xref: /linux/drivers/md/dm-vdo/indexer/open-chapter.c (revision eb01fe7abbe2d0b38824d2a93fdb4cc3eaf2ccc1)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright 2023 Red Hat
4  */
5 
6 #include "open-chapter.h"
7 
8 #include <linux/log2.h>
9 
10 #include "logger.h"
11 #include "memory-alloc.h"
12 #include "numeric.h"
13 #include "permassert.h"
14 
15 #include "config.h"
16 #include "hash-utils.h"
17 
18 /*
19  * Each index zone has a dedicated open chapter zone structure which gets an equal share of the
20  * open chapter space. Records are assigned to zones based on their record name. Within each zone,
21  * records are stored in an array in the order they arrive. Additionally, a reference to each
22  * record is stored in a hash table to help determine if a new record duplicates an existing one.
23  * If new metadata for an existing name arrives, the record is altered in place. The array of
24  * records is 1-based so that record number 0 can be used to indicate an unused hash slot.
25  *
26  * Deleted records are marked with a flag rather than actually removed to simplify hash table
27  * management. The array of deleted flags overlays the array of hash slots, but the flags are
28  * indexed by record number instead of by record name. The number of hash slots will always be a
29  * power of two that is greater than the number of records to be indexed, guaranteeing that hash
30  * insertion cannot fail, and that there are sufficient flags for all records.
31  *
32  * Once any open chapter zone fills its available space, the chapter is closed. The records from
33  * each zone are interleaved to attempt to preserve temporal locality and assigned to record pages.
34  * Empty or deleted records are replaced by copies of a valid record so that the record pages only
35  * contain valid records. The chapter then constructs a delta index which maps each record name to
36  * the record page on which that record can be found, which is split into index pages. These
37  * structures are then passed to the volume to be recorded on storage.
38  *
39  * When the index is saved, the open chapter records are saved in a single array, once again
40  * interleaved to attempt to preserve temporal locality. When the index is reloaded, there may be a
41  * different number of zones than previously, so the records must be parcelled out to their new
42  * zones. In addition, depending on the distribution of record names, a new zone may have more
43  * records than it has space. In this case, the latest records for that zone will be discarded.
44  */
45 
46 static const u8 OPEN_CHAPTER_MAGIC[] = "ALBOC";
47 static const u8 OPEN_CHAPTER_VERSION[] = "02.00";
48 
49 #define OPEN_CHAPTER_MAGIC_LENGTH (sizeof(OPEN_CHAPTER_MAGIC) - 1)
50 #define OPEN_CHAPTER_VERSION_LENGTH (sizeof(OPEN_CHAPTER_VERSION) - 1)
51 #define LOAD_RATIO 2
52 
53 static inline size_t records_size(const struct open_chapter_zone *open_chapter)
54 {
55 	return sizeof(struct uds_volume_record) * (1 + open_chapter->capacity);
56 }
57 
58 static inline size_t slots_size(size_t slot_count)
59 {
60 	return sizeof(struct open_chapter_zone_slot) * slot_count;
61 }
62 
63 int uds_make_open_chapter(const struct index_geometry *geometry, unsigned int zone_count,
64 			  struct open_chapter_zone **open_chapter_ptr)
65 {
66 	int result;
67 	struct open_chapter_zone *open_chapter;
68 	size_t capacity = geometry->records_per_chapter / zone_count;
69 	size_t slot_count = (1 << bits_per(capacity * LOAD_RATIO));
70 
71 	result = vdo_allocate_extended(struct open_chapter_zone, slot_count,
72 				       struct open_chapter_zone_slot, "open chapter",
73 				       &open_chapter);
74 	if (result != VDO_SUCCESS)
75 		return result;
76 
77 	open_chapter->slot_count = slot_count;
78 	open_chapter->capacity = capacity;
79 	result = vdo_allocate_cache_aligned(records_size(open_chapter), "record pages",
80 					    &open_chapter->records);
81 	if (result != VDO_SUCCESS) {
82 		uds_free_open_chapter(open_chapter);
83 		return result;
84 	}
85 
86 	*open_chapter_ptr = open_chapter;
87 	return UDS_SUCCESS;
88 }
89 
90 void uds_reset_open_chapter(struct open_chapter_zone *open_chapter)
91 {
92 	open_chapter->size = 0;
93 	open_chapter->deletions = 0;
94 
95 	memset(open_chapter->records, 0, records_size(open_chapter));
96 	memset(open_chapter->slots, 0, slots_size(open_chapter->slot_count));
97 }
98 
99 static unsigned int probe_chapter_slots(struct open_chapter_zone *open_chapter,
100 					const struct uds_record_name *name)
101 {
102 	struct uds_volume_record *record;
103 	unsigned int slot_count = open_chapter->slot_count;
104 	unsigned int slot = uds_name_to_hash_slot(name, slot_count);
105 	unsigned int record_number;
106 	unsigned int attempts = 1;
107 
108 	while (true) {
109 		record_number = open_chapter->slots[slot].record_number;
110 
111 		/*
112 		 * If the hash slot is empty, we've reached the end of a chain without finding the
113 		 * record and should terminate the search.
