1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright 2023 Red Hat 4 */ 5 6 /** 7 * DOC: 8 * 9 * Hash Locks: 10 * 11 * A hash_lock controls and coordinates writing, index access, and dedupe among groups of data_vios 12 * concurrently writing identical blocks, allowing them to deduplicate not only against advice but 13 * also against each other. This saves on index queries and allows those data_vios to concurrently 14 * deduplicate against a single block instead of being serialized through a PBN read lock. Only one 15 * index query is needed for each hash_lock, instead of one for every data_vio. 16 * 17 * Hash_locks are assigned to hash_zones by computing a modulus on the hash itself. Each hash_zone 18 * has a single dedicated queue and thread for performing all operations on the hash_locks assigned 19 * to that zone. The concurrency guarantees of this single-threaded model allow the code to omit 20 * more fine-grained locking for the hash_lock structures. 21 * 22 * A hash_lock acts like a state machine perhaps more than as a lock. Other than the starting and 23 * ending states INITIALIZING and BYPASSING, every state represents and is held for the duration of 24 * an asynchronous operation. All state transitions are performed on the thread of the hash_zone 25 * containing the lock. An asynchronous operation is almost always performed upon entering a state, 26 * and the callback from that operation triggers exiting the state and entering a new state. 27 * 28 * In all states except DEDUPING, there is a single data_vio, called the lock agent, performing the 29 * asynchronous operations on behalf of the lock. The agent will change during the lifetime of the 30 * lock if the lock is shared by more than one data_vio. data_vios waiting to deduplicate are kept 31 * on a wait queue. Viewed a different way, the agent holds the lock exclusively until the lock 32 * enters the DEDUPING state, at which point it becomes a shared lock that all the waiters (and any 33 * new data_vios that arrive) use to share a PBN lock. In state DEDUPING, there is no agent. When 34 * the last data_vio in the lock calls back in DEDUPING, it becomes the agent and the lock becomes 35 * exclusive again. New data_vios that arrive in the lock will also go on the wait queue. 36 * 37 * The existence of lock waiters is a key factor controlling which state the lock transitions to 38 * next. When the lock is new or has waiters, it will always try to reach DEDUPING, and when it 39 * doesn't, it will try to clean up and exit. 40 * 41 * Deduping requires holding a PBN lock on a block that is known to contain data identical to the 42 * data_vios in the lock, so the lock will send the agent to the duplicate zone to acquire the PBN 43 * lock (LOCKING), to the kernel I/O threads to read and verify the data (VERIFYING), or to write a 44 * new copy of the data to a full data block or a slot in a compressed block (WRITING). 45 * 46 * Cleaning up consists of updating the index when the data location is different from the initial 47 * index query (UPDATING, triggered by stale advice, compression, and rollover), releasing the PBN 48 * lock on the duplicate block (UNLOCKING), and if the agent is the last data_vio referencing the 49 * lock, releasing the hash_lock itself back to the hash zone (BYPASSING). 50 * 51 * The shortest sequence of states is for non-concurrent writes of new data: 52 * INITIALIZING -> QUERYING -> WRITING -> BYPASSING 53 * This sequence is short because no PBN read lock or index update is needed. 54 * 55 * Non-concurrent, finding valid advice looks like this (endpoints elided): 56 * -> QUERYING -> LOCKING -> VERIFYING -> DEDUPING -> UNLOCKING -> 57 * Or with stale advice (endpoints elided): 58 * -> QUERYING -> LOCKING -> VERIFYING -> UNLOCKING -> WRITING -> UPDATING -> 59 * 60 * When there are not enough available reference count increments available on a PBN for a data_vio 61 * to deduplicate, a new lock is forked and the excess waiters roll over to the new lock (which 62 * goes directly to WRITING). The new lock takes the place of the old lock in the lock map so new 63 * data_vios will be directed to it. The two locks will proceed independently, but only the new 64 * lock will have the right to update the index (unless it also forks). 65 * 66 * Since rollover happens in a lock instance, once a valid data location has been selected, it will 67 * not change. QUERYING and WRITING are only performed once per lock lifetime. All other 68 * non-endpoint states can be re-entered. 69 * 70 * The function names in this module follow a convention referencing the states and transitions in 71 * the state machine. For example, for the LOCKING state, there are start_locking() and 72 * finish_locking() functions. start_locking() is invoked by the finish function of the state (or 73 * states) that transition to LOCKING. It performs the actual lock state change and must be invoked 74 * on the hash zone thread. finish_locking() is called by (or continued via callback from) the 75 * code actually obtaining the lock. It does any bookkeeping or decision-making required and 76 * invokes the appropriate start function of the state being transitioned to after LOCKING. 77 * 78 * ---------------------------------------------------------------------- 79 * 80 * Index Queries: 81 * 82 * A query to the UDS index is handled asynchronously by the index's threads. When the query is 83 * complete, a callback supplied with the query will be called from one of the those threads. Under 84 * heavy system load, the index may be slower to respond than is desirable for reasonable I/O 85 * throughput. Since deduplication of writes is not necessary for correct operation of a VDO 86 * device, it is acceptable to timeout out slow index queries and proceed to fulfill a write 87 * request without deduplicating. However, because the uds_request struct itself is supplied by the 88 * caller, we can not simply reuse a uds_request object which we have chosen to timeout. Hence, 89 * each hash_zone maintains a pool of dedupe_contexts which each contain a uds_request along with a 90 * reference to the data_vio on behalf of which they are performing a query. 91 * 92 * When a hash_lock needs to query the index, it attempts to acquire an unused dedupe_context from 93 * its hash_zone's pool. If one is available, that context is prepared, associated with the 94 * hash_lock's agent, added to the list of pending contexts, and then sent to the index. The 95 * context's state will be transitioned from DEDUPE_CONTEXT_IDLE to DEDUPE_CONTEXT_PENDING. If all 96 * goes well, the dedupe callback will be called by the index which will change the context's state 97 * to DEDUPE_CONTEXT_COMPLETE, and the associated data_vio will be enqueued to run back in the hash 98 * zone where the query results will be processed and the context will be put back in the idle 99 * state and returned to the hash_zone's available list. 100 * 101 * The first time an index query is launched from a given hash_zone, a timer is started. When the 102 * timer fires, the hash_zone's completion is enqueued to run in the hash_zone where the zone's 103 * pending list will be searched for any contexts in the pending state which have been running for 104 * too long. Those contexts are transitioned to the DEDUPE_CONTEXT_TIMED_OUT state and moved to the 105 * zone's timed_out list where they won't be examined again if there is a subsequent time out). The 106 * data_vios associated with timed out contexts are sent to continue processing their write 107 * operation without deduplicating. The timer is also restarted. 108 * 109 * When the dedupe callback is run for a context which is in the timed out state, that context is 110 * moved to the DEDUPE_CONTEXT_TIMED_OUT_COMPLETE state. No other action need be taken as the 111 * associated data_vios have already been dispatched. 112 * 113 * If a hash_lock needs a dedupe context, and the available list is empty, the timed_out list will 114 * be searched for any contexts which are timed out and complete. One of these will be used 115 * immediately, and the rest will be returned to the available list and marked idle. 116 */ 117 118 #include "dedupe.h" 119 120 #include <linux/atomic.h> 121 #include <linux/jiffies.h> 122 #include <linux/kernel.h> 123 #include <linux/list.h> 124 #include <linux/ratelimit.h> 125 #include <linux/spinlock.h> 126 #include <linux/timer.h> 127 128 #include "logger.h" 129 #include "memory-alloc.h" 130 #include "numeric.h" 131 #include "permassert.h" 132 #include "string-utils.h" 133 134 #include "indexer.h" 135 136 #include "action-manager.h" 137 #include "admin-state.h" 138 #include "completion.h" 139 #include "constants.h" 140 #include "data-vio.h" 141 #include "int-map.h" 142 #include "io-submitter.h" 143 #include "packer.h" 144 #include "physical-zone.h" 145 #include "slab-depot.h" 146 #include "statistics.h" 147 #include "types.h" 148 #include "vdo.h" 149 #include "wait-queue.h" 150 151 #define DEDUPE_QUERY_TIMER_IDLE 0 152 #define DEDUPE_QUERY_TIMER_RUNNING 1 153 #define DEDUPE_QUERY_TIMER_FIRED 2 154 155 enum dedupe_context_state { 156 DEDUPE_CONTEXT_IDLE, 157 DEDUPE_CONTEXT_PENDING, 158 DEDUPE_CONTEXT_TIMED_OUT, 159 DEDUPE_CONTEXT_COMPLETE, 160 DEDUPE_CONTEXT_TIMED_OUT_COMPLETE, 161 }; 162 163 /* Possible index states: closed, opened, or transitioning between those two. */ 164 enum index_state { 165 IS_CLOSED, 166 IS_CHANGING, 167 IS_OPENED, 168 }; 169 170 static const char *CLOSED = "closed"; 171 static const char *CLOSING = "closing"; 172 static const char *ERROR = "error"; 173 static const char *OFFLINE = "offline"; 174 static const char *ONLINE = "online"; 175 static const char *OPENING = "opening"; 176 static const char *SUSPENDED = "suspended"; 177 static const char *UNKNOWN = "unknown"; 178 179 /* Version 2 uses the kernel space UDS index and is limited to 16 bytes */ 180 #define UDS_ADVICE_VERSION 2 181 /* version byte + state byte + 64-bit little-endian PBN */ 182 #define UDS_ADVICE_SIZE (1 + 1 + sizeof(u64)) 183 184 enum hash_lock_state { 185 /* State for locks that are not in use or are being initialized. */ 186 VDO_HASH_LOCK_INITIALIZING, 187 188 /* This is the sequence of states typically used on the non-dedupe path. */ 189 VDO_HASH_LOCK_QUERYING, 190 VDO_HASH_LOCK_WRITING, 191 VDO_HASH_LOCK_UPDATING, 192 193 /* The remaining states are typically used on the dedupe path in this order. */ 194 VDO_HASH_LOCK_LOCKING, 195 VDO_HASH_LOCK_VERIFYING, 196 VDO_HASH_LOCK_DEDUPING, 197 VDO_HASH_LOCK_UNLOCKING, 198 199 /* 200 * Terminal state for locks returning to the pool. Must be last both because it's the final 201 * state, and also because it's used to count the states. 202 */ 203 VDO_HASH_LOCK_BYPASSING, 204 }; 205 206 static const char * const LOCK_STATE_NAMES[] = { 207 [VDO_HASH_LOCK_BYPASSING] = "BYPASSING", 208 [VDO_HASH_LOCK_DEDUPING] = "DEDUPING", 209 [VDO_HASH_LOCK_INITIALIZING] = "INITIALIZING", 210 [VDO_HASH_LOCK_LOCKING] = "LOCKING", 211 [VDO_HASH_LOCK_QUERYING] = "QUERYING", 212 [VDO_HASH_LOCK_UNLOCKING] = "UNLOCKING", 213 [VDO_HASH_LOCK_UPDATING] = "UPDATING", 214 [VDO_HASH_LOCK_VERIFYING] = "VERIFYING", 215 [VDO_HASH_LOCK_WRITING] = "WRITING", 216 }; 217 218 struct hash_lock { 219 /* The block hash covered by this lock */ 220 struct uds_record_name hash; 221 222 /* When the lock is unused, this list entry allows the lock to be pooled */ 223 struct list_head pool_node; 224 225 /* 226 * A list containing the data VIOs sharing this lock, all having the same record name and 227 * data block contents, linked by their hash_lock_node fields. 228 */ 229 struct list_head duplicate_ring; 230 231 /* The number of data_vios sharing this lock instance */ 232 data_vio_count_t reference_count; 233 234 /* The maximum value of reference_count in the lifetime of this lock */ 235 data_vio_count_t max_references; 236 237 /* The current state of this lock */ 238 enum hash_lock_state state; 239 240 /* True if the UDS index should be updated with new advice */ 241 bool update_advice; 242 243 /* True if the advice has been verified to be a true duplicate */ 244 bool verified; 245 246 /* True if the lock has already accounted for an initial verification */ 247 bool verify_counted; 248 249 /* True if this lock is registered in the lock map (cleared on rollover) */ 250 bool registered; 251 252 /* 253 * If verified is false, this is the location of a possible duplicate. If verified is true, 254 * it is the verified location of a true duplicate. 