1 /* SPDX-License-Identifier: GPL-2.0-only */
2 /*
3 * Copyright 2023 Red Hat
4 */
5
6 #ifndef VDO_ENCODINGS_H
7 #define VDO_ENCODINGS_H
8
9 #include <linux/blk_types.h>
10 #include <linux/crc32.h>
11 #include <linux/limits.h>
12 #include <linux/uuid.h>
13
14 #include "numeric.h"
15
16 #include "constants.h"
17 #include "types.h"
18
19 /*
20 * An in-memory representation of a version number for versioned structures on disk.
21 *
22 * A version number consists of two portions, a major version and a minor version. Any format
23 * change which does not require an explicit upgrade step from the previous version should
24 * increment the minor version. Any format change which either requires an explicit upgrade step,
25 * or is wholly incompatible (i.e. can not be upgraded to), should increment the major version, and
26 * set the minor version to 0.
27 */
28 struct version_number {
29 u32 major_version;
30 u32 minor_version;
31 };
32
33 /*
34 * A packed, machine-independent, on-disk representation of a version_number. Both fields are
35 * stored in little-endian byte order.
36 */
37 struct packed_version_number {
38 __le32 major_version;
39 __le32 minor_version;
40 } __packed;
41
42 /* The registry of component ids for use in headers */
43 #define VDO_SUPER_BLOCK 0
44 #define VDO_LAYOUT 1
45 #define VDO_RECOVERY_JOURNAL 2
46 #define VDO_SLAB_DEPOT 3
47 #define VDO_BLOCK_MAP 4
48 #define VDO_GEOMETRY_BLOCK 5
49
50 /* The header for versioned data stored on disk. */
51 struct header {
52 u32 id; /* The component this is a header for */
53 struct version_number version; /* The version of the data format */
54 size_t size; /* The size of the data following this header */
55 };
56
57 /* A packed, machine-independent, on-disk representation of a component header. */
58 struct packed_header {
59 __le32 id;
60 struct packed_version_number version;
61 __le64 size;
62 } __packed;
63
64 enum {
65 VDO_GEOMETRY_BLOCK_LOCATION = 0,
66 VDO_GEOMETRY_MAGIC_NUMBER_SIZE = 8,
67 VDO_DEFAULT_GEOMETRY_BLOCK_VERSION = 5,
68 };
69
70 struct index_config {
71 u32 mem;
72 u32 unused;
73 bool sparse;
74 } __packed;
75
76 enum volume_region_id {
77 VDO_INDEX_REGION = 0,
78 VDO_DATA_REGION = 1,
79 VDO_VOLUME_REGION_COUNT,
80 };
81
82 struct volume_region {
83 /* The ID of the region */
84 enum volume_region_id id;
85 /*
86 * The absolute starting offset on the device. The region continues until the next region
87 * begins.
88 */
89 physical_block_number_t start_block;
90 } __packed;
91
92 struct volume_geometry {
93 /* For backwards compatibility */
94 u32 unused;
95 /* The nonce of this volume */
96 nonce_t nonce;
97 /* The uuid of this volume */
98 uuid_t uuid;
99 /* The block offset to be applied to bios */
100 block_count_t bio_offset;
101 /* The regions in ID order */
102 struct volume_region regions[VDO_VOLUME_REGION_COUNT];
103 /* The index config */
104 struct index_config index_config;
105 } __packed;
106
107 /* This volume geometry struct is used for sizing only */
108 struct volume_geometry_4_0 {
109 /* For backwards compatibility */
110 u32 unused;
111 /* The nonce of this volume */
112 nonce_t nonce;
113 /* The uuid of this volume */
114 uuid_t uuid;
115 /* The regions in ID order */
116 struct volume_region regions[VDO_VOLUME_REGION_COUNT];
117 /* The index config */
118 struct index_config index_config;
119 } __packed;
120
121 extern const u8 VDO_GEOMETRY_MAGIC_NUMBER[VDO_GEOMETRY_MAGIC_NUMBER_SIZE + 1];
122
123 /**
124 * DOC: Block map entries
125 *
126 * The entry for each logical block in the block map is encoded into five bytes, which saves space
127 * in both the on-disk and in-memory layouts. It consists of the 36 low-order bits of a
128 * physical_block_number_t (addressing 256 terabytes with a 4KB block size) and a 4-bit encoding of
129 * a block_mapping_state.
130 *
131 * Of the 8 high bits of the 5-byte structure:
132 *
133 * Bits 7..4: The four highest bits of the 36-bit physical block number
134 * Bits 3..0: The 4-bit block_mapping_state
135 *
136 * The following 4 bytes are the low order bytes of the physical block number, in little-endian
137 * order.
138 *
139 * Conversion functions to and from a data location are provided.
140 */
141 struct block_map_entry {
142 #if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
143 unsigned mapping_state : 4;
144 unsigned pbn_high_nibble : 4;
145 #else
146 unsigned pbn_high_nibble : 4;
147 unsigned mapping_state : 4;
148 #endif
149
150 __le32 pbn_low_word;
151 } __packed;
152
153 struct block_map_page_header {
154 __le64 nonce;
155 __le64 pbn;
156
157 /* May be non-zero on disk */
158 u8 unused_long_word[8];
159
160 /* Whether this page has been written twice to disk */
161 bool initialized;
162
163 /* Always zero on disk */
164 u8 unused_byte1;
165
166 /* May be non-zero on disk */
167 u8 unused_byte2;
168 u8 unused_byte3;
169 } __packed;
170
171 struct block_map_page {
172 struct packed_version_number version;
173 struct block_map_page_header header;
174 struct block_map_entry entries[];
175 } __packed;
176
177 enum block_map_page_validity {
178 VDO_BLOCK_MAP_PAGE_VALID,
179 VDO_BLOCK_MAP_PAGE_INVALID,
180 /* Valid page found in the wrong location on disk */
181 VDO_BLOCK_MAP_PAGE_BAD,
182 };
183
184 struct block_map_state_2_0 {
185 physical_block_number_t flat_page_origin;
186 block_count_t flat_page_count;
187 physical_block_number_t root_origin;
188 block_count_t root_count;
189 } __packed;
190
191 struct boundary {
192 page_number_t levels[VDO_BLOCK_MAP_TREE_HEIGHT];
193 };
194
195 extern const struct header VDO_BLOCK_MAP_HEADER_2_0;
196
197 /* The state of the recovery journal as encoded in the VDO super block. */
198 struct recovery_journal_state_7_0 {
199 /* Sequence number to start the journal */
200 sequence_number_t journal_start;
201 /* Number of logical blocks used by VDO */
202 block_count_t logical_blocks_used;
203 /* Number of block map pages allocated */
204 block_count_t block_map_data_blocks;
205 } __packed;
206
207 extern const struct header VDO_RECOVERY_JOURNAL_HEADER_7_0;
208
209 typedef u16 journal_entry_count_t;
210
211 /*
212 * A recovery journal entry stores three physical locations: a data location that is the value of a
213 * single mapping in the block map tree, and the two locations of the block map pages and slots
214 * that are acquiring and releasing a reference to the location. The journal entry also stores an
215 * operation code that says whether the mapping is for a logical block or for the block map tree
216 * itself.
