xref: /linux/drivers/md/dm-vdo/data-vio.c (revision 8b6d678fede700db6466d73f11fcbad496fa515e)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright 2023 Red Hat
4  */
5 
6 #include "data-vio.h"
7 
8 #include <linux/atomic.h>
9 #include <linux/bio.h>
10 #include <linux/blkdev.h>
11 #include <linux/delay.h>
12 #include <linux/device-mapper.h>
13 #include <linux/jiffies.h>
14 #include <linux/kernel.h>
15 #include <linux/list.h>
16 #include <linux/lz4.h>
17 #include <linux/minmax.h>
18 #include <linux/sched.h>
19 #include <linux/spinlock.h>
20 #include <linux/wait.h>
21 
22 #include "logger.h"
23 #include "memory-alloc.h"
24 #include "murmurhash3.h"
25 #include "permassert.h"
26 
27 #include "block-map.h"
28 #include "dump.h"
29 #include "encodings.h"
30 #include "int-map.h"
31 #include "io-submitter.h"
32 #include "logical-zone.h"
33 #include "packer.h"
34 #include "recovery-journal.h"
35 #include "slab-depot.h"
36 #include "status-codes.h"
37 #include "types.h"
38 #include "vdo.h"
39 #include "vio.h"
40 #include "wait-queue.h"
41 
42 /**
43  * DOC: Bio flags.
44  *
45  * For certain flags set on user bios, if the user bio has not yet been acknowledged, setting those
46  * flags on our own bio(s) for that request may help underlying layers better fulfill the user
47  * bio's needs. This constant contains the aggregate of those flags; VDO strips all the other
48  * flags, as they convey incorrect information.
49  *
50  * These flags are always irrelevant if we have already finished the user bio as they are only
51  * hints on IO importance. If VDO has finished the user bio, any remaining IO done doesn't care how
52  * important finishing the finished bio was.
53  *
54  * Note that bio.c contains the complete list of flags we believe may be set; the following list
55  * explains the action taken with each of those flags VDO could receive:
56  *
57  * * REQ_SYNC: Passed down if the user bio is not yet completed, since it indicates the user bio
58  *   completion is required for further work to be done by the issuer.
59  * * REQ_META: Passed down if the user bio is not yet completed, since it may mean the lower layer
60  *   treats it as more urgent, similar to REQ_SYNC.
61  * * REQ_PRIO: Passed down if the user bio is not yet completed, since it indicates the user bio is
62  *   important.
63  * * REQ_NOMERGE: Set only if the incoming bio was split; irrelevant to VDO IO.
64  * * REQ_IDLE: Set if the incoming bio had more IO quickly following; VDO's IO pattern doesn't
65  *   match incoming IO, so this flag is incorrect for it.
66  * * REQ_FUA: Handled separately, and irrelevant to VDO IO otherwise.
67  * * REQ_RAHEAD: Passed down, as, for reads, it indicates trivial importance.
68  * * REQ_BACKGROUND: Not passed down, as VIOs are a limited resource and VDO needs them recycled
69  *   ASAP to service heavy load, which is the only place where REQ_BACKGROUND might aid in load
70  *   prioritization.
71  */
72 static blk_opf_t PASSTHROUGH_FLAGS = (REQ_PRIO | REQ_META | REQ_SYNC | REQ_RAHEAD);
73 
74 /**
75  * DOC:
76  *
77  * The data_vio_pool maintains the pool of data_vios which a vdo uses to service incoming bios. For
78  * correctness, and in order to avoid potentially expensive or blocking memory allocations during
79  * normal operation, the number of concurrently active data_vios is capped. Furthermore, in order
80  * to avoid starvation of reads and writes, at most 75% of the data_vios may be used for
81  * discards. The data_vio_pool is responsible for enforcing these limits. Threads submitting bios
82  * for which a data_vio or discard permit are not available will block until the necessary
83  * resources are available. The pool is also responsible for distributing resources to blocked
84  * threads and waking them. Finally, the pool attempts to batch the work of recycling data_vios by
85  * performing the work of actually assigning resources to blocked threads or placing data_vios back
86  * into the pool on a single cpu at a time.
87  *
88  * The pool contains two "limiters", one for tracking data_vios and one for tracking discard
89  * permits. The limiters also provide safe cross-thread access to pool statistics without the need
90  * to take the pool's lock. When a thread submits a bio to a vdo device, it will first attempt to
91  * get a discard permit if it is a discard, and then to get a data_vio. If the necessary resources
92  * are available, the incoming bio will be assigned to the acquired data_vio, and it will be
93  * launched. However, if either of these are unavailable, the arrival time of the bio is recorded
94  * in the bio's bi_private field, the bio and its submitter are both queued on the appropriate
95  * limiter and the submitting thread will then put itself to sleep. (note that this mechanism will
96  * break if jiffies are only 32 bits.)
97  *
98  * Whenever a data_vio has completed processing for the bio it was servicing, release_data_vio()
99  * will be called on it. This function will add the data_vio to a funnel queue, and then check the
100  * state of the pool. If the pool is not currently processing released data_vios, the pool's
101  * completion will be enqueued on a cpu queue. This obviates the need for the releasing threads to
102  * hold the pool's lock, and also batches release work while avoiding starvation of the cpu
103  * threads.
104  *
105  * Whenever the pool's completion is run on a cpu thread, it calls process_release_callback() which
106  * processes a batch of returned data_vios (currently at most 32) from the pool's funnel queue. For
107  * each data_vio, it first checks whether that data_vio was processing a discard. If so, and there
108  * is a blocked bio waiting for a discard permit, that permit is notionally transferred to the
109  * eldest discard waiter, and that waiter is moved to the end of the list of discard bios waiting
110  * for a data_vio. If there are no discard waiters, the discard permit is returned to the pool.
111  * Next, the data_vio is assigned to the oldest blocked bio which either has a discard permit, or
112  * doesn't need one and relaunched. If neither of these exist, the data_vio is returned to the
113  * pool. Finally, if any waiting bios were launched, the threads which blocked trying to submit
114  * them are awakened.
115  */
116 
117 #define DATA_VIO_RELEASE_BATCH_SIZE 128
118 
119 static const unsigned int VDO_SECTORS_PER_BLOCK_MASK = VDO_SECTORS_PER_BLOCK - 1;
120 static const u32 COMPRESSION_STATUS_MASK = 0xff;
121 static const u32 MAY_NOT_COMPRESS_MASK = 0x80000000;
122 
123 struct limiter;
124 typedef void (*assigner_fn)(struct limiter *limiter);
125 
126 /* Bookkeeping structure for a single type of resource. */
127 struct limiter {
128 	/* The data_vio_pool to which this limiter belongs */
129 	struct data_vio_pool *pool;
130 	/* The maximum number of data_vios available */
131 	data_vio_count_t limit;
132 	/* The number of resources in use */
133 	data_vio_count_t busy;
134 	/* The maximum number of resources ever simultaneously in use */
135 	data_vio_count_t max_busy;
136 	/* The number of resources to release */
137 	data_vio_count_t release_count;
138 	/* The number of waiters to wake */
139 	data_vio_count_t wake_count;
140 	/* The list of waiting bios which are known to process_release_callback() */
141 	struct bio_list waiters;
142 	/* The list of waiting bios which are not yet known to process_release_callback() */
143 	struct bio_list new_waiters;
144 	/* The list of waiters which have their permits */
145 	struct bio_list *permitted_waiters;
146 	/* The function for assigning a resource to a waiter */
147 	assigner_fn assigner;
148 	/* The queue of blocked threads */
149 	wait_queue_head_t blocked_threads;
150 	/* The arrival time of the eldest waiter */
151 	u64 arrival;
152 };
153 
154 /*
155  * A data_vio_pool is a collection of preallocated data_vios which may be acquired from any thread,
156  * and are released in batches.
157  */
158 struct data_vio_pool {
159 	/* Completion for scheduling releases */
160 	struct vdo_completion completion;
161 	/* The administrative state of the pool */
162 	struct admin_state state;
163 	/* Lock protecting the pool */
164 	spinlock_t lock;
165 	/* The main limiter controlling the total data_vios in the pool. */
166 	struct limiter limiter;
167 	/* The limiter controlling data_vios for discard */
168 	struct limiter discard_limiter;
169 	/* The list of bios which have discard permits but still need a data_vio */
170 	struct bio_list permitted_discards;
171 	/* The list of available data_vios */
172 	struct list_head available;
173 	/* The queue of data_vios waiting to be returned to the pool */
174 	struct funnel_queue *queue;
175 	/* Whether the pool is processing, or scheduled to process releases */
176 	atomic_t processing;
177 	/* The data vios in the pool */
178 	struct data_vio data_vios[];
179 };
180 
181 static const char * const ASYNC_OPERATION_NAMES[] = {
182 	"launch",
183 	"acknowledge_write",
184 	"acquire_hash_lock",
185 	"attempt_logical_block_lock",
186 	"lock_duplicate_pbn",
187 	"check_for_duplication",
188 	"cleanup",
189 	"compress_data_vio",
190 	"find_block_map_slot",
191 	"get_mapped_block_for_read",
192 	"get_mapped_block_for_write",
193 	"hash_data_vio",
194 	"journal_remapping",
195 	"vdo_attempt_packing",
196 	"put_mapped_block",
197 	"read_data_vio",
198 	"update_dedupe_index",
199 	"update_reference_counts",
200 	"verify_duplication",
201 	"write_data_vio",
202 };
203 
204 /* The steps taken cleaning up a VIO, in the order they are performed. */
205 enum data_vio_cleanup_stage {
206 	VIO_CLEANUP_START,
207 	VIO_RELEASE_HASH_LOCK = VIO_CLEANUP_START,
208 	VIO_RELEASE_ALLOCATED,
209 	VIO_RELEASE_RECOVERY_LOCKS,
210 	VIO_RELEASE_LOGICAL,
211 	VIO_CLEANUP_DONE
212 };
213 
214 static inline struct data_vio_pool * __must_check
215 as_data_vio_pool(struct vdo_completion *completion)
216 {
217 	vdo_assert_completion_type(completion, VDO_DATA_VIO_POOL_COMPLETION);
218 	return container_of(completion, struct data_vio_pool, completion);
219 }
220 
221 static inline u64 get_arrival_time(struct bio *bio)
222 {
223 	return (u64) bio->bi_private;
224 }
225 
226 /**
227  * check_for_drain_complete_locked() - Check whether a data_vio_pool has no outstanding data_vios
228  *				       or waiters while holding the pool's lock.
