1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright 2023 Red Hat 4 */ 5 6 #include "funnel-workqueue.h" 7 8 #include <linux/atomic.h> 9 #include <linux/cache.h> 10 #include <linux/completion.h> 11 #include <linux/err.h> 12 #include <linux/kthread.h> 13 #include <linux/percpu.h> 14 15 #include "funnel-queue.h" 16 #include "logger.h" 17 #include "memory-alloc.h" 18 #include "numeric.h" 19 #include "permassert.h" 20 #include "string-utils.h" 21 22 #include "completion.h" 23 #include "status-codes.h" 24 25 static DEFINE_PER_CPU(unsigned int, service_queue_rotor); 26 27 /** 28 * DOC: Work queue definition. 29 * 30 * There are two types of work queues: simple, with one worker thread, and round-robin, which uses 31 * a group of the former to do the work, and assigns work to them in round-robin fashion (roughly). 32 * Externally, both are represented via the same common sub-structure, though there's actually not 33 * a great deal of overlap between the two types internally. 34 */ 35 struct vdo_work_queue { 36 /* Name of just the work queue (e.g., "cpuQ12") */ 37 char *name; 38 bool round_robin_mode; 39 struct vdo_thread *owner; 40 /* Life cycle functions, etc */ 41 const struct vdo_work_queue_type *type; 42 }; 43 44 struct simple_work_queue { 45 struct vdo_work_queue common; 46 struct funnel_queue *priority_lists[VDO_WORK_Q_MAX_PRIORITY + 1]; 47 void *private; 48 49 /* 50 * The fields above are unchanged after setup but often read, and are good candidates for 51 * caching -- and if the max priority is 2, just fit in one x86-64 cache line if aligned. 52 * The fields below are often modified as we sleep and wake, so we want a separate cache 53 * line for performance. 54 */ 55 56 /* Any (0 or 1) worker threads waiting for new work to do */ 57 wait_queue_head_t waiting_worker_threads ____cacheline_aligned; 58 /* Hack to reduce wakeup calls if the worker thread is running */ 59 atomic_t idle; 60 61 /* These are infrequently used so in terms of performance we don't care where they land. */ 62 struct task_struct *thread; 63 /* Notify creator once worker has initialized */ 64 struct completion *started; 65 }; 66 67 struct round_robin_work_queue { 68 struct vdo_work_queue common; 69 struct simple_work_queue **service_queues; 70 unsigned int num_service_queues; 71 }; 72 73 static inline struct simple_work_queue *as_simple_work_queue(struct vdo_work_queue *queue) 74 { 75 return ((queue == NULL) ? 76 NULL : container_of(queue, struct simple_work_queue, common)); 77 } 78 79 static inline struct round_robin_work_queue *as_round_robin_work_queue(struct vdo_work_queue *queue) 80 { 81 return ((queue == NULL) ? 82 NULL : 83 container_of(queue, struct round_robin_work_queue, common)); 84 } 85 86 /* Processing normal completions. */ 87 88 /* 89 * Dequeue and return the next waiting completion, if any. 90 * 91 * We scan the funnel queues from highest priority to lowest, once; there is therefore a race 92 * condition where a high-priority completion can be enqueued followed by a lower-priority one, and 93 * we'll grab the latter (but we'll catch the high-priority item on the next call). If strict 94 * enforcement of priorities becomes necessary, this function will need fixing. 95 */ 96 static struct vdo_completion *poll_for_completion(struct simple_work_queue *queue) 97 { 98 int i; 99 100 for (i = queue->common.type->max_priority; i >= 0; i--) { 101 struct funnel_queue_entry *link = vdo_funnel_queue_poll(queue->priority_lists[i]); 102 103 if (link != NULL) 104 return container_of(link, struct vdo_completion, work_queue_entry_link); 105 } 106 107 return NULL; 108 } 109 110 static void enqueue_work_queue_completion(struct simple_work_queue *queue, 111 struct vdo_completion *completion) 112 { 113 VDO_ASSERT_LOG_ONLY(completion->my_queue == NULL, 114 "completion %px (fn %px) to enqueue (%px) is not already queued (%px)", 115 completion, completion->callback, queue, completion->my_queue); 116 if (completion->priority == VDO_WORK_Q_DEFAULT_PRIORITY) 117 completion->priority = queue->common.type->default_priority; 118 119 if (VDO_ASSERT(completion->priority <= queue->common.type->max_priority, 120 "priority is in range for queue") != VDO_SUCCESS) 121 