physical_block_number_t pbn, 1297 slab_block_number *slab_block_number_ptr) 1298 { 1299 u64 slab_block_number; 1300 1301 if (pbn < slab->start) 1302 return VDO_OUT_OF_RANGE; 1303 1304 slab_block_number = pbn - slab->start; 1305 if (slab_block_number >= slab->allocator->depot->slab_config.data_blocks) 1306 return VDO_OUT_OF_RANGE; 1307 1308 *slab_block_number_ptr = slab_block_number; 1309 return VDO_SUCCESS; 1310 } 1311 1312 /** 1313 * get_reference_counter() - Get the reference counter that covers the given physical block number. 1314 * @slab: The slab to query. 1315 * @pbn: The physical block number. 1316 * @counter_ptr: A pointer to the reference counter. 1317 */ 1318 static int __must_check get_reference_counter(struct vdo_slab *slab, 1319 physical_block_number_t pbn, 1320 vdo_refcount_t **counter_ptr) 1321 { 1322 slab_block_number index; 1323 int result = slab_block_number_from_pbn(slab, pbn, &index); 1324 1325 if (result != VDO_SUCCESS) 1326 return result; 1327 1328 *counter_ptr = &slab->counters[index]; 1329 1330 return VDO_SUCCESS; 1331 } 1332 1333 static unsigned int calculate_slab_priority(struct vdo_slab *slab) 1334 { 1335 block_count_t free_blocks = slab->free_blocks; 1336 unsigned int unopened_slab_priority = slab->allocator->unopened_slab_priority; 1337 unsigned int priority; 1338 1339 /* 1340 * Wholly full slabs must be the only ones with lowest priority, 0. 1341 * 1342 * Slabs that have never been opened (empty, newly initialized, and never been written to) 1343 * have lower priority than previously opened slabs that have a significant number of free 1344 * blocks. This ranking causes VDO to avoid writing physical blocks for the first time 1345 * unless there are very few free blocks that have been previously written to. 1346 * 1347 * Since VDO doesn't discard blocks currently, reusing previously written blocks makes VDO 1348 * a better client of any underlying storage that is thinly-provisioned (though discarding 1349 * would be better). 1350 * 1351 * For all other slabs, the priority is derived from the logarithm of the number of free 1352 * blocks. Slabs with the same order of magnitude of free blocks have the same priority. 1353 * With 2^23 blocks, the priority will range from 1 to 25. The reserved 1354 * unopened_slab_priority divides the range and is skipped by the logarithmic mapping. 1355 */ 1356 1357 if (free_blocks == 0) 1358 return 0; 1359 1360 if (is_slab_journal_blank(slab)) 1361 return unopened_slab_priority; 1362 1363 priority = (1 + ilog2(free_blocks)); 1364 return ((priority < unopened_slab_priority) ? priority : priority + 1); 1365 } 1366 1367 /* 1368 * Slabs are essentially prioritized by an approximation of the number of free blocks in the slab 1369 * so slabs with lots of free blocks will be opened for allocation before slabs that have few free 1370 * blocks. 1371 */ 1372 static void prioritize_slab(struct vdo_slab *slab) 1373 { 1374 VDO_ASSERT_LOG_ONLY(list_empty(&slab->allocq_entry), 1375 "a slab must not already be on a ring when prioritizing"); 1376 slab->priority = calculate_slab_priority(slab); 1377 vdo_priority_table_enqueue(slab->allocator->prioritized_slabs, 1378 slab->priority, &slab->allocq_entry); 1379 } 1380 1381 /** 1382 * adjust_free_block_count() - Adjust the free block count and (if needed) reprioritize the slab. 1383 * @incremented: true if the free block count went up. 1384 */ 1385 static void adjust_free_block_count(struct vdo_slab *slab, bool incremented) 1386 { 1387 struct block_allocator *allocator = slab->allocator; 1388 1389 WRITE_ONCE(allocator->allocated_blocks, 1390 allocator->allocated_blocks + (incremented ? -1 : 1)); 1391 1392 /* The open slab doesn't need to be reprioritized until it is closed. */ 1393 if (slab == allocator->open_slab) 1394 return; 1395 1396 /* Don't bother adjusting the priority table if unneeded. */ 1397 if (slab->priority == calculate_slab_priority(slab)) 1398 return; 1399 1400 /* 1401 * Reprioritize the slab to reflect the new free block count by removing it from the table 1402 * and re-enqueuing it with the new priority. 1403 */ 1404 vdo_priority_table_remove(allocator->prioritized_slabs, &slab->allocq_entry); 1405 prioritize_slab(slab); 1406 } 1407 1408 /** 1409 * increment_for_data() - Increment the reference count for a data block. 1410 * @slab: The slab which owns the block. 1411 * @block: The reference block which contains the block being updated. 1412 * @block_number: The block to update. 1413 * @old_status: The reference status of the data block before this increment. 1414 * @lock: The pbn_lock associated with this increment (may be NULL). 1415 * @counter_ptr: A pointer to the count for the data block (in, out). 1416 * @adjust_block_count: Whether to update the allocator's free block count. 1417 * 1418 * Return: VDO_SUCCESS or an error. 1419 */ 1420 static int increment_for_data(struct vdo_slab *slab, struct reference_block *block, 1421 slab_block_number block_number, 1422 enum reference_status old_status, 1423 struct pbn_lock *lock, vdo_refcount_t *counter_ptr, 1424 bool adjust_block_count) 1425 { 1426 switch (old_status) { 1427 case RS_FREE: 1428 *counter_ptr = 1; 1429 block->allocated_count++; 1430 slab->free_blocks--; 1431 if (adjust_block_count) 1432 adjust_free_block_count(slab, false); 1433 1434 break; 1435 1436 case RS_PROVISIONAL: 1437 *counter_ptr = 1; 1438 break; 1439 1440 default: 1441 /* Single or shared */ 1442 if (*counter_ptr >= MAXIMUM_REFERENCE_COUNT) { 1443 return vdo_log_error_strerror(VDO_REF_COUNT_INVALID, 1444 "Incrementing a block already having 254 references (slab %u, offset %u)", 1445 slab->slab_number, block_number); 1446 } 1447 (*counter_ptr)++; 1448 } 1449 1450 if (lock != NULL) 1451 vdo_unassign_pbn_lock_provisional_reference(lock); 1452 return VDO_SUCCESS; 1453 } 1454 1455 /** 1456 * decrement_for_data() - Decrement the reference count for a data block. 1457 * @slab: The slab which owns the block. 1458 * @block: The reference block which contains the block being updated. 1459 * @block_number: The block to update. 1460 * @old_status: The reference status of the data block before this decrement. 1461 * @updater: The reference updater doing this operation in case we need to look up the pbn lock. 1462 * @counter_ptr: A pointer to the count for the data block (in, out). 1463 * @adjust_block_count: Whether to update the allocator's free block count. 1464 * 1465 * Return: VDO_SUCCESS or an error. 1466 */ 1467 static int decrement_for_data(struct vdo_slab *slab, struct reference_block *block, 1468 slab_block_number block_number, 1469 enum reference_status old_status, 1470 struct reference_updater *updater, 1471 vdo_refcount_t *counter_ptr, bool adjust_block_count) 1472 { 1473 switch (old_status) { 1474 case RS_FREE: 1475 return vdo_log_error_strerror(VDO_REF_COUNT_INVALID, 1476 "Decrementing free block at offset %u in slab %u", 1477 block_number, slab->slab_number); 1478 1479 case RS_PROVISIONAL: 1480 case RS_SINGLE: 1481 if (updater->zpbn.zone != NULL) { 1482 struct pbn_lock *lock = vdo_get_physical_zone_pbn_lock(updater->zpbn.zone, 1483 updater->zpbn.pbn); 1484 1485 if (lock != NULL) { 1486 /* 1487 * There is a read lock on this block, so the block must not become 1488 * unreferenced. 1489 */ 1490 *counter_ptr = PROVISIONAL_REFERENCE_COUNT; 1491 vdo_assign_pbn_lock_provisional_reference(lock); 1492 break; 1493 } 1494 } 1495 1496 *counter_ptr = EMPTY_REFERENCE_COUNT; 1497 block->allocated_count--; 1498 slab->free_blocks++; 1499 if (adjust_block_count) 1500 adjust_free_block_count(slab, true); 1501 1502 break; 1503 1504 default: 1505 /* Shared */ 1506 (*counter_ptr)--; 1507 } 1508 1509 return VDO_SUCCESS; 1510 } 1511 1512 /** 1513 * increment_for_block_map() - Increment the reference count for a block map page. 1514 * @slab: The slab which owns the block. 1515 * @block: The reference block which contains the block being updated. 1516 * @block_number: The block to update. 1517 * @old_status: The reference status of the block before this increment. 1518 * @lock: The pbn_lock associated with this increment (may be NULL). 1519 * @normal_operation: Whether we are in normal operation vs. recovery or rebuild. 1520 * @counter_ptr: A pointer to the count for the block (in, out). 1521 * @adjust_block_count: Whether to update the allocator's free block count. 1522 * 1523 * All block map increments should be from provisional to MAXIMUM_REFERENCE_COUNT. Since block map 1524 * blocks never dedupe they should never be adjusted from any other state. The adjustment always 1525 * results in MAXIMUM_REFERENCE_COUNT as this value is used to prevent dedupe against block map 1526 * blocks. 1527 * 1528 * Return: VDO_SUCCESS or an error. 1529 */ 1530 static int increment_for_block_map(struct vdo_slab *slab, struct reference_block *block, 1531 slab_block_number block_number, 1532 enum reference_status old_status, 1533 struct pbn_lock *lock, bool normal_operation, 1534 vdo_refcount_t *counter_ptr, bool adjust_block_count) 1535 { 1536 switch (old_status) { 1537 case RS_FREE: 1538 if (normal_operation) { 1539 return vdo_log_error_strerror(VDO_REF_COUNT_INVALID, 1540 "Incrementing unallocated block map block (slab %u, offset %u)", 1541 slab->slab_number, block_number); 1542 } 1543 1544 *counter_ptr = MAXIMUM_REFERENCE_COUNT; 1545 block->allocated_count++; 1546 slab->free_blocks--; 1547 if (adjust_block_count) 1548 adjust_free_block_count(slab, false); 1549 1550 return VDO_SUCCESS; 1551 1552 case RS_PROVISIONAL: 1553 if (!normal_operation) 1554 return vdo_log_error_strerror(VDO_REF_COUNT_INVALID, 1555 "Block map block had provisional reference during replay (slab %u, offset %u)", 1556 slab->slab_number, block_number); 1557 1558 *counter_ptr = MAXIMUM_REFERENCE_COUNT; 1559 if (lock != NULL) 1560 vdo_unassign_pbn_lock_provisional_reference(lock); 1561 return VDO_SUCCESS; 1562 1563 default: 1564 return vdo_log_error_strerror(VDO_REF_COUNT_INVALID, 1565 "Incrementing a block map block which is already referenced %u times (slab %u, offset %u)", 1566 *counter_ptr, slab->slab_number, 1567 block_number); 1568 } 1569 } 1570 1571 static bool __must_check is_valid_journal_point(const struct journal_point *point) 1572 { 1573 return ((point != NULL) && (point->sequence_number > 0)); 1574 } 1575 1576 /** 1577 * update_reference_count() - Update the reference count of a block. 1578 * @slab: The slab which owns the block. 1579 * @block: The reference block which contains the block being updated. 1580 * @block_number: The block to update. 1581 * @slab_journal_point: The slab journal point at which this update is journaled. 1582 * @updater: The reference updater. 1583 * @normal_operation: Whether we are in normal operation vs. recovery or rebuild. 1584 * @adjust_block_count: Whether to update the slab's free block count. 1585 * @provisional_decrement_ptr: A pointer which will be set to true if this update was a decrement 1586 * of a provisional reference. 1587 * 1588 * Return: VDO_SUCCESS or an error. 1589 */ 1590 static int update_reference_count(struct vdo_slab *slab, struct reference_block *block, 1591 slab_block_number block_number, 1592 const struct journal_point *slab_journal_point, 1593 struct reference_updater *updater, 1594 bool normal_operation, bool adjust_block_count, 1595 bool *provisional_decrement_ptr) 1596 { 1597 vdo_refcount_t *counter_ptr = &slab->counters[block_number]; 1598 enum reference_status old_status = reference_count_to_status(*counter_ptr); 1599 int result; 1600 1601 if (!updater->increment) { 1602 result = decrement_for_data(slab, block, block_number, old_status, 1603 updater, counter_ptr, adjust_block_count); 1604 if ((result == VDO_SUCCESS) && (old_status == RS_PROVISIONAL)) { 1605 if (provisional_decrement_ptr != NULL) 1606 *provisional_decrement_ptr = true; 1607 return VDO_SUCCESS; 1608 } 1609 } else if (updater->operation == VDO_JOURNAL_DATA_REMAPPING) { 1610 result = increment_for_data(slab, block, block_number, old_status, 1611 updater->lock, counter_ptr, adjust_block_count); 1612 } else { 1613 result = increment_for_block_map(slab, block, block_number, old_status, 1614 updater->lock, normal_operation, 1615 counter_ptr, adjust_block_count); 1616 } 1617 1618 if (result != VDO_SUCCESS) 1619 return result; 1620 1621 if (is_valid_journal_point(slab_journal_point)) 1622 slab->slab_journal_point = *slab_journal_point; 1623 1624 return VDO_SUCCESS; 1625 } 1626 1627 static int __must_check adjust_reference_count(struct vdo_slab *slab, 1628 struct reference_updater *updater, 1629 const struct journal_point *slab_journal_point) 1630 { 1631 slab_block_number block_number; 1632 int result; 1633 struct reference_block *block; 1634 bool provisional_decrement = false; 1635 1636 if (!is_slab_open(slab)) 1637 return VDO_INVALID_ADMIN_STATE; 1638 1639 result = slab_block_number_from_pbn(slab, updater->zpbn.pbn, &block_number); 1640 if (result != VDO_SUCCESS) 1641 return result; 1642 1643 block = get_reference_block(slab, block_number); 1644 result = update_reference_count(slab, block, block_number, slab_journal_point, 1645 updater, NORMAL_OPERATION, true, 1646 &provisional_decrement); 1647 if ((result != VDO_SUCCESS) || provisional_decrement) 1648 return result; 1649 1650 if (block->is_dirty && (block->slab_journal_lock > 0)) { 1651 sequence_number_t entry_lock = slab_journal_point->sequence_number; 1652 /* 1653 * This block is already dirty and a slab journal entry has been made for it since 1654 * the last time it was clean. We must release the per-entry slab journal lock for 1655 * the entry associated with the update we are now doing. 1656 */ 1657 result = VDO_ASSERT(is_valid_journal_point(slab_journal_point), 1658 "Reference count adjustments need slab journal points."); 1659 if (result != VDO_SUCCESS) 1660 return result; 1661 1662 adjust_slab_journal_block_reference(&slab->journal, entry_lock, -1); 1663 return VDO_SUCCESS; 1664 } 1665 1666 /* 1667 * This may be the first time we are applying an update for which there is a slab journal 1668 * entry to this block since the block was cleaned. Therefore, we convert the per-entry 1669 * slab journal lock to an uncommitted reference block lock, if there is a per-entry lock. 1670 */ 1671 if (is_valid_journal_point(slab_journal_point)) 1672 block->slab_journal_lock = slab_journal_point->sequence_number; 1673 else 1674 block->slab_journal_lock = 0; 1675 1676 dirty_block(block); 1677 return VDO_SUCCESS; 1678 } 1679 1680 /** 1681 * add_entry_from_waiter() - Add an entry to the slab journal. 1682 * @waiter: The vio which should make an entry now. 1683 * @context: The slab journal to make an entry in. 1684 * 1685 * This callback is invoked by add_entries() once it has determined that we are ready to make 1686 * another entry in the slab journal. Implements waiter_callback_fn. 1687 */ 1688 static void add_entry_from_waiter(struct vdo_waiter *waiter, void *context) 1689 { 1690 int result; 1691 struct reference_updater *updater = 1692 container_of(waiter, struct reference_updater, waiter); 1693 struct data_vio *data_vio = data_vio_from_reference_updater(updater); 1694 struct slab_journal *journal = context; 1695 struct slab_journal_block_header *header = &journal->tail_header; 1696 struct journal_point slab_journal_point = { 1697 .sequence_number = header->sequence_number, 1698 .entry_count = header->entry_count, 1699 }; 1700 sequence_number_t recovery_block = data_vio->recovery_journal_point.sequence_number; 1701 1702 if (header->entry_count == 0) { 1703 /* 1704 * This is the first entry in the current tail block, so get a lock on the recovery 1705 * journal which we will hold until this tail block is committed. 1706 */ 1707 get_lock(journal, header->sequence_number)->recovery_start = recovery_block; 1708 if (journal->recovery_journal != NULL) { 1709 zone_count_t zone_number = journal->slab->allocator->zone_number; 1710 1711 vdo_acquire_recovery_journal_block_reference(journal->recovery_journal, 1712 recovery_block, 1713 VDO_ZONE_TYPE_PHYSICAL, 1714 zone_number); 1715 } 1716 1717 mark_slab_journal_dirty(journal, recovery_block); 1718 reclaim_journal_space(journal); 1719 } 1720 1721 add_entry(journal, updater->zpbn.pbn, updater->operation, updater->increment, 1722 expand_journal_point(data_vio->recovery_journal_point, 1723 updater->increment)); 1724 1725 if (journal->slab->status != VDO_SLAB_REBUILT) { 1726 /* 1727 * If the slab is unrecovered, scrubbing will take care of the count since the 1728 * update is now recorded in the journal. 