xref: /linux/drivers/md/dm-vdo/data-vio.c (revision 7f71507851fc7764b36a3221839607d3a45c2025)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright 2023 Red Hat
4  */
5 
6 #include "data-vio.h"
7 
8 #include <linux/atomic.h>
9 #include <linux/bio.h>
10 #include <linux/blkdev.h>
11 #include <linux/delay.h>
12 #include <linux/device-mapper.h>
13 #include <linux/jiffies.h>
14 #include <linux/kernel.h>
15 #include <linux/list.h>
16 #include <linux/lz4.h>
17 #include <linux/minmax.h>
18 #include <linux/sched.h>
19 #include <linux/spinlock.h>
20 #include <linux/wait.h>
21 
22 #include "logger.h"
23 #include "memory-alloc.h"
24 #include "murmurhash3.h"
25 #include "permassert.h"
26 
27 #include "block-map.h"
28 #include "dump.h"
29 #include "encodings.h"
30 #include "int-map.h"
31 #include "io-submitter.h"
32 #include "logical-zone.h"
33 #include "packer.h"
34 #include "recovery-journal.h"
35 #include "slab-depot.h"
36 #include "status-codes.h"
37 #include "types.h"
38 #include "vdo.h"
39 #include "vio.h"
40 #include "wait-queue.h"
41 
42 /**
43  * DOC: Bio flags.
44  *
45  * For certain flags set on user bios, if the user bio has not yet been acknowledged, setting those
46  * flags on our own bio(s) for that request may help underlying layers better fulfill the user
47  * bio's needs. This constant contains the aggregate of those flags; VDO strips all the other
48  * flags, as they convey incorrect information.
49  *
50  * These flags are always irrelevant if we have already finished the user bio as they are only
51  * hints on IO importance. If VDO has finished the user bio, any remaining IO done doesn't care how
52  * important finishing the finished bio was.
53  *
54  * Note that bio.c contains the complete list of flags we believe may be set; the following list
55  * explains the action taken with each of those flags VDO could receive:
56  *
57  * * REQ_SYNC: Passed down if the user bio is not yet completed, since it indicates the user bio
58  *   completion is required for further work to be done by the issuer.
59  * * REQ_META: Passed down if the user bio is not yet completed, since it may mean the lower layer
60  *   treats it as more urgent, similar to REQ_SYNC.
61  * * REQ_PRIO: Passed down if the user bio is not yet completed, since it indicates the user bio is
62  *   important.
63  * * REQ_NOMERGE: Set only if the incoming bio was split; irrelevant to VDO IO.
64  * * REQ_IDLE: Set if the incoming bio had more IO quickly following; VDO's IO pattern doesn't
65  *   match incoming IO, so this flag is incorrect for it.
66  * * REQ_FUA: Handled separately, and irrelevant to VDO IO otherwise.
67  * * REQ_RAHEAD: Passed down, as, for reads, it indicates trivial importance.
68  * * REQ_BACKGROUND: Not passed down, as VIOs are a limited resource and VDO needs them recycled
69  *   ASAP to service heavy load, which is the only place where REQ_BACKGROUND might aid in load
70  *   prioritization.
71  */
72 static blk_opf_t PASSTHROUGH_FLAGS = (REQ_PRIO | REQ_META | REQ_SYNC | REQ_RAHEAD);
73 
74 /**
75  * DOC:
76  *
77  * The data_vio_pool maintains the pool of data_vios which a vdo uses to service incoming bios. For
78  * correctness, and in order to avoid potentially expensive or blocking memory allocations during
79  * normal operation, the number of concurrently active data_vios is capped. Furthermore, in order
80  * to avoid starvation of reads and writes, at most 75% of the data_vios may be used for
81  * discards. The data_vio_pool is responsible for enforcing these limits. Threads submitting bios
82  * for which a data_vio or discard permit are not available will block until the necessary
83  * resources are available. The pool is also responsible for distributing resources to blocked
84  * threads and waking them. Finally, the pool attempts to batch the work of recycling data_vios by
85  * performing the work of actually assigning resources to blocked threads or placing data_vios back
86  * into the pool on a single cpu at a time.
87  *
88  * The pool contains two "limiters", one for tracking data_vios and one for tracking discard
89  * permits. The limiters also provide safe cross-thread access to pool statistics without the need
90  * to take the pool's lock. When a thread submits a bio to a vdo device, it will first attempt to
91  * get a discard permit if it is a discard, and then to get a data_vio. If the necessary resources
92  * are available, the incoming bio will be assigned to the acquired data_vio, and it will be
93  * launched. However, if either of these are unavailable, the arrival time of the bio is recorded
94  * in the bio's bi_private field, the bio and its submitter are both queued on the appropriate
95  * limiter and the submitting thread will then put itself to sleep. (note that this mechanism will
96  * break if jiffies are only 32 bits.)
97  *
98  * Whenever a data_vio has completed processing for the bio it was servicing, release_data_vio()
99  * will be called on it. This function will add the data_vio to a funnel queue, and then check the
100  * state of the pool. If the pool is not currently processing released data_vios, the pool's
101  * completion will be enqueued on a cpu queue. This obviates the need for the releasing threads to
102  * hold the pool's lock, and also batches release work while avoiding starvation of the cpu
103  * threads.
104  *
105  * Whenever the pool's completion is run on a cpu thread, it calls process_release_callback() which
106  * processes a batch of returned data_vios (currently at most 32) from the pool's funnel queue. For
107  * each data_vio, it first checks whether that data_vio was processing a discard. If so, and there
108  * is a blocked bio waiting for a discard permit, that permit is notionally transferred to the
109  * eldest discard waiter, and that waiter is moved to the end of the list of discard bios waiting
110  * for a data_vio. If there are no discard waiters, the discard permit is returned to the pool.
111  * Next, the data_vio is assigned to the oldest blocked bio which either has a discard permit, or
112  * doesn't need one and relaunched. If neither of these exist, the data_vio is returned to the
113  * pool. Finally, if any waiting bios were launched, the threads which blocked trying to submit
114  * them are awakened.
115  */
116 
117 #define DATA_VIO_RELEASE_BATCH_SIZE 128
118 
119 static const unsigned int VDO_SECTORS_PER_BLOCK_MASK = VDO_SECTORS_PER_BLOCK - 1;
120 static const u32 COMPRESSION_STATUS_MASK = 0xff;
121 static const u32 MAY_NOT_COMPRESS_MASK = 0x80000000;
122 
123 struct limiter;
124 typedef void (*assigner_fn)(struct limiter *limiter);
125 
126 /* Bookkeeping structure for a single type of resource. */
127 struct limiter {
128 	/* The data_vio_pool to which this limiter belongs */
129 	struct data_vio_pool *pool;
130 	/* The maximum number of data_vios available */
131 	data_vio_count_t limit;
132 	/* The number of resources in use */
133 	data_vio_count_t busy;
134 	/* The maximum number of resources ever simultaneously in use */
135 	data_vio_count_t max_busy;
136 	/* The number of resources to release */
137 	data_vio_count_t release_count;
138 	/* The number of waiters to wake */
139 	data_vio_count_t wake_count;
140 	/* The list of waiting bios which are known to process_release_callback() */
141 	struct bio_list waiters;
142 	/* The list of waiting bios which are not yet known to process_release_callback() */
143 	struct bio_list new_waiters;
144 	/* The list of waiters which have their permits */
145 	struct bio_list *permitted_waiters;
146 	/* The function for assigning a resource to a waiter */
147 	assigner_fn assigner;
148 	/* The queue of blocked threads */
149 	wait_queue_head_t blocked_threads;
150 	/* The arrival time of the eldest waiter */
151 	u64 arrival;
152 };
153 
154 /*
155  * A data_vio_pool is a collection of preallocated data_vios which may be acquired from any thread,
156  * and are released in batches.
