xref: /linux/drivers/md/dm-vdo/encodings.h (revision eb01fe7abbe2d0b38824d2a93fdb4cc3eaf2ccc1)
1 /* SPDX-License-Identifier: GPL-2.0-only */
2 /*
3  * Copyright 2023 Red Hat
4  */
5 
6 #ifndef VDO_ENCODINGS_H
7 #define VDO_ENCODINGS_H
8 
9 #include <linux/blk_types.h>
10 #include <linux/crc32.h>
11 #include <linux/limits.h>
12 #include <linux/uuid.h>
13 
14 #include "numeric.h"
15 
16 #include "constants.h"
17 #include "types.h"
18 
19 /*
20  * An in-memory representation of a version number for versioned structures on disk.
21  *
22  * A version number consists of two portions, a major version and a minor version. Any format
23  * change which does not require an explicit upgrade step from the previous version should
24  * increment the minor version. Any format change which either requires an explicit upgrade step,
25  * or is wholly incompatible (i.e. can not be upgraded to), should increment the major version, and
26  * set the minor version to 0.
27  */
28 struct version_number {
29 	u32 major_version;
30 	u32 minor_version;
31 };
32 
33 /*
34  * A packed, machine-independent, on-disk representation of a version_number. Both fields are
35  * stored in little-endian byte order.
36  */
37 struct packed_version_number {
38 	__le32 major_version;
39 	__le32 minor_version;
40 } __packed;
41 
42 /* The registry of component ids for use in headers */
43 #define VDO_SUPER_BLOCK 0
44 #define VDO_LAYOUT 1
45 #define VDO_RECOVERY_JOURNAL 2
46 #define VDO_SLAB_DEPOT 3
47 #define VDO_BLOCK_MAP 4
48 #define VDO_GEOMETRY_BLOCK 5
49 
50 /* The header for versioned data stored on disk. */
51 struct header {
52 	u32 id; /* The component this is a header for */
53 	struct version_number version; /* The version of the data format */
54 	size_t size; /* The size of the data following this header */
55 };
56 
57 /* A packed, machine-independent, on-disk representation of a component header. */
58 struct packed_header {
59 	__le32 id;
60 	struct packed_version_number version;
61 	__le64 size;
62 } __packed;
63 
64 enum {
65 	VDO_GEOMETRY_BLOCK_LOCATION = 0,
66 	VDO_GEOMETRY_MAGIC_NUMBER_SIZE = 8,
67 	VDO_DEFAULT_GEOMETRY_BLOCK_VERSION = 5,
68 };
69 
70 struct index_config {
71 	u32 mem;
72 	u32 unused;
73 	bool sparse;
74 } __packed;
75 
76 enum volume_region_id {
77 	VDO_INDEX_REGION = 0,
78 	VDO_DATA_REGION = 1,
79 	VDO_VOLUME_REGION_COUNT,
80 };
81 
82 struct volume_region {
83 	/* The ID of the region */
84 	enum volume_region_id id;
85 	/*
86 	 * The absolute starting offset on the device. The region continues until the next region
87 	 * begins.
88 	 */
89 	physical_block_number_t start_block;
90 } __packed;
91 
92 struct volume_geometry {
93 	/* For backwards compatibility */
94 	u32 unused;
95 	/* The nonce of this volume */
96 	nonce_t nonce;
97 	/* The uuid of this volume */
98 	uuid_t uuid;
99 	/* The block offset to be applied to bios */
100 	block_count_t bio_offset;
101 	/* The regions in ID order */
102 	struct volume_region regions[VDO_VOLUME_REGION_COUNT];
103 	/* The index config */
104 	struct index_config index_config;
105 } __packed;
106 
107 /* This volume geometry struct is used for sizing only */
108 struct volume_geometry_4_0 {
109 	/* For backwards compatibility */
110 	u32 unused;
111 	/* The nonce of this volume */
112 	nonce_t nonce;
113 	/* The uuid of this volume */
114 	uuid_t uuid;
115 	/* The regions in ID order */
116 	struct volume_region regions[VDO_VOLUME_REGION_COUNT];
117 	/* The index config */
118 	struct index_config index_config;
119 } __packed;
120 
121 extern const u8 VDO_GEOMETRY_MAGIC_NUMBER[VDO_GEOMETRY_MAGIC_NUMBER_SIZE + 1];
122 
123 /**
124  * DOC: Block map entries
125  *
126  * The entry for each logical block in the block map is encoded into five bytes, which saves space
127  * in both the on-disk and in-memory layouts. It consists of the 36 low-order bits of a
128  * physical_block_number_t (addressing 256 terabytes with a 4KB block size) and a 4-bit encoding of
129  * a block_mapping_state.
130  *
131  * Of the 8 high bits of the 5-byte structure:
132  *
133  * Bits 7..4: The four highest bits of the 36-bit physical block number
134  * Bits 3..0: The 4-bit block_mapping_state
135  *
136  * The following 4 bytes are the low order bytes of the physical block number, in little-endian
137  * order.
138  *
139  * Conversion functions to and from a data location are provided.
140  */
141 struct block_map_entry {
142 #if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
143 	unsigned mapping_state : 4;
144 	unsigned pbn_high_nibble : 4;
145 #else
146 	unsigned pbn_high_nibble : 4;
147 	unsigned mapping_state : 4;
148 #endif
149 
150 	__le32 pbn_low_word;
151 } __packed;
152 
153 struct block_map_page_header {
154 	__le64 nonce;
155 	__le64 pbn;
156 
157 	/* May be non-zero on disk */
158 	u8 unused_long_word[8];
159 
160 	/* Whether this page has been written twice to disk */
161 	bool initialized;
162 
163 	/* Always zero on disk */
164 	u8 unused_byte1;
165 
166 	/* May be non-zero on disk */
167 	u8 unused_byte2;
168 	u8 unused_byte3;
169 } __packed;
170 
171 struct block_map_page {
172 	struct packed_version_number version;
173 	struct block_map_page_header header;
174 	struct block_map_entry entries[];
175 } __packed;
176 
177 enum block_map_page_validity {
178 	VDO_BLOCK_MAP_PAGE_VALID,
179 	VDO_BLOCK_MAP_PAGE_INVALID,
180 	/* Valid page found in the wrong location on disk */
181 	VDO_BLOCK_MAP_PAGE_BAD,
182 };
183 
184 struct block_map_state_2_0 {
185 	physical_block_number_t flat_page_origin;
186 	block_count_t flat_page_count;
187 	physical_block_number_t root_origin;
188 	block_count_t root_count;
189 } __packed;
190 
191 struct boundary {
192 	page_number_t levels[VDO_BLOCK_MAP_TREE_HEIGHT];
193 };
194 
195 extern const struct header VDO_BLOCK_MAP_HEADER_2_0;
196 
197 /* The state of the recovery journal as encoded in the VDO super block. */
198 struct recovery_journal_state_7_0 {
199 	/* Sequence number to start the journal */
200 	sequence_number_t journal_start;
201 	/* Number of logical blocks used by VDO */
202 	block_count_t logical_blocks_used;
203 	/* Number of block map pages allocated */
204 	block_count_t block_map_data_blocks;
205 } __packed;
206 
207 extern const struct header VDO_RECOVERY_JOURNAL_HEADER_7_0;
208 
209 typedef u16 journal_entry_count_t;
210 
211 /*
212  * A recovery journal entry stores three physical locations: a data location that is the value of a
213  * single mapping in the block map tree, and the two locations of the block map pages and slots
214  * that are acquiring and releasing a reference to the location. The journal entry also stores an
215  * operation code that says whether the mapping is for a logical block or for the block map tree
216  * itself.