229  */
230 static bool check_for_drain_complete_locked(struct data_vio_pool *pool)
231 {
232 	if (pool->limiter.busy > 0)
233 		return false;
234 
235 	VDO_ASSERT_LOG_ONLY((pool->discard_limiter.busy == 0),
236 			    "no outstanding discard permits");
237 
238 	return (bio_list_empty(&pool->limiter.new_waiters) &&
239 		bio_list_empty(&pool->discard_limiter.new_waiters));
240 }
241 
242 static void initialize_lbn_lock(struct data_vio *data_vio, logical_block_number_t lbn)
243 {
244 	struct vdo *vdo = vdo_from_data_vio(data_vio);
245 	zone_count_t zone_number;
246 	struct lbn_lock *lock = &data_vio->logical;
247 
248 	lock->lbn = lbn;
249 	lock->locked = false;
250 	vdo_waitq_init(&lock->waiters);
251 	zone_number = vdo_compute_logical_zone(data_vio);
252 	lock->zone = &vdo->logical_zones->zones[zone_number];
253 }
254 
255 static void launch_locked_request(struct data_vio *data_vio)
256 {
257 	data_vio->logical.locked = true;
258 	if (data_vio->write) {
259 		struct vdo *vdo = vdo_from_data_vio(data_vio);
260 
261 		if (vdo_is_read_only(vdo)) {
262 			continue_data_vio_with_error(data_vio, VDO_READ_ONLY);
263 			return;
264 		}
265 	}
266 
267 	data_vio->last_async_operation = VIO_ASYNC_OP_FIND_BLOCK_MAP_SLOT;
268 	vdo_find_block_map_slot(data_vio);
269 }
270 
271 static void acknowledge_data_vio(struct data_vio *data_vio)
272 {
273 	struct vdo *vdo = vdo_from_data_vio(data_vio);
274 	struct bio *bio = data_vio->user_bio;
275 	int error = vdo_status_to_errno(data_vio->vio.completion.result);
276 
277 	if (bio == NULL)
278 		return;
279 
280 	VDO_ASSERT_LOG_ONLY((data_vio->remaining_discard <=
281 			     (u32) (VDO_BLOCK_SIZE - data_vio->offset)),
282 			    "data_vio to acknowledge is not an incomplete discard");
283 
284 	data_vio->user_bio = NULL;
285 	vdo_count_bios(&vdo->stats.bios_acknowledged, bio);
286 	if (data_vio->is_partial)
287 		vdo_count_bios(&vdo->stats.bios_acknowledged_partial, bio);
288 
289 	bio->bi_status = errno_to_blk_status(error);
290 	bio_endio(bio);
291 }
292 
293 static void copy_to_bio(struct bio *bio, char *data_ptr)
294 {
295 	struct bio_vec biovec;
296 	struct bvec_iter iter;
297 
298 	bio_for_each_segment(biovec, bio, iter) {
299 		memcpy_to_bvec(&biovec, data_ptr);
300 		data_ptr += biovec.bv_len;
301 	}
302 }
303 
304 struct data_vio_compression_status get_data_vio_compression_status(struct data_vio *data_vio)
305 {
306 	u32 packed = atomic_read(&data_vio->compression.status);
307 
308 	/* pairs with cmpxchg in set_data_vio_compression_status */
309 	smp_rmb();
310 	return (struct data_vio_compression_status) {
311 		.stage = packed & COMPRESSION_STATUS_MASK,
312 		.may_not_compress = ((packed & MAY_NOT_COMPRESS_MASK) != 0),
313 	};
314 }
315 
316 /**
317  * pack_status() - Convert a data_vio_compression_status into a u32 which may be stored
318  *                 atomically.
319  * @status: The state to convert.
320  *
321  * Return: The compression state packed into a u32.
322  */
323 static u32 __must_check pack_status(struct data_vio_compression_status status)
324 {
325 	return status.stage | (status.may_not_compress ? MAY_NOT_COMPRESS_MASK : 0);
326 }
327 
328 /**
329  * set_data_vio_compression_status() - Set the compression status of a data_vio.
330  * @state: The expected current status of the data_vio.
331  * @new_state: The status to set.
332  *
333  * Return: true if the new status was set, false if the data_vio's compression status did not
334  *         match the expected state, and so was left unchanged.
335  */
336 static bool __must_check
337 set_data_vio_compression_status(struct data_vio *data_vio,
338 				struct data_vio_compression_status status,
339 				struct data_vio_compression_status new_status)
340 {
341 	u32 actual;
342 	u32 expected = pack_status(status);
343 	u32 replacement = pack_status(new_status);
344 
345 	/*
346 	 * Extra barriers because this was original developed using a CAS operation that implicitly
347 	 * had them.
348 	 */
349 	smp_mb__before_atomic();
350 	actual = atomic_cmpxchg(&data_vio->compression.status, expected, replacement);
351 	/* same as before_atomic */
352 	smp_mb__after_atomic();
353 	return (expected == actual);
354 }
355 
356 struct data_vio_compression_status advance_data_vio_compression_stage(struct data_vio *data_vio)
357 {
358 	for (;;) {
359 		struct data_vio_compression_status status =
360 			get_data_vio_compression_status(data_vio);
361 		struct data_vio_compression_status new_status = status;
362 
363 		if (status.stage == DATA_VIO_POST_PACKER) {
364 			/* We're already in the last stage. */
365 			return status;
366 		}
367 
368 		if (status.may_not_compress) {
369 			/*
370 			 * Compression has been dis-allowed for this VIO, so skip the rest of the
371 			 * path and go to the end.
372 			 */
373 			new_status.stage = DATA_VIO_POST_PACKER;
374 		} else {
375 			/* Go to the next state. */
376 			new_status.stage++;
377 		}
378 
379 		if (set_data_vio_compression_status(data_vio, status, new_status))
380 			return new_status;
381 
382 		/* Another thread changed the status out from under us so try again. */
383 	}
384 }
385 
386 /**
387  * cancel_data_vio_compression() - Prevent this data_vio from being compressed or packed.
388  *
389  * Return: true if the data_vio is in the packer and the caller was the first caller to cancel it.
390  */
391 bool cancel_data_vio_compression(struct data_vio *data_vio)
392 {
393 	struct data_vio_compression_status status, new_status;
394 
395 	for (;;) {
396 		status = get_data_vio_compression_status(data_vio);
397 		if (status.may_not_compress || (status.stage == DATA_VIO_POST_PACKER)) {
398 			/* This data_vio is already set up to not block in the packer. */
399 			break;
400 		}
401 
402 		new_status.stage = status.stage;
403 		new_status.may_not_compress = true;
404 
405 		if (set_data_vio_compression_status(data_vio, status, new_status))
406 			break;
407 	}
408 
409 	return ((status.stage == DATA_VIO_PACKING) && !status.may_not_compress);
410 }
411 
412 /**
413  * attempt_logical_block_lock() - Attempt to acquire the lock on a logical block.
414  * @completion: The data_vio for an external data request as a completion.
415  *
416  * This is the start of the path for all external requests. It is registered in launch_data_vio().
417  */
418 static void attempt_logical_block_lock(struct vdo_completion *completion)
419 {
420 	struct data_vio *data_vio = as_data_vio(completion);
421 	struct lbn_lock *lock = &data_vio->logical;
422 	struct vdo *vdo = vdo_from_data_vio(data_vio);
423 	struct data_vio *lock_holder;
424 	int result;
425 
426 	assert_data_vio_in_logical_zone(data_vio);
427 
428 	if (data_vio->logical.lbn >= vdo->states.vdo.config.logical_blocks) {
429 		continue_data_vio_with_error(data_vio, VDO_OUT_OF_RANGE);
430 		return;
431 	}
432 
433 	result = vdo_int_map_put(lock->zone->lbn_operations, lock->lbn,
434 				 data_vio, false, (void **) &lock_holder);
435 	if (result != VDO_SUCCESS) {
436 		continue_data_vio_with_error(data_vio, result);
437 		return;
438 	}
439 
440 	if (lock_holder == NULL) {
441 		/* We got the lock */
442 		launch_locked_request(data_vio);
443 		return;
444 	}
445 
446 	result = VDO_ASSERT(lock_holder->logical.locked, "logical block lock held");
447 	if (result != VDO_SUCCESS) {
448 		continue_data_vio_with_error(data_vio, result);
449 		return;
450 	}
451 
452 	/*
453 	 * If the new request is a pure read request (not read-modify-write) and the lock_holder is
454 	 * writing and has received an allocation, service the read request immediately by copying
455 	 * data from the lock_holder to avoid having to flush the write out of the packer just to
456 	 * prevent the read from waiting indefinitely. If the lock_holder does not yet have an
457 	 * allocation, prevent it from blocking in the packer and wait on it. This is necessary in
458 	 * order to prevent returning data that may not have actually been written.
459 	 */
460 	if (!data_vio->write && READ_ONCE(lock_holder->allocation_succeeded)) {
461 		copy_to_bio(data_vio->user_bio, lock_holder->vio.data + data_vio->offset);
462 		acknowledge_data_vio(data_vio);
463 		complete_data_vio(completion);
464 		return;
465 	}
466 
467 	data_vio->last_async_operation = VIO_ASYNC_OP_ATTEMPT_LOGICAL_BLOCK_LOCK;
468 	vdo_waitq_enqueue_waiter(&lock_holder->logical.waiters, &data_vio->waiter);
469 
470 	/*
471 	 * Prevent writes and read-modify-writes from blocking indefinitely on lock holders in the
472 	 * packer.
473 	 */
474 	if (lock_holder->write && cancel_data_vio_compression(lock_holder)) {
475 		data_vio->compression.lock_holder = lock_holder;
476 		launch_data_vio_packer_callback(data_vio,
477 						vdo_remove_lock_holder_from_packer);
478 	}
479 }
480 
481 /**
482  * launch_data_vio() - (Re)initialize a data_vio to have a new logical block number, keeping the
483  *		       same parent and other state and send it on its way.
484  */
485 static void launch_data_vio(struct data_vio *data_vio, logical_block_number_t lbn)
486 {
487 	struct vdo_completion *completion = &data_vio->vio.completion;
488 
489 	/*
490 	 * Clearing the tree lock must happen before initializing the LBN lock, which also adds
491 	 * information to the tree lock.
492 	 */
493 	memset(&data_vio->tree_lock, 0, sizeof(data_vio->tree_lock));
494 	initialize_lbn_lock(data_vio, lbn);
495 	INIT_LIST_HEAD(&data_vio->hash_lock_entry);
496 	INIT_LIST_HEAD(&data_vio->write_entry);
497 
498 	memset(&data_vio->allocation, 0, sizeof(data_vio->allocation));
499 
500 	data_vio->is_duplicate = false;
501 
502 	memset(&data_vio->record_name, 0, sizeof(data_vio->record_name));
503 	memset(&data_vio->duplicate, 0, sizeof(data_vio->duplicate));
504 	vdo_reset_completion(completion);
505 	completion->error_handler = handle_data_vio_error;
506 	set_data_vio_logical_callback(data_vio, attempt_logical_block_lock);
507 	vdo_enqueue_completion(completion, VDO_DEFAULT_Q_MAP_BIO_PRIORITY);
508 }
509 
510 static bool is_zero_block(char *block)
511 {
512 	int i;
513 
514 	for (i = 0; i < VDO_BLOCK_SIZE; i += sizeof(u64)) {
515 		if (*((u64 *) &block[i]))
516 			return false;
517 	}
518 
519 	return true;
520 }
521 
522 static void copy_from_bio(struct bio *bio, char *data_ptr)
523 {
524 	struct bio_vec biovec;
525 	struct bvec_iter iter;
526 
527 	bio_for_each_segment(biovec, bio, iter) {
528 		memcpy_from_bvec(data_ptr, &biovec);
529 		data_ptr += biovec.bv_len;
530 	}
531 }
532 
533 static void launch_bio(struct vdo *vdo, struct data_vio *data_vio, struct bio *bio)
534 {
535 	logical_block_number_t lbn;
536 	/*
537 	 * Zero out the fields which don't need to be preserved (i.e. which are not pointers to
538 	 * separately allocated objects).
