xref: /linux/drivers/md/dm-vdo/encodings.c (revision eb01fe7abbe2d0b38824d2a93fdb4cc3eaf2ccc1)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright 2023 Red Hat
4  */
5 
6 #include "encodings.h"
7 
8 #include <linux/log2.h>
9 
10 #include "logger.h"
11 #include "memory-alloc.h"
12 #include "permassert.h"
13 
14 #include "constants.h"
15 #include "status-codes.h"
16 #include "types.h"
17 
18 /** The maximum logical space is 4 petabytes, which is 1 terablock. */
19 static const block_count_t MAXIMUM_VDO_LOGICAL_BLOCKS = 1024ULL * 1024 * 1024 * 1024;
20 
21 /** The maximum physical space is 256 terabytes, which is 64 gigablocks. */
22 static const block_count_t MAXIMUM_VDO_PHYSICAL_BLOCKS = 1024ULL * 1024 * 1024 * 64;
23 
24 struct geometry_block {
25 	char magic_number[VDO_GEOMETRY_MAGIC_NUMBER_SIZE];
26 	struct packed_header header;
27 	u32 checksum;
28 } __packed;
29 
30 static const struct header GEOMETRY_BLOCK_HEADER_5_0 = {
31 	.id = VDO_GEOMETRY_BLOCK,
32 	.version = {
33 		.major_version = 5,
34 		.minor_version = 0,
35 	},
36 	/*
37 	 * Note: this size isn't just the payload size following the header, like it is everywhere
38 	 * else in VDO.
39 	 */
40 	.size = sizeof(struct geometry_block) + sizeof(struct volume_geometry),
41 };
42 
43 static const struct header GEOMETRY_BLOCK_HEADER_4_0 = {
44 	.id = VDO_GEOMETRY_BLOCK,
45 	.version = {
46 		.major_version = 4,
47 		.minor_version = 0,
48 	},
49 	/*
50 	 * Note: this size isn't just the payload size following the header, like it is everywhere
51 	 * else in VDO.
52 	 */
53 	.size = sizeof(struct geometry_block) + sizeof(struct volume_geometry_4_0),
54 };
55 
56 const u8 VDO_GEOMETRY_MAGIC_NUMBER[VDO_GEOMETRY_MAGIC_NUMBER_SIZE + 1] = "dmvdo001";
57 
58 #define PAGE_HEADER_4_1_SIZE (8 + 8 + 8 + 1 + 1 + 1 + 1)
59 
60 static const struct version_number BLOCK_MAP_4_1 = {
61 	.major_version = 4,
62 	.minor_version = 1,
63 };
64 
65 const struct header VDO_BLOCK_MAP_HEADER_2_0 = {
66 	.id = VDO_BLOCK_MAP,
67 	.version = {
68 		.major_version = 2,
69 		.minor_version = 0,
70 	},
71 	.size = sizeof(struct block_map_state_2_0),
72 };
73 
74 const struct header VDO_RECOVERY_JOURNAL_HEADER_7_0 = {
75 	.id = VDO_RECOVERY_JOURNAL,
76 	.version = {
77 			.major_version = 7,
78 			.minor_version = 0,
79 		},
80 	.size = sizeof(struct recovery_journal_state_7_0),
81 };
82 
83 const struct header VDO_SLAB_DEPOT_HEADER_2_0 = {
84 	.id = VDO_SLAB_DEPOT,
85 	.version = {
86 		.major_version = 2,
87 		.minor_version = 0,
88 	},
89 	.size = sizeof(struct slab_depot_state_2_0),
90 };
91 
92 static const struct header VDO_LAYOUT_HEADER_3_0 = {
93 	.id = VDO_LAYOUT,
94 	.version = {
95 		.major_version = 3,
96 		.minor_version = 0,
97 	},
98 	.size = sizeof(struct layout_3_0) + (sizeof(struct partition_3_0) * VDO_PARTITION_COUNT),
99 };
100 
101 static const enum partition_id REQUIRED_PARTITIONS[] = {
102 	VDO_BLOCK_MAP_PARTITION,
103 	VDO_SLAB_DEPOT_PARTITION,
104 	VDO_RECOVERY_JOURNAL_PARTITION,
105 	VDO_SLAB_SUMMARY_PARTITION,
106 };
107 
108 /*
109  * The current version for the data encoded in the super block. This must be changed any time there
110  * is a change to encoding of the component data of any VDO component.
111  */
112 static const struct version_number VDO_COMPONENT_DATA_41_0 = {
113 	.major_version = 41,
114 	.minor_version = 0,
115 };
116 
117 const struct version_number VDO_VOLUME_VERSION_67_0 = {
118 	.major_version = 67,
119 	.minor_version = 0,
120 };
121 
122 static const struct header SUPER_BLOCK_HEADER_12_0 = {
123 	.id = VDO_SUPER_BLOCK,
124 	.version = {
125 			.major_version = 12,
126 			.minor_version = 0,
127 		},
128 
129 	/* This is the minimum size, if the super block contains no components. */
130 	.size = VDO_SUPER_BLOCK_FIXED_SIZE - VDO_ENCODED_HEADER_SIZE,
131 };
132 
133 /**
134  * validate_version() - Check whether a version matches an expected version.
135  * @expected_version: The expected version.
136  * @actual_version: The version being validated.
137  * @component_name: The name of the component or the calling function (for error logging).
138  *
139  * Logs an error describing a mismatch.
140  *
141  * Return: VDO_SUCCESS             if the versions are the same,
142  *         VDO_UNSUPPORTED_VERSION if the versions don't match.
143  */
144 static int __must_check validate_version(struct version_number expected_version,
145 					 struct version_number actual_version,
146 					 const char *component_name)
147 {
148 	if (!vdo_are_same_version(expected_version, actual_version)) {
149 		return vdo_log_error_strerror(VDO_UNSUPPORTED_VERSION,
150 					      "%s version mismatch, expected %d.%d, got %d.%d",
151 					      component_name,
152 					      expected_version.major_version,
153 					      expected_version.minor_version,
154 					      actual_version.major_version,
155 					      actual_version.minor_version);
156 	}
157 
158 	return VDO_SUCCESS;
159 }
160 
161 /**
162  * vdo_validate_header() - Check whether a header matches expectations.
163  * @expected_header: The expected header.
164  * @actual_header: The header being validated.
165  * @exact_size: If true, the size fields of the two headers must be the same, otherwise it is
166  *              required that actual_header.size >= expected_header.size.
167  * @name: The name of the component or the calling function (for error logging).
168  *
169  * Logs an error describing the first mismatch found.
170  *
171  * Return: VDO_SUCCESS             if the header meets expectations,
172  *         VDO_INCORRECT_COMPONENT if the component ids don't match,
173  *         VDO_UNSUPPORTED_VERSION if the versions or sizes don't match.