completion->priority = 0; 122 123 completion->my_queue = &queue->common; 124 125 /* Funnel queue handles the synchronization for the put. */ 126 vdo_funnel_queue_put(queue->priority_lists[completion->priority], 127 &completion->work_queue_entry_link); 128 129 /* 130 * Due to how funnel queue synchronization is handled (just atomic operations), the 131 * simplest safe implementation here would be to wake-up any waiting threads after 132 * enqueueing each item. Even if the funnel queue is not empty at the time of adding an 133 * item to the queue, the consumer thread may not see this since it is not guaranteed to 134 * have the same view of the queue as a producer thread. 135 * 136 * However, the above is wasteful so instead we attempt to minimize the number of thread 137 * wakeups. Using an idle flag, and careful ordering using memory barriers, we should be 138 * able to determine when the worker thread might be asleep or going to sleep. We use 139 * cmpxchg to try to take ownership (vs other producer threads) of the responsibility for 140 * waking the worker thread, so multiple wakeups aren't tried at once. 141 * 142 * This was tuned for some x86 boxes that were handy; it's untested whether doing the read 143 * first is any better or worse for other platforms, even other x86 configurations. 144 */ 145 smp_mb(); 146 if ((atomic_read(&queue->idle) != 1) || (atomic_cmpxchg(&queue->idle, 1, 0) != 1)) 147 return; 148 149 /* There's a maximum of one thread in this list. */ 150 wake_up(&queue->waiting_worker_threads); 151 } 152 153 static void run_start_hook(struct simple_work_queue *queue) 154 { 155 if (queue->common.type->start != NULL) 156 queue->common.type->start(queue->private); 157 } 158 159 static void run_finish_hook(struct simple_work_queue *queue) 160 { 161 if (queue->common.type->finish != NULL) 162 queue->common.type->finish(queue->private); 163 } 164 165 /* 166 * Wait for the next completion to process, or until kthread_should_stop indicates that it's time 167 * for us to shut down. 168 * 169 * If kthread_should_stop says it's time to stop but we have pending completions return a 170 * completion. 171 * 172 * Also update statistics relating to scheduler interactions. 173 */ 174 static struct vdo_completion *wait_for_next_completion(struct simple_work_queue *queue) 175 { 176 struct vdo_completion *completion; 177 DEFINE_WAIT(wait); 178 179 while (true) { 180 prepare_to_wait(&queue->waiting_worker_threads, &wait, 181 TASK_INTERRUPTIBLE); 182 /* 183 * Don't set the idle flag until a wakeup will not be lost. 184 * 185 * Force synchronization between setting the idle flag and checking the funnel 186 * queue; the producer side will do them in the reverse order. (There's still a 187 * race condition we've chosen to allow, because we've got a timeout below that 188 * unwedges us if we hit it, but this may narrow the window a little.) 189 */ 190 atomic_set(&queue->idle, 1); 191 smp_mb(); /* store-load barrier between "idle" and funnel queue */ 192 193 completion = poll_for_completion(queue); 194 if (completion != NULL) 195 break; 196 197 /* 198 * We need to check for thread-stop after setting TASK_INTERRUPTIBLE state up 199 * above. Otherwise, schedule() will put the thread to sleep and might miss a 200 * wakeup from kthread_stop() call in vdo_finish_work_queue(). 201 */ 202 if (kthread_should_stop()) 203 break; 204 205 schedule(); 206 207 /* 208 * Most of the time when we wake, it should be because there's work to do. If it 209 * was a spurious wakeup, continue looping. 210 */ 211 completion = poll_for_completion(queue); 212 if (completion != NULL) 213 break; 214 } 215 216 finish_wait(&queue->waiting_worker_threads, &wait); 217 atomic_set(&queue->idle, 0); 218 219 return completion; 220 } 221 222 static void process_completion(struct simple_work_queue *queue, 223 struct vdo_completion *completion) 224 { 225 if (VDO_ASSERT(completion->my_queue == &queue->common, 226 "completion %px from queue %px marked as being in this queue (%px)", 227 completion, queue, completion->my_queue) == VDO_SUCCESS) 228 completion->my_queue = NULL; 229 230 vdo_run_completion(completion); 231 } 232 233 static void service_work_queue(struct simple_work_queue *queue) 234 { 235 run_start_hook(queue); 236 237 while (true) { 238 struct vdo_completion *completion = poll_for_completion(queue); 239 240 if (completion == NULL) 241 completion = wait_for_next_completion(queue); 242 243 if (completion == NULL) { 244 /* No completions but kthread_should_stop() was triggered. */ 245 break; 246 } 247 248 process_completion(queue, completion); 249 250 /* 251 * Be friendly to a CPU that has other work to do, if the kernel has told us to. 252 * This speeds up some performance tests; that "other work" might include other VDO 253 * threads. 