157  */
158 struct data_vio_pool {
159 	/* Completion for scheduling releases */
160 	struct vdo_completion completion;
161 	/* The administrative state of the pool */
162 	struct admin_state state;
163 	/* Lock protecting the pool */
164 	spinlock_t lock;
165 	/* The main limiter controlling the total data_vios in the pool. */
166 	struct limiter limiter;
167 	/* The limiter controlling data_vios for discard */
168 	struct limiter discard_limiter;
169 	/* The list of bios which have discard permits but still need a data_vio */
170 	struct bio_list permitted_discards;
171 	/* The list of available data_vios */
172 	struct list_head available;
173 	/* The queue of data_vios waiting to be returned to the pool */
174 	struct funnel_queue *queue;
175 	/* Whether the pool is processing, or scheduled to process releases */
176 	atomic_t processing;
177 	/* The data vios in the pool */
178 	struct data_vio data_vios[];
179 };
180 
181 static const char * const ASYNC_OPERATION_NAMES[] = {
182 	"launch",
183 	"acknowledge_write",
184 	"acquire_hash_lock",
185 	"attempt_logical_block_lock",
186 	"lock_duplicate_pbn",
187 	"check_for_duplication",
188 	"cleanup",
189 	"compress_data_vio",
190 	"find_block_map_slot",
191 	"get_mapped_block_for_read",
192 	"get_mapped_block_for_write",
193 	"hash_data_vio",
194 	"journal_remapping",
195 	"vdo_attempt_packing",
196 	"put_mapped_block",
197 	"read_data_vio",
198 	"update_dedupe_index",
199 	"update_reference_counts",
200 	"verify_duplication",
201 	"write_data_vio",
202 };
203 
204 /* The steps taken cleaning up a VIO, in the order they are performed. */
205 enum data_vio_cleanup_stage {
206 	VIO_CLEANUP_START,
207 	VIO_RELEASE_HASH_LOCK = VIO_CLEANUP_START,
208 	VIO_RELEASE_ALLOCATED,
209 	VIO_RELEASE_RECOVERY_LOCKS,
210 	VIO_RELEASE_LOGICAL,
211 	VIO_CLEANUP_DONE
212 };
213 
214 static inline struct data_vio_pool * __must_check
215 as_data_vio_pool(struct vdo_completion *completion)
216 {
217 	vdo_assert_completion_type(completion, VDO_DATA_VIO_POOL_COMPLETION);
218 	return container_of(completion, struct data_vio_pool, completion);
219 }
220 
221 static inline u64 get_arrival_time(struct bio *bio)
222 {
223 	return (u64) bio->bi_private;
224 }
225 
226 /**
227  * check_for_drain_complete_locked() - Check whether a data_vio_pool has no outstanding data_vios
228  *				       or waiters while holding the pool's lock.
229  */
230 static bool check_for_drain_complete_locked(struct data_vio_pool *pool)
231 {
232 	if (pool->limiter.busy > 0)
233 		return false;
234 
235 	VDO_ASSERT_LOG_ONLY((pool->discard_limiter.busy == 0),
236 			    "no outstanding discard permits");
237 
238 	return (bio_list_empty(&pool->limiter.new_waiters) &&
239 		bio_list_empty(&pool->discard_limiter.new_waiters));
240 }
241 
242 static void initialize_lbn_lock(struct data_vio *data_vio, logical_block_number_t lbn)
243 {
244 	struct vdo *vdo = vdo_from_data_vio(data_vio);
245 	zone_count_t zone_number;
246 	struct lbn_lock *lock = &data_vio->logical;
247 
248 	lock->lbn = lbn;
249 	lock->locked = false;
250 	vdo_waitq_init(&lock->waiters);
251 	zone_number = vdo_compute_logical_zone(data_vio);
252 	lock->zone = &vdo->logical_zones->zones[zone_number];
253 }
254 
255 static void launch_locked_request(struct data_vio *data_vio)
256 {
257 	data_vio->logical.locked = true;
258 	if (data_vio->write) {
259 		struct vdo *vdo = vdo_from_data_vio(data_vio);
260 
261 		if (vdo_is_read_only(vdo)) {
262 			continue_data_vio_with_error(data_vio, VDO_READ_ONLY);
263 			return;
264 		}
265 	}
266 
267 	data_vio->last_async_operation = VIO_ASYNC_OP_FIND_BLOCK_MAP_SLOT;
268 	vdo_find_block_map_slot(data_vio);
269 }
270 
271 static void acknowledge_data_vio(struct data_vio *data_vio)
272 {
273 	struct vdo *vdo = vdo_from_data_vio(data_vio);
274 	struct bio *bio = data_vio->user_bio;
275 	int error = vdo_status_to_errno(data_vio->vio.completion.result);
276 
277 	if (bio == NULL)
278 		return;
279 
280 	VDO_ASSERT_LOG_ONLY((data_vio->remaining_discard <=
281 			     (u32) (VDO_BLOCK_SIZE - data_vio->offset)),
282 			    "data_vio to acknowledge is not an incomplete discard");
283 
284 	data_vio->user_bio = NULL;
285 	vdo_count_bios(&vdo->stats.bios_acknowledged, bio);
286 	if (data_vio->is_partial)
287 		vdo_count_bios(&vdo->stats.bios_acknowledged_partial, bio);
288 
289 	bio->bi_status = errno_to_blk_status(error);
290 	bio_endio(bio);
291 }
292 
293 static void copy_to_bio(struct bio *bio, char *data_ptr)
294 {
295 	struct bio_vec biovec;
296 	struct bvec_iter iter;
297 
298 	bio_for_each_segment(biovec, bio, iter) {
299 		memcpy_to_bvec(&biovec, data_ptr);
300 		data_ptr += biovec.bv_len;
301 	}
302 }
303 
304 struct data_vio_compression_status get_data_vio_compression_status(struct data_vio *data_vio)
305 {
306 	u32 packed = atomic_read(&data_vio->compression.status);
307 
308 	/* pairs with cmpxchg in set_data_vio_compression_status */
309 	smp_rmb();
310 	return (struct data_vio_compression_status) {
311 		.stage = packed & COMPRESSION_STATUS_MASK,
312 		.may_not_compress = ((packed & MAY_NOT_COMPRESS_MASK) != 0),
313 	};
314 }
315 
316 /**
317  * pack_status() - Convert a data_vio_compression_status into a u32 which may be stored
318  *                 atomically.