255 */ 256 struct zoned_pbn duplicate; 257 258 /* The PBN lock on the block containing the duplicate data */ 259 struct pbn_lock *duplicate_lock; 260 261 /* The data_vio designated to act on behalf of the lock */ 262 struct data_vio *agent; 263 264 /* 265 * Other data_vios with data identical to the agent who are currently waiting for the agent 266 * to get the information they all need to deduplicate--either against each other, or 267 * against an existing duplicate on disk. 268 */ 269 struct vdo_wait_queue waiters; 270 }; 271 272 #define LOCK_POOL_CAPACITY MAXIMUM_VDO_USER_VIOS 273 274 struct hash_zones { 275 struct action_manager *manager; 276 struct uds_parameters parameters; 277 struct uds_index_session *index_session; 278 struct ratelimit_state ratelimiter; 279 atomic64_t timeouts; 280 atomic64_t dedupe_context_busy; 281 282 /* This spinlock protects the state fields and the starting of dedupe requests. */ 283 spinlock_t lock; 284 285 /* The fields in the next block are all protected by the lock */ 286 struct vdo_completion completion; 287 enum index_state index_state; 288 enum index_state index_target; 289 struct admin_state state; 290 bool changing; 291 bool create_flag; 292 bool dedupe_flag; 293 bool error_flag; 294 u64 reported_timeouts; 295 296 /* The number of zones */ 297 zone_count_t zone_count; 298 /* The hash zones themselves */ 299 struct hash_zone zones[]; 300 }; 301 302 /* These are in milliseconds. */ 303 unsigned int vdo_dedupe_index_timeout_interval = 5000; 304 unsigned int vdo_dedupe_index_min_timer_interval = 100; 305 /* Same two variables, in jiffies for easier consumption. */ 306 static u64 vdo_dedupe_index_timeout_jiffies; 307 static u64 vdo_dedupe_index_min_timer_jiffies; 308 309 static inline struct hash_zone *as_hash_zone(struct vdo_completion *completion) 310 { 311 vdo_assert_completion_type(completion, VDO_HASH_ZONE_COMPLETION); 312 return container_of(completion, struct hash_zone, completion); 313 } 314 315 static inline struct hash_zones *as_hash_zones(struct vdo_completion *completion) 316 { 317 vdo_assert_completion_type(completion, VDO_HASH_ZONES_COMPLETION); 318 return container_of(completion, struct hash_zones, completion); 319 } 320 321 static inline void assert_in_hash_zone(struct hash_zone *zone, const char *name) 322 { 323 VDO_ASSERT_LOG_ONLY((vdo_get_callback_thread_id() == zone->thread_id), 324 "%s called on hash zone thread", name); 325 } 326 327 static inline bool change_context_state(struct dedupe_context *context, int old, int new) 328 { 329 return (atomic_cmpxchg(&context->state, old, new) == old); 330 } 331 332 static inline bool change_timer_state(struct hash_zone *zone, int old, int new) 333 { 334 return (atomic_cmpxchg(&zone->timer_state, old, new) == old); 335 } 336 337 /** 338 * return_hash_lock_to_pool() - (Re)initialize a hash lock and return it to its pool. 339 * @zone: The zone from which the lock was borrowed. 340 * @lock: The lock that is no longer in use. 341 */ 342 static void return_hash_lock_to_pool(struct hash_zone *zone, struct hash_lock *lock) 343 { 344 memset(lock, 0, sizeof(*lock)); 345 INIT_LIST_HEAD(&lock->pool_node); 346 INIT_LIST_HEAD(&lock->duplicate_ring); 347 vdo_waitq_init(&lock->waiters); 348 list_add_tail(&lock->pool_node, &zone->lock_pool); 349 } 350 351 /** 352 * vdo_get_duplicate_lock() - Get the PBN lock on the duplicate data location for a data_vio from 353 * the hash_lock the data_vio holds (if there is one). 354 * @data_vio: The data_vio to query. 355 * 356 * Return: The PBN lock on the data_vio's duplicate location. 357 */ 358 struct pbn_lock *vdo_get_duplicate_lock(struct data_vio *data_vio) 359 { 360 if (data_vio->hash_lock == NULL) 361 return NULL; 362 363 return data_vio->hash_lock->duplicate_lock; 364 } 365 366 /** 367 * hash_lock_key() - Return hash_lock's record name as a hash code. 368 * @lock: The hash lock. 369 * 370 * Return: The key to use for the int map. 371 */ 372 static inline u64 hash_lock_key(struct hash_lock *lock) 373 { 374 return get_unaligned_le64(&lock->hash.name); 375 } 376 377 /** 378 * get_hash_lock_state_name() - Get the string representation of a hash lock state. 379 * @state: The hash lock state. 380 * 381 * Return: The short string representing the state 382 */ 383 static const char *get_hash_lock_state_name(enum hash_lock_state state) 384 { 385 /* Catch if a state has been added without updating the name array. */ 386 BUILD_BUG_ON((VDO_HASH_LOCK_BYPASSING + 1) != ARRAY_SIZE(LOCK_STATE_NAMES)); 387 return (state < ARRAY_SIZE(LOCK_STATE_NAMES)) ? LOCK_STATE_NAMES[state] : "INVALID"; 388 } 389 390 /** 391 * assert_hash_lock_agent() - Assert that a data_vio is the agent of its hash lock, and that this 392 * is being called in the hash zone. 393 * @data_vio: The data_vio expected to be the lock agent. 394 * @where: A string describing the function making the assertion. 395 */ 396 static void assert_hash_lock_agent(struct data_vio *data_vio, const char *where) 397 { 398 /* Not safe to access the agent field except from the hash zone. */ 399 assert_data_vio_in_hash_zone(data_vio); 400 VDO_ASSERT_LOG_ONLY(data_vio == data_vio->hash_lock->agent, 401 "%s must be for the hash lock agent", where); 402 } 403 404 /** 405 * set_duplicate_lock() - Set the duplicate lock held by a hash lock. May only be called in the 406 * physical zone of the PBN lock. 407 * @hash_lock: The hash lock to update. 408 * @pbn_lock: The PBN read lock to use as the duplicate lock. 409 */ 410 static void set_duplicate_lock(struct hash_lock *hash_lock, struct pbn_lock *pbn_lock) 411 { 412 VDO_ASSERT_LOG_ONLY((hash_lock->duplicate_lock == NULL), 413 "hash lock must not already hold a duplicate lock"); 414 pbn_lock->holder_count += 1; 415 hash_lock->duplicate_lock = pbn_lock; 416 } 417 418 /** 419 * dequeue_lock_waiter() - Remove the first data_vio from the lock's waitq and return it. 420 * @lock: The lock containing the wait queue. 421 * 422 * Return: The first (oldest) waiter in the queue, or NULL if the queue is empty. 423 */ 424 static inline struct data_vio *dequeue_lock_waiter(struct hash_lock *lock) 425 { 426 return vdo_waiter_as_data_vio(vdo_waitq_dequeue_waiter(&lock->waiters)); 427 } 428 429 /** 430 * set_hash_lock() - Set, change, or clear the hash lock a data_vio is using. 431 * @data_vio: The data_vio to update. 432 * @new_lock: The hash lock the data_vio is joining. 433 * 434 * Updates the hash lock (or locks) to reflect the change in membership. 435 */ 436 static void set_hash_lock(struct data_vio *data_vio, struct hash_lock *new_lock) 437 { 438 struct hash_lock *old_lock = data_vio->hash_lock; 439 440 if (old_lock != NULL) { 441 VDO_ASSERT_LOG_ONLY(data_vio->hash_zone != NULL, 442 "must have a hash zone when holding a hash lock"); 443 VDO_ASSERT_LOG_ONLY(!list_empty(&data_vio->hash_lock_entry), 444 "must be on a hash lock ring when holding a hash lock"); 445 VDO_ASSERT_LOG_ONLY(old_lock->reference_count > 0, 446 "hash lock reference must be counted"); 447 448 if ((old_lock->state != VDO_HASH_LOCK_BYPASSING) && 449 (old_lock->state != VDO_HASH_LOCK_UNLOCKING)) { 450 /* 451 * If the reference count goes to zero in a non-terminal state, we're most 452 * likely leaking this lock. 453 */ 454 VDO_ASSERT_LOG_ONLY(old_lock->reference_count > 1, 455 "hash locks should only become unreferenced in a terminal state, not state %s", 456 get_hash_lock_state_name(old_lock->state)); 457 } 458 459 list_del_init(&data_vio->hash_lock_entry); 460 old_lock->reference_count -= 1; 461 462 data_vio->hash_lock = NULL; 463 } 464 465 if (new_lock != NULL) { 466 /* 467 * Keep all data_vios sharing the lock on a ring since they can complete in any 468 * order and we'll always need a pointer to one to compare data. 469 */ 470 list_move_tail(&data_vio->hash_lock_entry, &new_lock->duplicate_ring); 471 new_lock->reference_count += 1; 472 if (new_lock->max_references < new_lock->reference_count) 473 new_lock->max_references = new_lock->reference_count; 474 475 data_vio->hash_lock = new_lock; 476 } 477 } 478 479 /* There are loops in the state diagram, so some forward decl's are needed. */ 480 static void start_deduping(struct hash_lock *lock, struct data_vio *agent, 481 bool agent_is_done); 482 static void start_locking(struct hash_lock *lock, struct data_vio *agent); 483 static void start_writing(struct hash_lock *lock, struct data_vio *agent); 484 static void unlock_duplicate_pbn(struct vdo_completion *completion); 485 static void transfer_allocation_lock(struct data_vio *data_vio); 486 487 /** 488 * exit_hash_lock() - Bottleneck for data_vios that have written or deduplicated and that are no 489 * longer needed to be an agent for the hash lock. 490 * @data_vio: The data_vio to complete and send to be cleaned up. 491 */ 492 static void exit_hash_lock(struct data_vio *data_vio) 493 { 494 /* Release the hash lock now, saving a thread transition in cleanup. */ 495 vdo_release_hash_lock(data_vio); 496 497 /* Complete the data_vio and start the clean-up path to release any locks it still holds. */ 498 data_vio->vio.completion.callback = complete_data_vio; 499 500 continue_data_vio(data_vio); 501 } 502 503 /** 504 * set_duplicate_location() - Set the location of the duplicate block for data_vio, updating the 505 * is_duplicate and duplicate fields from a zoned_pbn. 506 * @data_vio: The data_vio to modify. 507 * @source: The location of the duplicate. 508 */ 509 static void set_duplicate_location(struct data_vio *data_vio, 510 const struct zoned_pbn source) 511 { 512 data_vio->is_duplicate = (source.pbn != VDO_ZERO_BLOCK); 513 data_vio->duplicate = source; 514 } 515 516 /** 517 * retire_lock_agent() - Retire the active lock agent, replacing it with the first lock waiter, and 518 * make the retired agent exit the hash lock. 519 * @lock: The hash lock to update. 520 * 521 * Return: The new lock agent (which will be NULL if there was no waiter) 522 */ 523 static struct data_vio *retire_lock_agent(struct hash_lock *lock) 524 { 525 struct data_vio *old_agent = lock->agent; 526 struct data_vio *new_agent = dequeue_lock_waiter(lock); 527 528 lock->agent = new_agent; 529 exit_hash_lock(old_agent); 530 if (new_agent != NULL) 531 set_duplicate_location(new_agent, lock->duplicate); 532 return new_agent; 533 } 534 535 /** 536 * wait_on_hash_lock() - Add a data_vio to the lock's queue of waiters. 537 * @lock: The hash lock on which to wait. 538 * @data_vio: The data_vio to add to the queue. 539 */ 540 static void wait_on_hash_lock(struct hash_lock *lock, struct data_vio *data_vio) 541 { 542 vdo_waitq_enqueue_waiter(&lock->waiters, &data_vio->waiter); 543 544 /* 545 * Make sure the agent doesn't block indefinitely in the packer since it now has at least 546 * one other data_vio waiting on it. 547 */ 548 if ((lock->state != VDO_HASH_LOCK_WRITING) || !cancel_data_vio_compression(lock->agent)) 549 return; 550 551 /* 552 * Even though we're waiting, we also have to send ourselves as a one-way message to the 553 * packer to ensure the agent continues executing. This is safe because 554 * cancel_vio_compression() guarantees the agent won't continue executing until this 555 * message arrives in the packer, and because the wait queue link isn't used for sending 556 * the message. 557 */ 558 data_vio->compression.lock_holder = lock->agent; 559 launch_data_vio_packer_callback(data_vio, vdo_remove_lock_holder_from_packer); 560 } 561 562 /** 563 * abort_waiter() - waiter_callback_fn function that shunts waiters to write their blocks without 564 * optimization. 565 * @waiter: The data_vio's waiter link. 566 * @context: Not used. 567 */ 568 static void abort_waiter(struct vdo_waiter *waiter, void __always_unused *context) 569 { 570 write_data_vio(vdo_waiter_as_data_vio(waiter)); 571 } 572 573 /** 574 * start_bypassing() - Stop using the hash lock. 575 * @lock: The hash lock. 576 * @agent: The data_vio acting as the agent for the lock. 577 * 578 * Stops using the hash lock. This is the final transition for hash locks which did not get an 579 * error. 580 */ 581 static void start_bypassing(struct hash_lock *lock, struct data_vio *agent) 582 { 583 lock->state = VDO_HASH_LOCK_BYPASSING; 584 exit_hash_lock(agent); 585 } 586 587 void vdo_clean_failed_hash_lock(struct data_vio *data_vio) 588 { 589 struct hash_lock *lock = data_vio->hash_lock; 590 591 if (lock->state == VDO_HASH_LOCK_BYPASSING) { 592 exit_hash_lock(data_vio); 593 return; 594 } 595 596 if (lock->agent == NULL) { 597 lock->agent = data_vio; 598 } else if (data_vio != lock->agent) { 599 exit_hash_lock(data_vio); 600 return; 601 } 602 603 lock->state = VDO_HASH_LOCK_BYPASSING; 604 605 /* Ensure we don't attempt to update advice when cleaning up. */ 606 lock->update_advice = false; 607 608 vdo_waitq_notify_all_waiters(&lock->waiters, abort_waiter, NULL); 609 610 if (lock->duplicate_lock != NULL) { 611 /* The agent must reference the duplicate zone to launch it. */ 612 data_vio->duplicate = lock->duplicate; 613 launch_data_vio_duplicate_zone_callback(data_vio, unlock_duplicate_pbn); 614 return; 615 } 616 617 lock->agent = NULL; 618 data_vio->is_duplicate = false; 619 exit_hash_lock(data_vio); 620 } 621 622 /** 623 * finish_unlocking() - Handle the result of the agent for the lock releasing a read lock on 624 * duplicate candidate. 625 * @completion: The completion of the data_vio acting as the lock's agent. 626 * 627 * This continuation is registered in unlock_duplicate_pbn(). 628 */ 629 static void finish_unlocking(struct vdo_completion *completion) 630 { 631 struct data_vio *agent = as_data_vio(completion); 632 struct hash_lock *lock = agent->hash_lock; 633 634 assert_hash_lock_agent(agent, __func__); 635 636 VDO_ASSERT_LOG_ONLY(lock->duplicate_lock == NULL, 637 "must have released the duplicate lock for the hash lock"); 638 639 if (!lock->verified) { 640 /* 641 * UNLOCKING -> WRITING transition: The lock we released was on an unverified 642 * block, so it must have been a lock on advice we were verifying, not on a 643 * location that was used for deduplication. Go write (or compress) the block to 644 * get a location to dedupe against. 645 */ 646 start_writing(lock, agent); 647 return; 648 } 649 650 /* 651 * With the lock released, the verified duplicate block may already have changed and will 652 * need to be re-verified if a waiter arrived. 653 */ 654 lock->verified = false; 655 656 if (vdo_waitq_has_waiters(&lock->waiters)) { 657 /* 658 * UNLOCKING -> LOCKING transition: A new data_vio entered the hash lock while the 659 * agent was releasing the PBN lock. The current agent exits and the waiter has to 660 * re-lock and re-verify the duplicate location. 661 * 662 * TODO: If we used the current agent to re-acquire the PBN lock we wouldn't need 663 * to re-verify. 664 */ 665 agent = retire_lock_agent(lock); 666 start_locking(lock, agent); 667 return; 668 } 669 670 /* 671 * UNLOCKING -> BYPASSING transition: The agent is done with the lock and no other 672 * data_vios reference it, so remove it from the lock map and return it to the pool. 673 */ 674 start_bypassing(lock, agent); 675 } 676 677 /** 678 * unlock_duplicate_pbn() - Release a read lock on the PBN of the block that may or may not have 679 * contained duplicate data. 680 * @completion: The completion of the data_vio acting as the lock's agent. 