539 	 */
540 	memset(data_vio, 0, offsetof(struct data_vio, vio));
541 	memset(&data_vio->compression, 0, offsetof(struct compression_state, block));
542 
543 	data_vio->user_bio = bio;
544 	data_vio->offset = to_bytes(bio->bi_iter.bi_sector & VDO_SECTORS_PER_BLOCK_MASK);
545 	data_vio->is_partial = (bio->bi_iter.bi_size < VDO_BLOCK_SIZE) || (data_vio->offset != 0);
546 
547 	/*
548 	 * Discards behave very differently than other requests when coming in from device-mapper.
549 	 * We have to be able to handle any size discards and various sector offsets within a
550 	 * block.
551 	 */
552 	if (bio_op(bio) == REQ_OP_DISCARD) {
553 		data_vio->remaining_discard = bio->bi_iter.bi_size;
554 		data_vio->write = true;
555 		data_vio->is_discard = true;
556 		if (data_vio->is_partial) {
557 			vdo_count_bios(&vdo->stats.bios_in_partial, bio);
558 			data_vio->read = true;
559 		}
560 	} else if (data_vio->is_partial) {
561 		vdo_count_bios(&vdo->stats.bios_in_partial, bio);
562 		data_vio->read = true;
563 		if (bio_data_dir(bio) == WRITE)
564 			data_vio->write = true;
565 	} else if (bio_data_dir(bio) == READ) {
566 		data_vio->read = true;
567 	} else {
568 		/*
569 		 * Copy the bio data to a char array so that we can continue to use the data after
570 		 * we acknowledge the bio.
571 		 */
572 		copy_from_bio(bio, data_vio->vio.data);
573 		data_vio->is_zero = is_zero_block(data_vio->vio.data);
574 		data_vio->write = true;
575 	}
576 
577 	if (data_vio->user_bio->bi_opf & REQ_FUA)
578 		data_vio->fua = true;
579 
580 	lbn = (bio->bi_iter.bi_sector - vdo->starting_sector_offset) / VDO_SECTORS_PER_BLOCK;
581 	launch_data_vio(data_vio, lbn);
582 }
583 
584 static void assign_data_vio(struct limiter *limiter, struct data_vio *data_vio)
585 {
586 	struct bio *bio = bio_list_pop(limiter->permitted_waiters);
587 
588 	launch_bio(limiter->pool->completion.vdo, data_vio, bio);
589 	limiter->wake_count++;
590 
591 	bio = bio_list_peek(limiter->permitted_waiters);
592 	limiter->arrival = ((bio == NULL) ? U64_MAX : get_arrival_time(bio));
593 }
594 
595 static void assign_discard_permit(struct limiter *limiter)
596 {
597 	struct bio *bio = bio_list_pop(&limiter->waiters);
598 
599 	if (limiter->arrival == U64_MAX)
600 		limiter->arrival = get_arrival_time(bio);
601 
602 	bio_list_add(limiter->permitted_waiters, bio);
603 }
604 
605 static void get_waiters(struct limiter *limiter)
606 {
607 	bio_list_merge(&limiter->waiters, &limiter->new_waiters);
608 	bio_list_init(&limiter->new_waiters);
609 }
610 
611 static inline struct data_vio *get_available_data_vio(struct data_vio_pool *pool)
612 {
613 	struct data_vio *data_vio =
614 		list_first_entry(&pool->available, struct data_vio, pool_entry);
615 
616 	list_del_init(&data_vio->pool_entry);
617 	return data_vio;
618 }
619 
620 static void assign_data_vio_to_waiter(struct limiter *limiter)
621 {
622 	assign_data_vio(limiter, get_available_data_vio(limiter->pool));
623 }
624 
625 static void update_limiter(struct limiter *limiter)
626 {
627 	struct bio_list *waiters = &limiter->waiters;
628 	data_vio_count_t available = limiter->limit - limiter->busy;
629 
630 	VDO_ASSERT_LOG_ONLY((limiter->release_count <= limiter->busy),
631 			    "Release count %u is not more than busy count %u",
632 			    limiter->release_count, limiter->busy);
633 
634 	get_waiters(limiter);
635 	for (; (limiter->release_count > 0) && !bio_list_empty(waiters); limiter->release_count--)
636 		limiter->assigner(limiter);
637 
638 	if (limiter->release_count > 0) {
639 		WRITE_ONCE(limiter->busy, limiter->busy - limiter->release_count);
640 		limiter->release_count = 0;
641 		return;
642 	}
643 
644 	for (; (available > 0) && !bio_list_empty(waiters); available--)
645 		limiter->assigner(limiter);
646 
647 	WRITE_ONCE(limiter->busy, limiter->limit - available);
648 	if (limiter->max_busy < limiter->busy)
649 		WRITE_ONCE(limiter->max_busy, limiter->busy);
650 }
651 
652 /**
653  * schedule_releases() - Ensure that release processing is scheduled.
654  *
655  * If this call switches the state to processing, enqueue. Otherwise, some other thread has already
656  * done so.
657  */
658 static void schedule_releases(struct data_vio_pool *pool)
659 {
660 	/* Pairs with the barrier in process_release_callback(). */
661 	smp_mb__before_atomic();
662 	if (atomic_cmpxchg(&pool->processing, false, true))
663 		return;
664 
665 	pool->completion.requeue = true;
666 	vdo_launch_completion_with_priority(&pool->completion,
667 					    CPU_Q_COMPLETE_VIO_PRIORITY);
668 }
669 
670 static void reuse_or_release_resources(struct data_vio_pool *pool,
671 				       struct data_vio *data_vio,
672 				       struct list_head *returned)
673 {
674 	if (data_vio->remaining_discard > 0) {
675 		if (bio_list_empty(&pool->discard_limiter.waiters)) {
676 			/* Return the data_vio's discard permit. */
677 			pool->discard_limiter.release_count++;
678 		} else {
679 			assign_discard_permit(&pool->discard_limiter);
680 		}
681 	}
682 
683 	if (pool->limiter.arrival < pool->discard_limiter.arrival) {
684 		assign_data_vio(&pool->limiter, data_vio);
685 	} else if (pool->discard_limiter.arrival < U64_MAX) {
686 		assign_data_vio(&pool->discard_limiter, data_vio);
687 	} else {
688 		list_add(&data_vio->pool_entry, returned);
689 		pool->limiter.release_count++;
690 	}
691 }
692 
693 /**
694  * process_release_callback() - Process a batch of data_vio releases.
695  * @completion: The pool with data_vios to release.
696  */
697 static void process_release_callback(struct vdo_completion *completion)
698 {
699 	struct data_vio_pool *pool = as_data_vio_pool(completion);
700 	bool reschedule;
701 	bool drained;
702 	data_vio_count_t processed;
703 	data_vio_count_t to_wake;
704 	data_vio_count_t discards_to_wake;
705 	LIST_HEAD(returned);
706 
707 	spin_lock(&pool->lock);
708 	get_waiters(&pool->discard_limiter);
709 	get_waiters(&pool->limiter);
710 	spin_unlock(&pool->lock);
711 
712 	if (pool->limiter.arrival == U64_MAX) {
713 		struct bio *bio = bio_list_peek(&pool->limiter.waiters);
714 
715 		if (bio != NULL)
716 			pool->limiter.arrival = get_arrival_time(bio);
717 	}
718 
719 	for (processed = 0; processed < DATA_VIO_RELEASE_BATCH_SIZE; processed++) {
720 		struct data_vio *data_vio;
721 		struct funnel_queue_entry *entry = vdo_funnel_queue_poll(pool->queue);
722 
723 		if (entry == NULL)
724 			break;
725 
726 		data_vio = as_data_vio(container_of(entry, struct vdo_completion,
727 						    work_queue_entry_link));
728 		acknowledge_data_vio(data_vio);
729 		reuse_or_release_resources(pool, data_vio, &returned);
730 	}
731 
732 	spin_lock(&pool->lock);
733 	/*
734 	 * There is a race where waiters could be added while we are in the unlocked section above.
735 	 * Those waiters could not see the resources we are now about to release, so we assign
736 	 * those resources now as we have no guarantee of being rescheduled. This is handled in
737 	 * update_limiter().
738 	 */
739 	update_limiter(&pool->discard_limiter);
740 	list_splice(&returned, &pool->available);
741 	update_limiter(&pool->limiter);
742 	to_wake = pool->limiter.wake_count;
743 	pool->limiter.wake_count = 0;
744 	discards_to_wake = pool->discard_limiter.wake_count;
745 	pool->discard_limiter.wake_count = 0;
746 
747 	atomic_set(&pool->processing, false);
748 	/* Pairs with the barrier in schedule_releases(). */
749 	smp_mb();
750 
751 	reschedule = !vdo_is_funnel_queue_empty(pool->queue);
752 	drained = (!reschedule &&
753 		   vdo_is_state_draining(&pool->state) &&
754 		   check_for_drain_complete_locked(pool));
755 	spin_unlock(&pool->lock);
756 
757 	if (to_wake > 0)
758 		wake_up_nr(&pool->limiter.blocked_threads, to_wake);
759 
760 	if (discards_to_wake > 0)
761 		wake_up_nr(&pool->discard_limiter.blocked_threads, discards_to_wake);
762 
763 	if (reschedule)
764 		schedule_releases(pool);
765 	else if (drained)
766 		vdo_finish_draining(&pool->state);
767 }
768 
769 static void initialize_limiter(struct limiter *limiter, struct data_vio_pool *pool,
770 			       assigner_fn assigner, data_vio_count_t limit)
771 {
772 	limiter->pool = pool;
773 	limiter->assigner = assigner;
774 	limiter->limit = limit;
775 	limiter->arrival = U64_MAX;
776 	init_waitqueue_head(&limiter->blocked_threads);
777 }
778 
779 /**
780  * initialize_data_vio() - Allocate the components of a data_vio.
781  *
782  * The caller is responsible for cleaning up the data_vio on error.
783  *
784  * Return: VDO_SUCCESS or an error.