319  * @status: The state to convert.
320  *
321  * Return: The compression state packed into a u32.
322  */
323 static u32 __must_check pack_status(struct data_vio_compression_status status)
324 {
325 	return status.stage | (status.may_not_compress ? MAY_NOT_COMPRESS_MASK : 0);
326 }
327 
328 /**
329  * set_data_vio_compression_status() - Set the compression status of a data_vio.
330  * @data_vio: The data_vio to change.
331  * @status: The expected current status of the data_vio.
332  * @new_status: The status to set.
333  *
334  * Return: true if the new status was set, false if the data_vio's compression status did not
335  *         match the expected state, and so was left unchanged.
336  */
337 static bool __must_check
338 set_data_vio_compression_status(struct data_vio *data_vio,
339 				struct data_vio_compression_status status,
340 				struct data_vio_compression_status new_status)
341 {
342 	u32 actual;
343 	u32 expected = pack_status(status);
344 	u32 replacement = pack_status(new_status);
345 
346 	/*
347 	 * Extra barriers because this was original developed using a CAS operation that implicitly
348 	 * had them.
349 	 */
350 	smp_mb__before_atomic();
351 	actual = atomic_cmpxchg(&data_vio->compression.status, expected, replacement);
352 	/* same as before_atomic */
353 	smp_mb__after_atomic();
354 	return (expected == actual);
355 }
356 
357 struct data_vio_compression_status advance_data_vio_compression_stage(struct data_vio *data_vio)
358 {
359 	for (;;) {
360 		struct data_vio_compression_status status =
361 			get_data_vio_compression_status(data_vio);
362 		struct data_vio_compression_status new_status = status;
363 
364 		if (status.stage == DATA_VIO_POST_PACKER) {
365 			/* We're already in the last stage. */
366 			return status;
367 		}
368 
369 		if (status.may_not_compress) {
370 			/*
371 			 * Compression has been dis-allowed for this VIO, so skip the rest of the
372 			 * path and go to the end.
373 			 */
374 			new_status.stage = DATA_VIO_POST_PACKER;
375 		} else {
376 			/* Go to the next state. */
377 			new_status.stage++;
378 		}
379 
380 		if (set_data_vio_compression_status(data_vio, status, new_status))
381 			return new_status;
382 
383 		/* Another thread changed the status out from under us so try again. */
384 	}
385 }
386 
387 /**
388  * cancel_data_vio_compression() - Prevent this data_vio from being compressed or packed.
389  *
390  * Return: true if the data_vio is in the packer and the caller was the first caller to cancel it.
391  */
392 bool cancel_data_vio_compression(struct data_vio *data_vio)
393 {
394 	struct data_vio_compression_status status, new_status;
395 
396 	for (;;) {
397 		status = get_data_vio_compression_status(data_vio);
398 		if (status.may_not_compress || (status.stage == DATA_VIO_POST_PACKER)) {
399 			/* This data_vio is already set up to not block in the packer. */
400 			break;
401 		}
402 
403 		new_status.stage = status.stage;
404 		new_status.may_not_compress = true;
405 
406 		if (set_data_vio_compression_status(data_vio, status, new_status))
407 			break;
408 	}
409 
410 	return ((status.stage == DATA_VIO_PACKING) && !status.may_not_compress);
411 }
412 
413 /**
414  * attempt_logical_block_lock() - Attempt to acquire the lock on a logical block.
415  * @completion: The data_vio for an external data request as a completion.
416  *
417  * This is the start of the path for all external requests. It is registered in launch_data_vio().
418  */
419 static void attempt_logical_block_lock(struct vdo_completion *completion)
420 {
421 	struct data_vio *data_vio = as_data_vio(completion);
422 	struct lbn_lock *lock = &data_vio->logical;
423 	struct vdo *vdo = vdo_from_data_vio(data_vio);
424 	struct data_vio *lock_holder;
425 	int result;
426 
427 	assert_data_vio_in_logical_zone(data_vio);
428 
429 	if (data_vio->logical.lbn >= vdo->states.vdo.config.logical_blocks) {
430 		continue_data_vio_with_error(data_vio, VDO_OUT_OF_RANGE);
431 		return;
432 	}
433 
434 	result = vdo_int_map_put(lock->zone->lbn_operations, lock->lbn,
435 				 data_vio, false, (void **) &lock_holder);
436 	if (result != VDO_SUCCESS) {
437 		continue_data_vio_with_error(data_vio, result);
438 		return;
439 	}
440 
441 	if (lock_holder == NULL) {
442 		/* We got the lock */
443 		launch_locked_request(data_vio);
444 		return;
445 	}
446 
447 	result = VDO_ASSERT(lock_holder->logical.locked, "logical block lock held");
448 	if (result != VDO_SUCCESS) {
449 		continue_data_vio_with_error(data_vio, result);
450 		return;
451 	}
452 
453 	/*
454 	 * If the new request is a pure read request (not read-modify-write) and the lock_holder is
455 	 * writing and has received an allocation, service the read request immediately by copying
456 	 * data from the lock_holder to avoid having to flush the write out of the packer just to
457 	 * prevent the read from waiting indefinitely. If the lock_holder does not yet have an
458 	 * allocation, prevent it from blocking in the packer and wait on it. This is necessary in
459 	 * order to prevent returning data that may not have actually been written.
460 	 */
461 	if (!data_vio->write && READ_ONCE(lock_holder->allocation_succeeded)) {
462 		copy_to_bio(data_vio->user_bio, lock_holder->vio.data + data_vio->offset);
463 		acknowledge_data_vio(data_vio);
464 		complete_data_vio(completion);
465 		return;
466 	}
467 
468 	data_vio->last_async_operation = VIO_ASYNC_OP_ATTEMPT_LOGICAL_BLOCK_LOCK;
469 	vdo_waitq_enqueue_waiter(&lock_holder->logical.waiters, &data_vio->waiter);
470 
471 	/*
472 	 * Prevent writes and read-modify-writes from blocking indefinitely on lock holders in the
473 	 * packer.
474 	 */
475 	if (lock_holder->write && cancel_data_vio_compression(lock_holder)) {
476 		data_vio->compression.lock_holder = lock_holder;
477 		launch_data_vio_packer_callback(data_vio,
478 						vdo_remove_lock_holder_from_packer);
479 	}
480 }
481 
482 /**
483  * launch_data_vio() - (Re)initialize a data_vio to have a new logical block number, keeping the
484  *		       same parent and other state and send it on its way.
485  */
486 static void launch_data_vio(struct data_vio *data_vio, logical_block_number_t lbn)
487 {
488 	struct vdo_completion *completion = &data_vio->vio.completion;
489 
490 	/*
491 	 * Clearing the tree lock must happen before initializing the LBN lock, which also adds
492 	 * information to the tree lock.