681 * 682 * This continuation is launched by start_unlocking(), and calls back to finish_unlocking() on the 683 * hash zone thread. 684 */ 685 static void unlock_duplicate_pbn(struct vdo_completion *completion) 686 { 687 struct data_vio *agent = as_data_vio(completion); 688 struct hash_lock *lock = agent->hash_lock; 689 690 assert_data_vio_in_duplicate_zone(agent); 691 VDO_ASSERT_LOG_ONLY(lock->duplicate_lock != NULL, 692 "must have a duplicate lock to release"); 693 694 vdo_release_physical_zone_pbn_lock(agent->duplicate.zone, agent->duplicate.pbn, 695 vdo_forget(lock->duplicate_lock)); 696 if (lock->state == VDO_HASH_LOCK_BYPASSING) { 697 complete_data_vio(completion); 698 return; 699 } 700 701 launch_data_vio_hash_zone_callback(agent, finish_unlocking); 702 } 703 704 /** 705 * start_unlocking() - Release a read lock on the PBN of the block that may or may not have 706 * contained duplicate data. 707 * @lock: The hash lock. 708 * @agent: The data_vio currently acting as the agent for the lock. 709 */ 710 static void start_unlocking(struct hash_lock *lock, struct data_vio *agent) 711 { 712 lock->state = VDO_HASH_LOCK_UNLOCKING; 713 launch_data_vio_duplicate_zone_callback(agent, unlock_duplicate_pbn); 714 } 715 716 static void release_context(struct dedupe_context *context) 717 { 718 struct hash_zone *zone = context->zone; 719 720 WRITE_ONCE(zone->active, zone->active - 1); 721 list_move(&context->list_entry, &zone->available); 722 } 723 724 static void process_update_result(struct data_vio *agent) 725 { 726 struct dedupe_context *context = agent->dedupe_context; 727 728 if ((context == NULL) || 729 !change_context_state(context, DEDUPE_CONTEXT_COMPLETE, DEDUPE_CONTEXT_IDLE)) 730 return; 731 732 agent->dedupe_context = NULL; 733 release_context(context); 734 } 735 736 /** 737 * finish_updating() - Process the result of a UDS update performed by the agent for the lock. 738 * @completion: The completion of the data_vio that performed the update 739 * 740 * This continuation is registered in start_querying(). 741 */ 742 static void finish_updating(struct vdo_completion *completion) 743 { 744 struct data_vio *agent = as_data_vio(completion); 745 struct hash_lock *lock = agent->hash_lock; 746 747 assert_hash_lock_agent(agent, __func__); 748 749 process_update_result(agent); 750 751 /* 752 * UDS was updated successfully, so don't update again unless the duplicate location 753 * changes due to rollover. 754 */ 755 lock->update_advice = false; 756 757 if (vdo_waitq_has_waiters(&lock->waiters)) { 758 /* 759 * UPDATING -> DEDUPING transition: A new data_vio arrived during the UDS update. 760 * Send it on the verified dedupe path. The agent is done with the lock, but the 761 * lock may still need to use it to clean up after rollover. 762 */ 763 start_deduping(lock, agent, true); 764 return; 765 } 766 767 if (lock->duplicate_lock != NULL) { 768 /* 769 * UPDATING -> UNLOCKING transition: No one is waiting to dedupe, but we hold a 770 * duplicate PBN lock, so go release it. 771 */ 772 start_unlocking(lock, agent); 773 return; 774 } 775 776 /* 777 * UPDATING -> BYPASSING transition: No one is waiting to dedupe and there's no lock to 778 * release. 779 */ 780 start_bypassing(lock, agent); 781 } 782 783 static void query_index(struct data_vio *data_vio, enum uds_request_type operation); 784 785 /** 786 * start_updating() - Continue deduplication with the last step, updating UDS with the location of 787 * the duplicate that should be returned as advice in the future. 788 * @lock: The hash lock. 789 * @agent: The data_vio currently acting as the agent for the lock. 790 */ 791 static void start_updating(struct hash_lock *lock, struct data_vio *agent) 792 { 793 lock->state = VDO_HASH_LOCK_UPDATING; 794 795 VDO_ASSERT_LOG_ONLY(lock->verified, "new advice should have been verified"); 796 VDO_ASSERT_LOG_ONLY(lock->update_advice, "should only update advice if needed"); 797 798 agent->last_async_operation = VIO_ASYNC_OP_UPDATE_DEDUPE_INDEX; 799 set_data_vio_hash_zone_callback(agent, finish_updating); 800 query_index(agent, UDS_UPDATE); 801 } 802 803 /** 804 * finish_deduping() - Handle a data_vio that has finished deduplicating against the block locked 805 * by the hash lock. 806 * @lock: The hash lock. 807 * @data_vio: The lock holder that has finished deduplicating. 808 * 809 * If there are other data_vios still sharing the lock, this will just release the data_vio's share 810 * of the lock and finish processing the data_vio. If this is the last data_vio holding the lock, 811 * this makes the data_vio the lock agent and uses it to advance the state of the lock so it can 812 * eventually be released. 813 */ 814 static void finish_deduping(struct hash_lock *lock, struct data_vio *data_vio) 815 { 816 struct data_vio *agent = data_vio; 817 818 VDO_ASSERT_LOG_ONLY(lock->agent == NULL, "shouldn't have an agent in DEDUPING"); 819 VDO_ASSERT_LOG_ONLY(!vdo_waitq_has_waiters(&lock->waiters), 820 "shouldn't have any lock waiters in DEDUPING"); 821 822 /* Just release the lock reference if other data_vios are still deduping. */ 823 if (lock->reference_count > 1) { 824 exit_hash_lock(data_vio); 825 return; 826 } 827 828 /* The hash lock must have an agent for all other lock states. */ 829 lock->agent = agent; 830 if (lock->update_advice) { 831 /* 832 * DEDUPING -> UPDATING transition: The location of the duplicate block changed 833 * since the initial UDS query because of compression, rollover, or because the 834 * query agent didn't have an allocation. The UDS update was delayed in case there 835 * was another change in location, but with only this data_vio using the hash lock, 836 * it's time to update the advice. 837 */ 838 start_updating(lock, agent); 839 } else { 840 /* 841 * DEDUPING -> UNLOCKING transition: Release the PBN read lock on the duplicate 842 * location so the hash lock itself can be released (contingent on no new data_vios 843 * arriving in the lock before the agent returns). 844 */ 845 start_unlocking(lock, agent); 846 } 847 } 848 849 /** 850 * acquire_lock() - Get the lock for a record name. 851 * @zone: The zone responsible for the hash. 852 * @hash: The hash to lock. 853 * @replace_lock: If non-NULL, the lock already registered for the hash which should be replaced by 854 * the new lock. 855 * @lock_ptr: A pointer to receive the hash lock. 856 * 857 * Gets the lock for the hash (record name) of the data in a data_vio, or if one does not exist (or 858 * if we are explicitly rolling over), initialize a new lock for the hash and register it in the 859 * zone. This must only be called in the correct thread for the zone. 860 * 861 * Return: VDO_SUCCESS or an error code. 862 */ 863 static int __must_check acquire_lock(struct hash_zone *zone, 864 const struct uds_record_name *hash, 865 struct hash_lock *replace_lock, 866 struct hash_lock **lock_ptr) 867 { 868 struct hash_lock *lock, *new_lock; 869 int result; 870 871 /* 872 * Borrow and prepare a lock from the pool so we don't have to do two int_map accesses 873 * in the common case of no lock contention. 874 */ 875 result = VDO_ASSERT(!list_empty(&zone->lock_pool), 876 "never need to wait for a free hash lock"); 877 if (result != VDO_SUCCESS) 878 return result; 879 880 new_lock = list_entry(zone->lock_pool.prev, struct hash_lock, pool_node); 881 list_del_init(&new_lock->pool_node); 882 883 /* 884 * Fill in the hash of the new lock so we can map it, since we have to use the hash as the 885 * map key. 886 */ 887 new_lock->hash = *hash; 888 889 result = vdo_int_map_put(zone->hash_lock_map, hash_lock_key(new_lock), 890 new_lock, (replace_lock != NULL), (void **) &lock); 891 if (result != VDO_SUCCESS) { 892 return_hash_lock_to_pool(zone, vdo_forget(new_lock)); 893 return result; 894 } 895 896 if (replace_lock != NULL) { 897 /* On mismatch put the old lock back and return a severe error */ 898 VDO_ASSERT_LOG_ONLY(lock == replace_lock, 899 "old lock must have been in the lock map"); 900 /* TODO: Check earlier and bail out? */ 901 VDO_ASSERT_LOG_ONLY(replace_lock->registered, 902 "old lock must have been marked registered"); 903 replace_lock->registered = false; 904 } 905 906 if (lock == replace_lock) { 907 lock = new_lock; 908 lock->registered = true; 909 } else { 910 /* There's already a lock for the hash, so we don't need the borrowed lock. */ 911 return_hash_lock_to_pool(zone, vdo_forget(new_lock)); 912 } 913 914 *lock_ptr = lock; 915 return VDO_SUCCESS; 916 } 917 918 /** 919 * enter_forked_lock() - Bind the data_vio to a new hash lock. 920 * 921 * Implements waiter_callback_fn. Binds the data_vio that was waiting to a new hash lock and waits 922 * on that lock. 923 */ 924 static void enter_forked_lock(struct vdo_waiter *waiter, void *context) 925 { 926 struct data_vio *data_vio = vdo_waiter_as_data_vio(waiter); 927 struct hash_lock *new_lock = context; 928 929 set_hash_lock(data_vio, new_lock); 930 wait_on_hash_lock(new_lock, data_vio); 931 } 932 933 /** 934 * fork_hash_lock() - Fork a hash lock because it has run out of increments on the duplicate PBN. 935 * @old_lock: The hash lock to fork. 936 * @new_agent: The data_vio that will be the agent for the new lock. 937 * 938 * Transfers the new agent and any lock waiters to a new hash lock instance which takes the place 939 * of the old lock in the lock map. The old lock remains active, but will not update advice. 940 */ 941 static void fork_hash_lock(struct hash_lock *old_lock, struct data_vio *new_agent) 942 { 943 struct hash_lock *new_lock; 944 int result; 945 946 result = acquire_lock(new_agent->hash_zone, &new_agent->record_name, old_lock, 947 &new_lock); 948 if (result != VDO_SUCCESS) { 949 continue_data_vio_with_error(new_agent, result); 950 return; 951 } 952 953 /* 954 * Only one of the two locks should update UDS. The old lock is out of references, so it 955 * would be poor dedupe advice in the short term. 956 */ 957 old_lock->update_advice = false; 958 new_lock->update_advice = true; 959 960 set_hash_lock(new_agent, new_lock); 961 new_lock->agent = new_agent; 962 963 vdo_waitq_notify_all_waiters(&old_lock->waiters, enter_forked_lock, new_lock); 964 965 new_agent->is_duplicate = false; 966 start_writing(new_lock, new_agent); 967 } 968 969 /** 970 * launch_dedupe() - Reserve a reference count increment for a data_vio and launch it on the dedupe 971 * path. 972 * @lock: The hash lock. 973 * @data_vio: The data_vio to deduplicate using the hash lock. 974 * @has_claim: true if the data_vio already has claimed an increment from the duplicate lock. 975 * 976 * If no increments are available, this will roll over to a new hash lock and launch the data_vio 977 * as the writing agent for that lock. 978 */ 979 static void launch_dedupe(struct hash_lock *lock, struct data_vio *data_vio, 980 bool has_claim) 981 { 982 if (!has_claim && !vdo_claim_pbn_lock_increment(lock->duplicate_lock)) { 983 /* Out of increments, so must roll over to a new lock. */ 984 fork_hash_lock(lock, data_vio); 985 return; 986 } 987 988 /* Deduplicate against the lock's verified location. */ 989 set_duplicate_location(data_vio, lock->duplicate); 990 data_vio->new_mapped = data_vio->duplicate; 991 update_metadata_for_data_vio_write(data_vio, lock->duplicate_lock); 992 } 993 994 /** 995 * start_deduping() - Enter the hash lock state where data_vios deduplicate in parallel against a 996 * true copy of their data on disk. 997 * @lock: The hash lock. 998 * @agent: The data_vio acting as the agent for the lock. 999 * @agent_is_done: true only if the agent has already written or deduplicated against its data. 1000 * 1001 * If the agent itself needs to deduplicate, an increment for it must already have been claimed 1002 * from the duplicate lock, ensuring the hash lock will still have a data_vio holding it. 1003 */ 1004 static void start_deduping(struct hash_lock *lock, struct data_vio *agent, 1005 bool agent_is_done) 1006 { 1007 lock->state = VDO_HASH_LOCK_DEDUPING; 1008 1009 /* 1010 * We don't take the downgraded allocation lock from the agent unless we actually need to 1011 * deduplicate against it. 1012 */ 1013 if (lock->duplicate_lock == NULL) { 1014 VDO_ASSERT_LOG_ONLY(!vdo_is_state_compressed(agent->new_mapped.state), 1015 "compression must have shared a lock"); 1016 VDO_ASSERT_LOG_ONLY(agent_is_done, 1017 "agent must have written the new duplicate"); 1018 transfer_allocation_lock(agent); 1019 } 1020 1021 VDO_ASSERT_LOG_ONLY(vdo_is_pbn_read_lock(lock->duplicate_lock), 1022 "duplicate_lock must be a PBN read lock"); 1023 1024 /* 1025 * This state is not like any of the other states. There is no designated agent--the agent 1026 * transitioning to this state and all the waiters will be launched to deduplicate in 1027 * parallel. 1028 */ 1029 lock->agent = NULL; 1030 1031 /* 1032 * Launch the agent (if not already deduplicated) and as many lock waiters as we have 1033 * available increments for on the dedupe path. If we run out of increments, rollover will 1034 * be triggered and the remaining waiters will be transferred to the new lock. 1035 */ 1036 if (!agent_is_done) { 1037 launch_dedupe(lock, agent, true); 1038 agent = NULL; 1039 } 1040 while (vdo_waitq_has_waiters(&lock->waiters)) 1041 launch_dedupe(lock, dequeue_lock_waiter(lock), false); 1042 1043 if (agent_is_done) { 1044 /* 1045 * In the degenerate case where all the waiters rolled over to a new lock, this 1046 * will continue to use the old agent to clean up this lock, and otherwise it just 1047 * lets the agent exit the lock. 1048 */ 1049 finish_deduping(lock, agent); 1050 } 1051 } 1052 1053 /** 1054 * increment_stat() - Increment a statistic counter in a non-atomic yet thread-safe manner. 1055 * @stat: The statistic field to increment. 1056 */ 1057 static inline void increment_stat(u64 *stat) 1058 { 1059 /* 1060 * Must only be mutated on the hash zone thread. Prevents any compiler shenanigans from 1061 * affecting other threads reading stats. 