xref: /linux/drivers/md/dm-vdo/dedupe.c (revision 7f71507851fc7764b36a3221839607d3a45c2025)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright 2023 Red Hat
4  */
5 
6 /**
7  * DOC:
8  *
9  * Hash Locks:
10  *
11  * A hash_lock controls and coordinates writing, index access, and dedupe among groups of data_vios
12  * concurrently writing identical blocks, allowing them to deduplicate not only against advice but
13  * also against each other. This saves on index queries and allows those data_vios to concurrently
14  * deduplicate against a single block instead of being serialized through a PBN read lock. Only one
15  * index query is needed for each hash_lock, instead of one for every data_vio.
16  *
17  * Hash_locks are assigned to hash_zones by computing a modulus on the hash itself. Each hash_zone
18  * has a single dedicated queue and thread for performing all operations on the hash_locks assigned
19  * to that zone. The concurrency guarantees of this single-threaded model allow the code to omit
20  * more fine-grained locking for the hash_lock structures.
21  *
22  * A hash_lock acts like a state machine perhaps more than as a lock. Other than the starting and
23  * ending states INITIALIZING and BYPASSING, every state represents and is held for the duration of
24  * an asynchronous operation. All state transitions are performed on the thread of the hash_zone
25  * containing the lock. An asynchronous operation is almost always performed upon entering a state,
26  * and the callback from that operation triggers exiting the state and entering a new state.
27  *
28  * In all states except DEDUPING, there is a single data_vio, called the lock agent, performing the
29  * asynchronous operations on behalf of the lock. The agent will change during the lifetime of the
30  * lock if the lock is shared by more than one data_vio. data_vios waiting to deduplicate are kept
31  * on a wait queue. Viewed a different way, the agent holds the lock exclusively until the lock
32  * enters the DEDUPING state, at which point it becomes a shared lock that all the waiters (and any
33  * new data_vios that arrive) use to share a PBN lock. In state DEDUPING, there is no agent. When
34  * the last data_vio in the lock calls back in DEDUPING, it becomes the agent and the lock becomes
35  * exclusive again. New data_vios that arrive in the lock will also go on the wait queue.
36  *
37  * The existence of lock waiters is a key factor controlling which state the lock transitions to
38  * next. When the lock is new or has waiters, it will always try to reach DEDUPING, and when it
39  * doesn't, it will try to clean up and exit.
40  *
41  * Deduping requires holding a PBN lock on a block that is known to contain data identical to the
42  * data_vios in the lock, so the lock will send the agent to the duplicate zone to acquire the PBN
43  * lock (LOCKING), to the kernel I/O threads to read and verify the data (VERIFYING), or to write a
44  * new copy of the data to a full data block or a slot in a compressed block (WRITING).
45  *
46  * Cleaning up consists of updating the index when the data location is different from the initial
47  * index query (UPDATING, triggered by stale advice, compression, and rollover), releasing the PBN
48  * lock on the duplicate block (UNLOCKING), and if the agent is the last data_vio referencing the
49  * lock, releasing the hash_lock itself back to the hash zone (BYPASSING).
50  *
51  * The shortest sequence of states is for non-concurrent writes of new data:
52  *   INITIALIZING -> QUERYING -> WRITING -> BYPASSING
53  * This sequence is short because no PBN read lock or index update is needed.
54  *
55  * Non-concurrent, finding valid advice looks like this (endpoints elided):
56  *   -> QUERYING -> LOCKING -> VERIFYING -> DEDUPING -> UNLOCKING ->
57  * Or with stale advice (endpoints elided):
58  *   -> QUERYING -> LOCKING -> VERIFYING -> UNLOCKING -> WRITING -> UPDATING ->
59  *
60  * When there are not enough available reference count increments available on a PBN for a data_vio
61  * to deduplicate, a new lock is forked and the excess waiters roll over to the new lock (which
62  * goes directly to WRITING). The new lock takes the place of the old lock in the lock map so new
63  * data_vios will be directed to it. The two locks will proceed independently, but only the new
64  * lock will have the right to update the index (unless it also forks).
65  *
66  * Since rollover happens in a lock instance, once a valid data location has been selected, it will
67  * not change. QUERYING and WRITING are only performed once per lock lifetime. All other
68  * non-endpoint states can be re-entered.
69  *
70  * The function names in this module follow a convention referencing the states and transitions in
71  * the state machine. For example, for the LOCKING state, there are start_locking() and
72  * finish_locking() functions.  start_locking() is invoked by the finish function of the state (or
73  * states) that transition to LOCKING. It performs the actual lock state change and must be invoked
74  * on the hash zone thread.  finish_locking() is called by (or continued via callback from) the
75  * code actually obtaining the lock. It does any bookkeeping or decision-making required and
76  * invokes the appropriate start function of the state being transitioned to after LOCKING.
77  *
78  * ----------------------------------------------------------------------
79  *
80  * Index Queries:
81  *
82  * A query to the UDS index is handled asynchronously by the index's threads. When the query is
83  * complete, a callback supplied with the query will be called from one of the those threads. Under
84  * heavy system load, the index may be slower to respond than is desirable for reasonable I/O
85  * throughput. Since deduplication of writes is not necessary for correct operation of a VDO
86  * device, it is acceptable to timeout out slow index queries and proceed to fulfill a write
87  * request without deduplicating. However, because the uds_request struct itself is supplied by the
88  * caller, we can not simply reuse a uds_request object which we have chosen to timeout. Hence,
89  * each hash_zone maintains a pool of dedupe_contexts which each contain a uds_request along with a
90  * reference to the data_vio on behalf of which they are performing a query.
91  *
92  * When a hash_lock needs to query the index, it attempts to acquire an unused dedupe_context from
93  * its hash_zone's pool. If one is available, that context is prepared, associated with the
94  * hash_lock's agent, added to the list of pending contexts, and then sent to the index. The
95  * context's state will be transitioned from DEDUPE_CONTEXT_IDLE to DEDUPE_CONTEXT_PENDING. If all
96  * goes well, the dedupe callback will be called by the index which will change the context's state
97  * to DEDUPE_CONTEXT_COMPLETE, and the associated data_vio will be enqueued to run back in the hash
98  * zone where the query results will be processed and the context will be put back in the idle
99  * state and returned to the hash_zone's available list.
100  *
101  * The first time an index query is launched from a given hash_zone, a timer is started. When the
102  * timer fires, the hash_zone's completion is enqueued to run in the hash_zone where the zone's
103  * pending list will be searched for any contexts in the pending state which have been running for
104  * too long. Those contexts are transitioned to the DEDUPE_CONTEXT_TIMED_OUT state and moved to the
105  * zone's timed_out list where they won't be examined again if there is a subsequent time out). The
106  * data_vios associated with timed out contexts are sent to continue processing their write
107  * operation without deduplicating. The timer is also restarted.
108  *
109  * When the dedupe callback is run for a context which is in the timed out state, that context is
110  * moved to the DEDUPE_CONTEXT_TIMED_OUT_COMPLETE state. No other action need be taken as the
111  * associated data_vios have already been dispatched.
112  *
113  * If a hash_lock needs a dedupe context, and the available list is empty, the timed_out list will
114  * be searched for any contexts which are timed out and complete. One of these will be used
115  * immediately, and the rest will be returned to the available list and marked idle.
116  */
117 
118 #include "dedupe.h"
119 
120 #include <linux/atomic.h>
121 #include <linux/jiffies.h>
122 #include <linux/kernel.h>
123 #include <linux/list.h>
124 #include <linux/ratelimit.h>
125 #include <linux/spinlock.h>
126 #include <linux/timer.h>
127 
128 #include "logger.h"
129 #include "memory-alloc.h"
130 #include "numeric.h"
131 #include "permassert.h"
132 #include "string-utils.h"
133 
134 #include "indexer.h"
135 
136 #include "action-manager.h"
137 #include "admin-state.h"
138 #include "completion.h"
139 #include "constants.h"
140 #include "data-vio.h"
141 #include "int-map.h"
142 #include "io-submitter.h"
143 #include "packer.h"
144 #include "physical-zone.h"
145 #include "slab-depot.h"
146 #include "statistics.h"
147 #include "types.h"
148 #include "vdo.h"
149 #include "wait-queue.h"
150 
151 #define DEDUPE_QUERY_TIMER_IDLE 0
152 #define DEDUPE_QUERY_TIMER_RUNNING 1
153 #define DEDUPE_QUERY_TIMER_FIRED 2
154 
155 enum dedupe_context_state {
156 	DEDUPE_CONTEXT_IDLE,
157 	DEDUPE_CONTEXT_PENDING,
158 	DEDUPE_CONTEXT_TIMED_OUT,
159 	DEDUPE_CONTEXT_COMPLETE,
160 	DEDUPE_CONTEXT_TIMED_OUT_COMPLETE,
161 };
162 
163 /* Possible index states: closed, opened, or transitioning between those two. */
164 enum index_state {
165 	IS_CLOSED,
166 	IS_CHANGING,
167 	IS_OPENED,
168 };
169 
170 static const char *CLOSED = "closed";
171 static const char *CLOSING = "closing";
172 static const char *ERROR = "error";
173 static const char *OFFLINE = "offline";
174 static const char *ONLINE = "online";
175 static const char *OPENING = "opening";
176 static const char *SUSPENDED = "suspended";
177 static const char *UNKNOWN = "unknown";
178 
179 /* Version 2 uses the kernel space UDS index and is limited to 16 bytes */
180 #define UDS_ADVICE_VERSION 2
181 /* version byte + state byte + 64-bit little-endian PBN */
182 #define UDS_ADVICE_SIZE (1 + 1 + sizeof(u64))
183 
184 enum hash_lock_state {
185 	/* State for locks that are not in use or are being initialized. */
186 	VDO_HASH_LOCK_INITIALIZING,
187 
188 	/* This is the sequence of states typically used on the non-dedupe path. */
189 	VDO_HASH_LOCK_QUERYING,
190 	VDO_HASH_LOCK_WRITING,
191 	VDO_HASH_LOCK_UPDATING,
192 
193 	/* The remaining states are typically used on the dedupe path in this order. */
194 	VDO_HASH_LOCK_LOCKING,
195 	VDO_HASH_LOCK_VERIFYING,
196 	VDO_HASH_LOCK_DEDUPING,
197 	VDO_HASH_LOCK_UNLOCKING,
198 
199 	/*
200 	 * Terminal state for locks returning to the pool. Must be last both because it's the final
201 	 * state, and also because it's used to count the states.
202 	 */
203 	VDO_HASH_LOCK_BYPASSING,
204 };
205 
206 static const char * const LOCK_STATE_NAMES[] = {
207 	[VDO_HASH_LOCK_BYPASSING] = "BYPASSING",
208 	[VDO_HASH_LOCK_DEDUPING] = "DEDUPING",
209 	[VDO_HASH_LOCK_INITIALIZING] = "INITIALIZING",
210 	[VDO_HASH_LOCK_LOCKING] = "LOCKING",
211 	[VDO_HASH_LOCK_QUERYING] = "QUERYING",
212 	[VDO_HASH_LOCK_UNLOCKING] = "UNLOCKING",
213 	[VDO_HASH_LOCK_UPDATING] = "UPDATING",
214 	[VDO_HASH_LOCK_VERIFYING] = "VERIFYING",
215 	[VDO_HASH_LOCK_WRITING] = "WRITING",
216 };
217 
218 struct hash_lock {
219 	/* The block hash covered by this lock */
220 	struct uds_record_name hash;
221 
222 	/* When the lock is unused, this list entry allows the lock to be pooled */
223 	struct list_head pool_node;
224 
225 	/*
226 	 * A list containing the data VIOs sharing this lock, all having the same record name and
227 	 * data block contents, linked by their hash_lock_node fields.
228 	 */
229 	struct list_head duplicate_ring;
230 
231 	/* The number of data_vios sharing this lock instance */
232 	data_vio_count_t reference_count;
233 
234 	/* The maximum value of reference_count in the lifetime of this lock */
235 	data_vio_count_t max_references;
236 
237 	/* The current state of this lock */
238 	enum hash_lock_state state;
239 
240 	/* True if the UDS index should be updated with new advice */
241 	bool update_advice;
242 
243 	/* True if the advice has been verified to be a true duplicate */
244 	bool verified;
245 
246 	/* True if the lock has already accounted for an initial verification */
247 	bool verify_counted;
248 
249 	/* True if this lock is registered in the lock map (cleared on rollover) */
250 	bool registered;
251 
252 	/*
253 	 * If verified is false, this is the location of a possible duplicate. If verified is true,
254 	 * it is the verified location of a true duplicate.
255 	 */
256 	struct zoned_pbn duplicate;
257 
258 	/* The PBN lock on the block containing the duplicate data */
259 	struct pbn_lock *duplicate_lock;
260 
261 	/* The data_vio designated to act on behalf of the lock */
262 	struct data_vio *agent;
263 
264 	/*
265 	 * Other data_vios with data identical to the agent who are currently waiting for the agent
266 	 * to get the information they all need to deduplicate--either against each other, or
267 	 * against an existing duplicate on disk.
268 	 */
269 	struct vdo_wait_queue waiters;
270 };
271 
272 #define LOCK_POOL_CAPACITY MAXIMUM_VDO_USER_VIOS
273 
274 struct hash_zones {
275 	struct action_manager *manager;
276 	struct uds_parameters parameters;
277 	struct uds_index_session *index_session;
278 	struct ratelimit_state ratelimiter;
279 	atomic64_t timeouts;
280 	atomic64_t dedupe_context_busy;
281 
282 	/* This spinlock protects the state fields and the starting of dedupe requests. */
283 	spinlock_t lock;
284 
285 	/* The fields in the next block are all protected by the lock */
286 	struct vdo_completion completion;
287 	enum index_state index_state;
288 	enum index_state index_target;
289 	struct admin_state state;
290 	bool changing;
291 	bool create_flag;
292 	bool dedupe_flag;
293 	bool error_flag;
294 	u64 reported_timeouts;
295 
296 	/* The number of zones */
297 	zone_count_t zone_count;
298 	/* The hash zones themselves */
299 	struct hash_zone zones[];
300 };
301 
302 /* These are in milliseconds. */
303 unsigned int vdo_dedupe_index_timeout_interval = 5000;
304 unsigned int vdo_dedupe_index_min_timer_interval = 100;
305 /* Same two variables, in jiffies for easier consumption. */
306 static u64 vdo_dedupe_index_timeout_jiffies;
307 static u64 vdo_dedupe_index_min_timer_jiffies;
308 
309 static inline struct hash_zone *as_hash_zone(struct vdo_completion *completion)
310 {
311 	vdo_assert_completion_type(completion, VDO_HASH_ZONE_COMPLETION);
312 	return container_of(completion, struct hash_zone, completion);
313 }
314 
315 static inline struct hash_zones *as_hash_zones(struct vdo_completion *completion)
316 {
317 	vdo_assert_completion_type(completion, VDO_HASH_ZONES_COMPLETION);
318 	return container_of(completion, struct hash_zones, completion);
319 }
320 
321 static inline void assert_in_hash_zone(struct hash_zone *zone, const char *name)
322 {
323 	VDO_ASSERT_LOG_ONLY((vdo_get_callback_thread_id() == zone->thread_id),
324 			    "%s called on hash zone thread", name);
325 }
326 
327 static inline bool change_context_state(struct dedupe_context *context, int old, int new)
328 {
329 	return (atomic_cmpxchg(&context->state, old, new) == old);
330 }
331 
332 static inline bool change_timer_state(struct hash_zone *zone, int old, int new)
333 {
334 	return (atomic_cmpxchg(&zone->timer_state, old, new) == old);
335 }
336 
337 /**
338  * return_hash_lock_to_pool() - (Re)initialize a hash lock and return it to its pool.
339  * @zone: The zone from which the lock was borrowed.
340  * @lock: The lock that is no longer in use.
