xref: /linux/drivers/md/dm-vdo/data-vio.c (revision f683c9b134f2b0cb5d917296a142db1211468a78)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright 2023 Red Hat
4  */
5 
6 #include "data-vio.h"
7 
8 #include <linux/atomic.h>
9 #include <linux/bio.h>
10 #include <linux/blkdev.h>
11 #include <linux/delay.h>
12 #include <linux/device-mapper.h>
13 #include <linux/jiffies.h>
14 #include <linux/kernel.h>
15 #include <linux/list.h>
16 #include <linux/lz4.h>
17 #include <linux/minmax.h>
18 #include <linux/sched.h>
19 #include <linux/spinlock.h>
20 #include <linux/wait.h>
21 
22 #include "logger.h"
23 #include "memory-alloc.h"
24 #include "murmurhash3.h"
25 #include "permassert.h"
26 
27 #include "block-map.h"
28 #include "dump.h"
29 #include "encodings.h"
30 #include "int-map.h"
31 #include "io-submitter.h"
32 #include "logical-zone.h"
33 #include "packer.h"
34 #include "recovery-journal.h"
35 #include "slab-depot.h"
36 #include "status-codes.h"
37 #include "types.h"
38 #include "vdo.h"
39 #include "vio.h"
40 #include "wait-queue.h"
41 
42 /**
43  * DOC: Bio flags.
44  *
45  * For certain flags set on user bios, if the user bio has not yet been acknowledged, setting those
46  * flags on our own bio(s) for that request may help underlying layers better fulfill the user
47  * bio's needs. This constant contains the aggregate of those flags; VDO strips all the other
48  * flags, as they convey incorrect information.
49  *
50  * These flags are always irrelevant if we have already finished the user bio as they are only
51  * hints on IO importance. If VDO has finished the user bio, any remaining IO done doesn't care how
52  * important finishing the finished bio was.
53  *
54  * Note that bio.c contains the complete list of flags we believe may be set; the following list
55  * explains the action taken with each of those flags VDO could receive:
56  *
57  * * REQ_SYNC: Passed down if the user bio is not yet completed, since it indicates the user bio
58  *   completion is required for further work to be done by the issuer.
59  * * REQ_META: Passed down if the user bio is not yet completed, since it may mean the lower layer
60  *   treats it as more urgent, similar to REQ_SYNC.
61  * * REQ_PRIO: Passed down if the user bio is not yet completed, since it indicates the user bio is
62  *   important.
63  * * REQ_NOMERGE: Set only if the incoming bio was split; irrelevant to VDO IO.
64  * * REQ_IDLE: Set if the incoming bio had more IO quickly following; VDO's IO pattern doesn't
65  *   match incoming IO, so this flag is incorrect for it.
66  * * REQ_FUA: Handled separately, and irrelevant to VDO IO otherwise.
67  * * REQ_RAHEAD: Passed down, as, for reads, it indicates trivial importance.
68  * * REQ_BACKGROUND: Not passed down, as VIOs are a limited resource and VDO needs them recycled
69  *   ASAP to service heavy load, which is the only place where REQ_BACKGROUND might aid in load
70  *   prioritization.
71  */
72 static blk_opf_t PASSTHROUGH_FLAGS = (REQ_PRIO | REQ_META | REQ_SYNC | REQ_RAHEAD);
73 
74 /**
75  * DOC:
76  *
77  * The data_vio_pool maintains the pool of data_vios which a vdo uses to service incoming bios. For
78  * correctness, and in order to avoid potentially expensive or blocking memory allocations during
79  * normal operation, the number of concurrently active data_vios is capped. Furthermore, in order
80  * to avoid starvation of reads and writes, at most 75% of the data_vios may be used for
81  * discards. The data_vio_pool is responsible for enforcing these limits. Threads submitting bios
82  * for which a data_vio or discard permit are not available will block until the necessary
83  * resources are available. The pool is also responsible for distributing resources to blocked
84  * threads and waking them. Finally, the pool attempts to batch the work of recycling data_vios by
85  * performing the work of actually assigning resources to blocked threads or placing data_vios back
86  * into the pool on a single cpu at a time.
87  *
88  * The pool contains two "limiters", one for tracking data_vios and one for tracking discard
89  * permits. The limiters also provide safe cross-thread access to pool statistics without the need
90  * to take the pool's lock. When a thread submits a bio to a vdo device, it will first attempt to
91  * get a discard permit if it is a discard, and then to get a data_vio. If the necessary resources
92  * are available, the incoming bio will be assigned to the acquired data_vio, and it will be
93  * launched. However, if either of these are unavailable, the arrival time of the bio is recorded
94  * in the bio's bi_private field, the bio and its submitter are both queued on the appropriate
95  * limiter and the submitting thread will then put itself to sleep. (note that this mechanism will
96  * break if jiffies are only 32 bits.)
97  *
98  * Whenever a data_vio has completed processing for the bio it was servicing, release_data_vio()
99  * will be called on it. This function will add the data_vio to a funnel queue, and then check the
100  * state of the pool. If the pool is not currently processing released data_vios, the pool's
101  * completion will be enqueued on a cpu queue. This obviates the need for the releasing threads to
102  * hold the pool's lock, and also batches release work while avoiding starvation of the cpu
103  * threads.
104  *
105  * Whenever the pool's completion is run on a cpu thread, it calls process_release_callback() which
106  * processes a batch of returned data_vios (currently at most 32) from the pool's funnel queue. For
107  * each data_vio, it first checks whether that data_vio was processing a discard. If so, and there
108  * is a blocked bio waiting for a discard permit, that permit is notionally transferred to the
109  * eldest discard waiter, and that waiter is moved to the end of the list of discard bios waiting
110  * for a data_vio. If there are no discard waiters, the discard permit is returned to the pool.
111  * Next, the data_vio is assigned to the oldest blocked bio which either has a discard permit, or
112  * doesn't need one and relaunched. If neither of these exist, the data_vio is returned to the
113  * pool. Finally, if any waiting bios were launched, the threads which blocked trying to submit
114  * them are awakened.
115  */
116 
117 #define DATA_VIO_RELEASE_BATCH_SIZE 128
118 
119 static const unsigned int VDO_SECTORS_PER_BLOCK_MASK = VDO_SECTORS_PER_BLOCK - 1;
120 static const u32 COMPRESSION_STATUS_MASK = 0xff;
121 static const u32 MAY_NOT_COMPRESS_MASK = 0x80000000;
122 
123 struct limiter;
124 typedef void (*assigner_fn)(struct limiter *limiter);
125 
126 /* Bookkeeping structure for a single type of resource. */
127 struct limiter {
128 	/* The data_vio_pool to which this limiter belongs */
129 	struct data_vio_pool *pool;
130 	/* The maximum number of data_vios available */
131 	data_vio_count_t limit;
132 	/* The number of resources in use */
133 	data_vio_count_t busy;
134 	/* The maximum number of resources ever simultaneously in use */
135 	data_vio_count_t max_busy;
136 	/* The number of resources to release */
137 	data_vio_count_t release_count;
138 	/* The number of waiters to wake */
139 	data_vio_count_t wake_count;
140 	/* The list of waiting bios which are known to process_release_callback() */
141 	struct bio_list waiters;
142 	/* The list of waiting bios which are not yet known to process_release_callback() */
143 	struct bio_list new_waiters;
144 	/* The list of waiters which have their permits */
145 	struct bio_list *permitted_waiters;
146 	/* The function for assigning a resource to a waiter */
147 	assigner_fn assigner;
148 	/* The queue of blocked threads */
149 	wait_queue_head_t blocked_threads;
150 	/* The arrival time of the eldest waiter */
151 	u64 arrival;
152 };
153 
154 /*
155  * A data_vio_pool is a collection of preallocated data_vios which may be acquired from any thread,
156  * and are released in batches.
157  */
158 struct data_vio_pool {
159 	/* Completion for scheduling releases */
160 	struct vdo_completion completion;
161 	/* The administrative state of the pool */
162 	struct admin_state state;
163 	/* Lock protecting the pool */
164 	spinlock_t lock;
165 	/* The main limiter controlling the total data_vios in the pool. */
166 	struct limiter limiter;
167 	/* The limiter controlling data_vios for discard */
168 	struct limiter discard_limiter;
169 	/* The list of bios which have discard permits but still need a data_vio */
170 	struct bio_list permitted_discards;
171 	/* The list of available data_vios */
172 	struct list_head available;
173 	/* The queue of data_vios waiting to be returned to the pool */
174 	struct funnel_queue *queue;
175 	/* Whether the pool is processing, or scheduled to process releases */
176 	atomic_t processing;
177 	/* The data vios in the pool */
178 	struct data_vio data_vios[];
179 };
180 
181 static const char * const ASYNC_OPERATION_NAMES[] = {
182 	"launch",
183 	"acknowledge_write",
184 	"acquire_hash_lock",
185 	"attempt_logical_block_lock",
186 	"lock_duplicate_pbn",
187 	"check_for_duplication",
188 	"cleanup",
189 	"compress_data_vio",
190 	"find_block_map_slot",
191 	"get_mapped_block_for_read",
192 	"get_mapped_block_for_write",
193 	"hash_data_vio",
194 	"journal_remapping",
195 	"vdo_attempt_packing",
196 	"put_mapped_block",
197 	"read_data_vio",
198 	"update_dedupe_index",
199 	"update_reference_counts",
200 	"verify_duplication",
201 	"write_data_vio",
202 };
203 
204 /* The steps taken cleaning up a VIO, in the order they are performed. */
205 enum data_vio_cleanup_stage {
206 	VIO_CLEANUP_START,
207 	VIO_RELEASE_HASH_LOCK = VIO_CLEANUP_START,
208 	VIO_RELEASE_ALLOCATED,
209 	VIO_RELEASE_RECOVERY_LOCKS,
210 	VIO_RELEASE_LOGICAL,
211 	VIO_CLEANUP_DONE
212 };
213 
214 static inline struct data_vio_pool * __must_check
215 as_data_vio_pool(struct vdo_completion *completion)
216 {
217 	vdo_assert_completion_type(completion, VDO_DATA_VIO_POOL_COMPLETION);
218 	return container_of(completion, struct data_vio_pool, completion);
219 }
220 
221 static inline u64 get_arrival_time(struct bio *bio)
222 {
223 	return (u64) bio->bi_private;
224 }
225 
226 /**
227  * check_for_drain_complete_locked() - Check whether a data_vio_pool has no outstanding data_vios
228  *				       or waiters while holding the pool's lock.