1062 */ 1063 WRITE_ONCE(*stat, *stat + 1); 1064 } 1065 1066 /** 1067 * finish_verifying() - Handle the result of the agent for the lock comparing its data to the 1068 * duplicate candidate. 1069 * @completion: The completion of the data_vio used to verify dedupe 1070 * 1071 * This continuation is registered in start_verifying(). 1072 */ 1073 static void finish_verifying(struct vdo_completion *completion) 1074 { 1075 struct data_vio *agent = as_data_vio(completion); 1076 struct hash_lock *lock = agent->hash_lock; 1077 1078 assert_hash_lock_agent(agent, __func__); 1079 1080 lock->verified = agent->is_duplicate; 1081 1082 /* 1083 * Only count the result of the initial verification of the advice as valid or stale, and 1084 * not any re-verifications due to PBN lock releases. 1085 */ 1086 if (!lock->verify_counted) { 1087 lock->verify_counted = true; 1088 if (lock->verified) 1089 increment_stat(&agent->hash_zone->statistics.dedupe_advice_valid); 1090 else 1091 increment_stat(&agent->hash_zone->statistics.dedupe_advice_stale); 1092 } 1093 1094 /* 1095 * Even if the block is a verified duplicate, we can't start to deduplicate unless we can 1096 * claim a reference count increment for the agent. 1097 */ 1098 if (lock->verified && !vdo_claim_pbn_lock_increment(lock->duplicate_lock)) { 1099 agent->is_duplicate = false; 1100 lock->verified = false; 1101 } 1102 1103 if (lock->verified) { 1104 /* 1105 * VERIFYING -> DEDUPING transition: The advice is for a true duplicate, so start 1106 * deduplicating against it, if references are available. 1107 */ 1108 start_deduping(lock, agent, false); 1109 } else { 1110 /* 1111 * VERIFYING -> UNLOCKING transition: Either the verify failed or we'd try to 1112 * dedupe and roll over immediately, which would fail because it would leave the 1113 * lock without an agent to release the PBN lock. In both cases, the data will have 1114 * to be written or compressed, but first the advice PBN must be unlocked by the 1115 * VERIFYING agent. 1116 */ 1117 lock->update_advice = true; 1118 start_unlocking(lock, agent); 1119 } 1120 } 1121 1122 static bool blocks_equal(char *block1, char *block2) 1123 { 1124 int i; 1125 1126 for (i = 0; i < VDO_BLOCK_SIZE; i += sizeof(u64)) { 1127 if (*((u64 *) &block1[i]) != *((u64 *) &block2[i])) 1128 return false; 1129 } 1130 1131 return true; 1132 } 1133 1134 static void verify_callback(struct vdo_completion *completion) 1135 { 1136 struct data_vio *agent = as_data_vio(completion); 1137 1138 agent->is_duplicate = blocks_equal(agent->vio.data, agent->scratch_block); 1139 launch_data_vio_hash_zone_callback(agent, finish_verifying); 1140 } 1141 1142 static void uncompress_and_verify(struct vdo_completion *completion) 1143 { 1144 struct data_vio *agent = as_data_vio(completion); 1145 int result; 1146 1147 result = uncompress_data_vio(agent, agent->duplicate.state, 1148 agent->scratch_block); 1149 if (result == VDO_SUCCESS) { 1150 verify_callback(completion); 1151 return; 1152 } 1153 1154 agent->is_duplicate = false; 1155 launch_data_vio_hash_zone_callback(agent, finish_verifying); 1156 } 1157 1158 static void verify_endio(struct bio *bio) 1159 { 1160 struct data_vio *agent = vio_as_data_vio(bio->bi_private); 1161 int result = blk_status_to_errno(bio->bi_status); 1162 1163 vdo_count_completed_bios(bio); 1164 if (result != VDO_SUCCESS) { 1165 agent->is_duplicate = false; 1166 launch_data_vio_hash_zone_callback(agent, finish_verifying); 1167 return; 1168 } 1169 1170 if (vdo_is_state_compressed(agent->duplicate.state)) { 1171 launch_data_vio_cpu_callback(agent, uncompress_and_verify, 1172 CPU_Q_COMPRESS_BLOCK_PRIORITY); 1173 return; 1174 } 1175 1176 launch_data_vio_cpu_callback(agent, verify_callback, 1177 CPU_Q_COMPLETE_READ_PRIORITY); 1178 } 1179 1180 /** 1181 * start_verifying() - Begin the data verification phase. 1182 * @lock: The hash lock (must be LOCKING). 1183 * @agent: The data_vio to use to read and compare candidate data. 1184 * 1185 * Continue the deduplication path for a hash lock by using the agent to read (and possibly 1186 * decompress) the data at the candidate duplicate location, comparing it to the data in the agent 1187 * to verify that the candidate is identical to all the data_vios sharing the hash. If so, it can 1188 * be deduplicated against, otherwise a data_vio allocation will have to be written to and used for 1189 * dedupe. 1190 */ 1191 static void start_verifying(struct hash_lock *lock, struct data_vio *agent) 1192 { 1193 int result; 1194 struct vio *vio = &agent->vio; 1195 char *buffer = (vdo_is_state_compressed(agent->duplicate.state) ? 1196 (char *) agent->compression.block : 1197 agent->scratch_block); 1198 1199 lock->state = VDO_HASH_LOCK_VERIFYING; 1200 VDO_ASSERT_LOG_ONLY(!lock->verified, "hash lock only verifies advice once"); 1201 1202 agent->last_async_operation = VIO_ASYNC_OP_VERIFY_DUPLICATION; 1203 result = vio_reset_bio(vio, buffer, verify_endio, REQ_OP_READ, 1204 agent->duplicate.pbn); 1205 if (result != VDO_SUCCESS) { 1206 set_data_vio_hash_zone_callback(agent, finish_verifying); 1207 continue_data_vio_with_error(agent, result); 1208 return; 1209 } 1210 1211 set_data_vio_bio_zone_callback(agent, vdo_submit_vio); 1212 vdo_launch_completion_with_priority(&vio->completion, BIO_Q_VERIFY_PRIORITY); 1213 } 1214 1215 /** 1216 * finish_locking() - Handle the result of the agent for the lock attempting to obtain a PBN read 1217 * lock on the candidate duplicate block. 1218 * @completion: The completion of the data_vio that attempted to get the read lock. 1219 * 1220 * This continuation is registered in lock_duplicate_pbn(). 1221 */ 1222 static void finish_locking(struct vdo_completion *completion) 1223 { 1224 struct data_vio *agent = as_data_vio(completion); 1225 struct hash_lock *lock = agent->hash_lock; 1226 1227 assert_hash_lock_agent(agent, __func__); 1228 1229 if (!agent->is_duplicate) { 1230 VDO_ASSERT_LOG_ONLY(lock->duplicate_lock == NULL, 1231 "must not hold duplicate_lock if not flagged as a duplicate"); 1232 /* 1233 * LOCKING -> WRITING transition: The advice block is being modified or has no 1234 * available references, so try to write or compress the data, remembering to 1235 * update UDS later with the new advice. 1236 */ 1237 increment_stat(&agent->hash_zone->statistics.dedupe_advice_stale); 1238 lock->update_advice = true; 1239 start_writing(lock, agent); 1240 return; 1241 } 1242 1243 VDO_ASSERT_LOG_ONLY(lock->duplicate_lock != NULL, 1244 "must hold duplicate_lock if flagged as a duplicate"); 1245 1246 if (!lock->verified) { 1247 /* 1248 * LOCKING -> VERIFYING transition: Continue on the unverified dedupe path, reading 1249 * the candidate duplicate and comparing it to the agent's data to decide whether 1250 * it is a true duplicate or stale advice. 1251 */ 1252 start_verifying(lock, agent); 1253 return; 1254 } 1255 1256 if (!vdo_claim_pbn_lock_increment(lock->duplicate_lock)) { 1257 /* 1258 * LOCKING -> UNLOCKING transition: The verified block was re-locked, but has no 1259 * available increments left. Must first release the useless PBN read lock before 1260 * rolling over to a new copy of the block. 1261 */ 1262 agent->is_duplicate = false; 1263 lock->verified = false; 1264 lock->update_advice = true; 1265 start_unlocking(lock, agent); 1266 return; 1267 } 1268 1269 /* 1270 * LOCKING -> DEDUPING transition: Continue on the verified dedupe path, deduplicating 1271 * against a location that was previously verified or written to. 1272 */ 1273 start_deduping(lock, agent, false); 1274 } 1275 1276 static bool acquire_provisional_reference(struct data_vio *agent, struct pbn_lock *lock, 1277 struct slab_depot *depot) 1278 { 1279 /* Ensure that the newly-locked block is referenced. */ 1280 struct vdo_slab *slab = vdo_get_slab(depot, agent->duplicate.pbn); 1281 int result = vdo_acquire_provisional_reference(slab, agent->duplicate.pbn, lock); 1282 1283 if (result == VDO_SUCCESS) 1284 return true; 1285 1286 vdo_log_warning_strerror(result, 1287 "Error acquiring provisional reference for dedupe candidate; aborting dedupe"); 1288 agent->is_duplicate = false; 1289 vdo_release_physical_zone_pbn_lock(agent->duplicate.zone, 1290 agent->duplicate.pbn, lock); 1291 continue_data_vio_with_error(agent, result); 1292 return false; 1293 } 1294 1295 /** 1296 * lock_duplicate_pbn() - Acquire a read lock on the PBN of the block containing candidate 1297 * duplicate data (compressed or uncompressed). 1298 * @completion: The completion of the data_vio attempting to acquire the physical block lock on 1299 * behalf of its hash lock. 1300 * 1301 * If the PBN is already locked for writing, the lock attempt is abandoned and is_duplicate will be 1302 * cleared before calling back. This continuation is launched from start_locking(), and calls back 1303 * to finish_locking() on the hash zone thread. 1304 */ 1305 static void lock_duplicate_pbn(struct vdo_completion *completion) 1306 { 1307 unsigned int increment_limit; 1308 struct pbn_lock *lock; 1309 int result; 1310 1311 struct data_vio *agent = as_data_vio(completion); 1312 struct slab_depot *depot = vdo_from_data_vio(agent)->depot; 1313 struct physical_zone *zone = agent->duplicate.zone; 1314 1315 assert_data_vio_in_duplicate_zone(agent); 1316 1317 set_data_vio_hash_zone_callback(agent, finish_locking); 1318 1319 /* 1320 * While in the zone that owns it, find out how many additional references can be made to 1321 * the block if it turns out to truly be a duplicate. 1322 */ 1323 increment_limit = vdo_get_increment_limit(depot, agent->duplicate.pbn); 1324 if (increment_limit == 0) { 1325 /* 1326 * We could deduplicate against it later if a reference happened to be released 1327 * during verification, but it's probably better to bail out now. 1328 */ 1329 agent->is_duplicate = false; 1330 continue_data_vio(agent); 1331 return; 1332 } 1333 1334 result = vdo_attempt_physical_zone_pbn_lock(zone, agent->duplicate.pbn, 1335 VIO_READ_LOCK, &lock); 1336 if (result != VDO_SUCCESS) { 1337 continue_data_vio_with_error(agent, result); 1338 return; 1339 } 1340 1341 if (!vdo_is_pbn_read_lock(lock)) { 1342 /* 1343 * There are three cases of write locks: uncompressed data block writes, compressed 1344 * (packed) block writes, and block map page writes. In all three cases, we give up 1345 * on trying to verify the advice and don't bother to try deduplicate against the 1346 * data in the write lock holder. 1347 * 1348 * 1) We don't ever want to try to deduplicate against a block map page. 1349 * 1350 * 2a) It's very unlikely we'd deduplicate against an entire packed block, both 1351 * because of the chance of matching it, and because we don't record advice for it, 1352 * but for the uncompressed representation of all the fragments it contains. The 1353 * only way we'd be getting lock contention is if we've written the same 1354 * representation coincidentally before, had it become unreferenced, and it just 1355 * happened to be packed together from compressed writes when we go to verify the 1356 * lucky advice. Giving up is a minuscule loss of potential dedupe. 1357 * 1358 * 2b) If the advice is for a slot of a compressed block, it's about to get 1359 * smashed, and the write smashing it cannot contain our data--it would have to be 1360 * writing on behalf of our hash lock, but that's impossible since we're the lock 1361 * agent. 1362 * 1363 * 3a) If the lock is held by a data_vio with different data, the advice is already 1364 * stale or is about to become stale. 1365 * 1366 * 3b) If the lock is held by a data_vio that matches us, we may as well either 1367 * write it ourselves (or reference the copy we already wrote) instead of 1368 * potentially having many duplicates wait for the lock holder to write, journal, 1369 * hash, and finally arrive in the hash lock. We lose a chance to avoid a UDS 1370 * update in the very rare case of advice for a free block that just happened to be 1371 * allocated to a data_vio with the same hash. There's also a chance to save on a 1372 * block write, at the cost of a block verify. Saving on a full block compare in 1373 * all stale advice cases almost certainly outweighs saving a UDS update and 1374 * trading a write for a read in a lucky case where advice would have been saved 1375 * from becoming stale. 1376 */ 1377 agent->is_duplicate = false; 1378 continue_data_vio(agent); 1379 return; 1380 } 1381 1382 if (lock->holder_count == 0) { 1383 if (!acquire_provisional_reference(agent, lock, depot)) 1384 return; 1385 1386 /* 1387 * The increment limit we grabbed earlier is still valid. The lock now holds the 1388 * rights to acquire all those references. Those rights will be claimed by hash 1389 * locks sharing this read lock. 1390 */ 1391 lock->increment_limit = increment_limit; 1392 } 1393 1394 /* 1395 * We've successfully acquired a read lock on behalf of the hash lock, so mark it as such. 1396 */ 1397 set_duplicate_lock(agent->hash_lock, lock); 1398 1399 /* 1400 * TODO: Optimization: We could directly launch the block verify, then switch to a hash 1401 * thread. 1402 */ 1403 continue_data_vio(agent); 1404 } 1405 1406 /** 1407 * start_locking() - Continue deduplication for a hash lock that has obtained valid advice of a 1408 * potential duplicate through its agent. 1409 * @lock: The hash lock (currently must be QUERYING). 1410 * @agent: The data_vio bearing the dedupe advice. 1411 */ 1412 static void start_locking(struct hash_lock *lock, struct data_vio *agent) 1413 { 1414 VDO_ASSERT_LOG_ONLY(lock->duplicate_lock == NULL, 1415 "must not acquire a duplicate lock when already holding it"); 1416 1417 lock->state = VDO_HASH_LOCK_LOCKING; 1418 1419 /* 1420 * TODO: Optimization: If we arrange to continue on the duplicate zone thread when 1421 * accepting the advice, and don't explicitly change lock states (or use an agent-local 1422 * state, or an atomic), we can avoid a thread transition here. 1423 */ 1424 agent->last_async_operation = VIO_ASYNC_OP_LOCK_DUPLICATE_PBN; 1425 launch_data_vio_duplicate_zone_callback(agent, lock_duplicate_pbn); 1426 } 1427 1428 /** 1429 * finish_writing() - Re-entry point for the lock agent after it has finished writing or 1430 * compressing its copy of the data block. 