341  */
342 static void return_hash_lock_to_pool(struct hash_zone *zone, struct hash_lock *lock)
343 {
344 	memset(lock, 0, sizeof(*lock));
345 	INIT_LIST_HEAD(&lock->pool_node);
346 	INIT_LIST_HEAD(&lock->duplicate_ring);
347 	vdo_waitq_init(&lock->waiters);
348 	list_add_tail(&lock->pool_node, &zone->lock_pool);
349 }
350 
351 /**
352  * vdo_get_duplicate_lock() - Get the PBN lock on the duplicate data location for a data_vio from
353  *                            the hash_lock the data_vio holds (if there is one).
354  * @data_vio: The data_vio to query.
355  *
356  * Return: The PBN lock on the data_vio's duplicate location.
357  */
358 struct pbn_lock *vdo_get_duplicate_lock(struct data_vio *data_vio)
359 {
360 	if (data_vio->hash_lock == NULL)
361 		return NULL;
362 
363 	return data_vio->hash_lock->duplicate_lock;
364 }
365 
366 /**
367  * hash_lock_key() - Return hash_lock's record name as a hash code.
368  * @lock: The hash lock.
369  *
370  * Return: The key to use for the int map.
371  */
372 static inline u64 hash_lock_key(struct hash_lock *lock)
373 {
374 	return get_unaligned_le64(&lock->hash.name);
375 }
376 
377 /**
378  * get_hash_lock_state_name() - Get the string representation of a hash lock state.
379  * @state: The hash lock state.
380  *
381  * Return: The short string representing the state
382  */
383 static const char *get_hash_lock_state_name(enum hash_lock_state state)
384 {
385 	/* Catch if a state has been added without updating the name array. */
386 	BUILD_BUG_ON((VDO_HASH_LOCK_BYPASSING + 1) != ARRAY_SIZE(LOCK_STATE_NAMES));
387 	return (state < ARRAY_SIZE(LOCK_STATE_NAMES)) ? LOCK_STATE_NAMES[state] : "INVALID";
388 }
389 
390 /**
391  * assert_hash_lock_agent() - Assert that a data_vio is the agent of its hash lock, and that this
392  *                            is being called in the hash zone.
393  * @data_vio: The data_vio expected to be the lock agent.
394  * @where: A string describing the function making the assertion.
395  */
396 static void assert_hash_lock_agent(struct data_vio *data_vio, const char *where)
397 {
398 	/* Not safe to access the agent field except from the hash zone. */
399 	assert_data_vio_in_hash_zone(data_vio);
400 	VDO_ASSERT_LOG_ONLY(data_vio == data_vio->hash_lock->agent,
401 			    "%s must be for the hash lock agent", where);
402 }
403 
404 /**
405  * set_duplicate_lock() - Set the duplicate lock held by a hash lock. May only be called in the
406  *                        physical zone of the PBN lock.
407  * @hash_lock: The hash lock to update.
408  * @pbn_lock: The PBN read lock to use as the duplicate lock.
409  */
410 static void set_duplicate_lock(struct hash_lock *hash_lock, struct pbn_lock *pbn_lock)
411 {
412 	VDO_ASSERT_LOG_ONLY((hash_lock->duplicate_lock == NULL),
413 			    "hash lock must not already hold a duplicate lock");
414 	pbn_lock->holder_count += 1;
415 	hash_lock->duplicate_lock = pbn_lock;
416 }
417 
418 /**
419  * dequeue_lock_waiter() - Remove the first data_vio from the lock's waitq and return it.
420  * @lock: The lock containing the wait queue.
421  *
422  * Return: The first (oldest) waiter in the queue, or NULL if the queue is empty.
423  */
424 static inline struct data_vio *dequeue_lock_waiter(struct hash_lock *lock)
425 {
426 	return vdo_waiter_as_data_vio(vdo_waitq_dequeue_waiter(&lock->waiters));
427 }
428 
429 /**
430  * set_hash_lock() - Set, change, or clear the hash lock a data_vio is using.
431  * @data_vio: The data_vio to update.
432  * @new_lock: The hash lock the data_vio is joining.
433  *
434  * Updates the hash lock (or locks) to reflect the change in membership.
435  */
436 static void set_hash_lock(struct data_vio *data_vio, struct hash_lock *new_lock)
437 {
438 	struct hash_lock *old_lock = data_vio->hash_lock;
439 
440 	if (old_lock != NULL) {
441 		VDO_ASSERT_LOG_ONLY(data_vio->hash_zone != NULL,
442 				    "must have a hash zone when holding a hash lock");
443 		VDO_ASSERT_LOG_ONLY(!list_empty(&data_vio->hash_lock_entry),
444 				    "must be on a hash lock ring when holding a hash lock");
445 		VDO_ASSERT_LOG_ONLY(old_lock->reference_count > 0,
446 				    "hash lock reference must be counted");
447 
448 		if ((old_lock->state != VDO_HASH_LOCK_BYPASSING) &&
449 		    (old_lock->state != VDO_HASH_LOCK_UNLOCKING)) {
450 			/*
451 			 * If the reference count goes to zero in a non-terminal state, we're most
452 			 * likely leaking this lock.
453 			 */
454 			VDO_ASSERT_LOG_ONLY(old_lock->reference_count > 1,
455 					    "hash locks should only become unreferenced in a terminal state, not state %s",
456 					    get_hash_lock_state_name(old_lock->state));
457 		}
458 
459 		list_del_init(&data_vio->hash_lock_entry);
460 		old_lock->reference_count -= 1;
461 
462 		data_vio->hash_lock = NULL;
463 	}
464 
465 	if (new_lock != NULL) {
466 		/*
467 		 * Keep all data_vios sharing the lock on a ring since they can complete in any
468 		 * order and we'll always need a pointer to one to compare data.
469 		 */
470 		list_move_tail(&data_vio->hash_lock_entry, &new_lock->duplicate_ring);
471 		new_lock->reference_count += 1;
472 		if (new_lock->max_references < new_lock->reference_count)
473 			new_lock->max_references = new_lock->reference_count;
474 
475 		data_vio->hash_lock = new_lock;
476 	}
477 }
478 
479 /* There are loops in the state diagram, so some forward decl's are needed. */
480 static void start_deduping(struct hash_lock *lock, struct data_vio *agent,
481 			   bool agent_is_done);
482 static void start_locking(struct hash_lock *lock, struct data_vio *agent);
483 static void start_writing(struct hash_lock *lock, struct data_vio *agent);
484 static void unlock_duplicate_pbn(struct vdo_completion *completion);
485 static void transfer_allocation_lock(struct data_vio *data_vio);
486 
487 /**
488  * exit_hash_lock() - Bottleneck for data_vios that have written or deduplicated and that are no
489  *                    longer needed to be an agent for the hash lock.
490  * @data_vio: The data_vio to complete and send to be cleaned up.
491  */
492 static void exit_hash_lock(struct data_vio *data_vio)
493 {
494 	/* Release the hash lock now, saving a thread transition in cleanup. */
495 	vdo_release_hash_lock(data_vio);
496 
497 	/* Complete the data_vio and start the clean-up path to release any locks it still holds. */
498 	data_vio->vio.completion.callback = complete_data_vio;
499 
500 	continue_data_vio(data_vio);
501 }
502 
503 /**
504  * set_duplicate_location() - Set the location of the duplicate block for data_vio, updating the
505  *                            is_duplicate and duplicate fields from a zoned_pbn.
506  * @data_vio: The data_vio to modify.
507  * @source: The location of the duplicate.
508  */
509 static void set_duplicate_location(struct data_vio *data_vio,
510 				   const struct zoned_pbn source)
511 {
512 	data_vio->is_duplicate = (source.pbn != VDO_ZERO_BLOCK);
513 	data_vio->duplicate = source;
514 }
515 
516 /**
517  * retire_lock_agent() - Retire the active lock agent, replacing it with the first lock waiter, and
518  *                       make the retired agent exit the hash lock.
519  * @lock: The hash lock to update.
520  *
521  * Return: The new lock agent (which will be NULL if there was no waiter)
522  */
523 static struct data_vio *retire_lock_agent(struct hash_lock *lock)
524 {
525 	struct data_vio *old_agent = lock->agent;
526 	struct data_vio *new_agent = dequeue_lock_waiter(lock);
527 
528 	lock->agent = new_agent;
529 	exit_hash_lock(old_agent);
530 	if (new_agent != NULL)
531 		set_duplicate_location(new_agent, lock->duplicate);
532 	return new_agent;
533 }
534 
535 /**
536  * wait_on_hash_lock() - Add a data_vio to the lock's queue of waiters.
537  * @lock: The hash lock on which to wait.
538  * @data_vio: The data_vio to add to the queue.
539  */
540 static void wait_on_hash_lock(struct hash_lock *lock, struct data_vio *data_vio)
541 {
542 	vdo_waitq_enqueue_waiter(&lock->waiters, &data_vio->waiter);
543 
544 	/*
545 	 * Make sure the agent doesn't block indefinitely in the packer since it now has at least
546 	 * one other data_vio waiting on it.
547 	 */
548 	if ((lock->state != VDO_HASH_LOCK_WRITING) || !cancel_data_vio_compression(lock->agent))
549 		return;
550 
551 	/*
552 	 * Even though we're waiting, we also have to send ourselves as a one-way message to the
553 	 * packer to ensure the agent continues executing. This is safe because
554 	 * cancel_vio_compression() guarantees the agent won't continue executing until this
555 	 * message arrives in the packer, and because the wait queue link isn't used for sending
556 	 * the message.
557 	 */
558 	data_vio->compression.lock_holder = lock->agent;
559 	launch_data_vio_packer_callback(data_vio, vdo_remove_lock_holder_from_packer);
560 }
561 
562 /**
563  * abort_waiter() - waiter_callback_fn function that shunts waiters to write their blocks without
564  *                  optimization.
565  * @waiter: The data_vio's waiter link.
566  * @context: Not used.
567  */
568 static void abort_waiter(struct vdo_waiter *waiter, void __always_unused *context)
569 {
570 	write_data_vio(vdo_waiter_as_data_vio(waiter));
571 }
572 
573 /**
574  * start_bypassing() - Stop using the hash lock.
575  * @lock: The hash lock.
576  * @agent: The data_vio acting as the agent for the lock.
577  *
578  * Stops using the hash lock. This is the final transition for hash locks which did not get an
579  * error.
580  */
581 static void start_bypassing(struct hash_lock *lock, struct data_vio *agent)
582 {
583 	lock->state = VDO_HASH_LOCK_BYPASSING;
584 	exit_hash_lock(agent);
585 }
586 
587 void vdo_clean_failed_hash_lock(struct data_vio *data_vio)
588 {
589 	struct hash_lock *lock = data_vio->hash_lock;
590 
591 	if (lock->state == VDO_HASH_LOCK_BYPASSING) {
592 		exit_hash_lock(data_vio);
593 		return;
594 	}
595 
596 	if (lock->agent == NULL) {
597 		lock->agent = data_vio;
598 	} else if (data_vio != lock->agent) {
599 		exit_hash_lock(data_vio);
600 		return;
601 	}
602 
603 	lock->state = VDO_HASH_LOCK_BYPASSING;
604 
605 	/* Ensure we don't attempt to update advice when cleaning up. */
606 	lock->update_advice = false;
607 
608 	vdo_waitq_notify_all_waiters(&lock->waiters, abort_waiter, NULL);
609 
610 	if (lock->duplicate_lock != NULL) {
611 		/* The agent must reference the duplicate zone to launch it. */
612 		data_vio->duplicate = lock->duplicate;
613 		launch_data_vio_duplicate_zone_callback(data_vio, unlock_duplicate_pbn);
614 		return;
615 	}
616 
617 	lock->agent = NULL;
618 	data_vio->is_duplicate = false;
619 	exit_hash_lock(data_vio);
620 }
621 
622 /**
623  * finish_unlocking() - Handle the result of the agent for the lock releasing a read lock on
624  *                      duplicate candidate.
625  * @completion: The completion of the data_vio acting as the lock's agent.
626  *
627  * This continuation is registered in unlock_duplicate_pbn().
628  */
629 static void finish_unlocking(struct vdo_completion *completion)
630 {
631 	struct data_vio *agent = as_data_vio(completion);
632 	struct hash_lock *lock = agent->hash_lock;
633 
634 	assert_hash_lock_agent(agent, __func__);
635 
636 	VDO_ASSERT_LOG_ONLY(lock->duplicate_lock == NULL,
637 			    "must have released the duplicate lock for the hash lock");
638 
639 	if (!lock->verified) {
640 		/*
641 		 * UNLOCKING -> WRITING transition: The lock we released was on an unverified
642 		 * block, so it must have been a lock on advice we were verifying, not on a
643 		 * location that was used for deduplication. Go write (or compress) the block to
644 		 * get a location to dedupe against.
645 		 */
646 		start_writing(lock, agent);
647 		return;
648 	}
649 
650 	/*
651 	 * With the lock released, the verified duplicate block may already have changed and will
652 	 * need to be re-verified if a waiter arrived.
653 	 */
654 	lock->verified = false;
655 
656 	if (vdo_waitq_has_waiters(&lock->waiters)) {
657 		/*
658 		 * UNLOCKING -> LOCKING transition: A new data_vio entered the hash lock while the
659 		 * agent was releasing the PBN lock. The current agent exits and the waiter has to
660 		 * re-lock and re-verify the duplicate location.
661 		 *
662 		 * TODO: If we used the current agent to re-acquire the PBN lock we wouldn't need
663 		 * to re-verify.
664 		 */
665 		agent = retire_lock_agent(lock);
666 		start_locking(lock, agent);
667 		return;
668 	}
669 
670 	/*
671 	 * UNLOCKING -> BYPASSING transition: The agent is done with the lock and no other
672 	 * data_vios reference it, so remove it from the lock map and return it to the pool.
673 	 */
674 	start_bypassing(lock, agent);
675 }
676 
677 /**
678  * unlock_duplicate_pbn() - Release a read lock on the PBN of the block that may or may not have
679  *                          contained duplicate data.
680  * @completion: The completion of the data_vio acting as the lock's agent.
681  *
682  * This continuation is launched by start_unlocking(), and calls back to finish_unlocking() on the
683  * hash zone thread.
684  */
685 static void unlock_duplicate_pbn(struct vdo_completion *completion)
686 {
687 	struct data_vio *agent = as_data_vio(completion);
688 	struct hash_lock *lock = agent->hash_lock;
689 
690 	assert_data_vio_in_duplicate_zone(agent);
691 	VDO_ASSERT_LOG_ONLY(lock->duplicate_lock != NULL,
692 			    "must have a duplicate lock to release");
693 
694 	vdo_release_physical_zone_pbn_lock(agent->duplicate.zone, agent->duplicate.pbn,
695 					   vdo_forget(lock->duplicate_lock));
696 	if (lock->state == VDO_HASH_LOCK_BYPASSING) {
697 		complete_data_vio(completion);
698 		return;
699 	}
700 
701 	launch_data_vio_hash_zone_callback(agent, finish_unlocking);
702 }
703 
704 /**
705  * start_unlocking() - Release a read lock on the PBN of the block that may or may not have
706  *                     contained duplicate data.
707  * @lock: The hash lock.
708  * @agent: The data_vio currently acting as the agent for the lock.
709  */
710 static void start_unlocking(struct hash_lock *lock, struct data_vio *agent)
711 {
712 	lock->state = VDO_HASH_LOCK_UNLOCKING;
713 	launch_data_vio_duplicate_zone_callback(agent, unlock_duplicate_pbn);
714 }
715 
716 static void release_context(struct dedupe_context *context)
717 {
718 	struct hash_zone *zone = context->zone;
719 
720 	WRITE_ONCE(zone->active, zone->active - 1);
721 	list_move(&context->list_entry, &zone->available);
722 }
723 
724 static void process_update_result(struct data_vio *agent)
725 {
726 	struct dedupe_context *context = agent->dedupe_context;
727 
728 	if ((context == NULL) ||
729 	    !change_context_state(context, DEDUPE_CONTEXT_COMPLETE, DEDUPE_CONTEXT_IDLE))
730 		return;
731 
732 	agent->dedupe_context = NULL;
733 	release_context(context);
734 }
735 
736 /**
737  * finish_updating() - Process the result of a UDS update performed by the agent for the lock.