114 		 */
115 		if (record_number == 0)
116 			return slot;
117 
118 		/*
119 		 * If the name of the record referenced by the slot matches and has not been
120 		 * deleted, then we've found the requested name.
121 		 */
122 		record = &open_chapter->records[record_number];
123 		if ((memcmp(&record->name, name, UDS_RECORD_NAME_SIZE) == 0) &&
124 		    !open_chapter->slots[record_number].deleted)
125 			return slot;
126 
127 		/*
128 		 * Quadratic probing: advance the probe by 1, 2, 3, etc. and try again. This
129 		 * performs better than linear probing and works best for 2^N slots.
130 		 */
131 		slot = (slot + attempts++) % slot_count;
132 	}
133 }
134 
135 void uds_search_open_chapter(struct open_chapter_zone *open_chapter,
136 			     const struct uds_record_name *name,
137 			     struct uds_record_data *metadata, bool *found)
138 {
139 	unsigned int slot;
140 	unsigned int record_number;
141 
142 	slot = probe_chapter_slots(open_chapter, name);
143 	record_number = open_chapter->slots[slot].record_number;
144 	if (record_number == 0) {
145 		*found = false;
146 	} else {
147 		*found = true;
148 		*metadata = open_chapter->records[record_number].data;
149 	}
150 }
151 
152 /* Add a record to the open chapter zone and return the remaining space. */
153 int uds_put_open_chapter(struct open_chapter_zone *open_chapter,
154 			 const struct uds_record_name *name,
155 			 const struct uds_record_data *metadata)
156 {
157 	unsigned int slot;
158 	unsigned int record_number;
159 	struct uds_volume_record *record;
160 
161 	if (open_chapter->size >= open_chapter->capacity)
162 		return 0;
163 
164 	slot = probe_chapter_slots(open_chapter, name);
165 	record_number = open_chapter->slots[slot].record_number;
166 
167 	if (record_number == 0) {
168 		record_number = ++open_chapter->size;
169 		open_chapter->slots[slot].record_number = record_number;
170 	}
171 
172 	record = &open_chapter->records[record_number];
173 	record->name = *name;
174 	record->data = *metadata;
175 
176 	return open_chapter->capacity - open_chapter->size;
177 }
178 
179 void uds_remove_from_open_chapter(struct open_chapter_zone *open_chapter,
180 				  const struct uds_record_name *name)
181 {
182 	unsigned int slot;
183 	unsigned int record_number;
184 
185 	slot = probe_chapter_slots(open_chapter, name);
186 	record_number = open_chapter->slots[slot].record_number;
187 
188 	if (record_number > 0) {
189 		open_chapter->slots[record_number].deleted = true;
190 		open_chapter->deletions += 1;
191 	}
192 }
193 
194 void uds_free_open_chapter(struct open_chapter_zone *open_chapter)
195 {
196 	if (open_chapter != NULL) {
197 		vdo_free(open_chapter->records);
198 		vdo_free(open_chapter);
199 	}
200 }
201 
202 /* Map each record name to its record page number in the delta chapter index. */
203 static int fill_delta_chapter_index(struct open_chapter_zone **chapter_zones,
204 				    unsigned int zone_count,
205 				    struct open_chapter_index *index,
206 				    struct uds_volume_record *collated_records)
207 {
208 	int result;
209 	unsigned int records_per_chapter;
210 	unsigned int records_per_page;
211 	unsigned int record_index;
212 	unsigned int records = 0;
213 	u32 page_number;
214 	unsigned int z;
215 	int overflow_count = 0;
216 	struct uds_volume_record *fill_record = NULL;
217 
218 	/*
219 	 * The record pages should not have any empty space, so find a record with which to fill
220 	 * the chapter zone if it was closed early, and also to replace any deleted records. The
221 	 * last record in any filled zone is guaranteed to not have been deleted, so use one of
222 	 * those.