1431 * @lock: The hash lock, which must be in state WRITING. 1432 * @agent: The data_vio that wrote its data for the lock. 1433 * 1434 * The agent will never need to dedupe against anything, so it's done with the lock, but the lock 1435 * may not be finished with it, as a UDS update might still be needed. 1436 * 1437 * If there are other lock holders, the agent will hand the job to one of them and exit, leaving 1438 * the lock to deduplicate against the just-written block. If there are no other lock holders, the 1439 * agent either exits (and later tears down the hash lock), or it remains the agent and updates 1440 * UDS. 1441 */ 1442 static void finish_writing(struct hash_lock *lock, struct data_vio *agent) 1443 { 1444 /* 1445 * Dedupe against the data block or compressed block slot the agent wrote. Since we know 1446 * the write succeeded, there's no need to verify it. 1447 */ 1448 lock->duplicate = agent->new_mapped; 1449 lock->verified = true; 1450 1451 if (vdo_is_state_compressed(lock->duplicate.state) && lock->registered) { 1452 /* 1453 * Compression means the location we gave in the UDS query is not the location 1454 * we're using to deduplicate. 1455 */ 1456 lock->update_advice = true; 1457 } 1458 1459 /* If there are any waiters, we need to start deduping them. */ 1460 if (vdo_waitq_has_waiters(&lock->waiters)) { 1461 /* 1462 * WRITING -> DEDUPING transition: an asynchronously-written block failed to 1463 * compress, so the PBN lock on the written copy was already transferred. The agent 1464 * is done with the lock, but the lock may still need to use it to clean up after 1465 * rollover. 1466 */ 1467 start_deduping(lock, agent, true); 1468 return; 1469 } 1470 1471 /* 1472 * There are no waiters and the agent has successfully written, so take a step towards 1473 * being able to release the hash lock (or just release it). 1474 */ 1475 if (lock->update_advice) { 1476 /* 1477 * WRITING -> UPDATING transition: There's no waiter and a UDS update is needed, so 1478 * retain the WRITING agent and use it to launch the update. The happens on 1479 * compression, rollover, or the QUERYING agent not having an allocation. 1480 */ 1481 start_updating(lock, agent); 1482 } else if (lock->duplicate_lock != NULL) { 1483 /* 1484 * WRITING -> UNLOCKING transition: There's no waiter and no update needed, but the 1485 * compressed write gave us a shared duplicate lock that we must release. 1486 */ 1487 set_duplicate_location(agent, lock->duplicate); 1488 start_unlocking(lock, agent); 1489 } else { 1490 /* 1491 * WRITING -> BYPASSING transition: There's no waiter, no update needed, and no 1492 * duplicate lock held, so both the agent and lock have no more work to do. The 1493 * agent will release its allocation lock in cleanup. 1494 */ 1495 start_bypassing(lock, agent); 1496 } 1497 } 1498 1499 /** 1500 * select_writing_agent() - Search through the lock waiters for a data_vio that has an allocation. 1501 * @lock: The hash lock to modify. 1502 * 1503 * If an allocation is found, swap agents, put the old agent at the head of the wait queue, then 1504 * return the new agent. Otherwise, just return the current agent. 1505 */ 1506 static struct data_vio *select_writing_agent(struct hash_lock *lock) 1507 { 1508 struct vdo_wait_queue temp_queue; 1509 struct data_vio *data_vio; 1510 1511 vdo_waitq_init(&temp_queue); 1512 1513 /* 1514 * Move waiters to the temp queue one-by-one until we find an allocation. Not ideal to 1515 * search, but it only happens when nearly out of space. 1516 */ 1517 while (((data_vio = dequeue_lock_waiter(lock)) != NULL) && 1518 !data_vio_has_allocation(data_vio)) { 1519 /* Use the lower-level enqueue since we're just moving waiters around. */ 1520 vdo_waitq_enqueue_waiter(&temp_queue, &data_vio->waiter); 1521 } 1522 1523 if (data_vio != NULL) { 1524 /* 1525 * Move the rest of the waiters over to the temp queue, preserving the order they 1526 * arrived at the lock. 1527 */ 1528 vdo_waitq_transfer_all_waiters(&lock->waiters, &temp_queue); 1529 1530 /* 1531 * The current agent is being replaced and will have to wait to dedupe; make it the 1532 * first waiter since it was the first to reach the lock. 1533 */ 1534 vdo_waitq_enqueue_waiter(&lock->waiters, &lock->agent->waiter); 1535 lock->agent = data_vio; 1536 } else { 1537 /* No one has an allocation, so keep the current agent. */ 1538 data_vio = lock->agent; 1539 } 1540 1541 /* Swap all the waiters back onto the lock's queue. */ 1542 vdo_waitq_transfer_all_waiters(&temp_queue, &lock->waiters); 1543 return data_vio; 1544 } 1545 1546 /** 1547 * start_writing() - Begin the non-duplicate write path. 1548 * @lock: The hash lock (currently must be QUERYING). 1549 * @agent: The data_vio currently acting as the agent for the lock. 1550 * 1551 * Begins the non-duplicate write path for a hash lock that had no advice, selecting a data_vio 1552 * with an allocation as a new agent, if necessary, then resuming the agent on the data_vio write 1553 * path. 1554 */ 1555 static void start_writing(struct hash_lock *lock, struct data_vio *agent) 1556 { 1557 lock->state = VDO_HASH_LOCK_WRITING; 1558 1559 /* 1560 * The agent might not have received an allocation and so can't be used for writing, but 1561 * it's entirely possible that one of the waiters did. 1562 */ 1563 if (!data_vio_has_allocation(agent)) { 1564 agent = select_writing_agent(lock); 1565 /* If none of the waiters had an allocation, the writes all have to fail. */ 1566 if (!data_vio_has_allocation(agent)) { 1567 /* 1568 * TODO: Should we keep a variant of BYPASSING that causes new arrivals to 1569 * fail immediately if they don't have an allocation? It might be possible 1570 * that on some path there would be non-waiters still referencing the lock, 1571 * so it would remain in the map as everything is currently spelled, even 1572 * if the agent and all waiters release. 1573 */ 1574 continue_data_vio_with_error(agent, VDO_NO_SPACE); 1575 return; 1576 } 1577 } 1578 1579 /* 1580 * If the agent compresses, it might wait indefinitely in the packer, which would be bad if 1581 * there are any other data_vios waiting. 1582 */ 1583 if (vdo_waitq_has_waiters(&lock->waiters)) 1584 cancel_data_vio_compression(agent); 1585 1586 /* 1587 * Send the agent to the compress/pack/write path in vioWrite. If it succeeds, it will 1588 * return to the hash lock via vdo_continue_hash_lock() and call finish_writing(). 1589 */ 1590 launch_compress_data_vio(agent); 1591 } 1592 1593 /* 1594 * Decode VDO duplicate advice from the old_metadata field of a UDS request. 1595 * Returns true if valid advice was found and decoded 1596 */ 1597 static bool decode_uds_advice(struct dedupe_context *context) 1598 { 1599 const struct uds_request *request = &context->request; 1600 struct data_vio *data_vio = context->requestor; 1601 size_t offset = 0; 1602 const struct uds_record_data *encoding = &request->old_metadata; 1603 struct vdo *vdo = vdo_from_data_vio(data_vio); 1604 struct zoned_pbn *advice = &data_vio->duplicate; 1605 u8 version; 1606 int result; 1607 1608 if ((request->status != UDS_SUCCESS) || !request->found) 1609 return false; 1610 1611 version = encoding->data[offset++]; 1612 if (version != UDS_ADVICE_VERSION) { 1613 vdo_log_error("invalid UDS advice version code %u", version); 1614 return false; 1615 } 1616 1617 advice->state = encoding->data[offset++]; 1618 advice->pbn = get_unaligned_le64(&encoding->data[offset]); 1619 offset += sizeof(u64); 1620 BUG_ON(offset != UDS_ADVICE_SIZE); 1621 1622 /* Don't use advice that's clearly meaningless. */ 1623 if ((advice->state == VDO_MAPPING_STATE_UNMAPPED) || (advice->pbn == VDO_ZERO_BLOCK)) { 1624 vdo_log_debug("Invalid advice from deduplication server: pbn %llu, state %u. Giving up on deduplication of logical block %llu", 1625 (unsigned long long) advice->pbn, advice->state, 1626 (unsigned long long) data_vio->logical.lbn); 1627 atomic64_inc(&vdo->stats.invalid_advice_pbn_count); 1628 return false; 1629 } 1630 1631 result = vdo_get_physical_zone(vdo, advice->pbn, &advice->zone); 1632 if ((result != VDO_SUCCESS) || (advice->zone == NULL)) { 1633 vdo_log_debug("Invalid physical block number from deduplication server: %llu, giving up on deduplication of logical block %llu", 1634 (unsigned long long) advice->pbn, 1635 (unsigned long long) data_vio->logical.lbn); 1636 atomic64_inc(&vdo->stats.invalid_advice_pbn_count); 1637 return false; 1638 } 1639 1640 return true; 1641 } 1642 1643 static void process_query_result(struct data_vio *agent) 1644 { 1645 struct dedupe_context *context = agent->dedupe_context; 1646 1647 if (context == NULL) 1648 return; 1649 1650 if (change_context_state(context, DEDUPE_CONTEXT_COMPLETE, DEDUPE_CONTEXT_IDLE)) { 1651 agent->is_duplicate = decode_uds_advice(context); 1652 agent->dedupe_context = NULL; 1653 release_context(context); 1654 } 1655 } 1656 1657 /** 1658 * finish_querying() - Process the result of a UDS query performed by the agent for the lock. 1659 * @completion: The completion of the data_vio that performed the query. 1660 * 1661 * This continuation is registered in start_querying(). 1662 */ 1663 static void finish_querying(struct vdo_completion *completion) 1664 { 1665 struct data_vio *agent = as_data_vio(completion); 1666 struct hash_lock *lock = agent->hash_lock; 1667 1668 assert_hash_lock_agent(agent, __func__); 1669 1670 process_query_result(agent); 1671 1672 if (agent->is_duplicate) { 1673 lock->duplicate = agent->duplicate; 1674 /* 1675 * QUERYING -> LOCKING transition: Valid advice was obtained from UDS. Use the 1676 * QUERYING agent to start the hash lock on the unverified dedupe path, verifying 1677 * that the advice can be used. 1678 */ 1679 start_locking(lock, agent); 1680 } else { 1681 /* 1682 * The agent will be used as the duplicate if has an allocation; if it does, that 1683 * location was posted to UDS, so no update will be needed. 1684 */ 1685 lock->update_advice = !data_vio_has_allocation(agent); 1686 /* 1687 * QUERYING -> WRITING transition: There was no advice or the advice wasn't valid, 1688 * so try to write or compress the data. 1689 */ 1690 start_writing(lock, agent); 1691 } 1692 } 1693 1694 /** 1695 * start_querying() - Start deduplication for a hash lock. 1696 * @lock: The initialized hash lock. 1697 * @data_vio: The data_vio that has just obtained the new lock. 1698 * 1699 * Starts deduplication for a hash lock that has finished initializing by making the data_vio that 1700 * requested it the agent, entering the QUERYING state, and using the agent to perform the UDS 1701 * query on behalf of the lock. 1702 */ 1703 static void start_querying(struct hash_lock *lock, struct data_vio *data_vio) 1704 { 1705 lock->agent = data_vio; 1706 lock->state = VDO_HASH_LOCK_QUERYING; 1707 data_vio->last_async_operation = VIO_ASYNC_OP_CHECK_FOR_DUPLICATION; 1708 set_data_vio_hash_zone_callback(data_vio, finish_querying); 1709 query_index(data_vio, 1710 (data_vio_has_allocation(data_vio) ? UDS_POST : UDS_QUERY)); 1711 } 1712 1713 /** 1714 * report_bogus_lock_state() - Complain that a data_vio has entered a hash_lock that is in an 1715 * unimplemented or unusable state and continue the data_vio with an 1716 * error. 1717 * @lock: The hash lock. 1718 * @data_vio: The data_vio attempting to enter the lock. 1719 */ 1720 static void report_bogus_lock_state(struct hash_lock *lock, struct data_vio *data_vio) 1721 { 1722 VDO_ASSERT_LOG_ONLY(false, "hash lock must not be in unimplemented state %s", 1723 get_hash_lock_state_name(lock->state)); 1724 continue_data_vio_with_error(data_vio, VDO_LOCK_ERROR); 1725 } 1726 1727 /** 1728 * vdo_continue_hash_lock() - Continue the processing state after writing, compressing, or 1729 * deduplicating. 1730 * @completion: The data_vio completion to continue processing in its hash lock. 1731 * 1732 * Asynchronously continue processing a data_vio in its hash lock after it has finished writing, 1733 * compressing, or deduplicating, so it can share the result with any data_vios waiting in the hash 1734 * lock, or update the UDS index, or simply release its share of the lock. 1735 * 1736 * Context: This must only be called in the correct thread for the hash zone. 1737 */ 1738 void vdo_continue_hash_lock(struct vdo_completion *completion) 1739 { 1740 struct data_vio *data_vio = as_data_vio(completion); 1741 struct hash_lock *lock = data_vio->hash_lock; 1742 1743 switch (lock->state) { 1744 case VDO_HASH_LOCK_WRITING: 1745 VDO_ASSERT_LOG_ONLY(data_vio == lock->agent, 1746 "only the lock agent may continue the lock"); 1747 finish_writing(lock, data_vio); 1748 break; 1749 1750 case VDO_HASH_LOCK_DEDUPING: 1751 finish_deduping(lock, data_vio); 1752 break; 1753 1754 case VDO_HASH_LOCK_BYPASSING: 1755 /* This data_vio has finished the write path and the lock doesn't need it. */ 1756 exit_hash_lock(data_vio); 1757 break; 1758 1759 case VDO_HASH_LOCK_INITIALIZING: 1760 case VDO_HASH_LOCK_QUERYING: 1761 case VDO_HASH_LOCK_UPDATING: 1762 case VDO_HASH_LOCK_LOCKING: 1763 case VDO_HASH_LOCK_VERIFYING: 1764 case VDO_HASH_LOCK_UNLOCKING: 1765 /* A lock in this state should never be re-entered. */ 1766 report_bogus_lock_state(lock, data_vio); 1767 break; 1768 1769 default: 1770 report_bogus_lock_state(lock, data_vio); 1771 } 1772 } 1773 1774 /** 1775 * is_hash_collision() - Check to see if a hash collision has occurred. 1776 * @lock: The lock to check. 