217  */
218 struct recovery_journal_entry {
219 	struct block_map_slot slot;
220 	struct data_location mapping;
221 	struct data_location unmapping;
222 	enum journal_operation operation;
223 };
224 
225 /* The packed, on-disk representation of a recovery journal entry. */
226 struct packed_recovery_journal_entry {
227 	/*
228 	 * In little-endian bit order:
229 	 * Bits 15..12: The four highest bits of the 36-bit physical block number of the block map
230 	 * tree page
231 	 * Bits 11..2: The 10-bit block map page slot number
232 	 * Bit 1..0: The journal_operation of the entry (this actually only requires 1 bit, but
233 	 *           it is convenient to keep the extra bit as part of this field.
234 	 */
235 #if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
236 	unsigned operation : 2;
237 	unsigned slot_low : 6;
238 	unsigned slot_high : 4;
239 	unsigned pbn_high_nibble : 4;
240 #else
241 	unsigned slot_low : 6;
242 	unsigned operation : 2;
243 	unsigned pbn_high_nibble : 4;
244 	unsigned slot_high : 4;
245 #endif
246 
247 	/*
248 	 * Bits 47..16: The 32 low-order bits of the block map page PBN, in little-endian byte
249 	 * order
250 	 */
251 	__le32 pbn_low_word;
252 
253 	/*
254 	 * Bits 87..48: The five-byte block map entry encoding the location that will be stored in
255 	 * the block map page slot
256 	 */
257 	struct block_map_entry mapping;
258 
259 	/*
260 	 * Bits 127..88: The five-byte block map entry encoding the location that was stored in the
261 	 * block map page slot
262 	 */
263 	struct block_map_entry unmapping;
264 } __packed;
265 
266 /* The packed, on-disk representation of an old format recovery journal entry. */
267 struct packed_recovery_journal_entry_1 {
268 	/*
269 	 * In little-endian bit order:
270 	 * Bits 15..12: The four highest bits of the 36-bit physical block number of the block map
271 	 *              tree page
272 	 * Bits 11..2: The 10-bit block map page slot number
273 	 * Bits 1..0: The 2-bit journal_operation of the entry
274 	 *
275 	 */
276 #if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
277 	unsigned operation : 2;
278 	unsigned slot_low : 6;
279 	unsigned slot_high : 4;
280 	unsigned pbn_high_nibble : 4;
281 #else
282 	unsigned slot_low : 6;
283 	unsigned operation : 2;
284 	unsigned pbn_high_nibble : 4;
285 	unsigned slot_high : 4;
286 #endif
287 
288 	/*
289 	 * Bits 47..16: The 32 low-order bits of the block map page PBN, in little-endian byte
290 	 * order
291 	 */
292 	__le32 pbn_low_word;
293 
294 	/*
295 	 * Bits 87..48: The five-byte block map entry encoding the location that was or will be
296 	 * stored in the block map page slot
297 	 */
298 	struct block_map_entry block_map_entry;
299 } __packed;
300 
301 enum journal_operation_1 {
302 	VDO_JOURNAL_DATA_DECREMENT = 0,
303 	VDO_JOURNAL_DATA_INCREMENT = 1,
304 	VDO_JOURNAL_BLOCK_MAP_DECREMENT = 2,
305 	VDO_JOURNAL_BLOCK_MAP_INCREMENT = 3,
306 } __packed;
307 
308 struct recovery_block_header {
309 	sequence_number_t block_map_head; /* Block map head sequence number */
310 	sequence_number_t slab_journal_head; /* Slab journal head seq. number */
311 	sequence_number_t sequence_number; /* Sequence number for this block */
312 	nonce_t nonce; /* A given VDO instance's nonce */
313 	block_count_t logical_blocks_used; /* Logical blocks in use */
314 	block_count_t block_map_data_blocks; /* Allocated block map pages */
315 	journal_entry_count_t entry_count; /* Number of entries written */
316 	u8 check_byte; /* The protection check byte */
317 	u8 recovery_count; /* Number of recoveries completed */
318 	enum vdo_metadata_type metadata_type; /* Metadata type */
319 };
320 
321 /*
322  * The packed, on-disk representation of a recovery journal block header. All fields are kept in
323  * little-endian byte order.