217 */
218 struct recovery_journal_entry {
219 struct block_map_slot slot;
220 struct data_location mapping;
221 struct data_location unmapping;
222 enum journal_operation operation;
223 };
224
225 /* The packed, on-disk representation of a recovery journal entry. */
226 struct packed_recovery_journal_entry {
227 /*
228 * In little-endian bit order:
229 * Bits 15..12: The four highest bits of the 36-bit physical block number of the block map
230 * tree page
231 * Bits 11..2: The 10-bit block map page slot number
232 * Bit 1..0: The journal_operation of the entry (this actually only requires 1 bit, but
233 * it is convenient to keep the extra bit as part of this field.
234 */
235 #if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
236 unsigned operation : 2;
237 unsigned slot_low : 6;
238 unsigned slot_high : 4;
239 unsigned pbn_high_nibble : 4;
240 #else
241 unsigned slot_low : 6;
242 unsigned operation : 2;
243 unsigned pbn_high_nibble : 4;
244 unsigned slot_high : 4;
245 #endif
246
247 /*
248 * Bits 47..16: The 32 low-order bits of the block map page PBN, in little-endian byte
249 * order
250 */
251 __le32 pbn_low_word;
252
253 /*
254 * Bits 87..48: The five-byte block map entry encoding the location that will be stored in
255 * the block map page slot
256 */
257 struct block_map_entry mapping;
258
259 /*
260 * Bits 127..88: The five-byte block map entry encoding the location that was stored in the
261 * block map page slot
262 */
263 struct block_map_entry unmapping;
264 } __packed;
265
266 /* The packed, on-disk representation of an old format recovery journal entry. */
267 struct packed_recovery_journal_entry_1 {
268 /*
269 * In little-endian bit order:
270 * Bits 15..12: The four highest bits of the 36-bit physical block number of the block map
271 * tree page
272 * Bits 11..2: The 10-bit block map page slot number
273 * Bits 1..0: The 2-bit journal_operation of the entry
274 *
275 */
276 #if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
277 unsigned operation : 2;
278 unsigned slot_low : 6;
279 unsigned slot_high : 4;
280 unsigned pbn_high_nibble : 4;
281 #else
282 unsigned slot_low : 6;
283 unsigned operation : 2;
284 unsigned pbn_high_nibble : 4;
285 unsigned slot_high : 4;
286 #endif
287
288 /*
289 * Bits 47..16: The 32 low-order bits of the block map page PBN, in little-endian byte
290 * order
291 */
292 __le32 pbn_low_word;
293
294 /*
295 * Bits 87..48: The five-byte block map entry encoding the location that was or will be
296 * stored in the block map page slot
297 */
298 struct block_map_entry block_map_entry;
299 } __packed;
300
301 enum journal_operation_1 {
302 VDO_JOURNAL_DATA_DECREMENT = 0,
303 VDO_JOURNAL_DATA_INCREMENT = 1,
304 VDO_JOURNAL_BLOCK_MAP_DECREMENT = 2,
305 VDO_JOURNAL_BLOCK_MAP_INCREMENT = 3,
306 } __packed;
307
308 struct recovery_block_header {
309 sequence_number_t block_map_head; /* Block map head sequence number */
310 sequence_number_t slab_journal_head; /* Slab journal head seq. number */
311 sequence_number_t sequence_number; /* Sequence number for this block */
312 nonce_t nonce; /* A given VDO instance's nonce */
313 block_count_t logical_blocks_used; /* Logical blocks in use */
314 block_count_t block_map_data_blocks; /* Allocated block map pages */
315 journal_entry_count_t entry_count; /* Number of entries written */
316 u8 check_byte; /* The protection check byte */
317 u8 recovery_count; /* Number of recoveries completed */
318 enum vdo_metadata_type metadata_type; /* Metadata type */
319 };
320
321 /*
322 * The packed, on-disk representation of a recovery journal block header. All fields are kept in
323 * little-endian byte order.
324 */
325 struct packed_journal_header {
326 /* Block map head 64-bit sequence number */
327 __le64 block_map_head;
328
329 /* Slab journal head 64-bit sequence number */
330 __le64 slab_journal_head;
331
332 /* The 64-bit sequence number for this block */
333 __le64 sequence_number;
334
335 /* A given VDO instance's 64-bit nonce */
336 __le64 nonce;
337
338 /* 8-bit metadata type (should always be one for the recovery journal) */
339 u8 metadata_type;
340
341 /* 16-bit count of the entries encoded in the block */
342 __le16 entry_count;
343
344 /* 64-bit count of the logical blocks used when this block was opened */
345 __le64 logical_blocks_used;
346
347 /* 64-bit count of the block map blocks used when this block was opened */
348 __le64 block_map_data_blocks;
349
350 /* The protection check byte */
351 u8 check_byte;
352
353 /* The number of recoveries completed */
354 u8 recovery_count;
355 } __packed;
356
357 struct packed_journal_sector {
358 /* The protection check byte */
359 u8 check_byte;
360
361 /* The number of recoveries completed */
362 u8 recovery_count;
363
364 /* The number of entries in this sector */
365 u8 entry_count;
366
367 /* Journal entries for this sector */
368 struct packed_recovery_journal_entry entries[];
369 } __packed;
370
371 enum {
372 /* The number of entries in each sector (except the last) when filled */
373 RECOVERY_JOURNAL_ENTRIES_PER_SECTOR =
374 ((VDO_SECTOR_SIZE - sizeof(struct packed_journal_sector)) /
375 sizeof(struct packed_recovery_journal_entry)),
376 RECOVERY_JOURNAL_ENTRIES_PER_BLOCK = RECOVERY_JOURNAL_ENTRIES_PER_SECTOR * 7,
377 /* The number of entries in a v1 recovery journal block. */
378 RECOVERY_JOURNAL_1_ENTRIES_PER_BLOCK = 311,
379 /* The number of entries in each v1 sector (except the last) when filled */
380 RECOVERY_JOURNAL_1_ENTRIES_PER_SECTOR =
381 ((VDO_SECTOR_SIZE - sizeof(struct packed_journal_sector)) /
382 sizeof(struct packed_recovery_journal_entry_1)),
383 /* The number of entries in the last sector when a block is full */
384 RECOVERY_JOURNAL_1_ENTRIES_IN_LAST_SECTOR =
385 (RECOVERY_JOURNAL_1_ENTRIES_PER_BLOCK % RECOVERY_JOURNAL_1_ENTRIES_PER_SECTOR),
386 };
387
388 /* A type representing a reference count of a block. */
389 typedef u8 vdo_refcount_t;
390
391 /* The absolute position of an entry in a recovery journal or slab journal. */
392 struct journal_point {
393 sequence_number_t sequence_number;
394 journal_entry_count_t entry_count;
395 };
396
397 /* A packed, platform-independent encoding of a struct journal_point. */
398 struct packed_journal_point {
399 /*
400 * The packed representation is the little-endian 64-bit representation of the low-order 48
401 * bits of the sequence number, shifted up 16 bits, or'ed with the 16-bit entry count.