229  */
230 static bool check_for_drain_complete_locked(struct data_vio_pool *pool)
231 {
232 	if (pool->limiter.busy > 0)
233 		return false;
234 
235 	VDO_ASSERT_LOG_ONLY((pool->discard_limiter.busy == 0),
236 			    "no outstanding discard permits");
237 
238 	return (bio_list_empty(&pool->limiter.new_waiters) &&
239 		bio_list_empty(&pool->discard_limiter.new_waiters));
240 }
241 
242 static void initialize_lbn_lock(struct data_vio *data_vio, logical_block_number_t lbn)
243 {
244 	struct vdo *vdo = vdo_from_data_vio(data_vio);
245 	zone_count_t zone_number;
246 	struct lbn_lock *lock = &data_vio->logical;
247 
248 	lock->lbn = lbn;
249 	lock->locked = false;
250 	vdo_waitq_init(&lock->waiters);
251 	zone_number = vdo_compute_logical_zone(data_vio);
252 	lock->zone = &vdo->logical_zones->zones[zone_number];
253 }
254 
255 static void launch_locked_request(struct data_vio *data_vio)
256 {
257 	data_vio->logical.locked = true;
258 	if (data_vio->write) {
259 		struct vdo *vdo = vdo_from_data_vio(data_vio);
260 
261 		if (vdo_is_read_only(vdo)) {
262 			continue_data_vio_with_error(data_vio, VDO_READ_ONLY);
263 			return;
264 		}
265 	}
266 
267 	data_vio->last_async_operation = VIO_ASYNC_OP_FIND_BLOCK_MAP_SLOT;
268 	vdo_find_block_map_slot(data_vio);
269 }
270 
271 static void acknowledge_data_vio(struct data_vio *data_vio)
272 {
273 	struct vdo *vdo = vdo_from_data_vio(data_vio);
274 	struct bio *bio = data_vio->user_bio;
275 	int error = vdo_status_to_errno(data_vio->vio.completion.result);
276 
277 	if (bio == NULL)
278 		return;
279 
280 	VDO_ASSERT_LOG_ONLY((data_vio->remaining_discard <=
281 			     (u32) (VDO_BLOCK_SIZE - data_vio->offset)),
282 			    "data_vio to acknowledge is not an incomplete discard");
283 
284 	data_vio->user_bio = NULL;
285 	vdo_count_bios(&vdo->stats.bios_acknowledged, bio);
286 	if (data_vio->is_partial)
287 		vdo_count_bios(&vdo->stats.bios_acknowledged_partial, bio);
288 
289 	bio->bi_status = errno_to_blk_status(error);
290 	bio_endio(bio);
291 }
292 
293 static void copy_to_bio(struct bio *bio, char *data_ptr)
294 {
295 	struct bio_vec biovec;
296 	struct bvec_iter iter;
297 
298 	bio_for_each_segment(biovec, bio, iter) {
299 		memcpy_to_bvec(&biovec, data_ptr);
300 		data_ptr += biovec.bv_len;
301 	}
302 }
303 
304 struct data_vio_compression_status get_data_vio_compression_status(struct data_vio *data_vio)
305 {
306 	u32 packed = atomic_read(&data_vio->compression.status);
307 
308 	/* pairs with cmpxchg in set_data_vio_compression_status */
309 	smp_rmb();
310 	return (struct data_vio_compression_status) {
311 		.stage = packed & COMPRESSION_STATUS_MASK,
312 		.may_not_compress = ((packed & MAY_NOT_COMPRESS_MASK) != 0),
313 	};
314 }
315 
316 /**
317  * pack_status() - Convert a data_vio_compression_status into a u32 which may be stored
318  *                 atomically.
319  * @status: The state to convert.
320  *
321  * Return: The compression state packed into a u32.
322  */
323 static u32 __must_check pack_status(struct data_vio_compression_status status)
324 {
325 	return status.stage | (status.may_not_compress ? MAY_NOT_COMPRESS_MASK : 0);
326 }
327 
328 /**
329  * set_data_vio_compression_status() - Set the compression status of a data_vio.
330  * @state: The expected current status of the data_vio.
331  * @new_state: The status to set.
332  *
333  * Return: true if the new status was set, false if the data_vio's compression status did not
334  *         match the expected state, and so was left unchanged.
335  */
336 static bool __must_check
337 set_data_vio_compression_status(struct data_vio *data_vio,
338 				struct data_vio_compression_status status,
339 				struct data_vio_compression_status new_status)
340 {
341 	u32 actual;
342 	u32 expected = pack_status(status);
343 	u32 replacement = pack_status(new_status);
344 
345 	/*
346 	 * Extra barriers because this was original developed using a CAS operation that implicitly
347 	 * had them.
348 	 */
349 	smp_mb__before_atomic();
350 	actual = atomic_cmpxchg(&data_vio->compression.status, expected, replacement);
351 	/* same as before_atomic */
352 	smp_mb__after_atomic();
353 	return (expected == actual);
354 }
355 
356 struct data_vio_compression_status advance_data_vio_compression_stage(struct data_vio *data_vio)
357 {
358 	for (;;) {
359 		struct data_vio_compression_status status =
360 			get_data_vio_compression_status(data_vio);
361 		struct data_vio_compression_status new_status = status;
362 
363 		if (status.stage == DATA_VIO_POST_PACKER) {
364 			/* We're already in the last stage. */
365 			return status;
366 		}
367 
368 		if (status.may_not_compress) {
369 			/*
370 			 * Compression has been dis-allowed for this VIO, so skip the rest of the
371 			 * path and go to the end.
372 			 */
373 			new_status.stage = DATA_VIO_POST_PACKER;
374 		} else {
375 			/* Go to the next state. */
376 			new_status.stage++;
377 		}
378 
379 		if (set_data_vio_compression_status(data_vio, status, new_status))
380 			return new_status;
381 
382 		/* Another thread changed the status out from under us so try again. */
383 	}
384 }
385 
386 /**
387  * cancel_data_vio_compression() - Prevent this data_vio from being compressed or packed.
388  *
389  * Return: true if the data_vio is in the packer and the caller was the first caller to cancel it.
390  */
391 bool cancel_data_vio_compression(struct data_vio *data_vio)
392 {
393 	struct data_vio_compression_status status, new_status;
394 
395 	for (;;) {
396 		status = get_data_vio_compression_status(data_vio);
397 		if (status.may_not_compress || (status.stage == DATA_VIO_POST_PACKER)) {
398 			/* This data_vio is already set up to not block in the packer. */
399 			break;
400 		}
401 
402 		new_status.stage = status.stage;
403 		new_status.may_not_compress = true;
404 
405 		if (set_data_vio_compression_status(data_vio, status, new_status))
406 			break;
407 	}
408 
409 	return ((status.stage == DATA_VIO_PACKING) && !status.may_not_compress);
410 }
411 
412 /**
413  * attempt_logical_block_lock() - Attempt to acquire the lock on a logical block.
414  * @completion: The data_vio for an external data request as a completion.
415  *
416  * This is the start of the path for all external requests. It is registered in launch_data_vio().
417  */
418 static void attempt_logical_block_lock(struct vdo_completion *completion)
419 {
420 	struct data_vio *data_vio = as_data_vio(completion);
421 	struct lbn_lock *lock = &data_vio->logical;
422 	struct vdo *vdo = vdo_from_data_vio(data_vio);
423 	struct data_vio *lock_holder;
424 	int result;
425 
426 	assert_data_vio_in_logical_zone(data_vio);
427 
428 	if (data_vio->logical.lbn >= vdo->states.vdo.config.logical_blocks) {
429 		continue_data_vio_with_error(data_vio, VDO_OUT_OF_RANGE);
430 		return;
431 	}
432 
433 	result = vdo_int_map_put(lock->zone->lbn_operations, lock->lbn,
434 				 data_vio, false, (void **) &lock_holder);
435 	if (result != VDO_SUCCESS) {
436 		continue_data_vio_with_error(data_vio, result);
437 		return;
438 	}
439 
440 	if (lock_holder == NULL) {
441 		/* We got the lock */
442 		launch_locked_request(data_vio);
443 		return;
444 	}
445 
446 	result = VDO_ASSERT(lock_holder->logical.locked, "logical block lock held");
447 	if (result != VDO_SUCCESS) {
448 		continue_data_vio_with_error(data_vio, result);
449 		return;
450 	}
451 
452 	/*
453 	 * If the new request is a pure read request (not read-modify-write) and the lock_holder is
454 	 * writing and has received an allocation, service the read request immediately by copying
455 	 * data from the lock_holder to avoid having to flush the write out of the packer just to
456 	 * prevent the read from waiting indefinitely. If the lock_holder does not yet have an
457 	 * allocation, prevent it from blocking in the packer and wait on it. This is necessary in
458 	 * order to prevent returning data that may not have actually been written.
459 	 */
460 	if (!data_vio->write && READ_ONCE(lock_holder->allocation_succeeded)) {
461 		copy_to_bio(data_vio->user_bio, lock_holder->vio.data + data_vio->offset);
462 		acknowledge_data_vio(data_vio);
463 		complete_data_vio(completion);
464 		return;
465 	}
466 
467 	data_vio->last_async_operation = VIO_ASYNC_OP_ATTEMPT_LOGICAL_BLOCK_LOCK;
468 	vdo_waitq_enqueue_waiter(&lock_holder->logical.waiters, &data_vio->waiter);
469 
470 	/*
471 	 * Prevent writes and read-modify-writes from blocking indefinitely on lock holders in the
472 	 * packer.
473 	 */
474 	if (lock_holder->write && cancel_data_vio_compression(lock_holder)) {
475 		data_vio->compression.lock_holder = lock_holder;
476 		launch_data_vio_packer_callback(data_vio,
477 						vdo_remove_lock_holder_from_packer);
478 	}
479 }
480 
481 /**
482  * launch_data_vio() - (Re)initialize a data_vio to have a new logical block number, keeping the
483  *		       same parent and other state and send it on its way.
484  */
485 static void launch_data_vio(struct data_vio *data_vio, logical_block_number_t lbn)
486 {
487 	struct vdo_completion *completion = &data_vio->vio.completion;
488 
489 	/*
490 	 * Clearing the tree lock must happen before initializing the LBN lock, which also adds
491 	 * information to the tree lock.
492 	 */
493 	memset(&data_vio->tree_lock, 0, sizeof(data_vio->tree_lock));
494 	initialize_lbn_lock(data_vio, lbn);
495 	INIT_LIST_HEAD(&data_vio->hash_lock_entry);
496 	INIT_LIST_HEAD(&data_vio->write_entry);
497 
498 	memset(&data_vio->allocation, 0, sizeof(data_vio->allocation));
499 
500 	data_vio->is_duplicate = false;
501 
502 	memset(&data_vio->record_name, 0, sizeof(data_vio->record_name));
503 	memset(&data_vio->duplicate, 0, sizeof(data_vio->duplicate));
504 	vdo_reset_completion(&data_vio->decrement_completion);
505 	vdo_reset_completion(completion);
506 	completion->error_handler = handle_data_vio_error;
507 	set_data_vio_logical_callback(data_vio, attempt_logical_block_lock);
508 	vdo_enqueue_completion(completion, VDO_DEFAULT_Q_MAP_BIO_PRIORITY);
509 }
510 
511 static bool is_zero_block(char *block)
512 {
513 	int i;
514 
515 	for (i = 0; i < VDO_BLOCK_SIZE; i += sizeof(u64)) {
516 		if (*((u64 *) &block[i]))
517 			return false;
518 	}
519 
520 	return true;
521 }
522 
523 static void copy_from_bio(struct bio *bio, char *data_ptr)
524 {
525 	struct bio_vec biovec;
526 	struct bvec_iter iter;
527 
528 	bio_for_each_segment(biovec, bio, iter) {
529 		memcpy_from_bvec(data_ptr, &biovec);
530 		data_ptr += biovec.bv_len;
531 	}
532 }
533 
534 static void launch_bio(struct vdo *vdo, struct data_vio *data_vio, struct bio *bio)
535 {
536 	logical_block_number_t lbn;
537 	/*
538 	 * Zero out the fields which don't need to be preserved (i.e. which are not pointers to
539 	 * separately allocated objects).