324  */
325 struct packed_journal_header {
326 	/* Block map head 64-bit sequence number */
327 	__le64 block_map_head;
328 
329 	/* Slab journal head 64-bit sequence number */
330 	__le64 slab_journal_head;
331 
332 	/* The 64-bit sequence number for this block */
333 	__le64 sequence_number;
334 
335 	/* A given VDO instance's 64-bit nonce */
336 	__le64 nonce;
337 
338 	/* 8-bit metadata type (should always be one for the recovery journal) */
339 	u8 metadata_type;
340 
341 	/* 16-bit count of the entries encoded in the block */
342 	__le16 entry_count;
343 
344 	/* 64-bit count of the logical blocks used when this block was opened */
345 	__le64 logical_blocks_used;
346 
347 	/* 64-bit count of the block map blocks used when this block was opened */
348 	__le64 block_map_data_blocks;
349 
350 	/* The protection check byte */
351 	u8 check_byte;
352 
353 	/* The number of recoveries completed */
354 	u8 recovery_count;
355 } __packed;
356 
357 struct packed_journal_sector {
358 	/* The protection check byte */
359 	u8 check_byte;
360 
361 	/* The number of recoveries completed */
362 	u8 recovery_count;
363 
364 	/* The number of entries in this sector */
365 	u8 entry_count;
366 
367 	/* Journal entries for this sector */
368 	struct packed_recovery_journal_entry entries[];
369 } __packed;
370 
371 enum {
372 	/* The number of entries in each sector (except the last) when filled */
373 	RECOVERY_JOURNAL_ENTRIES_PER_SECTOR =
374 		((VDO_SECTOR_SIZE - sizeof(struct packed_journal_sector)) /
375 		 sizeof(struct packed_recovery_journal_entry)),
376 	RECOVERY_JOURNAL_ENTRIES_PER_BLOCK = RECOVERY_JOURNAL_ENTRIES_PER_SECTOR * 7,
377 	/* The number of entries in a v1 recovery journal block. */
378 	RECOVERY_JOURNAL_1_ENTRIES_PER_BLOCK = 311,
379 	/* The number of entries in each v1 sector (except the last) when filled */
380 	RECOVERY_JOURNAL_1_ENTRIES_PER_SECTOR =
381 		((VDO_SECTOR_SIZE - sizeof(struct packed_journal_sector)) /
382 		 sizeof(struct packed_recovery_journal_entry_1)),
383 	/* The number of entries in the last sector when a block is full */
384 	RECOVERY_JOURNAL_1_ENTRIES_IN_LAST_SECTOR =
385 		(RECOVERY_JOURNAL_1_ENTRIES_PER_BLOCK % RECOVERY_JOURNAL_1_ENTRIES_PER_SECTOR),
386 };
387 
388 /* A type representing a reference count of a block. */
389 typedef u8 vdo_refcount_t;
390 
391 /* The absolute position of an entry in a recovery journal or slab journal. */
392 struct journal_point {
393 	sequence_number_t sequence_number;
394 	journal_entry_count_t entry_count;
395 };
396 
397 /* A packed, platform-independent encoding of a struct journal_point. */
398 struct packed_journal_point {
399 	/*
400 	 * The packed representation is the little-endian 64-bit representation of the low-order 48
401 	 * bits of the sequence number, shifted up 16 bits, or'ed with the 16-bit entry count.
402 	 *
403 	 * Very long-term, the top 16 bits of the sequence number may not always be zero, as this
404 	 * encoding assumes--see BZ 1523240.
405 	 */
406 	__le64 encoded_point;
407 } __packed;
408 
409 /* Special vdo_refcount_t values. */
410 #define EMPTY_REFERENCE_COUNT 0
411 enum {
412 	MAXIMUM_REFERENCE_COUNT = 254,
413 	PROVISIONAL_REFERENCE_COUNT = 255,
414 };
415 
416 enum {
417 	COUNTS_PER_SECTOR =
418 		((VDO_SECTOR_SIZE - sizeof(struct packed_journal_point)) / sizeof(vdo_refcount_t)),
419 	COUNTS_PER_BLOCK = COUNTS_PER_SECTOR * VDO_SECTORS_PER_BLOCK,
420 };
421 
422 /* The format of each sector of a reference_block on disk. */
423 struct packed_reference_sector {
424 	struct packed_journal_point commit_point;
425 	vdo_refcount_t counts[COUNTS_PER_SECTOR];
426 } __packed;
427 
428 struct packed_reference_block {
429 	struct packed_reference_sector sectors[VDO_SECTORS_PER_BLOCK];
430 };
431 
432 struct slab_depot_state_2_0 {
433 	struct slab_config slab_config;
434 	physical_block_number_t first_block;
435 	physical_block_number_t last_block;
436 	zone_count_t zone_count;
437 } __packed;
438 
439 extern const struct header VDO_SLAB_DEPOT_HEADER_2_0;
440 
441 /*
442  * vdo_slab journal blocks may have one of two formats, depending upon whether or not any of the
443  * entries in the block are block map increments. Since the steady state for a VDO is that all of
444  * the necessary block map pages will be allocated, most slab journal blocks will have only data
445  * entries. Such blocks can hold more entries, hence the two formats.
446  */
447 
448 /* A single slab journal entry */
449 struct slab_journal_entry {
450 	slab_block_number sbn;
451 	enum journal_operation operation;
452 	bool increment;
453 };
454 
455 /* A single slab journal entry in its on-disk form */
456 typedef struct {
457 	u8 offset_low8;
458 	u8 offset_mid8;
459 
460 #if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
461 	unsigned offset_high7 : 7;
462 	unsigned increment : 1;
463 #else
464 	unsigned increment : 1;
465 	unsigned offset_high7 : 7;
466 #endif
467 } __packed packed_slab_journal_entry;
468 
469 /* The unpacked representation of the header of a slab journal block */
470 struct slab_journal_block_header {
471 	/* Sequence number for head of journal */
472 	sequence_number_t head;
473 	/* Sequence number for this block */
474 	sequence_number_t sequence_number;
475 	/* The nonce for a given VDO instance */
476 	nonce_t nonce;
477 	/* Recovery journal point for last entry */
478 	struct journal_point recovery_point;
479 	/* Metadata type */
480 	enum vdo_metadata_type metadata_type;
481 	/* Whether this block contains block map increments */
482 	bool has_block_map_increments;
483 	/* The number of entries in the block */
484 	journal_entry_count_t entry_count;
485 };
486 
487 /*
488  * The packed, on-disk representation of a slab journal block header. All fields are kept in
489  * little-endian byte order.