1729 */ 1730 adjust_slab_journal_block_reference(journal, 1731 slab_journal_point.sequence_number, -1); 1732 result = VDO_SUCCESS; 1733 } else { 1734 /* Now that an entry has been made in the slab journal, update the counter. */ 1735 result = adjust_reference_count(journal->slab, updater, 1736 &slab_journal_point); 1737 } 1738 1739 if (updater->increment) 1740 continue_data_vio_with_error(data_vio, result); 1741 else 1742 vdo_continue_completion(&data_vio->decrement_completion, result); 1743 } 1744 1745 /** 1746 * is_next_entry_a_block_map_increment() - Check whether the next entry to be made is a block map 1747 * increment. 1748 * @journal: The journal. 1749 * 1750 * Return: true if the first entry waiter's operation is a block map increment. 1751 */ 1752 static inline bool is_next_entry_a_block_map_increment(struct slab_journal *journal) 1753 { 1754 struct vdo_waiter *waiter = vdo_waitq_get_first_waiter(&journal->entry_waiters); 1755 struct reference_updater *updater = 1756 container_of(waiter, struct reference_updater, waiter); 1757 1758 return (updater->operation == VDO_JOURNAL_BLOCK_MAP_REMAPPING); 1759 } 1760 1761 /** 1762 * add_entries() - Add as many entries as possible from the queue of vios waiting to make entries. 1763 * @journal: The journal to which entries may be added. 1764 * 1765 * By processing the queue in order, we ensure that slab journal entries are made in the same order 1766 * as recovery journal entries for the same increment or decrement. 1767 */ 1768 static void add_entries(struct slab_journal *journal) 1769 { 1770 if (journal->adding_entries) { 1771 /* Protect against re-entrancy. */ 1772 return; 1773 } 1774 1775 journal->adding_entries = true; 1776 while (vdo_waitq_has_waiters(&journal->entry_waiters)) { 1777 struct slab_journal_block_header *header = &journal->tail_header; 1778 1779 if (journal->partial_write_in_progress || 1780 (journal->slab->status == VDO_SLAB_REBUILDING)) { 1781 /* 1782 * Don't add entries while rebuilding or while a partial write is 1783 * outstanding, as it could result in reference count corruption. 1784 */ 1785 break; 1786 } 1787 1788 if (journal->waiting_to_commit) { 1789 /* 1790 * If we are waiting for resources to write the tail block, and the tail 1791 * block is full, we can't make another entry. 1792 */ 1793 WRITE_ONCE(journal->events->tail_busy_count, 1794 journal->events->tail_busy_count + 1); 1795 break; 1796 } else if (is_next_entry_a_block_map_increment(journal) && 1797 (header->entry_count >= journal->full_entries_per_block)) { 1798 /* 1799 * The tail block does not have room for a block map increment, so commit 1800 * it now. 1801 */ 1802 commit_tail(journal); 1803 if (journal->waiting_to_commit) { 1804 WRITE_ONCE(journal->events->tail_busy_count, 1805 journal->events->tail_busy_count + 1); 1806 break; 1807 } 1808 } 1809 1810 /* If the slab is over the blocking threshold, make the vio wait. */ 1811 if (requires_reaping(journal)) { 1812 WRITE_ONCE(journal->events->blocked_count, 1813 journal->events->blocked_count + 1); 1814 save_dirty_reference_blocks(journal->slab); 1815 break; 1816 } 1817 1818 if (header->entry_count == 0) { 1819 struct journal_lock *lock = 1820 get_lock(journal, header->sequence_number); 1821 1822 /* 1823 * Check if the on disk slab journal is full. Because of the blocking and 1824 * scrubbing thresholds, this should never happen. 1825 */ 1826 if (lock->count > 0) { 1827 VDO_ASSERT_LOG_ONLY((journal->head + journal->size) == journal->tail, 1828 "New block has locks, but journal is not full"); 1829 1830 /* 1831 * The blocking threshold must let the journal fill up if the new 1832 * block has locks; if the blocking threshold is smaller than the 1833 * journal size, the new block cannot possibly have locks already. 1834 */ 1835 VDO_ASSERT_LOG_ONLY((journal->blocking_threshold >= journal->size), 1836 "New block can have locks already iff blocking threshold is at the end of the journal"); 1837 1838 WRITE_ONCE(journal->events->disk_full_count, 1839 journal->events->disk_full_count + 1); 1840 save_dirty_reference_blocks(journal->slab); 1841 break; 1842 } 1843 1844 /* 1845 * Don't allow the new block to be reaped until all of the reference count 1846 * blocks are written and the journal block has been fully committed as 1847 * well. 1848 */ 1849 lock->count = journal->entries_per_block + 1; 1850 1851 if (header->sequence_number == 1) { 1852 struct vdo_slab *slab = journal->slab; 1853 block_count_t i; 1854 1855 /* 1856 * This is the first entry in this slab journal, ever. Dirty all of 1857 * the reference count blocks. Each will acquire a lock on the tail 1858 * block so that the journal won't be reaped until the reference 1859 * counts are initialized. The lock acquisition must be done by the 1860 * ref_counts since here we don't know how many reference blocks 1861 * the ref_counts has. 1862 */ 1863 for (i = 0; i < slab->reference_block_count; i++) { 1864 slab->reference_blocks[i].slab_journal_lock = 1; 1865 dirty_block(&slab->reference_blocks[i]); 1866 } 1867 1868 adjust_slab_journal_block_reference(journal, 1, 1869 slab->reference_block_count); 1870 } 1871 } 1872 1873 vdo_waitq_notify_next_waiter(&journal->entry_waiters, 1874 add_entry_from_waiter, journal); 1875 } 1876 1877 journal->adding_entries = false; 1878 1879 /* If there are no waiters, and we are flushing or saving, commit the tail block. */ 1880 if (vdo_is_state_draining(&journal->slab->state) && 1881 !vdo_is_state_suspending(&journal->slab->state) && 1882 !vdo_waitq_has_waiters(&journal->entry_waiters)) 1883 commit_tail(journal); 1884 } 1885 1886 /** 1887 * reset_search_cursor() - Reset the free block search back to the first reference counter in the 1888 * first reference block of a slab. 1889 */ 1890 static void reset_search_cursor(struct vdo_slab *slab) 1891 { 1892 struct search_cursor *cursor = &slab->search_cursor; 1893 1894 cursor->block = cursor->first_block; 1895 cursor->index = 0; 1896 /* Unit tests have slabs with only one reference block (and it's a runt). */ 1897 cursor->end_index = min_t(u32, COUNTS_PER_BLOCK, slab->block_count); 1898 } 1899 1900 /** 1901 * advance_search_cursor() - Advance the search cursor to the start of the next reference block in 1902 * a slab, 1903 * 1904 * Wraps around to the first reference block if the current block is the last reference block. 1905 * 1906 * Return: true unless the cursor was at the last reference block. 1907 */ 1908 static bool advance_search_cursor(struct vdo_slab *slab) 1909 { 1910 struct search_cursor *cursor = &slab->search_cursor; 1911 1912 /* 1913 * If we just finished searching the last reference block, then wrap back around to the 1914 * start of the array. 1915 */ 1916 if (cursor->block == cursor->last_block) { 1917 reset_search_cursor(slab); 1918 return false; 1919 } 1920 1921 /* We're not already at the end, so advance to cursor to the next block. */ 1922 cursor->block++; 1923 cursor->index = cursor->end_index; 1924 1925 if (cursor->block == cursor->last_block) { 1926 /* The last reference block will usually be a runt. */ 1927 cursor->end_index = slab->block_count; 1928 } else { 1929 cursor->end_index += COUNTS_PER_BLOCK; 1930 } 1931 1932 return true; 1933 } 1934 1935 /** 1936 * vdo_adjust_reference_count_for_rebuild() - Adjust the reference count of a block during rebuild. 1937 * 1938 * Return: VDO_SUCCESS or an error. 1939 */ 1940 int vdo_adjust_reference_count_for_rebuild(struct slab_depot *depot, 1941 physical_block_number_t pbn, 1942 enum journal_operation operation) 1943 { 1944 int result; 1945 slab_block_number block_number; 1946 struct reference_block *block; 1947 struct vdo_slab *slab = vdo_get_slab(depot, pbn); 1948 struct reference_updater updater = { 1949 .operation = operation, 1950 .increment = true, 1951 }; 1952 1953 result = slab_block_number_from_pbn(slab, pbn, &block_number); 1954 if (result != VDO_SUCCESS) 1955 return result; 1956 1957 block = get_reference_block(slab, block_number); 1958 result = update_reference_count(slab, block, block_number, NULL, 1959 &updater, !NORMAL_OPERATION, false, NULL); 1960 if (result != VDO_SUCCESS) 1961 return result; 1962 1963 dirty_block(block); 1964 return VDO_SUCCESS; 1965 } 1966 1967 /** 1968 * replay_reference_count_change() - Replay the reference count adjustment from a slab journal 1969 * entry into the reference count for a block. 1970 * @slab: The slab. 1971 * @entry_point: The slab journal point for the entry. 1972 * @entry: The slab journal entry being replayed. 1973 * 1974 * The adjustment will be ignored if it was already recorded in the reference count. 1975 * 1976 * Return: VDO_SUCCESS or an error code. 1977 */ 1978 static int replay_reference_count_change(struct vdo_slab *slab, 1979 const struct journal_point *entry_point, 1980 struct slab_journal_entry entry) 1981 { 1982 int result; 1983 struct reference_block *block = get_reference_block(slab, entry.sbn); 1984 sector_count_t sector = (entry.sbn % COUNTS_PER_BLOCK) / COUNTS_PER_SECTOR; 1985 struct reference_updater updater = { 1986 .operation = entry.operation, 1987 .increment = entry.increment, 1988 }; 1989 1990 if (!vdo_before_journal_point(&block->commit_points[sector], entry_point)) { 1991 /* This entry is already reflected in the existing counts, so do nothing. */ 1992 return VDO_SUCCESS; 1993 } 1994 1995 /* This entry is not yet counted in the reference counts. */ 1996 result = update_reference_count(slab, block, entry.sbn, entry_point, 1997 &updater, !NORMAL_OPERATION, false, NULL); 1998 if (result != VDO_SUCCESS) 1999 return result; 2000 2001 dirty_block(block); 2002 return VDO_SUCCESS; 2003 } 2004 2005 /** 2006 * find_zero_byte_in_word() - Find the array index of the first zero byte in word-sized range of 2007 * reference counters. 2008 * @word_ptr: A pointer to the eight counter bytes to check. 2009 * @start_index: The array index corresponding to word_ptr[0]. 2010 * @fail_index: The array index to return if no zero byte is found. 2011 * 2012 * The search does no bounds checking; the function relies on the array being sufficiently padded. 2013 * 2014 * Return: The array index of the first zero byte in the word, or the value passed as fail_index if 2015 * no zero byte was found. 2016 */ 2017 static inline slab_block_number find_zero_byte_in_word(const u8 *word_ptr, 2018 slab_block_number start_index, 2019 slab_block_number fail_index) 2020 { 2021 u64 word = get_unaligned_le64(word_ptr); 2022 2023 /* This looks like a loop, but GCC will unroll the eight iterations for us. */ 2024 unsigned int offset; 2025 2026 for (offset = 0; offset < BYTES_PER_WORD; offset++) { 2027 /* Assumes little-endian byte order, which we have on X86. */ 2028 if ((word & 0xFF) == 0) 2029 return (start_index + offset); 2030 word >>= 8; 2031 } 2032 2033 return fail_index; 2034 } 2035 2036 /** 2037 * find_free_block() - Find the first block with a reference count of zero in the specified 2038 * range of reference counter indexes. 2039 * @slab: The slab counters to scan. 2040 * @index_ptr: A pointer to hold the array index of the free block. 2041 * 2042 * Exposed for unit testing. 2043 * 2044 * Return: true if a free block was found in the specified range. 2045 */ 2046 static bool find_free_block(const struct vdo_slab *slab, slab_block_number *index_ptr) 2047 { 2048 slab_block_number zero_index; 2049 slab_block_number next_index = slab->search_cursor.index; 2050 slab_block_number end_index = slab->search_cursor.end_index; 2051 u8 *next_counter = &slab->counters[next_index]; 2052 u8 *end_counter = &slab->counters[end_index]; 2053 2054 /* 2055 * Search every byte of the first unaligned word. (Array is padded so reading past end is 2056 * safe.) 2057 */ 2058 zero_index = find_zero_byte_in_word(next_counter, next_index, end_index); 2059 if (zero_index < end_index) { 2060 *index_ptr = zero_index; 2061 return true; 2062 } 2063 2064 /* 2065 * On architectures where unaligned word access is expensive, this would be a good place to 2066 * advance to an alignment boundary. 2067 */ 2068 next_index += BYTES_PER_WORD; 2069 next_counter += BYTES_PER_WORD; 2070 2071 /* 2072 * Now we're word-aligned; check an word at a time until we find a word containing a zero. 2073 * (Array is padded so reading past end is safe.) 2074 */ 2075 while (next_counter < end_counter) { 2076 /* 2077 * The following code is currently an exact copy of the code preceding the loop, 2078 * but if you try to merge them by using a do loop, it runs slower because a jump 2079 * instruction gets added at the start of the iteration. 2080 */ 2081 zero_index = find_zero_byte_in_word(next_counter, next_index, end_index); 2082 if (zero_index < end_index) { 2083 *index_ptr = zero_index; 2084 return true; 2085 } 2086 2087 next_index += BYTES_PER_WORD; 2088 next_counter += BYTES_PER_WORD; 2089 } 2090 2091 return false; 2092 } 2093 2094 /** 2095 * search_current_reference_block() - Search the reference block currently saved in the search 2096 * cursor for a reference count of zero, starting at the saved 2097 * counter index. 2098 * @slab: The slab to search. 2099 * @free_index_ptr: A pointer to receive the array index of the zero reference count. 2100 * 2101 * Return: true if an unreferenced counter was found. 2102 */ 2103 static bool search_current_reference_block(const struct vdo_slab *slab, 2104 slab_block_number *free_index_ptr) 2105 { 2106 /* Don't bother searching if the current block is known to be full. */ 2107 return ((slab->search_cursor.block->allocated_count < COUNTS_PER_BLOCK) && 2108 find_free_block(slab, free_index_ptr)); 2109 } 2110 2111 /** 2112 * search_reference_blocks() - Search each reference block for a reference count of zero. 2113 * @slab: The slab to search. 2114 * @free_index_ptr: A pointer to receive the array index of the zero reference count. 2115 * 2116 * Searches each reference block for a reference count of zero, starting at the reference block and 2117 * counter index saved in the search cursor and searching up to the end of the last reference 2118 * block. The search does not wrap. 2119 * 2120 * Return: true if an unreferenced counter was found. 2121 */ 2122 static bool search_reference_blocks(struct vdo_slab *slab, 2123 slab_block_number *free_index_ptr) 2124 { 2125 /* Start searching at the saved search position in the current block. */ 2126 if (search_current_reference_block(slab, free_index_ptr)) 2127 return true; 2128 2129 /* Search each reference block up to the end of the slab. */ 2130 while (advance_search_cursor(slab)) { 2131 if (search_current_reference_block(slab, free_index_ptr)) 2132 return true; 2133 } 2134 2135 return false; 2136 } 2137 2138 /** 2139 * make_provisional_reference() - Do the bookkeeping for making a provisional reference. 2140 */ 2141 static void make_provisional_reference(struct vdo_slab *slab, 2142 slab_block_number block_number) 2143 { 2144 struct reference_block *block = get_reference_block(slab, block_number); 2145 2146 /* 2147 * Make the initial transition from an unreferenced block to a 2148 * provisionally allocated block. 2149 */ 2150 slab->counters[block_number] = PROVISIONAL_REFERENCE_COUNT; 2151 2152 /* Account for the allocation. */ 2153 block->allocated_count++; 2154 slab->free_blocks--; 2155 } 2156 2157 /** 2158 * dirty_all_reference_blocks() - Mark all reference count blocks in a slab as dirty. 2159 */ 2160 static void dirty_all_reference_blocks(struct vdo_slab *slab) 2161 { 2162 block_count_t i; 2163 2164 for (i = 0; i < slab->reference_block_count; i++) 2165 dirty_block(&slab->reference_blocks[i]); 2166 } 2167 2168 /** 2169 * clear_provisional_references() - Clear the provisional reference counts from a reference block. 2170 * @block: The block to clear. 2171 */ 2172 static void clear_provisional_references(struct reference_block *block) 2173 { 2174 vdo_refcount_t *counters = get_reference_counters_for_block(block); 2175 block_count_t j; 2176 2177 for (j = 0; j < COUNTS_PER_BLOCK; j++) { 2178 if (counters[j] == PROVISIONAL_REFERENCE_COUNT) { 2179 counters[j] = EMPTY_REFERENCE_COUNT; 2180 block->allocated_count--; 2181 } 2182 } 2183 } 2184 2185 static inline bool journal_points_equal(struct journal_point first, 2186 struct journal_point second) 2187 { 2188 return ((first.sequence_number == second.sequence_number) && 2189 (first.entry_count == second.entry_count)); 2190 } 2191 2192 /** 2193 * unpack_reference_block() - Unpack reference counts blocks into the internal memory structure. 2194 * @packed: The written reference block to be unpacked. 2195 * @block: The internal reference block to be loaded. 