174  */
175 int vdo_validate_header(const struct header *expected_header,
176 			const struct header *actual_header, bool exact_size,
177 			const char *name)
178 {
179 	int result;
180 
181 	if (expected_header->id != actual_header->id) {
182 		return vdo_log_error_strerror(VDO_INCORRECT_COMPONENT,
183 					      "%s ID mismatch, expected %d, got %d",
184 					      name, expected_header->id,
185 					      actual_header->id);
186 	}
187 
188 	result = validate_version(expected_header->version, actual_header->version,
189 				  name);
190 	if (result != VDO_SUCCESS)
191 		return result;
192 
193 	if ((expected_header->size > actual_header->size) ||
194 	    (exact_size && (expected_header->size < actual_header->size))) {
195 		return vdo_log_error_strerror(VDO_UNSUPPORTED_VERSION,
196 					      "%s size mismatch, expected %zu, got %zu",
197 					      name, expected_header->size,
198 					      actual_header->size);
199 	}
200 
201 	return VDO_SUCCESS;
202 }
203 
204 static void encode_version_number(u8 *buffer, size_t *offset,
205 				  struct version_number version)
206 {
207 	struct packed_version_number packed = vdo_pack_version_number(version);
208 
209 	memcpy(buffer + *offset, &packed, sizeof(packed));
210 	*offset += sizeof(packed);
211 }
212 
213 void vdo_encode_header(u8 *buffer, size_t *offset, const struct header *header)
214 {
215 	struct packed_header packed = vdo_pack_header(header);
216 
217 	memcpy(buffer + *offset, &packed, sizeof(packed));
218 	*offset += sizeof(packed);
219 }
220 
221 static void decode_version_number(u8 *buffer, size_t *offset,
222 				  struct version_number *version)
223 {
224 	struct packed_version_number packed;
225 
226 	memcpy(&packed, buffer + *offset, sizeof(packed));
227 	*offset += sizeof(packed);
228 	*version = vdo_unpack_version_number(packed);
229 }
230 
231 void vdo_decode_header(u8 *buffer, size_t *offset, struct header *header)
232 {
233 	struct packed_header packed;
234 
235 	memcpy(&packed, buffer + *offset, sizeof(packed));
236 	*offset += sizeof(packed);
237 
238 	*header = vdo_unpack_header(&packed);
239 }
240 
241 /**
242  * decode_volume_geometry() - Decode the on-disk representation of a volume geometry from a buffer.
243  * @buffer: A buffer to decode from.
244  * @offset: The offset in the buffer at which to decode.
245  * @geometry: The structure to receive the decoded fields.
246  * @version: The geometry block version to decode.
247  */
248 static void decode_volume_geometry(u8 *buffer, size_t *offset,
249 				   struct volume_geometry *geometry, u32 version)
250 {
251 	u32 unused, mem;
252 	enum volume_region_id id;
253 	nonce_t nonce;
254 	block_count_t bio_offset = 0;
255 	bool sparse;
256 
257 	/* This is for backwards compatibility. */
258 	decode_u32_le(buffer, offset, &unused);
259 	geometry->unused = unused;
260 
261 	decode_u64_le(buffer, offset, &nonce);
262 	geometry->nonce = nonce;
263 
264 	memcpy((unsigned char *) &geometry->uuid, buffer + *offset, sizeof(uuid_t));
265 	*offset += sizeof(uuid_t);
266 
267 	if (version > 4)
268 		decode_u64_le(buffer, offset, &bio_offset);
269 	geometry->bio_offset = bio_offset;
270 
271 	for (id = 0; id < VDO_VOLUME_REGION_COUNT; id++) {
272 		physical_block_number_t start_block;
273 		enum volume_region_id saved_id;
274 
275 		decode_u32_le(buffer, offset, &saved_id);
276 		decode_u64_le(buffer, offset, &start_block);
277 
278 		geometry->regions[id] = (struct volume_region) {
279 			.id = saved_id,
280 			.start_block = start_block,
281 		};
282 	}
283 
284 	decode_u32_le(buffer, offset, &mem);
285 	*offset += sizeof(u32);
286 	sparse = buffer[(*offset)++];
287 
288 	geometry->index_config = (struct index_config) {
289 		.mem = mem,
290 		.sparse = sparse,
291 	};
292 }
293 
294 /**
295  * vdo_parse_geometry_block() - Decode and validate an encoded geometry block.
296  * @block: The encoded geometry block.
297  * @geometry: The structure to receive the decoded fields.
298  */
299 int __must_check vdo_parse_geometry_block(u8 *block, struct volume_geometry *geometry)
300 {
301 	u32 checksum, saved_checksum;
302 	struct header header;
303 	size_t offset = 0;
304 	int result;
305 
306 	if (memcmp(block, VDO_GEOMETRY_MAGIC_NUMBER, VDO_GEOMETRY_MAGIC_NUMBER_SIZE) != 0)
307 		return VDO_BAD_MAGIC;
308 	offset += VDO_GEOMETRY_MAGIC_NUMBER_SIZE;
309 
310 	vdo_decode_header(block, &offset, &header);
311 	if (header.version.major_version <= 4) {
312 		result = vdo_validate_header(&GEOMETRY_BLOCK_HEADER_4_0, &header,
313 					     true, __func__);
314 	} else {
315 		result = vdo_validate_header(&GEOMETRY_BLOCK_HEADER_5_0, &header,
316 					     true, __func__);
317 	}
318 	if (result != VDO_SUCCESS)
319 		return result;
320 
321 	decode_volume_geometry(block, &offset, geometry, header.version.major_version);
322 
323 	result = VDO_ASSERT(header.size == offset + sizeof(u32),
324 			    "should have decoded up to the geometry checksum");
325 	if (result != VDO_SUCCESS)
326 		return result;
327 
328 	/* Decode and verify the checksum. */
329 	checksum = vdo_crc32(block, offset);
330 	decode_u32_le(block, &offset, &saved_checksum);
331 
332 	return ((checksum == saved_checksum) ? VDO_SUCCESS : VDO_CHECKSUM_MISMATCH);
333 }
334 
335 struct block_map_page *vdo_format_block_map_page(void *buffer, nonce_t nonce,
336 						 physical_block_number_t pbn,
337 						 bool initialized)
338 {
339 	struct block_map_page *page = buffer;
340 
341 	memset(buffer, 0, VDO_BLOCK_SIZE);
342 	page->version = vdo_pack_version_number(BLOCK_MAP_4_1);
343 	page->header.nonce = __cpu_to_le64(nonce);
344 	page->header.pbn = __cpu_to_le64(pbn);
345 	page->header.initialized = initialized;
346 	return page;
347 }
348 
349 enum block_map_page_validity vdo_validate_block_map_page(struct block_map_page *page,
350 							 nonce_t nonce,
351 							 physical_block_number_t pbn)
352 {
353 	BUILD_BUG_ON(sizeof(struct block_map_page_header) != PAGE_HEADER_4_1_SIZE);
354 
355 	if (!vdo_are_same_version(BLOCK_MAP_4_1,
356 				  vdo_unpack_version_number(page->version)) ||
357 	    !page->header.initialized || (nonce != __le64_to_cpu(page->header.nonce)))
358 		return VDO_BLOCK_MAP_PAGE_INVALID;
359 
360 	if (pbn != vdo_get_block_map_page_pbn(page))
361 		return VDO_BLOCK_MAP_PAGE_BAD;
362 
363 	return VDO_BLOCK_MAP_PAGE_VALID;
364 }
365 
366 static int decode_block_map_state_2_0(u8 *buffer, size_t *offset,
367 				      struct block_map_state_2_0 *state)
368 {
369 	size_t initial_offset;
370 	block_count_t flat_page_count, root_count;
371 	physical_block_number_t flat_page_origin, root_origin;
372 	struct header header;
373 	int result;
374 
375 	vdo_decode_header(buffer, offset, &header);
376 	result = vdo_validate_header(&VDO_BLOCK_MAP_HEADER_2_0, &header, true, __func__);
377 	if (result != VDO_SUCCESS)
378 		return result;
379 
380 	initial_offset = *offset;
381 
382 	decode_u64_le(buffer, offset, &flat_page_origin);
383 	result = VDO_ASSERT(flat_page_origin == VDO_BLOCK_MAP_FLAT_PAGE_ORIGIN,
384 			    "Flat page origin must be %u (recorded as %llu)",
385 			    VDO_BLOCK_MAP_FLAT_PAGE_ORIGIN,
386 			    (unsigned long long) state->flat_page_origin);
387 	if (result != VDO_SUCCESS)
388 		return result;
389 
390 	decode_u64_le(buffer, offset, &flat_page_count);
391 	result = VDO_ASSERT(flat_page_count == 0,
392 			    "Flat page count must be 0 (recorded as %llu)",
393 			    (unsigned long long) state->flat_page_count);
394 	if (result != VDO_SUCCESS)
395 		return result;
396 
397 	decode_u64_le(buffer, offset, &root_origin);
398 	decode_u64_le(buffer, offset, &root_count);
399 
400 	result = VDO_ASSERT(VDO_BLOCK_MAP_HEADER_2_0.size == *offset - initial_offset,
401 			    "decoded block map component size must match header size");
402 	if (result != VDO_SUCCESS)
403 		return result;
404 
405 	*state = (struct block_map_state_2_0) {
406 		.flat_page_origin = flat_page_origin,
407 		.flat_page_count = flat_page_count,
408 		.root_origin = root_origin,
409 		.root_count = root_count,
410 	};
411 
412 	return VDO_SUCCESS;
413 }
414 
415 static void encode_block_map_state_2_0(u8 *buffer, size_t *offset,
416 				       struct block_map_state_2_0 state)
417 {
418 	size_t initial_offset;
419 
420 	vdo_encode_header(buffer, offset, &VDO_BLOCK_MAP_HEADER_2_0);
421 
422 	initial_offset = *offset;
423 	encode_u64_le(buffer, offset, state.flat_page_origin);
424 	encode_u64_le(buffer, offset, state.flat_page_count);
425 	encode_u64_le(buffer, offset, state.root_origin);
426 	encode_u64_le(buffer, offset, state.root_count);
427 
428 	VDO_ASSERT_LOG_ONLY(VDO_BLOCK_MAP_HEADER_2_0.size == *offset - initial_offset,
429 			    "encoded block map component size must match header size");
430 }
431 
432 /**
433  * vdo_compute_new_forest_pages() - Compute the number of pages which must be allocated at each
434  *                                  level in order to grow the forest to a new number of entries.