490  */
491 struct packed_slab_journal_block_header {
492 	/* 64-bit sequence number for head of journal */
493 	__le64 head;
494 	/* 64-bit sequence number for this block */
495 	__le64 sequence_number;
496 	/* Recovery journal point for the last entry, packed into 64 bits */
497 	struct packed_journal_point recovery_point;
498 	/* The 64-bit nonce for a given VDO instance */
499 	__le64 nonce;
500 	/* 8-bit metadata type (should always be two, for the slab journal) */
501 	u8 metadata_type;
502 	/* Whether this block contains block map increments */
503 	bool has_block_map_increments;
504 	/* 16-bit count of the entries encoded in the block */
505 	__le16 entry_count;
506 } __packed;
507 
508 enum {
509 	VDO_SLAB_JOURNAL_PAYLOAD_SIZE =
510 		VDO_BLOCK_SIZE - sizeof(struct packed_slab_journal_block_header),
511 	VDO_SLAB_JOURNAL_FULL_ENTRIES_PER_BLOCK = (VDO_SLAB_JOURNAL_PAYLOAD_SIZE * 8) / 25,
512 	VDO_SLAB_JOURNAL_ENTRY_TYPES_SIZE =
513 		((VDO_SLAB_JOURNAL_FULL_ENTRIES_PER_BLOCK - 1) / 8) + 1,
514 	VDO_SLAB_JOURNAL_ENTRIES_PER_BLOCK =
515 		(VDO_SLAB_JOURNAL_PAYLOAD_SIZE / sizeof(packed_slab_journal_entry)),
516 };
517 
518 /* The payload of a slab journal block which has block map increments */
519 struct full_slab_journal_entries {
520 	/* The entries themselves */
521 	packed_slab_journal_entry entries[VDO_SLAB_JOURNAL_FULL_ENTRIES_PER_BLOCK];
522 	/* The bit map indicating which entries are block map increments */
523 	u8 entry_types[VDO_SLAB_JOURNAL_ENTRY_TYPES_SIZE];
524 } __packed;
525 
526 typedef union {
527 	/* Entries which include block map increments */
528 	struct full_slab_journal_entries full_entries;
529 	/* Entries which are only data updates */
530 	packed_slab_journal_entry entries[VDO_SLAB_JOURNAL_ENTRIES_PER_BLOCK];
531 	/* Ensure the payload fills to the end of the block */
532 	u8 space[VDO_SLAB_JOURNAL_PAYLOAD_SIZE];
533 } __packed slab_journal_payload;
534 
535 struct packed_slab_journal_block {
536 	struct packed_slab_journal_block_header header;
537 	slab_journal_payload payload;
538 } __packed;
539 
540 /* The offset of a slab journal tail block. */
541 typedef u8 tail_block_offset_t;
542 
543 struct slab_summary_entry {
544 	/* Bits 7..0: The offset of the tail block within the slab journal */
545 	tail_block_offset_t tail_block_offset;
546 
547 #if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
548 	/* Bits 13..8: A hint about the fullness of the slab */
549 	unsigned int fullness_hint : 6;
550 	/* Bit 14: Whether the ref_counts must be loaded from the layer */
551 	unsigned int load_ref_counts : 1;
552 	/* Bit 15: The believed cleanliness of this slab */
553 	unsigned int is_dirty : 1;
554 #else
555 	/* Bit 15: The believed cleanliness of this slab */
556 	unsigned int is_dirty : 1;
557 	/* Bit 14: Whether the ref_counts must be loaded from the layer */
558 	unsigned int load_ref_counts : 1;
559 	/* Bits 13..8: A hint about the fullness of the slab */
560 	unsigned int fullness_hint : 6;
561 #endif
562 } __packed;
563 
564 enum {
565 	VDO_SLAB_SUMMARY_FULLNESS_HINT_BITS = 6,
566 	VDO_SLAB_SUMMARY_ENTRIES_PER_BLOCK = VDO_BLOCK_SIZE / sizeof(struct slab_summary_entry),
567 	VDO_SLAB_SUMMARY_BLOCKS_PER_ZONE = MAX_VDO_SLABS / VDO_SLAB_SUMMARY_ENTRIES_PER_BLOCK,
568 	VDO_SLAB_SUMMARY_BLOCKS = VDO_SLAB_SUMMARY_BLOCKS_PER_ZONE * MAX_VDO_PHYSICAL_ZONES,
569 };
570 
571 struct layout {
572 	physical_block_number_t start;
573 	block_count_t size;
574 	physical_block_number_t first_free;
575 	physical_block_number_t last_free;
576 	size_t num_partitions;
577 	struct partition *head;
578 };
579 
580 struct partition {
581 	enum partition_id id; /* The id of this partition */
582 	physical_block_number_t offset; /* The offset into the layout of this partition */
583 	block_count_t count; /* The number of blocks in the partition */
584 	struct partition *next; /* A pointer to the next partition in the layout */
585 };
586 
587 struct layout_3_0 {
588 	physical_block_number_t first_free;
589 	physical_block_number_t last_free;
590 	u8 partition_count;
591 } __packed;
592 
593 struct partition_3_0 {
594 	enum partition_id id;
595 	physical_block_number_t offset;
596 	physical_block_number_t base; /* unused but retained for backwards compatibility */
597 	block_count_t count;
598 } __packed;
599 
600 /*
601  * The configuration of the VDO service.
602  */
603 struct vdo_config {
604 	block_count_t logical_blocks; /* number of logical blocks */
605 	block_count_t physical_blocks; /* number of physical blocks */
606 	block_count_t slab_size; /* number of blocks in a slab */
607 	block_count_t recovery_journal_size; /* number of recovery journal blocks */
608 	block_count_t slab_journal_blocks; /* number of slab journal blocks */
609 };
610 
611 /* This is the structure that captures the vdo fields saved as a super block component. */
612 struct vdo_component {
613 	enum vdo_state state;
614 	u64 complete_recoveries;
615 	u64 read_only_recoveries;
616 	struct vdo_config config;
617 	nonce_t nonce;
618 };
619 
620 /*
621  * A packed, machine-independent, on-disk representation of the vdo_config in the VDO component
622  * data in the super block.
623  */
624 struct packed_vdo_config {
625 	__le64 logical_blocks;
626 	__le64 physical_blocks;
627 	__le64 slab_size;
628 	__le64 recovery_journal_size;
629 	__le64 slab_journal_blocks;
630 } __packed;
631 
632 /*
633  * A packed, machine-independent, on-disk representation of version 41.0 of the VDO component data
634  * in the super block.
635  */
636 struct packed_vdo_component_41_0 {
637 	__le32 state;
638 	__le64 complete_recoveries;
639 	__le64 read_only_recoveries;
640 	struct packed_vdo_config config;
641 	__le64 nonce;
642 } __packed;
643 
644 /*
645  * The version of the on-disk format of a VDO volume. This should be incremented any time the
646  * on-disk representation of any VDO structure changes. Changes which require only online upgrade
647  * steps should increment the minor version. Changes which require an offline upgrade or which can
648  * not be upgraded to at all should increment the major version and set the minor version to 0.