402 *
403 * Very long-term, the top 16 bits of the sequence number may not always be zero, as this
404 * encoding assumes--see BZ 1523240.
405 */
406 __le64 encoded_point;
407 } __packed;
408
409 /* Special vdo_refcount_t values. */
410 #define EMPTY_REFERENCE_COUNT 0
411 enum {
412 MAXIMUM_REFERENCE_COUNT = 254,
413 PROVISIONAL_REFERENCE_COUNT = 255,
414 };
415
416 enum {
417 COUNTS_PER_SECTOR =
418 ((VDO_SECTOR_SIZE - sizeof(struct packed_journal_point)) / sizeof(vdo_refcount_t)),
419 COUNTS_PER_BLOCK = COUNTS_PER_SECTOR * VDO_SECTORS_PER_BLOCK,
420 };
421
422 /* The format of each sector of a reference_block on disk. */
423 struct packed_reference_sector {
424 struct packed_journal_point commit_point;
425 vdo_refcount_t counts[COUNTS_PER_SECTOR];
426 } __packed;
427
428 struct packed_reference_block {
429 struct packed_reference_sector sectors[VDO_SECTORS_PER_BLOCK];
430 };
431
432 struct slab_depot_state_2_0 {
433 struct slab_config slab_config;
434 physical_block_number_t first_block;
435 physical_block_number_t last_block;
436 zone_count_t zone_count;
437 } __packed;
438
439 extern const struct header VDO_SLAB_DEPOT_HEADER_2_0;
440
441 /*
442 * vdo_slab journal blocks may have one of two formats, depending upon whether or not any of the
443 * entries in the block are block map increments. Since the steady state for a VDO is that all of
444 * the necessary block map pages will be allocated, most slab journal blocks will have only data
445 * entries. Such blocks can hold more entries, hence the two formats.
446 */
447
448 /* A single slab journal entry */
449 struct slab_journal_entry {
450 slab_block_number sbn;
451 enum journal_operation operation;
452 bool increment;
453 };
454
455 /* A single slab journal entry in its on-disk form */
456 typedef struct {
457 u8 offset_low8;
458 u8 offset_mid8;
459
460 #if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
461 unsigned offset_high7 : 7;
462 unsigned increment : 1;
463 #else
464 unsigned increment : 1;
465 unsigned offset_high7 : 7;
466 #endif
467 } __packed packed_slab_journal_entry;
468
469 /* The unpacked representation of the header of a slab journal block */
470 struct slab_journal_block_header {
471 /* Sequence number for head of journal */
472 sequence_number_t head;
473 /* Sequence number for this block */
474 sequence_number_t sequence_number;
475 /* The nonce for a given VDO instance */
476 nonce_t nonce;
477 /* Recovery journal point for last entry */
478 struct journal_point recovery_point;
479 /* Metadata type */
480 enum vdo_metadata_type metadata_type;
481 /* Whether this block contains block map increments */
482 bool has_block_map_increments;
483 /* The number of entries in the block */
484 journal_entry_count_t entry_count;
485 };
486
487 /*
488 * The packed, on-disk representation of a slab journal block header. All fields are kept in
489 * little-endian byte order.
490 */
491 struct packed_slab_journal_block_header {
492 /* 64-bit sequence number for head of journal */
493 __le64 head;
494 /* 64-bit sequence number for this block */
495 __le64 sequence_number;
496 /* Recovery journal point for the last entry, packed into 64 bits */
497 struct packed_journal_point recovery_point;
498 /* The 64-bit nonce for a given VDO instance */
499 __le64 nonce;
500 /* 8-bit metadata type (should always be two, for the slab journal) */
501 u8 metadata_type;
502 /* Whether this block contains block map increments */
503 bool has_block_map_increments;
504 /* 16-bit count of the entries encoded in the block */
505 __le16 entry_count;
506 } __packed;
507
508 enum {
509 VDO_SLAB_JOURNAL_PAYLOAD_SIZE =
510 VDO_BLOCK_SIZE - sizeof(struct packed_slab_journal_block_header),
511 VDO_SLAB_JOURNAL_FULL_ENTRIES_PER_BLOCK = (VDO_SLAB_JOURNAL_PAYLOAD_SIZE * 8) / 25,
512 VDO_SLAB_JOURNAL_ENTRY_TYPES_SIZE =
513 ((VDO_SLAB_JOURNAL_FULL_ENTRIES_PER_BLOCK - 1) / 8) + 1,
514 VDO_SLAB_JOURNAL_ENTRIES_PER_BLOCK =
515 (VDO_SLAB_JOURNAL_PAYLOAD_SIZE / sizeof(packed_slab_journal_entry)),
516 };
517
518 /* The payload of a slab journal block which has block map increments */
519 struct full_slab_journal_entries {
520 /* The entries themselves */
521 packed_slab_journal_entry entries[VDO_SLAB_JOURNAL_FULL_ENTRIES_PER_BLOCK];
522 /* The bit map indicating which entries are block map increments */
523 u8 entry_types[VDO_SLAB_JOURNAL_ENTRY_TYPES_SIZE];
524 } __packed;
525
526 typedef union {
527 /* Entries which include block map increments */
528 struct full_slab_journal_entries full_entries;
529 /* Entries which are only data updates */
530 packed_slab_journal_entry entries[VDO_SLAB_JOURNAL_ENTRIES_PER_BLOCK];
531 /* Ensure the payload fills to the end of the block */
532 u8 space[VDO_SLAB_JOURNAL_PAYLOAD_SIZE];
533 } __packed slab_journal_payload;
534
535 struct packed_slab_journal_block {
536 struct packed_slab_journal_block_header header;
537 slab_journal_payload payload;
538 } __packed;
539
540 /* The offset of a slab journal tail block. */
541 typedef u8 tail_block_offset_t;
542
543 struct slab_summary_entry {
544 /* Bits 7..0: The offset of the tail block within the slab journal */
545 tail_block_offset_t tail_block_offset;
546
547 #if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
548 /* Bits 13..8: A hint about the fullness of the slab */
549 unsigned int fullness_hint : 6;
550 /* Bit 14: Whether the ref_counts must be loaded from the layer */