435  * @entries: The new number of entries the block map must address.
436  *
437  * Return: The total number of non-leaf pages required.
438  */
439 block_count_t vdo_compute_new_forest_pages(root_count_t root_count,
440 					   struct boundary *old_sizes,
441 					   block_count_t entries,
442 					   struct boundary *new_sizes)
443 {
444 	page_count_t leaf_pages = max(vdo_compute_block_map_page_count(entries), 1U);
445 	page_count_t level_size = DIV_ROUND_UP(leaf_pages, root_count);
446 	block_count_t total_pages = 0;
447 	height_t height;
448 
449 	for (height = 0; height < VDO_BLOCK_MAP_TREE_HEIGHT; height++) {
450 		block_count_t new_pages;
451 
452 		level_size = DIV_ROUND_UP(level_size, VDO_BLOCK_MAP_ENTRIES_PER_PAGE);
453 		new_sizes->levels[height] = level_size;
454 		new_pages = level_size;
455 		if (old_sizes != NULL)
456 			new_pages -= old_sizes->levels[height];
457 		total_pages += (new_pages * root_count);
458 	}
459 
460 	return total_pages;
461 }
462 
463 /**
464  * encode_recovery_journal_state_7_0() - Encode the state of a recovery journal.
465  *
466  * Return: VDO_SUCCESS or an error code.
467  */
468 static void encode_recovery_journal_state_7_0(u8 *buffer, size_t *offset,
469 					      struct recovery_journal_state_7_0 state)
470 {
471 	size_t initial_offset;
472 
473 	vdo_encode_header(buffer, offset, &VDO_RECOVERY_JOURNAL_HEADER_7_0);
474 
475 	initial_offset = *offset;
476 	encode_u64_le(buffer, offset, state.journal_start);
477 	encode_u64_le(buffer, offset, state.logical_blocks_used);
478 	encode_u64_le(buffer, offset, state.block_map_data_blocks);
479 
480 	VDO_ASSERT_LOG_ONLY(VDO_RECOVERY_JOURNAL_HEADER_7_0.size == *offset - initial_offset,
481 			    "encoded recovery journal component size must match header size");
482 }
483 
484 /**
485  * decode_recovery_journal_state_7_0() - Decode the state of a recovery journal saved in a buffer.
486  * @buffer: The buffer containing the saved state.
487  * @state: A pointer to a recovery journal state to hold the result of a successful decode.
488  *
489  * Return: VDO_SUCCESS or an error code.
490  */
491 static int __must_check decode_recovery_journal_state_7_0(u8 *buffer, size_t *offset,
492 							  struct recovery_journal_state_7_0 *state)
493 {
494 	struct header header;
495 	int result;
496 	size_t initial_offset;
497 	sequence_number_t journal_start;
498 	block_count_t logical_blocks_used, block_map_data_blocks;
499 
500 	vdo_decode_header(buffer, offset, &header);
501 	result = vdo_validate_header(&VDO_RECOVERY_JOURNAL_HEADER_7_0, &header, true,
502 				     __func__);
503 	if (result != VDO_SUCCESS)
504 		return result;
505 
506 	initial_offset = *offset;
507 	decode_u64_le(buffer, offset, &journal_start);
508 	decode_u64_le(buffer, offset, &logical_blocks_used);
509 	decode_u64_le(buffer, offset, &block_map_data_blocks);
510 
511 	result = VDO_ASSERT(VDO_RECOVERY_JOURNAL_HEADER_7_0.size == *offset - initial_offset,
512 			    "decoded recovery journal component size must match header size");
513 	if (result != VDO_SUCCESS)
514 		return result;
515 
516 	*state = (struct recovery_journal_state_7_0) {
517 		.journal_start = journal_start,
518 		.logical_blocks_used = logical_blocks_used,
519 		.block_map_data_blocks = block_map_data_blocks,
520 	};
521 
522 	return VDO_SUCCESS;
523 }
524 
525 /**
526  * vdo_get_journal_operation_name() - Get the name of a journal operation.
527  * @operation: The operation to name.
528  *
529  * Return: The name of the operation.
530  */
531 const char *vdo_get_journal_operation_name(enum journal_operation operation)
532 {
533 	switch (operation) {
534 	case VDO_JOURNAL_DATA_REMAPPING:
535 		return "data remapping";
536 
537 	case VDO_JOURNAL_BLOCK_MAP_REMAPPING:
538 		return "block map remapping";
539 
540 	default:
541 		return "unknown journal operation";
542 	}
543 }
544 
545 /**
546  * encode_slab_depot_state_2_0() - Encode the state of a slab depot into a buffer.
547  */
548 static void encode_slab_depot_state_2_0(u8 *buffer, size_t *offset,
549 					struct slab_depot_state_2_0 state)
550 {
551 	size_t initial_offset;
552 
553 	vdo_encode_header(buffer, offset, &VDO_SLAB_DEPOT_HEADER_2_0);
554 
555 	initial_offset = *offset;
556 	encode_u64_le(buffer, offset, state.slab_config.slab_blocks);
557 	encode_u64_le(buffer, offset, state.slab_config.data_blocks);
558 	encode_u64_le(buffer, offset, state.slab_config.reference_count_blocks);
559 	encode_u64_le(buffer, offset, state.slab_config.slab_journal_blocks);
560 	encode_u64_le(buffer, offset, state.slab_config.slab_journal_flushing_threshold);
561 	encode_u64_le(buffer, offset, state.slab_config.slab_journal_blocking_threshold);
562 	encode_u64_le(buffer, offset, state.slab_config.slab_journal_scrubbing_threshold);
563 	encode_u64_le(buffer, offset, state.first_block);
564 	encode_u64_le(buffer, offset, state.last_block);
565 	buffer[(*offset)++] = state.zone_count;
566 
567 	VDO_ASSERT_LOG_ONLY(VDO_SLAB_DEPOT_HEADER_2_0.size == *offset - initial_offset,
568 			    "encoded block map component size must match header size");
569 }
570 
571 /**
572  * decode_slab_depot_state_2_0() - Decode slab depot component state version 2.0 from a buffer.