649  */
650 extern const struct version_number VDO_VOLUME_VERSION_67_0;
651 
652 enum {
653 	VDO_ENCODED_HEADER_SIZE = sizeof(struct packed_header),
654 	BLOCK_MAP_COMPONENT_ENCODED_SIZE =
655 		VDO_ENCODED_HEADER_SIZE + sizeof(struct block_map_state_2_0),
656 	RECOVERY_JOURNAL_COMPONENT_ENCODED_SIZE =
657 		VDO_ENCODED_HEADER_SIZE + sizeof(struct recovery_journal_state_7_0),
658 	SLAB_DEPOT_COMPONENT_ENCODED_SIZE =
659 		VDO_ENCODED_HEADER_SIZE + sizeof(struct slab_depot_state_2_0),
660 	VDO_PARTITION_COUNT = 4,
661 	VDO_LAYOUT_ENCODED_SIZE = (VDO_ENCODED_HEADER_SIZE +
662 				   sizeof(struct layout_3_0) +
663 				   (sizeof(struct partition_3_0) * VDO_PARTITION_COUNT)),
664 	VDO_SUPER_BLOCK_FIXED_SIZE = VDO_ENCODED_HEADER_SIZE + sizeof(u32),
665 	VDO_MAX_COMPONENT_DATA_SIZE = VDO_SECTOR_SIZE - VDO_SUPER_BLOCK_FIXED_SIZE,
666 	VDO_COMPONENT_ENCODED_SIZE =
667 		(sizeof(struct packed_version_number) + sizeof(struct packed_vdo_component_41_0)),
668 	VDO_COMPONENT_DATA_OFFSET = VDO_ENCODED_HEADER_SIZE,
669 	VDO_COMPONENT_DATA_SIZE = (sizeof(u32) +
670 				   sizeof(struct packed_version_number) +
671 				   VDO_COMPONENT_ENCODED_SIZE +
672 				   VDO_LAYOUT_ENCODED_SIZE +
673 				   RECOVERY_JOURNAL_COMPONENT_ENCODED_SIZE +
674 				   SLAB_DEPOT_COMPONENT_ENCODED_SIZE +
675 				   BLOCK_MAP_COMPONENT_ENCODED_SIZE),
676 };
677 
678 /* The entirety of the component data encoded in the VDO super block. */
679 struct vdo_component_states {
680 	/* For backwards compatibility */
681 	u32 unused;
682 
683 	/* The VDO volume version */
684 	struct version_number volume_version;
685 
686 	/* Components */
687 	struct vdo_component vdo;
688 	struct block_map_state_2_0 block_map;
689 	struct recovery_journal_state_7_0 recovery_journal;
690 	struct slab_depot_state_2_0 slab_depot;
691 
692 	/* Our partitioning of the underlying storage */
693 	struct layout layout;
694 };
695 
696 /**
697  * vdo_are_same_version() - Check whether two version numbers are the same.
698  * @version_a: The first version.
699  * @version_b: The second version.
700  *
701  * Return: true if the two versions are the same.
702  */
703 static inline bool vdo_are_same_version(struct version_number version_a,
704 					struct version_number version_b)
705 {
706 	return ((version_a.major_version == version_b.major_version) &&
707 		(version_a.minor_version == version_b.minor_version));
708 }
709 
710 /**
711  * vdo_is_upgradable_version() - Check whether an actual version is upgradable to an expected
712  *                               version.
713  * @expected_version: The expected version.
714  * @actual_version: The version being validated.
715  *
716  * An actual version is upgradable if its major number is expected but its minor number differs,
717  * and the expected version's minor number is greater than the actual version's minor number.
718  *
719  * Return: true if the actual version is upgradable.
720  */
721 static inline bool vdo_is_upgradable_version(struct version_number expected_version,
722 					     struct version_number actual_version)
723 {
724 	return ((expected_version.major_version == actual_version.major_version) &&
725 		(expected_version.minor_version > actual_version.minor_version));
726 }
727 
728 int __must_check vdo_validate_header(const struct header *expected_header,
729 				     const struct header *actual_header, bool exact_size,
730 				     const char *component_name);
731 
732 void vdo_encode_header(u8 *buffer, size_t *offset, const struct header *header);
733 void vdo_decode_header(u8 *buffer, size_t *offset, struct header *header);
734 
735 /**
736  * vdo_pack_version_number() - Convert a version_number to its packed on-disk representation.
737  * @version: The version number to convert.
738  *
739  * Return: the platform-independent representation of the version
740  */
741 static inline struct packed_version_number vdo_pack_version_number(struct version_number version)
742 {
743 	return (struct packed_version_number) {
744 		.major_version = __cpu_to_le32(version.major_version),
745 		.minor_version = __cpu_to_le32(version.minor_version),
746 	};
747 }
748 
749 /**
750  * vdo_unpack_version_number() - Convert a packed_version_number to its native in-memory
751  *                               representation.
752  * @version: The version number to convert.
753  *
754  * Return: The platform-independent representation of the version.
755  */
756 static inline struct version_number vdo_unpack_version_number(struct packed_version_number version)
757 {
758 	return (struct version_number) {
759 		.major_version = __le32_to_cpu(version.major_version),
760 		.minor_version = __le32_to_cpu(version.minor_version),
761 	};
762 }
763 
764 /**
765  * vdo_pack_header() - Convert a component header to its packed on-disk representation.
766  * @header: The header to convert.
767  *
768  * Return: the platform-independent representation of the header
769  */
770 static inline struct packed_header vdo_pack_header(const struct header *header)
771 {
772 	return (struct packed_header) {
773 		.id = __cpu_to_le32(header->id),
774 		.version = vdo_pack_version_number(header->version),
775 		.size = __cpu_to_le64(header->size),
776 	};
777 }
778 
779 /**
780  * vdo_unpack_header() - Convert a packed_header to its native in-memory representation.
781  * @header: The header to convert.
782  *
783  * Return: The platform-independent representation of the version.
784  */
785 static inline struct header vdo_unpack_header(const struct packed_header *header)
786 {
787 	return (struct header) {
788 		.id = __le32_to_cpu(header->id),
789 		.version = vdo_unpack_version_number(header->version),
790 		.size = __le64_to_cpu(header->size),
791 	};
792 }
793 
794 /**
795  * vdo_get_index_region_start() - Get the start of the index region from a geometry.
796  * @geometry: The geometry.
797  *
798  * Return: The start of the index region.
799  */
800 static inline physical_block_number_t __must_check
801 vdo_get_index_region_start(struct volume_geometry geometry)
802 {
803 	return geometry.regions[VDO_INDEX_REGION].start_block;
804 }
805 
806 /**
807  * vdo_get_data_region_start() - Get the start of the data region from a geometry.
808  * @geometry: The geometry.
809  *
810  * Return: The start of the data region.
811  */
812 static inline physical_block_number_t __must_check
813 vdo_get_data_region_start(struct volume_geometry geometry)
814 {
815 	return geometry.regions[VDO_DATA_REGION].start_block;
816 }
817 
818 /**
819  * vdo_get_index_region_size() - Get the size of the index region from a geometry.
820  * @geometry: The geometry.
821  *
822  * Return: The size of the index region.