738  * @completion: The completion of the data_vio that performed the update
739  *
740  * This continuation is registered in start_querying().
741  */
742 static void finish_updating(struct vdo_completion *completion)
743 {
744 	struct data_vio *agent = as_data_vio(completion);
745 	struct hash_lock *lock = agent->hash_lock;
746 
747 	assert_hash_lock_agent(agent, __func__);
748 
749 	process_update_result(agent);
750 
751 	/*
752 	 * UDS was updated successfully, so don't update again unless the duplicate location
753 	 * changes due to rollover.
754 	 */
755 	lock->update_advice = false;
756 
757 	if (vdo_waitq_has_waiters(&lock->waiters)) {
758 		/*
759 		 * UPDATING -> DEDUPING transition: A new data_vio arrived during the UDS update.
760 		 * Send it on the verified dedupe path. The agent is done with the lock, but the
761 		 * lock may still need to use it to clean up after rollover.
762 		 */
763 		start_deduping(lock, agent, true);
764 		return;
765 	}
766 
767 	if (lock->duplicate_lock != NULL) {
768 		/*
769 		 * UPDATING -> UNLOCKING transition: No one is waiting to dedupe, but we hold a
770 		 * duplicate PBN lock, so go release it.
771 		 */
772 		start_unlocking(lock, agent);
773 		return;
774 	}
775 
776 	/*
777 	 * UPDATING -> BYPASSING transition: No one is waiting to dedupe and there's no lock to
778 	 * release.
779 	 */
780 	start_bypassing(lock, agent);
781 }
782 
783 static void query_index(struct data_vio *data_vio, enum uds_request_type operation);
784 
785 /**
786  * start_updating() - Continue deduplication with the last step, updating UDS with the location of
787  *                    the duplicate that should be returned as advice in the future.
788  * @lock: The hash lock.
789  * @agent: The data_vio currently acting as the agent for the lock.
790  */
791 static void start_updating(struct hash_lock *lock, struct data_vio *agent)
792 {
793 	lock->state = VDO_HASH_LOCK_UPDATING;
794 
795 	VDO_ASSERT_LOG_ONLY(lock->verified, "new advice should have been verified");
796 	VDO_ASSERT_LOG_ONLY(lock->update_advice, "should only update advice if needed");
797 
798 	agent->last_async_operation = VIO_ASYNC_OP_UPDATE_DEDUPE_INDEX;
799 	set_data_vio_hash_zone_callback(agent, finish_updating);
800 	query_index(agent, UDS_UPDATE);
801 }
802 
803 /**
804  * finish_deduping() - Handle a data_vio that has finished deduplicating against the block locked
805  *                     by the hash lock.
806  * @lock: The hash lock.
807  * @data_vio: The lock holder that has finished deduplicating.
808  *
809  * If there are other data_vios still sharing the lock, this will just release the data_vio's share
810  * of the lock and finish processing the data_vio. If this is the last data_vio holding the lock,
811  * this makes the data_vio the lock agent and uses it to advance the state of the lock so it can
812  * eventually be released.
813  */
814 static void finish_deduping(struct hash_lock *lock, struct data_vio *data_vio)
815 {
816 	struct data_vio *agent = data_vio;
817 
818 	VDO_ASSERT_LOG_ONLY(lock->agent == NULL, "shouldn't have an agent in DEDUPING");
819 	VDO_ASSERT_LOG_ONLY(!vdo_waitq_has_waiters(&lock->waiters),
820 			    "shouldn't have any lock waiters in DEDUPING");
821 
822 	/* Just release the lock reference if other data_vios are still deduping. */
823 	if (lock->reference_count > 1) {
824 		exit_hash_lock(data_vio);
825 		return;
826 	}
827 
828 	/* The hash lock must have an agent for all other lock states. */
829 	lock->agent = agent;
830 	if (lock->update_advice) {
831 		/*
832 		 * DEDUPING -> UPDATING transition: The location of the duplicate block changed
833 		 * since the initial UDS query because of compression, rollover, or because the
834 		 * query agent didn't have an allocation. The UDS update was delayed in case there
835 		 * was another change in location, but with only this data_vio using the hash lock,
836 		 * it's time to update the advice.
837 		 */
838 		start_updating(lock, agent);
839 	} else {
840 		/*
841 		 * DEDUPING -> UNLOCKING transition: Release the PBN read lock on the duplicate
842 		 * location so the hash lock itself can be released (contingent on no new data_vios
843 		 * arriving in the lock before the agent returns).
844 		 */
845 		start_unlocking(lock, agent);
846 	}
847 }
848 
849 /**
850  * acquire_lock() - Get the lock for a record name.
851  * @zone: The zone responsible for the hash.
852  * @hash: The hash to lock.
853  * @replace_lock: If non-NULL, the lock already registered for the hash which should be replaced by
854  *                the new lock.
855  * @lock_ptr: A pointer to receive the hash lock.
856  *
857  * Gets the lock for the hash (record name) of the data in a data_vio, or if one does not exist (or
858  * if we are explicitly rolling over), initialize a new lock for the hash and register it in the
859  * zone. This must only be called in the correct thread for the zone.
860  *
861  * Return: VDO_SUCCESS or an error code.
862  */
863 static int __must_check acquire_lock(struct hash_zone *zone,
864 				     const struct uds_record_name *hash,
865 				     struct hash_lock *replace_lock,
866 				     struct hash_lock **lock_ptr)
867 {
868 	struct hash_lock *lock, *new_lock;
869 	int result;
870 
871 	/*
872 	 * Borrow and prepare a lock from the pool so we don't have to do two int_map accesses
873 	 * in the common case of no lock contention.
874 	 */
875 	result = VDO_ASSERT(!list_empty(&zone->lock_pool),
876 			    "never need to wait for a free hash lock");
877 	if (result != VDO_SUCCESS)
878 		return result;
879 
880 	new_lock = list_entry(zone->lock_pool.prev, struct hash_lock, pool_node);
881 	list_del_init(&new_lock->pool_node);
882 
883 	/*
884 	 * Fill in the hash of the new lock so we can map it, since we have to use the hash as the
885 	 * map key.
886 	 */
887 	new_lock->hash = *hash;
888 
889 	result = vdo_int_map_put(zone->hash_lock_map, hash_lock_key(new_lock),
890 				 new_lock, (replace_lock != NULL), (void **) &lock);
891 	if (result != VDO_SUCCESS) {
892 		return_hash_lock_to_pool(zone, vdo_forget(new_lock));
893 		return result;
894 	}
895 
896 	if (replace_lock != NULL) {
897 		/* On mismatch put the old lock back and return a severe error */
898 		VDO_ASSERT_LOG_ONLY(lock == replace_lock,
899 				    "old lock must have been in the lock map");
900 		/* TODO: Check earlier and bail out? */
901 		VDO_ASSERT_LOG_ONLY(replace_lock->registered,
902 				    "old lock must have been marked registered");
903 		replace_lock->registered = false;
904 	}
905 
906 	if (lock == replace_lock) {
907 		lock = new_lock;
908 		lock->registered = true;
909 	} else {
910 		/* There's already a lock for the hash, so we don't need the borrowed lock. */
911 		return_hash_lock_to_pool(zone, vdo_forget(new_lock));
912 	}
913 
914 	*lock_ptr = lock;
915 	return VDO_SUCCESS;
916 }
917 
918 /**
919  * enter_forked_lock() - Bind the data_vio to a new hash lock.
920  *
921  * Implements waiter_callback_fn. Binds the data_vio that was waiting to a new hash lock and waits
922  * on that lock.
923  */
924 static void enter_forked_lock(struct vdo_waiter *waiter, void *context)
925 {
926 	struct data_vio *data_vio = vdo_waiter_as_data_vio(waiter);
927 	struct hash_lock *new_lock = context;
928 
929 	set_hash_lock(data_vio, new_lock);
930 	wait_on_hash_lock(new_lock, data_vio);
931 }
932 
933 /**
934  * fork_hash_lock() - Fork a hash lock because it has run out of increments on the duplicate PBN.
935  * @old_lock: The hash lock to fork.
936  * @new_agent: The data_vio that will be the agent for the new lock.
937  *
938  * Transfers the new agent and any lock waiters to a new hash lock instance which takes the place
939  * of the old lock in the lock map. The old lock remains active, but will not update advice.
940  */
941 static void fork_hash_lock(struct hash_lock *old_lock, struct data_vio *new_agent)
942 {
943 	struct hash_lock *new_lock;
944 	int result;
945 
946 	result = acquire_lock(new_agent->hash_zone, &new_agent->record_name, old_lock,
947 			      &new_lock);
948 	if (result != VDO_SUCCESS) {
949 		continue_data_vio_with_error(new_agent, result);
950 		return;
951 	}
952 
953 	/*
954 	 * Only one of the two locks should update UDS. The old lock is out of references, so it
955 	 * would be poor dedupe advice in the short term.
956 	 */
957 	old_lock->update_advice = false;
958 	new_lock->update_advice = true;
959 
960 	set_hash_lock(new_agent, new_lock);
961 	new_lock->agent = new_agent;
962 
963 	vdo_waitq_notify_all_waiters(&old_lock->waiters, enter_forked_lock, new_lock);
964 
965 	new_agent->is_duplicate = false;
966 	start_writing(new_lock, new_agent);
967 }
968 
969 /**
970  * launch_dedupe() - Reserve a reference count increment for a data_vio and launch it on the dedupe
971  *                   path.
972  * @lock: The hash lock.
973  * @data_vio: The data_vio to deduplicate using the hash lock.
974  * @has_claim: true if the data_vio already has claimed an increment from the duplicate lock.
975  *
976  * If no increments are available, this will roll over to a new hash lock and launch the data_vio
977  * as the writing agent for that lock.
978  */
979 static void launch_dedupe(struct hash_lock *lock, struct data_vio *data_vio,
980 			  bool has_claim)
981 {
982 	if (!has_claim && !vdo_claim_pbn_lock_increment(lock->duplicate_lock)) {
983 		/* Out of increments, so must roll over to a new lock. */
984 		fork_hash_lock(lock, data_vio);
985 		return;
986 	}
987 
988 	/* Deduplicate against the lock's verified location. */
989 	set_duplicate_location(data_vio, lock->duplicate);
990 	data_vio->new_mapped = data_vio->duplicate;
991 	update_metadata_for_data_vio_write(data_vio, lock->duplicate_lock);
992 }
993 
994 /**
995  * start_deduping() - Enter the hash lock state where data_vios deduplicate in parallel against a
996  *                    true copy of their data on disk.
997  * @lock: The hash lock.
998  * @agent: The data_vio acting as the agent for the lock.
999  * @agent_is_done: true only if the agent has already written or deduplicated against its data.
1000  *
1001  * If the agent itself needs to deduplicate, an increment for it must already have been claimed
1002  * from the duplicate lock, ensuring the hash lock will still have a data_vio holding it.
1003  */
1004 static void start_deduping(struct hash_lock *lock, struct data_vio *agent,
1005 			   bool agent_is_done)
1006 {
1007 	lock->state = VDO_HASH_LOCK_DEDUPING;
1008 
1009 	/*
1010 	 * We don't take the downgraded allocation lock from the agent unless we actually need to
1011 	 * deduplicate against it.
1012 	 */
1013 	if (lock->duplicate_lock == NULL) {
1014 		VDO_ASSERT_LOG_ONLY(!vdo_is_state_compressed(agent->new_mapped.state),
1015 				    "compression must have shared a lock");
1016 		VDO_ASSERT_LOG_ONLY(agent_is_done,
1017 				    "agent must have written the new duplicate");
1018 		transfer_allocation_lock(agent);
1019 	}
1020 
1021 	VDO_ASSERT_LOG_ONLY(vdo_is_pbn_read_lock(lock->duplicate_lock),
1022 			    "duplicate_lock must be a PBN read lock");
1023 
1024 	/*
1025 	 * This state is not like any of the other states. There is no designated agent--the agent
1026 	 * transitioning to this state and all the waiters will be launched to deduplicate in
1027 	 * parallel.
1028 	 */
1029 	lock->agent = NULL;
1030 
1031 	/*
1032 	 * Launch the agent (if not already deduplicated) and as many lock waiters as we have
1033 	 * available increments for on the dedupe path. If we run out of increments, rollover will
1034 	 * be triggered and the remaining waiters will be transferred to the new lock.
1035 	 */
1036 	if (!agent_is_done) {
1037 		launch_dedupe(lock, agent, true);
1038 		agent = NULL;
1039 	}
1040 	while (vdo_waitq_has_waiters(&lock->waiters))
1041 		launch_dedupe(lock, dequeue_lock_waiter(lock), false);
1042 
1043 	if (agent_is_done) {
1044 		/*
1045 		 * In the degenerate case where all the waiters rolled over to a new lock, this
1046 		 * will continue to use the old agent to clean up this lock, and otherwise it just
1047 		 * lets the agent exit the lock.
1048 		 */
1049 		finish_deduping(lock, agent);
1050 	}
1051 }
1052 
1053 /**
1054  * increment_stat() - Increment a statistic counter in a non-atomic yet thread-safe manner.
1055  * @stat: The statistic field to increment.
1056  */
1057 static inline void increment_stat(u64 *stat)
1058 {
1059 	/*
1060 	 * Must only be mutated on the hash zone thread. Prevents any compiler shenanigans from
1061 	 * affecting other threads reading stats.
1062 	 */
1063 	WRITE_ONCE(*stat, *stat + 1);
1064 }
1065 
1066 /**
1067  * finish_verifying() - Handle the result of the agent for the lock comparing its data to the
1068  *                      duplicate candidate.
1069  * @completion: The completion of the data_vio used to verify dedupe
1070  *
1071  * This continuation is registered in start_verifying().
1072  */
1073 static void finish_verifying(struct vdo_completion *completion)
1074 {
1075 	struct data_vio *agent = as_data_vio(completion);
1076 	struct hash_lock *lock = agent->hash_lock;
1077 
1078 	assert_hash_lock_agent(agent, __func__);
1079 
1080 	lock->verified = agent->is_duplicate;
1081 
1082 	/*
1083 	 * Only count the result of the initial verification of the advice as valid or stale, and
1084 	 * not any re-verifications due to PBN lock releases.
1085 	 */
1086 	if (!lock->verify_counted) {
1087 		lock->verify_counted = true;
1088 		if (lock->verified)
1089 			increment_stat(&agent->hash_zone->statistics.dedupe_advice_valid);
1090 		else
1091 			increment_stat(&agent->hash_zone->statistics.dedupe_advice_stale);
1092 	}
1093 
1094 	/*
1095 	 * Even if the block is a verified duplicate, we can't start to deduplicate unless we can
1096 	 * claim a reference count increment for the agent.
1097 	 */
1098 	if (lock->verified && !vdo_claim_pbn_lock_increment(lock->duplicate_lock)) {
1099 		agent->is_duplicate = false;
1100 		lock->verified = false;
1101 	}
1102 
1103 	if (lock->verified) {
1104 		/*
1105 		 * VERIFYING -> DEDUPING transition: The advice is for a true duplicate, so start
1106 		 * deduplicating against it, if references are available.
1107 		 */
1108 		start_deduping(lock, agent, false);
1109 	} else {
1110 		/*
1111 		 * VERIFYING -> UNLOCKING transition: Either the verify failed or we'd try to
1112 		 * dedupe and roll over immediately, which would fail because it would leave the
1113 		 * lock without an agent to release the PBN lock. In both cases, the data will have
1114 		 * to be written or compressed, but first the advice PBN must be unlocked by the
1115 		 * VERIFYING agent.