2196 */ 2197 static void unpack_reference_block(struct packed_reference_block *packed, 2198 struct reference_block *block) 2199 { 2200 block_count_t index; 2201 sector_count_t i; 2202 struct vdo_slab *slab = block->slab; 2203 vdo_refcount_t *counters = get_reference_counters_for_block(block); 2204 2205 for (i = 0; i < VDO_SECTORS_PER_BLOCK; i++) { 2206 struct packed_reference_sector *sector = &packed->sectors[i]; 2207 2208 vdo_unpack_journal_point(§or->commit_point, &block->commit_points[i]); 2209 memcpy(counters + (i * COUNTS_PER_SECTOR), sector->counts, 2210 (sizeof(vdo_refcount_t) * COUNTS_PER_SECTOR)); 2211 /* The slab_journal_point must be the latest point found in any sector. */ 2212 if (vdo_before_journal_point(&slab->slab_journal_point, 2213 &block->commit_points[i])) 2214 slab->slab_journal_point = block->commit_points[i]; 2215 2216 if ((i > 0) && 2217 !journal_points_equal(block->commit_points[0], 2218 block->commit_points[i])) { 2219 size_t block_index = block - block->slab->reference_blocks; 2220 2221 vdo_log_warning("Torn write detected in sector %u of reference block %zu of slab %u", 2222 i, block_index, block->slab->slab_number); 2223 } 2224 } 2225 2226 block->allocated_count = 0; 2227 for (index = 0; index < COUNTS_PER_BLOCK; index++) { 2228 if (counters[index] != EMPTY_REFERENCE_COUNT) 2229 block->allocated_count++; 2230 } 2231 } 2232 2233 /** 2234 * finish_reference_block_load() - After a reference block has been read, unpack it. 2235 * @completion: The VIO that just finished reading. 2236 */ 2237 static void finish_reference_block_load(struct vdo_completion *completion) 2238 { 2239 struct vio *vio = as_vio(completion); 2240 struct pooled_vio *pooled = vio_as_pooled_vio(vio); 2241 struct reference_block *block = completion->parent; 2242 struct vdo_slab *slab = block->slab; 2243 2244 unpack_reference_block((struct packed_reference_block *) vio->data, block); 2245 return_vio_to_pool(slab->allocator->vio_pool, pooled); 2246 slab->active_count--; 2247 clear_provisional_references(block); 2248 2249 slab->free_blocks -= block->allocated_count; 2250 check_if_slab_drained(slab); 2251 } 2252 2253 static void load_reference_block_endio(struct bio *bio) 2254 { 2255 struct vio *vio = bio->bi_private; 2256 struct reference_block *block = vio->completion.parent; 2257 2258 continue_vio_after_io(vio, finish_reference_block_load, 2259 block->slab->allocator->thread_id); 2260 } 2261 2262 /** 2263 * load_reference_block() - After a block waiter has gotten a VIO from the VIO pool, load the 2264 * block. 2265 * @waiter: The waiter of the block to load. 2266 * @context: The VIO returned by the pool. 2267 */ 2268 static void load_reference_block(struct vdo_waiter *waiter, void *context) 2269 { 2270 struct pooled_vio *pooled = context; 2271 struct vio *vio = &pooled->vio; 2272 struct reference_block *block = 2273 container_of(waiter, struct reference_block, waiter); 2274 size_t block_offset = (block - block->slab->reference_blocks); 2275 2276 vio->completion.parent = block; 2277 vdo_submit_metadata_vio(vio, block->slab->ref_counts_origin + block_offset, 2278 load_reference_block_endio, handle_io_error, 2279 REQ_OP_READ); 2280 } 2281 2282 /** 2283 * load_reference_blocks() - Load a slab's reference blocks from the underlying storage into a 2284 * pre-allocated reference counter. 2285 */ 2286 static void load_reference_blocks(struct vdo_slab *slab) 2287 { 2288 block_count_t i; 2289 2290 slab->free_blocks = slab->block_count; 2291 slab->active_count = slab->reference_block_count; 2292 for (i = 0; i < slab->reference_block_count; i++) { 2293 struct vdo_waiter *waiter = &slab->reference_blocks[i].waiter; 2294 2295 waiter->callback = load_reference_block; 2296 acquire_vio_from_pool(slab->allocator->vio_pool, waiter); 2297 } 2298 } 2299 2300 /** 2301 * drain_slab() - Drain all reference count I/O. 2302 * 2303 * Depending upon the type of drain being performed (as recorded in the ref_count's vdo_slab), the 2304 * reference blocks may be loaded from disk or dirty reference blocks may be written out. 2305 */ 2306 static void drain_slab(struct vdo_slab *slab) 2307 { 2308 bool save; 2309 bool load; 2310 const struct admin_state_code *state = vdo_get_admin_state_code(&slab->state); 2311 2312 if (state == VDO_ADMIN_STATE_SUSPENDING) 2313 return; 2314 2315 if ((state != VDO_ADMIN_STATE_REBUILDING) && 2316 (state != VDO_ADMIN_STATE_SAVE_FOR_SCRUBBING)) 2317 commit_tail(&slab->journal); 2318 2319 if ((state == VDO_ADMIN_STATE_RECOVERING) || (slab->counters == NULL)) 2320 return; 2321 2322 save = false; 2323 load = slab->allocator->summary_entries[slab->slab_number].load_ref_counts; 2324 if (state == VDO_ADMIN_STATE_SCRUBBING) { 2325 if (load) { 2326 load_reference_blocks(slab); 2327 return; 2328 } 2329 } else if (state == VDO_ADMIN_STATE_SAVE_FOR_SCRUBBING) { 2330 if (!load) { 2331 /* These reference counts were never written, so mark them all dirty. */ 2332 dirty_all_reference_blocks(slab); 2333 } 2334 save = true; 2335 } else if (state == VDO_ADMIN_STATE_REBUILDING) { 2336 /* 2337 * Write out the counters if the slab has written them before, or it has any 2338 * non-zero reference counts, or there are any slab journal blocks. 2339 */ 2340 block_count_t data_blocks = slab->allocator->depot->slab_config.data_blocks; 2341 2342 if (load || (slab->free_blocks != data_blocks) || 2343 !is_slab_journal_blank(slab)) { 2344 dirty_all_reference_blocks(slab); 2345 save = true; 2346 } 2347 } else if (state == VDO_ADMIN_STATE_SAVING) { 2348 save = (slab->status == VDO_SLAB_REBUILT); 2349 } else { 2350 vdo_finish_draining_with_result(&slab->state, VDO_SUCCESS); 2351 return; 2352 } 2353 2354 if (save) 2355 save_dirty_reference_blocks(slab); 2356 } 2357 2358 static int allocate_slab_counters(struct vdo_slab *slab) 2359 { 2360 int result; 2361 size_t index, bytes; 2362 2363 result = VDO_ASSERT(slab->reference_blocks == NULL, 2364 "vdo_slab %u doesn't allocate refcounts twice", 2365 slab->slab_number); 2366 if (result != VDO_SUCCESS) 2367 return result; 2368 2369 result = vdo_allocate(slab->reference_block_count, struct reference_block, 2370 __func__, &slab->reference_blocks); 2371 if (result != VDO_SUCCESS) 2372 return result; 2373 2374 /* 2375 * Allocate such that the runt slab has a full-length memory array, plus a little padding 2376 * so we can word-search even at the very end. 2377 */ 2378 bytes = (slab->reference_block_count * COUNTS_PER_BLOCK) + (2 * BYTES_PER_WORD); 2379 result = vdo_allocate(bytes, vdo_refcount_t, "ref counts array", 2380 &slab->counters); 2381 if (result != VDO_SUCCESS) { 2382 vdo_free(vdo_forget(slab->reference_blocks)); 2383 return result; 2384 } 2385 2386 slab->search_cursor.first_block = slab->reference_blocks; 2387 slab->search_cursor.last_block = &slab->reference_blocks[slab->reference_block_count - 1]; 2388 reset_search_cursor(slab); 2389 2390 for (index = 0; index < slab->reference_block_count; index++) { 2391 slab->reference_blocks[index] = (struct reference_block) { 2392 .slab = slab, 2393 }; 2394 } 2395 2396 return VDO_SUCCESS; 2397 } 2398 2399 static int allocate_counters_if_clean(struct vdo_slab *slab) 2400 { 2401 if (vdo_is_state_clean_load(&slab->state)) 2402 return allocate_slab_counters(slab); 2403 2404 return VDO_SUCCESS; 2405 } 2406 2407 static void finish_loading_journal(struct vdo_completion *completion) 2408 { 2409 struct vio *vio = as_vio(completion); 2410 struct slab_journal *journal = completion->parent; 2411 struct vdo_slab *slab = journal->slab; 2412 struct packed_slab_journal_block *block = (struct packed_slab_journal_block *) vio->data; 2413 struct slab_journal_block_header header; 2414 2415 vdo_unpack_slab_journal_block_header(&block->header, &header); 2416 2417 /* FIXME: should it be an error if the following conditional fails? */ 2418 if ((header.metadata_type == VDO_METADATA_SLAB_JOURNAL) && 2419 (header.nonce == slab->allocator->nonce)) { 2420 journal->tail = header.sequence_number + 1; 2421 2422 /* 2423 * If the slab is clean, this implies the slab journal is empty, so advance the 2424 * head appropriately. 2425 */ 2426 journal->head = (slab->allocator->summary_entries[slab->slab_number].is_dirty ? 2427 header.head : journal->tail); 2428 journal->tail_header = header; 2429 initialize_journal_state(journal); 2430 } 2431 2432 return_vio_to_pool(slab->allocator->vio_pool, vio_as_pooled_vio(vio)); 2433 vdo_finish_loading_with_result(&slab->state, allocate_counters_if_clean(slab)); 2434 } 2435 2436 static void read_slab_journal_tail_endio(struct bio *bio) 2437 { 2438 struct vio *vio = bio->bi_private; 2439 struct slab_journal *journal = vio->completion.parent; 2440 2441 continue_vio_after_io(vio, finish_loading_journal, 2442 journal->slab->allocator->thread_id); 2443 } 2444 2445 static void handle_load_error(struct vdo_completion *completion) 2446 { 2447 int result = completion->result; 2448 struct slab_journal *journal = completion->parent; 2449 struct vio *vio = as_vio(completion); 2450 2451 vio_record_metadata_io_error(vio); 2452 return_vio_to_pool(journal->slab->allocator->vio_pool, vio_as_pooled_vio(vio)); 2453 vdo_finish_loading_with_result(&journal->slab->state, result); 2454 } 2455 2456 /** 2457 * read_slab_journal_tail() - Read the slab journal tail block by using a vio acquired from the vio 2458 * pool. 2459 * @waiter: The vio pool waiter which has just been notified. 2460 * @context: The vio pool entry given to the waiter. 2461 * 2462 * This is the success callback from acquire_vio_from_pool() when loading a slab journal. 2463 */ 2464 static void read_slab_journal_tail(struct vdo_waiter *waiter, void *context) 2465 { 2466 struct slab_journal *journal = 2467 container_of(waiter, struct slab_journal, resource_waiter); 2468 struct vdo_slab *slab = journal->slab; 2469 struct pooled_vio *pooled = context; 2470 struct vio *vio = &pooled->vio; 2471 tail_block_offset_t last_commit_point = 2472 slab->allocator->summary_entries[slab->slab_number].tail_block_offset; 2473 2474 /* 2475 * Slab summary keeps the commit point offset, so the tail block is the block before that. 2476 * Calculation supports small journals in unit tests. 2477 */ 2478 tail_block_offset_t tail_block = ((last_commit_point == 0) ? 2479 (tail_block_offset_t)(journal->size - 1) : 2480 (last_commit_point - 1)); 2481 2482 vio->completion.parent = journal; 2483 vio->completion.callback_thread_id = slab->allocator->thread_id; 2484 vdo_submit_metadata_vio(vio, slab->journal_origin + tail_block, 2485 read_slab_journal_tail_endio, handle_load_error, 2486 REQ_OP_READ); 2487 } 2488 2489 /** 2490 * load_slab_journal() - Load a slab's journal by reading the journal's tail. 2491 */ 2492 static void load_slab_journal(struct vdo_slab *slab) 2493 { 2494 struct slab_journal *journal = &slab->journal; 2495 tail_block_offset_t last_commit_point; 2496 2497 last_commit_point = slab->allocator->summary_entries[slab->slab_number].tail_block_offset; 2498 if ((last_commit_point == 0) && 2499 !slab->allocator->summary_entries[slab->slab_number].load_ref_counts) { 2500 /* 2501 * This slab claims that it has a tail block at (journal->size - 1), but a head of 2502 * 1. This is impossible, due to the scrubbing threshold, on a real system, so 2503 * don't bother reading the (bogus) data off disk. 2504 */ 2505 VDO_ASSERT_LOG_ONLY(((journal->size < 16) || 2506 (journal->scrubbing_threshold < (journal->size - 1))), 2507 "Scrubbing threshold protects against reads of unwritten slab journal blocks"); 2508 vdo_finish_loading_with_result(&slab->state, 2509 allocate_counters_if_clean(slab)); 2510 return; 2511 } 2512 2513 journal->resource_waiter.callback = read_slab_journal_tail; 2514 acquire_vio_from_pool(slab->allocator->vio_pool, &journal->resource_waiter); 2515 } 2516 2517 static void register_slab_for_scrubbing(struct vdo_slab *slab, bool high_priority) 2518 { 2519 struct slab_scrubber *scrubber = &slab->allocator->scrubber; 2520 2521 VDO_ASSERT_LOG_ONLY((slab->status != VDO_SLAB_REBUILT), 2522 "slab to be scrubbed is unrecovered"); 2523 2524 if (slab->status != VDO_SLAB_REQUIRES_SCRUBBING) 2525 return; 2526 2527 list_del_init(&slab->allocq_entry); 2528 if (!slab->was_queued_for_scrubbing) { 2529 WRITE_ONCE(scrubber->slab_count, scrubber->slab_count + 1); 2530 slab->was_queued_for_scrubbing = true; 2531 } 2532 2533 if (high_priority) { 2534 slab->status = VDO_SLAB_REQUIRES_HIGH_PRIORITY_SCRUBBING; 2535 list_add_tail(&slab->allocq_entry, &scrubber->high_priority_slabs); 2536 return; 2537 } 2538 2539 list_add_tail(&slab->allocq_entry, &scrubber->slabs); 2540 } 2541 2542 /* Queue a slab for allocation or scrubbing. */ 2543 static void queue_slab(struct vdo_slab *slab) 2544 { 2545 struct block_allocator *allocator = slab->allocator; 2546 block_count_t free_blocks; 2547 int result; 2548 2549 VDO_ASSERT_LOG_ONLY(list_empty(&slab->allocq_entry), 2550 "a requeued slab must not already be on a ring"); 2551 2552 if (vdo_is_read_only(allocator->depot->vdo)) 2553 return; 2554 2555 free_blocks = slab->free_blocks; 2556 result = VDO_ASSERT((free_blocks <= allocator->depot->slab_config.data_blocks), 2557 "rebuilt slab %u must have a valid free block count (has %llu, expected maximum %llu)", 2558 slab->slab_number, (unsigned long long) free_blocks, 2559 (unsigned long long) allocator->depot->slab_config.data_blocks); 2560 if (result != VDO_SUCCESS) { 2561 vdo_enter_read_only_mode(allocator->depot->vdo, result); 2562 return; 2563 } 2564 2565 if (slab->status != VDO_SLAB_REBUILT) { 2566 register_slab_for_scrubbing(slab, false); 2567 return; 2568 } 2569 2570 if (!vdo_is_state_resuming(&slab->state)) { 2571 /* 2572 * If the slab is resuming, we've already accounted for it here, so don't do it 2573 * again. 2574 * FIXME: under what situation would the slab be resuming here? 2575 */ 2576 WRITE_ONCE(allocator->allocated_blocks, 2577 allocator->allocated_blocks - free_blocks); 2578 if (!is_slab_journal_blank(slab)) { 2579 WRITE_ONCE(allocator->statistics.slabs_opened, 2580 allocator->statistics.slabs_opened + 1); 2581 } 2582 } 2583 2584 if (allocator->depot->vdo->suspend_type == VDO_ADMIN_STATE_SAVING) 2585 reopen_slab_journal(slab); 2586 2587 prioritize_slab(slab); 2588 } 2589 2590 /** 2591 * initiate_slab_action() - Initiate a slab action. 2592 * 2593 * Implements vdo_admin_initiator_fn. 2594 */ 2595 static void initiate_slab_action(struct admin_state *state) 2596 { 2597 struct vdo_slab *slab = container_of(state, struct vdo_slab, state); 2598 2599 if (vdo_is_state_draining(state)) { 2600 const struct admin_state_code *operation = vdo_get_admin_state_code(state); 2601 2602 if (operation == VDO_ADMIN_STATE_SCRUBBING) 2603 slab->status = VDO_SLAB_REBUILDING; 2604 2605 drain_slab(slab); 2606 check_if_slab_drained(slab); 2607 return; 2608 } 2609 2610 if (vdo_is_state_loading(state)) { 2611 load_slab_journal(slab); 2612 return; 2613 } 2614 2615 if (vdo_is_state_resuming(state)) { 2616 queue_slab(slab); 2617 vdo_finish_resuming(state); 2618 return; 2619 } 2620 2621 vdo_finish_operation(state, VDO_INVALID_ADMIN_STATE); 2622 } 2623 2624 /** 2625 * get_next_slab() - Get the next slab to scrub. 2626 * @scrubber: The slab scrubber. 2627 * 2628 * Return: The next slab to scrub or NULL if there are none. 2629 */ 2630 static struct vdo_slab *get_next_slab(struct slab_scrubber *scrubber) 2631 { 2632 struct vdo_slab *slab; 2633 2634 slab = list_first_entry_or_null(&scrubber->high_priority_slabs, 2635 struct vdo_slab, allocq_entry); 2636 if (slab != NULL) 2637 return slab; 2638 2639 return list_first_entry_or_null(&scrubber->slabs, struct vdo_slab, 2640 allocq_entry); 2641 } 2642 2643 /** 2644 * has_slabs_to_scrub() - Check whether a scrubber has slabs to scrub. 2645 * @scrubber: The scrubber to check. 2646 * 2647 * Return: true if the scrubber has slabs to scrub. 2648 */ 2649 static inline bool __must_check has_slabs_to_scrub(struct slab_scrubber *scrubber) 2650 { 2651 return (get_next_slab(scrubber) != NULL); 2652 } 2653 2654 /** 2655 * uninitialize_scrubber_vio() - Clean up the slab_scrubber's vio. 2656 * @scrubber: The scrubber. 2657 */ 2658 static void uninitialize_scrubber_vio(struct slab_scrubber *scrubber) 2659 { 2660 vdo_free(vdo_forget(scrubber->vio.data)); 2661 free_vio_components(&scrubber->vio); 2662 } 2663 2664 /** 2665 * finish_scrubbing() - Stop scrubbing, either because there are no more slabs to scrub or because 2666 * there's been an error. 2667 * @scrubber: The scrubber. 2668 */ 2669 static void finish_scrubbing(struct slab_scrubber *scrubber, int result) 2670 { 2671 bool notify = vdo_waitq_has_waiters(&scrubber->waiters); 2672 bool done = !has_slabs_to_scrub(scrubber); 2673 struct block_allocator *allocator = 2674 container_of(scrubber, struct block_allocator, scrubber); 2675 2676 if (done) 2677 uninitialize_scrubber_vio(scrubber); 2678 2679 if (scrubber->high_priority_only) { 2680 scrubber->high_priority_only = false; 2681 vdo_fail_completion(vdo_forget(scrubber->vio.completion.parent), result); 2682 } else if (done && (atomic_add_return(-1, &allocator->depot->zones_to_scrub) == 0)) { 2683 /* All of our slabs were scrubbed, and we're the last allocator to finish. */ 2684 enum vdo_state prior_state = 2685 atomic_cmpxchg(&allocator->depot->vdo->state, VDO_RECOVERING, 2686 VDO_DIRTY); 2687 2688 /* 2689 * To be safe, even if the CAS failed, ensure anything that follows is ordered with 2690 * respect to whatever state change did happen. 