823  */
824 static inline physical_block_number_t __must_check
825 vdo_get_index_region_size(struct volume_geometry geometry)
826 {
827 	return vdo_get_data_region_start(geometry) -
828 		vdo_get_index_region_start(geometry);
829 }
830 
831 int __must_check vdo_parse_geometry_block(unsigned char *block,
832 					  struct volume_geometry *geometry);
833 
834 static inline bool vdo_is_state_compressed(const enum block_mapping_state mapping_state)
835 {
836 	return (mapping_state > VDO_MAPPING_STATE_UNCOMPRESSED);
837 }
838 
839 static inline struct block_map_entry
840 vdo_pack_block_map_entry(physical_block_number_t pbn, enum block_mapping_state mapping_state)
841 {
842 	return (struct block_map_entry) {
843 		.mapping_state = (mapping_state & 0x0F),
844 		.pbn_high_nibble = ((pbn >> 32) & 0x0F),
845 		.pbn_low_word = __cpu_to_le32(pbn & UINT_MAX),
846 	};
847 }
848 
849 static inline struct data_location vdo_unpack_block_map_entry(const struct block_map_entry *entry)
850 {
851 	physical_block_number_t low32 = __le32_to_cpu(entry->pbn_low_word);
852 	physical_block_number_t high4 = entry->pbn_high_nibble;
853 
854 	return (struct data_location) {
855 		.pbn = ((high4 << 32) | low32),
856 		.state = entry->mapping_state,
857 	};
858 }
859 
860 static inline bool vdo_is_mapped_location(const struct data_location *location)
861 {
862 	return (location->state != VDO_MAPPING_STATE_UNMAPPED);
863 }
864 
865 static inline bool vdo_is_valid_location(const struct data_location *location)
866 {
867 	if (location->pbn == VDO_ZERO_BLOCK)
868 		return !vdo_is_state_compressed(location->state);
869 	else
870 		return vdo_is_mapped_location(location);
871 }
872 
873 static inline physical_block_number_t __must_check
874 vdo_get_block_map_page_pbn(const struct block_map_page *page)
875 {
876 	return __le64_to_cpu(page->header.pbn);
877 }
878 
879 struct block_map_page *vdo_format_block_map_page(void *buffer, nonce_t nonce,
880 						 physical_block_number_t pbn,
881 						 bool initialized);
882 
883 enum block_map_page_validity __must_check vdo_validate_block_map_page(struct block_map_page *page,
884 								      nonce_t nonce,
885 								      physical_block_number_t pbn);
886 
887 static inline page_count_t vdo_compute_block_map_page_count(block_count_t entries)
888 {
889 	return DIV_ROUND_UP(entries, VDO_BLOCK_MAP_ENTRIES_PER_PAGE);
890 }
891 
892 block_count_t __must_check vdo_compute_new_forest_pages(root_count_t root_count,
893 							struct boundary *old_sizes,
894 							block_count_t entries,
895 							struct boundary *new_sizes);
896 
897 /**
898  * vdo_pack_recovery_journal_entry() - Return the packed, on-disk representation of a recovery
899  *                                     journal entry.
900  * @entry: The journal entry to pack.
901  *
902  * Return: The packed representation of the journal entry.
903  */
904 static inline struct packed_recovery_journal_entry
905 vdo_pack_recovery_journal_entry(const struct recovery_journal_entry *entry)
906 {
907 	return (struct packed_recovery_journal_entry) {
908 		.operation = entry->operation,
909 		.slot_low = entry->slot.slot & 0x3F,
910 		.slot_high = (entry->slot.slot >> 6) & 0x0F,
911 		.pbn_high_nibble = (entry->slot.pbn >> 32) & 0x0F,
912 		.pbn_low_word = __cpu_to_le32(entry->slot.pbn & UINT_MAX),
913 		.mapping = vdo_pack_block_map_entry(entry->mapping.pbn,
914 						    entry->mapping.state),
915 		.unmapping = vdo_pack_block_map_entry(entry->unmapping.pbn,
916 						      entry->unmapping.state),
917 	};
918 }
919 
920 /**
921  * vdo_unpack_recovery_journal_entry() - Unpack the on-disk representation of a recovery journal
922  *                                       entry.
923  * @entry: The recovery journal entry to unpack.
924  *
925  * Return: The unpacked entry.
926  */
927 static inline struct recovery_journal_entry
928 vdo_unpack_recovery_journal_entry(const struct packed_recovery_journal_entry *entry)
929 {
930 	physical_block_number_t low32 = __le32_to_cpu(entry->pbn_low_word);
931 	physical_block_number_t high4 = entry->pbn_high_nibble;
932 
933 	return (struct recovery_journal_entry) {
934 		.operation = entry->operation,
935 		.slot = {
936 			.pbn = ((high4 << 32) | low32),
937 			.slot = (entry->slot_low | (entry->slot_high << 6)),
938 		},
939 		.mapping = vdo_unpack_block_map_entry(&entry->mapping),
940 		.unmapping = vdo_unpack_block_map_entry(&entry->unmapping),
941 	};
942 }
943 
944 const char * __must_check vdo_get_journal_operation_name(enum journal_operation operation);
945 
946 /**
947  * vdo_is_valid_recovery_journal_sector() - Determine whether the header of the given sector could
948  *                                          describe a valid sector for the given journal block
949  *                                          header.
950  * @header: The unpacked block header to compare against.
951  * @sector: The packed sector to check.
952  * @sector_number: The number of the sector being checked.
953  *
954  * Return: true if the sector matches the block header.
955  */
956 static inline bool __must_check
957 vdo_is_valid_recovery_journal_sector(const struct recovery_block_header *header,
958 				     const struct packed_journal_sector *sector,
959 				     u8 sector_number)
960 {
961 	if ((header->check_byte != sector->check_byte) ||
962 	    (header->recovery_count != sector->recovery_count))
963 		return false;
964 
965 	if (header->metadata_type == VDO_METADATA_RECOVERY_JOURNAL_2)
966 		return sector->entry_count <= RECOVERY_JOURNAL_ENTRIES_PER_SECTOR;
967 
968 	if (sector_number == 7)
969 		return sector->entry_count <= RECOVERY_JOURNAL_1_ENTRIES_IN_LAST_SECTOR;
970 
971 	return sector->entry_count <= RECOVERY_JOURNAL_1_ENTRIES_PER_SECTOR;
972 }
973 
974 /**
975  * vdo_compute_recovery_journal_block_number() - Compute the physical block number of the recovery
976  *                                               journal block which would have a given sequence
977  *                                               number.
978  * @journal_size: The size of the journal.
979  * @sequence_number: The sequence number.
980  *
981  * Return: The pbn of the journal block which would the specified sequence number.
982  */
983 static inline physical_block_number_t __must_check
984 vdo_compute_recovery_journal_block_number(block_count_t journal_size,
985 					  sequence_number_t sequence_number)
986 {
987 	/*
988 	 * Since journal size is a power of two, the block number modulus can just be extracted
989 	 * from the low-order bits of the sequence.
990 	 */
991 	return (sequence_number & (journal_size - 1));
992 }
993 
994 /**
995  * vdo_get_journal_block_sector() - Find the recovery journal sector from the block header and
996  *                                  sector number.
997  * @header: The header of the recovery journal block.
998  * @sector_number: The index of the sector (1-based).