1116 		 */
1117 		lock->update_advice = true;
1118 		start_unlocking(lock, agent);
1119 	}
1120 }
1121 
1122 static bool blocks_equal(char *block1, char *block2)
1123 {
1124 	int i;
1125 
1126 	for (i = 0; i < VDO_BLOCK_SIZE; i += sizeof(u64)) {
1127 		if (*((u64 *) &block1[i]) != *((u64 *) &block2[i]))
1128 			return false;
1129 	}
1130 
1131 	return true;
1132 }
1133 
1134 static void verify_callback(struct vdo_completion *completion)
1135 {
1136 	struct data_vio *agent = as_data_vio(completion);
1137 
1138 	agent->is_duplicate = blocks_equal(agent->vio.data, agent->scratch_block);
1139 	launch_data_vio_hash_zone_callback(agent, finish_verifying);
1140 }
1141 
1142 static void uncompress_and_verify(struct vdo_completion *completion)
1143 {
1144 	struct data_vio *agent = as_data_vio(completion);
1145 	int result;
1146 
1147 	result = uncompress_data_vio(agent, agent->duplicate.state,
1148 				     agent->scratch_block);
1149 	if (result == VDO_SUCCESS) {
1150 		verify_callback(completion);
1151 		return;
1152 	}
1153 
1154 	agent->is_duplicate = false;
1155 	launch_data_vio_hash_zone_callback(agent, finish_verifying);
1156 }
1157 
1158 static void verify_endio(struct bio *bio)
1159 {
1160 	struct data_vio *agent = vio_as_data_vio(bio->bi_private);
1161 	int result = blk_status_to_errno(bio->bi_status);
1162 
1163 	vdo_count_completed_bios(bio);
1164 	if (result != VDO_SUCCESS) {
1165 		agent->is_duplicate = false;
1166 		launch_data_vio_hash_zone_callback(agent, finish_verifying);
1167 		return;
1168 	}
1169 
1170 	if (vdo_is_state_compressed(agent->duplicate.state)) {
1171 		launch_data_vio_cpu_callback(agent, uncompress_and_verify,
1172 					     CPU_Q_COMPRESS_BLOCK_PRIORITY);
1173 		return;
1174 	}
1175 
1176 	launch_data_vio_cpu_callback(agent, verify_callback,
1177 				     CPU_Q_COMPLETE_READ_PRIORITY);
1178 }
1179 
1180 /**
1181  * start_verifying() - Begin the data verification phase.
1182  * @lock: The hash lock (must be LOCKING).
1183  * @agent: The data_vio to use to read and compare candidate data.
1184  *
1185  * Continue the deduplication path for a hash lock by using the agent to read (and possibly
1186  * decompress) the data at the candidate duplicate location, comparing it to the data in the agent
1187  * to verify that the candidate is identical to all the data_vios sharing the hash. If so, it can
1188  * be deduplicated against, otherwise a data_vio allocation will have to be written to and used for
1189  * dedupe.
1190  */
1191 static void start_verifying(struct hash_lock *lock, struct data_vio *agent)
1192 {
1193 	int result;
1194 	struct vio *vio = &agent->vio;
1195 	char *buffer = (vdo_is_state_compressed(agent->duplicate.state) ?
1196 			(char *) agent->compression.block :
1197 			agent->scratch_block);
1198 
1199 	lock->state = VDO_HASH_LOCK_VERIFYING;
1200 	VDO_ASSERT_LOG_ONLY(!lock->verified, "hash lock only verifies advice once");
1201 
1202 	agent->last_async_operation = VIO_ASYNC_OP_VERIFY_DUPLICATION;
1203 	result = vio_reset_bio(vio, buffer, verify_endio, REQ_OP_READ,
1204 			       agent->duplicate.pbn);
1205 	if (result != VDO_SUCCESS) {
1206 		set_data_vio_hash_zone_callback(agent, finish_verifying);
1207 		continue_data_vio_with_error(agent, result);
1208 		return;
1209 	}
1210 
1211 	set_data_vio_bio_zone_callback(agent, vdo_submit_vio);
1212 	vdo_launch_completion_with_priority(&vio->completion, BIO_Q_VERIFY_PRIORITY);
1213 }
1214 
1215 /**
1216  * finish_locking() - Handle the result of the agent for the lock attempting to obtain a PBN read
1217  *                    lock on the candidate duplicate block.
1218  * @completion: The completion of the data_vio that attempted to get the read lock.
1219  *
1220  * This continuation is registered in lock_duplicate_pbn().
1221  */
1222 static void finish_locking(struct vdo_completion *completion)
1223 {
1224 	struct data_vio *agent = as_data_vio(completion);
1225 	struct hash_lock *lock = agent->hash_lock;
1226 
1227 	assert_hash_lock_agent(agent, __func__);
1228 
1229 	if (!agent->is_duplicate) {
1230 		VDO_ASSERT_LOG_ONLY(lock->duplicate_lock == NULL,
1231 				    "must not hold duplicate_lock if not flagged as a duplicate");
1232 		/*
1233 		 * LOCKING -> WRITING transition: The advice block is being modified or has no
1234 		 * available references, so try to write or compress the data, remembering to
1235 		 * update UDS later with the new advice.
1236 		 */
1237 		increment_stat(&agent->hash_zone->statistics.dedupe_advice_stale);
1238 		lock->update_advice = true;
1239 		start_writing(lock, agent);
1240 		return;
1241 	}
1242 
1243 	VDO_ASSERT_LOG_ONLY(lock->duplicate_lock != NULL,
1244 			    "must hold duplicate_lock if flagged as a duplicate");
1245 
1246 	if (!lock->verified) {
1247 		/*
1248 		 * LOCKING -> VERIFYING transition: Continue on the unverified dedupe path, reading
1249 		 * the candidate duplicate and comparing it to the agent's data to decide whether
1250 		 * it is a true duplicate or stale advice.
1251 		 */
1252 		start_verifying(lock, agent);
1253 		return;
1254 	}
1255 
1256 	if (!vdo_claim_pbn_lock_increment(lock->duplicate_lock)) {
1257 		/*
1258 		 * LOCKING -> UNLOCKING transition: The verified block was re-locked, but has no
1259 		 * available increments left. Must first release the useless PBN read lock before
1260 		 * rolling over to a new copy of the block.
1261 		 */
1262 		agent->is_duplicate = false;
1263 		lock->verified = false;
1264 		lock->update_advice = true;
1265 		start_unlocking(lock, agent);
1266 		return;
1267 	}
1268 
1269 	/*
1270 	 * LOCKING -> DEDUPING transition: Continue on the verified dedupe path, deduplicating
1271 	 * against a location that was previously verified or written to.
1272 	 */
1273 	start_deduping(lock, agent, false);
1274 }
1275 
1276 static bool acquire_provisional_reference(struct data_vio *agent, struct pbn_lock *lock,
1277 					  struct slab_depot *depot)
1278 {
1279 	/* Ensure that the newly-locked block is referenced. */
1280 	struct vdo_slab *slab = vdo_get_slab(depot, agent->duplicate.pbn);
1281 	int result = vdo_acquire_provisional_reference(slab, agent->duplicate.pbn, lock);
1282 
1283 	if (result == VDO_SUCCESS)
1284 		return true;
1285 
1286 	vdo_log_warning_strerror(result,
1287 				 "Error acquiring provisional reference for dedupe candidate; aborting dedupe");
1288 	agent->is_duplicate = false;
1289 	vdo_release_physical_zone_pbn_lock(agent->duplicate.zone,
1290 					   agent->duplicate.pbn, lock);
1291 	continue_data_vio_with_error(agent, result);
1292 	return false;
1293 }
1294 
1295 /**
1296  * lock_duplicate_pbn() - Acquire a read lock on the PBN of the block containing candidate
1297  *                        duplicate data (compressed or uncompressed).
1298  * @completion: The completion of the data_vio attempting to acquire the physical block lock on
1299  *              behalf of its hash lock.
1300  *
1301  * If the PBN is already locked for writing, the lock attempt is abandoned and is_duplicate will be
1302  * cleared before calling back. This continuation is launched from start_locking(), and calls back
1303  * to finish_locking() on the hash zone thread.
1304  */
1305 static void lock_duplicate_pbn(struct vdo_completion *completion)
1306 {
1307 	unsigned int increment_limit;
1308 	struct pbn_lock *lock;
1309 	int result;
1310 
1311 	struct data_vio *agent = as_data_vio(completion);
1312 	struct slab_depot *depot = vdo_from_data_vio(agent)->depot;
1313 	struct physical_zone *zone = agent->duplicate.zone;
1314 
1315 	assert_data_vio_in_duplicate_zone(agent);
1316 
1317 	set_data_vio_hash_zone_callback(agent, finish_locking);
1318 
1319 	/*
1320 	 * While in the zone that owns it, find out how many additional references can be made to
1321 	 * the block if it turns out to truly be a duplicate.
1322 	 */
1323 	increment_limit = vdo_get_increment_limit(depot, agent->duplicate.pbn);
1324 	if (increment_limit == 0) {
1325 		/*
1326 		 * We could deduplicate against it later if a reference happened to be released
1327 		 * during verification, but it's probably better to bail out now.
1328 		 */
1329 		agent->is_duplicate = false;
1330 		continue_data_vio(agent);
1331 		return;
1332 	}
1333 
1334 	result = vdo_attempt_physical_zone_pbn_lock(zone, agent->duplicate.pbn,
1335 						    VIO_READ_LOCK, &lock);
1336 	if (result != VDO_SUCCESS) {
1337 		continue_data_vio_with_error(agent, result);
1338 		return;
1339 	}
1340 
1341 	if (!vdo_is_pbn_read_lock(lock)) {
1342 		/*
1343 		 * There are three cases of write locks: uncompressed data block writes, compressed
1344 		 * (packed) block writes, and block map page writes. In all three cases, we give up
1345 		 * on trying to verify the advice and don't bother to try deduplicate against the
1346 		 * data in the write lock holder.
1347 		 *
1348 		 * 1) We don't ever want to try to deduplicate against a block map page.
1349 		 *
1350 		 * 2a) It's very unlikely we'd deduplicate against an entire packed block, both
1351 		 * because of the chance of matching it, and because we don't record advice for it,
1352 		 * but for the uncompressed representation of all the fragments it contains. The
1353 		 * only way we'd be getting lock contention is if we've written the same
1354 		 * representation coincidentally before, had it become unreferenced, and it just
1355 		 * happened to be packed together from compressed writes when we go to verify the
1356 		 * lucky advice. Giving up is a minuscule loss of potential dedupe.
1357 		 *
1358 		 * 2b) If the advice is for a slot of a compressed block, it's about to get
1359 		 * smashed, and the write smashing it cannot contain our data--it would have to be
1360 		 * writing on behalf of our hash lock, but that's impossible since we're the lock
1361 		 * agent.
1362 		 *
1363 		 * 3a) If the lock is held by a data_vio with different data, the advice is already
1364 		 * stale or is about to become stale.
1365 		 *
1366 		 * 3b) If the lock is held by a data_vio that matches us, we may as well either
1367 		 * write it ourselves (or reference the copy we already wrote) instead of
1368 		 * potentially having many duplicates wait for the lock holder to write, journal,
1369 		 * hash, and finally arrive in the hash lock. We lose a chance to avoid a UDS
1370 		 * update in the very rare case of advice for a free block that just happened to be
1371 		 * allocated to a data_vio with the same hash. There's also a chance to save on a
1372 		 * block write, at the cost of a block verify. Saving on a full block compare in
1373 		 * all stale advice cases almost certainly outweighs saving a UDS update and
1374 		 * trading a write for a read in a lucky case where advice would have been saved
1375 		 * from becoming stale.
1376 		 */
1377 		agent->is_duplicate = false;
1378 		continue_data_vio(agent);
1379 		return;
1380 	}
1381 
1382 	if (lock->holder_count == 0) {
1383 		if (!acquire_provisional_reference(agent, lock, depot))
1384 			return;
1385 
1386 		/*
1387 		 * The increment limit we grabbed earlier is still valid. The lock now holds the
1388 		 * rights to acquire all those references. Those rights will be claimed by hash
1389 		 * locks sharing this read lock.
1390 		 */
1391 		lock->increment_limit = increment_limit;
1392 	}
1393 
1394 	/*
1395 	 * We've successfully acquired a read lock on behalf of the hash lock, so mark it as such.
1396 	 */
1397 	set_duplicate_lock(agent->hash_lock, lock);
1398 
1399 	/*
1400 	 * TODO: Optimization: We could directly launch the block verify, then switch to a hash
1401 	 * thread.
1402 	 */
1403 	continue_data_vio(agent);
1404 }
1405 
1406 /**
1407  * start_locking() - Continue deduplication for a hash lock that has obtained valid advice of a
1408  *                   potential duplicate through its agent.
1409  * @lock: The hash lock (currently must be QUERYING).
1410  * @agent: The data_vio bearing the dedupe advice.
1411  */
1412 static void start_locking(struct hash_lock *lock, struct data_vio *agent)
1413 {
1414 	VDO_ASSERT_LOG_ONLY(lock->duplicate_lock == NULL,
1415 			    "must not acquire a duplicate lock when already holding it");
1416 
1417 	lock->state = VDO_HASH_LOCK_LOCKING;
1418 
1419 	/*
1420 	 * TODO: Optimization: If we arrange to continue on the duplicate zone thread when
1421 	 * accepting the advice, and don't explicitly change lock states (or use an agent-local
1422 	 * state, or an atomic), we can avoid a thread transition here.
1423 	 */
1424 	agent->last_async_operation = VIO_ASYNC_OP_LOCK_DUPLICATE_PBN;
1425 	launch_data_vio_duplicate_zone_callback(agent, lock_duplicate_pbn);
1426 }
1427 
1428 /**
1429  * finish_writing() - Re-entry point for the lock agent after it has finished writing or
1430  *                    compressing its copy of the data block.
1431  * @lock: The hash lock, which must be in state WRITING.
1432  * @agent: The data_vio that wrote its data for the lock.
1433  *
1434  * The agent will never need to dedupe against anything, so it's done with the lock, but the lock
1435  * may not be finished with it, as a UDS update might still be needed.
1436  *
1437  * If there are other lock holders, the agent will hand the job to one of them and exit, leaving
1438  * the lock to deduplicate against the just-written block. If there are no other lock holders, the
1439  * agent either exits (and later tears down the hash lock), or it remains the agent and updates
1440  * UDS.
1441  */
1442 static void finish_writing(struct hash_lock *lock, struct data_vio *agent)
1443 {
1444 	/*
1445 	 * Dedupe against the data block or compressed block slot the agent wrote. Since we know
1446 	 * the write succeeded, there's no need to verify it.
1447 	 */
1448 	lock->duplicate = agent->new_mapped;
1449 	lock->verified = true;
1450 
1451 	if (vdo_is_state_compressed(lock->duplicate.state) && lock->registered) {
1452 		/*
1453 		 * Compression means the location we gave in the UDS query is not the location
1454 		 * we're using to deduplicate.
1455 		 */
1456 		lock->update_advice = true;
1457 	}
1458 
1459 	/* If there are any waiters, we need to start deduping them. */
1460 	if (vdo_waitq_has_waiters(&lock->waiters)) {
1461 		/*
1462 		 * WRITING -> DEDUPING transition: an asynchronously-written block failed to
1463 		 * compress, so the PBN lock on the written copy was already transferred. The agent
1464 		 * is done with the lock, but the lock may still need to use it to clean up after
1465 		 * rollover.
1466 		 */
1467 		start_deduping(lock, agent, true);
1468 		return;
1469 	}
1470 
1471 	/*
1472 	 * There are no waiters and the agent has successfully written, so take a step towards
1473 	 * being able to release the hash lock (or just release it).
1474 	 */
1475 	if (lock->update_advice) {
1476 		/*
1477 		 * WRITING -> UPDATING transition: There's no waiter and a UDS update is needed, so
1478 		 * retain the WRITING agent and use it to launch the update. The happens on
1479 		 * compression, rollover, or the QUERYING agent not having an allocation.
1480 		 */
1481 		start_updating(lock, agent);
1482 	} else if (lock->duplicate_lock != NULL) {
1483 		/*
1484 		 * WRITING -> UNLOCKING transition: There's no waiter and no update needed, but the
1485 		 * compressed write gave us a shared duplicate lock that we must release.