551 unsigned int load_ref_counts : 1;
552 /* Bit 15: The believed cleanliness of this slab */
553 unsigned int is_dirty : 1;
554 #else
555 /* Bit 15: The believed cleanliness of this slab */
556 unsigned int is_dirty : 1;
557 /* Bit 14: Whether the ref_counts must be loaded from the layer */
558 unsigned int load_ref_counts : 1;
559 /* Bits 13..8: A hint about the fullness of the slab */
560 unsigned int fullness_hint : 6;
561 #endif
562 } __packed;
563
564 enum {
565 VDO_SLAB_SUMMARY_FULLNESS_HINT_BITS = 6,
566 VDO_SLAB_SUMMARY_ENTRIES_PER_BLOCK = VDO_BLOCK_SIZE / sizeof(struct slab_summary_entry),
567 VDO_SLAB_SUMMARY_BLOCKS_PER_ZONE = MAX_VDO_SLABS / VDO_SLAB_SUMMARY_ENTRIES_PER_BLOCK,
568 VDO_SLAB_SUMMARY_BLOCKS = VDO_SLAB_SUMMARY_BLOCKS_PER_ZONE * MAX_VDO_PHYSICAL_ZONES,
569 };
570
571 struct layout {
572 physical_block_number_t start;
573 block_count_t size;
574 physical_block_number_t first_free;
575 physical_block_number_t last_free;
576 size_t num_partitions;
577 struct partition *head;
578 };
579
580 struct partition {
581 enum partition_id id; /* The id of this partition */
582 physical_block_number_t offset; /* The offset into the layout of this partition */
583 block_count_t count; /* The number of blocks in the partition */
584 struct partition *next; /* A pointer to the next partition in the layout */
585 };
586
587 struct layout_3_0 {
588 physical_block_number_t first_free;
589 physical_block_number_t last_free;
590 u8 partition_count;
591 } __packed;
592
593 struct partition_3_0 {
594 enum partition_id id;
595 physical_block_number_t offset;
596 physical_block_number_t base; /* unused but retained for backwards compatibility */
597 block_count_t count;
598 } __packed;
599
600 /*
601 * The configuration of the VDO service.
602 */
603 struct vdo_config {
604 block_count_t logical_blocks; /* number of logical blocks */
605 block_count_t physical_blocks; /* number of physical blocks */
606 block_count_t slab_size; /* number of blocks in a slab */
607 block_count_t recovery_journal_size; /* number of recovery journal blocks */
608 block_count_t slab_journal_blocks; /* number of slab journal blocks */
609 };
610
611 /* This is the structure that captures the vdo fields saved as a super block component. */
612 struct vdo_component {
613 enum vdo_state state;
614 u64 complete_recoveries;
615 u64 read_only_recoveries;
616 struct vdo_config config;
617 nonce_t nonce;
618 };
619
620 /*
621 * A packed, machine-independent, on-disk representation of the vdo_config in the VDO component
622 * data in the super block.
623 */
624 struct packed_vdo_config {
625 __le64 logical_blocks;
626 __le64 physical_blocks;
627 __le64 slab_size;
628 __le64 recovery_journal_size;
629 __le64 slab_journal_blocks;
630 } __packed;
631
632 /*
633 * A packed, machine-independent, on-disk representation of version 41.0 of the VDO component data
634 * in the super block.
635 */
636 struct packed_vdo_component_41_0 {
637 __le32 state;
638 __le64 complete_recoveries;
639 __le64 read_only_recoveries;
640 struct packed_vdo_config config;
641 __le64 nonce;
642 } __packed;
643
644 /*
645 * The version of the on-disk format of a VDO volume. This should be incremented any time the
646 * on-disk representation of any VDO structure changes. Changes which require only online upgrade
647 * steps should increment the minor version. Changes which require an offline upgrade or which can
648 * not be upgraded to at all should increment the major version and set the minor version to 0.
649 */
650 extern const struct version_number VDO_VOLUME_VERSION_67_0;
651
652 enum {
653 VDO_ENCODED_HEADER_SIZE = sizeof(struct packed_header),
654 BLOCK_MAP_COMPONENT_ENCODED_SIZE =
655 VDO_ENCODED_HEADER_SIZE + sizeof(struct block_map_state_2_0),
656 RECOVERY_JOURNAL_COMPONENT_ENCODED_SIZE =
657 VDO_ENCODED_HEADER_SIZE + sizeof(struct recovery_journal_state_7_0),
658 SLAB_DEPOT_COMPONENT_ENCODED_SIZE =
659 VDO_ENCODED_HEADER_SIZE + sizeof(struct slab_depot_state_2_0),
660 VDO_PARTITION_COUNT = 4,
661 VDO_LAYOUT_ENCODED_SIZE = (VDO_ENCODED_HEADER_SIZE +
662 sizeof(struct layout_3_0) +
663 (sizeof(struct partition_3_0) * VDO_PARTITION_COUNT)),
664 VDO_SUPER_BLOCK_FIXED_SIZE = VDO_ENCODED_HEADER_SIZE + sizeof(u32),
665 VDO_MAX_COMPONENT_DATA_SIZE = VDO_SECTOR_SIZE - VDO_SUPER_BLOCK_FIXED_SIZE,
666 VDO_COMPONENT_ENCODED_SIZE =
667 (sizeof(struct packed_version_number) + sizeof(struct packed_vdo_component_41_0)),
668 VDO_COMPONENT_DATA_OFFSET = VDO_ENCODED_HEADER_SIZE,
669 VDO_COMPONENT_DATA_SIZE = (sizeof(u32) +
670 sizeof(struct packed_version_number) +
671 VDO_COMPONENT_ENCODED_SIZE +
672 VDO_LAYOUT_ENCODED_SIZE +
673 RECOVERY_JOURNAL_COMPONENT_ENCODED_SIZE +
674 SLAB_DEPOT_COMPONENT_ENCODED_SIZE +
675 BLOCK_MAP_COMPONENT_ENCODED_SIZE),
676 };
677
678 /* The entirety of the component data encoded in the VDO super block. */
679 struct vdo_component_states {
680 /* For backwards compatibility */
681 u32 unused;
682
683 /* The VDO volume version */
684 struct version_number volume_version;
685
686 /* Components */
687 struct vdo_component vdo;
688 struct block_map_state_2_0 block_map;
689 struct recovery_journal_state_7_0 recovery_journal;
690 struct slab_depot_state_2_0 slab_depot;
691
692 /* Our partitioning of the underlying storage */
693 struct layout layout;
694 };
695
696 /**
697 * vdo_are_same_version() - Check whether two version numbers are the same.