573  *
574  * Return: VDO_SUCCESS or an error code.
575  */
576 static int decode_slab_depot_state_2_0(u8 *buffer, size_t *offset,
577 				       struct slab_depot_state_2_0 *state)
578 {
579 	struct header header;
580 	int result;
581 	size_t initial_offset;
582 	struct slab_config slab_config;
583 	block_count_t count;
584 	physical_block_number_t first_block, last_block;
585 	zone_count_t zone_count;
586 
587 	vdo_decode_header(buffer, offset, &header);
588 	result = vdo_validate_header(&VDO_SLAB_DEPOT_HEADER_2_0, &header, true,
589 				     __func__);
590 	if (result != VDO_SUCCESS)
591 		return result;
592 
593 	initial_offset = *offset;
594 	decode_u64_le(buffer, offset, &count);
595 	slab_config.slab_blocks = count;
596 
597 	decode_u64_le(buffer, offset, &count);
598 	slab_config.data_blocks = count;
599 
600 	decode_u64_le(buffer, offset, &count);
601 	slab_config.reference_count_blocks = count;
602 
603 	decode_u64_le(buffer, offset, &count);
604 	slab_config.slab_journal_blocks = count;
605 
606 	decode_u64_le(buffer, offset, &count);
607 	slab_config.slab_journal_flushing_threshold = count;
608 
609 	decode_u64_le(buffer, offset, &count);
610 	slab_config.slab_journal_blocking_threshold = count;
611 
612 	decode_u64_le(buffer, offset, &count);
613 	slab_config.slab_journal_scrubbing_threshold = count;
614 
615 	decode_u64_le(buffer, offset, &first_block);
616 	decode_u64_le(buffer, offset, &last_block);
617 	zone_count = buffer[(*offset)++];
618 
619 	result = VDO_ASSERT(VDO_SLAB_DEPOT_HEADER_2_0.size == *offset - initial_offset,
620 			    "decoded slab depot component size must match header size");
621 	if (result != VDO_SUCCESS)
622 		return result;
623 
624 	*state = (struct slab_depot_state_2_0) {
625 		.slab_config = slab_config,
626 		.first_block = first_block,
627 		.last_block = last_block,
628 		.zone_count = zone_count,
629 	};
630 
631 	return VDO_SUCCESS;
632 }
633 
634 /**
635  * vdo_configure_slab_depot() - Configure the slab depot.
636  * @partition: The slab depot partition
637  * @slab_config: The configuration of a single slab.
638  * @zone_count: The number of zones the depot will use.
639  * @state: The state structure to be configured.
640  *
641  * Configures the slab_depot for the specified storage capacity, finding the number of data blocks
642  * that will fit and still leave room for the depot metadata, then return the saved state for that
643  * configuration.
644  *
645  * Return: VDO_SUCCESS or an error code.
646  */
647 int vdo_configure_slab_depot(const struct partition *partition,
648 			     struct slab_config slab_config, zone_count_t zone_count,
649 			     struct slab_depot_state_2_0 *state)
650 {
651 	block_count_t total_slab_blocks, total_data_blocks;
652 	size_t slab_count;
653 	physical_block_number_t last_block;
654 	block_count_t slab_size = slab_config.slab_blocks;
655 
656 	vdo_log_debug("slabDepot %s(block_count=%llu, first_block=%llu, slab_size=%llu, zone_count=%u)",
657 		      __func__, (unsigned long long) partition->count,
658 		      (unsigned long long) partition->offset,
659 		      (unsigned long long) slab_size, zone_count);
660 
661 	/* We do not allow runt slabs, so we waste up to a slab's worth. */
662 	slab_count = (partition->count / slab_size);
663 	if (slab_count == 0)
664 		return VDO_NO_SPACE;
665 
666 	if (slab_count > MAX_VDO_SLABS)
667 		return VDO_TOO_MANY_SLABS;
668 
669 	total_slab_blocks = slab_count * slab_config.slab_blocks;
670 	total_data_blocks = slab_count * slab_config.data_blocks;
671 	last_block = partition->offset + total_slab_blocks;
672 
673 	*state = (struct slab_depot_state_2_0) {
674 		.slab_config = slab_config,
675 		.first_block = partition->offset,
676 		.last_block = last_block,
677 		.zone_count = zone_count,
678 	};
679 
680 	vdo_log_debug("slab_depot last_block=%llu, total_data_blocks=%llu, slab_count=%zu, left_over=%llu",
681 		      (unsigned long long) last_block,
682 		      (unsigned long long) total_data_blocks, slab_count,
683 		      (unsigned long long) (partition->count - (last_block - partition->offset)));
684 
685 	return VDO_SUCCESS;
686 }
687 
688 /**
689  * vdo_configure_slab() - Measure and initialize the configuration to use for each slab.
690  * @slab_size: The number of blocks per slab.
691  * @slab_journal_blocks: The number of blocks for the slab journal.
692  * @slab_config: The slab configuration to initialize.
693  *
694  * Return: VDO_SUCCESS or an error code.
695  */
696 int vdo_configure_slab(block_count_t slab_size, block_count_t slab_journal_blocks,
697 		       struct slab_config *slab_config)
698 {
699 	block_count_t ref_blocks, meta_blocks, data_blocks;
700 	block_count_t flushing_threshold, remaining, blocking_threshold;
701 	block_count_t minimal_extra_space, scrubbing_threshold;
702 
703 	if (slab_journal_blocks >= slab_size)
704 		return VDO_BAD_CONFIGURATION;
705 
706 	/*
707 	 * This calculation should technically be a recurrence, but the total number of metadata
708 	 * blocks is currently less than a single block of ref_counts, so we'd gain at most one
709 	 * data block in each slab with more iteration.
710 	 */
711 	ref_blocks = vdo_get_saved_reference_count_size(slab_size - slab_journal_blocks);
712 	meta_blocks = (ref_blocks + slab_journal_blocks);
713 
714 	/* Make sure test code hasn't configured slabs to be too small. */
715 	if (meta_blocks >= slab_size)
716 		return VDO_BAD_CONFIGURATION;
717 
718 	/*
719 	 * If the slab size is very small, assume this must be a unit test and override the number
720 	 * of data blocks to be a power of two (wasting blocks in the slab). Many tests need their
721 	 * data_blocks fields to be the exact capacity of the configured volume, and that used to
722 	 * fall out since they use a power of two for the number of data blocks, the slab size was
723 	 * a power of two, and every block in a slab was a data block.
724 	 *
725 	 * TODO: Try to figure out some way of structuring testParameters and unit tests so this
726 	 * hack isn't needed without having to edit several unit tests every time the metadata size
727 	 * changes by one block.
728 	 */
729 	data_blocks = slab_size - meta_blocks;
730 	if ((slab_size < 1024) && !is_power_of_2(data_blocks))
731 		data_blocks = ((block_count_t) 1 << ilog2(data_blocks));
732 
733 	/*
734 	 * Configure the slab journal thresholds. The flush threshold is 168 of 224 blocks in
735 	 * production, or 3/4ths, so we use this ratio for all sizes.
736 	 */
737 	flushing_threshold = ((slab_journal_blocks * 3) + 3) / 4;
738 	/*
739 	 * The blocking threshold should be far enough from the flushing threshold to not produce
740 	 * delays, but far enough from the end of the journal to allow multiple successive recovery
741 	 * failures.