254 */ 255 cond_resched(); 256 } 257 258 run_finish_hook(queue); 259 } 260 261 static int work_queue_runner(void *ptr) 262 { 263 struct simple_work_queue *queue = ptr; 264 265 complete(queue->started); 266 service_work_queue(queue); 267 return 0; 268 } 269 270 /* Creation & teardown */ 271 272 static void free_simple_work_queue(struct simple_work_queue *queue) 273 { 274 unsigned int i; 275 276 for (i = 0; i <= VDO_WORK_Q_MAX_PRIORITY; i++) 277 vdo_free_funnel_queue(queue->priority_lists[i]); 278 vdo_free(queue->common.name); 279 vdo_free(queue); 280 } 281 282 static void free_round_robin_work_queue(struct round_robin_work_queue *queue) 283 { 284 struct simple_work_queue **queue_table = queue->service_queues; 285 unsigned int count = queue->num_service_queues; 286 unsigned int i; 287 288 queue->service_queues = NULL; 289 290 for (i = 0; i < count; i++) 291 free_simple_work_queue(queue_table[i]); 292 vdo_free(queue_table); 293 vdo_free(queue->common.name); 294 vdo_free(queue); 295 } 296 297 void vdo_free_work_queue(struct vdo_work_queue *queue) 298 { 299 if (queue == NULL) 300 return; 301 302 vdo_finish_work_queue(queue); 303 304 if (queue->round_robin_mode) 305 free_round_robin_work_queue(as_round_robin_work_queue(queue)); 306 else 307 free_simple_work_queue(as_simple_work_queue(queue)); 308 } 309 310 static int make_simple_work_queue(const char *thread_name_prefix, const char *name, 311 struct vdo_thread *owner, void *private, 312 const struct vdo_work_queue_type *type, 313 struct simple_work_queue **queue_ptr) 314 { 315 DECLARE_COMPLETION_ONSTACK(started); 316 struct simple_work_queue *queue; 317 int i; 318 struct task_struct *thread = NULL; 319 int result; 320 321 VDO_ASSERT_LOG_ONLY((type->max_priority <= VDO_WORK_Q_MAX_PRIORITY), 322 "queue priority count %u within limit %u", type->max_priority, 323 VDO_WORK_Q_MAX_PRIORITY); 324 325 result = vdo_allocate(1, struct simple_work_queue, "simple work queue", &queue); 326 if (result != VDO_SUCCESS) 327 return result; 328 329 queue->private = private; 330 queue->started = &started; 331 queue->common.type = type; 332 queue->common.owner = owner; 333 init_waitqueue_head(&queue->waiting_worker_threads); 334 335 result = vdo_duplicate_string(name, "queue name", &queue->common.name); 336 if (result != VDO_SUCCESS) { 337 vdo_free(queue); 338 return -ENOMEM; 339 } 340 341 for (i = 0; i <= type->max_priority; i++) { 342 result = vdo_make_funnel_queue(&queue->priority_lists[i]); 343 if (result != VDO_SUCCESS) { 344 free_simple_work_queue(queue); 345 return result; 346 } 347 } 348 349 thread = kthread_run(work_queue_runner, queue, "%s:%s", thread_name_prefix, 350 queue->common.name); 351 if (IS_ERR(thread)) { 352 free_simple_work_queue(queue); 353 return (int) PTR_ERR(thread); 354 } 355 356 queue->thread = thread; 357 358 /* 359 * If we don't wait to ensure the thread is running VDO code, a quick kthread_stop (due to 360 * errors elsewhere) could cause it to never get as far as running VDO, skipping the 361 * cleanup code. 362 * 363 * Eventually we should just make that path safe too, and then we won't need this 364 * synchronization. 365 */ 366 wait_for_completion(&started); 367 368 *queue_ptr = queue; 369 return VDO_SUCCESS; 370 } 371 372 /** 373 * vdo_make_work_queue() - Create a work queue; if multiple threads are requested, completions will 374 * be distributed to them in round-robin fashion. 