698 * @version_a: The first version.
699 * @version_b: The second version.
700 *
701 * Return: true if the two versions are the same.
702 */
vdo_are_same_version(struct version_number version_a,struct version_number version_b)703 static inline bool vdo_are_same_version(struct version_number version_a,
704 struct version_number version_b)
705 {
706 return ((version_a.major_version == version_b.major_version) &&
707 (version_a.minor_version == version_b.minor_version));
708 }
709
710 /**
711 * vdo_is_upgradable_version() - Check whether an actual version is upgradable to an expected
712 * version.
713 * @expected_version: The expected version.
714 * @actual_version: The version being validated.
715 *
716 * An actual version is upgradable if its major number is expected but its minor number differs,
717 * and the expected version's minor number is greater than the actual version's minor number.
718 *
719 * Return: true if the actual version is upgradable.
720 */
vdo_is_upgradable_version(struct version_number expected_version,struct version_number actual_version)721 static inline bool vdo_is_upgradable_version(struct version_number expected_version,
722 struct version_number actual_version)
723 {
724 return ((expected_version.major_version == actual_version.major_version) &&
725 (expected_version.minor_version > actual_version.minor_version));
726 }
727
728 int __must_check vdo_validate_header(const struct header *expected_header,
729 const struct header *actual_header, bool exact_size,
730 const char *component_name);
731
732 void vdo_encode_header(u8 *buffer, size_t *offset, const struct header *header);
733 void vdo_decode_header(u8 *buffer, size_t *offset, struct header *header);
734
735 /**
736 * vdo_pack_version_number() - Convert a version_number to its packed on-disk representation.
737 * @version: The version number to convert.
738 *
739 * Return: the platform-independent representation of the version
740 */
vdo_pack_version_number(struct version_number version)741 static inline struct packed_version_number vdo_pack_version_number(struct version_number version)
742 {
743 return (struct packed_version_number) {
744 .major_version = __cpu_to_le32(version.major_version),
745 .minor_version = __cpu_to_le32(version.minor_version),
746 };
747 }
748
749 /**
750 * vdo_unpack_version_number() - Convert a packed_version_number to its native in-memory
751 * representation.
752 * @version: The version number to convert.
753 *
754 * Return: The platform-independent representation of the version.
755 */
vdo_unpack_version_number(struct packed_version_number version)756 static inline struct version_number vdo_unpack_version_number(struct packed_version_number version)
757 {
758 return (struct version_number) {
759 .major_version = __le32_to_cpu(version.major_version),
760 .minor_version = __le32_to_cpu(version.minor_version),
761 };
762 }
763
764 /**
765 * vdo_pack_header() - Convert a component header to its packed on-disk representation.
766 * @header: The header to convert.
767 *
768 * Return: the platform-independent representation of the header
769 */
vdo_pack_header(const struct header * header)770 static inline struct packed_header vdo_pack_header(const struct header *header)
771 {
772 return (struct packed_header) {
773 .id = __cpu_to_le32(header->id),
774 .version = vdo_pack_version_number(header->version),
775 .size = __cpu_to_le64(header->size),
776 };
777 }
778
779 /**
780 * vdo_unpack_header() - Convert a packed_header to its native in-memory representation.
781 * @header: The header to convert.
782 *
783 * Return: The platform-independent representation of the version.
784 */
vdo_unpack_header(const struct packed_header * header)785 static inline struct header vdo_unpack_header(const struct packed_header *header)
786 {
787 return (struct header) {
788 .id = __le32_to_cpu(header->id),
789 .version = vdo_unpack_version_number(header->version),
790 .size = __le64_to_cpu(header->size),
791 };
792 }
793
794 /**
795 * vdo_get_index_region_start() - Get the start of the index region from a geometry.
796 * @geometry: The geometry.
797 *
798 * Return: The start of the index region.
799 */
800 static inline physical_block_number_t __must_check
vdo_get_index_region_start(struct volume_geometry geometry)801 vdo_get_index_region_start(struct volume_geometry geometry)
802 {
803 return geometry.regions[VDO_INDEX_REGION].start_block;
804 }
805
806 /**
807 * vdo_get_data_region_start() - Get the start of the data region from a geometry.
808 * @geometry: The geometry.
809 *
810 * Return: The start of the data region.
811 */
812 static inline physical_block_number_t __must_check
vdo_get_data_region_start(struct volume_geometry geometry)813 vdo_get_data_region_start(struct volume_geometry geometry)
814 {
815 return geometry.regions[VDO_DATA_REGION].start_block;
816 }
817
818 /**
819 * vdo_get_index_region_size() - Get the size of the index region from a geometry.
820 * @geometry: The geometry.
821 *
822 * Return: The size of the index region.
823 */
824 static inline physical_block_number_t __must_check
vdo_get_index_region_size(struct volume_geometry geometry)825 vdo_get_index_region_size(struct volume_geometry geometry)
826 {
827 return vdo_get_data_region_start(geometry) -
828 vdo_get_index_region_start(geometry);
829 }
830
831 int __must_check vdo_parse_geometry_block(unsigned char *block,
832 struct volume_geometry *geometry);
833
vdo_is_state_compressed(const enum block_mapping_state mapping_state)834 static inline bool vdo_is_state_compressed(const enum block_mapping_state mapping_state)
835 {
836 return (mapping_state > VDO_MAPPING_STATE_UNCOMPRESSED);
837 }
838
839 static inline struct block_map_entry
vdo_pack_block_map_entry(physical_block_number_t pbn,enum block_mapping_state mapping_state)840 vdo_pack_block_map_entry(physical_block_number_t pbn, enum block_mapping_state mapping_state)
841 {
842 return (struct block_map_entry) {
843 .mapping_state = (mapping_state & 0x0F),
844 .pbn_high_nibble = ((pbn >> 32) & 0x0F),
845 .pbn_low_word = __cpu_to_le32(pbn & UINT_MAX),
846 };
847 }
848
vdo_unpack_block_map_entry(const struct block_map_entry * entry)849 static inline struct data_location vdo_unpack_block_map_entry(const struct block_map_entry *entry)
850 {
851 physical_block_number_t low32 = __le32_to_cpu(entry->pbn_low_word);
852 physical_block_number_t high4 = entry->pbn_high_nibble;
853
854 return (struct data_location) {
855 .pbn = ((high4 << 32) | low32),
856 .state = entry->mapping_state,
857 };
858 }
859
vdo_is_mapped_location(const struct data_location * location)860 static inline bool vdo_is_mapped_location(const struct data_location *location)
861 {
862 return (location->state != VDO_MAPPING_STATE_UNMAPPED);
863 }
864
vdo_is_valid_location(const struct data_location * location)865 static inline bool vdo_is_valid_location(const struct data_location *location)
866 {
867 if (location->pbn == VDO_ZERO_BLOCK)
868 return !vdo_is_state_compressed(location->state);
869 else
870 return vdo_is_mapped_location(location);
871 }
872
873 static inline physical_block_number_t __must_check
vdo_get_block_map_page_pbn(const struct block_map_page * page)874 vdo_get_block_map_page_pbn(const struct block_map_page *page)
875 {
876 return __le64_to_cpu(page->header.pbn);
877 }
878
879 struct block_map_page *vdo_format_block_map_page(void *buffer, nonce_t nonce,
880 physical_block_number_t pbn,
881 bool initialized);
882
883 enum block_map_page_validity __must_check vdo_validate_block_map_page(struct block_map_page *page,
884 nonce_t nonce,
885 physical_block_number_t pbn);
886
vdo_compute_block_map_page_count(block_count_t entries)887 static inline page_count_t vdo_compute_block_map_page_count(block_count_t entries)
888 {
889 return DIV_ROUND_UP(entries, VDO_BLOCK_MAP_ENTRIES_PER_PAGE);
890 }
891
892 block_count_t __must_check vdo_compute_new_forest_pages(root_count_t root_count,
893 struct boundary *old_sizes,
894 block_count_t entries,
895 struct boundary *new_sizes);
896
897 /**
898 * vdo_pack_recovery_journal_entry() - Return the packed, on-disk representation of a recovery
899 * journal entry.