493 	 */
494 	memset(&data_vio->tree_lock, 0, sizeof(data_vio->tree_lock));
495 	initialize_lbn_lock(data_vio, lbn);
496 	INIT_LIST_HEAD(&data_vio->hash_lock_entry);
497 	INIT_LIST_HEAD(&data_vio->write_entry);
498 
499 	memset(&data_vio->allocation, 0, sizeof(data_vio->allocation));
500 
501 	data_vio->is_duplicate = false;
502 
503 	memset(&data_vio->record_name, 0, sizeof(data_vio->record_name));
504 	memset(&data_vio->duplicate, 0, sizeof(data_vio->duplicate));
505 	vdo_reset_completion(&data_vio->decrement_completion);
506 	vdo_reset_completion(completion);
507 	completion->error_handler = handle_data_vio_error;
508 	set_data_vio_logical_callback(data_vio, attempt_logical_block_lock);
509 	vdo_enqueue_completion(completion, VDO_DEFAULT_Q_MAP_BIO_PRIORITY);
510 }
511 
512 static bool is_zero_block(char *block)
513 {
514 	int i;
515 
516 	for (i = 0; i < VDO_BLOCK_SIZE; i += sizeof(u64)) {
517 		if (*((u64 *) &block[i]))
518 			return false;
519 	}
520 
521 	return true;
522 }
523 
524 static void copy_from_bio(struct bio *bio, char *data_ptr)
525 {
526 	struct bio_vec biovec;
527 	struct bvec_iter iter;
528 
529 	bio_for_each_segment(biovec, bio, iter) {
530 		memcpy_from_bvec(data_ptr, &biovec);
531 		data_ptr += biovec.bv_len;
532 	}
533 }
534 
535 static void launch_bio(struct vdo *vdo, struct data_vio *data_vio, struct bio *bio)
536 {
537 	logical_block_number_t lbn;
538 	/*
539 	 * Zero out the fields which don't need to be preserved (i.e. which are not pointers to
540 	 * separately allocated objects).
541 	 */
542 	memset(data_vio, 0, offsetof(struct data_vio, vio));
543 	memset(&data_vio->compression, 0, offsetof(struct compression_state, block));
544 
545 	data_vio->user_bio = bio;
546 	data_vio->offset = to_bytes(bio->bi_iter.bi_sector & VDO_SECTORS_PER_BLOCK_MASK);
547 	data_vio->is_partial = (bio->bi_iter.bi_size < VDO_BLOCK_SIZE) || (data_vio->offset != 0);
548 
549 	/*
550 	 * Discards behave very differently than other requests when coming in from device-mapper.
551 	 * We have to be able to handle any size discards and various sector offsets within a
552 	 * block.
553 	 */
554 	if (bio_op(bio) == REQ_OP_DISCARD) {
555 		data_vio->remaining_discard = bio->bi_iter.bi_size;
556 		data_vio->write = true;
557 		data_vio->is_discard = true;
558 		if (data_vio->is_partial) {
559 			vdo_count_bios(&vdo->stats.bios_in_partial, bio);
560 			data_vio->read = true;
561 		}
562 	} else if (data_vio->is_partial) {
563 		vdo_count_bios(&vdo->stats.bios_in_partial, bio);
564 		data_vio->read = true;
565 		if (bio_data_dir(bio) == WRITE)
566 			data_vio->write = true;
567 	} else if (bio_data_dir(bio) == READ) {
568 		data_vio->read = true;
569 	} else {
570 		/*
571 		 * Copy the bio data to a char array so that we can continue to use the data after
572 		 * we acknowledge the bio.
573 		 */
574 		copy_from_bio(bio, data_vio->vio.data);
575 		data_vio->is_zero = is_zero_block(data_vio->vio.data);
576 		data_vio->write = true;
577 	}
578 
579 	if (data_vio->user_bio->bi_opf & REQ_FUA)
580 		data_vio->fua = true;
581 
582 	lbn = (bio->bi_iter.bi_sector - vdo->starting_sector_offset) / VDO_SECTORS_PER_BLOCK;
583 	launch_data_vio(data_vio, lbn);
584 }
585 
586 static void assign_data_vio(struct limiter *limiter, struct data_vio *data_vio)
587 {
588 	struct bio *bio = bio_list_pop(limiter->permitted_waiters);
589 
590 	launch_bio(limiter->pool->completion.vdo, data_vio, bio);
591 	limiter->wake_count++;
592 
593 	bio = bio_list_peek(limiter->permitted_waiters);
594 	limiter->arrival = ((bio == NULL) ? U64_MAX : get_arrival_time(bio));
595 }
596 
597 static void assign_discard_permit(struct limiter *limiter)
598 {
599 	struct bio *bio = bio_list_pop(&limiter->waiters);
600 
601 	if (limiter->arrival == U64_MAX)
602 		limiter->arrival = get_arrival_time(bio);
603 
604 	bio_list_add(limiter->permitted_waiters, bio);
605 }
606 
607 static void get_waiters(struct limiter *limiter)
608 {
609 	bio_list_merge_init(&limiter->waiters, &limiter->new_waiters);
610 }
611 
612 static inline struct data_vio *get_available_data_vio(struct data_vio_pool *pool)
613 {
614 	struct data_vio *data_vio =
615 		list_first_entry(&pool->available, struct data_vio, pool_entry);
616 
617 	list_del_init(&data_vio->pool_entry);
618 	return data_vio;
619 }
620 
621 static void assign_data_vio_to_waiter(struct limiter *limiter)
622 {
623 	assign_data_vio(limiter, get_available_data_vio(limiter->pool));
624 }
625 
626 static void update_limiter(struct limiter *limiter)
627 {
628 	struct bio_list *waiters = &limiter->waiters;
629 	data_vio_count_t available = limiter->limit - limiter->busy;
630 
631 	VDO_ASSERT_LOG_ONLY((limiter->release_count <= limiter->busy),
632 			    "Release count %u is not more than busy count %u",
633 			    limiter->release_count, limiter->busy);
634 
635 	get_waiters(limiter);
636 	for (; (limiter->release_count > 0) && !bio_list_empty(waiters); limiter->release_count--)
637 		limiter->assigner(limiter);
638 
639 	if (limiter->release_count > 0) {
640 		WRITE_ONCE(limiter->busy, limiter->busy - limiter->release_count);
641 		limiter->release_count = 0;
642 		return;
643 	}
644 
645 	for (; (available > 0) && !bio_list_empty(waiters); available--)
646 		limiter->assigner(limiter);
647 
648 	WRITE_ONCE(limiter->busy, limiter->limit - available);
649 	if (limiter->max_busy < limiter->busy)
650 		WRITE_ONCE(limiter->max_busy, limiter->busy);
651 }
652 
653 /**
654  * schedule_releases() - Ensure that release processing is scheduled.
655  *
656  * If this call switches the state to processing, enqueue. Otherwise, some other thread has already
657  * done so.