223 	 */
224 	for (z = 0; z < zone_count; z++) {
225 		struct open_chapter_zone *zone = chapter_zones[z];
226 
227 		if (zone->size == zone->capacity) {
228 			fill_record = &zone->records[zone->size];
229 			break;
230 		}
231 	}
232 
233 	records_per_chapter = index->geometry->records_per_chapter;
234 	records_per_page = index->geometry->records_per_page;
235 
236 	for (records = 0; records < records_per_chapter; records++) {
237 		struct uds_volume_record *record = &collated_records[records];
238 		struct open_chapter_zone *open_chapter;
239 
240 		/* The record arrays in the zones are 1-based. */
241 		record_index = 1 + (records / zone_count);
242 		page_number = records / records_per_page;
243 		open_chapter = chapter_zones[records % zone_count];
244 
245 		/* Use the fill record in place of an unused record. */
246 		if (record_index > open_chapter->size ||
247 		    open_chapter->slots[record_index].deleted) {
248 			*record = *fill_record;
249 			continue;
250 		}
251 
252 		*record = open_chapter->records[record_index];
253 		result = uds_put_open_chapter_index_record(index, &record->name,
254 							   page_number);
255 		switch (result) {
256 		case UDS_SUCCESS:
257 			break;
258 		case UDS_OVERFLOW:
259 			overflow_count++;
260 			break;
261 		default:
262 			vdo_log_error_strerror(result,
263 					       "failed to build open chapter index");
264 			return result;
265 		}
266 	}
267 
268 	if (overflow_count > 0)
269 		vdo_log_warning("Failed to add %d entries to chapter index",
270 				overflow_count);
271 
272 	return UDS_SUCCESS;
273 }
274 
275 int uds_close_open_chapter(struct open_chapter_zone **chapter_zones,
276 			   unsigned int zone_count, struct volume *volume,
277 			   struct open_chapter_index *chapter_index,
278 			   struct uds_volume_record *collated_records,
279 			   u64 virtual_chapter_number)
280 {
281 	int result;
282 
283 	uds_empty_open_chapter_index(chapter_index, virtual_chapter_number);
284 	result = fill_delta_chapter_index(chapter_zones, zone_count, chapter_index,
285 					  collated_records);
286 	if (result != UDS_SUCCESS)
287 		return result;
288 
289 	return uds_write_chapter(volume, chapter_index, collated_records);
290 }
291 
292 int uds_save_open_chapter(struct uds_index *index, struct buffered_writer *writer)
293 {
294 	int result;
295 	struct open_chapter_zone *open_chapter;
296 	struct uds_volume_record *record;
297 	u8 record_count_data[sizeof(u32)];
298 	u32 record_count = 0;
299 	unsigned int record_index;
300 	unsigned int z;
301 
302 	result = uds_write_to_buffered_writer(writer, OPEN_CHAPTER_MAGIC,
303 					      OPEN_CHAPTER_MAGIC_LENGTH);
304 	if (result != UDS_SUCCESS)
305 		return result;
306 
307 	result = uds_write_to_buffered_writer(writer, OPEN_CHAPTER_VERSION,
308 					      OPEN_CHAPTER_VERSION_LENGTH);
309 	if (result != UDS_SUCCESS)
310 		return result;
311 
312 	for (z = 0; z < index->zone_count; z++) {
313 		open_chapter = index->zones[z]->open_chapter;
314 		record_count += open_chapter->size - open_chapter->deletions;
315 	}
316 
317 	put_unaligned_le32(record_count, record_count_data);
318 	result = uds_write_to_buffered_writer(writer, record_count_data,
319 					      sizeof(record_count_data));
320 	if (result != UDS_SUCCESS)
321 		return result;