742 	 */
743 	remaining = slab_journal_blocks - flushing_threshold;
744 	blocking_threshold = flushing_threshold + ((remaining * 5) / 7);
745 	/* The scrubbing threshold should be at least 2048 entries before the end of the journal. */
746 	minimal_extra_space = 1 + (MAXIMUM_VDO_USER_VIOS / VDO_SLAB_JOURNAL_FULL_ENTRIES_PER_BLOCK);
747 	scrubbing_threshold = blocking_threshold;
748 	if (slab_journal_blocks > minimal_extra_space)
749 		scrubbing_threshold = slab_journal_blocks - minimal_extra_space;
750 	if (blocking_threshold > scrubbing_threshold)
751 		blocking_threshold = scrubbing_threshold;
752 
753 	*slab_config = (struct slab_config) {
754 		.slab_blocks = slab_size,
755 		.data_blocks = data_blocks,
756 		.reference_count_blocks = ref_blocks,
757 		.slab_journal_blocks = slab_journal_blocks,
758 		.slab_journal_flushing_threshold = flushing_threshold,
759 		.slab_journal_blocking_threshold = blocking_threshold,
760 		.slab_journal_scrubbing_threshold = scrubbing_threshold};
761 	return VDO_SUCCESS;
762 }
763 
764 /**
765  * vdo_decode_slab_journal_entry() - Decode a slab journal entry.
766  * @block: The journal block holding the entry.
767  * @entry_count: The number of the entry.
768  *
769  * Return: The decoded entry.
770  */
771 struct slab_journal_entry vdo_decode_slab_journal_entry(struct packed_slab_journal_block *block,
772 							journal_entry_count_t entry_count)
773 {
774 	struct slab_journal_entry entry =
775 		vdo_unpack_slab_journal_entry(&block->payload.entries[entry_count]);
776 
777 	if (block->header.has_block_map_increments &&
778 	    ((block->payload.full_entries.entry_types[entry_count / 8] &
779 	      ((u8) 1 << (entry_count % 8))) != 0))
780 		entry.operation = VDO_JOURNAL_BLOCK_MAP_REMAPPING;
781 
782 	return entry;
783 }
784 
785 /**
786  * allocate_partition() - Allocate a partition and add it to a layout.
787  * @layout: The layout containing the partition.
788  * @id: The id of the partition.
789  * @offset: The offset into the layout at which the partition begins.
790  * @size: The size of the partition in blocks.
791  *
792  * Return: VDO_SUCCESS or an error.
793  */
794 static int allocate_partition(struct layout *layout, u8 id,
795 			      physical_block_number_t offset, block_count_t size)
796 {
797 	struct partition *partition;
798 	int result;
799 
800 	result = vdo_allocate(1, struct partition, __func__, &partition);
801 	if (result != VDO_SUCCESS)
802 		return result;
803 
804 	partition->id = id;
805 	partition->offset = offset;
806 	partition->count = size;
807 	partition->next = layout->head;
808 	layout->head = partition;
809 
810 	return VDO_SUCCESS;
811 }
812 
813 /**
814  * make_partition() - Create a new partition from the beginning or end of the unused space in a
815  *                    layout.
816  * @layout: The layout.
817  * @id: The id of the partition to make.
818  * @size: The number of blocks to carve out; if 0, all remaining space will be used.
819  * @beginning: True if the partition should start at the beginning of the unused space.
820  *
821  * Return: A success or error code, particularly VDO_NO_SPACE if there are fewer than size blocks
822  *         remaining.
823  */
824 static int __must_check make_partition(struct layout *layout, enum partition_id id,
825 				       block_count_t size, bool beginning)
826 {
827 	int result;
828 	physical_block_number_t offset;
829 	block_count_t free_blocks = layout->last_free - layout->first_free;
830 
831 	if (size == 0) {
832 		if (free_blocks == 0)
833 			return VDO_NO_SPACE;
834 		size = free_blocks;
835 	} else if (size > free_blocks) {
836 		return VDO_NO_SPACE;
837 	}
838 
839 	result = vdo_get_partition(layout, id, NULL);
840 	if (result != VDO_UNKNOWN_PARTITION)
841 		return VDO_PARTITION_EXISTS;
842 
843 	offset = beginning ? layout->first_free : (layout->last_free - size);
844 
845 	result = allocate_partition(layout, id, offset, size);
846 	if (result != VDO_SUCCESS)
847 		return result;
848 
849 	layout->num_partitions++;
850 	if (beginning)
851 		layout->first_free += size;
852 	else
853 		layout->last_free = layout->last_free - size;
854 
855 	return VDO_SUCCESS;
856 }
857 
858 /**
859  * vdo_initialize_layout() - Lay out the partitions of a vdo.
860  * @size: The entire size of the vdo.
861  * @origin: The start of the layout on the underlying storage in blocks.
862  * @block_map_blocks: The size of the block map partition.
863  * @journal_blocks: The size of the journal partition.
864  * @summary_blocks: The size of the slab summary partition.
865  * @layout: The layout to initialize.
866  *
867  * Return: VDO_SUCCESS or an error.
868  */
869 int vdo_initialize_layout(block_count_t size, physical_block_number_t offset,
870 			  block_count_t block_map_blocks, block_count_t journal_blocks,
871 			  block_count_t summary_blocks, struct layout *layout)
872 {
873 	int result;
874 	block_count_t necessary_size =
875 		(offset + block_map_blocks + journal_blocks + summary_blocks);
876 
877 	if (necessary_size > size)
878 		return vdo_log_error_strerror(VDO_NO_SPACE,
879 					      "Not enough space to make a VDO");
880 
881 	*layout = (struct layout) {
882 		.start = offset,
883 		.size = size,
884 		.first_free = offset,
885 		.last_free = size,
886 		.num_partitions = 0,
887 		.head = NULL,
888 	};
889 
890 	result = make_partition(layout, VDO_BLOCK_MAP_PARTITION, block_map_blocks, true);
891 	if (result != VDO_SUCCESS) {
892 		vdo_uninitialize_layout(layout);
893 		return result;
894 	}
895 
896 	result = make_partition(layout, VDO_SLAB_SUMMARY_PARTITION, summary_blocks,
897 				false);
898 	if (result != VDO_SUCCESS) {
899 		vdo_uninitialize_layout(layout);
900 		return result;
901 	}
902 
903 	result = make_partition(layout, VDO_RECOVERY_JOURNAL_PARTITION, journal_blocks,
904 				false);
905 	if (result != VDO_SUCCESS) {
906 		vdo_uninitialize_layout(layout);
907 		return result;
908 	}
909 
910 	result = make_partition(layout, VDO_SLAB_DEPOT_PARTITION, 0, true);
911 	if (result != VDO_SUCCESS)
912 		vdo_uninitialize_layout(layout);
913 
914 	return result;
915 }
916 
917 /**
918  * vdo_uninitialize_layout() - Clean up a layout.
919  * @layout: The layout to clean up.
920  *
921  * All partitions created by this layout become invalid pointers.
922  */
923 void vdo_uninitialize_layout(struct layout *layout)
924 {
925 	while (layout->head != NULL) {
926 		struct partition *part = layout->head;
927 
928 		layout->head = part->next;
929 		vdo_free(part);
930 	}
931 
932 	memset(layout, 0, sizeof(struct layout));
933 }
934 
935 /**
936  * vdo_get_partition() - Get a partition by id.
937  * @layout: The layout from which to get a partition.
938  * @id: The id of the partition.
939  * @partition_ptr: A pointer to hold the partition.
940  *
941  * Return: VDO_SUCCESS or an error.