785  */
786 static int initialize_data_vio(struct data_vio *data_vio, struct vdo *vdo)
787 {
788 	struct bio *bio;
789 	int result;
790 
791 	BUILD_BUG_ON(VDO_BLOCK_SIZE > PAGE_SIZE);
792 	result = vdo_allocate_memory(VDO_BLOCK_SIZE, 0, "data_vio data",
793 				     &data_vio->vio.data);
794 	if (result != VDO_SUCCESS)
795 		return vdo_log_error_strerror(result,
796 					      "data_vio data allocation failure");
797 
798 	result = vdo_allocate_memory(VDO_BLOCK_SIZE, 0, "compressed block",
799 				     &data_vio->compression.block);
800 	if (result != VDO_SUCCESS) {
801 		return vdo_log_error_strerror(result,
802 					      "data_vio compressed block allocation failure");
803 	}
804 
805 	result = vdo_allocate_memory(VDO_BLOCK_SIZE, 0, "vio scratch",
806 				     &data_vio->scratch_block);
807 	if (result != VDO_SUCCESS)
808 		return vdo_log_error_strerror(result,
809 					      "data_vio scratch allocation failure");
810 
811 	result = vdo_create_bio(&bio);
812 	if (result != VDO_SUCCESS)
813 		return vdo_log_error_strerror(result,
814 					      "data_vio data bio allocation failure");
815 
816 	vdo_initialize_completion(&data_vio->decrement_completion, vdo,
817 				  VDO_DECREMENT_COMPLETION);
818 	initialize_vio(&data_vio->vio, bio, 1, VIO_TYPE_DATA, VIO_PRIORITY_DATA, vdo);
819 
820 	return VDO_SUCCESS;
821 }
822 
823 static void destroy_data_vio(struct data_vio *data_vio)
824 {
825 	if (data_vio == NULL)
826 		return;
827 
828 	vdo_free_bio(vdo_forget(data_vio->vio.bio));
829 	vdo_free(vdo_forget(data_vio->vio.data));
830 	vdo_free(vdo_forget(data_vio->compression.block));
831 	vdo_free(vdo_forget(data_vio->scratch_block));
832 }
833 
834 /**
835  * make_data_vio_pool() - Initialize a data_vio pool.
836  * @vdo: The vdo to which the pool will belong.
837  * @pool_size: The number of data_vios in the pool.
838  * @discard_limit: The maximum number of data_vios which may be used for discards.
839  * @pool: A pointer to hold the newly allocated pool.
840  */
841 int make_data_vio_pool(struct vdo *vdo, data_vio_count_t pool_size,
842 		       data_vio_count_t discard_limit, struct data_vio_pool **pool_ptr)
843 {
844 	int result;
845 	struct data_vio_pool *pool;
846 	data_vio_count_t i;
847 
848 	result = vdo_allocate_extended(struct data_vio_pool, pool_size, struct data_vio,
849 				       __func__, &pool);
850 	if (result != VDO_SUCCESS)
851 		return result;
852 
853 	VDO_ASSERT_LOG_ONLY((discard_limit <= pool_size),
854 			    "discard limit does not exceed pool size");
855 	initialize_limiter(&pool->discard_limiter, pool, assign_discard_permit,
856 			   discard_limit);
857 	pool->discard_limiter.permitted_waiters = &pool->permitted_discards;
858 	initialize_limiter(&pool->limiter, pool, assign_data_vio_to_waiter, pool_size);
859 	pool->limiter.permitted_waiters = &pool->limiter.waiters;
860 	INIT_LIST_HEAD(&pool->available);
861 	spin_lock_init(&pool->lock);
862 	vdo_set_admin_state_code(&pool->state, VDO_ADMIN_STATE_NORMAL_OPERATION);
863 	vdo_initialize_completion(&pool->completion, vdo, VDO_DATA_VIO_POOL_COMPLETION);
864 	vdo_prepare_completion(&pool->completion, process_release_callback,
865 			       process_release_callback, vdo->thread_config.cpu_thread,
866 			       NULL);
867 
868 	result = vdo_make_funnel_queue(&pool->queue);
869 	if (result != VDO_SUCCESS) {
870 		free_data_vio_pool(vdo_forget(pool));
871 		return result;
872 	}
873 
874 	for (i = 0; i < pool_size; i++) {
875 		struct data_vio *data_vio = &pool->data_vios[i];
876 
877 		result = initialize_data_vio(data_vio, vdo);
878 		if (result != VDO_SUCCESS) {
879 			destroy_data_vio(data_vio);
880 			free_data_vio_pool(pool);
881 			return result;
882 		}
883 
884 		list_add(&data_vio->pool_entry, &pool->available);
885 	}
886 
887 	*pool_ptr = pool;
888 	return VDO_SUCCESS;
889 }
890 
891 /**
892  * free_data_vio_pool() - Free a data_vio_pool and the data_vios in it.
893  *
894  * All data_vios must be returned to the pool before calling this function.
895  */
896 void free_data_vio_pool(struct data_vio_pool *pool)
897 {
898 	struct data_vio *data_vio, *tmp;
899 
900 	if (pool == NULL)
901 		return;
902 
903 	/*
904 	 * Pairs with the barrier in process_release_callback(). Possibly not needed since it
905 	 * caters to an enqueue vs. free race.
906 	 */
907 	smp_mb();
908 	BUG_ON(atomic_read(&pool->processing));
909 
910 	spin_lock(&pool->lock);
911 	VDO_ASSERT_LOG_ONLY((pool->limiter.busy == 0),
912 			    "data_vio pool must not have %u busy entries when being freed",
913 			    pool->limiter.busy);
914 	VDO_ASSERT_LOG_ONLY((bio_list_empty(&pool->limiter.waiters) &&
915 			     bio_list_empty(&pool->limiter.new_waiters)),
916 			    "data_vio pool must not have threads waiting to read or write when being freed");
917 	VDO_ASSERT_LOG_ONLY((bio_list_empty(&pool->discard_limiter.waiters) &&
918 			     bio_list_empty(&pool->discard_limiter.new_waiters)),
919 			    "data_vio pool must not have threads waiting to discard when being freed");
920 	spin_unlock(&pool->lock);
921 
922 	list_for_each_entry_safe(data_vio, tmp, &pool->available, pool_entry) {
923 		list_del_init(&data_vio->pool_entry);
924 		destroy_data_vio(data_vio);
925 	}
926 
927 	vdo_free_funnel_queue(vdo_forget(pool->queue));
928 	vdo_free(pool);
929 }
930 
931 static bool acquire_permit(struct limiter *limiter)
932 {
933 	if (limiter->busy >= limiter->limit)
934 		return false;
935 
936 	WRITE_ONCE(limiter->busy, limiter->busy + 1);
937 	if (limiter->max_busy < limiter->busy)
938 		WRITE_ONCE(limiter->max_busy, limiter->busy);
939 	return true;
940 }
941 
942 static void wait_permit(struct limiter *limiter, struct bio *bio)
943 	__releases(&limiter->pool->lock)
944 {
945 	DEFINE_WAIT(wait);
946 
947 	bio_list_add(&limiter->new_waiters, bio);
948 	prepare_to_wait_exclusive(&limiter->blocked_threads, &wait,
949 				  TASK_UNINTERRUPTIBLE);
950 	spin_unlock(&limiter->pool->lock);
951 	io_schedule();
952 	finish_wait(&limiter->blocked_threads, &wait);
953 }
954 
955 /**
956  * vdo_launch_bio() - Acquire a data_vio from the pool, assign the bio to it, and launch it.
957  *
958  * This will block if data_vios or discard permits are not available.
959  */
960 void vdo_launch_bio(struct data_vio_pool *pool, struct bio *bio)
961 {
962 	struct data_vio *data_vio;
963 
964 	VDO_ASSERT_LOG_ONLY(!vdo_is_state_quiescent(&pool->state),
965 			    "data_vio_pool not quiescent on acquire");
966 
967 	bio->bi_private = (void *) jiffies;
968 	spin_lock(&pool->lock);
969 	if ((bio_op(bio) == REQ_OP_DISCARD) &&
970 	    !acquire_permit(&pool->discard_limiter)) {
971 		wait_permit(&pool->discard_limiter, bio);
972 		return;
973 	}
974 
975 	if (!acquire_permit(&pool->limiter)) {
976 		wait_permit(&pool->limiter, bio);
977 		return;
978 	}
979 
980 	data_vio = get_available_data_vio(pool);
981 	spin_unlock(&pool->lock);
982 	launch_bio(pool->completion.vdo, data_vio, bio);
983 }
984 
985 /* Implements vdo_admin_initiator_fn. */
986 static void initiate_drain(struct admin_state *state)
987 {
988 	bool drained;
989 	struct data_vio_pool *pool = container_of(state, struct data_vio_pool, state);
990 
991 	spin_lock(&pool->lock);
992 	drained = check_for_drain_complete_locked(pool);
993 	spin_unlock(&pool->lock);
994 
995 	if (drained)
996 		vdo_finish_draining(state);
997 }
998 
999 static void assert_on_vdo_cpu_thread(const struct vdo *vdo, const char *name)
1000 {
1001 	VDO_ASSERT_LOG_ONLY((vdo_get_callback_thread_id() == vdo->thread_config.cpu_thread),
1002 			    "%s called on cpu thread", name);
1003 }
1004 
1005 /**
1006  * drain_data_vio_pool() - Wait asynchronously for all data_vios to be returned to the pool.
1007  * @completion: The completion to notify when the pool has drained.
1008  */
1009 void drain_data_vio_pool(struct data_vio_pool *pool, struct vdo_completion *completion)
1010 {
1011 	assert_on_vdo_cpu_thread(completion->vdo, __func__);
1012 	vdo_start_draining(&pool->state, VDO_ADMIN_STATE_SUSPENDING, completion,
1013 			   initiate_drain);
1014 }
1015 
1016 /**
1017  * resume_data_vio_pool() - Resume a data_vio pool.
1018  * @completion: The completion to notify when the pool has resumed.
1019  */
1020 void resume_data_vio_pool(struct data_vio_pool *pool, struct vdo_completion *completion)
1021 {
1022 	assert_on_vdo_cpu_thread(completion->vdo, __func__);
1023 	vdo_continue_completion(completion, vdo_resume_if_quiescent(&pool->state));
1024 }
1025 
1026 static void dump_limiter(const char *name, struct limiter *limiter)
1027 {
1028 	vdo_log_info("%s: %u of %u busy (max %u), %s", name, limiter->busy,
1029 		     limiter->limit, limiter->max_busy,
1030 		     ((bio_list_empty(&limiter->waiters) &&
1031 		       bio_list_empty(&limiter->new_waiters)) ?
1032 		      "no waiters" : "has waiters"));
1033 }
1034 
1035 /**
1036  * dump_data_vio_pool() - Dump a data_vio pool to the log.
1037  * @dump_vios: Whether to dump the details of each busy data_vio as well.
1038  */
1039 void dump_data_vio_pool(struct data_vio_pool *pool, bool dump_vios)
1040 {
1041 	/*
1042 	 * In order that syslog can empty its buffer, sleep after 35 elements for 4ms (till the
1043 	 * second clock tick).  These numbers were picked based on experiments with lab machines.