540 	 */
541 	memset(data_vio, 0, offsetof(struct data_vio, vio));
542 	memset(&data_vio->compression, 0, offsetof(struct compression_state, block));
543 
544 	data_vio->user_bio = bio;
545 	data_vio->offset = to_bytes(bio->bi_iter.bi_sector & VDO_SECTORS_PER_BLOCK_MASK);
546 	data_vio->is_partial = (bio->bi_iter.bi_size < VDO_BLOCK_SIZE) || (data_vio->offset != 0);
547 
548 	/*
549 	 * Discards behave very differently than other requests when coming in from device-mapper.
550 	 * We have to be able to handle any size discards and various sector offsets within a
551 	 * block.
552 	 */
553 	if (bio_op(bio) == REQ_OP_DISCARD) {
554 		data_vio->remaining_discard = bio->bi_iter.bi_size;
555 		data_vio->write = true;
556 		data_vio->is_discard = true;
557 		if (data_vio->is_partial) {
558 			vdo_count_bios(&vdo->stats.bios_in_partial, bio);
559 			data_vio->read = true;
560 		}
561 	} else if (data_vio->is_partial) {
562 		vdo_count_bios(&vdo->stats.bios_in_partial, bio);
563 		data_vio->read = true;
564 		if (bio_data_dir(bio) == WRITE)
565 			data_vio->write = true;
566 	} else if (bio_data_dir(bio) == READ) {
567 		data_vio->read = true;
568 	} else {
569 		/*
570 		 * Copy the bio data to a char array so that we can continue to use the data after
571 		 * we acknowledge the bio.
572 		 */
573 		copy_from_bio(bio, data_vio->vio.data);
574 		data_vio->is_zero = is_zero_block(data_vio->vio.data);
575 		data_vio->write = true;
576 	}
577 
578 	if (data_vio->user_bio->bi_opf & REQ_FUA)
579 		data_vio->fua = true;
580 
581 	lbn = (bio->bi_iter.bi_sector - vdo->starting_sector_offset) / VDO_SECTORS_PER_BLOCK;
582 	launch_data_vio(data_vio, lbn);
583 }
584 
585 static void assign_data_vio(struct limiter *limiter, struct data_vio *data_vio)
586 {
587 	struct bio *bio = bio_list_pop(limiter->permitted_waiters);
588 
589 	launch_bio(limiter->pool->completion.vdo, data_vio, bio);
590 	limiter->wake_count++;
591 
592 	bio = bio_list_peek(limiter->permitted_waiters);
593 	limiter->arrival = ((bio == NULL) ? U64_MAX : get_arrival_time(bio));
594 }
595 
596 static void assign_discard_permit(struct limiter *limiter)
597 {
598 	struct bio *bio = bio_list_pop(&limiter->waiters);
599 
600 	if (limiter->arrival == U64_MAX)
601 		limiter->arrival = get_arrival_time(bio);
602 
603 	bio_list_add(limiter->permitted_waiters, bio);
604 }
605 
606 static void get_waiters(struct limiter *limiter)
607 {
608 	bio_list_merge_init(&limiter->waiters, &limiter->new_waiters);
609 }
610 
611 static inline struct data_vio *get_available_data_vio(struct data_vio_pool *pool)
612 {
613 	struct data_vio *data_vio =
614 		list_first_entry(&pool->available, struct data_vio, pool_entry);
615 
616 	list_del_init(&data_vio->pool_entry);
617 	return data_vio;
618 }
619 
620 static void assign_data_vio_to_waiter(struct limiter *limiter)
621 {
622 	assign_data_vio(limiter, get_available_data_vio(limiter->pool));
623 }
624 
625 static void update_limiter(struct limiter *limiter)
626 {
627 	struct bio_list *waiters = &limiter->waiters;
628 	data_vio_count_t available = limiter->limit - limiter->busy;
629 
630 	VDO_ASSERT_LOG_ONLY((limiter->release_count <= limiter->busy),
631 			    "Release count %u is not more than busy count %u",
632 			    limiter->release_count, limiter->busy);
633 
634 	get_waiters(limiter);
635 	for (; (limiter->release_count > 0) && !bio_list_empty(waiters); limiter->release_count--)
636 		limiter->assigner(limiter);
637 
638 	if (limiter->release_count > 0) {
639 		WRITE_ONCE(limiter->busy, limiter->busy - limiter->release_count);
640 		limiter->release_count = 0;
641 		return;
642 	}
643 
644 	for (; (available > 0) && !bio_list_empty(waiters); available--)
645 		limiter->assigner(limiter);
646 
647 	WRITE_ONCE(limiter->busy, limiter->limit - available);
648 	if (limiter->max_busy < limiter->busy)
649 		WRITE_ONCE(limiter->max_busy, limiter->busy);
650 }
651 
652 /**
653  * schedule_releases() - Ensure that release processing is scheduled.
654  *
655  * If this call switches the state to processing, enqueue. Otherwise, some other thread has already
656  * done so.
657  */
658 static void schedule_releases(struct data_vio_pool *pool)
659 {
660 	/* Pairs with the barrier in process_release_callback(). */
661 	smp_mb__before_atomic();
662 	if (atomic_cmpxchg(&pool->processing, false, true))
663 		return;
664 
665 	pool->completion.requeue = true;
666 	vdo_launch_completion_with_priority(&pool->completion,
667 					    CPU_Q_COMPLETE_VIO_PRIORITY);
668 }
669 
670 static void reuse_or_release_resources(struct data_vio_pool *pool,
671 				       struct data_vio *data_vio,
672 				       struct list_head *returned)
673 {
674 	if (data_vio->remaining_discard > 0) {
675 		if (bio_list_empty(&pool->discard_limiter.waiters)) {
676 			/* Return the data_vio's discard permit. */
677 			pool->discard_limiter.release_count++;
678 		} else {
679 			assign_discard_permit(&pool->discard_limiter);
680 		}
681 	}
682 
683 	if (pool->limiter.arrival < pool->discard_limiter.arrival) {
684 		assign_data_vio(&pool->limiter, data_vio);
685 	} else if (pool->discard_limiter.arrival < U64_MAX) {
686 		assign_data_vio(&pool->discard_limiter, data_vio);
687 	} else {
688 		list_add(&data_vio->pool_entry, returned);
689 		pool->limiter.release_count++;
690 	}
691 }
692 
693 /**
694  * process_release_callback() - Process a batch of data_vio releases.
695  * @completion: The pool with data_vios to release.
696  */
697 static void process_release_callback(struct vdo_completion *completion)
698 {
699 	struct data_vio_pool *pool = as_data_vio_pool(completion);
700 	bool reschedule;
701 	bool drained;
702 	data_vio_count_t processed;
703 	data_vio_count_t to_wake;
704 	data_vio_count_t discards_to_wake;
705 	LIST_HEAD(returned);
706 
707 	spin_lock(&pool->lock);
708 	get_waiters(&pool->discard_limiter);
709 	get_waiters(&pool->limiter);
710 	spin_unlock(&pool->lock);
711 
712 	if (pool->limiter.arrival == U64_MAX) {
713 		struct bio *bio = bio_list_peek(&pool->limiter.waiters);
714 
715 		if (bio != NULL)
716 			pool->limiter.arrival = get_arrival_time(bio);
717 	}
718 
719 	for (processed = 0; processed < DATA_VIO_RELEASE_BATCH_SIZE; processed++) {
720 		struct data_vio *data_vio;
721 		struct funnel_queue_entry *entry = vdo_funnel_queue_poll(pool->queue);
722 
723 		if (entry == NULL)
724 			break;
725 
726 		data_vio = as_data_vio(container_of(entry, struct vdo_completion,
727 						    work_queue_entry_link));
728 		acknowledge_data_vio(data_vio);
729 		reuse_or_release_resources(pool, data_vio, &returned);
730 	}
731 
732 	spin_lock(&pool->lock);
733 	/*
734 	 * There is a race where waiters could be added while we are in the unlocked section above.
735 	 * Those waiters could not see the resources we are now about to release, so we assign
736 	 * those resources now as we have no guarantee of being rescheduled. This is handled in
737 	 * update_limiter().
738 	 */
739 	update_limiter(&pool->discard_limiter);
740 	list_splice(&returned, &pool->available);
741 	update_limiter(&pool->limiter);
742 	to_wake = pool->limiter.wake_count;
743 	pool->limiter.wake_count = 0;
744 	discards_to_wake = pool->discard_limiter.wake_count;
745 	pool->discard_limiter.wake_count = 0;
746 
747 	atomic_set(&pool->processing, false);
748 	/* Pairs with the barrier in schedule_releases(). */
749 	smp_mb();
750 
751 	reschedule = !vdo_is_funnel_queue_empty(pool->queue);
752 	drained = (!reschedule &&
753 		   vdo_is_state_draining(&pool->state) &&
754 		   check_for_drain_complete_locked(pool));
755 	spin_unlock(&pool->lock);
756 
757 	if (to_wake > 0)
758 		wake_up_nr(&pool->limiter.blocked_threads, to_wake);
759 
760 	if (discards_to_wake > 0)
761 		wake_up_nr(&pool->discard_limiter.blocked_threads, discards_to_wake);
762 
763 	if (reschedule)
764 		schedule_releases(pool);
765 	else if (drained)
766 		vdo_finish_draining(&pool->state);
767 }
768 
769 static void initialize_limiter(struct limiter *limiter, struct data_vio_pool *pool,
770 			       assigner_fn assigner, data_vio_count_t limit)
771 {
772 	limiter->pool = pool;
773 	limiter->assigner = assigner;
774 	limiter->limit = limit;
775 	limiter->arrival = U64_MAX;
776 	init_waitqueue_head(&limiter->blocked_threads);
777 }
778 
779 /**
780  * initialize_data_vio() - Allocate the components of a data_vio.
781  *
782  * The caller is responsible for cleaning up the data_vio on error.
783  *
784  * Return: VDO_SUCCESS or an error.