1777 * @candidate: The data_vio seeking to share the lock. 1778 * 1779 * Check whether the data in data_vios sharing a lock is different than in a data_vio seeking to 1780 * share the lock, which should only be possible in the extremely unlikely case of a hash 1781 * collision. 1782 * 1783 * Return: true if the given data_vio must not share the lock because it doesn't have the same data 1784 * as the lock holders. 1785 */ 1786 static bool is_hash_collision(struct hash_lock *lock, struct data_vio *candidate) 1787 { 1788 struct data_vio *lock_holder; 1789 struct hash_zone *zone; 1790 bool collides; 1791 1792 if (list_empty(&lock->duplicate_ring)) 1793 return false; 1794 1795 lock_holder = list_first_entry(&lock->duplicate_ring, struct data_vio, 1796 hash_lock_entry); 1797 zone = candidate->hash_zone; 1798 collides = !blocks_equal(lock_holder->vio.data, candidate->vio.data); 1799 if (collides) 1800 increment_stat(&zone->statistics.concurrent_hash_collisions); 1801 else 1802 increment_stat(&zone->statistics.concurrent_data_matches); 1803 1804 return collides; 1805 } 1806 1807 static inline int assert_hash_lock_preconditions(const struct data_vio *data_vio) 1808 { 1809 int result; 1810 1811 /* FIXME: BUG_ON() and/or enter read-only mode? */ 1812 result = VDO_ASSERT(data_vio->hash_lock == NULL, 1813 "must not already hold a hash lock"); 1814 if (result != VDO_SUCCESS) 1815 return result; 1816 1817 result = VDO_ASSERT(list_empty(&data_vio->hash_lock_entry), 1818 "must not already be a member of a hash lock ring"); 1819 if (result != VDO_SUCCESS) 1820 return result; 1821 1822 return VDO_ASSERT(data_vio->recovery_sequence_number == 0, 1823 "must not hold a recovery lock when getting a hash lock"); 1824 } 1825 1826 /** 1827 * vdo_acquire_hash_lock() - Acquire or share a lock on a record name. 1828 * @completion: The data_vio completion acquiring a lock on its record name. 1829 * 1830 * Acquire or share a lock on the hash (record name) of the data in a data_vio, updating the 1831 * data_vio to reference the lock. This must only be called in the correct thread for the zone. In 1832 * the unlikely case of a hash collision, this function will succeed, but the data_vio will not get 1833 * a lock reference. 1834 */ 1835 void vdo_acquire_hash_lock(struct vdo_completion *completion) 1836 { 1837 struct data_vio *data_vio = as_data_vio(completion); 1838 struct hash_lock *lock; 1839 int result; 1840 1841 assert_data_vio_in_hash_zone(data_vio); 1842 1843 result = assert_hash_lock_preconditions(data_vio); 1844 if (result != VDO_SUCCESS) { 1845 continue_data_vio_with_error(data_vio, result); 1846 return; 1847 } 1848 1849 result = acquire_lock(data_vio->hash_zone, &data_vio->record_name, NULL, &lock); 1850 if (result != VDO_SUCCESS) { 1851 continue_data_vio_with_error(data_vio, result); 1852 return; 1853 } 1854 1855 if (is_hash_collision(lock, data_vio)) { 1856 /* 1857 * Hash collisions are extremely unlikely, but the bogus dedupe would be a data 1858 * corruption. Bypass optimization entirely. We can't compress a data_vio without 1859 * a hash_lock as the compressed write depends on the hash_lock to manage the 1860 * references for the compressed block. 1861 */ 1862 write_data_vio(data_vio); 1863 return; 1864 } 1865 1866 set_hash_lock(data_vio, lock); 1867 switch (lock->state) { 1868 case VDO_HASH_LOCK_INITIALIZING: 1869 start_querying(lock, data_vio); 1870 return; 1871 1872 case VDO_HASH_LOCK_QUERYING: 1873 case VDO_HASH_LOCK_WRITING: 1874 case VDO_HASH_LOCK_UPDATING: 1875 case VDO_HASH_LOCK_LOCKING: 1876 case VDO_HASH_LOCK_VERIFYING: 1877 case VDO_HASH_LOCK_UNLOCKING: 1878 /* The lock is busy, and can't be shared yet. */ 1879 wait_on_hash_lock(lock, data_vio); 1880 return; 1881 1882 case VDO_HASH_LOCK_BYPASSING: 1883 /* We can't use this lock, so bypass optimization entirely. */ 1884 vdo_release_hash_lock(data_vio); 1885 write_data_vio(data_vio); 1886 return; 1887 1888 case VDO_HASH_LOCK_DEDUPING: 1889 launch_dedupe(lock, data_vio, false); 1890 return; 1891 1892 default: 1893 /* A lock in this state should not be acquired by new VIOs. */ 1894 report_bogus_lock_state(lock, data_vio); 1895 } 1896 } 1897 1898 /** 1899 * vdo_release_hash_lock() - Release a data_vio's share of a hash lock, if held, and null out the 1900 * data_vio's reference to it. 1901 * @data_vio: The data_vio releasing its hash lock. 1902 * 1903 * If the data_vio is the only one holding the lock, this also releases any resources or locks used 1904 * by the hash lock (such as a PBN read lock on a block containing data with the same hash) and 1905 * returns the lock to the hash zone's lock pool. 1906 * 1907 * Context: This must only be called in the correct thread for the hash zone. 1908 */ 1909 void vdo_release_hash_lock(struct data_vio *data_vio) 1910 { 1911 u64 lock_key; 1912 struct hash_lock *lock = data_vio->hash_lock; 1913 struct hash_zone *zone = data_vio->hash_zone; 1914 1915 if (lock == NULL) 1916 return; 1917 1918 set_hash_lock(data_vio, NULL); 1919 1920 if (lock->reference_count > 0) { 1921 /* The lock is still in use by other data_vios. */ 1922 return; 1923 } 1924 1925 lock_key = hash_lock_key(lock); 1926 if (lock->registered) { 1927 struct hash_lock *removed; 1928 1929 removed = vdo_int_map_remove(zone->hash_lock_map, lock_key); 1930 VDO_ASSERT_LOG_ONLY(lock == removed, 1931 "hash lock being released must have been mapped"); 1932 } else { 1933 VDO_ASSERT_LOG_ONLY(lock != vdo_int_map_get(zone->hash_lock_map, lock_key), 1934 "unregistered hash lock must not be in the lock map"); 1935 } 1936 1937 VDO_ASSERT_LOG_ONLY(!vdo_waitq_has_waiters(&lock->waiters), 1938 "hash lock returned to zone must have no waiters"); 1939 VDO_ASSERT_LOG_ONLY((lock->duplicate_lock == NULL), 1940 "hash lock returned to zone must not reference a PBN lock"); 1941 VDO_ASSERT_LOG_ONLY((lock->state == VDO_HASH_LOCK_BYPASSING), 1942 "returned hash lock must not be in use with state %s", 1943 get_hash_lock_state_name(lock->state)); 1944 VDO_ASSERT_LOG_ONLY(list_empty(&lock->pool_node), 1945 "hash lock returned to zone must not be in a pool ring"); 1946 VDO_ASSERT_LOG_ONLY(list_empty(&lock->duplicate_ring), 1947 "hash lock returned to zone must not reference DataVIOs"); 1948 1949 return_hash_lock_to_pool(zone, lock); 1950 } 1951 1952 /** 1953 * transfer_allocation_lock() - Transfer a data_vio's downgraded allocation PBN lock to the 1954 * data_vio's hash lock, converting it to a duplicate PBN lock. 1955 * @data_vio: The data_vio holding the allocation lock to transfer. 1956 */ 1957 static void transfer_allocation_lock(struct data_vio *data_vio) 1958 { 1959 struct allocation *allocation = &data_vio->allocation; 1960 struct hash_lock *hash_lock = data_vio->hash_lock; 1961 1962 VDO_ASSERT_LOG_ONLY(data_vio->new_mapped.pbn == allocation->pbn, 1963 "transferred lock must be for the block written"); 1964 1965 allocation->pbn = VDO_ZERO_BLOCK; 1966 1967 VDO_ASSERT_LOG_ONLY(vdo_is_pbn_read_lock(allocation->lock), 1968 "must have downgraded the allocation lock before transfer"); 1969 1970 hash_lock->duplicate = data_vio->new_mapped; 1971 data_vio->duplicate = data_vio->new_mapped; 1972 1973 /* 1974 * Since the lock is being transferred, the holder count doesn't change (and isn't even 1975 * safe to examine on this thread). 1976 */ 1977 hash_lock->duplicate_lock = vdo_forget(allocation->lock); 1978 } 1979 1980 /** 1981 * vdo_share_compressed_write_lock() - Make a data_vio's hash lock a shared holder of the PBN lock 1982 * on the compressed block to which its data was just written. 1983 * @data_vio: The data_vio which was just compressed. 1984 * @pbn_lock: The PBN lock on the compressed block. 1985 * 1986 * If the lock is still a write lock (as it will be for the first share), it will be converted to a 1987 * read lock. This also reserves a reference count increment for the data_vio. 1988 */ 1989 void vdo_share_compressed_write_lock(struct data_vio *data_vio, 1990 struct pbn_lock *pbn_lock) 1991 { 1992 bool claimed; 1993 1994 VDO_ASSERT_LOG_ONLY(vdo_get_duplicate_lock(data_vio) == NULL, 1995 "a duplicate PBN lock should not exist when writing"); 1996 VDO_ASSERT_LOG_ONLY(vdo_is_state_compressed(data_vio->new_mapped.state), 1997 "lock transfer must be for a compressed write"); 1998 assert_data_vio_in_new_mapped_zone(data_vio); 1999 2000 /* First sharer downgrades the lock. */ 2001 if (!vdo_is_pbn_read_lock(pbn_lock)) 2002 vdo_downgrade_pbn_write_lock(pbn_lock, true); 2003 2004 /* 2005 * Get a share of the PBN lock, ensuring it cannot be released until after this data_vio 2006 * has had a chance to journal a reference. 2007 */ 2008 data_vio->duplicate = data_vio->new_mapped; 2009 data_vio->hash_lock->duplicate = data_vio->new_mapped; 2010 set_duplicate_lock(data_vio->hash_lock, pbn_lock); 2011 2012 /* 2013 * Claim a reference for this data_vio. Necessary since another hash_lock might start 2014 * deduplicating against it before our incRef. 2015 */ 2016 claimed = vdo_claim_pbn_lock_increment(pbn_lock); 2017 VDO_ASSERT_LOG_ONLY(claimed, "impossible to fail to claim an initial increment"); 2018 } 2019 2020 static void start_uds_queue(void *ptr) 2021 { 2022 /* 2023 * Allow the UDS dedupe worker thread to do memory allocations. It will only do allocations 2024 * during the UDS calls that open or close an index, but those allocations can safely sleep 2025 * while reserving a large amount of memory. We could use an allocations_allowed boolean 2026 * (like the base threads do), but it would be an unnecessary embellishment. 2027 */ 2028 struct vdo_thread *thread = vdo_get_work_queue_owner(vdo_get_current_work_queue()); 2029 2030 vdo_register_allocating_thread(&thread->allocating_thread, NULL); 2031 } 2032 2033 static void finish_uds_queue(void *ptr __always_unused) 2034 { 2035 vdo_unregister_allocating_thread(); 2036 } 2037 2038 static void close_index(struct hash_zones *zones) 2039 __must_hold(&zones->lock) 2040 { 2041 int result; 2042 2043 /* 2044 * Change the index state so that get_index_statistics() will not try to use the index 2045 * session we are closing. 2046 */ 2047 zones->index_state = IS_CHANGING; 2048 /* Close the index session, while not holding the lock. */ 2049 spin_unlock(&zones->lock); 2050 result = uds_close_index(zones->index_session); 2051 2052 if (result != UDS_SUCCESS) 2053 vdo_log_error_strerror(result, "Error closing index"); 2054 spin_lock(&zones->lock); 2055 zones->index_state = IS_CLOSED; 2056 zones->error_flag |= result != UDS_SUCCESS; 2057 /* ASSERTION: We leave in IS_CLOSED state. */ 2058 } 2059 2060 static void open_index(struct hash_zones *zones) 2061 __must_hold(&zones->lock) 2062 { 2063 /* ASSERTION: We enter in IS_CLOSED state. */ 2064 int result; 2065 bool create_flag = zones->create_flag; 2066 2067 zones->create_flag = false; 2068 /* 2069 * Change the index state so that the it will be reported to the outside world as 2070 * "opening". 2071 */ 2072 zones->index_state = IS_CHANGING; 2073 zones->error_flag = false; 2074 2075 /* Open the index session, while not holding the lock */ 2076 spin_unlock(&zones->lock); 2077 result = uds_open_index(create_flag ? UDS_CREATE : UDS_LOAD, 2078 &zones->parameters, zones->index_session); 2079 if (result != UDS_SUCCESS) 2080 vdo_log_error_strerror(result, "Error opening index"); 2081 2082 spin_lock(&zones->lock); 2083 if (!create_flag) { 2084 switch (result) { 2085 case -ENOENT: 2086 /* 2087 * Either there is no index, or there is no way we can recover the index. 2088 * We will be called again and try to create a new index. 2089 */ 2090 zones->index_state = IS_CLOSED; 2091 zones->create_flag = true; 2092 return; 2093 default: 2094 break; 2095 } 2096 } 2097 if (result == UDS_SUCCESS) { 2098 zones->index_state = IS_OPENED; 2099 } else { 2100 zones->index_state = IS_CLOSED; 2101 zones->index_target = IS_CLOSED; 2102 zones->error_flag = true; 2103 spin_unlock(&zones->lock); 2104 vdo_log_info("Setting UDS index target state to error"); 2105 spin_lock(&zones->lock); 2106 } 2107 /* 2108 * ASSERTION: On success, we leave in IS_OPENED state. 2109 * ASSERTION: On failure, we leave in IS_CLOSED state. 2110 */ 2111 } 2112 2113 static void change_dedupe_state(struct vdo_completion *completion) 2114 { 2115 struct hash_zones *zones = as_hash_zones(completion); 2116 2117 spin_lock(&zones->lock); 2118 2119 /* Loop until the index is in the target state and the create flag is clear. */ 2120 while (vdo_is_state_normal(&zones->state) && 2121 ((zones->index_state != zones->index_target) || zones->create_flag)) { 2122 if (zones->index_state == IS_OPENED) 2123 close_index(zones); 2124 else 2125 open_index(zones); 2126 } 2127 2128 zones->changing = false; 2129 spin_unlock(&zones->lock); 2130 } 2131 2132 static void start_expiration_timer(struct dedupe_context *context) 2133 { 2134 u64 start_time = context->submission_jiffies; 2135 u64 end_time; 2136 2137 if (!change_timer_state(context->zone, DEDUPE_QUERY_TIMER_IDLE, 2138 DEDUPE_QUERY_TIMER_RUNNING)) 2139 return; 2140 2141 end_time = max(start_time + vdo_dedupe_index_timeout_jiffies, 2142 jiffies + vdo_dedupe_index_min_timer_jiffies); 2143 mod_timer(&context->zone->timer, end_time); 2144 } 2145 2146 /** 2147 * report_dedupe_timeouts() - Record and eventually report that some dedupe requests reached their 2148 * expiration time without getting answers, so we timed them out. 2149 * @zones: the hash zones. 2150 * @timeouts: the number of newly timed out requests. 