942  */
943 int vdo_get_partition(struct layout *layout, enum partition_id id,
944 		      struct partition **partition_ptr)
945 {
946 	struct partition *partition;
947 
948 	for (partition = layout->head; partition != NULL; partition = partition->next) {
949 		if (partition->id == id) {
950 			if (partition_ptr != NULL)
951 				*partition_ptr = partition;
952 			return VDO_SUCCESS;
953 		}
954 	}
955 
956 	return VDO_UNKNOWN_PARTITION;
957 }
958 
959 /**
960  * vdo_get_known_partition() - Get a partition by id from a validated layout.
961  * @layout: The layout from which to get a partition.
962  * @id: The id of the partition.
963  *
964  * Return: the partition
965  */
966 struct partition *vdo_get_known_partition(struct layout *layout, enum partition_id id)
967 {
968 	struct partition *partition;
969 	int result = vdo_get_partition(layout, id, &partition);
970 
971 	VDO_ASSERT_LOG_ONLY(result == VDO_SUCCESS, "layout has expected partition: %u", id);
972 
973 	return partition;
974 }
975 
976 static void encode_layout(u8 *buffer, size_t *offset, const struct layout *layout)
977 {
978 	const struct partition *partition;
979 	size_t initial_offset;
980 	struct header header = VDO_LAYOUT_HEADER_3_0;
981 
982 	BUILD_BUG_ON(sizeof(enum partition_id) != sizeof(u8));
983 	VDO_ASSERT_LOG_ONLY(layout->num_partitions <= U8_MAX,
984 			    "layout partition count must fit in a byte");
985 
986 	vdo_encode_header(buffer, offset, &header);
987 
988 	initial_offset = *offset;
989 	encode_u64_le(buffer, offset, layout->first_free);
990 	encode_u64_le(buffer, offset, layout->last_free);
991 	buffer[(*offset)++] = layout->num_partitions;
992 
993 	VDO_ASSERT_LOG_ONLY(sizeof(struct layout_3_0) == *offset - initial_offset,
994 			    "encoded size of a layout header must match structure");
995 
996 	for (partition = layout->head; partition != NULL; partition = partition->next) {
997 		buffer[(*offset)++] = partition->id;
998 		encode_u64_le(buffer, offset, partition->offset);
999 		/* This field only exists for backwards compatibility */
1000 		encode_u64_le(buffer, offset, 0);
1001 		encode_u64_le(buffer, offset, partition->count);
1002 	}
1003 
1004 	VDO_ASSERT_LOG_ONLY(header.size == *offset - initial_offset,
1005 			    "encoded size of a layout must match header size");
1006 }
1007 
1008 static int decode_layout(u8 *buffer, size_t *offset, physical_block_number_t start,
1009 			 block_count_t size, struct layout *layout)
1010 {
1011 	struct header header;
1012 	struct layout_3_0 layout_header;
1013 	struct partition *partition;
1014 	size_t initial_offset;
1015 	physical_block_number_t first_free, last_free;
1016 	u8 partition_count;
1017 	u8 i;
1018 	int result;
1019 
1020 	vdo_decode_header(buffer, offset, &header);
1021 	/* Layout is variable size, so only do a minimum size check here. */
1022 	result = vdo_validate_header(&VDO_LAYOUT_HEADER_3_0, &header, false, __func__);
1023 	if (result != VDO_SUCCESS)
1024 		return result;
1025 
1026 	initial_offset = *offset;
1027 	decode_u64_le(buffer, offset, &first_free);
1028 	decode_u64_le(buffer, offset, &last_free);
1029 	partition_count = buffer[(*offset)++];
1030 	layout_header = (struct layout_3_0) {
1031 		.first_free = first_free,
1032 		.last_free = last_free,
1033 		.partition_count = partition_count,
1034 	};
1035 
1036 	result = VDO_ASSERT(sizeof(struct layout_3_0) == *offset - initial_offset,
1037 			    "decoded size of a layout header must match structure");
1038 	if (result != VDO_SUCCESS)
1039 		return result;
1040 
1041 	layout->start = start;
1042 	layout->size = size;
1043 	layout->first_free = layout_header.first_free;
1044 	layout->last_free = layout_header.last_free;
1045 	layout->num_partitions = layout_header.partition_count;
1046 
1047 	if (layout->num_partitions > VDO_PARTITION_COUNT) {
1048 		return vdo_log_error_strerror(VDO_UNKNOWN_PARTITION,
1049 					      "layout has extra partitions");
1050 	}
1051 
1052 	for (i = 0; i < layout->num_partitions; i++) {
1053 		u8 id;
1054 		u64 partition_offset, count;
1055 
1056 		id = buffer[(*offset)++];
1057 		decode_u64_le(buffer, offset, &partition_offset);
1058 		*offset += sizeof(u64);
1059 		decode_u64_le(buffer, offset, &count);
1060 
1061 		result = allocate_partition(layout, id, partition_offset, count);
1062 		if (result != VDO_SUCCESS) {
1063 			vdo_uninitialize_layout(layout);
1064 			return result;
1065 		}
1066 	}
1067 
1068 	/* Validate that the layout has all (and only) the required partitions */
1069 	for (i = 0; i < VDO_PARTITION_COUNT; i++) {
1070 		result = vdo_get_partition(layout, REQUIRED_PARTITIONS[i], &partition);
1071 		if (result != VDO_SUCCESS) {
1072 			vdo_uninitialize_layout(layout);
1073 			return vdo_log_error_strerror(result,
1074 						      "layout is missing required partition %u",
1075 						      REQUIRED_PARTITIONS[i]);
1076 		}
1077 
1078 		start += partition->count;
1079 	}
1080 
1081 	if (start != size) {
1082 		vdo_uninitialize_layout(layout);
1083 		return vdo_log_error_strerror(UDS_BAD_STATE,
1084 					      "partitions do not cover the layout");
1085 	}
1086 
1087 	return VDO_SUCCESS;
1088 }
1089 
1090 /**
1091  * pack_vdo_config() - Convert a vdo_config to its packed on-disk representation.
1092  * @config: The vdo config to convert.
1093  *
1094  * Return: The platform-independent representation of the config.
1095  */
1096 static struct packed_vdo_config pack_vdo_config(struct vdo_config config)
1097 {
1098 	return (struct packed_vdo_config) {
1099 		.logical_blocks = __cpu_to_le64(config.logical_blocks),
1100 		.physical_blocks = __cpu_to_le64(config.physical_blocks),
1101 		.slab_size = __cpu_to_le64(config.slab_size),
1102 		.recovery_journal_size = __cpu_to_le64(config.recovery_journal_size),
1103 		.slab_journal_blocks = __cpu_to_le64(config.slab_journal_blocks),
1104 	};
1105 }
1106 
1107 /**
1108  * pack_vdo_component() - Convert a vdo_component to its packed on-disk representation.
1109  * @component: The VDO component data to convert.
1110  *
1111  * Return: The platform-independent representation of the component.
1112  */
1113 static struct packed_vdo_component_41_0 pack_vdo_component(const struct vdo_component component)
1114 {
1115 	return (struct packed_vdo_component_41_0) {
1116 		.state = __cpu_to_le32(component.state),
1117 		.complete_recoveries = __cpu_to_le64(component.complete_recoveries),
1118 		.read_only_recoveries = __cpu_to_le64(component.read_only_recoveries),
1119 		.config = pack_vdo_config(component.config),
1120 		.nonce = __cpu_to_le64(component.nonce),
1121 	};
1122 }
1123 
1124 static void encode_vdo_component(u8 *buffer, size_t *offset,
1125 				 struct vdo_component component)
1126 {
1127 	struct packed_vdo_component_41_0 packed;
1128 
1129 	encode_version_number(buffer, offset, VDO_COMPONENT_DATA_41_0);
1130 	packed = pack_vdo_component(component);
1131 	memcpy(buffer + *offset, &packed, sizeof(packed));
1132 	*offset += sizeof(packed);
1133 }
1134 
1135 /**
1136  * unpack_vdo_config() - Convert a packed_vdo_config to its native in-memory representation.