785  */
786 static int initialize_data_vio(struct data_vio *data_vio, struct vdo *vdo)
787 {
788 	struct bio *bio;
789 	int result;
790 
791 	BUILD_BUG_ON(VDO_BLOCK_SIZE > PAGE_SIZE);
792 	result = vdo_allocate_memory(VDO_BLOCK_SIZE, 0, "data_vio data",
793 				     &data_vio->vio.data);
794 	if (result != VDO_SUCCESS)
795 		return vdo_log_error_strerror(result,
796 					      "data_vio data allocation failure");
797 
798 	result = vdo_allocate_memory(VDO_BLOCK_SIZE, 0, "compressed block",
799 				     &data_vio->compression.block);
800 	if (result != VDO_SUCCESS) {
801 		return vdo_log_error_strerror(result,
802 					      "data_vio compressed block allocation failure");
803 	}
804 
805 	result = vdo_allocate_memory(VDO_BLOCK_SIZE, 0, "vio scratch",
806 				     &data_vio->scratch_block);
807 	if (result != VDO_SUCCESS)
808 		return vdo_log_error_strerror(result,
809 					      "data_vio scratch allocation failure");
810 
811 	result = vdo_create_bio(&bio);
812 	if (result != VDO_SUCCESS)
813 		return vdo_log_error_strerror(result,
814 					      "data_vio data bio allocation failure");
815 
816 	vdo_initialize_completion(&data_vio->decrement_completion, vdo,
817 				  VDO_DECREMENT_COMPLETION);
818 	initialize_vio(&data_vio->vio, bio, 1, VIO_TYPE_DATA, VIO_PRIORITY_DATA, vdo);
819 
820 	return VDO_SUCCESS;
821 }
822 
823 static void destroy_data_vio(struct data_vio *data_vio)
824 {
825 	if (data_vio == NULL)
826 		return;
827 
828 	vdo_free_bio(vdo_forget(data_vio->vio.bio));
829 	vdo_free(vdo_forget(data_vio->vio.data));
830 	vdo_free(vdo_forget(data_vio->compression.block));
831 	vdo_free(vdo_forget(data_vio->scratch_block));
832 }
833 
834 /**
835  * make_data_vio_pool() - Initialize a data_vio pool.
836  * @vdo: The vdo to which the pool will belong.
837  * @pool_size: The number of data_vios in the pool.
838  * @discard_limit: The maximum number of data_vios which may be used for discards.
839  * @pool: A pointer to hold the newly allocated pool.
840  */
841 int make_data_vio_pool(struct vdo *vdo, data_vio_count_t pool_size,
842 		       data_vio_count_t discard_limit, struct data_vio_pool **pool_ptr)
843 {
844 	int result;
845 	struct data_vio_pool *pool;
846 	data_vio_count_t i;
847 
848 	result = vdo_allocate_extended(struct data_vio_pool, pool_size, struct data_vio,
849 				       __func__, &pool);
850 	if (result != VDO_SUCCESS)
851 		return result;
852 
853 	VDO_ASSERT_LOG_ONLY((discard_limit <= pool_size),
854 			    "discard limit does not exceed pool size");
855 	initialize_limiter(&pool->discard_limiter, pool, assign_discard_permit,
856 			   discard_limit);
857 	pool->discard_limiter.permitted_waiters = &pool->permitted_discards;
858 	initialize_limiter(&pool->limiter, pool, assign_data_vio_to_waiter, pool_size);
859 	pool->limiter.permitted_waiters = &pool->limiter.waiters;
860 	INIT_LIST_HEAD(&pool->available);
861 	spin_lock_init(&pool->lock);
862 	vdo_set_admin_state_code(&pool->state, VDO_ADMIN_STATE_NORMAL_OPERATION);
863 	vdo_initialize_completion(&pool->completion, vdo, VDO_DATA_VIO_POOL_COMPLETION);
864 	vdo_prepare_completion(&pool->completion, process_release_callback,
865 			       process_release_callback, vdo->thread_config.cpu_thread,
866 			       NULL);
867 
868 	result = vdo_make_funnel_queue(&pool->queue);
869 	if (result != VDO_SUCCESS) {
870 		free_data_vio_pool(vdo_forget(pool));
871 		return result;
872 	}
873 
874 	for (i = 0; i < pool_size; i++) {
875 		struct data_vio *data_vio = &pool->data_vios[i];
876 
877 		result = initialize_data_vio(data_vio, vdo);
878 		if (result != VDO_SUCCESS) {
879 			destroy_data_vio(data_vio);
880 			free_data_vio_pool(pool);
881 			return result;
882 		}
883 
884 		list_add(&data_vio->pool_entry, &pool->available);
885 	}
886 
887 	*pool_ptr = pool;
888 	return VDO_SUCCESS;
889 }
890 
891 /**
892  * free_data_vio_pool() - Free a data_vio_pool and the data_vios in it.
893  *
894  * All data_vios must be returned to the pool before calling this function.
895  */
896 void free_data_vio_pool(struct data_vio_pool *pool)
897 {
898 	struct data_vio *data_vio, *tmp;
899 
900 	if (pool == NULL)
901 		return;
902 
903 	/*
904 	 * Pairs with the barrier in process_release_callback(). Possibly not needed since it
905 	 * caters to an enqueue vs. free race.
906 	 */
907 	smp_mb();
908 	BUG_ON(atomic_read(&pool->processing));
909 
910 	spin_lock(&pool->lock);
911 	VDO_ASSERT_LOG_ONLY((pool->limiter.busy == 0),
912 			    "data_vio pool must not have %u busy entries when being freed",
913 			    pool->limiter.busy);
914 	VDO_ASSERT_LOG_ONLY((bio_list_empty(&pool->limiter.waiters) &&
915 			     bio_list_empty(&pool->limiter.new_waiters)),
916 			    "data_vio pool must not have threads waiting to read or write when being freed");
917 	VDO_ASSERT_LOG_ONLY((bio_list_empty(&pool->discard_limiter.waiters) &&
918 			     bio_list_empty(&pool->discard_limiter.new_waiters)),
919 			    "data_vio pool must not have threads waiting to discard when being freed");
920 	spin_unlock(&pool->lock);
921 
922 	list_for_each_entry_safe(data_vio, tmp, &pool->available, pool_entry) {
923 		list_del_init(&data_vio->pool_entry);
924 		destroy_data_vio(data_vio);
925 	}
926 
927 	vdo_free_funnel_queue(vdo_forget(pool->queue));
928 	vdo_free(pool);
929 }
930 
931 static bool acquire_permit(struct limiter *limiter)
932 {
933 	if (limiter->busy >= limiter->limit)
934 		return false;
935 
936 	WRITE_ONCE(limiter->busy, limiter->busy + 1);
937 	if (limiter->max_busy < limiter->busy)
938 		WRITE_ONCE(limiter->max_busy, limiter->busy);
939 	return true;
940 }
941 
942 static void wait_permit(struct limiter *limiter, struct bio *bio)
943 	__releases(&limiter->pool->lock)
944 {
945 	DEFINE_WAIT(wait);
946 
947 	bio_list_add(&limiter->new_waiters, bio);
948 	prepare_to_wait_exclusive(&limiter->blocked_threads, &wait,
949 				  TASK_UNINTERRUPTIBLE);
950 	spin_unlock(&limiter->pool->lock);
951 	io_schedule();
952 	finish_wait(&limiter->blocked_threads, &wait);
953 }
954 
955 /**
956  * vdo_launch_bio() - Acquire a data_vio from the pool, assign the bio to it, and launch it.
957  *
958  * This will block if data_vios or discard permits are not available.
959  */
960 void vdo_launch_bio(struct data_vio_pool *pool, struct bio *bio)
961 {
962 	struct data_vio *data_vio;
963 
964 	VDO_ASSERT_LOG_ONLY(!vdo_is_state_quiescent(&pool->state),
965 			    "data_vio_pool not quiescent on acquire");
966 
967 	bio->bi_private = (void *) jiffies;
968 	spin_lock(&pool->lock);
969 	if ((bio_op(bio) == REQ_OP_DISCARD) &&
970 	    !acquire_permit(&pool->discard_limiter)) {
971 		wait_permit(&pool->discard_limiter, bio);
972 		return;
973 	}
974 
975 	if (!acquire_permit(&pool->limiter)) {
976 		wait_permit(&pool->limiter, bio);
977 		return;
978 	}
979 
980 	data_vio = get_available_data_vio(pool);
981 	spin_unlock(&pool->lock);
982 	launch_bio(pool->completion.vdo, data_vio, bio);
983 }
984 
985 /* Implements vdo_admin_initiator_fn. */
986 static void initiate_drain(struct admin_state *state)
987 {
988 	bool drained;
989 	struct data_vio_pool *pool = container_of(state, struct data_vio_pool, state);
990 
991 	spin_lock(&pool->lock);
992 	drained = check_for_drain_complete_locked(pool);
993 	spin_unlock(&pool->lock);
994 
995 	if (drained)
996 		vdo_finish_draining(state);
997 }
998 
999 static void assert_on_vdo_cpu_thread(const struct vdo *vdo, const char *name)
1000 {
1001 	VDO_ASSERT_LOG_ONLY((vdo_get_callback_thread_id() == vdo->thread_config.cpu_thread),
1002 			    "%s called on cpu thread", name);
1003 }
1004 
1005 /**
1006  * drain_data_vio_pool() - Wait asynchronously for all data_vios to be returned to the pool.
1007  * @completion: The completion to notify when the pool has drained.
1008  */
1009 void drain_data_vio_pool(struct data_vio_pool *pool, struct vdo_completion *completion)
1010 {
1011 	assert_on_vdo_cpu_thread(completion->vdo, __func__);
1012 	vdo_start_draining(&pool->state, VDO_ADMIN_STATE_SUSPENDING, completion,
1013 			   initiate_drain);
1014 }
1015 
1016 /**
1017  * resume_data_vio_pool() - Resume a data_vio pool.
1018  * @completion: The completion to notify when the pool has resumed.
1019  */
1020 void resume_data_vio_pool(struct data_vio_pool *pool, struct vdo_completion *completion)
1021 {
1022 	assert_on_vdo_cpu_thread(completion->vdo, __func__);
1023 	vdo_continue_completion(completion, vdo_resume_if_quiescent(&pool->state));
1024 }
1025 
1026 static void dump_limiter(const char *name, struct limiter *limiter)
1027 {
1028 	vdo_log_info("%s: %u of %u busy (max %u), %s", name, limiter->busy,
1029 		     limiter->limit, limiter->max_busy,
1030 		     ((bio_list_empty(&limiter->waiters) &&
1031 		       bio_list_empty(&limiter->new_waiters)) ?
1032 		      "no waiters" : "has waiters"));
1033 }
1034 
1035 /**
1036  * dump_data_vio_pool() - Dump a data_vio pool to the log.
1037  * @dump_vios: Whether to dump the details of each busy data_vio as well.
1038  */
1039 void dump_data_vio_pool(struct data_vio_pool *pool, bool dump_vios)
1040 {
1041 	/*
1042 	 * In order that syslog can empty its buffer, sleep after 35 elements for 4ms (till the
1043 	 * second clock tick).  These numbers were picked based on experiments with lab machines.