1044 	 */
1045 	static const int ELEMENTS_PER_BATCH = 35;
1046 	static const int SLEEP_FOR_SYSLOG = 4000;
1047 
1048 	if (pool == NULL)
1049 		return;
1050 
1051 	spin_lock(&pool->lock);
1052 	dump_limiter("data_vios", &pool->limiter);
1053 	dump_limiter("discard permits", &pool->discard_limiter);
1054 	if (dump_vios) {
1055 		int i;
1056 		int dumped = 0;
1057 
1058 		for (i = 0; i < pool->limiter.limit; i++) {
1059 			struct data_vio *data_vio = &pool->data_vios[i];
1060 
1061 			if (!list_empty(&data_vio->pool_entry))
1062 				continue;
1063 
1064 			dump_data_vio(data_vio);
1065 			if (++dumped >= ELEMENTS_PER_BATCH) {
1066 				spin_unlock(&pool->lock);
1067 				dumped = 0;
1068 				fsleep(SLEEP_FOR_SYSLOG);
1069 				spin_lock(&pool->lock);
1070 			}
1071 		}
1072 	}
1073 
1074 	spin_unlock(&pool->lock);
1075 }
1076 
1077 data_vio_count_t get_data_vio_pool_active_discards(struct data_vio_pool *pool)
1078 {
1079 	return READ_ONCE(pool->discard_limiter.busy);
1080 }
1081 
1082 data_vio_count_t get_data_vio_pool_discard_limit(struct data_vio_pool *pool)
1083 {
1084 	return READ_ONCE(pool->discard_limiter.limit);
1085 }
1086 
1087 data_vio_count_t get_data_vio_pool_maximum_discards(struct data_vio_pool *pool)
1088 {
1089 	return READ_ONCE(pool->discard_limiter.max_busy);
1090 }
1091 
1092 int set_data_vio_pool_discard_limit(struct data_vio_pool *pool, data_vio_count_t limit)
1093 {
1094 	if (get_data_vio_pool_request_limit(pool) < limit) {
1095 		// The discard limit may not be higher than the data_vio limit.
1096 		return -EINVAL;
1097 	}
1098 
1099 	spin_lock(&pool->lock);
1100 	pool->discard_limiter.limit = limit;
1101 	spin_unlock(&pool->lock);
1102 
1103 	return VDO_SUCCESS;
1104 }
1105 
1106 data_vio_count_t get_data_vio_pool_active_requests(struct data_vio_pool *pool)
1107 {
1108 	return READ_ONCE(pool->limiter.busy);
1109 }
1110 
1111 data_vio_count_t get_data_vio_pool_request_limit(struct data_vio_pool *pool)
1112 {
1113 	return READ_ONCE(pool->limiter.limit);
1114 }
1115 
1116 data_vio_count_t get_data_vio_pool_maximum_requests(struct data_vio_pool *pool)
1117 {
1118 	return READ_ONCE(pool->limiter.max_busy);
1119 }
1120 
1121 static void update_data_vio_error_stats(struct data_vio *data_vio)
1122 {
1123 	u8 index = 0;
1124 	static const char * const operations[] = {
1125 		[0] = "empty",
1126 		[1] = "read",
1127 		[2] = "write",
1128 		[3] = "read-modify-write",
1129 		[5] = "read+fua",
1130 		[6] = "write+fua",
1131 		[7] = "read-modify-write+fua",
1132 	};
1133 
1134 	if (data_vio->read)
1135 		index = 1;
1136 
1137 	if (data_vio->write)
1138 		index += 2;
1139 
1140 	if (data_vio->fua)
1141 		index += 4;
1142 
1143 	update_vio_error_stats(&data_vio->vio,
1144 			       "Completing %s vio for LBN %llu with error after %s",
1145 			       operations[index],
1146 			       (unsigned long long) data_vio->logical.lbn,
1147 			       get_data_vio_operation_name(data_vio));
1148 }
1149 
1150 static void perform_cleanup_stage(struct data_vio *data_vio,
1151 				  enum data_vio_cleanup_stage stage);
1152 
1153 /**
1154  * release_allocated_lock() - Release the PBN lock and/or the reference on the allocated block at
1155  *			      the end of processing a data_vio.
1156  */
1157 static void release_allocated_lock(struct vdo_completion *completion)
1158 {
1159 	struct data_vio *data_vio = as_data_vio(completion);
1160 
1161 	assert_data_vio_in_allocated_zone(data_vio);
1162 	release_data_vio_allocation_lock(data_vio, false);
1163 	perform_cleanup_stage(data_vio, VIO_RELEASE_RECOVERY_LOCKS);
1164 }
1165 
1166 /** release_lock() - Release an uncontended LBN lock. */
1167 static void release_lock(struct data_vio *data_vio, struct lbn_lock *lock)
1168 {
1169 	struct int_map *lock_map = lock->zone->lbn_operations;
1170 	struct data_vio *lock_holder;
1171 
1172 	if (!lock->locked) {
1173 		/*  The lock is not locked, so it had better not be registered in the lock map. */
1174 		struct data_vio *lock_holder = vdo_int_map_get(lock_map, lock->lbn);
1175 
1176 		VDO_ASSERT_LOG_ONLY((data_vio != lock_holder),
1177 				    "no logical block lock held for block %llu",
1178 				    (unsigned long long) lock->lbn);
1179 		return;
1180 	}
1181 
1182 	/* Release the lock by removing the lock from the map. */
1183 	lock_holder = vdo_int_map_remove(lock_map, lock->lbn);
1184 	VDO_ASSERT_LOG_ONLY((data_vio == lock_holder),
1185 			    "logical block lock mismatch for block %llu",
1186 			    (unsigned long long) lock->lbn);
1187 	lock->locked = false;
1188 }
1189 
1190 /** transfer_lock() - Transfer a contended LBN lock to the eldest waiter. */
1191 static void transfer_lock(struct data_vio *data_vio, struct lbn_lock *lock)
1192 {
1193 	struct data_vio *lock_holder, *next_lock_holder;
1194 	int result;
1195 
1196 	VDO_ASSERT_LOG_ONLY(lock->locked, "lbn_lock with waiters is not locked");
1197 
1198 	/* Another data_vio is waiting for the lock, transfer it in a single lock map operation. */
1199 	next_lock_holder =
1200 		vdo_waiter_as_data_vio(vdo_waitq_dequeue_waiter(&lock->waiters));
1201 
1202 	/* Transfer the remaining lock waiters to the next lock holder. */
1203 	vdo_waitq_transfer_all_waiters(&lock->waiters,
1204 				       &next_lock_holder->logical.waiters);
1205 
1206 	result = vdo_int_map_put(lock->zone->lbn_operations, lock->lbn,
1207 				 next_lock_holder, true, (void **) &lock_holder);
1208 	if (result != VDO_SUCCESS) {
1209 		continue_data_vio_with_error(next_lock_holder, result);
1210 		return;
1211 	}
1212 
1213 	VDO_ASSERT_LOG_ONLY((lock_holder == data_vio),
1214 			    "logical block lock mismatch for block %llu",
1215 			    (unsigned long long) lock->lbn);
1216 	lock->locked = false;
1217 
1218 	/*
1219 	 * If there are still waiters, other data_vios must be trying to get the lock we just
1220 	 * transferred. We must ensure that the new lock holder doesn't block in the packer.
1221 	 */
1222 	if (vdo_waitq_has_waiters(&next_lock_holder->logical.waiters))
1223 		cancel_data_vio_compression(next_lock_holder);
1224 
1225 	/*
1226 	 * Avoid stack overflow on lock transfer.
1227 	 * FIXME: this is only an issue in the 1 thread config.
1228 	 */
1229 	next_lock_holder->vio.completion.requeue = true;
1230 	launch_locked_request(next_lock_holder);
1231 }
1232 
1233 /**
1234  * release_logical_lock() - Release the logical block lock and flush generation lock at the end of
1235  *			    processing a data_vio.
1236  */
1237 static void release_logical_lock(struct vdo_completion *completion)
1238 {
1239 	struct data_vio *data_vio = as_data_vio(completion);
1240 	struct lbn_lock *lock = &data_vio->logical;
1241 
1242 	assert_data_vio_in_logical_zone(data_vio);
1243 
1244 	if (vdo_waitq_has_waiters(&lock->waiters))
1245 		transfer_lock(data_vio, lock);
1246 	else
1247 		release_lock(data_vio, lock);
1248 
1249 	vdo_release_flush_generation_lock(data_vio);
1250 	perform_cleanup_stage(data_vio, VIO_CLEANUP_DONE);
1251 }
1252 
1253 /** clean_hash_lock() - Release the hash lock at the end of processing a data_vio. */
1254 static void clean_hash_lock(struct vdo_completion *completion)
1255 {
1256 	struct data_vio *data_vio = as_data_vio(completion);
1257 
1258 	assert_data_vio_in_hash_zone(data_vio);
1259 	if (completion->result != VDO_SUCCESS) {
1260 		vdo_clean_failed_hash_lock(data_vio);
1261 		return;
1262 	}
1263 
1264 	vdo_release_hash_lock(data_vio);
1265 	perform_cleanup_stage(data_vio, VIO_RELEASE_LOGICAL);
1266 }
1267 
1268 /**
1269  * finish_cleanup() - Make some assertions about a data_vio which has finished cleaning up.
1270  *
1271  * If it is part of a multi-block discard, starts on the next block, otherwise, returns it to the
1272  * pool.