1137  * @config: The packed vdo config to convert.
1138  *
1139  * Return: The native in-memory representation of the vdo config.
1140  */
1141 static struct vdo_config unpack_vdo_config(struct packed_vdo_config config)
1142 {
1143 	return (struct vdo_config) {
1144 		.logical_blocks = __le64_to_cpu(config.logical_blocks),
1145 		.physical_blocks = __le64_to_cpu(config.physical_blocks),
1146 		.slab_size = __le64_to_cpu(config.slab_size),
1147 		.recovery_journal_size = __le64_to_cpu(config.recovery_journal_size),
1148 		.slab_journal_blocks = __le64_to_cpu(config.slab_journal_blocks),
1149 	};
1150 }
1151 
1152 /**
1153  * unpack_vdo_component_41_0() - Convert a packed_vdo_component_41_0 to its native in-memory
1154  *				 representation.
1155  * @component: The packed vdo component data to convert.
1156  *
1157  * Return: The native in-memory representation of the component.
1158  */
1159 static struct vdo_component unpack_vdo_component_41_0(struct packed_vdo_component_41_0 component)
1160 {
1161 	return (struct vdo_component) {
1162 		.state = __le32_to_cpu(component.state),
1163 		.complete_recoveries = __le64_to_cpu(component.complete_recoveries),
1164 		.read_only_recoveries = __le64_to_cpu(component.read_only_recoveries),
1165 		.config = unpack_vdo_config(component.config),
1166 		.nonce = __le64_to_cpu(component.nonce),
1167 	};
1168 }
1169 
1170 /**
1171  * decode_vdo_component() - Decode the component data for the vdo itself out of the super block.
1172  *
1173  * Return: VDO_SUCCESS or an error.
1174  */
1175 static int decode_vdo_component(u8 *buffer, size_t *offset, struct vdo_component *component)
1176 {
1177 	struct version_number version;
1178 	struct packed_vdo_component_41_0 packed;
1179 	int result;
1180 
1181 	decode_version_number(buffer, offset, &version);
1182 	result = validate_version(version, VDO_COMPONENT_DATA_41_0,
1183 				  "VDO component data");
1184 	if (result != VDO_SUCCESS)
1185 		return result;
1186 
1187 	memcpy(&packed, buffer + *offset, sizeof(packed));
1188 	*offset += sizeof(packed);
1189 	*component = unpack_vdo_component_41_0(packed);
1190 	return VDO_SUCCESS;
1191 }
1192 
1193 /**
1194  * vdo_validate_config() - Validate constraints on a VDO config.
1195  * @config: The VDO config.
1196  * @physical_block_count: The minimum block count of the underlying storage.
1197  * @logical_block_count: The expected logical size of the VDO, or 0 if the logical size may be
1198  *			 unspecified.
1199  *
1200  * Return: A success or error code.
1201  */
1202 int vdo_validate_config(const struct vdo_config *config,
1203 			block_count_t physical_block_count,
1204 			block_count_t logical_block_count)
1205 {
1206 	struct slab_config slab_config;
1207 	int result;
1208 
1209 	result = VDO_ASSERT(config->slab_size > 0, "slab size unspecified");
1210 	if (result != VDO_SUCCESS)
1211 		return result;
1212 
1213 	result = VDO_ASSERT(is_power_of_2(config->slab_size),
1214 			    "slab size must be a power of two");
1215 	if (result != VDO_SUCCESS)
1216 		return result;
1217 
1218 	result = VDO_ASSERT(config->slab_size <= (1 << MAX_VDO_SLAB_BITS),
1219 			    "slab size must be less than or equal to 2^%d",
1220 			    MAX_VDO_SLAB_BITS);
1221 	if (result != VDO_SUCCESS)
1222 		return result;
1223 
1224 	result = VDO_ASSERT(config->slab_journal_blocks >= MINIMUM_VDO_SLAB_JOURNAL_BLOCKS,
1225 			    "slab journal size meets minimum size");
1226 	if (result != VDO_SUCCESS)
1227 		return result;
1228 
1229 	result = VDO_ASSERT(config->slab_journal_blocks <= config->slab_size,
1230 			    "slab journal size is within expected bound");
1231 	if (result != VDO_SUCCESS)
1232 		return result;
1233 
1234 	result = vdo_configure_slab(config->slab_size, config->slab_journal_blocks,
1235 				    &slab_config);
1236 	if (result != VDO_SUCCESS)
1237 		return result;
1238 
1239 	result = VDO_ASSERT((slab_config.data_blocks >= 1),
1240 			    "slab must be able to hold at least one block");
1241 	if (result != VDO_SUCCESS)
1242 		return result;
1243 
1244 	result = VDO_ASSERT(config->physical_blocks > 0, "physical blocks unspecified");
1245 	if (result != VDO_SUCCESS)
1246 		return result;
1247 
1248 	result = VDO_ASSERT(config->physical_blocks <= MAXIMUM_VDO_PHYSICAL_BLOCKS,
1249 			    "physical block count %llu exceeds maximum %llu",
1250 			    (unsigned long long) config->physical_blocks,
1251 			    (unsigned long long) MAXIMUM_VDO_PHYSICAL_BLOCKS);
1252 	if (result != VDO_SUCCESS)
1253 		return VDO_OUT_OF_RANGE;
1254 
1255 	if (physical_block_count != config->physical_blocks) {
1256 		vdo_log_error("A physical size of %llu blocks was specified, not the %llu blocks configured in the vdo super block",
1257 			      (unsigned long long) physical_block_count,
1258 			      (unsigned long long) config->physical_blocks);
1259 		return VDO_PARAMETER_MISMATCH;
1260 	}
1261 
1262 	if (logical_block_count > 0) {
1263 		result = VDO_ASSERT((config->logical_blocks > 0),
1264 				    "logical blocks unspecified");
1265 		if (result != VDO_SUCCESS)
1266 			return result;
1267 
1268 		if (logical_block_count != config->logical_blocks) {
1269 			vdo_log_error("A logical size of %llu blocks was specified, but that differs from the %llu blocks configured in the vdo super block",
1270 				      (unsigned long long) logical_block_count,
1271 				      (unsigned long long) config->logical_blocks);
1272 			return VDO_PARAMETER_MISMATCH;
1273 		}
1274 	}
1275 
1276 	result = VDO_ASSERT(config->logical_blocks <= MAXIMUM_VDO_LOGICAL_BLOCKS,
1277 			    "logical blocks too large");
1278 	if (result != VDO_SUCCESS)
1279 		return result;
1280 
1281 	result = VDO_ASSERT(config->recovery_journal_size > 0,
1282 			    "recovery journal size unspecified");
1283 	if (result != VDO_SUCCESS)
1284 		return result;
1285 
1286 	result = VDO_ASSERT(is_power_of_2(config->recovery_journal_size),
1287 			    "recovery journal size must be a power of two");
1288 	if (result != VDO_SUCCESS)
1289 		return result;
1290 
1291 	return result;
1292 }
1293 
1294 /**
1295  * vdo_destroy_component_states() - Clean up any allocations in a vdo_component_states.
1296  * @states: The component states to destroy.
1297  */
1298 void vdo_destroy_component_states(struct vdo_component_states *states)
1299 {
1300 	if (states == NULL)
1301 		return;
1302 
1303 	vdo_uninitialize_layout(&states->layout);
1304 }
1305 
1306 /**
1307  * decode_components() - Decode the components now that we know the component data is a version we
1308  *                       understand.
1309  * @buffer: The buffer being decoded.
1310  * @offset: The offset to start decoding from.