900 * @entry: The journal entry to pack.
901 *
902 * Return: The packed representation of the journal entry.
903 */
904 static inline struct packed_recovery_journal_entry
vdo_pack_recovery_journal_entry(const struct recovery_journal_entry * entry)905 vdo_pack_recovery_journal_entry(const struct recovery_journal_entry *entry)
906 {
907 return (struct packed_recovery_journal_entry) {
908 .operation = entry->operation,
909 .slot_low = entry->slot.slot & 0x3F,
910 .slot_high = (entry->slot.slot >> 6) & 0x0F,
911 .pbn_high_nibble = (entry->slot.pbn >> 32) & 0x0F,
912 .pbn_low_word = __cpu_to_le32(entry->slot.pbn & UINT_MAX),
913 .mapping = vdo_pack_block_map_entry(entry->mapping.pbn,
914 entry->mapping.state),
915 .unmapping = vdo_pack_block_map_entry(entry->unmapping.pbn,
916 entry->unmapping.state),
917 };
918 }
919
920 /**
921 * vdo_unpack_recovery_journal_entry() - Unpack the on-disk representation of a recovery journal
922 * entry.
923 * @entry: The recovery journal entry to unpack.
924 *
925 * Return: The unpacked entry.
926 */
927 static inline struct recovery_journal_entry
vdo_unpack_recovery_journal_entry(const struct packed_recovery_journal_entry * entry)928 vdo_unpack_recovery_journal_entry(const struct packed_recovery_journal_entry *entry)
929 {
930 physical_block_number_t low32 = __le32_to_cpu(entry->pbn_low_word);
931 physical_block_number_t high4 = entry->pbn_high_nibble;
932
933 return (struct recovery_journal_entry) {
934 .operation = entry->operation,
935 .slot = {
936 .pbn = ((high4 << 32) | low32),
937 .slot = (entry->slot_low | (entry->slot_high << 6)),
938 },
939 .mapping = vdo_unpack_block_map_entry(&entry->mapping),
940 .unmapping = vdo_unpack_block_map_entry(&entry->unmapping),
941 };
942 }
943
944 const char * __must_check vdo_get_journal_operation_name(enum journal_operation operation);
945
946 /**
947 * vdo_is_valid_recovery_journal_sector() - Determine whether the header of the given sector could
948 * describe a valid sector for the given journal block
949 * header.
950 * @header: The unpacked block header to compare against.
951 * @sector: The packed sector to check.
952 * @sector_number: The number of the sector being checked.
953 *
954 * Return: true if the sector matches the block header.
955 */
956 static inline bool __must_check
vdo_is_valid_recovery_journal_sector(const struct recovery_block_header * header,const struct packed_journal_sector * sector,u8 sector_number)957 vdo_is_valid_recovery_journal_sector(const struct recovery_block_header *header,
958 const struct packed_journal_sector *sector,
959 u8 sector_number)
960 {
961 if ((header->check_byte != sector->check_byte) ||
962 (header->recovery_count != sector->recovery_count))
963 return false;
964
965 if (header->metadata_type == VDO_METADATA_RECOVERY_JOURNAL_2)
966 return sector->entry_count <= RECOVERY_JOURNAL_ENTRIES_PER_SECTOR;
967
968 if (sector_number == 7)
969 return sector->entry_count <= RECOVERY_JOURNAL_1_ENTRIES_IN_LAST_SECTOR;
970
971 return sector->entry_count <= RECOVERY_JOURNAL_1_ENTRIES_PER_SECTOR;
972 }
973
974 /**
975 * vdo_compute_recovery_journal_block_number() - Compute the physical block number of the recovery
976 * journal block which would have a given sequence
977 * number.
978 * @journal_size: The size of the journal.
979 * @sequence_number: The sequence number.
980 *
981 * Return: The pbn of the journal block which would the specified sequence number.
982 */
983 static inline physical_block_number_t __must_check
vdo_compute_recovery_journal_block_number(block_count_t journal_size,sequence_number_t sequence_number)984 vdo_compute_recovery_journal_block_number(block_count_t journal_size,
985 sequence_number_t sequence_number)
986 {
987 /*
988 * Since journal size is a power of two, the block number modulus can just be extracted
989 * from the low-order bits of the sequence.
990 */
991 return (sequence_number & (journal_size - 1));
992 }
993
994 /**
995 * vdo_get_journal_block_sector() - Find the recovery journal sector from the block header and
996 * sector number.
997 * @header: The header of the recovery journal block.
998 * @sector_number: The index of the sector (1-based).
999 *
1000 * Return: A packed recovery journal sector.
1001 */
1002 static inline struct packed_journal_sector * __must_check
vdo_get_journal_block_sector(struct packed_journal_header * header,int sector_number)1003 vdo_get_journal_block_sector(struct packed_journal_header *header, int sector_number)
1004 {
1005 char *sector_data = ((char *) header) + (VDO_SECTOR_SIZE * sector_number);
1006
1007 return (struct packed_journal_sector *) sector_data;
1008 }
1009
1010 /**
1011 * vdo_pack_recovery_block_header() - Generate the packed representation of a recovery block
1012 * header.
1013 * @header: The header containing the values to encode.
1014 * @packed: The header into which to pack the values.