2691 */ 2692 smp_mb__after_atomic(); 2693 2694 /* 2695 * We must check the VDO state here and not the depot's read_only_notifier since 2696 * the compare-swap-above could have failed due to a read-only entry which our own 2697 * thread does not yet know about. 2698 */ 2699 if (prior_state == VDO_DIRTY) 2700 vdo_log_info("VDO commencing normal operation"); 2701 else if (prior_state == VDO_RECOVERING) 2702 vdo_log_info("Exiting recovery mode"); 2703 } 2704 2705 /* 2706 * Note that the scrubber has stopped, and inform anyone who might be waiting for that to 2707 * happen. 2708 */ 2709 if (!vdo_finish_draining(&scrubber->admin_state)) 2710 WRITE_ONCE(scrubber->admin_state.current_state, 2711 VDO_ADMIN_STATE_SUSPENDED); 2712 2713 /* 2714 * We can't notify waiters until after we've finished draining or they'll just requeue. 2715 * Fortunately if there were waiters, we can't have been freed yet. 2716 */ 2717 if (notify) 2718 vdo_waitq_notify_all_waiters(&scrubber->waiters, NULL, NULL); 2719 } 2720 2721 static void scrub_next_slab(struct slab_scrubber *scrubber); 2722 2723 /** 2724 * slab_scrubbed() - Notify the scrubber that a slab has been scrubbed. 2725 * @completion: The slab rebuild completion. 2726 * 2727 * This callback is registered in apply_journal_entries(). 2728 */ 2729 static void slab_scrubbed(struct vdo_completion *completion) 2730 { 2731 struct slab_scrubber *scrubber = 2732 container_of(as_vio(completion), struct slab_scrubber, vio); 2733 struct vdo_slab *slab = scrubber->slab; 2734 2735 slab->status = VDO_SLAB_REBUILT; 2736 queue_slab(slab); 2737 reopen_slab_journal(slab); 2738 WRITE_ONCE(scrubber->slab_count, scrubber->slab_count - 1); 2739 scrub_next_slab(scrubber); 2740 } 2741 2742 /** 2743 * abort_scrubbing() - Abort scrubbing due to an error. 2744 * @scrubber: The slab scrubber. 2745 * @result: The error. 2746 */ 2747 static void abort_scrubbing(struct slab_scrubber *scrubber, int result) 2748 { 2749 vdo_enter_read_only_mode(scrubber->vio.completion.vdo, result); 2750 finish_scrubbing(scrubber, result); 2751 } 2752 2753 /** 2754 * handle_scrubber_error() - Handle errors while rebuilding a slab. 2755 * @completion: The slab rebuild completion. 2756 */ 2757 static void handle_scrubber_error(struct vdo_completion *completion) 2758 { 2759 struct vio *vio = as_vio(completion); 2760 2761 vio_record_metadata_io_error(vio); 2762 abort_scrubbing(container_of(vio, struct slab_scrubber, vio), 2763 completion->result); 2764 } 2765 2766 /** 2767 * apply_block_entries() - Apply all the entries in a block to the reference counts. 2768 * @block: A block with entries to apply. 2769 * @entry_count: The number of entries to apply. 2770 * @block_number: The sequence number of the block. 2771 * @slab: The slab to apply the entries to. 2772 * 2773 * Return: VDO_SUCCESS or an error code. 2774 */ 2775 static int apply_block_entries(struct packed_slab_journal_block *block, 2776 journal_entry_count_t entry_count, 2777 sequence_number_t block_number, struct vdo_slab *slab) 2778 { 2779 struct journal_point entry_point = { 2780 .sequence_number = block_number, 2781 .entry_count = 0, 2782 }; 2783 int result; 2784 slab_block_number max_sbn = slab->end - slab->start; 2785 2786 while (entry_point.entry_count < entry_count) { 2787 struct slab_journal_entry entry = 2788 vdo_decode_slab_journal_entry(block, entry_point.entry_count); 2789 2790 if (entry.sbn > max_sbn) { 2791 /* This entry is out of bounds. */ 2792 return vdo_log_error_strerror(VDO_CORRUPT_JOURNAL, 2793 "vdo_slab journal entry (%llu, %u) had invalid offset %u in slab (size %u blocks)", 2794 (unsigned long long) block_number, 2795 entry_point.entry_count, 2796 entry.sbn, max_sbn); 2797 } 2798 2799 result = replay_reference_count_change(slab, &entry_point, entry); 2800 if (result != VDO_SUCCESS) { 2801 vdo_log_error_strerror(result, 2802 "vdo_slab journal entry (%llu, %u) (%s of offset %u) could not be applied in slab %u", 2803 (unsigned long long) block_number, 2804 entry_point.entry_count, 2805 vdo_get_journal_operation_name(entry.operation), 2806 entry.sbn, slab->slab_number); 2807 return result; 2808 } 2809 entry_point.entry_count++; 2810 } 2811 2812 return VDO_SUCCESS; 2813 } 2814 2815 /** 2816 * apply_journal_entries() - Find the relevant vio of the slab journal and apply all valid entries. 2817 * @completion: The metadata read vio completion. 2818 * 2819 * This is a callback registered in start_scrubbing(). 2820 */ 2821 static void apply_journal_entries(struct vdo_completion *completion) 2822 { 2823 int result; 2824 struct slab_scrubber *scrubber = 2825 container_of(as_vio(completion), struct slab_scrubber, vio); 2826 struct vdo_slab *slab = scrubber->slab; 2827 struct slab_journal *journal = &slab->journal; 2828 2829 /* Find the boundaries of the useful part of the journal. */ 2830 sequence_number_t tail = journal->tail; 2831 tail_block_offset_t end_index = (tail - 1) % journal->size; 2832 char *end_data = scrubber->vio.data + (end_index * VDO_BLOCK_SIZE); 2833 struct packed_slab_journal_block *end_block = 2834 (struct packed_slab_journal_block *) end_data; 2835 2836 sequence_number_t head = __le64_to_cpu(end_block->header.head); 2837 tail_block_offset_t head_index = head % journal->size; 2838 block_count_t index = head_index; 2839 2840 struct journal_point ref_counts_point = slab->slab_journal_point; 2841 struct journal_point last_entry_applied = ref_counts_point; 2842 sequence_number_t sequence; 2843 2844 for (sequence = head; sequence < tail; sequence++) { 2845 char *block_data = scrubber->vio.data + (index * VDO_BLOCK_SIZE); 2846 struct packed_slab_journal_block *block = 2847 (struct packed_slab_journal_block *) block_data; 2848 struct slab_journal_block_header header; 2849 2850 vdo_unpack_slab_journal_block_header(&block->header, &header); 2851 2852 if ((header.nonce != slab->allocator->nonce) || 2853 (header.metadata_type != VDO_METADATA_SLAB_JOURNAL) || 2854 (header.sequence_number != sequence) || 2855 (header.entry_count > journal->entries_per_block) || 2856 (header.has_block_map_increments && 2857 (header.entry_count > journal->full_entries_per_block))) { 2858 /* The block is not what we expect it to be. */ 2859 vdo_log_error("vdo_slab journal block for slab %u was invalid", 2860 slab->slab_number); 2861 abort_scrubbing(scrubber, VDO_CORRUPT_JOURNAL); 2862 return; 2863 } 2864 2865 result = apply_block_entries(block, header.entry_count, sequence, slab); 2866 if (result != VDO_SUCCESS) { 2867 abort_scrubbing(scrubber, result); 2868 return; 2869 } 2870 2871 last_entry_applied.sequence_number = sequence; 2872 last_entry_applied.entry_count = header.entry_count - 1; 2873 index++; 2874 if (index == journal->size) 2875 index = 0; 2876 } 2877 2878 /* 2879 * At the end of rebuild, the reference counters should be accurate to the end of the 2880 * journal we just applied. 2881 */ 2882 result = VDO_ASSERT(!vdo_before_journal_point(&last_entry_applied, 2883 &ref_counts_point), 2884 "Refcounts are not more accurate than the slab journal"); 2885 if (result != VDO_SUCCESS) { 2886 abort_scrubbing(scrubber, result); 2887 return; 2888 } 2889 2890 /* Save out the rebuilt reference blocks. */ 2891 vdo_prepare_completion(completion, slab_scrubbed, handle_scrubber_error, 2892 slab->allocator->thread_id, completion->parent); 2893 vdo_start_operation_with_waiter(&slab->state, 2894 VDO_ADMIN_STATE_SAVE_FOR_SCRUBBING, 2895 completion, initiate_slab_action); 2896 } 2897 2898 static void read_slab_journal_endio(struct bio *bio) 2899 { 2900 struct vio *vio = bio->bi_private; 2901 struct slab_scrubber *scrubber = container_of(vio, struct slab_scrubber, vio); 2902 2903 continue_vio_after_io(bio->bi_private, apply_journal_entries, 2904 scrubber->slab->allocator->thread_id); 2905 } 2906 2907 /** 2908 * start_scrubbing() - Read the current slab's journal from disk now that it has been flushed. 2909 * @completion: The scrubber's vio completion. 2910 * 2911 * This callback is registered in scrub_next_slab(). 2912 */ 2913 static void start_scrubbing(struct vdo_completion *completion) 2914 { 2915 struct slab_scrubber *scrubber = 2916 container_of(as_vio(completion), struct slab_scrubber, vio); 2917 struct vdo_slab *slab = scrubber->slab; 2918 2919 if (!slab->allocator->summary_entries[slab->slab_number].is_dirty) { 2920 slab_scrubbed(completion); 2921 return; 2922 } 2923 2924 vdo_submit_metadata_vio(&scrubber->vio, slab->journal_origin, 2925 read_slab_journal_endio, handle_scrubber_error, 2926 REQ_OP_READ); 2927 } 2928 2929 /** 2930 * scrub_next_slab() - Scrub the next slab if there is one. 2931 * @scrubber: The scrubber. 2932 */ 2933 static void scrub_next_slab(struct slab_scrubber *scrubber) 2934 { 2935 struct vdo_completion *completion = &scrubber->vio.completion; 2936 struct vdo_slab *slab; 2937 2938 /* 2939 * Note: this notify call is always safe only because scrubbing can only be started when 2940 * the VDO is quiescent. 2941 */ 2942 vdo_waitq_notify_all_waiters(&scrubber->waiters, NULL, NULL); 2943 2944 if (vdo_is_read_only(completion->vdo)) { 2945 finish_scrubbing(scrubber, VDO_READ_ONLY); 2946 return; 2947 } 2948 2949 slab = get_next_slab(scrubber); 2950 if ((slab == NULL) || 2951 (scrubber->high_priority_only && list_empty(&scrubber->high_priority_slabs))) { 2952 finish_scrubbing(scrubber, VDO_SUCCESS); 2953 return; 2954 } 2955 2956 if (vdo_finish_draining(&scrubber->admin_state)) 2957 return; 2958 2959 list_del_init(&slab->allocq_entry); 2960 scrubber->slab = slab; 2961 vdo_prepare_completion(completion, start_scrubbing, handle_scrubber_error, 2962 slab->allocator->thread_id, completion->parent); 2963 vdo_start_operation_with_waiter(&slab->state, VDO_ADMIN_STATE_SCRUBBING, 2964 completion, initiate_slab_action); 2965 } 2966 2967 /** 2968 * scrub_slabs() - Scrub all of an allocator's slabs that are eligible for scrubbing. 2969 * @allocator: The block_allocator to scrub. 2970 * @parent: The completion to notify when scrubbing is done, implies high_priority, may be NULL. 2971 */ 2972 static void scrub_slabs(struct block_allocator *allocator, struct vdo_completion *parent) 2973 { 2974 struct slab_scrubber *scrubber = &allocator->scrubber; 2975 2976 scrubber->vio.completion.parent = parent; 2977 scrubber->high_priority_only = (parent != NULL); 2978 if (!has_slabs_to_scrub(scrubber)) { 2979 finish_scrubbing(scrubber, VDO_SUCCESS); 2980 return; 2981 } 2982 2983 if (scrubber->high_priority_only && 2984 vdo_is_priority_table_empty(allocator->prioritized_slabs) && 2985 list_empty(&scrubber->high_priority_slabs)) 2986 register_slab_for_scrubbing(get_next_slab(scrubber), true); 2987 2988 vdo_resume_if_quiescent(&scrubber->admin_state); 2989 scrub_next_slab(scrubber); 2990 } 2991 2992 static inline void assert_on_allocator_thread(thread_id_t thread_id, 2993 const char *function_name) 2994 { 2995 VDO_ASSERT_LOG_ONLY((vdo_get_callback_thread_id() == thread_id), 2996 "%s called on correct thread", function_name); 2997 } 2998 2999 static void register_slab_with_allocator(struct block_allocator *allocator, 3000 struct vdo_slab *slab) 3001 { 3002 allocator->slab_count++; 3003 allocator->last_slab = slab->slab_number; 3004 } 3005 3006 /** 3007 * get_depot_slab_iterator() - Return a slab_iterator over the slabs in a slab_depot. 3008 * @depot: The depot over which to iterate. 3009 * @start: The number of the slab to start iterating from. 3010 * @end: The number of the last slab which may be returned. 3011 * @stride: The difference in slab number between successive slabs. 3012 * 3013 * Iteration always occurs from higher to lower numbered slabs. 3014 * 3015 * Return: An initialized iterator structure. 3016 */ 3017 static struct slab_iterator get_depot_slab_iterator(struct slab_depot *depot, 3018 slab_count_t start, slab_count_t end, 3019 slab_count_t stride) 3020 { 3021 struct vdo_slab **slabs = depot->slabs; 3022 3023 return (struct slab_iterator) { 3024 .slabs = slabs, 3025 .next = (((slabs == NULL) || (start < end)) ? NULL : slabs[start]), 3026 .end = end, 3027 .stride = stride, 3028 }; 3029 } 3030 3031 static struct slab_iterator get_slab_iterator(const struct block_allocator *allocator) 3032 { 3033 return get_depot_slab_iterator(allocator->depot, allocator->last_slab, 3034 allocator->zone_number, 3035 allocator->depot->zone_count); 3036 } 3037 3038 /** 3039 * next_slab() - Get the next slab from a slab_iterator and advance the iterator 3040 * @iterator: The slab_iterator. 3041 * 3042 * Return: The next slab or NULL if the iterator is exhausted. 3043 */ 3044 static struct vdo_slab *next_slab(struct slab_iterator *iterator) 3045 { 3046 struct vdo_slab *slab = iterator->next; 3047 3048 if ((slab == NULL) || (slab->slab_number < iterator->end + iterator->stride)) 3049 iterator->next = NULL; 3050 else 3051 iterator->next = iterator->slabs[slab->slab_number - iterator->stride]; 3052 3053 return slab; 3054 } 3055 3056 /** 3057 * abort_waiter() - Abort vios waiting to make journal entries when read-only. 3058 * 3059 * This callback is invoked on all vios waiting to make slab journal entries after the VDO has gone 3060 * into read-only mode. Implements waiter_callback_fn. 3061 */ 3062 static void abort_waiter(struct vdo_waiter *waiter, void *context __always_unused) 3063 { 3064 struct reference_updater *updater = 3065 container_of(waiter, struct reference_updater, waiter); 3066 struct data_vio *data_vio = data_vio_from_reference_updater(updater); 3067 3068 if (updater->increment) { 3069 continue_data_vio_with_error(data_vio, VDO_READ_ONLY); 3070 return; 3071 } 3072 3073 vdo_continue_completion(&data_vio->decrement_completion, VDO_READ_ONLY); 3074 } 3075 3076 /* Implements vdo_read_only_notification_fn. */ 3077 static void notify_block_allocator_of_read_only_mode(void *listener, 3078 struct vdo_completion *parent) 3079 { 3080 struct block_allocator *allocator = listener; 3081 struct slab_iterator iterator; 3082 3083 assert_on_allocator_thread(allocator->thread_id, __func__); 3084 iterator = get_slab_iterator(allocator); 3085 while (iterator.next != NULL) { 3086 struct vdo_slab *slab = next_slab(&iterator); 3087 3088 vdo_waitq_notify_all_waiters(&slab->journal.entry_waiters, 3089 abort_waiter, &slab->journal); 3090 check_if_slab_drained(slab); 3091 } 3092 3093 vdo_finish_completion(parent); 3094 } 3095 3096 /** 3097 * vdo_acquire_provisional_reference() - Acquire a provisional reference on behalf of a PBN lock if 3098 * the block it locks is unreferenced. 3099 * @slab: The slab which contains the block. 3100 * @pbn: The physical block to reference. 3101 * @lock: The lock. 3102 * 3103 * Return: VDO_SUCCESS or an error. 3104 */ 3105 int vdo_acquire_provisional_reference(struct vdo_slab *slab, physical_block_number_t pbn, 3106 struct pbn_lock *lock) 3107 { 3108 slab_block_number block_number; 3109 int result; 3110 3111 if (vdo_pbn_lock_has_provisional_reference(lock)) 3112 return VDO_SUCCESS; 3113 3114 if (!is_slab_open(slab)) 3115 return VDO_INVALID_ADMIN_STATE; 3116 3117 result = slab_block_number_from_pbn(slab, pbn, &block_number); 3118 if (result != VDO_SUCCESS) 3119 return result; 3120 3121 if (slab->counters[block_number] == EMPTY_REFERENCE_COUNT) { 3122 make_provisional_reference(slab, block_number); 3123 if (lock != NULL) 3124 vdo_assign_pbn_lock_provisional_reference(lock); 3125 } 3126 3127 if (vdo_pbn_lock_has_provisional_reference(lock)) 3128 adjust_free_block_count(slab, false); 3129 3130 return VDO_SUCCESS; 3131 } 3132 3133 static int __must_check allocate_slab_block(struct vdo_slab *slab, 3134 physical_block_number_t *block_number_ptr) 3135 { 3136 slab_block_number free_index; 3137 3138 if (!is_slab_open(slab)) 3139 return VDO_INVALID_ADMIN_STATE; 3140 3141 if (!search_reference_blocks(slab, &free_index)) 3142 return VDO_NO_SPACE; 3143 3144 VDO_ASSERT_LOG_ONLY((slab->counters[free_index] == EMPTY_REFERENCE_COUNT), 3145 "free block must have ref count of zero"); 3146 make_provisional_reference(slab, free_index); 3147 adjust_free_block_count(slab, false); 3148 3149 /* 3150 * Update the search hint so the next search will start at the array index just past the 3151 * free block we just found. 