999  *
1000  * Return: A packed recovery journal sector.
1001  */
1002 static inline struct packed_journal_sector * __must_check
1003 vdo_get_journal_block_sector(struct packed_journal_header *header, int sector_number)
1004 {
1005 	char *sector_data = ((char *) header) + (VDO_SECTOR_SIZE * sector_number);
1006 
1007 	return (struct packed_journal_sector *) sector_data;
1008 }
1009 
1010 /**
1011  * vdo_pack_recovery_block_header() - Generate the packed representation of a recovery block
1012  *                                    header.
1013  * @header: The header containing the values to encode.
1014  * @packed: The header into which to pack the values.
1015  */
1016 static inline void vdo_pack_recovery_block_header(const struct recovery_block_header *header,
1017 						  struct packed_journal_header *packed)
1018 {
1019 	*packed = (struct packed_journal_header) {
1020 		.block_map_head = __cpu_to_le64(header->block_map_head),
1021 		.slab_journal_head = __cpu_to_le64(header->slab_journal_head),
1022 		.sequence_number = __cpu_to_le64(header->sequence_number),
1023 		.nonce = __cpu_to_le64(header->nonce),
1024 		.logical_blocks_used = __cpu_to_le64(header->logical_blocks_used),
1025 		.block_map_data_blocks = __cpu_to_le64(header->block_map_data_blocks),
1026 		.entry_count = __cpu_to_le16(header->entry_count),
1027 		.check_byte = header->check_byte,
1028 		.recovery_count = header->recovery_count,
1029 		.metadata_type = header->metadata_type,
1030 	};
1031 }
1032 
1033 /**
1034  * vdo_unpack_recovery_block_header() - Decode the packed representation of a recovery block
1035  *                                      header.
1036  * @packed: The packed header to decode.
1037  *
1038  * Return: The unpacked header.
1039  */
1040 static inline struct recovery_block_header
1041 vdo_unpack_recovery_block_header(const struct packed_journal_header *packed)
1042 {
1043 	return (struct recovery_block_header) {
1044 		.block_map_head = __le64_to_cpu(packed->block_map_head),
1045 		.slab_journal_head = __le64_to_cpu(packed->slab_journal_head),
1046 		.sequence_number = __le64_to_cpu(packed->sequence_number),
1047 		.nonce = __le64_to_cpu(packed->nonce),
1048 		.logical_blocks_used = __le64_to_cpu(packed->logical_blocks_used),
1049 		.block_map_data_blocks = __le64_to_cpu(packed->block_map_data_blocks),
1050 		.entry_count = __le16_to_cpu(packed->entry_count),
1051 		.check_byte = packed->check_byte,
1052 		.recovery_count = packed->recovery_count,
1053 		.metadata_type = packed->metadata_type,
1054 	};
1055 }
1056 
1057 /**
1058  * vdo_compute_slab_count() - Compute the number of slabs a depot with given parameters would have.
1059  * @first_block: PBN of the first data block.
1060  * @last_block: PBN of the last data block.
1061  * @slab_size_shift: Exponent for the number of blocks per slab.
1062  *
1063  * Return: The number of slabs.
1064  */
1065 static inline slab_count_t vdo_compute_slab_count(physical_block_number_t first_block,
1066 						  physical_block_number_t last_block,
1067 						  unsigned int slab_size_shift)
1068 {
1069 	return (slab_count_t) ((last_block - first_block) >> slab_size_shift);
1070 }
1071 
1072 int __must_check vdo_configure_slab_depot(const struct partition *partition,
1073 					  struct slab_config slab_config,
1074 					  zone_count_t zone_count,
1075 					  struct slab_depot_state_2_0 *state);
1076 
1077 int __must_check vdo_configure_slab(block_count_t slab_size,
1078 				    block_count_t slab_journal_blocks,
1079 				    struct slab_config *slab_config);
1080 
1081 /**
1082  * vdo_get_saved_reference_count_size() - Get the number of blocks required to save a reference
1083  *                                        counts state covering the specified number of data
1084  *                                        blocks.
1085  * @block_count: The number of physical data blocks that can be referenced.
1086  *
1087  * Return: The number of blocks required to save reference counts with the given block count.
1088  */
1089 static inline block_count_t vdo_get_saved_reference_count_size(block_count_t block_count)
1090 {
1091 	return DIV_ROUND_UP(block_count, COUNTS_PER_BLOCK);
1092 }
1093 
1094 /**
1095  * vdo_get_slab_journal_start_block() - Get the physical block number of the start of the slab
1096  *                                      journal relative to the start block allocator partition.
1097  * @slab_config: The slab configuration of the VDO.
1098  * @origin: The first block of the slab.
1099  */
1100 static inline physical_block_number_t __must_check
1101 vdo_get_slab_journal_start_block(const struct slab_config *slab_config,
1102 				 physical_block_number_t origin)
1103 {
1104 	return origin + slab_config->data_blocks + slab_config->reference_count_blocks;
1105 }
1106 
1107 /**
1108  * vdo_advance_journal_point() - Move the given journal point forward by one entry.
1109  * @point: The journal point to adjust.
1110  * @entries_per_block: The number of entries in one full block.
1111  */
1112 static inline void vdo_advance_journal_point(struct journal_point *point,
1113 					     journal_entry_count_t entries_per_block)
1114 {
1115 	point->entry_count++;
1116 	if (point->entry_count == entries_per_block) {
1117 		point->sequence_number++;
1118 		point->entry_count = 0;
1119 	}
1120 }
1121 
1122 /**
1123  * vdo_before_journal_point() - Check whether the first point precedes the second point.
1124  * @first: The first journal point.
1125  * @second: The second journal point.
1126  *
1127  * Return: true if the first point precedes the second point.
1128  */
1129 static inline bool vdo_before_journal_point(const struct journal_point *first,
1130 					    const struct journal_point *second)
1131 {
1132 	return ((first->sequence_number < second->sequence_number) ||
1133 		((first->sequence_number == second->sequence_number) &&
1134 		 (first->entry_count < second->entry_count)));
1135 }
1136 
1137 /**
1138  * vdo_pack_journal_point() - Encode the journal location represented by a
1139  *                            journal_point into a packed_journal_point.
1140  * @unpacked: The unpacked input point.
1141  * @packed: The packed output point.
1142  */
1143 static inline void vdo_pack_journal_point(const struct journal_point *unpacked,
1144 					  struct packed_journal_point *packed)
1145 {
1146 	packed->encoded_point =
1147 		__cpu_to_le64((unpacked->sequence_number << 16) | unpacked->entry_count);
1148 }
1149 
1150 /**
1151  * vdo_unpack_journal_point() - Decode the journal location represented by a packed_journal_point
1152  *                              into a journal_point.