1015 */
vdo_pack_recovery_block_header(const struct recovery_block_header * header,struct packed_journal_header * packed)1016 static inline void vdo_pack_recovery_block_header(const struct recovery_block_header *header,
1017 struct packed_journal_header *packed)
1018 {
1019 *packed = (struct packed_journal_header) {
1020 .block_map_head = __cpu_to_le64(header->block_map_head),
1021 .slab_journal_head = __cpu_to_le64(header->slab_journal_head),
1022 .sequence_number = __cpu_to_le64(header->sequence_number),
1023 .nonce = __cpu_to_le64(header->nonce),
1024 .logical_blocks_used = __cpu_to_le64(header->logical_blocks_used),
1025 .block_map_data_blocks = __cpu_to_le64(header->block_map_data_blocks),
1026 .entry_count = __cpu_to_le16(header->entry_count),
1027 .check_byte = header->check_byte,
1028 .recovery_count = header->recovery_count,
1029 .metadata_type = header->metadata_type,
1030 };
1031 }
1032
1033 /**
1034 * vdo_unpack_recovery_block_header() - Decode the packed representation of a recovery block
1035 * header.
1036 * @packed: The packed header to decode.
1037 *
1038 * Return: The unpacked header.
1039 */
1040 static inline struct recovery_block_header
vdo_unpack_recovery_block_header(const struct packed_journal_header * packed)1041 vdo_unpack_recovery_block_header(const struct packed_journal_header *packed)
1042 {
1043 return (struct recovery_block_header) {
1044 .block_map_head = __le64_to_cpu(packed->block_map_head),
1045 .slab_journal_head = __le64_to_cpu(packed->slab_journal_head),
1046 .sequence_number = __le64_to_cpu(packed->sequence_number),
1047 .nonce = __le64_to_cpu(packed->nonce),
1048 .logical_blocks_used = __le64_to_cpu(packed->logical_blocks_used),
1049 .block_map_data_blocks = __le64_to_cpu(packed->block_map_data_blocks),
1050 .entry_count = __le16_to_cpu(packed->entry_count),
1051 .check_byte = packed->check_byte,
1052 .recovery_count = packed->recovery_count,
1053 .metadata_type = packed->metadata_type,
1054 };
1055 }
1056
1057 /**
1058 * vdo_compute_slab_count() - Compute the number of slabs a depot with given parameters would have.
1059 * @first_block: PBN of the first data block.
1060 * @last_block: PBN of the last data block.
1061 * @slab_size_shift: Exponent for the number of blocks per slab.
1062 *
1063 * Return: The number of slabs.
1064 */
vdo_compute_slab_count(physical_block_number_t first_block,physical_block_number_t last_block,unsigned int slab_size_shift)1065 static inline slab_count_t vdo_compute_slab_count(physical_block_number_t first_block,
1066 physical_block_number_t last_block,
1067 unsigned int slab_size_shift)
1068 {
1069 return (slab_count_t) ((last_block - first_block) >> slab_size_shift);
1070 }
1071
1072 int __must_check vdo_configure_slab_depot(const struct partition *partition,
1073 struct slab_config slab_config,
1074 zone_count_t zone_count,
1075 struct slab_depot_state_2_0 *state);
1076
1077 int __must_check vdo_configure_slab(block_count_t slab_size,
1078 block_count_t slab_journal_blocks,
1079 struct slab_config *slab_config);
1080
1081 /**
1082 * vdo_get_saved_reference_count_size() - Get the number of blocks required to save a reference
1083 * counts state covering the specified number of data
1084 * blocks.
1085 * @block_count: The number of physical data blocks that can be referenced.
1086 *
1087 * Return: The number of blocks required to save reference counts with the given block count.
1088 */
vdo_get_saved_reference_count_size(block_count_t block_count)1089 static inline block_count_t vdo_get_saved_reference_count_size(block_count_t block_count)
1090 {
1091 return DIV_ROUND_UP(block_count, COUNTS_PER_BLOCK);
1092 }
1093
1094 /**
1095 * vdo_get_slab_journal_start_block() - Get the physical block number of the start of the slab
1096 * journal relative to the start block allocator partition.
1097 * @slab_config: The slab configuration of the VDO.
1098 * @origin: The first block of the slab.
1099 */
1100 static inline physical_block_number_t __must_check
vdo_get_slab_journal_start_block(const struct slab_config * slab_config,physical_block_number_t origin)1101 vdo_get_slab_journal_start_block(const struct slab_config *slab_config,
1102 physical_block_number_t origin)
1103 {
1104 return origin + slab_config->data_blocks + slab_config->reference_count_blocks;
1105 }
1106
1107 /**
1108 * vdo_advance_journal_point() - Move the given journal point forward by one entry.
1109 * @point: The journal point to adjust.
1110 * @entries_per_block: The number of entries in one full block.
1111 */
vdo_advance_journal_point(struct journal_point * point,journal_entry_count_t entries_per_block)1112 static inline void vdo_advance_journal_point(struct journal_point *point,
1113 journal_entry_count_t entries_per_block)
1114 {
1115 point->entry_count++;
1116 if (point->entry_count == entries_per_block) {
1117 point->sequence_number++;
1118 point->entry_count = 0;
1119 }
1120 }
1121
1122 /**
1123 * vdo_before_journal_point() - Check whether the first point precedes the second point.
1124 * @first: The first journal point.
1125 * @second: The second journal point.
1126 *
1127 * Return: true if the first point precedes the second point.
1128 */
vdo_before_journal_point(const struct journal_point * first,const struct journal_point * second)1129 static inline bool vdo_before_journal_point(const struct journal_point *first,
1130 const struct journal_point *second)
1131 {
1132 return ((first->sequence_number < second->sequence_number) ||
1133 ((first->sequence_number == second->sequence_number) &&
1134 (first->entry_count < second->entry_count)));
1135 }
1136
1137 /**
1138 * vdo_pack_journal_point() - Encode the journal location represented by a
1139 * journal_point into a packed_journal_point.
1140 * @unpacked: The unpacked input point.
1141 * @packed: The packed output point.
1142 */
vdo_pack_journal_point(const struct journal_point * unpacked,struct packed_journal_point * packed)1143 static inline void vdo_pack_journal_point(const struct journal_point *unpacked,
1144 struct packed_journal_point *packed)
1145 {
1146 packed->encoded_point =
1147 __cpu_to_le64((unpacked->sequence_number << 16) | unpacked->entry_count);
1148 }
1149
1150 /**
1151 * vdo_unpack_journal_point() - Decode the journal location represented by a packed_journal_point
1152 * into a journal_point.
1153 * @packed: The packed input point.
1154 * @unpacked: The unpacked output point.