322 
323 	record_index = 1;
324 	while (record_count > 0) {
325 		for (z = 0; z < index->zone_count; z++) {
326 			open_chapter = index->zones[z]->open_chapter;
327 			if (record_index > open_chapter->size)
328 				continue;
329 
330 			if (open_chapter->slots[record_index].deleted)
331 				continue;
332 
333 			record = &open_chapter->records[record_index];
334 			result = uds_write_to_buffered_writer(writer, (u8 *) record,
335 							      sizeof(*record));
336 			if (result != UDS_SUCCESS)
337 				return result;
338 
339 			record_count--;
340 		}
341 
342 		record_index++;
343 	}
344 
345 	return uds_flush_buffered_writer(writer);
346 }
347 
348 u64 uds_compute_saved_open_chapter_size(struct index_geometry *geometry)
349 {
350 	unsigned int records_per_chapter = geometry->records_per_chapter;
351 
352 	return OPEN_CHAPTER_MAGIC_LENGTH + OPEN_CHAPTER_VERSION_LENGTH + sizeof(u32) +
353 		records_per_chapter * sizeof(struct uds_volume_record);
354 }
355 
356 static int load_version20(struct uds_index *index, struct buffered_reader *reader)
357 {
358 	int result;
359 	u32 record_count;
360 	u8 record_count_data[sizeof(u32)];
361 	struct uds_volume_record record;
362 
363 	/*
364 	 * Track which zones cannot accept any more records. If the open chapter had a different
365 	 * number of zones previously, some new zones may have more records than they have space
366 	 * for. These overflow records will be discarded.
367 	 */
368 	bool full_flags[MAX_ZONES] = {
369 		false,
370 	};
371 
372 	result = uds_read_from_buffered_reader(reader, (u8 *) &record_count_data,
373 					       sizeof(record_count_data));
374 	if (result != UDS_SUCCESS)
375 		return result;
376 
377 	record_count = get_unaligned_le32(record_count_data);
378 	while (record_count-- > 0) {
379 		unsigned int zone = 0;
380 
381 		result = uds_read_from_buffered_reader(reader, (u8 *) &record,
382 						       sizeof(record));
383 		if (result != UDS_SUCCESS)
384 			return result;
385 
386 		if (index->zone_count > 1)
387 			zone = uds_get_volume_index_zone(index->volume_index,
388 							 &record.name);
389 
390 		if (!full_flags[zone]) {
391 			struct open_chapter_zone *open_chapter;
392 			unsigned int remaining;
393 
394 			open_chapter = index->zones[zone]->open_chapter;
395 			remaining = uds_put_open_chapter(open_chapter, &record.name,
396 							 &record.data);
397 			/* Do not allow any zone to fill completely. */
398 			full_flags[zone] = (remaining <= 1);
399 		}
400 	}
401 
402 	return UDS_SUCCESS;
403 }
404 
405 int uds_load_open_chapter(struct uds_index *index, struct buffered_reader *reader)
406 {
407 	u8 version[OPEN_CHAPTER_VERSION_LENGTH];
408 	int result;
409 
410 	result = uds_verify_buffered_data(reader, OPEN_CHAPTER_MAGIC,
411 					  OPEN_CHAPTER_MAGIC_LENGTH);
412 	if (result != UDS_SUCCESS)
413 		return result;
414 
415 	result = uds_read_from_buffered_reader(reader, version, sizeof(version));
416 	if (result != UDS_SUCCESS)
417 		return result;
418 
419 	if (memcmp(OPEN_CHAPTER_VERSION, version, sizeof(version)) != 0) {
420 		return vdo_log_error_strerror(UDS_CORRUPT_DATA,
421 					      "Invalid open chapter version: %.*s",
422 					      (int) sizeof(version), version);
423 	}
424 
425 	return load_version20(index, reader);
426 }
427