1486 		 */
1487 		set_duplicate_location(agent, lock->duplicate);
1488 		start_unlocking(lock, agent);
1489 	} else {
1490 		/*
1491 		 * WRITING -> BYPASSING transition: There's no waiter, no update needed, and no
1492 		 * duplicate lock held, so both the agent and lock have no more work to do. The
1493 		 * agent will release its allocation lock in cleanup.
1494 		 */
1495 		start_bypassing(lock, agent);
1496 	}
1497 }
1498 
1499 /**
1500  * select_writing_agent() - Search through the lock waiters for a data_vio that has an allocation.
1501  * @lock: The hash lock to modify.
1502  *
1503  * If an allocation is found, swap agents, put the old agent at the head of the wait queue, then
1504  * return the new agent. Otherwise, just return the current agent.
1505  */
1506 static struct data_vio *select_writing_agent(struct hash_lock *lock)
1507 {
1508 	struct vdo_wait_queue temp_queue;
1509 	struct data_vio *data_vio;
1510 
1511 	vdo_waitq_init(&temp_queue);
1512 
1513 	/*
1514 	 * Move waiters to the temp queue one-by-one until we find an allocation. Not ideal to
1515 	 * search, but it only happens when nearly out of space.
1516 	 */
1517 	while (((data_vio = dequeue_lock_waiter(lock)) != NULL) &&
1518 	       !data_vio_has_allocation(data_vio)) {
1519 		/* Use the lower-level enqueue since we're just moving waiters around. */
1520 		vdo_waitq_enqueue_waiter(&temp_queue, &data_vio->waiter);
1521 	}
1522 
1523 	if (data_vio != NULL) {
1524 		/*
1525 		 * Move the rest of the waiters over to the temp queue, preserving the order they
1526 		 * arrived at the lock.
1527 		 */
1528 		vdo_waitq_transfer_all_waiters(&lock->waiters, &temp_queue);
1529 
1530 		/*
1531 		 * The current agent is being replaced and will have to wait to dedupe; make it the
1532 		 * first waiter since it was the first to reach the lock.
1533 		 */
1534 		vdo_waitq_enqueue_waiter(&lock->waiters, &lock->agent->waiter);
1535 		lock->agent = data_vio;
1536 	} else {
1537 		/* No one has an allocation, so keep the current agent. */
1538 		data_vio = lock->agent;
1539 	}
1540 
1541 	/* Swap all the waiters back onto the lock's queue. */
1542 	vdo_waitq_transfer_all_waiters(&temp_queue, &lock->waiters);
1543 	return data_vio;
1544 }
1545 
1546 /**
1547  * start_writing() - Begin the non-duplicate write path.
1548  * @lock: The hash lock (currently must be QUERYING).
1549  * @agent: The data_vio currently acting as the agent for the lock.
1550  *
1551  * Begins the non-duplicate write path for a hash lock that had no advice, selecting a data_vio
1552  * with an allocation as a new agent, if necessary, then resuming the agent on the data_vio write
1553  * path.
1554  */
1555 static void start_writing(struct hash_lock *lock, struct data_vio *agent)
1556 {
1557 	lock->state = VDO_HASH_LOCK_WRITING;
1558 
1559 	/*
1560 	 * The agent might not have received an allocation and so can't be used for writing, but
1561 	 * it's entirely possible that one of the waiters did.
1562 	 */
1563 	if (!data_vio_has_allocation(agent)) {
1564 		agent = select_writing_agent(lock);
1565 		/* If none of the waiters had an allocation, the writes all have to fail. */
1566 		if (!data_vio_has_allocation(agent)) {
1567 			/*
1568 			 * TODO: Should we keep a variant of BYPASSING that causes new arrivals to
1569 			 * fail immediately if they don't have an allocation? It might be possible
1570 			 * that on some path there would be non-waiters still referencing the lock,
1571 			 * so it would remain in the map as everything is currently spelled, even
1572 			 * if the agent and all waiters release.
1573 			 */
1574 			continue_data_vio_with_error(agent, VDO_NO_SPACE);
1575 			return;
1576 		}
1577 	}
1578 
1579 	/*
1580 	 * If the agent compresses, it might wait indefinitely in the packer, which would be bad if
1581 	 * there are any other data_vios waiting.
1582 	 */
1583 	if (vdo_waitq_has_waiters(&lock->waiters))
1584 		cancel_data_vio_compression(agent);
1585 
1586 	/*
1587 	 * Send the agent to the compress/pack/write path in vioWrite. If it succeeds, it will
1588 	 * return to the hash lock via vdo_continue_hash_lock() and call finish_writing().
1589 	 */
1590 	launch_compress_data_vio(agent);
1591 }
1592 
1593 /*
1594  * Decode VDO duplicate advice from the old_metadata field of a UDS request.
1595  * Returns true if valid advice was found and decoded
1596  */
1597 static bool decode_uds_advice(struct dedupe_context *context)
1598 {
1599 	const struct uds_request *request = &context->request;
1600 	struct data_vio *data_vio = context->requestor;
1601 	size_t offset = 0;
1602 	const struct uds_record_data *encoding = &request->old_metadata;
1603 	struct vdo *vdo = vdo_from_data_vio(data_vio);
1604 	struct zoned_pbn *advice = &data_vio->duplicate;
1605 	u8 version;
1606 	int result;
1607 
1608 	if ((request->status != UDS_SUCCESS) || !request->found)
1609 		return false;
1610 
1611 	version = encoding->data[offset++];
1612 	if (version != UDS_ADVICE_VERSION) {
1613 		vdo_log_error("invalid UDS advice version code %u", version);
1614 		return false;
1615 	}
1616 
1617 	advice->state = encoding->data[offset++];
1618 	advice->pbn = get_unaligned_le64(&encoding->data[offset]);
1619 	offset += sizeof(u64);
1620 	BUG_ON(offset != UDS_ADVICE_SIZE);
1621 
1622 	/* Don't use advice that's clearly meaningless. */
1623 	if ((advice->state == VDO_MAPPING_STATE_UNMAPPED) || (advice->pbn == VDO_ZERO_BLOCK)) {
1624 		vdo_log_debug("Invalid advice from deduplication server: pbn %llu, state %u. Giving up on deduplication of logical block %llu",
1625 			      (unsigned long long) advice->pbn, advice->state,
1626 			      (unsigned long long) data_vio->logical.lbn);
1627 		atomic64_inc(&vdo->stats.invalid_advice_pbn_count);
1628 		return false;
1629 	}
1630 
1631 	result = vdo_get_physical_zone(vdo, advice->pbn, &advice->zone);
1632 	if ((result != VDO_SUCCESS) || (advice->zone == NULL)) {
1633 		vdo_log_debug("Invalid physical block number from deduplication server: %llu, giving up on deduplication of logical block %llu",
1634 			      (unsigned long long) advice->pbn,
1635 			      (unsigned long long) data_vio->logical.lbn);
1636 		atomic64_inc(&vdo->stats.invalid_advice_pbn_count);
1637 		return false;
1638 	}
1639 
1640 	return true;
1641 }
1642 
1643 static void process_query_result(struct data_vio *agent)
1644 {
1645 	struct dedupe_context *context = agent->dedupe_context;
1646 
1647 	if (context == NULL)
1648 		return;
1649 
1650 	if (change_context_state(context, DEDUPE_CONTEXT_COMPLETE, DEDUPE_CONTEXT_IDLE)) {
1651 		agent->is_duplicate = decode_uds_advice(context);
1652 		agent->dedupe_context = NULL;
1653 		release_context(context);
1654 	}
1655 }
1656 
1657 /**
1658  * finish_querying() - Process the result of a UDS query performed by the agent for the lock.
1659  * @completion: The completion of the data_vio that performed the query.
1660  *
1661  * This continuation is registered in start_querying().
1662  */
1663 static void finish_querying(struct vdo_completion *completion)
1664 {
1665 	struct data_vio *agent = as_data_vio(completion);
1666 	struct hash_lock *lock = agent->hash_lock;
1667 
1668 	assert_hash_lock_agent(agent, __func__);
1669 
1670 	process_query_result(agent);
1671 
1672 	if (agent->is_duplicate) {
1673 		lock->duplicate = agent->duplicate;
1674 		/*
1675 		 * QUERYING -> LOCKING transition: Valid advice was obtained from UDS. Use the
1676 		 * QUERYING agent to start the hash lock on the unverified dedupe path, verifying
1677 		 * that the advice can be used.
1678 		 */
1679 		start_locking(lock, agent);
1680 	} else {
1681 		/*
1682 		 * The agent will be used as the duplicate if has an allocation; if it does, that
1683 		 * location was posted to UDS, so no update will be needed.
1684 		 */
1685 		lock->update_advice = !data_vio_has_allocation(agent);
1686 		/*
1687 		 * QUERYING -> WRITING transition: There was no advice or the advice wasn't valid,
1688 		 * so try to write or compress the data.
1689 		 */
1690 		start_writing(lock, agent);
1691 	}
1692 }
1693 
1694 /**
1695  * start_querying() - Start deduplication for a hash lock.
1696  * @lock: The initialized hash lock.
1697  * @data_vio: The data_vio that has just obtained the new lock.
1698  *
1699  * Starts deduplication for a hash lock that has finished initializing by making the data_vio that
1700  * requested it the agent, entering the QUERYING state, and using the agent to perform the UDS
1701  * query on behalf of the lock.
1702  */
1703 static void start_querying(struct hash_lock *lock, struct data_vio *data_vio)
1704 {
1705 	lock->agent = data_vio;
1706 	lock->state = VDO_HASH_LOCK_QUERYING;
1707 	data_vio->last_async_operation = VIO_ASYNC_OP_CHECK_FOR_DUPLICATION;
1708 	set_data_vio_hash_zone_callback(data_vio, finish_querying);
1709 	query_index(data_vio,
1710 		    (data_vio_has_allocation(data_vio) ? UDS_POST : UDS_QUERY));
1711 }
1712 
1713 /**
1714  * report_bogus_lock_state() - Complain that a data_vio has entered a hash_lock that is in an
1715  *                             unimplemented or unusable state and continue the data_vio with an
1716  *                             error.
1717  * @lock: The hash lock.
1718  * @data_vio: The data_vio attempting to enter the lock.
1719  */
1720 static void report_bogus_lock_state(struct hash_lock *lock, struct data_vio *data_vio)
1721 {
1722 	VDO_ASSERT_LOG_ONLY(false, "hash lock must not be in unimplemented state %s",
1723 			    get_hash_lock_state_name(lock->state));
1724 	continue_data_vio_with_error(data_vio, VDO_LOCK_ERROR);
1725 }
1726 
1727 /**
1728  * vdo_continue_hash_lock() - Continue the processing state after writing, compressing, or
1729  *                            deduplicating.
1730  * @completion: The data_vio completion to continue processing in its hash lock.
1731  *
1732  * Asynchronously continue processing a data_vio in its hash lock after it has finished writing,
1733  * compressing, or deduplicating, so it can share the result with any data_vios waiting in the hash
1734  * lock, or update the UDS index, or simply release its share of the lock.
1735  *
1736  * Context: This must only be called in the correct thread for the hash zone.
1737  */
1738 void vdo_continue_hash_lock(struct vdo_completion *completion)
1739 {
1740 	struct data_vio *data_vio = as_data_vio(completion);
1741 	struct hash_lock *lock = data_vio->hash_lock;
1742 
1743 	switch (lock->state) {
1744 	case VDO_HASH_LOCK_WRITING:
1745 		VDO_ASSERT_LOG_ONLY(data_vio == lock->agent,
1746 				    "only the lock agent may continue the lock");
1747 		finish_writing(lock, data_vio);
1748 		break;
1749 
1750 	case VDO_HASH_LOCK_DEDUPING:
1751 		finish_deduping(lock, data_vio);
1752 		break;
1753 
1754 	case VDO_HASH_LOCK_BYPASSING:
1755 		/* This data_vio has finished the write path and the lock doesn't need it. */
1756 		exit_hash_lock(data_vio);
1757 		break;
1758 
1759 	case VDO_HASH_LOCK_INITIALIZING:
1760 	case VDO_HASH_LOCK_QUERYING:
1761 	case VDO_HASH_LOCK_UPDATING:
1762 	case VDO_HASH_LOCK_LOCKING:
1763 	case VDO_HASH_LOCK_VERIFYING:
1764 	case VDO_HASH_LOCK_UNLOCKING:
1765 		/* A lock in this state should never be re-entered. */
1766 		report_bogus_lock_state(lock, data_vio);
1767 		break;
1768 
1769 	default:
1770 		report_bogus_lock_state(lock, data_vio);
1771 	}
1772 }
1773 
1774 /**
1775  * is_hash_collision() - Check to see if a hash collision has occurred.
1776  * @lock: The lock to check.
1777  * @candidate: The data_vio seeking to share the lock.
1778  *
1779  * Check whether the data in data_vios sharing a lock is different than in a data_vio seeking to
1780  * share the lock, which should only be possible in the extremely unlikely case of a hash
1781  * collision.
1782  *
1783  * Return: true if the given data_vio must not share the lock because it doesn't have the same data
1784  *         as the lock holders.
1785  */
1786 static bool is_hash_collision(struct hash_lock *lock, struct data_vio *candidate)
1787 {
1788 	struct data_vio *lock_holder;
1789 	struct hash_zone *zone;
1790 	bool collides;
1791 
1792 	if (list_empty(&lock->duplicate_ring))
1793 		return false;
1794 
1795 	lock_holder = list_first_entry(&lock->duplicate_ring, struct data_vio,
1796 				       hash_lock_entry);
1797 	zone = candidate->hash_zone;
1798 	collides = !blocks_equal(lock_holder->vio.data, candidate->vio.data);
1799 	if (collides)
1800 		increment_stat(&zone->statistics.concurrent_hash_collisions);
1801 	else
1802 		increment_stat(&zone->statistics.concurrent_data_matches);
1803 
1804 	return collides;
1805 }
1806 
1807 static inline int assert_hash_lock_preconditions(const struct data_vio *data_vio)
1808 {
1809 	int result;
1810 
1811 	/* FIXME: BUG_ON() and/or enter read-only mode? */
1812 	result = VDO_ASSERT(data_vio->hash_lock == NULL,
1813 			    "must not already hold a hash lock");
1814 	if (result != VDO_SUCCESS)
1815 		return result;
1816 
1817 	result = VDO_ASSERT(list_empty(&data_vio->hash_lock_entry),
1818 			    "must not already be a member of a hash lock ring");
1819 	if (result != VDO_SUCCESS)
1820 		return result;
1821 
1822 	return VDO_ASSERT(data_vio->recovery_sequence_number == 0,
1823 			  "must not hold a recovery lock when getting a hash lock");
1824 }
1825 
1826 /**
1827  * vdo_acquire_hash_lock() - Acquire or share a lock on a record name.
1828  * @completion: The data_vio completion acquiring a lock on its record name.
1829  *
1830  * Acquire or share a lock on the hash (record name) of the data in a data_vio, updating the
1831  * data_vio to reference the lock. This must only be called in the correct thread for the zone. In
1832  * the unlikely case of a hash collision, this function will succeed, but the data_vio will not get
1833  * a lock reference.
1834  */
1835 void vdo_acquire_hash_lock(struct vdo_completion *completion)
1836 {
1837 	struct data_vio *data_vio = as_data_vio(completion);
1838 	struct hash_lock *lock;
1839 	int result;
1840 
1841 	assert_data_vio_in_hash_zone(data_vio);
1842 
1843 	result = assert_hash_lock_preconditions(data_vio);
1844 	if (result != VDO_SUCCESS) {
1845 		continue_data_vio_with_error(data_vio, result);
1846 		return;
1847 	}
1848 
1849 	result = acquire_lock(data_vio->hash_zone, &data_vio->record_name, NULL, &lock);
1850 	if (result != VDO_SUCCESS) {
1851 		continue_data_vio_with_error(data_vio, result);
1852 		return;
1853 	}
1854 
1855 	if (is_hash_collision(lock, data_vio)) {
1856 		/*
1857 		 * Hash collisions are extremely unlikely, but the bogus dedupe would be a data
1858 		 * corruption. Bypass optimization entirely. We can't compress a data_vio without
1859 		 * a hash_lock as the compressed write depends on the hash_lock to manage the
1860 		 * references for the compressed block.