3152 */ 3153 slab->search_cursor.index = (free_index + 1); 3154 3155 *block_number_ptr = slab->start + free_index; 3156 return VDO_SUCCESS; 3157 } 3158 3159 /** 3160 * open_slab() - Prepare a slab to be allocated from. 3161 * @slab: The slab. 3162 */ 3163 static void open_slab(struct vdo_slab *slab) 3164 { 3165 reset_search_cursor(slab); 3166 if (is_slab_journal_blank(slab)) { 3167 WRITE_ONCE(slab->allocator->statistics.slabs_opened, 3168 slab->allocator->statistics.slabs_opened + 1); 3169 dirty_all_reference_blocks(slab); 3170 } else { 3171 WRITE_ONCE(slab->allocator->statistics.slabs_reopened, 3172 slab->allocator->statistics.slabs_reopened + 1); 3173 } 3174 3175 slab->allocator->open_slab = slab; 3176 } 3177 3178 3179 /* 3180 * The block allocated will have a provisional reference and the reference must be either confirmed 3181 * with a subsequent increment or vacated with a subsequent decrement via 3182 * vdo_release_block_reference(). 3183 */ 3184 int vdo_allocate_block(struct block_allocator *allocator, 3185 physical_block_number_t *block_number_ptr) 3186 { 3187 int result; 3188 3189 if (allocator->open_slab != NULL) { 3190 /* Try to allocate the next block in the currently open slab. */ 3191 result = allocate_slab_block(allocator->open_slab, block_number_ptr); 3192 if ((result == VDO_SUCCESS) || (result != VDO_NO_SPACE)) 3193 return result; 3194 3195 /* Put the exhausted open slab back into the priority table. */ 3196 prioritize_slab(allocator->open_slab); 3197 } 3198 3199 /* Remove the highest priority slab from the priority table and make it the open slab. */ 3200 open_slab(list_entry(vdo_priority_table_dequeue(allocator->prioritized_slabs), 3201 struct vdo_slab, allocq_entry)); 3202 3203 /* 3204 * Try allocating again. If we're out of space immediately after opening a slab, then every 3205 * slab must be fully allocated. 3206 */ 3207 return allocate_slab_block(allocator->open_slab, block_number_ptr); 3208 } 3209 3210 /** 3211 * vdo_enqueue_clean_slab_waiter() - Wait for a clean slab. 3212 * @allocator: The block_allocator on which to wait. 3213 * @waiter: The waiter. 3214 * 3215 * Return: VDO_SUCCESS if the waiter was queued, VDO_NO_SPACE if there are no slabs to scrub, and 3216 * some other error otherwise. 3217 */ 3218 int vdo_enqueue_clean_slab_waiter(struct block_allocator *allocator, 3219 struct vdo_waiter *waiter) 3220 { 3221 if (vdo_is_read_only(allocator->depot->vdo)) 3222 return VDO_READ_ONLY; 3223 3224 if (vdo_is_state_quiescent(&allocator->scrubber.admin_state)) 3225 return VDO_NO_SPACE; 3226 3227 vdo_waitq_enqueue_waiter(&allocator->scrubber.waiters, waiter); 3228 return VDO_SUCCESS; 3229 } 3230 3231 /** 3232 * vdo_modify_reference_count() - Modify the reference count of a block by first making a slab 3233 * journal entry and then updating the reference counter. 3234 * @completion: The data_vio completion for which to add the entry. 3235 * @updater: Which of the data_vio's reference updaters is being submitted. 3236 */ 3237 void vdo_modify_reference_count(struct vdo_completion *completion, 3238 struct reference_updater *updater) 3239 { 3240 struct vdo_slab *slab = vdo_get_slab(completion->vdo->depot, updater->zpbn.pbn); 3241 3242 if (!is_slab_open(slab)) { 3243 vdo_continue_completion(completion, VDO_INVALID_ADMIN_STATE); 3244 return; 3245 } 3246 3247 if (vdo_is_read_only(completion->vdo)) { 3248 vdo_continue_completion(completion, VDO_READ_ONLY); 3249 return; 3250 } 3251 3252 vdo_waitq_enqueue_waiter(&slab->journal.entry_waiters, &updater->waiter); 3253 if ((slab->status != VDO_SLAB_REBUILT) && requires_reaping(&slab->journal)) 3254 register_slab_for_scrubbing(slab, true); 3255 3256 add_entries(&slab->journal); 3257 } 3258 3259 /* Release an unused provisional reference. */ 3260 int vdo_release_block_reference(struct block_allocator *allocator, 3261 physical_block_number_t pbn) 3262 { 3263 struct reference_updater updater; 3264 3265 if (pbn == VDO_ZERO_BLOCK) 3266 return VDO_SUCCESS; 3267 3268 updater = (struct reference_updater) { 3269 .operation = VDO_JOURNAL_DATA_REMAPPING, 3270 .increment = false, 3271 .zpbn = { 3272 .pbn = pbn, 3273 }, 3274 }; 3275 3276 return adjust_reference_count(vdo_get_slab(allocator->depot, pbn), 3277 &updater, NULL); 3278 } 3279 3280 /* 3281 * This is a min_heap callback function orders slab_status structures using the 'is_clean' field as 3282 * the primary key and the 'emptiness' field as the secondary key. 3283 * 3284 * Slabs need to be pushed onto the rings in the same order they are to be popped off. Popping 3285 * should always get the most empty first, so pushing should be from most empty to least empty. 3286 * Thus, the ordering is reversed from the usual sense since min_heap returns smaller elements 3287 * before larger ones. 3288 */ 3289 static bool slab_status_is_less_than(const void *item1, const void *item2, 3290 void __always_unused *args) 3291 { 3292 const struct slab_status *info1 = item1; 3293 const struct slab_status *info2 = item2; 3294 3295 if (info1->is_clean != info2->is_clean) 3296 return info1->is_clean; 3297 if (info1->emptiness != info2->emptiness) 3298 return info1->emptiness > info2->emptiness; 3299 return info1->slab_number < info2->slab_number; 3300 } 3301 3302 static const struct min_heap_callbacks slab_status_min_heap = { 3303 .less = slab_status_is_less_than, 3304 .swp = NULL, 3305 }; 3306 3307 /* Inform the slab actor that a action has finished on some slab; used by apply_to_slabs(). */ 3308 static void slab_action_callback(struct vdo_completion *completion) 3309 { 3310 struct block_allocator *allocator = vdo_as_block_allocator(completion); 3311 struct slab_actor *actor = &allocator->slab_actor; 3312 3313 if (--actor->slab_action_count == 0) { 3314 actor->callback(completion); 3315 return; 3316 } 3317 3318 vdo_reset_completion(completion); 3319 } 3320 3321 /* Preserve the error from part of an action and continue. */ 3322 static void handle_operation_error(struct vdo_completion *completion) 3323 { 3324 struct block_allocator *allocator = vdo_as_block_allocator(completion); 3325 3326 if (allocator->state.waiter != NULL) 3327 vdo_set_completion_result(allocator->state.waiter, completion->result); 3328 completion->callback(completion); 3329 } 3330 3331 /* Perform an action on each of an allocator's slabs in parallel. */ 3332 static void apply_to_slabs(struct block_allocator *allocator, vdo_action_fn callback) 3333 { 3334 struct slab_iterator iterator; 3335 3336 vdo_prepare_completion(&allocator->completion, slab_action_callback, 3337 handle_operation_error, allocator->thread_id, NULL); 3338 allocator->completion.requeue = false; 3339 3340 /* 3341 * Since we are going to dequeue all of the slabs, the open slab will become invalid, so 3342 * clear it. 3343 */ 3344 allocator->open_slab = NULL; 3345 3346 /* Ensure that we don't finish before we're done starting. */ 3347 allocator->slab_actor = (struct slab_actor) { 3348 .slab_action_count = 1, 3349 .callback = callback, 3350 }; 3351 3352 iterator = get_slab_iterator(allocator); 3353 while (iterator.next != NULL) { 3354 const struct admin_state_code *operation = 3355 vdo_get_admin_state_code(&allocator->state); 3356 struct vdo_slab *slab = next_slab(&iterator); 3357 3358 list_del_init(&slab->allocq_entry); 3359 allocator->slab_actor.slab_action_count++; 3360 vdo_start_operation_with_waiter(&slab->state, operation, 3361 &allocator->completion, 3362 initiate_slab_action); 3363 } 3364 3365 slab_action_callback(&allocator->completion); 3366 } 3367 3368 static void finish_loading_allocator(struct vdo_completion *completion) 3369 { 3370 struct block_allocator *allocator = vdo_as_block_allocator(completion); 3371 const struct admin_state_code *operation = 3372 vdo_get_admin_state_code(&allocator->state); 3373 3374 if (allocator->eraser != NULL) 3375 dm_kcopyd_client_destroy(vdo_forget(allocator->eraser)); 3376 3377 if (operation == VDO_ADMIN_STATE_LOADING_FOR_RECOVERY) { 3378 void *context = 3379 vdo_get_current_action_context(allocator->depot->action_manager); 3380 3381 vdo_replay_into_slab_journals(allocator, context); 3382 return; 3383 } 3384 3385 vdo_finish_loading(&allocator->state); 3386 } 3387 3388 static void erase_next_slab_journal(struct block_allocator *allocator); 3389 3390 static void copy_callback(int read_err, unsigned long write_err, void *context) 3391 { 3392 struct block_allocator *allocator = context; 3393 int result = (((read_err == 0) && (write_err == 0)) ? VDO_SUCCESS : -EIO); 3394 3395 if (result != VDO_SUCCESS) { 3396 vdo_fail_completion(&allocator->completion, result); 3397 return; 3398 } 3399 3400 erase_next_slab_journal(allocator); 3401 } 3402 3403 /* erase_next_slab_journal() - Erase the next slab journal. */ 3404 static void erase_next_slab_journal(struct block_allocator *allocator) 3405 { 3406 struct vdo_slab *slab; 3407 physical_block_number_t pbn; 3408 struct dm_io_region regions[1]; 3409 struct slab_depot *depot = allocator->depot; 3410 block_count_t blocks = depot->slab_config.slab_journal_blocks; 3411 3412 if (allocator->slabs_to_erase.next == NULL) { 3413 vdo_finish_completion(&allocator->completion); 3414 return; 3415 } 3416 3417 slab = next_slab(&allocator->slabs_to_erase); 3418 pbn = slab->journal_origin - depot->vdo->geometry.bio_offset; 3419 regions[0] = (struct dm_io_region) { 3420 .bdev = vdo_get_backing_device(depot->vdo), 3421 .sector = pbn * VDO_SECTORS_PER_BLOCK, 3422 .count = blocks * VDO_SECTORS_PER_BLOCK, 3423 }; 3424 dm_kcopyd_zero(allocator->eraser, 1, regions, 0, copy_callback, allocator); 3425 } 3426 3427 /* Implements vdo_admin_initiator_fn. */ 3428 static void initiate_load(struct admin_state *state) 3429 { 3430 struct block_allocator *allocator = 3431 container_of(state, struct block_allocator, state); 3432 const struct admin_state_code *operation = vdo_get_admin_state_code(state); 3433 3434 if (operation == VDO_ADMIN_STATE_LOADING_FOR_REBUILD) { 3435 /* 3436 * Must requeue because the kcopyd client cannot be freed in the same stack frame 3437 * as the kcopyd callback, lest it deadlock. 3438 */ 3439 vdo_prepare_completion_for_requeue(&allocator->completion, 3440 finish_loading_allocator, 3441 handle_operation_error, 3442 allocator->thread_id, NULL); 3443 allocator->eraser = dm_kcopyd_client_create(NULL); 3444 if (IS_ERR(allocator->eraser)) { 3445 vdo_fail_completion(&allocator->completion, 3446 PTR_ERR(allocator->eraser)); 3447 allocator->eraser = NULL; 3448 return; 3449 } 3450 allocator->slabs_to_erase = get_slab_iterator(allocator); 3451 3452 erase_next_slab_journal(allocator); 3453 return; 3454 } 3455 3456 apply_to_slabs(allocator, finish_loading_allocator); 3457 } 3458 3459 /** 3460 * vdo_notify_slab_journals_are_recovered() - Inform a block allocator that its slab journals have 3461 * been recovered from the recovery journal. 3462 * @completion The allocator completion 3463 */ 3464 void vdo_notify_slab_journals_are_recovered(struct vdo_completion *completion) 3465 { 3466 struct block_allocator *allocator = vdo_as_block_allocator(completion); 3467 3468 vdo_finish_loading_with_result(&allocator->state, completion->result); 3469 } 3470 3471 static int get_slab_statuses(struct block_allocator *allocator, 3472 struct slab_status **statuses_ptr) 3473 { 3474 int result; 3475 struct slab_status *statuses; 3476 struct slab_iterator iterator = get_slab_iterator(allocator); 3477 3478 result = vdo_allocate(allocator->slab_count, struct slab_status, __func__, 3479 &statuses); 3480 if (result != VDO_SUCCESS) 3481 return result; 3482 3483 *statuses_ptr = statuses; 3484 3485 while (iterator.next != NULL) { 3486 slab_count_t slab_number = next_slab(&iterator)->slab_number; 3487 3488 *statuses++ = (struct slab_status) { 3489 .slab_number = slab_number, 3490 .is_clean = !allocator->summary_entries[slab_number].is_dirty, 3491 .emptiness = allocator->summary_entries[slab_number].fullness_hint, 3492 }; 3493 } 3494 3495 return VDO_SUCCESS; 3496 } 3497 3498 /* Prepare slabs for allocation or scrubbing. */ 3499 static int __must_check vdo_prepare_slabs_for_allocation(struct block_allocator *allocator) 3500 { 3501 struct slab_status current_slab_status; 3502 DEFINE_MIN_HEAP(struct slab_status, heap) heap; 3503 int result; 3504 struct slab_status *slab_statuses; 3505 struct slab_depot *depot = allocator->depot; 3506 3507 WRITE_ONCE(allocator->allocated_blocks, 3508 allocator->slab_count * depot->slab_config.data_blocks); 3509 result = get_slab_statuses(allocator, &slab_statuses); 3510 if (result != VDO_SUCCESS) 3511 return result; 3512 3513 /* Sort the slabs by cleanliness, then by emptiness hint. */ 3514 heap = (struct heap) { 3515 .data = slab_statuses, 3516 .nr = allocator->slab_count, 3517 .size = allocator->slab_count, 3518 }; 3519 min_heapify_all(&heap, &slab_status_min_heap, NULL); 3520 3521 while (heap.nr > 0) { 3522 bool high_priority; 3523 struct vdo_slab *slab; 3524 struct slab_journal *journal; 3525 3526 current_slab_status = slab_statuses[0]; 3527 min_heap_pop(&heap, &slab_status_min_heap, NULL); 3528 slab = depot->slabs[current_slab_status.slab_number]; 3529 3530 if ((depot->load_type == VDO_SLAB_DEPOT_REBUILD_LOAD) || 3531 (!allocator->summary_entries[slab->slab_number].load_ref_counts && 3532 current_slab_status.is_clean)) { 3533 queue_slab(slab); 3534 continue; 3535 } 3536 3537 slab->status = VDO_SLAB_REQUIRES_SCRUBBING; 3538 journal = &slab->journal; 3539 high_priority = ((current_slab_status.is_clean && 3540 (depot->load_type == VDO_SLAB_DEPOT_NORMAL_LOAD)) || 3541 (journal_length(journal) >= journal->scrubbing_threshold)); 3542 register_slab_for_scrubbing(slab, high_priority); 3543 } 3544 3545 vdo_free(slab_statuses); 3546 return VDO_SUCCESS; 3547 } 3548 3549 static const char *status_to_string(enum slab_rebuild_status status) 3550 { 3551 switch (status) { 3552 case VDO_SLAB_REBUILT: 3553 return "REBUILT"; 3554 case VDO_SLAB_REQUIRES_SCRUBBING: 3555 return "SCRUBBING"; 3556 case VDO_SLAB_REQUIRES_HIGH_PRIORITY_SCRUBBING: 3557 return "PRIORITY_SCRUBBING"; 3558 case VDO_SLAB_REBUILDING: 3559 return "REBUILDING"; 3560 case VDO_SLAB_REPLAYING: 3561 return "REPLAYING"; 3562 default: 3563 return "UNKNOWN"; 3564 } 3565 } 3566 3567 void vdo_dump_block_allocator(const struct block_allocator *allocator) 3568 { 3569 unsigned int pause_counter = 0; 3570 struct slab_iterator iterator = get_slab_iterator(allocator); 3571 const struct slab_scrubber *scrubber = &allocator->scrubber; 3572 3573 vdo_log_info("block_allocator zone %u", allocator->zone_number); 3574 while (iterator.next != NULL) { 3575 struct vdo_slab *slab = next_slab(&iterator); 3576 struct slab_journal *journal = &slab->journal; 3577 3578 if (slab->reference_blocks != NULL) { 3579 /* Terse because there are a lot of slabs to dump and syslog is lossy. */ 3580 vdo_log_info("slab %u: P%u, %llu free", slab->slab_number, 3581 slab->priority, 3582 (unsigned long long) slab->free_blocks); 3583 } else { 3584 vdo_log_info("slab %u: status %s", slab->slab_number, 3585 status_to_string(slab->status)); 3586 } 3587 3588 vdo_log_info(" slab journal: entry_waiters=%zu waiting_to_commit=%s updating_slab_summary=%s head=%llu unreapable=%llu tail=%llu next_commit=%llu summarized=%llu last_summarized=%llu recovery_lock=%llu dirty=%s", 3589 vdo_waitq_num_waiters(&journal->entry_waiters), 3590 vdo_bool_to_string(journal->waiting_to_commit), 3591 vdo_bool_to_string(journal->updating_slab_summary), 3592 (unsigned long long) journal->head, 3593 (unsigned long long) journal->unreapable, 3594 (unsigned long long) journal->tail, 3595 (unsigned long long) journal->next_commit, 3596 (unsigned long long) journal->summarized, 3597 (unsigned long long) journal->last_summarized, 3598 (unsigned long long) journal->recovery_lock, 3599 vdo_bool_to_string(journal->recovery_lock != 0)); 3600 /* 3601 * Given the frequency with which the locks are just a tiny bit off, it might be 3602 * worth dumping all the locks, but that might be too much logging. 3603 */ 3604 3605 if (slab->counters != NULL) { 3606 /* Terse because there are a lot of slabs to dump and syslog is lossy. */ 3607 vdo_log_info(" slab: free=%u/%u blocks=%u dirty=%zu active=%zu journal@(%llu,%u)", 3608 slab->free_blocks, slab->block_count, 3609 slab->reference_block_count, 3610 vdo_waitq_num_waiters(&slab->dirty_blocks), 3611 slab->active_count, 3612 (unsigned long long) slab->slab_journal_point.sequence_number, 3613 slab->slab_journal_point.entry_count); 3614 } else { 3615 vdo_log_info(" no counters"); 3616 } 3617 3618 /* 3619 * Wait for a while after each batch of 32 slabs dumped, an arbitrary number, 3620 * allowing the kernel log a chance to be flushed instead of being overrun. 