2151 */ 2152 static void report_dedupe_timeouts(struct hash_zones *zones, unsigned int timeouts) 2153 { 2154 atomic64_add(timeouts, &zones->timeouts); 2155 spin_lock(&zones->lock); 2156 if (__ratelimit(&zones->ratelimiter)) { 2157 u64 unreported = atomic64_read(&zones->timeouts); 2158 2159 unreported -= zones->reported_timeouts; 2160 vdo_log_debug("UDS index timeout on %llu requests", 2161 (unsigned long long) unreported); 2162 zones->reported_timeouts += unreported; 2163 } 2164 spin_unlock(&zones->lock); 2165 } 2166 2167 static int initialize_index(struct vdo *vdo, struct hash_zones *zones) 2168 { 2169 int result; 2170 off_t uds_offset; 2171 struct volume_geometry geometry = vdo->geometry; 2172 static const struct vdo_work_queue_type uds_queue_type = { 2173 .start = start_uds_queue, 2174 .finish = finish_uds_queue, 2175 .max_priority = UDS_Q_MAX_PRIORITY, 2176 .default_priority = UDS_Q_PRIORITY, 2177 }; 2178 2179 vdo_set_dedupe_index_timeout_interval(vdo_dedupe_index_timeout_interval); 2180 vdo_set_dedupe_index_min_timer_interval(vdo_dedupe_index_min_timer_interval); 2181 2182 /* 2183 * Since we will save up the timeouts that would have been reported but were ratelimited, 2184 * we don't need to report ratelimiting. 2185 */ 2186 ratelimit_default_init(&zones->ratelimiter); 2187 ratelimit_set_flags(&zones->ratelimiter, RATELIMIT_MSG_ON_RELEASE); 2188 uds_offset = ((vdo_get_index_region_start(geometry) - 2189 geometry.bio_offset) * VDO_BLOCK_SIZE); 2190 zones->parameters = (struct uds_parameters) { 2191 .bdev = vdo->device_config->owned_device->bdev, 2192 .offset = uds_offset, 2193 .size = (vdo_get_index_region_size(geometry) * VDO_BLOCK_SIZE), 2194 .memory_size = geometry.index_config.mem, 2195 .sparse = geometry.index_config.sparse, 2196 .nonce = (u64) geometry.nonce, 2197 }; 2198 2199 result = uds_create_index_session(&zones->index_session); 2200 if (result != UDS_SUCCESS) 2201 return result; 2202 2203 result = vdo_make_thread(vdo, vdo->thread_config.dedupe_thread, &uds_queue_type, 2204 1, NULL); 2205 if (result != VDO_SUCCESS) { 2206 uds_destroy_index_session(vdo_forget(zones->index_session)); 2207 vdo_log_error("UDS index queue initialization failed (%d)", result); 2208 return result; 2209 } 2210 2211 vdo_initialize_completion(&zones->completion, vdo, VDO_HASH_ZONES_COMPLETION); 2212 vdo_set_completion_callback(&zones->completion, change_dedupe_state, 2213 vdo->thread_config.dedupe_thread); 2214 return VDO_SUCCESS; 2215 } 2216 2217 /** 2218 * finish_index_operation() - This is the UDS callback for index queries. 2219 * @request: The uds request which has just completed. 2220 */ 2221 static void finish_index_operation(struct uds_request *request) 2222 { 2223 struct dedupe_context *context = container_of(request, struct dedupe_context, 2224 request); 2225 2226 if (change_context_state(context, DEDUPE_CONTEXT_PENDING, 2227 DEDUPE_CONTEXT_COMPLETE)) { 2228 /* 2229 * This query has not timed out, so send its data_vio back to its hash zone to 2230 * process the results. 2231 */ 2232 continue_data_vio(context->requestor); 2233 return; 2234 } 2235 2236 /* 2237 * This query has timed out, so try to mark it complete and hence eligible for reuse. Its 2238 * data_vio has already moved on. 2239 */ 2240 if (!change_context_state(context, DEDUPE_CONTEXT_TIMED_OUT, 2241 DEDUPE_CONTEXT_TIMED_OUT_COMPLETE)) { 2242 VDO_ASSERT_LOG_ONLY(false, "uds request was timed out (state %d)", 2243 atomic_read(&context->state)); 2244 } 2245 2246 vdo_funnel_queue_put(context->zone->timed_out_complete, &context->queue_entry); 2247 } 2248 2249 /** 2250 * check_for_drain_complete() - Check whether this zone has drained. 2251 * @zone: The zone to check. 2252 */ 2253 static void check_for_drain_complete(struct hash_zone *zone) 2254 { 2255 data_vio_count_t recycled = 0; 2256 2257 if (!vdo_is_state_draining(&zone->state)) 2258 return; 2259 2260 if ((atomic_read(&zone->timer_state) == DEDUPE_QUERY_TIMER_IDLE) || 2261 change_timer_state(zone, DEDUPE_QUERY_TIMER_RUNNING, 2262 DEDUPE_QUERY_TIMER_IDLE)) { 2263 del_timer_sync(&zone->timer); 2264 } else { 2265 /* 2266 * There is an in flight time-out, which must get processed before we can continue. 2267 */ 2268 return; 2269 } 2270 2271 for (;;) { 2272 struct dedupe_context *context; 2273 struct funnel_queue_entry *entry; 2274 2275 entry = vdo_funnel_queue_poll(zone->timed_out_complete); 2276 if (entry == NULL) 2277 break; 2278 2279 context = container_of(entry, struct dedupe_context, queue_entry); 2280 atomic_set(&context->state, DEDUPE_CONTEXT_IDLE); 2281 list_add(&context->list_entry, &zone->available); 2282 recycled++; 2283 } 2284 2285 if (recycled > 0) 2286 WRITE_ONCE(zone->active, zone->active - recycled); 2287 VDO_ASSERT_LOG_ONLY(READ_ONCE(zone->active) == 0, "all contexts inactive"); 2288 vdo_finish_draining(&zone->state); 2289 } 2290 2291 static void timeout_index_operations_callback(struct vdo_completion *completion) 2292 { 2293 struct dedupe_context *context, *tmp; 2294 struct hash_zone *zone = as_hash_zone(completion); 2295 u64 timeout_jiffies = msecs_to_jiffies(vdo_dedupe_index_timeout_interval); 2296 unsigned long cutoff = jiffies - timeout_jiffies; 2297 unsigned int timed_out = 0; 2298 2299 atomic_set(&zone->timer_state, DEDUPE_QUERY_TIMER_IDLE); 2300 list_for_each_entry_safe(context, tmp, &zone->pending, list_entry) { 2301 if (cutoff <= context->submission_jiffies) { 2302 /* 2303 * We have reached the oldest query which has not timed out yet, so restart 2304 * the timer. 2305 */ 2306 start_expiration_timer(context); 2307 break; 2308 } 2309 2310 if (!change_context_state(context, DEDUPE_CONTEXT_PENDING, 2311 DEDUPE_CONTEXT_TIMED_OUT)) { 2312 /* 2313 * This context completed between the time the timeout fired, and now. We 2314 * can treat it as a successful query, its requestor is already enqueued 2315 * to process it. 2316 */ 2317 continue; 2318 } 2319 2320 /* 2321 * Remove this context from the pending list so we won't look at it again on a 2322 * subsequent timeout. Once the index completes it, it will be reused. Meanwhile, 2323 * send its requestor on its way. 2324 */ 2325 list_del_init(&context->list_entry); 2326 context->requestor->dedupe_context = NULL; 2327 continue_data_vio(context->requestor); 2328 timed_out++; 2329 } 2330 2331 if (timed_out > 0) 2332 report_dedupe_timeouts(completion->vdo->hash_zones, timed_out); 2333 2334 check_for_drain_complete(zone); 2335 } 2336 2337 static void timeout_index_operations(struct timer_list *t) 2338 { 2339 struct hash_zone *zone = from_timer(zone, t, timer); 2340 2341 if (change_timer_state(zone, DEDUPE_QUERY_TIMER_RUNNING, 2342 DEDUPE_QUERY_TIMER_FIRED)) 2343 vdo_launch_completion(&zone->completion); 2344 } 2345 2346 static int __must_check initialize_zone(struct vdo *vdo, struct hash_zones *zones, 2347 zone_count_t zone_number) 2348 { 2349 int result; 2350 data_vio_count_t i; 2351 struct hash_zone *zone = &zones->zones[zone_number]; 2352 2353 result = vdo_int_map_create(VDO_LOCK_MAP_CAPACITY, &zone->hash_lock_map); 2354 if (result != VDO_SUCCESS) 2355 return result; 2356 2357 vdo_set_admin_state_code(&zone->state, VDO_ADMIN_STATE_NORMAL_OPERATION); 2358 zone->zone_number = zone_number; 2359 zone->thread_id = vdo->thread_config.hash_zone_threads[zone_number]; 2360 vdo_initialize_completion(&zone->completion, vdo, VDO_HASH_ZONE_COMPLETION); 2361 vdo_set_completion_callback(&zone->completion, timeout_index_operations_callback, 2362 zone->thread_id); 2363 INIT_LIST_HEAD(&zone->lock_pool); 2364 result = vdo_allocate(LOCK_POOL_CAPACITY, struct hash_lock, "hash_lock array", 2365 &zone->lock_array); 2366 if (result != VDO_SUCCESS) 2367 return result; 2368 2369 for (i = 0; i < LOCK_POOL_CAPACITY; i++) 2370 return_hash_lock_to_pool(zone, &zone->lock_array[i]); 2371 2372 INIT_LIST_HEAD(&zone->available); 2373 INIT_LIST_HEAD(&zone->pending); 2374 result = vdo_make_funnel_queue(&zone->timed_out_complete); 2375 if (result != VDO_SUCCESS) 2376 return result; 2377 2378 timer_setup(&zone->timer, timeout_index_operations, 0); 2379 2380 for (i = 0; i < MAXIMUM_VDO_USER_VIOS; i++) { 2381 struct dedupe_context *context = &zone->contexts[i]; 2382 2383 context->zone = zone; 2384 context->request.callback = finish_index_operation; 2385 context->request.session = zones->index_session; 2386 list_add(&context->list_entry, &zone->available); 2387 } 2388 2389 return vdo_make_default_thread(vdo, zone->thread_id); 2390 } 2391 2392 /** get_thread_id_for_zone() - Implements vdo_zone_thread_getter_fn. */ 2393 static thread_id_t get_thread_id_for_zone(void *context, zone_count_t zone_number) 2394 { 2395 struct hash_zones *zones = context; 2396 2397 return zones->zones[zone_number].thread_id; 2398 } 2399 2400 /** 2401 * vdo_make_hash_zones() - Create the hash zones. 2402 * 2403 * @vdo: The vdo to which the zone will belong. 2404 * @zones_ptr: A pointer to hold the zones. 2405 * 2406 * Return: VDO_SUCCESS or an error code. 2407 */ 2408 int vdo_make_hash_zones(struct vdo *vdo, struct hash_zones **zones_ptr) 2409 { 2410 int result; 2411 struct hash_zones *zones; 2412 zone_count_t z; 2413 zone_count_t zone_count = vdo->thread_config.hash_zone_count; 2414 2415 if (zone_count == 0) 2416 return VDO_SUCCESS; 2417 2418 result = vdo_allocate_extended(struct hash_zones, zone_count, struct hash_zone, 2419 __func__, &zones); 2420 if (result != VDO_SUCCESS) 2421 return result; 2422 2423 result = initialize_index(vdo, zones); 2424 if (result != VDO_SUCCESS) { 2425 vdo_free(zones); 2426 return result; 2427 } 2428 2429 vdo_set_admin_state_code(&zones->state, VDO_ADMIN_STATE_NEW); 2430 2431 zones->zone_count = zone_count; 2432 for (z = 0; z < zone_count; z++) { 2433 result = initialize_zone(vdo, zones, z); 2434 if (result != VDO_SUCCESS) { 2435 vdo_free_hash_zones(zones); 2436 return result; 2437 } 2438 } 2439 2440 result = vdo_make_action_manager(zones->zone_count, get_thread_id_for_zone, 2441 vdo->thread_config.admin_thread, zones, NULL, 2442 vdo, &zones->manager); 2443 if (result != VDO_SUCCESS) { 2444 vdo_free_hash_zones(zones); 2445 return result; 2446 } 2447 2448 *zones_ptr = zones; 2449 return VDO_SUCCESS; 2450 } 2451 2452 void vdo_finish_dedupe_index(struct hash_zones *zones) 2453 { 2454 if (zones == NULL) 2455 return; 2456 2457 uds_destroy_index_session(vdo_forget(zones->index_session)); 2458 } 2459 2460 /** 2461 * vdo_free_hash_zones() - Free the hash zones. 2462 * @zones: The zone to free. 2463 */ 2464 void vdo_free_hash_zones(struct hash_zones *zones) 2465 { 2466 zone_count_t i; 2467 2468 if (zones == NULL) 2469 return; 2470 2471 vdo_free(vdo_forget(zones->manager)); 2472 2473 for (i = 0; i < zones->zone_count; i++) { 2474 struct hash_zone *zone = &zones->zones[i]; 2475 2476 vdo_free_funnel_queue(vdo_forget(zone->timed_out_complete)); 2477 vdo_int_map_free(vdo_forget(zone->hash_lock_map)); 2478 vdo_free(vdo_forget(zone->lock_array)); 2479 } 2480 2481 if (zones->index_session != NULL) 2482 vdo_finish_dedupe_index(zones); 2483 2484 ratelimit_state_exit(&zones->ratelimiter); 2485 vdo_free(zones); 2486 } 2487 2488 static void initiate_suspend_index(struct admin_state *state) 2489 { 2490 struct hash_zones *zones = container_of(state, struct hash_zones, state); 2491 enum index_state index_state; 2492 2493 spin_lock(&zones->lock); 2494 index_state = zones->index_state; 2495 spin_unlock(&zones->lock); 2496 2497 if (index_state != IS_CLOSED) { 2498 bool save = vdo_is_state_saving(&zones->state); 2499 int result; 2500 2501 result = uds_suspend_index_session(zones->index_session, save); 2502 if (result != UDS_SUCCESS) 2503 vdo_log_error_strerror(result, "Error suspending dedupe index"); 2504 } 2505 2506 vdo_finish_draining(state); 2507 } 2508 2509 /** 2510 * suspend_index() - Suspend the UDS index prior to draining hash zones. 2511 * 2512 * Implements vdo_action_preamble_fn 2513 */ 2514 static void suspend_index(void *context, struct vdo_completion *completion) 2515 { 2516 struct hash_zones *zones = context; 2517 2518 vdo_start_draining(&zones->state, 2519 vdo_get_current_manager_operation(zones->manager), completion, 2520 initiate_suspend_index); 2521 } 2522 2523 /** 2524 * initiate_drain() - Initiate a drain. 2525 * 2526 * Implements vdo_admin_initiator_fn. 2527 */ 2528 static void initiate_drain(struct admin_state *state) 2529 { 2530 check_for_drain_complete(container_of(state, struct hash_zone, state)); 2531 } 2532 2533 /** 2534 * drain_hash_zone() - Drain a hash zone. 2535 * 2536 * Implements vdo_zone_action_fn. 2537 */ 2538 static void drain_hash_zone(void *context, zone_count_t zone_number, 2539 struct vdo_completion *parent) 2540 { 2541 struct hash_zones *zones = context; 2542 2543 vdo_start_draining(&zones->zones[zone_number].state, 2544 vdo_get_current_manager_operation(zones->manager), parent, 2545 initiate_drain); 2546 } 2547 2548 /** vdo_drain_hash_zones() - Drain all hash zones. */ 2549 void vdo_drain_hash_zones(struct hash_zones *zones, struct vdo_completion *parent) 2550 { 2551 vdo_schedule_operation(zones->manager, parent->vdo->suspend_type, suspend_index, 2552 drain_hash_zone, NULL, parent); 2553 } 2554 2555 static void launch_dedupe_state_change(struct hash_zones *zones) 2556 __must_hold(&zones->lock) 2557 { 2558 /* ASSERTION: We enter with the lock held. */ 2559 if (zones->changing || !vdo_is_state_normal(&zones->state)) 2560 /* Either a change is already in progress, or changes are not allowed. */ 2561 return; 2562 2563 if (zones->create_flag || (zones->index_state != zones->index_target)) { 2564 zones->changing = true; 2565 vdo_launch_completion(&zones->completion); 2566 return; 2567 } 2568 2569 /* ASSERTION: We exit with the lock held. */ 2570 } 2571 2572 /** 2573 * resume_index() - Resume the UDS index prior to resuming hash zones. 2574 * 2575 * Implements vdo_action_preamble_fn 2576 */ 2577 static void resume_index(void *context, struct vdo_completion *parent) 2578 { 2579 struct hash_zones *zones = context; 2580 struct device_config *config = parent->vdo->device_config; 2581 int result; 2582 2583 zones->parameters.bdev = config->owned_device->bdev; 2584 result = uds_resume_index_session(zones->index_session, zones->parameters.bdev); 2585 if (result != UDS_SUCCESS) 2586 vdo_log_error_strerror(result, "Error resuming dedupe index"); 2587 2588 spin_lock(&zones->lock); 2589 vdo_resume_if_quiescent(&zones->state); 2590 2591 if (config->deduplication) { 2592 zones->index_target = IS_OPENED; 2593 WRITE_ONCE(zones->dedupe_flag, true); 2594 } else { 2595 zones->index_target = IS_CLOSED; 2596 } 2597 2598 launch_dedupe_state_change(zones); 2599 spin_unlock(&zones->lock); 2600 2601 vdo_finish_completion(parent); 2602 } 2603 2604 /** 2605 * resume_hash_zone() - Resume a hash zone. 2606 * 2607 * Implements vdo_zone_action_fn. 2608 */ 2609 static void resume_hash_zone(void *context, zone_count_t zone_number, 2610 struct vdo_completion *parent) 2611 { 2612 struct hash_zone *zone = &(((struct hash_zones *) context)->zones[zone_number]); 2613 2614 vdo_fail_completion(parent, vdo_resume_if_quiescent(&zone->state)); 2615 } 2616 2617 /** 2618 * vdo_resume_hash_zones() - Resume a set of hash zones. 