1861 		 */
1862 		write_data_vio(data_vio);
1863 		return;
1864 	}
1865 
1866 	set_hash_lock(data_vio, lock);
1867 	switch (lock->state) {
1868 	case VDO_HASH_LOCK_INITIALIZING:
1869 		start_querying(lock, data_vio);
1870 		return;
1871 
1872 	case VDO_HASH_LOCK_QUERYING:
1873 	case VDO_HASH_LOCK_WRITING:
1874 	case VDO_HASH_LOCK_UPDATING:
1875 	case VDO_HASH_LOCK_LOCKING:
1876 	case VDO_HASH_LOCK_VERIFYING:
1877 	case VDO_HASH_LOCK_UNLOCKING:
1878 		/* The lock is busy, and can't be shared yet. */
1879 		wait_on_hash_lock(lock, data_vio);
1880 		return;
1881 
1882 	case VDO_HASH_LOCK_BYPASSING:
1883 		/* We can't use this lock, so bypass optimization entirely. */
1884 		vdo_release_hash_lock(data_vio);
1885 		write_data_vio(data_vio);
1886 		return;
1887 
1888 	case VDO_HASH_LOCK_DEDUPING:
1889 		launch_dedupe(lock, data_vio, false);
1890 		return;
1891 
1892 	default:
1893 		/* A lock in this state should not be acquired by new VIOs. */
1894 		report_bogus_lock_state(lock, data_vio);
1895 	}
1896 }
1897 
1898 /**
1899  * vdo_release_hash_lock() - Release a data_vio's share of a hash lock, if held, and null out the
1900  *                           data_vio's reference to it.
1901  * @data_vio: The data_vio releasing its hash lock.
1902  *
1903  * If the data_vio is the only one holding the lock, this also releases any resources or locks used
1904  * by the hash lock (such as a PBN read lock on a block containing data with the same hash) and
1905  * returns the lock to the hash zone's lock pool.
1906  *
1907  * Context: This must only be called in the correct thread for the hash zone.
1908  */
1909 void vdo_release_hash_lock(struct data_vio *data_vio)
1910 {
1911 	u64 lock_key;
1912 	struct hash_lock *lock = data_vio->hash_lock;
1913 	struct hash_zone *zone = data_vio->hash_zone;
1914 
1915 	if (lock == NULL)
1916 		return;
1917 
1918 	set_hash_lock(data_vio, NULL);
1919 
1920 	if (lock->reference_count > 0) {
1921 		/* The lock is still in use by other data_vios. */
1922 		return;
1923 	}
1924 
1925 	lock_key = hash_lock_key(lock);
1926 	if (lock->registered) {
1927 		struct hash_lock *removed;
1928 
1929 		removed = vdo_int_map_remove(zone->hash_lock_map, lock_key);
1930 		VDO_ASSERT_LOG_ONLY(lock == removed,
1931 				    "hash lock being released must have been mapped");
1932 	} else {
1933 		VDO_ASSERT_LOG_ONLY(lock != vdo_int_map_get(zone->hash_lock_map, lock_key),
1934 				    "unregistered hash lock must not be in the lock map");
1935 	}
1936 
1937 	VDO_ASSERT_LOG_ONLY(!vdo_waitq_has_waiters(&lock->waiters),
1938 			    "hash lock returned to zone must have no waiters");
1939 	VDO_ASSERT_LOG_ONLY((lock->duplicate_lock == NULL),
1940 			    "hash lock returned to zone must not reference a PBN lock");
1941 	VDO_ASSERT_LOG_ONLY((lock->state == VDO_HASH_LOCK_BYPASSING),
1942 			    "returned hash lock must not be in use with state %s",
1943 			    get_hash_lock_state_name(lock->state));
1944 	VDO_ASSERT_LOG_ONLY(list_empty(&lock->pool_node),
1945 			    "hash lock returned to zone must not be in a pool ring");
1946 	VDO_ASSERT_LOG_ONLY(list_empty(&lock->duplicate_ring),
1947 			    "hash lock returned to zone must not reference DataVIOs");
1948 
1949 	return_hash_lock_to_pool(zone, lock);
1950 }
1951 
1952 /**
1953  * transfer_allocation_lock() - Transfer a data_vio's downgraded allocation PBN lock to the
1954  *                              data_vio's hash lock, converting it to a duplicate PBN lock.
1955  * @data_vio: The data_vio holding the allocation lock to transfer.
1956  */
1957 static void transfer_allocation_lock(struct data_vio *data_vio)
1958 {
1959 	struct allocation *allocation = &data_vio->allocation;
1960 	struct hash_lock *hash_lock = data_vio->hash_lock;
1961 
1962 	VDO_ASSERT_LOG_ONLY(data_vio->new_mapped.pbn == allocation->pbn,
1963 			    "transferred lock must be for the block written");
1964 
1965 	allocation->pbn = VDO_ZERO_BLOCK;
1966 
1967 	VDO_ASSERT_LOG_ONLY(vdo_is_pbn_read_lock(allocation->lock),
1968 			    "must have downgraded the allocation lock before transfer");
1969 
1970 	hash_lock->duplicate = data_vio->new_mapped;
1971 	data_vio->duplicate = data_vio->new_mapped;
1972 
1973 	/*
1974 	 * Since the lock is being transferred, the holder count doesn't change (and isn't even
1975 	 * safe to examine on this thread).
1976 	 */
1977 	hash_lock->duplicate_lock = vdo_forget(allocation->lock);
1978 }
1979 
1980 /**
1981  * vdo_share_compressed_write_lock() - Make a data_vio's hash lock a shared holder of the PBN lock
1982  *                                     on the compressed block to which its data was just written.
1983  * @data_vio: The data_vio which was just compressed.
1984  * @pbn_lock: The PBN lock on the compressed block.
1985  *
1986  * If the lock is still a write lock (as it will be for the first share), it will be converted to a
1987  * read lock. This also reserves a reference count increment for the data_vio.
1988  */
1989 void vdo_share_compressed_write_lock(struct data_vio *data_vio,
1990 				     struct pbn_lock *pbn_lock)
1991 {
1992 	bool claimed;
1993 
1994 	VDO_ASSERT_LOG_ONLY(vdo_get_duplicate_lock(data_vio) == NULL,
1995 			    "a duplicate PBN lock should not exist when writing");
1996 	VDO_ASSERT_LOG_ONLY(vdo_is_state_compressed(data_vio->new_mapped.state),
1997 			    "lock transfer must be for a compressed write");
1998 	assert_data_vio_in_new_mapped_zone(data_vio);
1999 
2000 	/* First sharer downgrades the lock. */
2001 	if (!vdo_is_pbn_read_lock(pbn_lock))
2002 		vdo_downgrade_pbn_write_lock(pbn_lock, true);
2003 
2004 	/*
2005 	 * Get a share of the PBN lock, ensuring it cannot be released until after this data_vio
2006 	 * has had a chance to journal a reference.
2007 	 */
2008 	data_vio->duplicate = data_vio->new_mapped;
2009 	data_vio->hash_lock->duplicate = data_vio->new_mapped;
2010 	set_duplicate_lock(data_vio->hash_lock, pbn_lock);
2011 
2012 	/*
2013 	 * Claim a reference for this data_vio. Necessary since another hash_lock might start
2014 	 * deduplicating against it before our incRef.
2015 	 */
2016 	claimed = vdo_claim_pbn_lock_increment(pbn_lock);
2017 	VDO_ASSERT_LOG_ONLY(claimed, "impossible to fail to claim an initial increment");
2018 }
2019 
2020 static void start_uds_queue(void *ptr)
2021 {
2022 	/*
2023 	 * Allow the UDS dedupe worker thread to do memory allocations. It will only do allocations
2024 	 * during the UDS calls that open or close an index, but those allocations can safely sleep
2025 	 * while reserving a large amount of memory. We could use an allocations_allowed boolean
2026 	 * (like the base threads do), but it would be an unnecessary embellishment.
2027 	 */
2028 	struct vdo_thread *thread = vdo_get_work_queue_owner(vdo_get_current_work_queue());
2029 
2030 	vdo_register_allocating_thread(&thread->allocating_thread, NULL);
2031 }
2032 
2033 static void finish_uds_queue(void *ptr __always_unused)
2034 {
2035 	vdo_unregister_allocating_thread();
2036 }
2037 
2038 static void close_index(struct hash_zones *zones)
2039 	__must_hold(&zones->lock)
2040 {
2041 	int result;
2042 
2043 	/*
2044 	 * Change the index state so that get_index_statistics() will not try to use the index
2045 	 * session we are closing.
2046 	 */
2047 	zones->index_state = IS_CHANGING;
2048 	/* Close the index session, while not holding the lock. */
2049 	spin_unlock(&zones->lock);
2050 	result = uds_close_index(zones->index_session);
2051 
2052 	if (result != UDS_SUCCESS)
2053 		vdo_log_error_strerror(result, "Error closing index");
2054 	spin_lock(&zones->lock);
2055 	zones->index_state = IS_CLOSED;
2056 	zones->error_flag |= result != UDS_SUCCESS;
2057 	/* ASSERTION: We leave in IS_CLOSED state. */
2058 }
2059 
2060 static void open_index(struct hash_zones *zones)
2061 	__must_hold(&zones->lock)
2062 {
2063 	/* ASSERTION: We enter in IS_CLOSED state. */
2064 	int result;
2065 	bool create_flag = zones->create_flag;
2066 
2067 	zones->create_flag = false;
2068 	/*
2069 	 * Change the index state so that the it will be reported to the outside world as
2070 	 * "opening".
2071 	 */
2072 	zones->index_state = IS_CHANGING;
2073 	zones->error_flag = false;
2074 
2075 	/* Open the index session, while not holding the lock */
2076 	spin_unlock(&zones->lock);
2077 	result = uds_open_index(create_flag ? UDS_CREATE : UDS_LOAD,
2078 				&zones->parameters, zones->index_session);
2079 	if (result != UDS_SUCCESS)
2080 		vdo_log_error_strerror(result, "Error opening index");
2081 
2082 	spin_lock(&zones->lock);
2083 	if (!create_flag) {
2084 		switch (result) {
2085 		case -ENOENT:
2086 			/*
2087 			 * Either there is no index, or there is no way we can recover the index.
2088 			 * We will be called again and try to create a new index.
2089 			 */
2090 			zones->index_state = IS_CLOSED;
2091 			zones->create_flag = true;
2092 			return;
2093 		default:
2094 			break;
2095 		}
2096 	}
2097 	if (result == UDS_SUCCESS) {
2098 		zones->index_state = IS_OPENED;
2099 	} else {
2100 		zones->index_state = IS_CLOSED;
2101 		zones->index_target = IS_CLOSED;
2102 		zones->error_flag = true;
2103 		spin_unlock(&zones->lock);
2104 		vdo_log_info("Setting UDS index target state to error");
2105 		spin_lock(&zones->lock);
2106 	}
2107 	/*
2108 	 * ASSERTION: On success, we leave in IS_OPENED state.
2109 	 * ASSERTION: On failure, we leave in IS_CLOSED state.
2110 	 */
2111 }
2112 
2113 static void change_dedupe_state(struct vdo_completion *completion)
2114 {
2115 	struct hash_zones *zones = as_hash_zones(completion);
2116 
2117 	spin_lock(&zones->lock);
2118 
2119 	/* Loop until the index is in the target state and the create flag is clear. */
2120 	while (vdo_is_state_normal(&zones->state) &&
2121 	       ((zones->index_state != zones->index_target) || zones->create_flag)) {
2122 		if (zones->index_state == IS_OPENED)
2123 			close_index(zones);
2124 		else
2125 			open_index(zones);
2126 	}
2127 
2128 	zones->changing = false;
2129 	spin_unlock(&zones->lock);
2130 }
2131 
2132 static void start_expiration_timer(struct dedupe_context *context)
2133 {
2134 	u64 start_time = context->submission_jiffies;
2135 	u64 end_time;
2136 
2137 	if (!change_timer_state(context->zone, DEDUPE_QUERY_TIMER_IDLE,
2138 				DEDUPE_QUERY_TIMER_RUNNING))
2139 		return;
2140 
2141 	end_time = max(start_time + vdo_dedupe_index_timeout_jiffies,
2142 		       jiffies + vdo_dedupe_index_min_timer_jiffies);
2143 	mod_timer(&context->zone->timer, end_time);
2144 }
2145 
2146 /**
2147  * report_dedupe_timeouts() - Record and eventually report that some dedupe requests reached their
2148  *                            expiration time without getting answers, so we timed them out.
2149  * @zones: the hash zones.
2150  * @timeouts: the number of newly timed out requests.
2151  */
2152 static void report_dedupe_timeouts(struct hash_zones *zones, unsigned int timeouts)
2153 {
2154 	atomic64_add(timeouts, &zones->timeouts);
2155 	spin_lock(&zones->lock);
2156 	if (__ratelimit(&zones->ratelimiter)) {
2157 		u64 unreported = atomic64_read(&zones->timeouts);
2158 
2159 		unreported -= zones->reported_timeouts;
2160 		vdo_log_debug("UDS index timeout on %llu requests",
2161 			      (unsigned long long) unreported);
2162 		zones->reported_timeouts += unreported;
2163 	}
2164 	spin_unlock(&zones->lock);
2165 }
2166 
2167 static int initialize_index(struct vdo *vdo, struct hash_zones *zones)
2168 {
2169 	int result;
2170 	off_t uds_offset;
2171 	struct volume_geometry geometry = vdo->geometry;
2172 	static const struct vdo_work_queue_type uds_queue_type = {
2173 		.start = start_uds_queue,
2174 		.finish = finish_uds_queue,
2175 		.max_priority = UDS_Q_MAX_PRIORITY,
2176 		.default_priority = UDS_Q_PRIORITY,
2177 	};
2178 
2179 	vdo_set_dedupe_index_timeout_interval(vdo_dedupe_index_timeout_interval);
2180 	vdo_set_dedupe_index_min_timer_interval(vdo_dedupe_index_min_timer_interval);
2181 
2182 	/*
2183 	 * Since we will save up the timeouts that would have been reported but were ratelimited,
2184 	 * we don't need to report ratelimiting.
2185 	 */
2186 	ratelimit_default_init(&zones->ratelimiter);
2187 	ratelimit_set_flags(&zones->ratelimiter, RATELIMIT_MSG_ON_RELEASE);
2188 	uds_offset = ((vdo_get_index_region_start(geometry) -
2189 		       geometry.bio_offset) * VDO_BLOCK_SIZE);
2190 	zones->parameters = (struct uds_parameters) {
2191 		.bdev = vdo->device_config->owned_device->bdev,
2192 		.offset = uds_offset,
2193 		.size = (vdo_get_index_region_size(geometry) * VDO_BLOCK_SIZE),
2194 		.memory_size = geometry.index_config.mem,
2195 		.sparse = geometry.index_config.sparse,
2196 		.nonce = (u64) geometry.nonce,
2197 	};
2198 
2199 	result = uds_create_index_session(&zones->index_session);
2200 	if (result != UDS_SUCCESS)
2201 		return result;
2202 
2203 	result = vdo_make_thread(vdo, vdo->thread_config.dedupe_thread, &uds_queue_type,
2204 				 1, NULL);
2205 	if (result != VDO_SUCCESS) {
2206 		uds_destroy_index_session(vdo_forget(zones->index_session));
2207 		vdo_log_error("UDS index queue initialization failed (%d)", result);
2208 		return result;
2209 	}
2210 
2211 	vdo_initialize_completion(&zones->completion, vdo, VDO_HASH_ZONES_COMPLETION);
2212 	vdo_set_completion_callback(&zones->completion, change_dedupe_state,
2213 				    vdo->thread_config.dedupe_thread);
2214 	return VDO_SUCCESS;
2215 }
2216 
2217 /**
2218  * finish_index_operation() - This is the UDS callback for index queries.