1273  */
1274 static void finish_cleanup(struct data_vio *data_vio)
1275 {
1276 	struct vdo_completion *completion = &data_vio->vio.completion;
1277 
1278 	VDO_ASSERT_LOG_ONLY(data_vio->allocation.lock == NULL,
1279 			    "complete data_vio has no allocation lock");
1280 	VDO_ASSERT_LOG_ONLY(data_vio->hash_lock == NULL,
1281 			    "complete data_vio has no hash lock");
1282 	if ((data_vio->remaining_discard <= VDO_BLOCK_SIZE) ||
1283 	    (completion->result != VDO_SUCCESS)) {
1284 		struct data_vio_pool *pool = completion->vdo->data_vio_pool;
1285 
1286 		vdo_funnel_queue_put(pool->queue, &completion->work_queue_entry_link);
1287 		schedule_releases(pool);
1288 		return;
1289 	}
1290 
1291 	data_vio->remaining_discard -= min_t(u32, data_vio->remaining_discard,
1292 					     VDO_BLOCK_SIZE - data_vio->offset);
1293 	data_vio->is_partial = (data_vio->remaining_discard < VDO_BLOCK_SIZE);
1294 	data_vio->read = data_vio->is_partial;
1295 	data_vio->offset = 0;
1296 	completion->requeue = true;
1297 	launch_data_vio(data_vio, data_vio->logical.lbn + 1);
1298 }
1299 
1300 /** perform_cleanup_stage() - Perform the next step in the process of cleaning up a data_vio. */
1301 static void perform_cleanup_stage(struct data_vio *data_vio,
1302 				  enum data_vio_cleanup_stage stage)
1303 {
1304 	struct vdo *vdo = vdo_from_data_vio(data_vio);
1305 
1306 	switch (stage) {
1307 	case VIO_RELEASE_HASH_LOCK:
1308 		if (data_vio->hash_lock != NULL) {
1309 			launch_data_vio_hash_zone_callback(data_vio, clean_hash_lock);
1310 			return;
1311 		}
1312 		fallthrough;
1313 
1314 	case VIO_RELEASE_ALLOCATED:
1315 		if (data_vio_has_allocation(data_vio)) {
1316 			launch_data_vio_allocated_zone_callback(data_vio,
1317 								release_allocated_lock);
1318 			return;
1319 		}
1320 		fallthrough;
1321 
1322 	case VIO_RELEASE_RECOVERY_LOCKS:
1323 		if ((data_vio->recovery_sequence_number > 0) &&
1324 		    (READ_ONCE(vdo->read_only_notifier.read_only_error) == VDO_SUCCESS) &&
1325 		    (data_vio->vio.completion.result != VDO_READ_ONLY))
1326 			vdo_log_warning("VDO not read-only when cleaning data_vio with RJ lock");
1327 		fallthrough;
1328 
1329 	case VIO_RELEASE_LOGICAL:
1330 		launch_data_vio_logical_callback(data_vio, release_logical_lock);
1331 		return;
1332 
1333 	default:
1334 		finish_cleanup(data_vio);
1335 	}
1336 }
1337 
1338 void complete_data_vio(struct vdo_completion *completion)
1339 {
1340 	struct data_vio *data_vio = as_data_vio(completion);
1341 
1342 	completion->error_handler = NULL;
1343 	data_vio->last_async_operation = VIO_ASYNC_OP_CLEANUP;
1344 	perform_cleanup_stage(data_vio,
1345 			      (data_vio->write ? VIO_CLEANUP_START : VIO_RELEASE_LOGICAL));
1346 }
1347 
1348 static void enter_read_only_mode(struct vdo_completion *completion)
1349 {
1350 	if (vdo_is_read_only(completion->vdo))
1351 		return;
1352 
1353 	if (completion->result != VDO_READ_ONLY) {
1354 		struct data_vio *data_vio = as_data_vio(completion);
1355 
1356 		vdo_log_error_strerror(completion->result,
1357 				       "Preparing to enter read-only mode: data_vio for LBN %llu (becoming mapped to %llu, previously mapped to %llu, allocated %llu) is completing with a fatal error after operation %s",
1358 				       (unsigned long long) data_vio->logical.lbn,
1359 				       (unsigned long long) data_vio->new_mapped.pbn,
1360 				       (unsigned long long) data_vio->mapped.pbn,
1361 				       (unsigned long long) data_vio->allocation.pbn,
1362 				       get_data_vio_operation_name(data_vio));
1363 	}
1364 
1365 	vdo_enter_read_only_mode(completion->vdo, completion->result);
1366 }
1367 
1368 void handle_data_vio_error(struct vdo_completion *completion)
1369 {
1370 	struct data_vio *data_vio = as_data_vio(completion);
1371 
1372 	if ((completion->result == VDO_READ_ONLY) || (data_vio->user_bio == NULL))
1373 		enter_read_only_mode(completion);
1374 
1375 	update_data_vio_error_stats(data_vio);
1376 	complete_data_vio(completion);
1377 }
1378 
1379 /**
1380  * get_data_vio_operation_name() - Get the name of the last asynchronous operation performed on a
1381  *				   data_vio.
1382  */
1383 const char *get_data_vio_operation_name(struct data_vio *data_vio)
1384 {
1385 	BUILD_BUG_ON((MAX_VIO_ASYNC_OPERATION_NUMBER - MIN_VIO_ASYNC_OPERATION_NUMBER) !=
1386 		     ARRAY_SIZE(ASYNC_OPERATION_NAMES));
1387 
1388 	return ((data_vio->last_async_operation < MAX_VIO_ASYNC_OPERATION_NUMBER) ?
1389 		ASYNC_OPERATION_NAMES[data_vio->last_async_operation] :
1390 		"unknown async operation");
1391 }
1392 
1393 /**
1394  * data_vio_allocate_data_block() - Allocate a data block.
1395  *
1396  * @write_lock_type: The type of write lock to obtain on the block.
1397  * @callback: The callback which will attempt an allocation in the current zone and continue if it
1398  *	      succeeds.
1399  * @error_handler: The handler for errors while allocating.
1400  */
1401 void data_vio_allocate_data_block(struct data_vio *data_vio,
1402 				  enum pbn_lock_type write_lock_type,
1403 				  vdo_action_fn callback, vdo_action_fn error_handler)
1404 {
1405 	struct allocation *allocation = &data_vio->allocation;
1406 
1407 	VDO_ASSERT_LOG_ONLY((allocation->pbn == VDO_ZERO_BLOCK),
1408 			    "data_vio does not have an allocation");
1409 	allocation->write_lock_type = write_lock_type;
1410 	allocation->zone = vdo_get_next_allocation_zone(data_vio->logical.zone);
1411 	allocation->first_allocation_zone = allocation->zone->zone_number;
1412 
1413 	data_vio->vio.completion.error_handler = error_handler;
1414 	launch_data_vio_allocated_zone_callback(data_vio, callback);
1415 }
1416 
1417 /**
1418  * release_data_vio_allocation_lock() - Release the PBN lock on a data_vio's allocated block.
1419  * @reset: If true, the allocation will be reset (i.e. any allocated pbn will be forgotten).
1420  *
1421  * If the reference to the locked block is still provisional, it will be released as well.
1422  */
1423 void release_data_vio_allocation_lock(struct data_vio *data_vio, bool reset)
1424 {
1425 	struct allocation *allocation = &data_vio->allocation;
1426 	physical_block_number_t locked_pbn = allocation->pbn;
1427 
1428 	assert_data_vio_in_allocated_zone(data_vio);
1429 
1430 	if (reset || vdo_pbn_lock_has_provisional_reference(allocation->lock))
1431 		allocation->pbn = VDO_ZERO_BLOCK;
1432 
1433 	vdo_release_physical_zone_pbn_lock(allocation->zone, locked_pbn,
1434 					   vdo_forget(allocation->lock));
1435 }
1436 
1437 /**
1438  * uncompress_data_vio() - Uncompress the data a data_vio has just read.
1439  * @mapping_state: The mapping state indicating which fragment to decompress.
1440  * @buffer: The buffer to receive the uncompressed data.
1441  */
1442 int uncompress_data_vio(struct data_vio *data_vio,
1443 			enum block_mapping_state mapping_state, char *buffer)
1444 {
1445 	int size;
1446 	u16 fragment_offset, fragment_size;
1447 	struct compressed_block *block = data_vio->compression.block;
1448 	int result = vdo_get_compressed_block_fragment(mapping_state, block,
1449 						       &fragment_offset, &fragment_size);
1450 
1451 	if (result != VDO_SUCCESS) {
1452 		vdo_log_debug("%s: compressed fragment error %d", __func__, result);
1453 		return result;
1454 	}
1455 
1456 	size = LZ4_decompress_safe((block->data + fragment_offset), buffer,
1457 				   fragment_size, VDO_BLOCK_SIZE);
1458 	if (size != VDO_BLOCK_SIZE) {
1459 		vdo_log_debug("%s: lz4 error", __func__);
1460 		return VDO_INVALID_FRAGMENT;
1461 	}
1462 
1463 	return VDO_SUCCESS;
1464 }
1465 
1466 /**
1467  * modify_for_partial_write() - Do the modify-write part of a read-modify-write cycle.
1468  * @completion: The data_vio which has just finished its read.
1469  *
1470  * This callback is registered in read_block().
1471  */
1472 static void modify_for_partial_write(struct vdo_completion *completion)
1473 {
1474 	struct data_vio *data_vio = as_data_vio(completion);
1475 	char *data = data_vio->vio.data;
1476 	struct bio *bio = data_vio->user_bio;
1477 
1478 	assert_data_vio_on_cpu_thread(data_vio);
1479 
1480 	if (bio_op(bio) == REQ_OP_DISCARD) {
1481 		memset(data + data_vio->offset, '\0', min_t(u32,
1482 							    data_vio->remaining_discard,
1483 							    VDO_BLOCK_SIZE - data_vio->offset));
1484 	} else {
1485 		copy_from_bio(bio, data + data_vio->offset);
1486 	}
1487 
1488 	data_vio->is_zero = is_zero_block(data);
1489 	data_vio->read = false;
1490 	launch_data_vio_logical_callback(data_vio,
1491 					 continue_data_vio_with_block_map_slot);
1492 }
1493 
1494 static void complete_read(struct vdo_completion *completion)
1495 {
1496 	struct data_vio *data_vio = as_data_vio(completion);
1497 	char *data = data_vio->vio.data;
1498 	bool compressed = vdo_is_state_compressed(data_vio->mapped.state);
1499 
1500 	assert_data_vio_on_cpu_thread(data_vio);
1501 
1502 	if (compressed) {
1503 		int result = uncompress_data_vio(data_vio, data_vio->mapped.state, data);
1504 
1505 		if (result != VDO_SUCCESS) {
1506 			continue_data_vio_with_error(data_vio, result);
1507 			return;
1508 		}
1509 	}
1510 
1511 	if (data_vio->write) {
1512 		modify_for_partial_write(completion);
1513 		return;
1514 	}
1515 
1516 	if (compressed || data_vio->is_partial)
1517 		copy_to_bio(data_vio->user_bio, data + data_vio->offset);
1518 
1519 	acknowledge_data_vio(data_vio);
1520 	complete_data_vio(completion);
1521 }
1522 
1523 static void read_endio(struct bio *bio)
1524 {
1525 	struct data_vio *data_vio = vio_as_data_vio(bio->bi_private);
1526 	int result = blk_status_to_errno(bio->bi_status);
1527 
1528 	vdo_count_completed_bios(bio);
1529 	if (result != VDO_SUCCESS) {
1530 		continue_data_vio_with_error(data_vio, result);
1531 		return;
1532 	}
1533 
1534 	launch_data_vio_cpu_callback(data_vio, complete_read,
1535 				     CPU_Q_COMPLETE_READ_PRIORITY);
1536 }
1537 
1538 static void complete_zero_read(struct vdo_completion *completion)
1539 {
1540 	struct data_vio *data_vio = as_data_vio(completion);
1541 
1542 	assert_data_vio_on_cpu_thread(data_vio);
1543 
1544 	if (data_vio->is_partial) {
1545 		memset(data_vio->vio.data, 0, VDO_BLOCK_SIZE);
1546 		if (data_vio->write) {
1547 			modify_for_partial_write(completion);
1548 			return;
1549 		}
1550 	} else {
1551 		zero_fill_bio(data_vio->user_bio);
1552 	}
1553 
1554 	complete_read(completion);
1555 }
1556 
1557 /**
1558  * read_block() - Read a block asynchronously.
1559  *
1560  * This is the callback registered in read_block_mapping().