375 * 376 * Each queue is associated with a struct vdo_thread which has a single vdo thread id. Regardless 377 * of the actual number of queues and threads allocated here, code outside of the queue 378 * implementation will treat this as a single zone. 379 */ 380 int vdo_make_work_queue(const char *thread_name_prefix, const char *name, 381 struct vdo_thread *owner, const struct vdo_work_queue_type *type, 382 unsigned int thread_count, void *thread_privates[], 383 struct vdo_work_queue **queue_ptr) 384 { 385 struct round_robin_work_queue *queue; 386 int result; 387 char thread_name[TASK_COMM_LEN]; 388 unsigned int i; 389 390 if (thread_count == 1) { 391 struct simple_work_queue *simple_queue; 392 void *context = ((thread_privates != NULL) ? thread_privates[0] : NULL); 393 394 result = make_simple_work_queue(thread_name_prefix, name, owner, context, 395 type, &simple_queue); 396 if (result == VDO_SUCCESS) 397 *queue_ptr = &simple_queue->common; 398 return result; 399 } 400 401 result = vdo_allocate(1, struct round_robin_work_queue, "round-robin work queue", 402 &queue); 403 if (result != VDO_SUCCESS) 404 return result; 405 406 result = vdo_allocate(thread_count, struct simple_work_queue *, 407 "subordinate work queues", &queue->service_queues); 408 if (result != VDO_SUCCESS) { 409 vdo_free(queue); 410 return result; 411 } 412 413 queue->num_service_queues = thread_count; 414 queue->common.round_robin_mode = true; 415 queue->common.owner = owner; 416 417 result = vdo_duplicate_string(name, "queue name", &queue->common.name); 418 if (result != VDO_SUCCESS) { 419 vdo_free(queue->service_queues); 420 vdo_free(queue); 421 return -ENOMEM; 422 } 423 424 *queue_ptr = &queue->common; 425 426 for (i = 0; i < thread_count; i++) { 427 void *context = ((thread_privates != NULL) ? thread_privates[i] : NULL); 428 429 snprintf(thread_name, sizeof(thread_name), "%s%u", name, i); 430 result = make_simple_work_queue(thread_name_prefix, thread_name, owner, 431 context, type, &queue->service_queues[i]); 432 if (result != VDO_SUCCESS) { 433 queue->num_service_queues = i; 434 /* Destroy previously created subordinates. */ 435 vdo_free_work_queue(vdo_forget(*queue_ptr)); 436 return result; 437 } 438 } 439 440 return VDO_SUCCESS; 441 } 442 443 static void finish_simple_work_queue(struct simple_work_queue *queue) 444 { 445 if (queue->thread == NULL) 446 return; 447 448 /* Tells the worker thread to shut down and waits for it to exit. */ 449 kthread_stop(queue->thread); 450 queue->thread = NULL; 451 } 452 453 static void finish_round_robin_work_queue(struct round_robin_work_queue *queue) 454 { 455 struct simple_work_queue **queue_table = queue->service_queues; 456 unsigned int count = queue->num_service_queues; 457 unsigned int i; 458 459 for (i = 0; i < count; i++) 460 finish_simple_work_queue(queue_table[i]); 461 } 462 463 /* No enqueueing of completions should be done once this function is called. */ 464 void vdo_finish_work_queue(struct vdo_work_queue *queue) 465 { 466 if (queue == NULL) 467 return; 468 469 if (queue->round_robin_mode) 470 finish_round_robin_work_queue(as_round_robin_work_queue(queue)); 471 else 472 finish_simple_work_queue(as_simple_work_queue(queue)); 473 } 474 475 /* Debugging dumps */ 476 477 static void dump_simple_work_queue(struct simple_work_queue *queue) 478 { 479 const char *thread_status = "no threads"; 480 char task_state_report = '-'; 481 482 if (queue->thread != NULL) { 483 task_state_report = task_state_to_char(queue->thread); 484 thread_status = atomic_read(&queue->idle) ? "idle" : "running"; 485 } 486 487 vdo_log_info("workQ %px (%s) %s (%c)", &queue->common, queue->common.name, 488 thread_status, task_state_report); 489 490 /* ->waiting_worker_threads wait queue status? anyone waiting? */ 491 } 492 493 /* 494 * Write to the buffer some info about the completion, for logging. Since the common use case is 495 * dumping info about a lot of completions to syslog all at once, the format favors brevity over 496 * readability. 497 */ 498 void vdo_dump_work_queue(struct vdo_work_queue *queue) 499 { 500 if (queue->round_robin_mode) { 501 struct round_robin_work_queue *round_robin = as_round_robin_work_queue(queue); 502 unsigned int i; 503 504 for (i = 0; i < round_robin->num_service_queues; i++) 505 dump_simple_work_queue(round_robin->service_queues[i]); 506 } else { 507 dump_simple_work_queue(as_simple_work_queue(queue)); 508 } 509 } 510 511 static void get_function_name(void *pointer, char *buffer, size_t buffer_length) 512 { 513 if (pointer == NULL) { 514 /* 515 * Format "%ps" logs a null pointer as "(null)" with a bunch of leading spaces. We 516 * sometimes use this when logging lots of data; don't be so verbose. 