658  */
659 static void schedule_releases(struct data_vio_pool *pool)
660 {
661 	/* Pairs with the barrier in process_release_callback(). */
662 	smp_mb__before_atomic();
663 	if (atomic_cmpxchg(&pool->processing, false, true))
664 		return;
665 
666 	pool->completion.requeue = true;
667 	vdo_launch_completion_with_priority(&pool->completion,
668 					    CPU_Q_COMPLETE_VIO_PRIORITY);
669 }
670 
671 static void reuse_or_release_resources(struct data_vio_pool *pool,
672 				       struct data_vio *data_vio,
673 				       struct list_head *returned)
674 {
675 	if (data_vio->remaining_discard > 0) {
676 		if (bio_list_empty(&pool->discard_limiter.waiters)) {
677 			/* Return the data_vio's discard permit. */
678 			pool->discard_limiter.release_count++;
679 		} else {
680 			assign_discard_permit(&pool->discard_limiter);
681 		}
682 	}
683 
684 	if (pool->limiter.arrival < pool->discard_limiter.arrival) {
685 		assign_data_vio(&pool->limiter, data_vio);
686 	} else if (pool->discard_limiter.arrival < U64_MAX) {
687 		assign_data_vio(&pool->discard_limiter, data_vio);
688 	} else {
689 		list_add(&data_vio->pool_entry, returned);
690 		pool->limiter.release_count++;
691 	}
692 }
693 
694 /**
695  * process_release_callback() - Process a batch of data_vio releases.
696  * @completion: The pool with data_vios to release.
697  */
698 static void process_release_callback(struct vdo_completion *completion)
699 {
700 	struct data_vio_pool *pool = as_data_vio_pool(completion);
701 	bool reschedule;
702 	bool drained;
703 	data_vio_count_t processed;
704 	data_vio_count_t to_wake;
705 	data_vio_count_t discards_to_wake;
706 	LIST_HEAD(returned);
707 
708 	spin_lock(&pool->lock);
709 	get_waiters(&pool->discard_limiter);
710 	get_waiters(&pool->limiter);
711 	spin_unlock(&pool->lock);
712 
713 	if (pool->limiter.arrival == U64_MAX) {
714 		struct bio *bio = bio_list_peek(&pool->limiter.waiters);
715 
716 		if (bio != NULL)
717 			pool->limiter.arrival = get_arrival_time(bio);
718 	}
719 
720 	for (processed = 0; processed < DATA_VIO_RELEASE_BATCH_SIZE; processed++) {
721 		struct data_vio *data_vio;
722 		struct funnel_queue_entry *entry = vdo_funnel_queue_poll(pool->queue);
723 
724 		if (entry == NULL)
725 			break;
726 
727 		data_vio = as_data_vio(container_of(entry, struct vdo_completion,
728 						    work_queue_entry_link));
729 		acknowledge_data_vio(data_vio);
730 		reuse_or_release_resources(pool, data_vio, &returned);
731 	}
732 
733 	spin_lock(&pool->lock);
734 	/*
735 	 * There is a race where waiters could be added while we are in the unlocked section above.
736 	 * Those waiters could not see the resources we are now about to release, so we assign
737 	 * those resources now as we have no guarantee of being rescheduled. This is handled in
738 	 * update_limiter().
739 	 */
740 	update_limiter(&pool->discard_limiter);
741 	list_splice(&returned, &pool->available);
742 	update_limiter(&pool->limiter);
743 	to_wake = pool->limiter.wake_count;
744 	pool->limiter.wake_count = 0;
745 	discards_to_wake = pool->discard_limiter.wake_count;
746 	pool->discard_limiter.wake_count = 0;
747 
748 	atomic_set(&pool->processing, false);
749 	/* Pairs with the barrier in schedule_releases(). */
750 	smp_mb();
751 
752 	reschedule = !vdo_is_funnel_queue_empty(pool->queue);
753 	drained = (!reschedule &&
754 		   vdo_is_state_draining(&pool->state) &&
755 		   check_for_drain_complete_locked(pool));
756 	spin_unlock(&pool->lock);
757 
758 	if (to_wake > 0)
759 		wake_up_nr(&pool->limiter.blocked_threads, to_wake);
760 
761 	if (discards_to_wake > 0)
762 		wake_up_nr(&pool->discard_limiter.blocked_threads, discards_to_wake);
763 
764 	if (reschedule)
765 		schedule_releases(pool);
766 	else if (drained)
767 		vdo_finish_draining(&pool->state);
768 }
769 
770 static void initialize_limiter(struct limiter *limiter, struct data_vio_pool *pool,
771 			       assigner_fn assigner, data_vio_count_t limit)
772 {
773 	limiter->pool = pool;
774 	limiter->assigner = assigner;
775 	limiter->limit = limit;
776 	limiter->arrival = U64_MAX;
777 	init_waitqueue_head(&limiter->blocked_threads);
778 }
779 
780 /**
781  * initialize_data_vio() - Allocate the components of a data_vio.
782  *
783  * The caller is responsible for cleaning up the data_vio on error.
784  *
785  * Return: VDO_SUCCESS or an error.
786  */
787 static int initialize_data_vio(struct data_vio *data_vio, struct vdo *vdo)
788 {
789 	struct bio *bio;
790 	int result;
791 
792 	BUILD_BUG_ON(VDO_BLOCK_SIZE > PAGE_SIZE);
793 	result = vdo_allocate_memory(VDO_BLOCK_SIZE, 0, "data_vio data",
794 				     &data_vio->vio.data);
795 	if (result != VDO_SUCCESS)
796 		return vdo_log_error_strerror(result,
797 					      "data_vio data allocation failure");
798 
799 	result = vdo_allocate_memory(VDO_BLOCK_SIZE, 0, "compressed block",
800 				     &data_vio->compression.block);
801 	if (result != VDO_SUCCESS) {
802 		return vdo_log_error_strerror(result,
803 					      "data_vio compressed block allocation failure");
804 	}
805 
806 	result = vdo_allocate_memory(VDO_BLOCK_SIZE, 0, "vio scratch",
807 				     &data_vio->scratch_block);
808 	if (result != VDO_SUCCESS)
809 		return vdo_log_error_strerror(result,
810 					      "data_vio scratch allocation failure");
811 
812 	result = vdo_create_bio(&bio);
813 	if (result != VDO_SUCCESS)
814 		return vdo_log_error_strerror(result,
815 					      "data_vio data bio allocation failure");
816 
817 	vdo_initialize_completion(&data_vio->decrement_completion, vdo,
818 				  VDO_DECREMENT_COMPLETION);
819 	initialize_vio(&data_vio->vio, bio, 1, VIO_TYPE_DATA, VIO_PRIORITY_DATA, vdo);
820 
821 	return VDO_SUCCESS;
822 }
823 
824 static void destroy_data_vio(struct data_vio *data_vio)
825 {
826 	if (data_vio == NULL)
827 		return;
828 
829 	vdo_free_bio(vdo_forget(data_vio->vio.bio));
830 	vdo_free(vdo_forget(data_vio->vio.data));
831 	vdo_free(vdo_forget(data_vio->compression.block));
832 	vdo_free(vdo_forget(data_vio->scratch_block));
833 }
834 
835 /**
836  * make_data_vio_pool() - Initialize a data_vio pool.