3621 */ 3622 if (pause_counter++ == 31) { 3623 pause_counter = 0; 3624 vdo_pause_for_logger(); 3625 } 3626 } 3627 3628 vdo_log_info("slab_scrubber slab_count %u waiters %zu %s%s", 3629 READ_ONCE(scrubber->slab_count), 3630 vdo_waitq_num_waiters(&scrubber->waiters), 3631 vdo_get_admin_state_code(&scrubber->admin_state)->name, 3632 scrubber->high_priority_only ? ", high_priority_only " : ""); 3633 } 3634 3635 static void free_slab(struct vdo_slab *slab) 3636 { 3637 if (slab == NULL) 3638 return; 3639 3640 list_del(&slab->allocq_entry); 3641 vdo_free(vdo_forget(slab->journal.block)); 3642 vdo_free(vdo_forget(slab->journal.locks)); 3643 vdo_free(vdo_forget(slab->counters)); 3644 vdo_free(vdo_forget(slab->reference_blocks)); 3645 vdo_free(slab); 3646 } 3647 3648 static int initialize_slab_journal(struct vdo_slab *slab) 3649 { 3650 struct slab_journal *journal = &slab->journal; 3651 const struct slab_config *slab_config = &slab->allocator->depot->slab_config; 3652 int result; 3653 3654 result = vdo_allocate(slab_config->slab_journal_blocks, struct journal_lock, 3655 __func__, &journal->locks); 3656 if (result != VDO_SUCCESS) 3657 return result; 3658 3659 result = vdo_allocate(VDO_BLOCK_SIZE, char, "struct packed_slab_journal_block", 3660 (char **) &journal->block); 3661 if (result != VDO_SUCCESS) 3662 return result; 3663 3664 journal->slab = slab; 3665 journal->size = slab_config->slab_journal_blocks; 3666 journal->flushing_threshold = slab_config->slab_journal_flushing_threshold; 3667 journal->blocking_threshold = slab_config->slab_journal_blocking_threshold; 3668 journal->scrubbing_threshold = slab_config->slab_journal_scrubbing_threshold; 3669 journal->entries_per_block = VDO_SLAB_JOURNAL_ENTRIES_PER_BLOCK; 3670 journal->full_entries_per_block = VDO_SLAB_JOURNAL_FULL_ENTRIES_PER_BLOCK; 3671 journal->events = &slab->allocator->slab_journal_statistics; 3672 journal->recovery_journal = slab->allocator->depot->vdo->recovery_journal; 3673 journal->tail = 1; 3674 journal->head = 1; 3675 3676 journal->flushing_deadline = journal->flushing_threshold; 3677 /* 3678 * Set there to be some time between the deadline and the blocking threshold, so that 3679 * hopefully all are done before blocking. 3680 */ 3681 if ((journal->blocking_threshold - journal->flushing_threshold) > 5) 3682 journal->flushing_deadline = journal->blocking_threshold - 5; 3683 3684 journal->slab_summary_waiter.callback = release_journal_locks; 3685 3686 INIT_LIST_HEAD(&journal->dirty_entry); 3687 INIT_LIST_HEAD(&journal->uncommitted_blocks); 3688 3689 journal->tail_header.nonce = slab->allocator->nonce; 3690 journal->tail_header.metadata_type = VDO_METADATA_SLAB_JOURNAL; 3691 initialize_journal_state(journal); 3692 return VDO_SUCCESS; 3693 } 3694 3695 /** 3696 * make_slab() - Construct a new, empty slab. 3697 * @slab_origin: The physical block number within the block allocator partition of the first block 3698 * in the slab. 3699 * @allocator: The block allocator to which the slab belongs. 3700 * @slab_number: The slab number of the slab. 3701 * @is_new: true if this slab is being allocated as part of a resize. 3702 * @slab_ptr: A pointer to receive the new slab. 3703 * 3704 * Return: VDO_SUCCESS or an error code. 3705 */ 3706 static int __must_check make_slab(physical_block_number_t slab_origin, 3707 struct block_allocator *allocator, 3708 slab_count_t slab_number, bool is_new, 3709 struct vdo_slab **slab_ptr) 3710 { 3711 const struct slab_config *slab_config = &allocator->depot->slab_config; 3712 struct vdo_slab *slab; 3713 int result; 3714 3715 result = vdo_allocate(1, struct vdo_slab, __func__, &slab); 3716 if (result != VDO_SUCCESS) 3717 return result; 3718 3719 *slab = (struct vdo_slab) { 3720 .allocator = allocator, 3721 .start = slab_origin, 3722 .end = slab_origin + slab_config->slab_blocks, 3723 .slab_number = slab_number, 3724 .ref_counts_origin = slab_origin + slab_config->data_blocks, 3725 .journal_origin = 3726 vdo_get_slab_journal_start_block(slab_config, slab_origin), 3727 .block_count = slab_config->data_blocks, 3728 .free_blocks = slab_config->data_blocks, 3729 .reference_block_count = 3730 vdo_get_saved_reference_count_size(slab_config->data_blocks), 3731 }; 3732 INIT_LIST_HEAD(&slab->allocq_entry); 3733 3734 result = initialize_slab_journal(slab); 3735 if (result != VDO_SUCCESS) { 3736 free_slab(slab); 3737 return result; 3738 } 3739 3740 if (is_new) { 3741 vdo_set_admin_state_code(&slab->state, VDO_ADMIN_STATE_NEW); 3742 result = allocate_slab_counters(slab); 3743 if (result != VDO_SUCCESS) { 3744 free_slab(slab); 3745 return result; 3746 } 3747 } else { 3748 vdo_set_admin_state_code(&slab->state, VDO_ADMIN_STATE_NORMAL_OPERATION); 3749 } 3750 3751 *slab_ptr = slab; 3752 return VDO_SUCCESS; 3753 } 3754 3755 /** 3756 * allocate_slabs() - Allocate a new slab pointer array. 3757 * @depot: The depot. 3758 * @slab_count: The number of slabs the depot should have in the new array. 3759 * 3760 * Any existing slab pointers will be copied into the new array, and slabs will be allocated as 3761 * needed. The newly allocated slabs will not be distributed for use by the block allocators. 3762 * 3763 * Return: VDO_SUCCESS or an error code. 3764 */ 3765 static int allocate_slabs(struct slab_depot *depot, slab_count_t slab_count) 3766 { 3767 block_count_t slab_size; 3768 bool resizing = false; 3769 physical_block_number_t slab_origin; 3770 int result; 3771 3772 result = vdo_allocate(slab_count, struct vdo_slab *, 3773 "slab pointer array", &depot->new_slabs); 3774 if (result != VDO_SUCCESS) 3775 return result; 3776 3777 if (depot->slabs != NULL) { 3778 memcpy(depot->new_slabs, depot->slabs, 3779 depot->slab_count * sizeof(struct vdo_slab *)); 3780 resizing = true; 3781 } 3782 3783 slab_size = depot->slab_config.slab_blocks; 3784 slab_origin = depot->first_block + (depot->slab_count * slab_size); 3785 3786 for (depot->new_slab_count = depot->slab_count; 3787 depot->new_slab_count < slab_count; 3788 depot->new_slab_count++, slab_origin += slab_size) { 3789 struct block_allocator *allocator = 3790 &depot->allocators[depot->new_slab_count % depot->zone_count]; 3791 struct vdo_slab **slab_ptr = &depot->new_slabs[depot->new_slab_count]; 3792 3793 result = make_slab(slab_origin, allocator, depot->new_slab_count, 3794 resizing, slab_ptr); 3795 if (result != VDO_SUCCESS) 3796 return result; 3797 } 3798 3799 return VDO_SUCCESS; 3800 } 3801 3802 /** 3803 * vdo_abandon_new_slabs() - Abandon any new slabs in this depot, freeing them as needed. 3804 * @depot: The depot. 3805 */ 3806 void vdo_abandon_new_slabs(struct slab_depot *depot) 3807 { 3808 slab_count_t i; 3809 3810 if (depot->new_slabs == NULL) 3811 return; 3812 3813 for (i = depot->slab_count; i < depot->new_slab_count; i++) 3814 free_slab(vdo_forget(depot->new_slabs[i])); 3815 depot->new_slab_count = 0; 3816 depot->new_size = 0; 3817 vdo_free(vdo_forget(depot->new_slabs)); 3818 } 3819 3820 /** 3821 * get_allocator_thread_id() - Get the ID of the thread on which a given allocator operates. 3822 * 3823 * Implements vdo_zone_thread_getter_fn. 3824 */ 3825 static thread_id_t get_allocator_thread_id(void *context, zone_count_t zone_number) 3826 { 3827 return ((struct slab_depot *) context)->allocators[zone_number].thread_id; 3828 } 3829 3830 /** 3831 * release_recovery_journal_lock() - Request the slab journal to release the recovery journal lock 3832 * it may hold on a specified recovery journal block. 3833 * @journal: The slab journal. 3834 * @recovery_lock: The sequence number of the recovery journal block whose locks should be 3835 * released. 3836 * 3837 * Return: true if the journal does hold a lock on the specified block (which it will release). 3838 */ 3839 static bool __must_check release_recovery_journal_lock(struct slab_journal *journal, 3840 sequence_number_t recovery_lock) 3841 { 3842 if (recovery_lock > journal->recovery_lock) { 3843 VDO_ASSERT_LOG_ONLY((recovery_lock < journal->recovery_lock), 3844 "slab journal recovery lock is not older than the recovery journal head"); 3845 return false; 3846 } 3847 3848 if ((recovery_lock < journal->recovery_lock) || 3849 vdo_is_read_only(journal->slab->allocator->depot->vdo)) 3850 return false; 3851 3852 /* All locks are held by the block which is in progress; write it. */ 3853 commit_tail(journal); 3854 return true; 3855 } 3856 3857 /* 3858 * Request a commit of all dirty tail blocks which are locking the recovery journal block the depot 3859 * is seeking to release. 3860 * 3861 * Implements vdo_zone_action_fn. 3862 */ 3863 static void release_tail_block_locks(void *context, zone_count_t zone_number, 3864 struct vdo_completion *parent) 3865 { 3866 struct slab_journal *journal, *tmp; 3867 struct slab_depot *depot = context; 3868 struct list_head *list = &depot->allocators[zone_number].dirty_slab_journals; 3869 3870 list_for_each_entry_safe(journal, tmp, list, dirty_entry) { 3871 if (!release_recovery_journal_lock(journal, 3872 depot->active_release_request)) 3873 break; 3874 } 3875 3876 vdo_finish_completion(parent); 3877 } 3878 3879 /** 3880 * prepare_for_tail_block_commit() - Prepare to commit oldest tail blocks. 3881 * 3882 * Implements vdo_action_preamble_fn. 3883 */ 3884 static void prepare_for_tail_block_commit(void *context, struct vdo_completion *parent) 3885 { 3886 struct slab_depot *depot = context; 3887 3888 depot->active_release_request = depot->new_release_request; 3889 vdo_finish_completion(parent); 3890 } 3891 3892 /** 3893 * schedule_tail_block_commit() - Schedule a tail block commit if necessary. 3894 * 3895 * This method should not be called directly. Rather, call vdo_schedule_default_action() on the 3896 * depot's action manager. 3897 * 3898 * Implements vdo_action_scheduler_fn. 3899 */ 3900 static bool schedule_tail_block_commit(void *context) 3901 { 3902 struct slab_depot *depot = context; 3903 3904 if (depot->new_release_request == depot->active_release_request) 3905 return false; 3906 3907 return vdo_schedule_action(depot->action_manager, 3908 prepare_for_tail_block_commit, 3909 release_tail_block_locks, 3910 NULL, NULL); 3911 } 3912 3913 /** 3914 * initialize_slab_scrubber() - Initialize an allocator's slab scrubber. 3915 * @allocator: The allocator being initialized 3916 * 3917 * Return: VDO_SUCCESS or an error. 3918 */ 3919 static int initialize_slab_scrubber(struct block_allocator *allocator) 3920 { 3921 struct slab_scrubber *scrubber = &allocator->scrubber; 3922 block_count_t slab_journal_size = 3923 allocator->depot->slab_config.slab_journal_blocks; 3924 char *journal_data; 3925 int result; 3926 3927 result = vdo_allocate(VDO_BLOCK_SIZE * slab_journal_size, 3928 char, __func__, &journal_data); 3929 if (result != VDO_SUCCESS) 3930 return result; 3931 3932 result = allocate_vio_components(allocator->completion.vdo, 3933 VIO_TYPE_SLAB_JOURNAL, 3934 VIO_PRIORITY_METADATA, 3935 allocator, slab_journal_size, 3936 journal_data, &scrubber->vio); 3937 if (result != VDO_SUCCESS) { 3938 vdo_free(journal_data); 3939 return result; 3940 } 3941 3942 INIT_LIST_HEAD(&scrubber->high_priority_slabs); 3943 INIT_LIST_HEAD(&scrubber->slabs); 3944 vdo_set_admin_state_code(&scrubber->admin_state, VDO_ADMIN_STATE_SUSPENDED); 3945 return VDO_SUCCESS; 3946 } 3947 3948 /** 3949 * initialize_slab_summary_block() - Initialize a slab_summary_block. 3950 * @allocator: The allocator which owns the block. 3951 * @index: The index of this block in its zone's summary. 3952 * 3953 * Return: VDO_SUCCESS or an error. 3954 */ 3955 static int __must_check initialize_slab_summary_block(struct block_allocator *allocator, 3956 block_count_t index) 3957 { 3958 struct slab_summary_block *block = &allocator->summary_blocks[index]; 3959 int result; 3960 3961 result = vdo_allocate(VDO_BLOCK_SIZE, char, __func__, &block->outgoing_entries); 3962 if (result != VDO_SUCCESS) 3963 return result; 3964 3965 result = allocate_vio_components(allocator->depot->vdo, VIO_TYPE_SLAB_SUMMARY, 3966 VIO_PRIORITY_METADATA, NULL, 1, 3967 block->outgoing_entries, &block->vio); 3968 if (result != VDO_SUCCESS) 3969 return result; 3970 3971 block->allocator = allocator; 3972 block->entries = &allocator->summary_entries[VDO_SLAB_SUMMARY_ENTRIES_PER_BLOCK * index]; 3973 block->index = index; 3974 return VDO_SUCCESS; 3975 } 3976 3977 static int __must_check initialize_block_allocator(struct slab_depot *depot, 3978 zone_count_t zone) 3979 { 3980 int result; 3981 block_count_t i; 3982 struct block_allocator *allocator = &depot->allocators[zone]; 3983 struct vdo *vdo = depot->vdo; 3984 block_count_t max_free_blocks = depot->slab_config.data_blocks; 3985 unsigned int max_priority = (2 + ilog2(max_free_blocks)); 3986 3987 *allocator = (struct block_allocator) { 3988 .depot = depot, 3989 .zone_number = zone, 3990 .thread_id = vdo->thread_config.physical_threads[zone], 3991 .nonce = vdo->states.vdo.nonce, 3992 }; 3993 3994 INIT_LIST_HEAD(&allocator->dirty_slab_journals); 3995 vdo_set_admin_state_code(&allocator->state, VDO_ADMIN_STATE_NORMAL_OPERATION); 3996 result = vdo_register_read_only_listener(vdo, allocator, 3997 notify_block_allocator_of_read_only_mode, 3998 allocator->thread_id); 3999 if (result != VDO_SUCCESS) 4000 return result; 4001 4002 vdo_initialize_completion(&allocator->completion, vdo, VDO_BLOCK_ALLOCATOR_COMPLETION); 4003 result = make_vio_pool(vdo, BLOCK_ALLOCATOR_VIO_POOL_SIZE, allocator->thread_id, 4004 VIO_TYPE_SLAB_JOURNAL, VIO_PRIORITY_METADATA, 4005 allocator, &allocator->vio_pool); 4006 if (result != VDO_SUCCESS) 4007 return result; 4008 4009 result = initialize_slab_scrubber(allocator); 4010 if (result != VDO_SUCCESS) 4011 return result; 4012 4013 result = vdo_make_priority_table(max_priority, &allocator->prioritized_slabs); 4014 if (result != VDO_SUCCESS) 4015 return result; 4016 4017 result = vdo_allocate(VDO_SLAB_SUMMARY_BLOCKS_PER_ZONE, 4018 struct slab_summary_block, __func__, 4019 &allocator->summary_blocks); 4020 if (result != VDO_SUCCESS) 4021 return result; 4022 4023 vdo_set_admin_state_code(&allocator->summary_state, 4024 VDO_ADMIN_STATE_NORMAL_OPERATION); 4025 allocator->summary_entries = depot->summary_entries + (MAX_VDO_SLABS * zone); 4026 4027 /* Initialize each summary block. */ 4028 for (i = 0; i < VDO_SLAB_SUMMARY_BLOCKS_PER_ZONE; i++) { 4029 result = initialize_slab_summary_block(allocator, i); 4030 if (result != VDO_SUCCESS) 4031 return result; 4032 } 4033 4034 /* 4035 * Performing well atop thin provisioned storage requires either that VDO discards freed 4036 * blocks, or that the block allocator try to use slabs that already have allocated blocks 4037 * in preference to slabs that have never been opened. For reasons we have not been able to 4038 * fully understand, some SSD machines have been have been very sensitive (50% reduction in 4039 * test throughput) to very slight differences in the timing and locality of block 4040 * allocation. Assigning a low priority to unopened slabs (max_priority/2, say) would be 4041 * ideal for the story, but anything less than a very high threshold (max_priority - 1) 4042 * hurts on these machines. 4043 * 4044 * This sets the free block threshold for preferring to open an unopened slab to the binary 4045 * floor of 3/4ths the total number of data blocks in a slab, which will generally evaluate 4046 * to about half the slab size. 4047 */ 4048 allocator->unopened_slab_priority = (1 + ilog2((max_free_blocks * 3) / 4)); 4049 4050 return VDO_SUCCESS; 4051 } 4052 4053 static int allocate_components(struct slab_depot *depot, 4054 struct partition *summary_partition) 4055 { 4056 int result; 4057 zone_count_t zone; 4058 slab_count_t slab_count; 4059 u8 hint; 4060 u32 i; 4061 const struct thread_config *thread_config = &depot->vdo->thread_config; 4062 4063 result = vdo_make_action_manager(depot->zone_count, get_allocator_thread_id, 4064 thread_config->journal_thread, depot, 4065 schedule_tail_block_commit, 4066 depot->vdo, &depot->action_manager); 4067 if (result != VDO_SUCCESS) 4068 return result; 4069 4070 depot->origin = depot->first_block; 4071 4072 /* block size must be a multiple of entry size */ 4073 BUILD_BUG_ON((VDO_BLOCK_SIZE % sizeof(struct slab_summary_entry)) != 0); 4074 4075 depot->summary_origin = summary_partition->offset; 4076 depot->hint_shift = vdo_get_slab_summary_hint_shift(depot->slab_size_shift); 4077 result = vdo_allocate(MAXIMUM_VDO_SLAB_SUMMARY_ENTRIES, 4078 struct slab_summary_entry, __func__, 4079 &depot->summary_entries); 4080 if (result != VDO_SUCCESS) 4081 return result; 4082 4083 4084 /* Initialize all the entries. */ 4085 hint = compute_fullness_hint(depot, depot->slab_config.data_blocks); 4086 for (i = 0; i < MAXIMUM_VDO_SLAB_SUMMARY_ENTRIES; i++) { 4087 /* 4088 * This default tail block offset must be reflected in 4089 * slabJournal.c::read_slab_journal_tail(). 