1153  * @packed: The packed input point.
1154  * @unpacked: The unpacked output point.
1155  */
1156 static inline void vdo_unpack_journal_point(const struct packed_journal_point *packed,
1157 					    struct journal_point *unpacked)
1158 {
1159 	u64 native = __le64_to_cpu(packed->encoded_point);
1160 
1161 	unpacked->sequence_number = (native >> 16);
1162 	unpacked->entry_count = (native & 0xffff);
1163 }
1164 
1165 /**
1166  * vdo_pack_slab_journal_block_header() - Generate the packed representation of a slab block
1167  *                                        header.
1168  * @header: The header containing the values to encode.
1169  * @packed: The header into which to pack the values.
1170  */
1171 static inline void
1172 vdo_pack_slab_journal_block_header(const struct slab_journal_block_header *header,
1173 				   struct packed_slab_journal_block_header *packed)
1174 {
1175 	packed->head = __cpu_to_le64(header->head);
1176 	packed->sequence_number = __cpu_to_le64(header->sequence_number);
1177 	packed->nonce = __cpu_to_le64(header->nonce);
1178 	packed->entry_count = __cpu_to_le16(header->entry_count);
1179 	packed->metadata_type = header->metadata_type;
1180 	packed->has_block_map_increments = header->has_block_map_increments;
1181 
1182 	vdo_pack_journal_point(&header->recovery_point, &packed->recovery_point);
1183 }
1184 
1185 /**
1186  * vdo_unpack_slab_journal_block_header() - Decode the packed representation of a slab block
1187  *                                          header.
1188  * @packed: The packed header to decode.
1189  * @header: The header into which to unpack the values.
1190  */
1191 static inline void
1192 vdo_unpack_slab_journal_block_header(const struct packed_slab_journal_block_header *packed,
1193 				     struct slab_journal_block_header *header)
1194 {
1195 	*header = (struct slab_journal_block_header) {
1196 		.head = __le64_to_cpu(packed->head),
1197 		.sequence_number = __le64_to_cpu(packed->sequence_number),
1198 		.nonce = __le64_to_cpu(packed->nonce),
1199 		.entry_count = __le16_to_cpu(packed->entry_count),
1200 		.metadata_type = packed->metadata_type,
1201 		.has_block_map_increments = packed->has_block_map_increments,
1202 	};
1203 	vdo_unpack_journal_point(&packed->recovery_point, &header->recovery_point);
1204 }
1205 
1206 /**
1207  * vdo_pack_slab_journal_entry() - Generate the packed encoding of a slab journal entry.
1208  * @packed: The entry into which to pack the values.
1209  * @sbn: The slab block number of the entry to encode.
1210  * @is_increment: The increment flag.
1211  */
1212 static inline void vdo_pack_slab_journal_entry(packed_slab_journal_entry *packed,
1213 					       slab_block_number sbn, bool is_increment)
1214 {
1215 	packed->offset_low8 = (sbn & 0x0000FF);
1216 	packed->offset_mid8 = (sbn & 0x00FF00) >> 8;
1217 	packed->offset_high7 = (sbn & 0x7F0000) >> 16;
1218 	packed->increment = is_increment ? 1 : 0;
1219 }
1220 
1221 /**
1222  * vdo_unpack_slab_journal_entry() - Decode the packed representation of a slab journal entry.
1223  * @packed: The packed entry to decode.
1224  *
1225  * Return: The decoded slab journal entry.
1226  */
1227 static inline struct slab_journal_entry __must_check
1228 vdo_unpack_slab_journal_entry(const packed_slab_journal_entry *packed)
1229 {
1230 	struct slab_journal_entry entry;
1231 
1232 	entry.sbn = packed->offset_high7;
1233 	entry.sbn <<= 8;
1234 	entry.sbn |= packed->offset_mid8;
1235 	entry.sbn <<= 8;
1236 	entry.sbn |= packed->offset_low8;
1237 	entry.operation = VDO_JOURNAL_DATA_REMAPPING;
1238 	entry.increment = packed->increment;
1239 	return entry;
1240 }
1241 
1242 struct slab_journal_entry __must_check
1243 vdo_decode_slab_journal_entry(struct packed_slab_journal_block *block,
1244 			      journal_entry_count_t entry_count);
1245 
1246 /**
1247  * vdo_get_slab_summary_hint_shift() - Compute the shift for slab summary hints.
1248  * @slab_size_shift: Exponent for the number of blocks per slab.
1249  *
1250  * Return: The hint shift.
1251  */
1252 static inline u8 __must_check vdo_get_slab_summary_hint_shift(unsigned int slab_size_shift)
1253 {
1254 	return ((slab_size_shift > VDO_SLAB_SUMMARY_FULLNESS_HINT_BITS) ?
1255 		(slab_size_shift - VDO_SLAB_SUMMARY_FULLNESS_HINT_BITS) :
1256 		0);
1257 }
1258 
1259 int __must_check vdo_initialize_layout(block_count_t size,
1260 				       physical_block_number_t offset,
1261 				       block_count_t block_map_blocks,
1262 				       block_count_t journal_blocks,
1263 				       block_count_t summary_blocks,
1264 				       struct layout *layout);
1265 
1266 void vdo_uninitialize_layout(struct layout *layout);
1267 
1268 int __must_check vdo_get_partition(struct layout *layout, enum partition_id id,
1269 				   struct partition **partition_ptr);
1270 
1271 struct partition * __must_check vdo_get_known_partition(struct layout *layout,
1272 							enum partition_id id);
1273 
1274 int vdo_validate_config(const struct vdo_config *config,
1275 			block_count_t physical_block_count,
1276 			block_count_t logical_block_count);
1277 
1278 void vdo_destroy_component_states(struct vdo_component_states *states);
1279 
1280 int __must_check vdo_decode_component_states(u8 *buffer,
1281 					     struct volume_geometry *geometry,
1282 					     struct vdo_component_states *states);
1283 
1284 int __must_check vdo_validate_component_states(struct vdo_component_states *states,
1285 					       nonce_t geometry_nonce,
1286 					       block_count_t physical_size,
1287 					       block_count_t logical_size);
1288 
1289 void vdo_encode_super_block(u8 *buffer, struct vdo_component_states *states);
1290 int __must_check vdo_decode_super_block(u8 *buffer);
1291 
1292 /* We start with 0L and postcondition with ~0L to match our historical usage in userspace. */
1293 static inline u32 vdo_crc32(const void *buf, unsigned long len)
1294 {
1295 	return (crc32(0L, buf, len) ^ ~0L);
1296 }
1297 
1298 #endif /* VDO_ENCODINGS_H */
1299