837  * @vdo: The vdo to which the pool will belong.
838  * @pool_size: The number of data_vios in the pool.
839  * @discard_limit: The maximum number of data_vios which may be used for discards.
840  * @pool_ptr: A pointer to hold the newly allocated pool.
841  */
842 int make_data_vio_pool(struct vdo *vdo, data_vio_count_t pool_size,
843 		       data_vio_count_t discard_limit, struct data_vio_pool **pool_ptr)
844 {
845 	int result;
846 	struct data_vio_pool *pool;
847 	data_vio_count_t i;
848 
849 	result = vdo_allocate_extended(struct data_vio_pool, pool_size, struct data_vio,
850 				       __func__, &pool);
851 	if (result != VDO_SUCCESS)
852 		return result;
853 
854 	VDO_ASSERT_LOG_ONLY((discard_limit <= pool_size),
855 			    "discard limit does not exceed pool size");
856 	initialize_limiter(&pool->discard_limiter, pool, assign_discard_permit,
857 			   discard_limit);
858 	pool->discard_limiter.permitted_waiters = &pool->permitted_discards;
859 	initialize_limiter(&pool->limiter, pool, assign_data_vio_to_waiter, pool_size);
860 	pool->limiter.permitted_waiters = &pool->limiter.waiters;
861 	INIT_LIST_HEAD(&pool->available);
862 	spin_lock_init(&pool->lock);
863 	vdo_set_admin_state_code(&pool->state, VDO_ADMIN_STATE_NORMAL_OPERATION);
864 	vdo_initialize_completion(&pool->completion, vdo, VDO_DATA_VIO_POOL_COMPLETION);
865 	vdo_prepare_completion(&pool->completion, process_release_callback,
866 			       process_release_callback, vdo->thread_config.cpu_thread,
867 			       NULL);
868 
869 	result = vdo_make_funnel_queue(&pool->queue);
870 	if (result != VDO_SUCCESS) {
871 		free_data_vio_pool(vdo_forget(pool));
872 		return result;
873 	}
874 
875 	for (i = 0; i < pool_size; i++) {
876 		struct data_vio *data_vio = &pool->data_vios[i];
877 
878 		result = initialize_data_vio(data_vio, vdo);
879 		if (result != VDO_SUCCESS) {
880 			destroy_data_vio(data_vio);
881 			free_data_vio_pool(pool);
882 			return result;
883 		}
884 
885 		list_add(&data_vio->pool_entry, &pool->available);
886 	}
887 
888 	*pool_ptr = pool;
889 	return VDO_SUCCESS;
890 }
891 
892 /**
893  * free_data_vio_pool() - Free a data_vio_pool and the data_vios in it.
894  *
895  * All data_vios must be returned to the pool before calling this function.
896  */
897 void free_data_vio_pool(struct data_vio_pool *pool)
898 {
899 	struct data_vio *data_vio, *tmp;
900 
901 	if (pool == NULL)
902 		return;
903 
904 	/*
905 	 * Pairs with the barrier in process_release_callback(). Possibly not needed since it
906 	 * caters to an enqueue vs. free race.
907 	 */
908 	smp_mb();
909 	BUG_ON(atomic_read(&pool->processing));
910 
911 	spin_lock(&pool->lock);
912 	VDO_ASSERT_LOG_ONLY((pool->limiter.busy == 0),
913 			    "data_vio pool must not have %u busy entries when being freed",
914 			    pool->limiter.busy);
915 	VDO_ASSERT_LOG_ONLY((bio_list_empty(&pool->limiter.waiters) &&
916 			     bio_list_empty(&pool->limiter.new_waiters)),
917 			    "data_vio pool must not have threads waiting to read or write when being freed");
918 	VDO_ASSERT_LOG_ONLY((bio_list_empty(&pool->discard_limiter.waiters) &&
919 			     bio_list_empty(&pool->discard_limiter.new_waiters)),
920 			    "data_vio pool must not have threads waiting to discard when being freed");
921 	spin_unlock(&pool->lock);
922 
923 	list_for_each_entry_safe(data_vio, tmp, &pool->available, pool_entry) {
924 		list_del_init(&data_vio->pool_entry);
925 		destroy_data_vio(data_vio);
926 	}
927 
928 	vdo_free_funnel_queue(vdo_forget(pool->queue));
929 	vdo_free(pool);
930 }
931 
932 static bool acquire_permit(struct limiter *limiter)
933 {
934 	if (limiter->busy >= limiter->limit)
935 		return false;
936 
937 	WRITE_ONCE(limiter->busy, limiter->busy + 1);
938 	if (limiter->max_busy < limiter->busy)
939 		WRITE_ONCE(limiter->max_busy, limiter->busy);
940 	return true;
941 }
942 
943 static void wait_permit(struct limiter *limiter, struct bio *bio)
944 	__releases(&limiter->pool->lock)
945 {
946 	DEFINE_WAIT(wait);
947 
948 	bio_list_add(&limiter->new_waiters, bio);
949 	prepare_to_wait_exclusive(&limiter->blocked_threads, &wait,
950 				  TASK_UNINTERRUPTIBLE);
951 	spin_unlock(&limiter->pool->lock);
952 	io_schedule();
953 	finish_wait(&limiter->blocked_threads, &wait);
954 }
955 
956 /**
957  * vdo_launch_bio() - Acquire a data_vio from the pool, assign the bio to it, and launch it.
958  *
959  * This will block if data_vios or discard permits are not available.
960  */
961 void vdo_launch_bio(struct data_vio_pool *pool, struct bio *bio)
962 {
963 	struct data_vio *data_vio;
964 
965 	VDO_ASSERT_LOG_ONLY(!vdo_is_state_quiescent(&pool->state),
966 			    "data_vio_pool not quiescent on acquire");
967 
968 	bio->bi_private = (void *) jiffies;
969 	spin_lock(&pool->lock);
970 	if ((bio_op(bio) == REQ_OP_DISCARD) &&
971 	    !acquire_permit(&pool->discard_limiter)) {
972 		wait_permit(&pool->discard_limiter, bio);
973 		return;
974 	}
975 
976 	if (!acquire_permit(&pool->limiter)) {
977 		wait_permit(&pool->limiter, bio);
978 		return;
979 	}
980 
981 	data_vio = get_available_data_vio(pool);
982 	spin_unlock(&pool->lock);
983 	launch_bio(pool->completion.vdo, data_vio, bio);
984 }
985 
986 /* Implements vdo_admin_initiator_fn. */
987 static void initiate_drain(struct admin_state *state)
988 {
989 	bool drained;
990 	struct data_vio_pool *pool = container_of(state, struct data_vio_pool, state);
991 
992 	spin_lock(&pool->lock);
993 	drained = check_for_drain_complete_locked(pool);
994 	spin_unlock(&pool->lock);
995 
996 	if (drained)
997 		vdo_finish_draining(state);
998 }
999 
1000 static void assert_on_vdo_cpu_thread(const struct vdo *vdo, const char *name)
1001 {
1002 	VDO_ASSERT_LOG_ONLY((vdo_get_callback_thread_id() == vdo->thread_config.cpu_thread),
1003 			    "%s called on cpu thread", name);
1004 }
1005 
1006 /**
1007  * drain_data_vio_pool() - Wait asynchronously for all data_vios to be returned to the pool.