1044 	 */
1045 	static const int ELEMENTS_PER_BATCH = 35;
1046 	static const int SLEEP_FOR_SYSLOG = 4000;
1047 
1048 	if (pool == NULL)
1049 		return;
1050 
1051 	spin_lock(&pool->lock);
1052 	dump_limiter("data_vios", &pool->limiter);
1053 	dump_limiter("discard permits", &pool->discard_limiter);
1054 	if (dump_vios) {
1055 		int i;
1056 		int dumped = 0;
1057 
1058 		for (i = 0; i < pool->limiter.limit; i++) {
1059 			struct data_vio *data_vio = &pool->data_vios[i];
1060 
1061 			if (!list_empty(&data_vio->pool_entry))
1062 				continue;
1063 
1064 			dump_data_vio(data_vio);
1065 			if (++dumped >= ELEMENTS_PER_BATCH) {
1066 				spin_unlock(&pool->lock);
1067 				dumped = 0;
1068 				fsleep(SLEEP_FOR_SYSLOG);
1069 				spin_lock(&pool->lock);
1070 			}
1071 		}
1072 	}
1073 
1074 	spin_unlock(&pool->lock);
1075 }
1076 
1077 data_vio_count_t get_data_vio_pool_active_discards(struct data_vio_pool *pool)
1078 {
1079 	return READ_ONCE(pool->discard_limiter.busy);
1080 }
1081 
1082 data_vio_count_t get_data_vio_pool_discard_limit(struct data_vio_pool *pool)
1083 {
1084 	return READ_ONCE(pool->discard_limiter.limit);
1085 }
1086 
1087 data_vio_count_t get_data_vio_pool_maximum_discards(struct data_vio_pool *pool)
1088 {
1089 	return READ_ONCE(pool->discard_limiter.max_busy);
1090 }
1091 
1092 int set_data_vio_pool_discard_limit(struct data_vio_pool *pool, data_vio_count_t limit)
1093 {
1094 	if (get_data_vio_pool_request_limit(pool) < limit) {
1095 		// The discard limit may not be higher than the data_vio limit.
1096 		return -EINVAL;
1097 	}
1098 
1099 	spin_lock(&pool->lock);
1100 	pool->discard_limiter.limit = limit;
1101 	spin_unlock(&pool->lock);
1102 
1103 	return VDO_SUCCESS;
1104 }
1105 
1106 data_vio_count_t get_data_vio_pool_active_requests(struct data_vio_pool *pool)
1107 {
1108 	return READ_ONCE(pool->limiter.busy);
1109 }
1110 
1111 data_vio_count_t get_data_vio_pool_request_limit(struct data_vio_pool *pool)
1112 {
1113 	return READ_ONCE(pool->limiter.limit);
1114 }
1115 
1116 data_vio_count_t get_data_vio_pool_maximum_requests(struct data_vio_pool *pool)
1117 {
1118 	return READ_ONCE(pool->limiter.max_busy);
1119 }
1120 
1121 static void update_data_vio_error_stats(struct data_vio *data_vio)
1122 {
1123 	u8 index = 0;
1124 	static const char * const operations[] = {
1125 		[0] = "empty",
1126 		[1] = "read",
1127 		[2] = "write",
1128 		[3] = "read-modify-write",
1129 		[5] = "read+fua",
1130 		[6] = "write+fua",
1131 		[7] = "read-modify-write+fua",
1132 	};
1133 
1134 	if (data_vio->read)
1135 		index = 1;
1136 
1137 	if (data_vio->write)
1138 		index += 2;
1139 
1140 	if (data_vio->fua)
1141 		index += 4;
1142 
1143 	update_vio_error_stats(&data_vio->vio,
1144 			       "Completing %s vio for LBN %llu with error after %s",
1145 			       operations[index],
1146 			       (unsigned long long) data_vio->logical.lbn,
1147 			       get_data_vio_operation_name(data_vio));
1148 }
1149 
1150 static void perform_cleanup_stage(struct data_vio *data_vio,
1151 				  enum data_vio_cleanup_stage stage);
1152 
1153 /**
1154  * release_allocated_lock() - Release the PBN lock and/or the reference on the allocated block at
1155  *			      the end of processing a data_vio.
1156  */
1157 static void release_allocated_lock(struct vdo_completion *completion)
1158 {
1159 	struct data_vio *data_vio = as_data_vio(completion);
1160 
1161 	assert_data_vio_in_allocated_zone(data_vio);
1162 	release_data_vio_allocation_lock(data_vio, false);
1163 	perform_cleanup_stage(data_vio, VIO_RELEASE_RECOVERY_LOCKS);
1164 }
1165 
1166 /** release_lock() - Release an uncontended LBN lock. */
1167 static void release_lock(struct data_vio *data_vio, struct lbn_lock *lock)
1168 {
1169 	struct int_map *lock_map = lock->zone->lbn_operations;
1170 	struct data_vio *lock_holder;
1171 
1172 	if (!lock->locked) {
1173 		/*  The lock is not locked, so it had better not be registered in the lock map. */
1174 		struct data_vio *lock_holder = vdo_int_map_get(lock_map, lock->lbn);
1175 
1176 		VDO_ASSERT_LOG_ONLY((data_vio != lock_holder),
1177 				    "no logical block lock held for block %llu",
1178 				    (unsigned long long) lock->lbn);
1179 		return;
1180 	}
1181 
1182 	/* Release the lock by removing the lock from the map. */
1183 	lock_holder = vdo_int_map_remove(lock_map, lock->lbn);
1184 	VDO_ASSERT_LOG_ONLY((data_vio == lock_holder),
1185 			    "logical block lock mismatch for block %llu",
1186 			    (unsigned long long) lock->lbn);
1187 	lock->locked = false;
1188 }
1189 
1190 /** transfer_lock() - Transfer a contended LBN lock to the eldest waiter. */
1191 static void transfer_lock(struct data_vio *data_vio, struct lbn_lock *lock)
1192 {
1193 	struct data_vio *lock_holder, *next_lock_holder;
1194 	int result;
1195 
1196 	VDO_ASSERT_LOG_ONLY(lock->locked, "lbn_lock with waiters is not locked");
1197 
1198 	/* Another data_vio is waiting for the lock, transfer it in a single lock map operation. */
1199 	next_lock_holder =
1200 		vdo_waiter_as_data_vio(vdo_waitq_dequeue_waiter(&lock->waiters));
1201 
1202 	/* Transfer the remaining lock waiters to the next lock holder. */
1203 	vdo_waitq_transfer_all_waiters(&lock->waiters,
1204 				       &next_lock_holder->logical.waiters);
1205 
1206 	result = vdo_int_map_put(lock->zone->lbn_operations, lock->lbn,
1207 				 next_lock_holder, true, (void **) &lock_holder);
1208 	if (result != VDO_SUCCESS) {
1209 		continue_data_vio_with_error(next_lock_holder, result);
1210 		return;
1211 	}
1212 
1213 	VDO_ASSERT_LOG_ONLY((lock_holder == data_vio),
1214 			    "logical block lock mismatch for block %llu",
1215 			    (unsigned long long) lock->lbn);
1216 	lock->locked = false;
1217 
1218 	/*
1219 	 * If there are still waiters, other data_vios must be trying to get the lock we just
1220 	 * transferred. We must ensure that the new lock holder doesn't block in the packer.
1221 	 */
1222 	if (vdo_waitq_has_waiters(&next_lock_holder->logical.waiters))
1223 		cancel_data_vio_compression(next_lock_holder);
1224 
1225 	/*
1226 	 * Avoid stack overflow on lock transfer.
1227 	 * FIXME: this is only an issue in the 1 thread config.
1228 	 */
1229 	next_lock_holder->vio.completion.requeue = true;
1230 	launch_locked_request(next_lock_holder);
1231 }
1232 
1233 /**
1234  * release_logical_lock() - Release the logical block lock and flush generation lock at the end of
1235  *			    processing a data_vio.
1236  */
1237 static void release_logical_lock(struct vdo_completion *completion)
1238 {
1239 	struct data_vio *data_vio = as_data_vio(completion);
1240 	struct lbn_lock *lock = &data_vio->logical;
1241 
1242 	assert_data_vio_in_logical_zone(data_vio);
1243 
1244 	if (vdo_waitq_has_waiters(&lock->waiters))
1245 		transfer_lock(data_vio, lock);
1246 	else
1247 		release_lock(data_vio, lock);
1248 
1249 	vdo_release_flush_generation_lock(data_vio);
1250 	perform_cleanup_stage(data_vio, VIO_CLEANUP_DONE);
1251 }
1252 
1253 /** clean_hash_lock() - Release the hash lock at the end of processing a data_vio. */
1254 static void clean_hash_lock(struct vdo_completion *completion)
1255 {
1256 	struct data_vio *data_vio = as_data_vio(completion);
1257 
1258 	assert_data_vio_in_hash_zone(data_vio);
1259 	if (completion->result != VDO_SUCCESS) {
1260 		vdo_clean_failed_hash_lock(data_vio);
1261 		return;
1262 	}
1263 
1264 	vdo_release_hash_lock(data_vio);
1265 	perform_cleanup_stage(data_vio, VIO_RELEASE_LOGICAL);
1266 }
1267 
1268 /**
1269  * finish_cleanup() - Make some assertions about a data_vio which has finished cleaning up.
1270  *
1271  * If it is part of a multi-block discard, starts on the next block, otherwise, returns it to the
1272  * pool.