517 */ 518 strscpy(buffer, "-", buffer_length); 519 } else { 520 /* 521 * Use a pragma to defeat gcc's format checking, which doesn't understand that 522 * "%ps" actually does support a precision spec in Linux kernel code. 523 */ 524 char *space; 525 526 #pragma GCC diagnostic push 527 #pragma GCC diagnostic ignored "-Wformat" 528 snprintf(buffer, buffer_length, "%.*ps", buffer_length - 1, pointer); 529 #pragma GCC diagnostic pop 530 531 space = strchr(buffer, ' '); 532 if (space != NULL) 533 *space = '\0'; 534 } 535 } 536 537 void vdo_dump_completion_to_buffer(struct vdo_completion *completion, char *buffer, 538 size_t length) 539 { 540 size_t current_length = 541 scnprintf(buffer, length, "%.*s/", TASK_COMM_LEN, 542 (completion->my_queue == NULL ? "-" : completion->my_queue->name)); 543 544 if (current_length < length - 1) { 545 get_function_name((void *) completion->callback, buffer + current_length, 546 length - current_length); 547 } 548 } 549 550 /* Completion submission */ 551 /* 552 * If the completion has a timeout that has already passed, the timeout handler function may be 553 * invoked by this function. 554 */ 555 void vdo_enqueue_work_queue(struct vdo_work_queue *queue, 556 struct vdo_completion *completion) 557 { 558 /* 559 * Convert the provided generic vdo_work_queue to the simple_work_queue to actually queue 560 * on. 561 */ 562 struct simple_work_queue *simple_queue = NULL; 563 564 if (!queue->round_robin_mode) { 565 simple_queue = as_simple_work_queue(queue); 566 } else { 567 struct round_robin_work_queue *round_robin = as_round_robin_work_queue(queue); 568 569 /* 570 * It shouldn't be a big deal if the same rotor gets used for multiple work queues. 571 * Any patterns that might develop are likely to be disrupted by random ordering of 572 * multiple completions and migration between cores, unless the load is so light as 573 * to be regular in ordering of tasks and the threads are confined to individual 574 * cores; with a load that light we won't care. 575 */ 576 unsigned int rotor = this_cpu_inc_return(service_queue_rotor); 577 unsigned int index = rotor % round_robin->num_service_queues; 578 579 simple_queue = round_robin->service_queues[index]; 580 } 581 582 enqueue_work_queue_completion(simple_queue, completion); 583 } 584 585 /* Misc */ 586 587 /* 588 * Return the work queue pointer recorded at initialization time in the work-queue stack handle 589 * initialized on the stack of the current thread, if any. 590 */ 591 static struct simple_work_queue *get_current_thread_work_queue(void) 592 { 593 /* 594 * In interrupt context, if a vdo thread is what got interrupted, the calls below will find 595 * the queue for the thread which was interrupted. However, the interrupted thread may have 596 * been processing a completion, in which case starting to process another would violate 597 * our concurrency assumptions. 598 */ 599 if (in_interrupt()) 600 return NULL; 601 602 if (kthread_func(current) != work_queue_runner) 603 /* Not a VDO work queue thread. */ 604 return NULL; 605 606 return kthread_data(current); 607 } 608 609 struct vdo_work_queue *vdo_get_current_work_queue(void) 610 { 611 struct simple_work_queue *queue = get_current_thread_work_queue(); 612 613 return (queue == NULL) ? NULL : &queue->common; 614 } 615 616 struct vdo_thread *vdo_get_work_queue_owner(struct vdo_work_queue *queue) 617 { 618 return queue->owner; 619 } 620 621 /** 622 * vdo_get_work_queue_private_data() - Returns the private data for the current thread's work 623 * queue, or NULL if none or if the current thread is not a 624 * work queue thread. 625 */ 626 void *vdo_get_work_queue_private_data(void) 627 { 628 struct simple_work_queue *queue = get_current_thread_work_queue(); 629 630 return (queue != NULL) ? queue->private : NULL; 631 } 632 633 bool vdo_work_queue_type_is(struct vdo_work_queue *queue, 634 const struct vdo_work_queue_type *type) 635 { 636 return (queue->type == type); 637 } 638