1008  * @completion: The completion to notify when the pool has drained.
1009  */
1010 void drain_data_vio_pool(struct data_vio_pool *pool, struct vdo_completion *completion)
1011 {
1012 	assert_on_vdo_cpu_thread(completion->vdo, __func__);
1013 	vdo_start_draining(&pool->state, VDO_ADMIN_STATE_SUSPENDING, completion,
1014 			   initiate_drain);
1015 }
1016 
1017 /**
1018  * resume_data_vio_pool() - Resume a data_vio pool.
1019  * @completion: The completion to notify when the pool has resumed.
1020  */
1021 void resume_data_vio_pool(struct data_vio_pool *pool, struct vdo_completion *completion)
1022 {
1023 	assert_on_vdo_cpu_thread(completion->vdo, __func__);
1024 	vdo_continue_completion(completion, vdo_resume_if_quiescent(&pool->state));
1025 }
1026 
1027 static void dump_limiter(const char *name, struct limiter *limiter)
1028 {
1029 	vdo_log_info("%s: %u of %u busy (max %u), %s", name, limiter->busy,
1030 		     limiter->limit, limiter->max_busy,
1031 		     ((bio_list_empty(&limiter->waiters) &&
1032 		       bio_list_empty(&limiter->new_waiters)) ?
1033 		      "no waiters" : "has waiters"));
1034 }
1035 
1036 /**
1037  * dump_data_vio_pool() - Dump a data_vio pool to the log.
1038  * @dump_vios: Whether to dump the details of each busy data_vio as well.
1039  */
1040 void dump_data_vio_pool(struct data_vio_pool *pool, bool dump_vios)
1041 {
1042 	/*
1043 	 * In order that syslog can empty its buffer, sleep after 35 elements for 4ms (till the
1044 	 * second clock tick).  These numbers were picked based on experiments with lab machines.
1045 	 */
1046 	static const int ELEMENTS_PER_BATCH = 35;
1047 	static const int SLEEP_FOR_SYSLOG = 4000;
1048 
1049 	if (pool == NULL)
1050 		return;
1051 
1052 	spin_lock(&pool->lock);
1053 	dump_limiter("data_vios", &pool->limiter);
1054 	dump_limiter("discard permits", &pool->discard_limiter);
1055 	if (dump_vios) {
1056 		int i;
1057 		int dumped = 0;
1058 
1059 		for (i = 0; i < pool->limiter.limit; i++) {
1060 			struct data_vio *data_vio = &pool->data_vios[i];
1061 
1062 			if (!list_empty(&data_vio->pool_entry))
1063 				continue;
1064 
1065 			dump_data_vio(data_vio);
1066 			if (++dumped >= ELEMENTS_PER_BATCH) {
1067 				spin_unlock(&pool->lock);
1068 				dumped = 0;
1069 				fsleep(SLEEP_FOR_SYSLOG);
1070 				spin_lock(&pool->lock);
1071 			}
1072 		}
1073 	}
1074 
1075 	spin_unlock(&pool->lock);
1076 }
1077 
1078 data_vio_count_t get_data_vio_pool_active_requests(struct data_vio_pool *pool)
1079 {
1080 	return READ_ONCE(pool->limiter.busy);
1081 }
1082 
1083 data_vio_count_t get_data_vio_pool_request_limit(struct data_vio_pool *pool)
1084 {
1085 	return READ_ONCE(pool->limiter.limit);
1086 }
1087 
1088 data_vio_count_t get_data_vio_pool_maximum_requests(struct data_vio_pool *pool)
1089 {
1090 	return READ_ONCE(pool->limiter.max_busy);
1091 }
1092 
1093 static void update_data_vio_error_stats(struct data_vio *data_vio)
1094 {
1095 	u8 index = 0;
1096 	static const char * const operations[] = {
1097 		[0] = "empty",
1098 		[1] = "read",
1099 		[2] = "write",
1100 		[3] = "read-modify-write",
1101 		[5] = "read+fua",
1102 		[6] = "write+fua",
1103 		[7] = "read-modify-write+fua",
1104 	};
1105 
1106 	if (data_vio->read)
1107 		index = 1;
1108 
1109 	if (data_vio->write)
1110 		index += 2;
1111 
1112 	if (data_vio->fua)
1113 		index += 4;
1114 
1115 	update_vio_error_stats(&data_vio->vio,
1116 			       "Completing %s vio for LBN %llu with error after %s",
1117 			       operations[index],
1118 			       (unsigned long long) data_vio->logical.lbn,
1119 			       get_data_vio_operation_name(data_vio));
1120 }
1121 
1122 static void perform_cleanup_stage(struct data_vio *data_vio,
1123 				  enum data_vio_cleanup_stage stage);
1124 
1125 /**
1126  * release_allocated_lock() - Release the PBN lock and/or the reference on the allocated block at
1127  *			      the end of processing a data_vio.
1128  */
1129 static void release_allocated_lock(struct vdo_completion *completion)
1130 {
1131 	struct data_vio *data_vio = as_data_vio(completion);
1132 
1133 	assert_data_vio_in_allocated_zone(data_vio);
1134 	release_data_vio_allocation_lock(data_vio, false);
1135 	perform_cleanup_stage(data_vio, VIO_RELEASE_RECOVERY_LOCKS);
1136 }
1137 
1138 /** release_lock() - Release an uncontended LBN lock. */
1139 static void release_lock(struct data_vio *data_vio, struct lbn_lock *lock)
1140 {
1141 	struct int_map *lock_map = lock->zone->lbn_operations;
1142 	struct data_vio *lock_holder;
1143 
1144 	if (!lock->locked) {
1145 		/*  The lock is not locked, so it had better not be registered in the lock map. */
1146 		struct data_vio *lock_holder = vdo_int_map_get(lock_map, lock->lbn);
1147 
1148 		VDO_ASSERT_LOG_ONLY((data_vio != lock_holder),
1149 				    "no logical block lock held for block %llu",
1150 				    (unsigned long long) lock->lbn);
1151 		return;
1152 	}
1153 
1154 	/* Release the lock by removing the lock from the map. */
1155 	lock_holder = vdo_int_map_remove(lock_map, lock->lbn);
1156 	VDO_ASSERT_LOG_ONLY((data_vio == lock_holder),
1157 			    "logical block lock mismatch for block %llu",
1158 			    (unsigned long long) lock->lbn);
1159 	lock->locked = false;
1160 }
1161 
1162 /** transfer_lock() - Transfer a contended LBN lock to the eldest waiter. */
1163 static void transfer_lock(struct data_vio *data_vio, struct lbn_lock *lock)
1164 {
1165 	struct data_vio *lock_holder, *next_lock_holder;
1166 	int result;
1167 
1168 	VDO_ASSERT_LOG_ONLY(lock->locked, "lbn_lock with waiters is not locked");
1169 
1170 	/* Another data_vio is waiting for the lock, transfer it in a single lock map operation. */
1171 	next_lock_holder =
1172 		vdo_waiter_as_data_vio(vdo_waitq_dequeue_waiter(&lock->waiters));
1173 
1174 	/* Transfer the remaining lock waiters to the next lock holder. */
1175 	vdo_waitq_transfer_all_waiters(&lock->waiters,
1176 				       &next_lock_holder->logical.waiters);
1177 
1178 	result = vdo_int_map_put(lock->zone->lbn_operations, lock->lbn,
1179 				 next_lock_holder, true, (void **) &lock_holder);
1180 	if (result != VDO_SUCCESS) {
1181 		continue_data_vio_with_error(next_lock_holder, result);
1182 		return;
1183 	}
1184 
1185 	VDO_ASSERT_LOG_ONLY((lock_holder == data_vio),
1186 			    "logical block lock mismatch for block %llu",
1187 			    (unsigned long long) lock->lbn);
1188 	lock->locked = false;
1189 
1190 	/*
1191 	 * If there are still waiters, other data_vios must be trying to get the lock we just
1192 	 * transferred. We must ensure that the new lock holder doesn't block in the packer.