2219  * @request: The uds request which has just completed.
2220  */
2221 static void finish_index_operation(struct uds_request *request)
2222 {
2223 	struct dedupe_context *context = container_of(request, struct dedupe_context,
2224 						      request);
2225 
2226 	if (change_context_state(context, DEDUPE_CONTEXT_PENDING,
2227 				 DEDUPE_CONTEXT_COMPLETE)) {
2228 		/*
2229 		 * This query has not timed out, so send its data_vio back to its hash zone to
2230 		 * process the results.
2231 		 */
2232 		continue_data_vio(context->requestor);
2233 		return;
2234 	}
2235 
2236 	/*
2237 	 * This query has timed out, so try to mark it complete and hence eligible for reuse. Its
2238 	 * data_vio has already moved on.
2239 	 */
2240 	if (!change_context_state(context, DEDUPE_CONTEXT_TIMED_OUT,
2241 				  DEDUPE_CONTEXT_TIMED_OUT_COMPLETE)) {
2242 		VDO_ASSERT_LOG_ONLY(false, "uds request was timed out (state %d)",
2243 				    atomic_read(&context->state));
2244 	}
2245 
2246 	vdo_funnel_queue_put(context->zone->timed_out_complete, &context->queue_entry);
2247 }
2248 
2249 /**
2250  * check_for_drain_complete() - Check whether this zone has drained.
2251  * @zone: The zone to check.
2252  */
2253 static void check_for_drain_complete(struct hash_zone *zone)
2254 {
2255 	data_vio_count_t recycled = 0;
2256 
2257 	if (!vdo_is_state_draining(&zone->state))
2258 		return;
2259 
2260 	if ((atomic_read(&zone->timer_state) == DEDUPE_QUERY_TIMER_IDLE) ||
2261 	    change_timer_state(zone, DEDUPE_QUERY_TIMER_RUNNING,
2262 			       DEDUPE_QUERY_TIMER_IDLE)) {
2263 		del_timer_sync(&zone->timer);
2264 	} else {
2265 		/*
2266 		 * There is an in flight time-out, which must get processed before we can continue.
2267 		 */
2268 		return;
2269 	}
2270 
2271 	for (;;) {
2272 		struct dedupe_context *context;
2273 		struct funnel_queue_entry *entry;
2274 
2275 		entry = vdo_funnel_queue_poll(zone->timed_out_complete);
2276 		if (entry == NULL)
2277 			break;
2278 
2279 		context = container_of(entry, struct dedupe_context, queue_entry);
2280 		atomic_set(&context->state, DEDUPE_CONTEXT_IDLE);
2281 		list_add(&context->list_entry, &zone->available);
2282 		recycled++;
2283 	}
2284 
2285 	if (recycled > 0)
2286 		WRITE_ONCE(zone->active, zone->active - recycled);
2287 	VDO_ASSERT_LOG_ONLY(READ_ONCE(zone->active) == 0, "all contexts inactive");
2288 	vdo_finish_draining(&zone->state);
2289 }
2290 
2291 static void timeout_index_operations_callback(struct vdo_completion *completion)
2292 {
2293 	struct dedupe_context *context, *tmp;
2294 	struct hash_zone *zone = as_hash_zone(completion);
2295 	u64 timeout_jiffies = msecs_to_jiffies(vdo_dedupe_index_timeout_interval);
2296 	unsigned long cutoff = jiffies - timeout_jiffies;
2297 	unsigned int timed_out = 0;
2298 
2299 	atomic_set(&zone->timer_state, DEDUPE_QUERY_TIMER_IDLE);
2300 	list_for_each_entry_safe(context, tmp, &zone->pending, list_entry) {
2301 		if (cutoff <= context->submission_jiffies) {
2302 			/*
2303 			 * We have reached the oldest query which has not timed out yet, so restart
2304 			 * the timer.
2305 			 */
2306 			start_expiration_timer(context);
2307 			break;
2308 		}
2309 
2310 		if (!change_context_state(context, DEDUPE_CONTEXT_PENDING,
2311 					  DEDUPE_CONTEXT_TIMED_OUT)) {
2312 			/*
2313 			 * This context completed between the time the timeout fired, and now. We
2314 			 * can treat it as a successful query, its requestor is already enqueued
2315 			 * to process it.
2316 			 */
2317 			continue;
2318 		}
2319 
2320 		/*
2321 		 * Remove this context from the pending list so we won't look at it again on a
2322 		 * subsequent timeout. Once the index completes it, it will be reused. Meanwhile,
2323 		 * send its requestor on its way.
2324 		 */
2325 		list_del_init(&context->list_entry);
2326 		context->requestor->dedupe_context = NULL;
2327 		continue_data_vio(context->requestor);
2328 		timed_out++;
2329 	}
2330 
2331 	if (timed_out > 0)
2332 		report_dedupe_timeouts(completion->vdo->hash_zones, timed_out);
2333 
2334 	check_for_drain_complete(zone);
2335 }
2336 
2337 static void timeout_index_operations(struct timer_list *t)
2338 {
2339 	struct hash_zone *zone = from_timer(zone, t, timer);
2340 
2341 	if (change_timer_state(zone, DEDUPE_QUERY_TIMER_RUNNING,
2342 			       DEDUPE_QUERY_TIMER_FIRED))
2343 		vdo_launch_completion(&zone->completion);
2344 }
2345 
2346 static int __must_check initialize_zone(struct vdo *vdo, struct hash_zones *zones,
2347 					zone_count_t zone_number)
2348 {
2349 	int result;
2350 	data_vio_count_t i;
2351 	struct hash_zone *zone = &zones->zones[zone_number];
2352 
2353 	result = vdo_int_map_create(VDO_LOCK_MAP_CAPACITY, &zone->hash_lock_map);
2354 	if (result != VDO_SUCCESS)
2355 		return result;
2356 
2357 	vdo_set_admin_state_code(&zone->state, VDO_ADMIN_STATE_NORMAL_OPERATION);
2358 	zone->zone_number = zone_number;
2359 	zone->thread_id = vdo->thread_config.hash_zone_threads[zone_number];
2360 	vdo_initialize_completion(&zone->completion, vdo, VDO_HASH_ZONE_COMPLETION);
2361 	vdo_set_completion_callback(&zone->completion, timeout_index_operations_callback,
2362 				    zone->thread_id);
2363 	INIT_LIST_HEAD(&zone->lock_pool);
2364 	result = vdo_allocate(LOCK_POOL_CAPACITY, struct hash_lock, "hash_lock array",
2365 			      &zone->lock_array);
2366 	if (result != VDO_SUCCESS)
2367 		return result;
2368 
2369 	for (i = 0; i < LOCK_POOL_CAPACITY; i++)
2370 		return_hash_lock_to_pool(zone, &zone->lock_array[i]);
2371 
2372 	INIT_LIST_HEAD(&zone->available);
2373 	INIT_LIST_HEAD(&zone->pending);
2374 	result = vdo_make_funnel_queue(&zone->timed_out_complete);
2375 	if (result != VDO_SUCCESS)
2376 		return result;
2377 
2378 	timer_setup(&zone->timer, timeout_index_operations, 0);
2379 
2380 	for (i = 0; i < MAXIMUM_VDO_USER_VIOS; i++) {
2381 		struct dedupe_context *context = &zone->contexts[i];
2382 
2383 		context->zone = zone;
2384 		context->request.callback = finish_index_operation;
2385 		context->request.session = zones->index_session;
2386 		list_add(&context->list_entry, &zone->available);
2387 	}
2388 
2389 	return vdo_make_default_thread(vdo, zone->thread_id);
2390 }
2391 
2392 /** get_thread_id_for_zone() - Implements vdo_zone_thread_getter_fn. */
2393 static thread_id_t get_thread_id_for_zone(void *context, zone_count_t zone_number)
2394 {
2395 	struct hash_zones *zones = context;
2396 
2397 	return zones->zones[zone_number].thread_id;
2398 }
2399 
2400 /**
2401  * vdo_make_hash_zones() - Create the hash zones.
2402  *
2403  * @vdo: The vdo to which the zone will belong.
2404  * @zones_ptr: A pointer to hold the zones.
2405  *
2406  * Return: VDO_SUCCESS or an error code.
2407  */
2408 int vdo_make_hash_zones(struct vdo *vdo, struct hash_zones **zones_ptr)
2409 {
2410 	int result;
2411 	struct hash_zones *zones;
2412 	zone_count_t z;
2413 	zone_count_t zone_count = vdo->thread_config.hash_zone_count;
2414 
2415 	if (zone_count == 0)
2416 		return VDO_SUCCESS;
2417 
2418 	result = vdo_allocate_extended(struct hash_zones, zone_count, struct hash_zone,
2419 				       __func__, &zones);
2420 	if (result != VDO_SUCCESS)
2421 		return result;
2422 
2423 	result = initialize_index(vdo, zones);
2424 	if (result != VDO_SUCCESS) {
2425 		vdo_free(zones);
2426 		return result;
2427 	}
2428 
2429 	vdo_set_admin_state_code(&zones->state, VDO_ADMIN_STATE_NEW);
2430 
2431 	zones->zone_count = zone_count;
2432 	for (z = 0; z < zone_count; z++) {
2433 		result = initialize_zone(vdo, zones, z);
2434 		if (result != VDO_SUCCESS) {
2435 			vdo_free_hash_zones(zones);
2436 			return result;
2437 		}
2438 	}
2439 
2440 	result = vdo_make_action_manager(zones->zone_count, get_thread_id_for_zone,
2441 					 vdo->thread_config.admin_thread, zones, NULL,
2442 					 vdo, &zones->manager);
2443 	if (result != VDO_SUCCESS) {
2444 		vdo_free_hash_zones(zones);
2445 		return result;
2446 	}
2447 
2448 	*zones_ptr = zones;
2449 	return VDO_SUCCESS;
2450 }
2451 
2452 void vdo_finish_dedupe_index(struct hash_zones *zones)
2453 {
2454 	if (zones == NULL)
2455 		return;
2456 
2457 	uds_destroy_index_session(vdo_forget(zones->index_session));
2458 }
2459 
2460 /**
2461  * vdo_free_hash_zones() - Free the hash zones.
2462  * @zones: The zone to free.
2463  */
2464 void vdo_free_hash_zones(struct hash_zones *zones)
2465 {
2466 	zone_count_t i;
2467 
2468 	if (zones == NULL)
2469 		return;
2470 
2471 	vdo_free(vdo_forget(zones->manager));
2472 
2473 	for (i = 0; i < zones->zone_count; i++) {
2474 		struct hash_zone *zone = &zones->zones[i];
2475 
2476 		vdo_free_funnel_queue(vdo_forget(zone->timed_out_complete));
2477 		vdo_int_map_free(vdo_forget(zone->hash_lock_map));
2478 		vdo_free(vdo_forget(zone->lock_array));
2479 	}
2480 
2481 	if (zones->index_session != NULL)
2482 		vdo_finish_dedupe_index(zones);
2483 
2484 	ratelimit_state_exit(&zones->ratelimiter);
2485 	vdo_free(zones);
2486 }
2487 
2488 static void initiate_suspend_index(struct admin_state *state)
2489 {
2490 	struct hash_zones *zones = container_of(state, struct hash_zones, state);
2491 	enum index_state index_state;
2492 
2493 	spin_lock(&zones->lock);
2494 	index_state = zones->index_state;
2495 	spin_unlock(&zones->lock);
2496 
2497 	if (index_state != IS_CLOSED) {
2498 		bool save = vdo_is_state_saving(&zones->state);
2499 		int result;
2500 
2501 		result = uds_suspend_index_session(zones->index_session, save);
2502 		if (result != UDS_SUCCESS)
2503 			vdo_log_error_strerror(result, "Error suspending dedupe index");
2504 	}
2505 
2506 	vdo_finish_draining(state);
2507 }
2508 
2509 /**
2510  * suspend_index() - Suspend the UDS index prior to draining hash zones.
2511  *
2512  * Implements vdo_action_preamble_fn
2513  */
2514 static void suspend_index(void *context, struct vdo_completion *completion)
2515 {
2516 	struct hash_zones *zones = context;
2517 
2518 	vdo_start_draining(&zones->state,
2519 			   vdo_get_current_manager_operation(zones->manager), completion,
2520 			   initiate_suspend_index);
2521 }
2522 
2523 /**
2524  * initiate_drain() - Initiate a drain.
2525  *
2526  * Implements vdo_admin_initiator_fn.
2527  */
2528 static void initiate_drain(struct admin_state *state)
2529 {
2530 	check_for_drain_complete(container_of(state, struct hash_zone, state));
2531 }
2532 
2533 /**
2534  * drain_hash_zone() - Drain a hash zone.
2535  *
2536  * Implements vdo_zone_action_fn.
2537  */
2538 static void drain_hash_zone(void *context, zone_count_t zone_number,
2539 			    struct vdo_completion *parent)
2540 {
2541 	struct hash_zones *zones = context;
2542 
2543 	vdo_start_draining(&zones->zones[zone_number].state,
2544 			   vdo_get_current_manager_operation(zones->manager), parent,
2545 			   initiate_drain);
2546 }
2547 
2548 /** vdo_drain_hash_zones() - Drain all hash zones. */
2549 void vdo_drain_hash_zones(struct hash_zones *zones, struct vdo_completion *parent)
2550 {
2551 	vdo_schedule_operation(zones->manager, parent->vdo->suspend_type, suspend_index,
2552 			       drain_hash_zone, NULL, parent);
2553 }
2554 
2555 static void launch_dedupe_state_change(struct hash_zones *zones)
2556 	__must_hold(&zones->lock)
2557 {
2558 	/* ASSERTION: We enter with the lock held. */
2559 	if (zones->changing || !vdo_is_state_normal(&zones->state))
2560 		/* Either a change is already in progress, or changes are not allowed. */
2561 		return;
2562 
2563 	if (zones->create_flag || (zones->index_state != zones->index_target)) {
2564 		zones->changing = true;
2565 		vdo_launch_completion(&zones->completion);
2566 		return;
2567 	}
2568 
2569 	/* ASSERTION: We exit with the lock held. */
2570 }
2571 
2572 /**
2573  * resume_index() - Resume the UDS index prior to resuming hash zones.
2574  *
2575  * Implements vdo_action_preamble_fn
2576  */
2577 static void resume_index(void *context, struct vdo_completion *parent)
2578 {
2579 	struct hash_zones *zones = context;
2580 	struct device_config *config = parent->vdo->device_config;
2581 	int result;
2582 
2583 	zones->parameters.bdev = config->owned_device->bdev;
2584 	result = uds_resume_index_session(zones->index_session, zones->parameters.bdev);
2585 	if (result != UDS_SUCCESS)
2586 		vdo_log_error_strerror(result, "Error resuming dedupe index");
2587 
2588 	spin_lock(&zones->lock);
2589 	vdo_resume_if_quiescent(&zones->state);
2590 
2591 	if (config->deduplication) {
2592 		zones->index_target = IS_OPENED;
2593 		WRITE_ONCE(zones->dedupe_flag, true);
2594 	} else {
2595 		zones->index_target = IS_CLOSED;
2596 	}
2597 
2598 	launch_dedupe_state_change(zones);
2599 	spin_unlock(&zones->lock);
2600 
2601 	vdo_finish_completion(parent);
2602 }
2603 
2604 /**
2605  * resume_hash_zone() - Resume a hash zone.
2606  *
2607  * Implements vdo_zone_action_fn.
2608  */
2609 static void resume_hash_zone(void *context, zone_count_t zone_number,
2610 			     struct vdo_completion *parent)
2611 {
2612 	struct hash_zone *zone = &(((struct hash_zones *) context)->zones[zone_number]);
2613 
2614 	vdo_fail_completion(parent, vdo_resume_if_quiescent(&zone->state));
2615 }
2616 
2617 /**
2618  * vdo_resume_hash_zones() - Resume a set of hash zones.