2619 * @zones: The hash zones to resume. 2620 * @parent: The object to notify when the zones have resumed. 2621 */ 2622 void vdo_resume_hash_zones(struct hash_zones *zones, struct vdo_completion *parent) 2623 { 2624 if (vdo_is_read_only(parent->vdo)) { 2625 vdo_launch_completion(parent); 2626 return; 2627 } 2628 2629 vdo_schedule_operation(zones->manager, VDO_ADMIN_STATE_RESUMING, resume_index, 2630 resume_hash_zone, NULL, parent); 2631 } 2632 2633 /** 2634 * get_hash_zone_statistics() - Add the statistics for this hash zone to the tally for all zones. 2635 * @zone: The hash zone to query. 2636 * @tally: The tally 2637 */ 2638 static void get_hash_zone_statistics(const struct hash_zone *zone, 2639 struct hash_lock_statistics *tally) 2640 { 2641 const struct hash_lock_statistics *stats = &zone->statistics; 2642 2643 tally->dedupe_advice_valid += READ_ONCE(stats->dedupe_advice_valid); 2644 tally->dedupe_advice_stale += READ_ONCE(stats->dedupe_advice_stale); 2645 tally->concurrent_data_matches += READ_ONCE(stats->concurrent_data_matches); 2646 tally->concurrent_hash_collisions += READ_ONCE(stats->concurrent_hash_collisions); 2647 tally->curr_dedupe_queries += READ_ONCE(zone->active); 2648 } 2649 2650 static void get_index_statistics(struct hash_zones *zones, 2651 struct index_statistics *stats) 2652 { 2653 enum index_state state; 2654 struct uds_index_stats index_stats; 2655 int result; 2656 2657 spin_lock(&zones->lock); 2658 state = zones->index_state; 2659 spin_unlock(&zones->lock); 2660 2661 if (state != IS_OPENED) 2662 return; 2663 2664 result = uds_get_index_session_stats(zones->index_session, &index_stats); 2665 if (result != UDS_SUCCESS) { 2666 vdo_log_error_strerror(result, "Error reading index stats"); 2667 return; 2668 } 2669 2670 stats->entries_indexed = index_stats.entries_indexed; 2671 stats->posts_found = index_stats.posts_found; 2672 stats->posts_not_found = index_stats.posts_not_found; 2673 stats->queries_found = index_stats.queries_found; 2674 stats->queries_not_found = index_stats.queries_not_found; 2675 stats->updates_found = index_stats.updates_found; 2676 stats->updates_not_found = index_stats.updates_not_found; 2677 stats->entries_discarded = index_stats.entries_discarded; 2678 } 2679 2680 /** 2681 * vdo_get_dedupe_statistics() - Tally the statistics from all the hash zones and the UDS index. 2682 * @zones: The hash zones to query 2683 * @stats: A structure to store the statistics 2684 * 2685 * Return: The sum of the hash lock statistics from all hash zones plus the statistics from the UDS 2686 * index 2687 */ 2688 void vdo_get_dedupe_statistics(struct hash_zones *zones, struct vdo_statistics *stats) 2689 2690 { 2691 zone_count_t zone; 2692 2693 for (zone = 0; zone < zones->zone_count; zone++) 2694 get_hash_zone_statistics(&zones->zones[zone], &stats->hash_lock); 2695 2696 get_index_statistics(zones, &stats->index); 2697 2698 /* 2699 * zones->timeouts gives the number of timeouts, and dedupe_context_busy gives the number 2700 * of queries not made because of earlier timeouts. 2701 */ 2702 stats->dedupe_advice_timeouts = 2703 (atomic64_read(&zones->timeouts) + atomic64_read(&zones->dedupe_context_busy)); 2704 } 2705 2706 /** 2707 * vdo_select_hash_zone() - Select the hash zone responsible for locking a given record name. 2708 * @zones: The hash_zones from which to select. 2709 * @name: The record name. 2710 * 2711 * Return: The hash zone responsible for the record name. 2712 */ 2713 struct hash_zone *vdo_select_hash_zone(struct hash_zones *zones, 2714 const struct uds_record_name *name) 2715 { 2716 /* 2717 * Use a fragment of the record name as a hash code. Eight bits of hash should suffice 2718 * since the number of hash zones is small. 2719 * TODO: Verify that the first byte is independent enough. 2720 */ 2721 u32 hash = name->name[0]; 2722 2723 /* 2724 * Scale the 8-bit hash fragment to a zone index by treating it as a binary fraction and 2725 * multiplying that by the zone count. If the hash is uniformly distributed over [0 .. 2726 * 2^8-1], then (hash * count / 2^8) should be uniformly distributed over [0 .. count-1]. 2727 * The multiply and shift is much faster than a divide (modulus) on X86 CPUs. 2728 */ 2729 hash = (hash * zones->zone_count) >> 8; 2730 return &zones->zones[hash]; 2731 } 2732 2733 /** 2734 * dump_hash_lock() - Dump a compact description of hash_lock to the log if the lock is not on the 2735 * free list. 2736 * @lock: The hash lock to dump. 2737 */ 2738 static void dump_hash_lock(const struct hash_lock *lock) 2739 { 2740 const char *state; 2741 2742 if (!list_empty(&lock->pool_node)) { 2743 /* This lock is on the free list. */ 2744 return; 2745 } 2746 2747 /* 2748 * Necessarily cryptic since we can log a lot of these. First three chars of state is 2749 * unambiguous. 'U' indicates a lock not registered in the map. 2750 */ 2751 state = get_hash_lock_state_name(lock->state); 2752 vdo_log_info(" hl %px: %3.3s %c%llu/%u rc=%u wc=%zu agt=%px", 2753 lock, state, (lock->registered ? 'D' : 'U'), 2754 (unsigned long long) lock->duplicate.pbn, 2755 lock->duplicate.state, lock->reference_count, 2756 vdo_waitq_num_waiters(&lock->waiters), lock->agent); 2757 } 2758 2759 static const char *index_state_to_string(struct hash_zones *zones, 2760 enum index_state state) 2761 { 2762 if (!vdo_is_state_normal(&zones->state)) 2763 return SUSPENDED; 2764 2765 switch (state) { 2766 case IS_CLOSED: 2767 return zones->error_flag ? ERROR : CLOSED; 2768 case IS_CHANGING: 2769 return zones->index_target == IS_OPENED ? OPENING : CLOSING; 2770 case IS_OPENED: 2771 return READ_ONCE(zones->dedupe_flag) ? ONLINE : OFFLINE; 2772 default: 2773 return UNKNOWN; 2774 } 2775 } 2776 2777 /** 2778 * dump_hash_zone() - Dump information about a hash zone to the log for debugging. 2779 * @zone: The zone to dump. 2780 */ 2781 static void dump_hash_zone(const struct hash_zone *zone) 2782 { 2783 data_vio_count_t i; 2784 2785 if (zone->hash_lock_map == NULL) { 2786 vdo_log_info("struct hash_zone %u: NULL map", zone->zone_number); 2787 return; 2788 } 2789 2790 vdo_log_info("struct hash_zone %u: mapSize=%zu", 2791 zone->zone_number, vdo_int_map_size(zone->hash_lock_map)); 2792 for (i = 0; i < LOCK_POOL_CAPACITY; i++) 2793 dump_hash_lock(&zone->lock_array[i]); 2794 } 2795 2796 /** 2797 * vdo_dump_hash_zones() - Dump information about the hash zones to the log for debugging. 2798 * @zones: The zones to dump. 2799 */ 2800 void vdo_dump_hash_zones(struct hash_zones *zones) 2801 { 2802 const char *state, *target; 2803 zone_count_t zone; 2804 2805 spin_lock(&zones->lock); 2806 state = index_state_to_string(zones, zones->index_state); 2807 target = (zones->changing ? index_state_to_string(zones, zones->index_target) : NULL); 2808 spin_unlock(&zones->lock); 2809 2810 vdo_log_info("UDS index: state: %s", state); 2811 if (target != NULL) 2812 vdo_log_info("UDS index: changing to state: %s", target); 2813 2814 for (zone = 0; zone < zones->zone_count; zone++) 2815 dump_hash_zone(&zones->zones[zone]); 2816 } 2817 2818 void vdo_set_dedupe_index_timeout_interval(unsigned int value) 2819 { 2820 u64 alb_jiffies; 2821 2822 /* Arbitrary maximum value is two minutes */ 2823 if (value > 120000) 2824 value = 120000; 2825 /* Arbitrary minimum value is 2 jiffies */ 2826 alb_jiffies = msecs_to_jiffies(value); 2827 2828 if (alb_jiffies < 2) { 2829 alb_jiffies = 2; 2830 value = jiffies_to_msecs(alb_jiffies); 2831 } 2832 vdo_dedupe_index_timeout_interval = value; 2833 vdo_dedupe_index_timeout_jiffies = alb_jiffies; 2834 } 2835 2836 void vdo_set_dedupe_index_min_timer_interval(unsigned int value) 2837 { 2838 u64 min_jiffies; 2839 2840 /* Arbitrary maximum value is one second */ 2841 if (value > 1000) 2842 value = 1000; 2843 2844 /* Arbitrary minimum value is 2 jiffies */ 2845 min_jiffies = msecs_to_jiffies(value); 2846 2847 if (min_jiffies < 2) { 2848 min_jiffies = 2; 2849 value = jiffies_to_msecs(min_jiffies); 2850 } 2851 2852 vdo_dedupe_index_min_timer_interval = value; 2853 vdo_dedupe_index_min_timer_jiffies = min_jiffies; 2854 } 2855 2856 /** 2857 * acquire_context() - Acquire a dedupe context from a hash_zone if any are available. 2858 * @zone: the hash zone 2859 * 2860 * Return: A dedupe_context or NULL if none are available 2861 */ 2862 static struct dedupe_context * __must_check acquire_context(struct hash_zone *zone) 2863 { 2864 struct dedupe_context *context; 2865 struct funnel_queue_entry *entry; 2866 2867 assert_in_hash_zone(zone, __func__); 2868 2869 if (!list_empty(&zone->available)) { 2870 WRITE_ONCE(zone->active, zone->active + 1); 2871 context = list_first_entry(&zone->available, struct dedupe_context, 2872 list_entry); 2873 list_del_init(&context->list_entry); 2874 return context; 2875 } 2876 2877 entry = vdo_funnel_queue_poll(zone->timed_out_complete); 2878 return ((entry == NULL) ? 2879 NULL : container_of(entry, struct dedupe_context, queue_entry)); 2880 } 2881 2882 static void prepare_uds_request(struct uds_request *request, struct data_vio *data_vio, 2883 enum uds_request_type operation) 2884 { 2885 request->record_name = data_vio->record_name; 2886 request->type = operation; 2887 if ((operation == UDS_POST) || (operation == UDS_UPDATE)) { 2888 size_t offset = 0; 2889 struct uds_record_data *encoding = &request->new_metadata; 2890 2891 encoding->data[offset++] = UDS_ADVICE_VERSION; 2892 encoding->data[offset++] = data_vio->new_mapped.state; 2893 put_unaligned_le64(data_vio->new_mapped.pbn, &encoding->data[offset]); 2894 offset += sizeof(u64); 2895 BUG_ON(offset != UDS_ADVICE_SIZE); 2896 } 2897 } 2898 2899 /* 2900 * The index operation will inquire about data_vio.record_name, providing (if the operation is 2901 * appropriate) advice from the data_vio's new_mapped fields. The advice found in the index (or 2902 * NULL if none) will be returned via receive_data_vio_dedupe_advice(). dedupe_context.status is 2903 * set to the return status code of any asynchronous index processing. 2904 */ 2905 static void query_index(struct data_vio *data_vio, enum uds_request_type operation) 2906 { 2907 int result; 2908 struct dedupe_context *context; 2909 struct vdo *vdo = vdo_from_data_vio(data_vio); 2910 struct hash_zone *zone = data_vio->hash_zone; 2911 2912 assert_data_vio_in_hash_zone(data_vio); 2913 2914 if (!READ_ONCE(vdo->hash_zones->dedupe_flag)) { 2915 continue_data_vio(data_vio); 2916 return; 2917 } 2918 2919 context = acquire_context(zone); 2920 if (context == NULL) { 2921 atomic64_inc(&vdo->hash_zones->dedupe_context_busy); 2922 continue_data_vio(data_vio); 2923 return; 2924 } 2925 2926 data_vio->dedupe_context = context; 2927 context->requestor = data_vio; 2928 context->submission_jiffies = jiffies; 2929 prepare_uds_request(&context->request, data_vio, operation); 2930 atomic_set(&context->state, DEDUPE_CONTEXT_PENDING); 2931 list_add_tail(&context->list_entry, &zone->pending); 2932 start_expiration_timer(context); 2933 result = uds_launch_request(&context->request); 2934 if (result != UDS_SUCCESS) { 2935 context->request.status = result; 2936 finish_index_operation(&context->request); 2937 } 2938 } 2939 2940 static void set_target_state(struct hash_zones *zones, enum index_state target, 2941 bool change_dedupe, bool dedupe, bool set_create) 2942 { 2943 const char *old_state, *new_state; 2944 2945 spin_lock(&zones->lock); 2946 old_state = index_state_to_string(zones, zones->index_target); 2947 if (change_dedupe) 2948 WRITE_ONCE(zones->dedupe_flag, dedupe); 2949 2950 if (set_create) 2951 zones->create_flag = true; 2952 2953 zones->index_target = target; 2954 launch_dedupe_state_change(zones); 2955 new_state = index_state_to_string(zones, zones->index_target); 2956 spin_unlock(&zones->lock); 2957 2958 if (old_state != new_state) 2959 vdo_log_info("Setting UDS index target state to %s", new_state); 2960 } 2961 2962 const char *vdo_get_dedupe_index_state_name(struct hash_zones *zones) 2963 { 2964 const char *state; 2965 2966 spin_lock(&zones->lock); 2967 state = index_state_to_string(zones, zones->index_state); 2968 spin_unlock(&zones->lock); 2969 2970 return state; 2971 } 2972 2973 /* Handle a dmsetup message relevant to the index. */ 2974 int vdo_message_dedupe_index(struct hash_zones *zones, const char *name) 2975 { 2976 if (strcasecmp(name, "index-close") == 0) { 2977 set_target_state(zones, IS_CLOSED, false, false, false); 2978 return 0; 2979 } else if (strcasecmp(name, "index-create") == 0) { 2980 set_target_state(zones, IS_OPENED, false, false, true); 2981 return 0; 2982 } else if (strcasecmp(name, "index-disable") == 0) { 2983 set_target_state(zones, IS_OPENED, true, false, false); 2984 return 0; 2985 } else if (strcasecmp(name, "index-enable") == 0) { 2986 set_target_state(zones, IS_OPENED, true, true, false); 2987 return 0; 2988 } 2989 2990 return -EINVAL; 2991 } 2992 2993 void vdo_set_dedupe_state_normal(struct hash_zones *zones) 2994 { 2995 vdo_set_admin_state_code(&zones->state, VDO_ADMIN_STATE_NORMAL_OPERATION); 2996 } 2997 2998 /* If create_flag, create a new index without first attempting to load an existing index. */ 2999 void vdo_start_dedupe_index(struct hash_zones *zones, bool create_flag) 3000 { 3001 set_target_state(zones, IS_OPENED, true, true, create_flag); 3002 } 3003