1273  */
1274 static void finish_cleanup(struct data_vio *data_vio)
1275 {
1276 	struct vdo_completion *completion = &data_vio->vio.completion;
1277 	u32 discard_size = min_t(u32, data_vio->remaining_discard,
1278 				 VDO_BLOCK_SIZE - data_vio->offset);
1279 
1280 	VDO_ASSERT_LOG_ONLY(data_vio->allocation.lock == NULL,
1281 			    "complete data_vio has no allocation lock");
1282 	VDO_ASSERT_LOG_ONLY(data_vio->hash_lock == NULL,
1283 			    "complete data_vio has no hash lock");
1284 	if ((data_vio->remaining_discard <= discard_size) ||
1285 	    (completion->result != VDO_SUCCESS)) {
1286 		struct data_vio_pool *pool = completion->vdo->data_vio_pool;
1287 
1288 		vdo_funnel_queue_put(pool->queue, &completion->work_queue_entry_link);
1289 		schedule_releases(pool);
1290 		return;
1291 	}
1292 
1293 	data_vio->remaining_discard -= discard_size;
1294 	data_vio->is_partial = (data_vio->remaining_discard < VDO_BLOCK_SIZE);
1295 	data_vio->read = data_vio->is_partial;
1296 	data_vio->offset = 0;
1297 	completion->requeue = true;
1298 	data_vio->first_reference_operation_complete = false;
1299 	launch_data_vio(data_vio, data_vio->logical.lbn + 1);
1300 }
1301 
1302 /** perform_cleanup_stage() - Perform the next step in the process of cleaning up a data_vio. */
1303 static void perform_cleanup_stage(struct data_vio *data_vio,
1304 				  enum data_vio_cleanup_stage stage)
1305 {
1306 	struct vdo *vdo = vdo_from_data_vio(data_vio);
1307 
1308 	switch (stage) {
1309 	case VIO_RELEASE_HASH_LOCK:
1310 		if (data_vio->hash_lock != NULL) {
1311 			launch_data_vio_hash_zone_callback(data_vio, clean_hash_lock);
1312 			return;
1313 		}
1314 		fallthrough;
1315 
1316 	case VIO_RELEASE_ALLOCATED:
1317 		if (data_vio_has_allocation(data_vio)) {
1318 			launch_data_vio_allocated_zone_callback(data_vio,
1319 								release_allocated_lock);
1320 			return;
1321 		}
1322 		fallthrough;
1323 
1324 	case VIO_RELEASE_RECOVERY_LOCKS:
1325 		if ((data_vio->recovery_sequence_number > 0) &&
1326 		    (READ_ONCE(vdo->read_only_notifier.read_only_error) == VDO_SUCCESS) &&
1327 		    (data_vio->vio.completion.result != VDO_READ_ONLY))
1328 			vdo_log_warning("VDO not read-only when cleaning data_vio with RJ lock");
1329 		fallthrough;
1330 
1331 	case VIO_RELEASE_LOGICAL:
1332 		launch_data_vio_logical_callback(data_vio, release_logical_lock);
1333 		return;
1334 
1335 	default:
1336 		finish_cleanup(data_vio);
1337 	}
1338 }
1339 
1340 void complete_data_vio(struct vdo_completion *completion)
1341 {
1342 	struct data_vio *data_vio = as_data_vio(completion);
1343 
1344 	completion->error_handler = NULL;
1345 	data_vio->last_async_operation = VIO_ASYNC_OP_CLEANUP;
1346 	perform_cleanup_stage(data_vio,
1347 			      (data_vio->write ? VIO_CLEANUP_START : VIO_RELEASE_LOGICAL));
1348 }
1349 
1350 static void enter_read_only_mode(struct vdo_completion *completion)
1351 {
1352 	if (vdo_is_read_only(completion->vdo))
1353 		return;
1354 
1355 	if (completion->result != VDO_READ_ONLY) {
1356 		struct data_vio *data_vio = as_data_vio(completion);
1357 
1358 		vdo_log_error_strerror(completion->result,
1359 				       "Preparing to enter read-only mode: data_vio for LBN %llu (becoming mapped to %llu, previously mapped to %llu, allocated %llu) is completing with a fatal error after operation %s",
1360 				       (unsigned long long) data_vio->logical.lbn,
1361 				       (unsigned long long) data_vio->new_mapped.pbn,
1362 				       (unsigned long long) data_vio->mapped.pbn,
1363 				       (unsigned long long) data_vio->allocation.pbn,
1364 				       get_data_vio_operation_name(data_vio));
1365 	}
1366 
1367 	vdo_enter_read_only_mode(completion->vdo, completion->result);
1368 }
1369 
1370 void handle_data_vio_error(struct vdo_completion *completion)
1371 {
1372 	struct data_vio *data_vio = as_data_vio(completion);
1373 
1374 	if ((completion->result == VDO_READ_ONLY) || (data_vio->user_bio == NULL))
1375 		enter_read_only_mode(completion);
1376 
1377 	update_data_vio_error_stats(data_vio);
1378 	complete_data_vio(completion);
1379 }
1380 
1381 /**
1382  * get_data_vio_operation_name() - Get the name of the last asynchronous operation performed on a
1383  *				   data_vio.
1384  */
1385 const char *get_data_vio_operation_name(struct data_vio *data_vio)
1386 {
1387 	BUILD_BUG_ON((MAX_VIO_ASYNC_OPERATION_NUMBER - MIN_VIO_ASYNC_OPERATION_NUMBER) !=
1388 		     ARRAY_SIZE(ASYNC_OPERATION_NAMES));
1389 
1390 	return ((data_vio->last_async_operation < MAX_VIO_ASYNC_OPERATION_NUMBER) ?
1391 		ASYNC_OPERATION_NAMES[data_vio->last_async_operation] :
1392 		"unknown async operation");
1393 }
1394 
1395 /**
1396  * data_vio_allocate_data_block() - Allocate a data block.
1397  *
1398  * @write_lock_type: The type of write lock to obtain on the block.
1399  * @callback: The callback which will attempt an allocation in the current zone and continue if it
1400  *	      succeeds.
1401  * @error_handler: The handler for errors while allocating.
1402  */
1403 void data_vio_allocate_data_block(struct data_vio *data_vio,
1404 				  enum pbn_lock_type write_lock_type,
1405 				  vdo_action_fn callback, vdo_action_fn error_handler)
1406 {
1407 	struct allocation *allocation = &data_vio->allocation;
1408 
1409 	VDO_ASSERT_LOG_ONLY((allocation->pbn == VDO_ZERO_BLOCK),
1410 			    "data_vio does not have an allocation");
1411 	allocation->write_lock_type = write_lock_type;
1412 	allocation->zone = vdo_get_next_allocation_zone(data_vio->logical.zone);
1413 	allocation->first_allocation_zone = allocation->zone->zone_number;
1414 
1415 	data_vio->vio.completion.error_handler = error_handler;
1416 	launch_data_vio_allocated_zone_callback(data_vio, callback);
1417 }
1418 
1419 /**
1420  * release_data_vio_allocation_lock() - Release the PBN lock on a data_vio's allocated block.
1421  * @reset: If true, the allocation will be reset (i.e. any allocated pbn will be forgotten).
1422  *
1423  * If the reference to the locked block is still provisional, it will be released as well.
1424  */
1425 void release_data_vio_allocation_lock(struct data_vio *data_vio, bool reset)
1426 {
1427 	struct allocation *allocation = &data_vio->allocation;
1428 	physical_block_number_t locked_pbn = allocation->pbn;
1429 
1430 	assert_data_vio_in_allocated_zone(data_vio);
1431 
1432 	if (reset || vdo_pbn_lock_has_provisional_reference(allocation->lock))
1433 		allocation->pbn = VDO_ZERO_BLOCK;
1434 
1435 	vdo_release_physical_zone_pbn_lock(allocation->zone, locked_pbn,
1436 					   vdo_forget(allocation->lock));
1437 }
1438 
1439 /**
1440  * uncompress_data_vio() - Uncompress the data a data_vio has just read.
1441  * @mapping_state: The mapping state indicating which fragment to decompress.
1442  * @buffer: The buffer to receive the uncompressed data.
1443  */
1444 int uncompress_data_vio(struct data_vio *data_vio,
1445 			enum block_mapping_state mapping_state, char *buffer)
1446 {
1447 	int size;
1448 	u16 fragment_offset, fragment_size;
1449 	struct compressed_block *block = data_vio->compression.block;
1450 	int result = vdo_get_compressed_block_fragment(mapping_state, block,
1451 						       &fragment_offset, &fragment_size);
1452 
1453 	if (result != VDO_SUCCESS) {
1454 		vdo_log_debug("%s: compressed fragment error %d", __func__, result);
1455 		return result;
1456 	}
1457 
1458 	size = LZ4_decompress_safe((block->data + fragment_offset), buffer,
1459 				   fragment_size, VDO_BLOCK_SIZE);
1460 	if (size != VDO_BLOCK_SIZE) {
1461 		vdo_log_debug("%s: lz4 error", __func__);
1462 		return VDO_INVALID_FRAGMENT;
1463 	}
1464 
1465 	return VDO_SUCCESS;
1466 }
1467 
1468 /**
1469  * modify_for_partial_write() - Do the modify-write part of a read-modify-write cycle.
1470  * @completion: The data_vio which has just finished its read.
1471  *
1472  * This callback is registered in read_block().
1473  */
1474 static void modify_for_partial_write(struct vdo_completion *completion)
1475 {
1476 	struct data_vio *data_vio = as_data_vio(completion);
1477 	char *data = data_vio->vio.data;
1478 	struct bio *bio = data_vio->user_bio;
1479 
1480 	assert_data_vio_on_cpu_thread(data_vio);
1481 
1482 	if (bio_op(bio) == REQ_OP_DISCARD) {
1483 		memset(data + data_vio->offset, '\0', min_t(u32,
1484 							    data_vio->remaining_discard,
1485 							    VDO_BLOCK_SIZE - data_vio->offset));
1486 	} else {
1487 		copy_from_bio(bio, data + data_vio->offset);
1488 	}
1489 
1490 	data_vio->is_zero = is_zero_block(data);
1491 	data_vio->read = false;
1492 	launch_data_vio_logical_callback(data_vio,
1493 					 continue_data_vio_with_block_map_slot);
1494 }
1495 
1496 static void complete_read(struct vdo_completion *completion)
1497 {
1498 	struct data_vio *data_vio = as_data_vio(completion);
1499 	char *data = data_vio->vio.data;
1500 	bool compressed = vdo_is_state_compressed(data_vio->mapped.state);
1501 
1502 	assert_data_vio_on_cpu_thread(data_vio);
1503 
1504 	if (compressed) {
1505 		int result = uncompress_data_vio(data_vio, data_vio->mapped.state, data);
1506 
1507 		if (result != VDO_SUCCESS) {
1508 			continue_data_vio_with_error(data_vio, result);
1509 			return;
1510 		}
1511 	}
1512 
1513 	if (data_vio->write) {
1514 		modify_for_partial_write(completion);
1515 		return;
1516 	}
1517 
1518 	if (compressed || data_vio->is_partial)
1519 		copy_to_bio(data_vio->user_bio, data + data_vio->offset);
1520 
1521 	acknowledge_data_vio(data_vio);
1522 	complete_data_vio(completion);
1523 }
1524 
1525 static void read_endio(struct bio *bio)
1526 {
1527 	struct data_vio *data_vio = vio_as_data_vio(bio->bi_private);
1528 	int result = blk_status_to_errno(bio->bi_status);
1529 
1530 	vdo_count_completed_bios(bio);
1531 	if (result != VDO_SUCCESS) {
1532 		continue_data_vio_with_error(data_vio, result);
1533 		return;
1534 	}
1535 
1536 	launch_data_vio_cpu_callback(data_vio, complete_read,
1537 				     CPU_Q_COMPLETE_READ_PRIORITY);
1538 }
1539 
1540 static void complete_zero_read(struct vdo_completion *completion)
1541 {
1542 	struct data_vio *data_vio = as_data_vio(completion);
1543 
1544 	assert_data_vio_on_cpu_thread(data_vio);
1545 
1546 	if (data_vio->is_partial) {
1547 		memset(data_vio->vio.data, 0, VDO_BLOCK_SIZE);
1548 		if (data_vio->write) {
1549 			modify_for_partial_write(completion);
1550 			return;
1551 		}
1552 	} else {
1553 		zero_fill_bio(data_vio->user_bio);
1554 	}
1555 
1556 	complete_read(completion);
1557 }
1558 
1559 /**
1560  * read_block() - Read a block asynchronously.
1561  *
1562  * This is the callback registered in read_block_mapping().