4090 */ 4091 depot->summary_entries[i] = (struct slab_summary_entry) { 4092 .tail_block_offset = 0, 4093 .fullness_hint = hint, 4094 .load_ref_counts = false, 4095 .is_dirty = false, 4096 }; 4097 } 4098 4099 slab_count = vdo_compute_slab_count(depot->first_block, depot->last_block, 4100 depot->slab_size_shift); 4101 if (thread_config->physical_zone_count > slab_count) { 4102 return vdo_log_error_strerror(VDO_BAD_CONFIGURATION, 4103 "%u physical zones exceeds slab count %u", 4104 thread_config->physical_zone_count, 4105 slab_count); 4106 } 4107 4108 /* Initialize the block allocators. */ 4109 for (zone = 0; zone < depot->zone_count; zone++) { 4110 result = initialize_block_allocator(depot, zone); 4111 if (result != VDO_SUCCESS) 4112 return result; 4113 } 4114 4115 /* Allocate slabs. */ 4116 result = allocate_slabs(depot, slab_count); 4117 if (result != VDO_SUCCESS) 4118 return result; 4119 4120 /* Use the new slabs. */ 4121 for (i = depot->slab_count; i < depot->new_slab_count; i++) { 4122 struct vdo_slab *slab = depot->new_slabs[i]; 4123 4124 register_slab_with_allocator(slab->allocator, slab); 4125 WRITE_ONCE(depot->slab_count, depot->slab_count + 1); 4126 } 4127 4128 depot->slabs = depot->new_slabs; 4129 depot->new_slabs = NULL; 4130 depot->new_slab_count = 0; 4131 4132 return VDO_SUCCESS; 4133 } 4134 4135 /** 4136 * vdo_decode_slab_depot() - Make a slab depot and configure it with the state read from the super 4137 * block. 4138 * @state: The slab depot state from the super block. 4139 * @vdo: The VDO which will own the depot. 4140 * @summary_partition: The partition which holds the slab summary. 4141 * @depot_ptr: A pointer to hold the depot. 4142 * 4143 * Return: A success or error code. 4144 */ 4145 int vdo_decode_slab_depot(struct slab_depot_state_2_0 state, struct vdo *vdo, 4146 struct partition *summary_partition, 4147 struct slab_depot **depot_ptr) 4148 { 4149 unsigned int slab_size_shift; 4150 struct slab_depot *depot; 4151 int result; 4152 4153 /* 4154 * Calculate the bit shift for efficiently mapping block numbers to slabs. Using a shift 4155 * requires that the slab size be a power of two. 4156 */ 4157 block_count_t slab_size = state.slab_config.slab_blocks; 4158 4159 if (!is_power_of_2(slab_size)) { 4160 return vdo_log_error_strerror(UDS_INVALID_ARGUMENT, 4161 "slab size must be a power of two"); 4162 } 4163 slab_size_shift = ilog2(slab_size); 4164 4165 result = vdo_allocate_extended(struct slab_depot, 4166 vdo->thread_config.physical_zone_count, 4167 struct block_allocator, __func__, &depot); 4168 if (result != VDO_SUCCESS) 4169 return result; 4170 4171 depot->vdo = vdo; 4172 depot->old_zone_count = state.zone_count; 4173 depot->zone_count = vdo->thread_config.physical_zone_count; 4174 depot->slab_config = state.slab_config; 4175 depot->first_block = state.first_block; 4176 depot->last_block = state.last_block; 4177 depot->slab_size_shift = slab_size_shift; 4178 4179 result = allocate_components(depot, summary_partition); 4180 if (result != VDO_SUCCESS) { 4181 vdo_free_slab_depot(depot); 4182 return result; 4183 } 4184 4185 *depot_ptr = depot; 4186 return VDO_SUCCESS; 4187 } 4188 4189 static void uninitialize_allocator_summary(struct block_allocator *allocator) 4190 { 4191 block_count_t i; 4192 4193 if (allocator->summary_blocks == NULL) 4194 return; 4195 4196 for (i = 0; i < VDO_SLAB_SUMMARY_BLOCKS_PER_ZONE; i++) { 4197 free_vio_components(&allocator->summary_blocks[i].vio); 4198 vdo_free(vdo_forget(allocator->summary_blocks[i].outgoing_entries)); 4199 } 4200 4201 vdo_free(vdo_forget(allocator->summary_blocks)); 4202 } 4203 4204 /** 4205 * vdo_free_slab_depot() - Destroy a slab depot. 4206 * @depot: The depot to destroy. 4207 */ 4208 void vdo_free_slab_depot(struct slab_depot *depot) 4209 { 4210 zone_count_t zone = 0; 4211 4212 if (depot == NULL) 4213 return; 4214 4215 vdo_abandon_new_slabs(depot); 4216 4217 for (zone = 0; zone < depot->zone_count; zone++) { 4218 struct block_allocator *allocator = &depot->allocators[zone]; 4219 4220 if (allocator->eraser != NULL) 4221 dm_kcopyd_client_destroy(vdo_forget(allocator->eraser)); 4222 4223 uninitialize_allocator_summary(allocator); 4224 uninitialize_scrubber_vio(&allocator->scrubber); 4225 free_vio_pool(vdo_forget(allocator->vio_pool)); 4226 vdo_free_priority_table(vdo_forget(allocator->prioritized_slabs)); 4227 } 4228 4229 if (depot->slabs != NULL) { 4230 slab_count_t i; 4231 4232 for (i = 0; i < depot->slab_count; i++) 4233 free_slab(vdo_forget(depot->slabs[i])); 4234 } 4235 4236 vdo_free(vdo_forget(depot->slabs)); 4237 vdo_free(vdo_forget(depot->action_manager)); 4238 vdo_free(vdo_forget(depot->summary_entries)); 4239 vdo_free(depot); 4240 } 4241 4242 /** 4243 * vdo_record_slab_depot() - Record the state of a slab depot for encoding into the super block. 4244 * @depot: The depot to encode. 4245 * 4246 * Return: The depot state. 4247 */ 4248 struct slab_depot_state_2_0 vdo_record_slab_depot(const struct slab_depot *depot) 4249 { 4250 /* 4251 * If this depot is currently using 0 zones, it must have been synchronously loaded by a 4252 * tool and is now being saved. We did not load and combine the slab summary, so we still 4253 * need to do that next time we load with the old zone count rather than 0. 4254 */ 4255 struct slab_depot_state_2_0 state; 4256 zone_count_t zones_to_record = depot->zone_count; 4257 4258 if (depot->zone_count == 0) 4259 zones_to_record = depot->old_zone_count; 4260 4261 state = (struct slab_depot_state_2_0) { 4262 .slab_config = depot->slab_config, 4263 .first_block = depot->first_block, 4264 .last_block = depot->last_block, 4265 .zone_count = zones_to_record, 4266 }; 4267 4268 return state; 4269 } 4270 4271 /** 4272 * vdo_allocate_reference_counters() - Allocate the reference counters for all slabs in the depot. 4273 * 4274 * Context: This method may be called only before entering normal operation from the load thread. 4275 * 4276 * Return: VDO_SUCCESS or an error. 4277 */ 4278 int vdo_allocate_reference_counters(struct slab_depot *depot) 4279 { 4280 struct slab_iterator iterator = 4281 get_depot_slab_iterator(depot, depot->slab_count - 1, 0, 1); 4282 4283 while (iterator.next != NULL) { 4284 int result = allocate_slab_counters(next_slab(&iterator)); 4285 4286 if (result != VDO_SUCCESS) 4287 return result; 4288 } 4289 4290 return VDO_SUCCESS; 4291 } 4292 4293 /** 4294 * get_slab_number() - Get the number of the slab that contains a specified block. 4295 * @depot: The slab depot. 4296 * @pbn: The physical block number. 4297 * @slab_number_ptr: A pointer to hold the slab number. 4298 * 4299 * Return: VDO_SUCCESS or an error. 4300 */ 4301 static int __must_check get_slab_number(const struct slab_depot *depot, 4302 physical_block_number_t pbn, 4303 slab_count_t *slab_number_ptr) 4304 { 4305 slab_count_t slab_number; 4306 4307 if (pbn < depot->first_block) 4308 return VDO_OUT_OF_RANGE; 4309 4310 slab_number = (pbn - depot->first_block) >> depot->slab_size_shift; 4311 if (slab_number >= depot->slab_count) 4312 return VDO_OUT_OF_RANGE; 4313 4314 *slab_number_ptr = slab_number; 4315 return VDO_SUCCESS; 4316 } 4317 4318 /** 4319 * vdo_get_slab() - Get the slab object for the slab that contains a specified block. 4320 * @depot: The slab depot. 4321 * @pbn: The physical block number. 4322 * 4323 * Will put the VDO in read-only mode if the PBN is not a valid data block nor the zero block. 4324 * 4325 * Return: The slab containing the block, or NULL if the block number is the zero block or 4326 * otherwise out of range. 4327 */ 4328 struct vdo_slab *vdo_get_slab(const struct slab_depot *depot, 4329 physical_block_number_t pbn) 4330 { 4331 slab_count_t slab_number; 4332 int result; 4333 4334 if (pbn == VDO_ZERO_BLOCK) 4335 return NULL; 4336 4337 result = get_slab_number(depot, pbn, &slab_number); 4338 if (result != VDO_SUCCESS) { 4339 vdo_enter_read_only_mode(depot->vdo, result); 4340 return NULL; 4341 } 4342 4343 return depot->slabs[slab_number]; 4344 } 4345 4346 /** 4347 * vdo_get_increment_limit() - Determine how many new references a block can acquire. 4348 * @depot: The slab depot. 4349 * @pbn: The physical block number that is being queried. 4350 * 4351 * Context: This method must be called from the physical zone thread of the PBN. 4352 * 4353 * Return: The number of available references. 4354 */ 4355 u8 vdo_get_increment_limit(struct slab_depot *depot, physical_block_number_t pbn) 4356 { 4357 struct vdo_slab *slab = vdo_get_slab(depot, pbn); 4358 vdo_refcount_t *counter_ptr = NULL; 4359 int result; 4360 4361 if ((slab == NULL) || (slab->status != VDO_SLAB_REBUILT)) 4362 return 0; 4363 4364 result = get_reference_counter(slab, pbn, &counter_ptr); 4365 if (result != VDO_SUCCESS) 4366 return 0; 4367 4368 if (*counter_ptr == PROVISIONAL_REFERENCE_COUNT) 4369 return (MAXIMUM_REFERENCE_COUNT - 1); 4370 4371 return (MAXIMUM_REFERENCE_COUNT - *counter_ptr); 4372 } 4373 4374 /** 4375 * vdo_is_physical_data_block() - Determine whether the given PBN refers to a data block. 4376 * @depot: The depot. 4377 * @pbn: The physical block number to ask about. 4378 * 4379 * Return: True if the PBN corresponds to a data block. 4380 */ 4381 bool vdo_is_physical_data_block(const struct slab_depot *depot, 4382 physical_block_number_t pbn) 4383 { 4384 slab_count_t slab_number; 4385 slab_block_number sbn; 4386 4387 return ((pbn == VDO_ZERO_BLOCK) || 4388 ((get_slab_number(depot, pbn, &slab_number) == VDO_SUCCESS) && 4389 (slab_block_number_from_pbn(depot->slabs[slab_number], pbn, &sbn) == 4390 VDO_SUCCESS))); 4391 } 4392 4393 /** 4394 * vdo_get_slab_depot_allocated_blocks() - Get the total number of data blocks allocated across all 4395 * the slabs in the depot. 4396 * @depot: The slab depot. 4397 * 4398 * This is the total number of blocks with a non-zero reference count. 4399 * 4400 * Context: This may be called from any thread. 4401 * 4402 * Return: The total number of blocks with a non-zero reference count. 4403 */ 4404 block_count_t vdo_get_slab_depot_allocated_blocks(const struct slab_depot *depot) 4405 { 4406 block_count_t total = 0; 4407 zone_count_t zone; 4408 4409 for (zone = 0; zone < depot->zone_count; zone++) { 4410 /* The allocators are responsible for thread safety. */ 4411 total += READ_ONCE(depot->allocators[zone].allocated_blocks); 4412 } 4413 4414 return total; 4415 } 4416 4417 /** 4418 * vdo_get_slab_depot_data_blocks() - Get the total number of data blocks in all the slabs in the 4419 * depot. 4420 * @depot: The slab depot. 4421 * 4422 * Context: This may be called from any thread. 4423 * 4424 * Return: The total number of data blocks in all slabs. 4425 */ 4426 block_count_t vdo_get_slab_depot_data_blocks(const struct slab_depot *depot) 4427 { 4428 return (READ_ONCE(depot->slab_count) * depot->slab_config.data_blocks); 4429 } 4430 4431 /** 4432 * finish_combining_zones() - Clean up after saving out the combined slab summary. 4433 * @completion: The vio which was used to write the summary data. 4434 */ 4435 static void finish_combining_zones(struct vdo_completion *completion) 4436 { 4437 int result = completion->result; 4438 struct vdo_completion *parent = completion->parent; 4439 4440 free_vio(as_vio(vdo_forget(completion))); 4441 vdo_fail_completion(parent, result); 4442 } 4443 4444 static void handle_combining_error(struct vdo_completion *completion) 4445 { 4446 vio_record_metadata_io_error(as_vio(completion)); 4447 finish_combining_zones(completion); 4448 } 4449 4450 static void write_summary_endio(struct bio *bio) 4451 { 4452 struct vio *vio = bio->bi_private; 4453 struct vdo *vdo = vio->completion.vdo; 4454 4455 continue_vio_after_io(vio, finish_combining_zones, 4456 vdo->thread_config.admin_thread); 4457 } 4458 4459 /** 4460 * combine_summaries() - Treating the current entries buffer as the on-disk value of all zones, 4461 * update every zone to the correct values for every slab. 4462 * @depot: The depot whose summary entries should be combined. 4463 */ 4464 static void combine_summaries(struct slab_depot *depot) 4465 { 4466 /* 4467 * Combine all the old summary data into the portion of the buffer corresponding to the 4468 * first zone. 4469 */ 4470 zone_count_t zone = 0; 4471 struct slab_summary_entry *entries = depot->summary_entries; 4472 4473 if (depot->old_zone_count > 1) { 4474 slab_count_t entry_number; 4475 4476 for (entry_number = 0; entry_number < MAX_VDO_SLABS; entry_number++) { 4477 if (zone != 0) { 4478 memcpy(entries + entry_number, 4479 entries + (zone * MAX_VDO_SLABS) + entry_number, 4480 sizeof(struct slab_summary_entry)); 4481 } 4482 4483 zone++; 4484 if (zone == depot->old_zone_count) 4485 zone = 0; 4486 } 4487 } 4488 4489 /* Copy the combined data to each zones's region of the buffer. */ 4490 for (zone = 1; zone < MAX_VDO_PHYSICAL_ZONES; zone++) { 4491 memcpy(entries + (zone * MAX_VDO_SLABS), entries, 4492 MAX_VDO_SLABS * sizeof(struct slab_summary_entry)); 4493 } 4494 } 4495 4496 /** 4497 * finish_loading_summary() - Finish loading slab summary data. 4498 * @completion: The vio which was used to read the summary data. 4499 * 4500 * Combines the slab summary data from all the previously written zones and copies the combined 4501 * summary to each partition's data region. Then writes the combined summary back out to disk. This 4502 * callback is registered in load_summary_endio(). 4503 */ 4504 static void finish_loading_summary(struct vdo_completion *completion) 4505 { 4506 struct slab_depot *depot = completion->vdo->depot; 4507 4508 /* Combine the summary from each zone so each zone is correct for all slabs. */ 4509 combine_summaries(depot); 4510 4511 /* Write the combined summary back out. */ 4512 vdo_submit_metadata_vio(as_vio(completion), depot->summary_origin, 4513 write_summary_endio, handle_combining_error, 4514 REQ_OP_WRITE); 4515 } 4516 4517 static void load_summary_endio(struct bio *bio) 4518 { 4519 struct vio *vio = bio->bi_private; 4520 struct vdo *vdo = vio->completion.vdo; 4521 4522 continue_vio_after_io(vio, finish_loading_summary, 4523 vdo->thread_config.admin_thread); 4524 } 4525 4526 /** 4527 * load_slab_summary() - The preamble of a load operation. 4528 * 4529 * Implements vdo_action_preamble_fn. 4530 */ 4531 static void load_slab_summary(void *context, struct vdo_completion *parent) 4532 { 4533 int result; 4534 struct vio *vio; 4535 struct slab_depot *depot = context; 4536 const struct admin_state_code *operation = 4537 vdo_get_current_manager_operation(depot->action_manager); 4538 4539 result = create_multi_block_metadata_vio(depot->vdo, VIO_TYPE_SLAB_SUMMARY, 4540 VIO_PRIORITY_METADATA, parent, 4541 VDO_SLAB_SUMMARY_BLOCKS, 4542 (char *) depot->summary_entries, &vio); 4543 if (result != VDO_SUCCESS) { 4544 vdo_fail_completion(parent, result); 4545 return; 4546 } 4547 4548 if ((operation == VDO_ADMIN_STATE_FORMATTING) || 4549 (operation == VDO_ADMIN_STATE_LOADING_FOR_REBUILD)) { 4550 finish_loading_summary(&vio->completion); 4551 return; 4552 } 4553 4554 vdo_submit_metadata_vio(vio, depot->summary_origin, load_summary_endio, 4555 handle_combining_error, REQ_OP_READ); 4556 } 4557 4558 /* Implements vdo_zone_action_fn. */ 4559 static void load_allocator(void *context, zone_count_t zone_number, 4560 struct vdo_completion *parent) 4561 { 4562 struct slab_depot *depot = context; 4563 4564 vdo_start_loading(&depot->allocators[zone_number].state, 4565 vdo_get_current_manager_operation(depot->action_manager), 4566 parent, initiate_load); 4567 } 4568 4569 /** 4570 * vdo_load_slab_depot() - Asynchronously load any slab depot state that isn't included in the 4571 * super_block component. 4572 * @depot: The depot to load. 4573 * @operation: The type of load to perform. 4574 * @parent: The completion to notify when the load is complete. 4575 * @context: Additional context for the load operation; may be NULL. 4576 * 4577 * This method may be called only before entering normal operation from the load thread. 4578 */ 4579 void vdo_load_slab_depot(struct slab_depot *depot, 4580 const struct admin_state_code *operation, 4581 struct vdo_completion *parent, void *context) 4582 { 4583 if (!vdo_assert_load_operation(operation, parent)) 4584 return; 4585 4586 vdo_schedule_operation_with_context(depot->action_manager, operation, 4587 load_slab_summary, load_allocator, 4588 NULL, context, parent); 4589 } 4590 4591 /* Implements vdo_zone_action_fn. */ 4592 static void prepare_to_allocate(void *context, zone_count_t zone_number, 4593 struct vdo_completion *parent) 4594 { 4595 struct slab_depot *depot = context; 4596 struct block_allocator *allocator = &depot->allocators[zone_number]; 4597 int result; 4598 4599 result = vdo_prepare_slabs_for_allocation(allocator); 4600 if (result != VDO_SUCCESS) { 4601 vdo_fail_completion(parent, result); 4602 return; 4603 } 4604 4605 scrub_slabs(allocator, parent); 4606 } 4607 4608 /** 4609 * vdo_prepare_slab_depot_to_allocate() - Prepare the slab depot to come online and start 4610 * allocating blocks. 