1561  */
1562 static void read_block(struct vdo_completion *completion)
1563 {
1564 	struct data_vio *data_vio = as_data_vio(completion);
1565 	struct vio *vio = as_vio(completion);
1566 	int result = VDO_SUCCESS;
1567 
1568 	if (data_vio->mapped.pbn == VDO_ZERO_BLOCK) {
1569 		launch_data_vio_cpu_callback(data_vio, complete_zero_read,
1570 					     CPU_Q_COMPLETE_VIO_PRIORITY);
1571 		return;
1572 	}
1573 
1574 	data_vio->last_async_operation = VIO_ASYNC_OP_READ_DATA_VIO;
1575 	if (vdo_is_state_compressed(data_vio->mapped.state)) {
1576 		result = vio_reset_bio(vio, (char *) data_vio->compression.block,
1577 				       read_endio, REQ_OP_READ, data_vio->mapped.pbn);
1578 	} else {
1579 		blk_opf_t opf = ((data_vio->user_bio->bi_opf & PASSTHROUGH_FLAGS) | REQ_OP_READ);
1580 
1581 		if (data_vio->is_partial) {
1582 			result = vio_reset_bio(vio, vio->data, read_endio, opf,
1583 					       data_vio->mapped.pbn);
1584 		} else {
1585 			/* A full 4k read. Use the incoming bio to avoid having to copy the data */
1586 			bio_reset(vio->bio, vio->bio->bi_bdev, opf);
1587 			bio_init_clone(data_vio->user_bio->bi_bdev, vio->bio,
1588 				       data_vio->user_bio, GFP_KERNEL);
1589 
1590 			/* Copy over the original bio iovec and opflags. */
1591 			vdo_set_bio_properties(vio->bio, vio, read_endio, opf,
1592 					       data_vio->mapped.pbn);
1593 		}
1594 	}
1595 
1596 	if (result != VDO_SUCCESS) {
1597 		continue_data_vio_with_error(data_vio, result);
1598 		return;
1599 	}
1600 
1601 	vdo_submit_data_vio(data_vio);
1602 }
1603 
1604 static inline struct data_vio *
1605 reference_count_update_completion_as_data_vio(struct vdo_completion *completion)
1606 {
1607 	if (completion->type == VIO_COMPLETION)
1608 		return as_data_vio(completion);
1609 
1610 	return container_of(completion, struct data_vio, decrement_completion);
1611 }
1612 
1613 /**
1614  * update_block_map() - Rendezvous of the data_vio and decrement completions after each has
1615  *                      made its reference updates. Handle any error from either, or proceed
1616  *                      to updating the block map.
1617  * @completion: The completion of the write in progress.
1618  */
1619 static void update_block_map(struct vdo_completion *completion)
1620 {
1621 	struct data_vio *data_vio = reference_count_update_completion_as_data_vio(completion);
1622 
1623 	assert_data_vio_in_logical_zone(data_vio);
1624 
1625 	if (!data_vio->first_reference_operation_complete) {
1626 		/* Rendezvous, we're first */
1627 		data_vio->first_reference_operation_complete = true;
1628 		return;
1629 	}
1630 
1631 	completion = &data_vio->vio.completion;
1632 	vdo_set_completion_result(completion, data_vio->decrement_completion.result);
1633 	if (completion->result != VDO_SUCCESS) {
1634 		handle_data_vio_error(completion);
1635 		return;
1636 	}
1637 
1638 	completion->error_handler = handle_data_vio_error;
1639 	if (data_vio->hash_lock != NULL)
1640 		set_data_vio_hash_zone_callback(data_vio, vdo_continue_hash_lock);
1641 	else
1642 		completion->callback = complete_data_vio;
1643 
1644 	data_vio->last_async_operation = VIO_ASYNC_OP_PUT_MAPPED_BLOCK;
1645 	vdo_put_mapped_block(data_vio);
1646 }
1647 
1648 static void decrement_reference_count(struct vdo_completion *completion)
1649 {
1650 	struct data_vio *data_vio = container_of(completion, struct data_vio,
1651 						 decrement_completion);
1652 
1653 	assert_data_vio_in_mapped_zone(data_vio);
1654 
1655 	vdo_set_completion_callback(completion, update_block_map,
1656 				    data_vio->logical.zone->thread_id);
1657 	completion->error_handler = update_block_map;
1658 	vdo_modify_reference_count(completion, &data_vio->decrement_updater);
1659 }
1660 
1661 static void increment_reference_count(struct vdo_completion *completion)
1662 {
1663 	struct data_vio *data_vio = as_data_vio(completion);
1664 
1665 	assert_data_vio_in_new_mapped_zone(data_vio);
1666 
1667 	if (data_vio->downgrade_allocation_lock) {
1668 		/*
1669 		 * Now that the data has been written, it's safe to deduplicate against the
1670 		 * block. Downgrade the allocation lock to a read lock so it can be used later by
1671 		 * the hash lock. This is done here since it needs to happen sometime before we
1672 		 * return to the hash zone, and we are currently on the correct thread. For
1673 		 * compressed blocks, the downgrade will have already been done.
1674 		 */
1675 		vdo_downgrade_pbn_write_lock(data_vio->allocation.lock, false);
1676 	}
1677 
1678 	set_data_vio_logical_callback(data_vio, update_block_map);
1679 	completion->error_handler = update_block_map;
1680 	vdo_modify_reference_count(completion, &data_vio->increment_updater);
1681 }
1682 
1683 /** journal_remapping() - Add a recovery journal entry for a data remapping. */
1684 static void journal_remapping(struct vdo_completion *completion)
1685 {
1686 	struct data_vio *data_vio = as_data_vio(completion);
1687 
1688 	assert_data_vio_in_journal_zone(data_vio);
1689 
1690 	data_vio->decrement_updater.operation = VDO_JOURNAL_DATA_REMAPPING;
1691 	data_vio->decrement_updater.zpbn = data_vio->mapped;
1692 	if (data_vio->new_mapped.pbn == VDO_ZERO_BLOCK) {
1693 		data_vio->first_reference_operation_complete = true;
1694 		if (data_vio->mapped.pbn == VDO_ZERO_BLOCK)
1695 			set_data_vio_logical_callback(data_vio, update_block_map);
1696 	} else {
1697 		set_data_vio_new_mapped_zone_callback(data_vio,
1698 						      increment_reference_count);
1699 	}
1700 
1701 	if (data_vio->mapped.pbn == VDO_ZERO_BLOCK) {
1702 		data_vio->first_reference_operation_complete = true;
1703 	} else {
1704 		vdo_set_completion_callback(&data_vio->decrement_completion,
1705 					    decrement_reference_count,
1706 					    data_vio->mapped.zone->thread_id);
1707 	}
1708 
1709 	data_vio->last_async_operation = VIO_ASYNC_OP_JOURNAL_REMAPPING;
1710 	vdo_add_recovery_journal_entry(completion->vdo->recovery_journal, data_vio);
1711 }
1712 
1713 /**
1714  * read_old_block_mapping() - Get the previous PBN/LBN mapping of an in-progress write.
1715  *
1716  * Gets the previous PBN mapped to this LBN from the block map, so as to make an appropriate
1717  * journal entry referencing the removal of this LBN->PBN mapping.
1718  */
1719 static void read_old_block_mapping(struct vdo_completion *completion)
1720 {
1721 	struct data_vio *data_vio = as_data_vio(completion);
1722 
1723 	assert_data_vio_in_logical_zone(data_vio);
1724 
1725 	data_vio->last_async_operation = VIO_ASYNC_OP_GET_MAPPED_BLOCK_FOR_WRITE;
1726 	set_data_vio_journal_callback(data_vio, journal_remapping);
1727 	vdo_get_mapped_block(data_vio);
1728 }
1729 
1730 void update_metadata_for_data_vio_write(struct data_vio *data_vio, struct pbn_lock *lock)
1731 {
1732 	data_vio->increment_updater = (struct reference_updater) {
1733 		.operation = VDO_JOURNAL_DATA_REMAPPING,
1734 		.increment = true,
1735 		.zpbn = data_vio->new_mapped,
1736 		.lock = lock,
1737 	};
1738 
1739 	launch_data_vio_logical_callback(data_vio, read_old_block_mapping);
1740 }
1741 
1742 /**
1743  * pack_compressed_data() - Attempt to pack the compressed data_vio into a block.
1744  *
1745  * This is the callback registered in launch_compress_data_vio().
1746  */
1747 static void pack_compressed_data(struct vdo_completion *completion)
1748 {
1749 	struct data_vio *data_vio = as_data_vio(completion);
1750 
1751 	assert_data_vio_in_packer_zone(data_vio);
1752 
1753 	if (!vdo_get_compressing(vdo_from_data_vio(data_vio)) ||
1754 	    get_data_vio_compression_status(data_vio).may_not_compress) {
1755 		write_data_vio(data_vio);
1756 		return;
1757 	}
1758 
1759 	data_vio->last_async_operation = VIO_ASYNC_OP_ATTEMPT_PACKING;
1760 	vdo_attempt_packing(data_vio);
1761 }
1762 
1763 /**
1764  * compress_data_vio() - Do the actual work of compressing the data on a CPU queue.
1765  *
1766  * This callback is registered in launch_compress_data_vio().
1767  */
1768 static void compress_data_vio(struct vdo_completion *completion)
1769 {
1770 	struct data_vio *data_vio = as_data_vio(completion);
1771 	int size;
1772 
1773 	assert_data_vio_on_cpu_thread(data_vio);
1774 
1775 	/*
1776 	 * By putting the compressed data at the start of the compressed block data field, we won't
1777 	 * need to copy it if this data_vio becomes a compressed write agent.
1778 	 */
1779 	size = LZ4_compress_default(data_vio->vio.data,
1780 				    data_vio->compression.block->data, VDO_BLOCK_SIZE,
1781 				    VDO_MAX_COMPRESSED_FRAGMENT_SIZE,
1782 				    (char *) vdo_get_work_queue_private_data());
1783 	if ((size > 0) && (size < VDO_COMPRESSED_BLOCK_DATA_SIZE)) {
1784 		data_vio->compression.size = size;
1785 		launch_data_vio_packer_callback(data_vio, pack_compressed_data);
1786 		return;
1787 	}
1788 
1789 	write_data_vio(data_vio);
1790 }
1791 
1792 /**
1793  * launch_compress_data_vio() - Continue a write by attempting to compress the data.
1794  *
1795  * This is a re-entry point to vio_write used by hash locks.
1796  */
1797 void launch_compress_data_vio(struct data_vio *data_vio)
1798 {
1799 	VDO_ASSERT_LOG_ONLY(!data_vio->is_duplicate, "compressing a non-duplicate block");
1800 	VDO_ASSERT_LOG_ONLY(data_vio->hash_lock != NULL,
1801 			    "data_vio to compress has a hash_lock");
1802 	VDO_ASSERT_LOG_ONLY(data_vio_has_allocation(data_vio),
1803 			    "data_vio to compress has an allocation");
1804 
1805 	/*
1806 	 * There are 4 reasons why a data_vio which has reached this point will not be eligible for
1807 	 * compression:
1808 	 *
1809 	 * 1) Since data_vios can block indefinitely in the packer, it would be bad to do so if the
1810 	 * write request also requests FUA.
1811 	 *
1812 	 * 2) A data_vio should not be compressed when compression is disabled for the vdo.
1813 	 *
1814 	 * 3) A data_vio could be doing a partial write on behalf of a larger discard which has not
1815 	 * yet been acknowledged and hence blocking in the packer would be bad.
1816 	 *
1817 	 * 4) Some other data_vio may be waiting on this data_vio in which case blocking in the
1818 	 * packer would also be bad.