1563  */
1564 static void read_block(struct vdo_completion *completion)
1565 {
1566 	struct data_vio *data_vio = as_data_vio(completion);
1567 	struct vio *vio = as_vio(completion);
1568 	int result = VDO_SUCCESS;
1569 
1570 	if (data_vio->mapped.pbn == VDO_ZERO_BLOCK) {
1571 		launch_data_vio_cpu_callback(data_vio, complete_zero_read,
1572 					     CPU_Q_COMPLETE_VIO_PRIORITY);
1573 		return;
1574 	}
1575 
1576 	data_vio->last_async_operation = VIO_ASYNC_OP_READ_DATA_VIO;
1577 	if (vdo_is_state_compressed(data_vio->mapped.state)) {
1578 		result = vio_reset_bio(vio, (char *) data_vio->compression.block,
1579 				       read_endio, REQ_OP_READ, data_vio->mapped.pbn);
1580 	} else {
1581 		blk_opf_t opf = ((data_vio->user_bio->bi_opf & PASSTHROUGH_FLAGS) | REQ_OP_READ);
1582 
1583 		if (data_vio->is_partial) {
1584 			result = vio_reset_bio(vio, vio->data, read_endio, opf,
1585 					       data_vio->mapped.pbn);
1586 		} else {
1587 			/* A full 4k read. Use the incoming bio to avoid having to copy the data */
1588 			bio_reset(vio->bio, vio->bio->bi_bdev, opf);
1589 			bio_init_clone(data_vio->user_bio->bi_bdev, vio->bio,
1590 				       data_vio->user_bio, GFP_KERNEL);
1591 
1592 			/* Copy over the original bio iovec and opflags. */
1593 			vdo_set_bio_properties(vio->bio, vio, read_endio, opf,
1594 					       data_vio->mapped.pbn);
1595 		}
1596 	}
1597 
1598 	if (result != VDO_SUCCESS) {
1599 		continue_data_vio_with_error(data_vio, result);
1600 		return;
1601 	}
1602 
1603 	vdo_submit_data_vio(data_vio);
1604 }
1605 
1606 static inline struct data_vio *
1607 reference_count_update_completion_as_data_vio(struct vdo_completion *completion)
1608 {
1609 	if (completion->type == VIO_COMPLETION)
1610 		return as_data_vio(completion);
1611 
1612 	return container_of(completion, struct data_vio, decrement_completion);
1613 }
1614 
1615 /**
1616  * update_block_map() - Rendezvous of the data_vio and decrement completions after each has
1617  *                      made its reference updates. Handle any error from either, or proceed
1618  *                      to updating the block map.
1619  * @completion: The completion of the write in progress.
1620  */
1621 static void update_block_map(struct vdo_completion *completion)
1622 {
1623 	struct data_vio *data_vio = reference_count_update_completion_as_data_vio(completion);
1624 
1625 	assert_data_vio_in_logical_zone(data_vio);
1626 
1627 	if (!data_vio->first_reference_operation_complete) {
1628 		/* Rendezvous, we're first */
1629 		data_vio->first_reference_operation_complete = true;
1630 		return;
1631 	}
1632 
1633 	completion = &data_vio->vio.completion;
1634 	vdo_set_completion_result(completion, data_vio->decrement_completion.result);
1635 	if (completion->result != VDO_SUCCESS) {
1636 		handle_data_vio_error(completion);
1637 		return;
1638 	}
1639 
1640 	completion->error_handler = handle_data_vio_error;
1641 	if (data_vio->hash_lock != NULL)
1642 		set_data_vio_hash_zone_callback(data_vio, vdo_continue_hash_lock);
1643 	else
1644 		completion->callback = complete_data_vio;
1645 
1646 	data_vio->last_async_operation = VIO_ASYNC_OP_PUT_MAPPED_BLOCK;
1647 	vdo_put_mapped_block(data_vio);
1648 }
1649 
1650 static void decrement_reference_count(struct vdo_completion *completion)
1651 {
1652 	struct data_vio *data_vio = container_of(completion, struct data_vio,
1653 						 decrement_completion);
1654 
1655 	assert_data_vio_in_mapped_zone(data_vio);
1656 
1657 	vdo_set_completion_callback(completion, update_block_map,
1658 				    data_vio->logical.zone->thread_id);
1659 	completion->error_handler = update_block_map;
1660 	vdo_modify_reference_count(completion, &data_vio->decrement_updater);
1661 }
1662 
1663 static void increment_reference_count(struct vdo_completion *completion)
1664 {
1665 	struct data_vio *data_vio = as_data_vio(completion);
1666 
1667 	assert_data_vio_in_new_mapped_zone(data_vio);
1668 
1669 	if (data_vio->downgrade_allocation_lock) {
1670 		/*
1671 		 * Now that the data has been written, it's safe to deduplicate against the
1672 		 * block. Downgrade the allocation lock to a read lock so it can be used later by
1673 		 * the hash lock. This is done here since it needs to happen sometime before we
1674 		 * return to the hash zone, and we are currently on the correct thread. For
1675 		 * compressed blocks, the downgrade will have already been done.
1676 		 */
1677 		vdo_downgrade_pbn_write_lock(data_vio->allocation.lock, false);
1678 	}
1679 
1680 	set_data_vio_logical_callback(data_vio, update_block_map);
1681 	completion->error_handler = update_block_map;
1682 	vdo_modify_reference_count(completion, &data_vio->increment_updater);
1683 }
1684 
1685 /** journal_remapping() - Add a recovery journal entry for a data remapping. */
1686 static void journal_remapping(struct vdo_completion *completion)
1687 {
1688 	struct data_vio *data_vio = as_data_vio(completion);
1689 
1690 	assert_data_vio_in_journal_zone(data_vio);
1691 
1692 	data_vio->decrement_updater.operation = VDO_JOURNAL_DATA_REMAPPING;
1693 	data_vio->decrement_updater.zpbn = data_vio->mapped;
1694 	if (data_vio->new_mapped.pbn == VDO_ZERO_BLOCK) {
1695 		data_vio->first_reference_operation_complete = true;
1696 		if (data_vio->mapped.pbn == VDO_ZERO_BLOCK)
1697 			set_data_vio_logical_callback(data_vio, update_block_map);
1698 	} else {
1699 		set_data_vio_new_mapped_zone_callback(data_vio,
1700 						      increment_reference_count);
1701 	}
1702 
1703 	if (data_vio->mapped.pbn == VDO_ZERO_BLOCK) {
1704 		data_vio->first_reference_operation_complete = true;
1705 	} else {
1706 		vdo_set_completion_callback(&data_vio->decrement_completion,
1707 					    decrement_reference_count,
1708 					    data_vio->mapped.zone->thread_id);
1709 	}
1710 
1711 	data_vio->last_async_operation = VIO_ASYNC_OP_JOURNAL_REMAPPING;
1712 	vdo_add_recovery_journal_entry(completion->vdo->recovery_journal, data_vio);
1713 }
1714 
1715 /**
1716  * read_old_block_mapping() - Get the previous PBN/LBN mapping of an in-progress write.
1717  *
1718  * Gets the previous PBN mapped to this LBN from the block map, so as to make an appropriate
1719  * journal entry referencing the removal of this LBN->PBN mapping.
1720  */
1721 static void read_old_block_mapping(struct vdo_completion *completion)
1722 {
1723 	struct data_vio *data_vio = as_data_vio(completion);
1724 
1725 	assert_data_vio_in_logical_zone(data_vio);
1726 
1727 	data_vio->last_async_operation = VIO_ASYNC_OP_GET_MAPPED_BLOCK_FOR_WRITE;
1728 	set_data_vio_journal_callback(data_vio, journal_remapping);
1729 	vdo_get_mapped_block(data_vio);
1730 }
1731 
1732 void update_metadata_for_data_vio_write(struct data_vio *data_vio, struct pbn_lock *lock)
1733 {
1734 	data_vio->increment_updater = (struct reference_updater) {
1735 		.operation = VDO_JOURNAL_DATA_REMAPPING,
1736 		.increment = true,
1737 		.zpbn = data_vio->new_mapped,
1738 		.lock = lock,
1739 	};
1740 
1741 	launch_data_vio_logical_callback(data_vio, read_old_block_mapping);
1742 }
1743 
1744 /**
1745  * pack_compressed_data() - Attempt to pack the compressed data_vio into a block.
1746  *
1747  * This is the callback registered in launch_compress_data_vio().
1748  */
1749 static void pack_compressed_data(struct vdo_completion *completion)
1750 {
1751 	struct data_vio *data_vio = as_data_vio(completion);
1752 
1753 	assert_data_vio_in_packer_zone(data_vio);
1754 
1755 	if (!vdo_get_compressing(vdo_from_data_vio(data_vio)) ||
1756 	    get_data_vio_compression_status(data_vio).may_not_compress) {
1757 		write_data_vio(data_vio);
1758 		return;
1759 	}
1760 
1761 	data_vio->last_async_operation = VIO_ASYNC_OP_ATTEMPT_PACKING;
1762 	vdo_attempt_packing(data_vio);
1763 }
1764 
1765 /**
1766  * compress_data_vio() - Do the actual work of compressing the data on a CPU queue.
1767  *
1768  * This callback is registered in launch_compress_data_vio().
1769  */
1770 static void compress_data_vio(struct vdo_completion *completion)
1771 {
1772 	struct data_vio *data_vio = as_data_vio(completion);
1773 	int size;
1774 
1775 	assert_data_vio_on_cpu_thread(data_vio);
1776 
1777 	/*
1778 	 * By putting the compressed data at the start of the compressed block data field, we won't
1779 	 * need to copy it if this data_vio becomes a compressed write agent.
1780 	 */
1781 	size = LZ4_compress_default(data_vio->vio.data,
1782 				    data_vio->compression.block->data, VDO_BLOCK_SIZE,
1783 				    VDO_MAX_COMPRESSED_FRAGMENT_SIZE,
1784 				    (char *) vdo_get_work_queue_private_data());
1785 	if ((size > 0) && (size < VDO_COMPRESSED_BLOCK_DATA_SIZE)) {
1786 		data_vio->compression.size = size;
1787 		launch_data_vio_packer_callback(data_vio, pack_compressed_data);
1788 		return;
1789 	}
1790 
1791 	write_data_vio(data_vio);
1792 }
1793 
1794 /**
1795  * launch_compress_data_vio() - Continue a write by attempting to compress the data.
1796  *
1797  * This is a re-entry point to vio_write used by hash locks.
1798  */
1799 void launch_compress_data_vio(struct data_vio *data_vio)
1800 {
1801 	VDO_ASSERT_LOG_ONLY(!data_vio->is_duplicate, "compressing a non-duplicate block");
1802 	VDO_ASSERT_LOG_ONLY(data_vio->hash_lock != NULL,
1803 			    "data_vio to compress has a hash_lock");
1804 	VDO_ASSERT_LOG_ONLY(data_vio_has_allocation(data_vio),
1805 			    "data_vio to compress has an allocation");
1806 
1807 	/*
1808 	 * There are 4 reasons why a data_vio which has reached this point will not be eligible for
1809 	 * compression:
1810 	 *
1811 	 * 1) Since data_vios can block indefinitely in the packer, it would be bad to do so if the
1812 	 * write request also requests FUA.
1813 	 *
1814 	 * 2) A data_vio should not be compressed when compression is disabled for the vdo.
1815 	 *
1816 	 * 3) A data_vio could be doing a partial write on behalf of a larger discard which has not
1817 	 * yet been acknowledged and hence blocking in the packer would be bad.
1818 	 *
1819 	 * 4) Some other data_vio may be waiting on this data_vio in which case blocking in the
1820 	 * packer would also be bad.