4611 * @depot: The depot to prepare. 4612 * @load_type: The load type. 4613 * @parent: The completion to notify when the operation is complete. 4614 * 4615 * This method may be called only before entering normal operation from the load thread. It must be 4616 * called before allocation may proceed. 4617 */ 4618 void vdo_prepare_slab_depot_to_allocate(struct slab_depot *depot, 4619 enum slab_depot_load_type load_type, 4620 struct vdo_completion *parent) 4621 { 4622 depot->load_type = load_type; 4623 atomic_set(&depot->zones_to_scrub, depot->zone_count); 4624 vdo_schedule_action(depot->action_manager, NULL, 4625 prepare_to_allocate, NULL, parent); 4626 } 4627 4628 /** 4629 * vdo_update_slab_depot_size() - Update the slab depot to reflect its new size in memory. 4630 * @depot: The depot to update. 4631 * 4632 * This size is saved to disk as part of the super block. 4633 */ 4634 void vdo_update_slab_depot_size(struct slab_depot *depot) 4635 { 4636 depot->last_block = depot->new_last_block; 4637 } 4638 4639 /** 4640 * vdo_prepare_to_grow_slab_depot() - Allocate new memory needed for a resize of a slab depot to 4641 * the given size. 4642 * @depot: The depot to prepare to resize. 4643 * @partition: The new depot partition 4644 * 4645 * Return: VDO_SUCCESS or an error. 4646 */ 4647 int vdo_prepare_to_grow_slab_depot(struct slab_depot *depot, 4648 const struct partition *partition) 4649 { 4650 struct slab_depot_state_2_0 new_state; 4651 int result; 4652 slab_count_t new_slab_count; 4653 4654 if ((partition->count >> depot->slab_size_shift) <= depot->slab_count) 4655 return VDO_INCREMENT_TOO_SMALL; 4656 4657 /* Generate the depot configuration for the new block count. */ 4658 VDO_ASSERT_LOG_ONLY(depot->first_block == partition->offset, 4659 "New slab depot partition doesn't change origin"); 4660 result = vdo_configure_slab_depot(partition, depot->slab_config, 4661 depot->zone_count, &new_state); 4662 if (result != VDO_SUCCESS) 4663 return result; 4664 4665 new_slab_count = vdo_compute_slab_count(depot->first_block, 4666 new_state.last_block, 4667 depot->slab_size_shift); 4668 if (new_slab_count <= depot->slab_count) 4669 return vdo_log_error_strerror(VDO_INCREMENT_TOO_SMALL, 4670 "Depot can only grow"); 4671 if (new_slab_count == depot->new_slab_count) { 4672 /* Check it out, we've already got all the new slabs allocated! */ 4673 return VDO_SUCCESS; 4674 } 4675 4676 vdo_abandon_new_slabs(depot); 4677 result = allocate_slabs(depot, new_slab_count); 4678 if (result != VDO_SUCCESS) { 4679 vdo_abandon_new_slabs(depot); 4680 return result; 4681 } 4682 4683 depot->new_size = partition->count; 4684 depot->old_last_block = depot->last_block; 4685 depot->new_last_block = new_state.last_block; 4686 4687 return VDO_SUCCESS; 4688 } 4689 4690 /** 4691 * finish_registration() - Finish registering new slabs now that all of the allocators have 4692 * received their new slabs. 4693 * 4694 * Implements vdo_action_conclusion_fn. 4695 */ 4696 static int finish_registration(void *context) 4697 { 4698 struct slab_depot *depot = context; 4699 4700 WRITE_ONCE(depot->slab_count, depot->new_slab_count); 4701 vdo_free(depot->slabs); 4702 depot->slabs = depot->new_slabs; 4703 depot->new_slabs = NULL; 4704 depot->new_slab_count = 0; 4705 return VDO_SUCCESS; 4706 } 4707 4708 /* Implements vdo_zone_action_fn. */ 4709 static void register_new_slabs(void *context, zone_count_t zone_number, 4710 struct vdo_completion *parent) 4711 { 4712 struct slab_depot *depot = context; 4713 struct block_allocator *allocator = &depot->allocators[zone_number]; 4714 slab_count_t i; 4715 4716 for (i = depot->slab_count; i < depot->new_slab_count; i++) { 4717 struct vdo_slab *slab = depot->new_slabs[i]; 4718 4719 if (slab->allocator == allocator) 4720 register_slab_with_allocator(allocator, slab); 4721 } 4722 4723 vdo_finish_completion(parent); 4724 } 4725 4726 /** 4727 * vdo_use_new_slabs() - Use the new slabs allocated for resize. 4728 * @depot: The depot. 4729 * @parent: The object to notify when complete. 4730 */ 4731 void vdo_use_new_slabs(struct slab_depot *depot, struct vdo_completion *parent) 4732 { 4733 VDO_ASSERT_LOG_ONLY(depot->new_slabs != NULL, "Must have new slabs to use"); 4734 vdo_schedule_operation(depot->action_manager, 4735 VDO_ADMIN_STATE_SUSPENDED_OPERATION, 4736 NULL, register_new_slabs, 4737 finish_registration, parent); 4738 } 4739 4740 /** 4741 * stop_scrubbing() - Tell the scrubber to stop scrubbing after it finishes the slab it is 4742 * currently working on. 4743 * @allocator: The block allocator owning the scrubber to stop. 4744 */ 4745 static void stop_scrubbing(struct block_allocator *allocator) 4746 { 4747 struct slab_scrubber *scrubber = &allocator->scrubber; 4748 4749 if (vdo_is_state_quiescent(&scrubber->admin_state)) { 4750 vdo_finish_completion(&allocator->completion); 4751 } else { 4752 vdo_start_draining(&scrubber->admin_state, 4753 VDO_ADMIN_STATE_SUSPENDING, 4754 &allocator->completion, NULL); 4755 } 4756 } 4757 4758 /* Implements vdo_admin_initiator_fn. */ 4759 static void initiate_summary_drain(struct admin_state *state) 4760 { 4761 check_summary_drain_complete(container_of(state, struct block_allocator, 4762 summary_state)); 4763 } 4764 4765 static void do_drain_step(struct vdo_completion *completion) 4766 { 4767 struct block_allocator *allocator = vdo_as_block_allocator(completion); 4768 4769 vdo_prepare_completion_for_requeue(&allocator->completion, do_drain_step, 4770 handle_operation_error, allocator->thread_id, 4771 NULL); 4772 switch (++allocator->drain_step) { 4773 case VDO_DRAIN_ALLOCATOR_STEP_SCRUBBER: 4774 stop_scrubbing(allocator); 4775 return; 4776 4777 case VDO_DRAIN_ALLOCATOR_STEP_SLABS: 4778 apply_to_slabs(allocator, do_drain_step); 4779 return; 4780 4781 case VDO_DRAIN_ALLOCATOR_STEP_SUMMARY: 4782 vdo_start_draining(&allocator->summary_state, 4783 vdo_get_admin_state_code(&allocator->state), 4784 completion, initiate_summary_drain); 4785 return; 4786 4787 case VDO_DRAIN_ALLOCATOR_STEP_FINISHED: 4788 VDO_ASSERT_LOG_ONLY(!is_vio_pool_busy(allocator->vio_pool), 4789 "vio pool not busy"); 4790 vdo_finish_draining_with_result(&allocator->state, completion->result); 4791 return; 4792 4793 default: 4794 vdo_finish_draining_with_result(&allocator->state, UDS_BAD_STATE); 4795 } 4796 } 4797 4798 /* Implements vdo_admin_initiator_fn. */ 4799 static void initiate_drain(struct admin_state *state) 4800 { 4801 struct block_allocator *allocator = 4802 container_of(state, struct block_allocator, state); 4803 4804 allocator->drain_step = VDO_DRAIN_ALLOCATOR_START; 4805 do_drain_step(&allocator->completion); 4806 } 4807 4808 /* 4809 * Drain all allocator I/O. Depending upon the type of drain, some or all dirty metadata may be 4810 * written to disk. The type of drain will be determined from the state of the allocator's depot. 4811 * 4812 * Implements vdo_zone_action_fn. 4813 */ 4814 static void drain_allocator(void *context, zone_count_t zone_number, 4815 struct vdo_completion *parent) 4816 { 4817 struct slab_depot *depot = context; 4818 4819 vdo_start_draining(&depot->allocators[zone_number].state, 4820 vdo_get_current_manager_operation(depot->action_manager), 4821 parent, initiate_drain); 4822 } 4823 4824 /** 4825 * vdo_drain_slab_depot() - Drain all slab depot I/O. 4826 * @depot: The depot to drain. 4827 * @operation: The drain operation (flush, rebuild, suspend, or save). 4828 * @parent: The completion to finish when the drain is complete. 4829 * 4830 * If saving, or flushing, all dirty depot metadata will be written out. If saving or suspending, 4831 * the depot will be left in a suspended state. 4832 */ 4833 void vdo_drain_slab_depot(struct slab_depot *depot, 4834 const struct admin_state_code *operation, 4835 struct vdo_completion *parent) 4836 { 4837 vdo_schedule_operation(depot->action_manager, operation, 4838 NULL, drain_allocator, NULL, parent); 4839 } 4840 4841 /** 4842 * resume_scrubbing() - Tell the scrubber to resume scrubbing if it has been stopped. 4843 * @allocator: The allocator being resumed. 4844 */ 4845 static void resume_scrubbing(struct block_allocator *allocator) 4846 { 4847 int result; 4848 struct slab_scrubber *scrubber = &allocator->scrubber; 4849 4850 if (!has_slabs_to_scrub(scrubber)) { 4851 vdo_finish_completion(&allocator->completion); 4852 return; 4853 } 4854 4855 result = vdo_resume_if_quiescent(&scrubber->admin_state); 4856 if (result != VDO_SUCCESS) { 4857 vdo_fail_completion(&allocator->completion, result); 4858 return; 4859 } 4860 4861 scrub_next_slab(scrubber); 4862 vdo_finish_completion(&allocator->completion); 4863 } 4864 4865 static void do_resume_step(struct vdo_completion *completion) 4866 { 4867 struct block_allocator *allocator = vdo_as_block_allocator(completion); 4868 4869 vdo_prepare_completion_for_requeue(&allocator->completion, do_resume_step, 4870 handle_operation_error, 4871 allocator->thread_id, NULL); 4872 switch (--allocator->drain_step) { 4873 case VDO_DRAIN_ALLOCATOR_STEP_SUMMARY: 4874 vdo_fail_completion(completion, 4875 vdo_resume_if_quiescent(&allocator->summary_state)); 4876 return; 4877 4878 case VDO_DRAIN_ALLOCATOR_STEP_SLABS: 4879 apply_to_slabs(allocator, do_resume_step); 4880 return; 4881 4882 case VDO_DRAIN_ALLOCATOR_STEP_SCRUBBER: 4883 resume_scrubbing(allocator); 4884 return; 4885 4886 case VDO_DRAIN_ALLOCATOR_START: 4887 vdo_finish_resuming_with_result(&allocator->state, completion->result); 4888 return; 4889 4890 default: 4891 vdo_finish_resuming_with_result(&allocator->state, UDS_BAD_STATE); 4892 } 4893 } 4894 4895 /* Implements vdo_admin_initiator_fn. */ 4896 static void initiate_resume(struct admin_state *state) 4897 { 4898 struct block_allocator *allocator = 4899 container_of(state, struct block_allocator, state); 4900 4901 allocator->drain_step = VDO_DRAIN_ALLOCATOR_STEP_FINISHED; 4902 do_resume_step(&allocator->completion); 4903 } 4904 4905 /* Implements vdo_zone_action_fn. */ 4906 static void resume_allocator(void *context, zone_count_t zone_number, 4907 struct vdo_completion *parent) 4908 { 4909 struct slab_depot *depot = context; 4910 4911 vdo_start_resuming(&depot->allocators[zone_number].state, 4912 vdo_get_current_manager_operation(depot->action_manager), 4913 parent, initiate_resume); 4914 } 4915 4916 /** 4917 * vdo_resume_slab_depot() - Resume a suspended slab depot. 4918 * @depot: The depot to resume. 4919 * @parent: The completion to finish when the depot has resumed. 4920 */ 4921 void vdo_resume_slab_depot(struct slab_depot *depot, struct vdo_completion *parent) 4922 { 4923 if (vdo_is_read_only(depot->vdo)) { 4924 vdo_continue_completion(parent, VDO_READ_ONLY); 4925 return; 4926 } 4927 4928 vdo_schedule_operation(depot->action_manager, VDO_ADMIN_STATE_RESUMING, 4929 NULL, resume_allocator, NULL, parent); 4930 } 4931 4932 /** 4933 * vdo_commit_oldest_slab_journal_tail_blocks() - Commit all dirty tail blocks which are locking a 4934 * given recovery journal block. 4935 * @depot: The depot. 4936 * @recovery_block_number: The sequence number of the recovery journal block whose locks should be 4937 * released. 4938 * 4939 * Context: This method must be called from the journal zone thread. 4940 */ 4941 void vdo_commit_oldest_slab_journal_tail_blocks(struct slab_depot *depot, 4942 sequence_number_t recovery_block_number) 4943 { 4944 if (depot == NULL) 4945 return; 4946 4947 depot->new_release_request = recovery_block_number; 4948 vdo_schedule_default_action(depot->action_manager); 4949 } 4950 4951 /* Implements vdo_zone_action_fn. */ 4952 static void scrub_all_unrecovered_slabs(void *context, zone_count_t zone_number, 4953 struct vdo_completion *parent) 4954 { 4955 struct slab_depot *depot = context; 4956 4957 scrub_slabs(&depot->allocators[zone_number], NULL); 4958 vdo_launch_completion(parent); 4959 } 4960 4961 /** 4962 * vdo_scrub_all_unrecovered_slabs() - Scrub all unrecovered slabs. 4963 * @depot: The depot to scrub. 4964 * @parent: The object to notify when scrubbing has been launched for all zones. 4965 */ 4966 void vdo_scrub_all_unrecovered_slabs(struct slab_depot *depot, 4967 struct vdo_completion *parent) 4968 { 4969 vdo_schedule_action(depot->action_manager, NULL, 4970 scrub_all_unrecovered_slabs, 4971 NULL, parent); 4972 } 4973 4974 /** 4975 * get_block_allocator_statistics() - Get the total of the statistics from all the block allocators 4976 * in the depot. 4977 * @depot: The slab depot. 4978 * 4979 * Return: The statistics from all block allocators in the depot. 4980 */ 4981 static struct block_allocator_statistics __must_check 4982 get_block_allocator_statistics(const struct slab_depot *depot) 4983 { 4984 struct block_allocator_statistics totals; 4985 zone_count_t zone; 4986 4987 memset(&totals, 0, sizeof(totals)); 4988 4989 for (zone = 0; zone < depot->zone_count; zone++) { 4990 const struct block_allocator *allocator = &depot->allocators[zone]; 4991 const struct block_allocator_statistics *stats = &allocator->statistics; 4992 4993 totals.slab_count += allocator->slab_count; 4994 totals.slabs_opened += READ_ONCE(stats->slabs_opened); 4995 totals.slabs_reopened += READ_ONCE(stats->slabs_reopened); 4996 } 4997 4998 return totals; 4999 } 5000 5001 /** 5002 * get_ref_counts_statistics() - Get the cumulative ref_counts statistics for the depot. 5003 * @depot: The slab depot. 5004 * 5005 * Return: The cumulative statistics for all ref_counts in the depot. 5006 */ 5007 static struct ref_counts_statistics __must_check 5008 get_ref_counts_statistics(const struct slab_depot *depot) 5009 { 5010 struct ref_counts_statistics totals; 5011 zone_count_t zone; 5012 5013 memset(&totals, 0, sizeof(totals)); 5014 5015 for (zone = 0; zone < depot->zone_count; zone++) { 5016 totals.blocks_written += 5017 READ_ONCE(depot->allocators[zone].ref_counts_statistics.blocks_written); 5018 } 5019 5020 return totals; 5021 } 5022 5023 /** 5024 * get_slab_journal_statistics() - Get the aggregated slab journal statistics for the depot. 5025 * @depot: The slab depot. 5026 * 5027 * Return: The aggregated statistics for all slab journals in the depot. 5028 */ 5029 static struct slab_journal_statistics __must_check 5030 get_slab_journal_statistics(const struct slab_depot *depot) 5031 { 5032 struct slab_journal_statistics totals; 5033 zone_count_t zone; 5034 5035 memset(&totals, 0, sizeof(totals)); 5036 5037 for (zone = 0; zone < depot->zone_count; zone++) { 5038 const struct slab_journal_statistics *stats = 5039 &depot->allocators[zone].slab_journal_statistics; 5040 5041 totals.disk_full_count += READ_ONCE(stats->disk_full_count); 5042 totals.flush_count += READ_ONCE(stats->flush_count); 5043 totals.blocked_count += READ_ONCE(stats->blocked_count); 5044 totals.blocks_written += READ_ONCE(stats->blocks_written); 5045 totals.tail_busy_count += READ_ONCE(stats->tail_busy_count); 5046 } 5047 5048 return totals; 5049 } 5050 5051 /** 5052 * vdo_get_slab_depot_statistics() - Get all the vdo_statistics fields that are properties of the 5053 * slab depot. 5054 * @depot: The slab depot. 5055 * @stats: The vdo statistics structure to partially fill. 5056 */ 5057 void vdo_get_slab_depot_statistics(const struct slab_depot *depot, 5058 struct vdo_statistics *stats) 5059 { 5060 slab_count_t slab_count = READ_ONCE(depot->slab_count); 5061 slab_count_t unrecovered = 0; 5062 zone_count_t zone; 5063 5064 for (zone = 0; zone < depot->zone_count; zone++) { 5065 /* The allocators are responsible for thread safety. */ 5066 unrecovered += READ_ONCE(depot->allocators[zone].scrubber.slab_count); 5067 } 5068 5069 stats->recovery_percentage = (slab_count - unrecovered) * 100 / slab_count; 5070 stats->allocator = get_block_allocator_statistics(depot); 5071 stats->ref_counts = get_ref_counts_statistics(depot); 5072 stats->slab_journal = get_slab_journal_statistics(depot); 5073 stats->slab_summary = (struct slab_summary_statistics) { 5074 .blocks_written = atomic64_read(&depot->summary_statistics.blocks_written), 5075 }; 5076 } 5077 5078 /** 5079 * vdo_dump_slab_depot() - Dump the slab depot, in a thread-unsafe fashion. 5080 * @depot: The slab depot. 5081 */ 5082 void vdo_dump_slab_depot(const struct slab_depot *depot) 5083 { 5084 vdo_log_info("vdo slab depot"); 5085 vdo_log_info(" zone_count=%u old_zone_count=%u slabCount=%u active_release_request=%llu new_release_request=%llu", 5086 (unsigned int) depot->zone_count, 5087 (unsigned int) depot->old_zone_count, READ_ONCE(depot->slab_count), 5088 (unsigned long long) depot->active_release_request, 5089 (unsigned long long) depot->new_release_request); 5090 } 5091