1819 	 */
1820 	if (data_vio->fua ||
1821 	    !vdo_get_compressing(vdo_from_data_vio(data_vio)) ||
1822 	    ((data_vio->user_bio != NULL) && (bio_op(data_vio->user_bio) == REQ_OP_DISCARD)) ||
1823 	    (advance_data_vio_compression_stage(data_vio).stage != DATA_VIO_COMPRESSING)) {
1824 		write_data_vio(data_vio);
1825 		return;
1826 	}
1827 
1828 	data_vio->last_async_operation = VIO_ASYNC_OP_COMPRESS_DATA_VIO;
1829 	launch_data_vio_cpu_callback(data_vio, compress_data_vio,
1830 				     CPU_Q_COMPRESS_BLOCK_PRIORITY);
1831 }
1832 
1833 /**
1834  * hash_data_vio() - Hash the data in a data_vio and set the hash zone (which also flags the record
1835  *		     name as set).
1836 
1837  * This callback is registered in prepare_for_dedupe().
1838  */
1839 static void hash_data_vio(struct vdo_completion *completion)
1840 {
1841 	struct data_vio *data_vio = as_data_vio(completion);
1842 
1843 	assert_data_vio_on_cpu_thread(data_vio);
1844 	VDO_ASSERT_LOG_ONLY(!data_vio->is_zero, "zero blocks should not be hashed");
1845 
1846 	murmurhash3_128(data_vio->vio.data, VDO_BLOCK_SIZE, 0x62ea60be,
1847 			&data_vio->record_name);
1848 
1849 	data_vio->hash_zone = vdo_select_hash_zone(vdo_from_data_vio(data_vio)->hash_zones,
1850 						   &data_vio->record_name);
1851 	data_vio->last_async_operation = VIO_ASYNC_OP_ACQUIRE_VDO_HASH_LOCK;
1852 	launch_data_vio_hash_zone_callback(data_vio, vdo_acquire_hash_lock);
1853 }
1854 
1855 /** prepare_for_dedupe() - Prepare for the dedupe path after attempting to get an allocation. */
1856 static void prepare_for_dedupe(struct data_vio *data_vio)
1857 {
1858 	/* We don't care what thread we are on. */
1859 	VDO_ASSERT_LOG_ONLY(!data_vio->is_zero, "must not prepare to dedupe zero blocks");
1860 
1861 	/*
1862 	 * Before we can dedupe, we need to know the record name, so the first
1863 	 * step is to hash the block data.
1864 	 */
1865 	data_vio->last_async_operation = VIO_ASYNC_OP_HASH_DATA_VIO;
1866 	launch_data_vio_cpu_callback(data_vio, hash_data_vio, CPU_Q_HASH_BLOCK_PRIORITY);
1867 }
1868 
1869 /**
1870  * write_bio_finished() - This is the bio_end_io function registered in write_block() to be called
1871  *			  when a data_vio's write to the underlying storage has completed.
1872  */
1873 static void write_bio_finished(struct bio *bio)
1874 {
1875 	struct data_vio *data_vio = vio_as_data_vio((struct vio *) bio->bi_private);
1876 
1877 	vdo_count_completed_bios(bio);
1878 	vdo_set_completion_result(&data_vio->vio.completion,
1879 				  blk_status_to_errno(bio->bi_status));
1880 	data_vio->downgrade_allocation_lock = true;
1881 	update_metadata_for_data_vio_write(data_vio, data_vio->allocation.lock);
1882 }
1883 
1884 /** write_data_vio() - Write a data block to storage without compression. */
1885 void write_data_vio(struct data_vio *data_vio)
1886 {
1887 	struct data_vio_compression_status status, new_status;
1888 	int result;
1889 
1890 	if (!data_vio_has_allocation(data_vio)) {
1891 		/*
1892 		 * There was no space to write this block and we failed to deduplicate or compress
1893 		 * it.
1894 		 */
1895 		continue_data_vio_with_error(data_vio, VDO_NO_SPACE);
1896 		return;
1897 	}
1898 
1899 	new_status = (struct data_vio_compression_status) {
1900 		.stage = DATA_VIO_POST_PACKER,
1901 		.may_not_compress = true,
1902 	};
1903 
1904 	do {
1905 		status = get_data_vio_compression_status(data_vio);
1906 	} while ((status.stage != DATA_VIO_POST_PACKER) &&
1907 		 !set_data_vio_compression_status(data_vio, status, new_status));
1908 
1909 	/* Write the data from the data block buffer. */
1910 	result = vio_reset_bio(&data_vio->vio, data_vio->vio.data,
1911 			       write_bio_finished, REQ_OP_WRITE,
1912 			       data_vio->allocation.pbn);
1913 	if (result != VDO_SUCCESS) {
1914 		continue_data_vio_with_error(data_vio, result);
1915 		return;
1916 	}
1917 
1918 	data_vio->last_async_operation = VIO_ASYNC_OP_WRITE_DATA_VIO;
1919 	vdo_submit_data_vio(data_vio);
1920 }
1921 
1922 /**
1923  * acknowledge_write_callback() - Acknowledge a write to the requestor.
1924  *
1925  * This callback is registered in allocate_block() and continue_write_with_block_map_slot().
1926  */
1927 static void acknowledge_write_callback(struct vdo_completion *completion)
1928 {
1929 	struct data_vio *data_vio = as_data_vio(completion);
1930 	struct vdo *vdo = completion->vdo;
1931 
1932 	VDO_ASSERT_LOG_ONLY((!vdo_uses_bio_ack_queue(vdo) ||
1933 			     (vdo_get_callback_thread_id() == vdo->thread_config.bio_ack_thread)),
1934 			    "%s() called on bio ack queue", __func__);
1935 	VDO_ASSERT_LOG_ONLY(data_vio_has_flush_generation_lock(data_vio),
1936 			    "write VIO to be acknowledged has a flush generation lock");
1937 	acknowledge_data_vio(data_vio);
1938 	if (data_vio->new_mapped.pbn == VDO_ZERO_BLOCK) {
1939 		/* This is a zero write or discard */
1940 		update_metadata_for_data_vio_write(data_vio, NULL);
1941 		return;
1942 	}
1943 
1944 	prepare_for_dedupe(data_vio);
1945 }
1946 
1947 /**
1948  * allocate_block() - Attempt to allocate a block in the current allocation zone.
1949  *
1950  * This callback is registered in continue_write_with_block_map_slot().
1951  */
1952 static void allocate_block(struct vdo_completion *completion)
1953 {
1954 	struct data_vio *data_vio = as_data_vio(completion);
1955 
1956 	assert_data_vio_in_allocated_zone(data_vio);
1957 
1958 	if (!vdo_allocate_block_in_zone(data_vio))
1959 		return;
1960 
1961 	completion->error_handler = handle_data_vio_error;
1962 	WRITE_ONCE(data_vio->allocation_succeeded, true);
1963 	data_vio->new_mapped = (struct zoned_pbn) {
1964 		.zone = data_vio->allocation.zone,
1965 		.pbn = data_vio->allocation.pbn,
1966 		.state = VDO_MAPPING_STATE_UNCOMPRESSED,
1967 	};
1968 
1969 	if (data_vio->fua) {
1970 		prepare_for_dedupe(data_vio);
1971 		return;
1972 	}
1973 
1974 	data_vio->last_async_operation = VIO_ASYNC_OP_ACKNOWLEDGE_WRITE;
1975 	launch_data_vio_on_bio_ack_queue(data_vio, acknowledge_write_callback);
1976 }
1977 
1978 /**
1979  * handle_allocation_error() - Handle an error attempting to allocate a block.
1980  *
1981  * This error handler is registered in continue_write_with_block_map_slot().
1982  */
1983 static void handle_allocation_error(struct vdo_completion *completion)
1984 {
1985 	struct data_vio *data_vio = as_data_vio(completion);
1986 
1987 	if (completion->result == VDO_NO_SPACE) {
1988 		/* We failed to get an allocation, but we can try to dedupe. */
1989 		vdo_reset_completion(completion);
1990 		completion->error_handler = handle_data_vio_error;
1991 		prepare_for_dedupe(data_vio);
1992 		return;
1993 	}
1994 
1995 	/* We got a "real" error, not just a failure to allocate, so fail the request. */
1996 	handle_data_vio_error(completion);
1997 }
1998 
1999 static int assert_is_discard(struct data_vio *data_vio)
2000 {
2001 	int result = VDO_ASSERT(data_vio->is_discard,
2002 				"data_vio with no block map page is a discard");
2003 
2004 	return ((result == VDO_SUCCESS) ? result : VDO_READ_ONLY);
2005 }
2006 
2007 /**
2008  * continue_data_vio_with_block_map_slot() - Read the data_vio's mapping from the block map.
2009  *
2010  * This callback is registered in launch_read_data_vio().
2011  */
2012 void continue_data_vio_with_block_map_slot(struct vdo_completion *completion)
2013 {
2014 	struct data_vio *data_vio = as_data_vio(completion);
2015 
2016 	assert_data_vio_in_logical_zone(data_vio);
2017 	if (data_vio->read) {
2018 		set_data_vio_logical_callback(data_vio, read_block);
2019 		data_vio->last_async_operation = VIO_ASYNC_OP_GET_MAPPED_BLOCK_FOR_READ;
2020 		vdo_get_mapped_block(data_vio);
2021 		return;
2022 	}
2023 
2024 	vdo_acquire_flush_generation_lock(data_vio);
2025 
2026 	if (data_vio->tree_lock.tree_slots[0].block_map_slot.pbn == VDO_ZERO_BLOCK) {
2027 		/*
2028 		 * This is a discard for a block on a block map page which has not been allocated, so
2029 		 * there's nothing more we need to do.
2030 		 */
2031 		completion->callback = complete_data_vio;
2032 		continue_data_vio_with_error(data_vio, assert_is_discard(data_vio));
2033 		return;
2034 	}
2035 
2036 	/*
2037 	 * We need an allocation if this is neither a full-block discard nor a
2038 	 * full-block zero write.
2039 	 */
2040 	if (!data_vio->is_zero && (!data_vio->is_discard || data_vio->is_partial)) {
2041 		data_vio_allocate_data_block(data_vio, VIO_WRITE_LOCK, allocate_block,
2042 					     handle_allocation_error);
2043 		return;
2044 	}
2045 
2046 
2047 	/*
2048 	 * We don't need to write any data, so skip allocation and just update the block map and
2049 	 * reference counts (via the journal).
2050 	 */
2051 	data_vio->new_mapped.pbn = VDO_ZERO_BLOCK;
2052 	if (data_vio->is_zero)
2053 		data_vio->new_mapped.state = VDO_MAPPING_STATE_UNCOMPRESSED;
2054 
2055 	if (data_vio->remaining_discard > VDO_BLOCK_SIZE) {
2056 		/* This is not the final block of a discard so we can't acknowledge it yet. */
2057 		update_metadata_for_data_vio_write(data_vio, NULL);
2058 		return;
2059 	}
2060 
2061 	data_vio->last_async_operation = VIO_ASYNC_OP_ACKNOWLEDGE_WRITE;
2062 	launch_data_vio_on_bio_ack_queue(data_vio, acknowledge_write_callback);
2063 }
2064