1821 	 */
1822 	if (data_vio->fua ||
1823 	    !vdo_get_compressing(vdo_from_data_vio(data_vio)) ||
1824 	    ((data_vio->user_bio != NULL) && (bio_op(data_vio->user_bio) == REQ_OP_DISCARD)) ||
1825 	    (advance_data_vio_compression_stage(data_vio).stage != DATA_VIO_COMPRESSING)) {
1826 		write_data_vio(data_vio);
1827 		return;
1828 	}
1829 
1830 	data_vio->last_async_operation = VIO_ASYNC_OP_COMPRESS_DATA_VIO;
1831 	launch_data_vio_cpu_callback(data_vio, compress_data_vio,
1832 				     CPU_Q_COMPRESS_BLOCK_PRIORITY);
1833 }
1834 
1835 /**
1836  * hash_data_vio() - Hash the data in a data_vio and set the hash zone (which also flags the record
1837  *		     name as set).
1838 
1839  * This callback is registered in prepare_for_dedupe().
1840  */
1841 static void hash_data_vio(struct vdo_completion *completion)
1842 {
1843 	struct data_vio *data_vio = as_data_vio(completion);
1844 
1845 	assert_data_vio_on_cpu_thread(data_vio);
1846 	VDO_ASSERT_LOG_ONLY(!data_vio->is_zero, "zero blocks should not be hashed");
1847 
1848 	murmurhash3_128(data_vio->vio.data, VDO_BLOCK_SIZE, 0x62ea60be,
1849 			&data_vio->record_name);
1850 
1851 	data_vio->hash_zone = vdo_select_hash_zone(vdo_from_data_vio(data_vio)->hash_zones,
1852 						   &data_vio->record_name);
1853 	data_vio->last_async_operation = VIO_ASYNC_OP_ACQUIRE_VDO_HASH_LOCK;
1854 	launch_data_vio_hash_zone_callback(data_vio, vdo_acquire_hash_lock);
1855 }
1856 
1857 /** prepare_for_dedupe() - Prepare for the dedupe path after attempting to get an allocation. */
1858 static void prepare_for_dedupe(struct data_vio *data_vio)
1859 {
1860 	/* We don't care what thread we are on. */
1861 	VDO_ASSERT_LOG_ONLY(!data_vio->is_zero, "must not prepare to dedupe zero blocks");
1862 
1863 	/*
1864 	 * Before we can dedupe, we need to know the record name, so the first
1865 	 * step is to hash the block data.
1866 	 */
1867 	data_vio->last_async_operation = VIO_ASYNC_OP_HASH_DATA_VIO;
1868 	launch_data_vio_cpu_callback(data_vio, hash_data_vio, CPU_Q_HASH_BLOCK_PRIORITY);
1869 }
1870 
1871 /**
1872  * write_bio_finished() - This is the bio_end_io function registered in write_block() to be called
1873  *			  when a data_vio's write to the underlying storage has completed.
1874  */
1875 static void write_bio_finished(struct bio *bio)
1876 {
1877 	struct data_vio *data_vio = vio_as_data_vio((struct vio *) bio->bi_private);
1878 
1879 	vdo_count_completed_bios(bio);
1880 	vdo_set_completion_result(&data_vio->vio.completion,
1881 				  blk_status_to_errno(bio->bi_status));
1882 	data_vio->downgrade_allocation_lock = true;
1883 	update_metadata_for_data_vio_write(data_vio, data_vio->allocation.lock);
1884 }
1885 
1886 /** write_data_vio() - Write a data block to storage without compression. */
1887 void write_data_vio(struct data_vio *data_vio)
1888 {
1889 	struct data_vio_compression_status status, new_status;
1890 	int result;
1891 
1892 	if (!data_vio_has_allocation(data_vio)) {
1893 		/*
1894 		 * There was no space to write this block and we failed to deduplicate or compress
1895 		 * it.
1896 		 */
1897 		continue_data_vio_with_error(data_vio, VDO_NO_SPACE);
1898 		return;
1899 	}
1900 
1901 	new_status = (struct data_vio_compression_status) {
1902 		.stage = DATA_VIO_POST_PACKER,
1903 		.may_not_compress = true,
1904 	};
1905 
1906 	do {
1907 		status = get_data_vio_compression_status(data_vio);
1908 	} while ((status.stage != DATA_VIO_POST_PACKER) &&
1909 		 !set_data_vio_compression_status(data_vio, status, new_status));
1910 
1911 	/* Write the data from the data block buffer. */
1912 	result = vio_reset_bio(&data_vio->vio, data_vio->vio.data,
1913 			       write_bio_finished, REQ_OP_WRITE,
1914 			       data_vio->allocation.pbn);
1915 	if (result != VDO_SUCCESS) {
1916 		continue_data_vio_with_error(data_vio, result);
1917 		return;
1918 	}
1919 
1920 	data_vio->last_async_operation = VIO_ASYNC_OP_WRITE_DATA_VIO;
1921 	vdo_submit_data_vio(data_vio);
1922 }
1923 
1924 /**
1925  * acknowledge_write_callback() - Acknowledge a write to the requestor.
1926  *
1927  * This callback is registered in allocate_block() and continue_write_with_block_map_slot().
1928  */
1929 static void acknowledge_write_callback(struct vdo_completion *completion)
1930 {
1931 	struct data_vio *data_vio = as_data_vio(completion);
1932 	struct vdo *vdo = completion->vdo;
1933 
1934 	VDO_ASSERT_LOG_ONLY((!vdo_uses_bio_ack_queue(vdo) ||
1935 			     (vdo_get_callback_thread_id() == vdo->thread_config.bio_ack_thread)),
1936 			    "%s() called on bio ack queue", __func__);
1937 	VDO_ASSERT_LOG_ONLY(data_vio_has_flush_generation_lock(data_vio),
1938 			    "write VIO to be acknowledged has a flush generation lock");
1939 	acknowledge_data_vio(data_vio);
1940 	if (data_vio->new_mapped.pbn == VDO_ZERO_BLOCK) {
1941 		/* This is a zero write or discard */
1942 		update_metadata_for_data_vio_write(data_vio, NULL);
1943 		return;
1944 	}
1945 
1946 	prepare_for_dedupe(data_vio);
1947 }
1948 
1949 /**
1950  * allocate_block() - Attempt to allocate a block in the current allocation zone.
1951  *
1952  * This callback is registered in continue_write_with_block_map_slot().
1953  */
1954 static void allocate_block(struct vdo_completion *completion)
1955 {
1956 	struct data_vio *data_vio = as_data_vio(completion);
1957 
1958 	assert_data_vio_in_allocated_zone(data_vio);
1959 
1960 	if (!vdo_allocate_block_in_zone(data_vio))
1961 		return;
1962 
1963 	completion->error_handler = handle_data_vio_error;
1964 	WRITE_ONCE(data_vio->allocation_succeeded, true);
1965 	data_vio->new_mapped = (struct zoned_pbn) {
1966 		.zone = data_vio->allocation.zone,
1967 		.pbn = data_vio->allocation.pbn,
1968 		.state = VDO_MAPPING_STATE_UNCOMPRESSED,
1969 	};
1970 
1971 	if (data_vio->fua ||
1972 	    data_vio->remaining_discard > (u32) (VDO_BLOCK_SIZE - data_vio->offset)) {
1973 		prepare_for_dedupe(data_vio);
1974 		return;
1975 	}
1976 
1977 	data_vio->last_async_operation = VIO_ASYNC_OP_ACKNOWLEDGE_WRITE;
1978 	launch_data_vio_on_bio_ack_queue(data_vio, acknowledge_write_callback);
1979 }
1980 
1981 /**
1982  * handle_allocation_error() - Handle an error attempting to allocate a block.
1983  *
1984  * This error handler is registered in continue_write_with_block_map_slot().
1985  */
1986 static void handle_allocation_error(struct vdo_completion *completion)
1987 {
1988 	struct data_vio *data_vio = as_data_vio(completion);
1989 
1990 	if (completion->result == VDO_NO_SPACE) {
1991 		/* We failed to get an allocation, but we can try to dedupe. */
1992 		vdo_reset_completion(completion);
1993 		completion->error_handler = handle_data_vio_error;
1994 		prepare_for_dedupe(data_vio);
1995 		return;
1996 	}
1997 
1998 	/* We got a "real" error, not just a failure to allocate, so fail the request. */
1999 	handle_data_vio_error(completion);
2000 }
2001 
2002 static int assert_is_discard(struct data_vio *data_vio)
2003 {
2004 	int result = VDO_ASSERT(data_vio->is_discard,
2005 				"data_vio with no block map page is a discard");
2006 
2007 	return ((result == VDO_SUCCESS) ? result : VDO_READ_ONLY);
2008 }
2009 
2010 /**
2011  * continue_data_vio_with_block_map_slot() - Read the data_vio's mapping from the block map.
2012  *
2013  * This callback is registered in launch_read_data_vio().
2014  */
2015 void continue_data_vio_with_block_map_slot(struct vdo_completion *completion)
2016 {
2017 	struct data_vio *data_vio = as_data_vio(completion);
2018 
2019 	assert_data_vio_in_logical_zone(data_vio);
2020 	if (data_vio->read) {
2021 		set_data_vio_logical_callback(data_vio, read_block);
2022 		data_vio->last_async_operation = VIO_ASYNC_OP_GET_MAPPED_BLOCK_FOR_READ;
2023 		vdo_get_mapped_block(data_vio);
2024 		return;
2025 	}
2026 
2027 	vdo_acquire_flush_generation_lock(data_vio);
2028 
2029 	if (data_vio->tree_lock.tree_slots[0].block_map_slot.pbn == VDO_ZERO_BLOCK) {
2030 		/*
2031 		 * This is a discard for a block on a block map page which has not been allocated, so
2032 		 * there's nothing more we need to do.
2033 		 */
2034 		completion->callback = complete_data_vio;
2035 		continue_data_vio_with_error(data_vio, assert_is_discard(data_vio));
2036 		return;
2037 	}
2038 
2039 	/*
2040 	 * We need an allocation if this is neither a full-block discard nor a
2041 	 * full-block zero write.
2042 	 */
2043 	if (!data_vio->is_zero && (!data_vio->is_discard || data_vio->is_partial)) {
2044 		data_vio_allocate_data_block(data_vio, VIO_WRITE_LOCK, allocate_block,
2045 					     handle_allocation_error);
2046 		return;
2047 	}
2048 
2049 	/*
2050 	 * We don't need to write any data, so skip allocation and just update the block map and
2051 	 * reference counts (via the journal).
2052 	 */
2053 	data_vio->new_mapped.pbn = VDO_ZERO_BLOCK;
2054 	if (data_vio->is_zero)
2055 		data_vio->new_mapped.state = VDO_MAPPING_STATE_UNCOMPRESSED;
2056 
2057 	if (data_vio->remaining_discard > (u32) (VDO_BLOCK_SIZE - data_vio->offset)) {
2058 		/* This is not the final block of a discard so we can't acknowledge it yet. */
2059 		update_metadata_for_data_vio_write(data_vio, NULL);
2060 		return;
2061 	}
2062 
2063 	data_vio->last_async_operation = VIO_ASYNC_OP_ACKNOWLEDGE_WRITE;
2064 	launch_data_vio_on_bio_ack_queue(data_vio, acknowledge_write_callback);
2065 }
2066