2619  * @zones: The hash zones to resume.
2620  * @parent: The object to notify when the zones have resumed.
2621  */
2622 void vdo_resume_hash_zones(struct hash_zones *zones, struct vdo_completion *parent)
2623 {
2624 	if (vdo_is_read_only(parent->vdo)) {
2625 		vdo_launch_completion(parent);
2626 		return;
2627 	}
2628 
2629 	vdo_schedule_operation(zones->manager, VDO_ADMIN_STATE_RESUMING, resume_index,
2630 			       resume_hash_zone, NULL, parent);
2631 }
2632 
2633 /**
2634  * get_hash_zone_statistics() - Add the statistics for this hash zone to the tally for all zones.
2635  * @zone: The hash zone to query.
2636  * @tally: The tally
2637  */
2638 static void get_hash_zone_statistics(const struct hash_zone *zone,
2639 				     struct hash_lock_statistics *tally)
2640 {
2641 	const struct hash_lock_statistics *stats = &zone->statistics;
2642 
2643 	tally->dedupe_advice_valid += READ_ONCE(stats->dedupe_advice_valid);
2644 	tally->dedupe_advice_stale += READ_ONCE(stats->dedupe_advice_stale);
2645 	tally->concurrent_data_matches += READ_ONCE(stats->concurrent_data_matches);
2646 	tally->concurrent_hash_collisions += READ_ONCE(stats->concurrent_hash_collisions);
2647 	tally->curr_dedupe_queries += READ_ONCE(zone->active);
2648 }
2649 
2650 static void get_index_statistics(struct hash_zones *zones,
2651 				 struct index_statistics *stats)
2652 {
2653 	enum index_state state;
2654 	struct uds_index_stats index_stats;
2655 	int result;
2656 
2657 	spin_lock(&zones->lock);
2658 	state = zones->index_state;
2659 	spin_unlock(&zones->lock);
2660 
2661 	if (state != IS_OPENED)
2662 		return;
2663 
2664 	result = uds_get_index_session_stats(zones->index_session, &index_stats);
2665 	if (result != UDS_SUCCESS) {
2666 		vdo_log_error_strerror(result, "Error reading index stats");
2667 		return;
2668 	}
2669 
2670 	stats->entries_indexed = index_stats.entries_indexed;
2671 	stats->posts_found = index_stats.posts_found;
2672 	stats->posts_not_found = index_stats.posts_not_found;
2673 	stats->queries_found = index_stats.queries_found;
2674 	stats->queries_not_found = index_stats.queries_not_found;
2675 	stats->updates_found = index_stats.updates_found;
2676 	stats->updates_not_found = index_stats.updates_not_found;
2677 	stats->entries_discarded = index_stats.entries_discarded;
2678 }
2679 
2680 /**
2681  * vdo_get_dedupe_statistics() - Tally the statistics from all the hash zones and the UDS index.
2682  * @zones: The hash zones to query
2683  * @stats: A structure to store the statistics
2684  *
2685  * Return: The sum of the hash lock statistics from all hash zones plus the statistics from the UDS
2686  *         index
2687  */
2688 void vdo_get_dedupe_statistics(struct hash_zones *zones, struct vdo_statistics *stats)
2689 
2690 {
2691 	zone_count_t zone;
2692 
2693 	for (zone = 0; zone < zones->zone_count; zone++)
2694 		get_hash_zone_statistics(&zones->zones[zone], &stats->hash_lock);
2695 
2696 	get_index_statistics(zones, &stats->index);
2697 
2698 	/*
2699 	 * zones->timeouts gives the number of timeouts, and dedupe_context_busy gives the number
2700 	 * of queries not made because of earlier timeouts.
2701 	 */
2702 	stats->dedupe_advice_timeouts =
2703 		(atomic64_read(&zones->timeouts) + atomic64_read(&zones->dedupe_context_busy));
2704 }
2705 
2706 /**
2707  * vdo_select_hash_zone() - Select the hash zone responsible for locking a given record name.
2708  * @zones: The hash_zones from which to select.
2709  * @name: The record name.
2710  *
2711  * Return: The hash zone responsible for the record name.
2712  */
2713 struct hash_zone *vdo_select_hash_zone(struct hash_zones *zones,
2714 				       const struct uds_record_name *name)
2715 {
2716 	/*
2717 	 * Use a fragment of the record name as a hash code. Eight bits of hash should suffice
2718 	 * since the number of hash zones is small.
2719 	 * TODO: Verify that the first byte is independent enough.
2720 	 */
2721 	u32 hash = name->name[0];
2722 
2723 	/*
2724 	 * Scale the 8-bit hash fragment to a zone index by treating it as a binary fraction and
2725 	 * multiplying that by the zone count. If the hash is uniformly distributed over [0 ..
2726 	 * 2^8-1], then (hash * count / 2^8) should be uniformly distributed over [0 .. count-1].
2727 	 * The multiply and shift is much faster than a divide (modulus) on X86 CPUs.
2728 	 */
2729 	hash = (hash * zones->zone_count) >> 8;
2730 	return &zones->zones[hash];
2731 }
2732 
2733 /**
2734  * dump_hash_lock() - Dump a compact description of hash_lock to the log if the lock is not on the
2735  *                    free list.
2736  * @lock: The hash lock to dump.
2737  */
2738 static void dump_hash_lock(const struct hash_lock *lock)
2739 {
2740 	const char *state;
2741 
2742 	if (!list_empty(&lock->pool_node)) {
2743 		/* This lock is on the free list. */
2744 		return;
2745 	}
2746 
2747 	/*
2748 	 * Necessarily cryptic since we can log a lot of these. First three chars of state is
2749 	 * unambiguous. 'U' indicates a lock not registered in the map.
2750 	 */
2751 	state = get_hash_lock_state_name(lock->state);
2752 	vdo_log_info("  hl %px: %3.3s %c%llu/%u rc=%u wc=%zu agt=%px",
2753 		     lock, state, (lock->registered ? 'D' : 'U'),
2754 		     (unsigned long long) lock->duplicate.pbn,
2755 		     lock->duplicate.state, lock->reference_count,
2756 		     vdo_waitq_num_waiters(&lock->waiters), lock->agent);
2757 }
2758 
2759 static const char *index_state_to_string(struct hash_zones *zones,
2760 					 enum index_state state)
2761 {
2762 	if (!vdo_is_state_normal(&zones->state))
2763 		return SUSPENDED;
2764 
2765 	switch (state) {
2766 	case IS_CLOSED:
2767 		return zones->error_flag ? ERROR : CLOSED;
2768 	case IS_CHANGING:
2769 		return zones->index_target == IS_OPENED ? OPENING : CLOSING;
2770 	case IS_OPENED:
2771 		return READ_ONCE(zones->dedupe_flag) ? ONLINE : OFFLINE;
2772 	default:
2773 		return UNKNOWN;
2774 	}
2775 }
2776 
2777 /**
2778  * dump_hash_zone() - Dump information about a hash zone to the log for debugging.
2779  * @zone: The zone to dump.
2780  */
2781 static void dump_hash_zone(const struct hash_zone *zone)
2782 {
2783 	data_vio_count_t i;
2784 
2785 	if (zone->hash_lock_map == NULL) {
2786 		vdo_log_info("struct hash_zone %u: NULL map", zone->zone_number);
2787 		return;
2788 	}
2789 
2790 	vdo_log_info("struct hash_zone %u: mapSize=%zu",
2791 		     zone->zone_number, vdo_int_map_size(zone->hash_lock_map));
2792 	for (i = 0; i < LOCK_POOL_CAPACITY; i++)
2793 		dump_hash_lock(&zone->lock_array[i]);
2794 }
2795 
2796 /**
2797  * vdo_dump_hash_zones() - Dump information about the hash zones to the log for debugging.
2798  * @zones: The zones to dump.
2799  */
2800 void vdo_dump_hash_zones(struct hash_zones *zones)
2801 {
2802 	const char *state, *target;
2803 	zone_count_t zone;
2804 
2805 	spin_lock(&zones->lock);
2806 	state = index_state_to_string(zones, zones->index_state);
2807 	target = (zones->changing ? index_state_to_string(zones, zones->index_target) : NULL);
2808 	spin_unlock(&zones->lock);
2809 
2810 	vdo_log_info("UDS index: state: %s", state);
2811 	if (target != NULL)
2812 		vdo_log_info("UDS index: changing to state: %s", target);
2813 
2814 	for (zone = 0; zone < zones->zone_count; zone++)
2815 		dump_hash_zone(&zones->zones[zone]);
2816 }
2817 
2818 void vdo_set_dedupe_index_timeout_interval(unsigned int value)
2819 {
2820 	u64 alb_jiffies;
2821 
2822 	/* Arbitrary maximum value is two minutes */
2823 	if (value > 120000)
2824 		value = 120000;
2825 	/* Arbitrary minimum value is 2 jiffies */
2826 	alb_jiffies = msecs_to_jiffies(value);
2827 
2828 	if (alb_jiffies < 2) {
2829 		alb_jiffies = 2;
2830 		value = jiffies_to_msecs(alb_jiffies);
2831 	}
2832 	vdo_dedupe_index_timeout_interval = value;
2833 	vdo_dedupe_index_timeout_jiffies = alb_jiffies;
2834 }
2835 
2836 void vdo_set_dedupe_index_min_timer_interval(unsigned int value)
2837 {
2838 	u64 min_jiffies;
2839 
2840 	/* Arbitrary maximum value is one second */
2841 	if (value > 1000)
2842 		value = 1000;
2843 
2844 	/* Arbitrary minimum value is 2 jiffies */
2845 	min_jiffies = msecs_to_jiffies(value);
2846 
2847 	if (min_jiffies < 2) {
2848 		min_jiffies = 2;
2849 		value = jiffies_to_msecs(min_jiffies);
2850 	}
2851 
2852 	vdo_dedupe_index_min_timer_interval = value;
2853 	vdo_dedupe_index_min_timer_jiffies = min_jiffies;
2854 }
2855 
2856 /**
2857  * acquire_context() - Acquire a dedupe context from a hash_zone if any are available.
2858  * @zone: the hash zone
2859  *
2860  * Return: A dedupe_context or NULL if none are available
2861  */
2862 static struct dedupe_context * __must_check acquire_context(struct hash_zone *zone)
2863 {
2864 	struct dedupe_context *context;
2865 	struct funnel_queue_entry *entry;
2866 
2867 	assert_in_hash_zone(zone, __func__);
2868 
2869 	if (!list_empty(&zone->available)) {
2870 		WRITE_ONCE(zone->active, zone->active + 1);
2871 		context = list_first_entry(&zone->available, struct dedupe_context,
2872 					   list_entry);
2873 		list_del_init(&context->list_entry);
2874 		return context;
2875 	}
2876 
2877 	entry = vdo_funnel_queue_poll(zone->timed_out_complete);
2878 	return ((entry == NULL) ?
2879 		NULL : container_of(entry, struct dedupe_context, queue_entry));
2880 }
2881 
2882 static void prepare_uds_request(struct uds_request *request, struct data_vio *data_vio,
2883 				enum uds_request_type operation)
2884 {
2885 	request->record_name = data_vio->record_name;
2886 	request->type = operation;
2887 	if ((operation == UDS_POST) || (operation == UDS_UPDATE)) {
2888 		size_t offset = 0;
2889 		struct uds_record_data *encoding = &request->new_metadata;
2890 
2891 		encoding->data[offset++] = UDS_ADVICE_VERSION;
2892 		encoding->data[offset++] = data_vio->new_mapped.state;
2893 		put_unaligned_le64(data_vio->new_mapped.pbn, &encoding->data[offset]);
2894 		offset += sizeof(u64);
2895 		BUG_ON(offset != UDS_ADVICE_SIZE);
2896 	}
2897 }
2898 
2899 /*
2900  * The index operation will inquire about data_vio.record_name, providing (if the operation is
2901  * appropriate) advice from the data_vio's new_mapped fields. The advice found in the index (or
2902  * NULL if none) will be returned via receive_data_vio_dedupe_advice(). dedupe_context.status is
2903  * set to the return status code of any asynchronous index processing.
2904  */
2905 static void query_index(struct data_vio *data_vio, enum uds_request_type operation)
2906 {
2907 	int result;
2908 	struct dedupe_context *context;
2909 	struct vdo *vdo = vdo_from_data_vio(data_vio);
2910 	struct hash_zone *zone = data_vio->hash_zone;
2911 
2912 	assert_data_vio_in_hash_zone(data_vio);
2913 
2914 	if (!READ_ONCE(vdo->hash_zones->dedupe_flag)) {
2915 		continue_data_vio(data_vio);
2916 		return;
2917 	}
2918 
2919 	context = acquire_context(zone);
2920 	if (context == NULL) {
2921 		atomic64_inc(&vdo->hash_zones->dedupe_context_busy);
2922 		continue_data_vio(data_vio);
2923 		return;
2924 	}
2925 
2926 	data_vio->dedupe_context = context;
2927 	context->requestor = data_vio;
2928 	context->submission_jiffies = jiffies;
2929 	prepare_uds_request(&context->request, data_vio, operation);
2930 	atomic_set(&context->state, DEDUPE_CONTEXT_PENDING);
2931 	list_add_tail(&context->list_entry, &zone->pending);
2932 	start_expiration_timer(context);
2933 	result = uds_launch_request(&context->request);
2934 	if (result != UDS_SUCCESS) {
2935 		context->request.status = result;
2936 		finish_index_operation(&context->request);
2937 	}
2938 }
2939 
2940 static void set_target_state(struct hash_zones *zones, enum index_state target,
2941 			     bool change_dedupe, bool dedupe, bool set_create)
2942 {
2943 	const char *old_state, *new_state;
2944 
2945 	spin_lock(&zones->lock);
2946 	old_state = index_state_to_string(zones, zones->index_target);
2947 	if (change_dedupe)
2948 		WRITE_ONCE(zones->dedupe_flag, dedupe);
2949 
2950 	if (set_create)
2951 		zones->create_flag = true;
2952 
2953 	zones->index_target = target;
2954 	launch_dedupe_state_change(zones);
2955 	new_state = index_state_to_string(zones, zones->index_target);
2956 	spin_unlock(&zones->lock);
2957 
2958 	if (old_state != new_state)
2959 		vdo_log_info("Setting UDS index target state to %s", new_state);
2960 }
2961 
2962 const char *vdo_get_dedupe_index_state_name(struct hash_zones *zones)
2963 {
2964 	const char *state;
2965 
2966 	spin_lock(&zones->lock);
2967 	state = index_state_to_string(zones, zones->index_state);
2968 	spin_unlock(&zones->lock);
2969 
2970 	return state;
2971 }
2972 
2973 /* Handle a dmsetup message relevant to the index. */
2974 int vdo_message_dedupe_index(struct hash_zones *zones, const char *name)
2975 {
2976 	if (strcasecmp(name, "index-close") == 0) {
2977 		set_target_state(zones, IS_CLOSED, false, false, false);
2978 		return 0;
2979 	} else if (strcasecmp(name, "index-create") == 0) {
2980 		set_target_state(zones, IS_OPENED, false, false, true);
2981 		return 0;
2982 	} else if (strcasecmp(name, "index-disable") == 0) {
2983 		set_target_state(zones, IS_OPENED, true, false, false);
2984 		return 0;
2985 	} else if (strcasecmp(name, "index-enable") == 0) {
2986 		set_target_state(zones, IS_OPENED, true, true, false);
2987 		return 0;
2988 	}
2989 
2990 	return -EINVAL;
2991 }
2992 
2993 void vdo_set_dedupe_state_normal(struct hash_zones *zones)
2994 {
2995 	vdo_set_admin_state_code(&zones->state, VDO_ADMIN_STATE_NORMAL_OPERATION);
2996 }
2997 
2998 /* If create_flag, create a new index without first attempting to load an existing index. */
2999 void vdo_start_dedupe_index(struct hash_zones *zones, bool create_flag)
3000 {
3001 	set_target_state(zones, IS_OPENED, true, true, create_flag);
3002 }
3003