1311  * @geometry: The vdo geometry
1312  * @states: An object to hold the successfully decoded state.
1313  *
1314  * Return: VDO_SUCCESS or an error.
1315  */
1316 static int __must_check decode_components(u8 *buffer, size_t *offset,
1317 					  struct volume_geometry *geometry,
1318 					  struct vdo_component_states *states)
1319 {
1320 	int result;
1321 
1322 	decode_vdo_component(buffer, offset, &states->vdo);
1323 
1324 	result = decode_layout(buffer, offset, vdo_get_data_region_start(*geometry) + 1,
1325 			       states->vdo.config.physical_blocks, &states->layout);
1326 	if (result != VDO_SUCCESS)
1327 		return result;
1328 
1329 	result = decode_recovery_journal_state_7_0(buffer, offset,
1330 						   &states->recovery_journal);
1331 	if (result != VDO_SUCCESS)
1332 		return result;
1333 
1334 	result = decode_slab_depot_state_2_0(buffer, offset, &states->slab_depot);
1335 	if (result != VDO_SUCCESS)
1336 		return result;
1337 
1338 	result = decode_block_map_state_2_0(buffer, offset, &states->block_map);
1339 	if (result != VDO_SUCCESS)
1340 		return result;
1341 
1342 	VDO_ASSERT_LOG_ONLY(*offset == VDO_COMPONENT_DATA_OFFSET + VDO_COMPONENT_DATA_SIZE,
1343 			    "All decoded component data was used");
1344 	return VDO_SUCCESS;
1345 }
1346 
1347 /**
1348  * vdo_decode_component_states() - Decode the payload of a super block.
1349  * @buffer: The buffer containing the encoded super block contents.
1350  * @geometry: The vdo geometry
1351  * @states: A pointer to hold the decoded states.
1352  *
1353  * Return: VDO_SUCCESS or an error.
1354  */
1355 int vdo_decode_component_states(u8 *buffer, struct volume_geometry *geometry,
1356 				struct vdo_component_states *states)
1357 {
1358 	int result;
1359 	size_t offset = VDO_COMPONENT_DATA_OFFSET;
1360 
1361 	/* This is for backwards compatibility. */
1362 	decode_u32_le(buffer, &offset, &states->unused);
1363 
1364 	/* Check the VDO volume version */
1365 	decode_version_number(buffer, &offset, &states->volume_version);
1366 	result = validate_version(VDO_VOLUME_VERSION_67_0, states->volume_version,
1367 				  "volume");
1368 	if (result != VDO_SUCCESS)
1369 		return result;
1370 
1371 	result = decode_components(buffer, &offset, geometry, states);
1372 	if (result != VDO_SUCCESS)
1373 		vdo_uninitialize_layout(&states->layout);
1374 
1375 	return result;
1376 }
1377 
1378 /**
1379  * vdo_validate_component_states() - Validate the decoded super block configuration.
1380  * @states: The state decoded from the super block.
1381  * @geometry_nonce: The nonce from the geometry block.
1382  * @physical_size: The minimum block count of the underlying storage.
1383  * @logical_size: The expected logical size of the VDO, or 0 if the logical size may be
1384  *                unspecified.
1385  *
1386  * Return: VDO_SUCCESS or an error if the configuration is invalid.
1387  */
1388 int vdo_validate_component_states(struct vdo_component_states *states,
1389 				  nonce_t geometry_nonce, block_count_t physical_size,
1390 				  block_count_t logical_size)
1391 {
1392 	if (geometry_nonce != states->vdo.nonce) {
1393 		return vdo_log_error_strerror(VDO_BAD_NONCE,
1394 					      "Geometry nonce %llu does not match superblock nonce %llu",
1395 					      (unsigned long long) geometry_nonce,
1396 					      (unsigned long long) states->vdo.nonce);
1397 	}
1398 
1399 	return vdo_validate_config(&states->vdo.config, physical_size, logical_size);
1400 }
1401 
1402 /**
1403  * vdo_encode_component_states() - Encode the state of all vdo components in the super block.
1404  */
1405 static void vdo_encode_component_states(u8 *buffer, size_t *offset,
1406 					const struct vdo_component_states *states)
1407 {
1408 	/* This is for backwards compatibility. */
1409 	encode_u32_le(buffer, offset, states->unused);
1410 	encode_version_number(buffer, offset, states->volume_version);
1411 	encode_vdo_component(buffer, offset, states->vdo);
1412 	encode_layout(buffer, offset, &states->layout);
1413 	encode_recovery_journal_state_7_0(buffer, offset, states->recovery_journal);
1414 	encode_slab_depot_state_2_0(buffer, offset, states->slab_depot);
1415 	encode_block_map_state_2_0(buffer, offset, states->block_map);
1416 
1417 	VDO_ASSERT_LOG_ONLY(*offset == VDO_COMPONENT_DATA_OFFSET + VDO_COMPONENT_DATA_SIZE,
1418 			    "All super block component data was encoded");
1419 }
1420 
1421 /**
1422  * vdo_encode_super_block() - Encode a super block into its on-disk representation.
1423  */
1424 void vdo_encode_super_block(u8 *buffer, struct vdo_component_states *states)
1425 {
1426 	u32 checksum;
1427 	struct header header = SUPER_BLOCK_HEADER_12_0;
1428 	size_t offset = 0;
1429 
1430 	header.size += VDO_COMPONENT_DATA_SIZE;
1431 	vdo_encode_header(buffer, &offset, &header);
1432 	vdo_encode_component_states(buffer, &offset, states);
1433 
1434 	checksum = vdo_crc32(buffer, offset);
1435 	encode_u32_le(buffer, &offset, checksum);
1436 
1437 	/*
1438 	 * Even though the buffer is a full block, to avoid the potential corruption from a torn
1439 	 * write, the entire encoding must fit in the first sector.
1440 	 */
1441 	VDO_ASSERT_LOG_ONLY(offset <= VDO_SECTOR_SIZE,
1442 			    "entire superblock must fit in one sector");
1443 }
1444 
1445 /**
1446  * vdo_decode_super_block() - Decode a super block from its on-disk representation.
1447  */
1448 int vdo_decode_super_block(u8 *buffer)
1449 {
1450 	struct header header;
1451 	int result;
1452 	u32 checksum, saved_checksum;
1453 	size_t offset = 0;
1454 
1455 	/* Decode and validate the header. */
1456 	vdo_decode_header(buffer, &offset, &header);
1457 	result = vdo_validate_header(&SUPER_BLOCK_HEADER_12_0, &header, false, __func__);
1458 	if (result != VDO_SUCCESS)
1459 		return result;
1460 
1461 	if (header.size > VDO_COMPONENT_DATA_SIZE + sizeof(u32)) {
1462 		/*
1463 		 * We can't check release version or checksum until we know the content size, so we
1464 		 * have to assume a version mismatch on unexpected values.
1465 		 */
1466 		return vdo_log_error_strerror(VDO_UNSUPPORTED_VERSION,
1467 					      "super block contents too large: %zu",
1468 					      header.size);
1469 	}
1470 
1471 	/* Skip past the component data for now, to verify the checksum. */
1472 	offset += VDO_COMPONENT_DATA_SIZE;
1473 
1474 	checksum = vdo_crc32(buffer, offset);
1475 	decode_u32_le(buffer, &offset, &saved_checksum);
1476 
1477 	result = VDO_ASSERT(offset == VDO_SUPER_BLOCK_FIXED_SIZE + VDO_COMPONENT_DATA_SIZE,
1478 			    "must have decoded entire superblock payload");
1479 	if (result != VDO_SUCCESS)
1480 		return result;
1481 
1482 	return ((checksum != saved_checksum) ? VDO_CHECKSUM_MISMATCH : VDO_SUCCESS);
1483 }
1484