1155 */
vdo_unpack_journal_point(const struct packed_journal_point * packed,struct journal_point * unpacked)1156 static inline void vdo_unpack_journal_point(const struct packed_journal_point *packed,
1157 struct journal_point *unpacked)
1158 {
1159 u64 native = __le64_to_cpu(packed->encoded_point);
1160
1161 unpacked->sequence_number = (native >> 16);
1162 unpacked->entry_count = (native & 0xffff);
1163 }
1164
1165 /**
1166 * vdo_pack_slab_journal_block_header() - Generate the packed representation of a slab block
1167 * header.
1168 * @header: The header containing the values to encode.
1169 * @packed: The header into which to pack the values.
1170 */
1171 static inline void
vdo_pack_slab_journal_block_header(const struct slab_journal_block_header * header,struct packed_slab_journal_block_header * packed)1172 vdo_pack_slab_journal_block_header(const struct slab_journal_block_header *header,
1173 struct packed_slab_journal_block_header *packed)
1174 {
1175 packed->head = __cpu_to_le64(header->head);
1176 packed->sequence_number = __cpu_to_le64(header->sequence_number);
1177 packed->nonce = __cpu_to_le64(header->nonce);
1178 packed->entry_count = __cpu_to_le16(header->entry_count);
1179 packed->metadata_type = header->metadata_type;
1180 packed->has_block_map_increments = header->has_block_map_increments;
1181
1182 vdo_pack_journal_point(&header->recovery_point, &packed->recovery_point);
1183 }
1184
1185 /**
1186 * vdo_unpack_slab_journal_block_header() - Decode the packed representation of a slab block
1187 * header.
1188 * @packed: The packed header to decode.
1189 * @header: The header into which to unpack the values.
1190 */
1191 static inline void
vdo_unpack_slab_journal_block_header(const struct packed_slab_journal_block_header * packed,struct slab_journal_block_header * header)1192 vdo_unpack_slab_journal_block_header(const struct packed_slab_journal_block_header *packed,
1193 struct slab_journal_block_header *header)
1194 {
1195 *header = (struct slab_journal_block_header) {
1196 .head = __le64_to_cpu(packed->head),
1197 .sequence_number = __le64_to_cpu(packed->sequence_number),
1198 .nonce = __le64_to_cpu(packed->nonce),
1199 .entry_count = __le16_to_cpu(packed->entry_count),
1200 .metadata_type = packed->metadata_type,
1201 .has_block_map_increments = packed->has_block_map_increments,
1202 };
1203 vdo_unpack_journal_point(&packed->recovery_point, &header->recovery_point);
1204 }
1205
1206 /**
1207 * vdo_pack_slab_journal_entry() - Generate the packed encoding of a slab journal entry.
1208 * @packed: The entry into which to pack the values.
1209 * @sbn: The slab block number of the entry to encode.
1210 * @is_increment: The increment flag.
1211 */
vdo_pack_slab_journal_entry(packed_slab_journal_entry * packed,slab_block_number sbn,bool is_increment)1212 static inline void vdo_pack_slab_journal_entry(packed_slab_journal_entry *packed,
1213 slab_block_number sbn, bool is_increment)
1214 {
1215 packed->offset_low8 = (sbn & 0x0000FF);
1216 packed->offset_mid8 = (sbn & 0x00FF00) >> 8;
1217 packed->offset_high7 = (sbn & 0x7F0000) >> 16;
1218 packed->increment = is_increment ? 1 : 0;
1219 }
1220
1221 /**
1222 * vdo_unpack_slab_journal_entry() - Decode the packed representation of a slab journal entry.
1223 * @packed: The packed entry to decode.
1224 *
1225 * Return: The decoded slab journal entry.
1226 */
1227 static inline struct slab_journal_entry __must_check
vdo_unpack_slab_journal_entry(const packed_slab_journal_entry * packed)1228 vdo_unpack_slab_journal_entry(const packed_slab_journal_entry *packed)
1229 {
1230 struct slab_journal_entry entry;
1231
1232 entry.sbn = packed->offset_high7;
1233 entry.sbn <<= 8;
1234 entry.sbn |= packed->offset_mid8;
1235 entry.sbn <<= 8;
1236 entry.sbn |= packed->offset_low8;
1237 entry.operation = VDO_JOURNAL_DATA_REMAPPING;
1238 entry.increment = packed->increment;
1239 return entry;
1240 }
1241
1242 struct slab_journal_entry __must_check
1243 vdo_decode_slab_journal_entry(struct packed_slab_journal_block *block,
1244 journal_entry_count_t entry_count);
1245
1246 /**
1247 * vdo_get_slab_summary_hint_shift() - Compute the shift for slab summary hints.
1248 * @slab_size_shift: Exponent for the number of blocks per slab.
1249 *
1250 * Return: The hint shift.
1251 */
vdo_get_slab_summary_hint_shift(unsigned int slab_size_shift)1252 static inline u8 __must_check vdo_get_slab_summary_hint_shift(unsigned int slab_size_shift)
1253 {
1254 return ((slab_size_shift > VDO_SLAB_SUMMARY_FULLNESS_HINT_BITS) ?
1255 (slab_size_shift - VDO_SLAB_SUMMARY_FULLNESS_HINT_BITS) :
1256 0);
1257 }
1258
1259 int __must_check vdo_initialize_layout(block_count_t size,
1260 physical_block_number_t offset,
1261 block_count_t block_map_blocks,
1262 block_count_t journal_blocks,
1263 block_count_t summary_blocks,
1264 struct layout *layout);
1265
1266 void vdo_uninitialize_layout(struct layout *layout);
1267
1268 int __must_check vdo_get_partition(struct layout *layout, enum partition_id id,
1269 struct partition **partition_ptr);
1270
1271 struct partition * __must_check vdo_get_known_partition(struct layout *layout,
1272 enum partition_id id);
1273
1274 int vdo_validate_config(const struct vdo_config *config,
1275 block_count_t physical_block_count,
1276 block_count_t logical_block_count);
1277
1278 void vdo_destroy_component_states(struct vdo_component_states *states);
1279
1280 int __must_check vdo_decode_component_states(u8 *buffer,
1281 struct volume_geometry *geometry,
1282 struct vdo_component_states *states);
1283
1284 int __must_check vdo_validate_component_states(struct vdo_component_states *states,
1285 nonce_t geometry_nonce,
1286 block_count_t physical_size,
1287 block_count_t logical_size);
1288
1289 void vdo_encode_super_block(u8 *buffer, struct vdo_component_states *states);
1290 int __must_check vdo_decode_super_block(u8 *buffer);
1291
1292 /* We start with 0L and postcondition with ~0L to match our historical usage in userspace. */
vdo_crc32(const void * buf,unsigned long len)1293 static inline u32 vdo_crc32(const void *buf, unsigned long len)
1294 {
1295 return (crc32(0L, buf, len) ^ ~0L);
1296 }
1297
1298 #endif /* VDO_ENCODINGS_H */
1299