1193 	 */
1194 	if (vdo_waitq_has_waiters(&next_lock_holder->logical.waiters))
1195 		cancel_data_vio_compression(next_lock_holder);
1196 
1197 	/*
1198 	 * Avoid stack overflow on lock transfer.
1199 	 * FIXME: this is only an issue in the 1 thread config.
1200 	 */
1201 	next_lock_holder->vio.completion.requeue = true;
1202 	launch_locked_request(next_lock_holder);
1203 }
1204 
1205 /**
1206  * release_logical_lock() - Release the logical block lock and flush generation lock at the end of
1207  *			    processing a data_vio.
1208  */
1209 static void release_logical_lock(struct vdo_completion *completion)
1210 {
1211 	struct data_vio *data_vio = as_data_vio(completion);
1212 	struct lbn_lock *lock = &data_vio->logical;
1213 
1214 	assert_data_vio_in_logical_zone(data_vio);
1215 
1216 	if (vdo_waitq_has_waiters(&lock->waiters))
1217 		transfer_lock(data_vio, lock);
1218 	else
1219 		release_lock(data_vio, lock);
1220 
1221 	vdo_release_flush_generation_lock(data_vio);
1222 	perform_cleanup_stage(data_vio, VIO_CLEANUP_DONE);
1223 }
1224 
1225 /** clean_hash_lock() - Release the hash lock at the end of processing a data_vio. */
1226 static void clean_hash_lock(struct vdo_completion *completion)
1227 {
1228 	struct data_vio *data_vio = as_data_vio(completion);
1229 
1230 	assert_data_vio_in_hash_zone(data_vio);
1231 	if (completion->result != VDO_SUCCESS) {
1232 		vdo_clean_failed_hash_lock(data_vio);
1233 		return;
1234 	}
1235 
1236 	vdo_release_hash_lock(data_vio);
1237 	perform_cleanup_stage(data_vio, VIO_RELEASE_LOGICAL);
1238 }
1239 
1240 /**
1241  * finish_cleanup() - Make some assertions about a data_vio which has finished cleaning up.
1242  *
1243  * If it is part of a multi-block discard, starts on the next block, otherwise, returns it to the
1244  * pool.
1245  */
1246 static void finish_cleanup(struct data_vio *data_vio)
1247 {
1248 	struct vdo_completion *completion = &data_vio->vio.completion;
1249 	u32 discard_size = min_t(u32, data_vio->remaining_discard,
1250 				 VDO_BLOCK_SIZE - data_vio->offset);
1251 
1252 	VDO_ASSERT_LOG_ONLY(data_vio->allocation.lock == NULL,
1253 			    "complete data_vio has no allocation lock");
1254 	VDO_ASSERT_LOG_ONLY(data_vio->hash_lock == NULL,
1255 			    "complete data_vio has no hash lock");
1256 	if ((data_vio->remaining_discard <= discard_size) ||
1257 	    (completion->result != VDO_SUCCESS)) {
1258 		struct data_vio_pool *pool = completion->vdo->data_vio_pool;
1259 
1260 		vdo_funnel_queue_put(pool->queue, &completion->work_queue_entry_link);
1261 		schedule_releases(pool);
1262 		return;
1263 	}
1264 
1265 	data_vio->remaining_discard -= discard_size;
1266 	data_vio->is_partial = (data_vio->remaining_discard < VDO_BLOCK_SIZE);
1267 	data_vio->read = data_vio->is_partial;
1268 	data_vio->offset = 0;
1269 	completion->requeue = true;
1270 	data_vio->first_reference_operation_complete = false;
1271 	launch_data_vio(data_vio, data_vio->logical.lbn + 1);
1272 }
1273 
1274 /** perform_cleanup_stage() - Perform the next step in the process of cleaning up a data_vio. */
1275 static void perform_cleanup_stage(struct data_vio *data_vio,
1276 				  enum data_vio_cleanup_stage stage)
1277 {
1278 	struct vdo *vdo = vdo_from_data_vio(data_vio);
1279 
1280 	switch (stage) {
1281 	case VIO_RELEASE_HASH_LOCK:
1282 		if (data_vio->hash_lock != NULL) {
1283 			launch_data_vio_hash_zone_callback(data_vio, clean_hash_lock);
1284 			return;
1285 		}
1286 		fallthrough;
1287 
1288 	case VIO_RELEASE_ALLOCATED:
1289 		if (data_vio_has_allocation(data_vio)) {
1290 			launch_data_vio_allocated_zone_callback(data_vio,
1291 								release_allocated_lock);
1292 			return;
1293 		}
1294 		fallthrough;
1295 
1296 	case VIO_RELEASE_RECOVERY_LOCKS:
1297 		if ((data_vio->recovery_sequence_number > 0) &&
1298 		    (READ_ONCE(vdo->read_only_notifier.read_only_error) == VDO_SUCCESS) &&
1299 		    (data_vio->vio.completion.result != VDO_READ_ONLY))
1300 			vdo_log_warning("VDO not read-only when cleaning data_vio with RJ lock");
1301 		fallthrough;
1302 
1303 	case VIO_RELEASE_LOGICAL:
1304 		launch_data_vio_logical_callback(data_vio, release_logical_lock);
1305 		return;
1306 
1307 	default:
1308 		finish_cleanup(data_vio);
1309 	}
1310 }
1311 
1312 void complete_data_vio(struct vdo_completion *completion)
1313 {
1314 	struct data_vio *data_vio = as_data_vio(completion);
1315 
1316 	completion->error_handler = NULL;
1317 	data_vio->last_async_operation = VIO_ASYNC_OP_CLEANUP;
1318 	perform_cleanup_stage(data_vio,
1319 			      (data_vio->write ? VIO_CLEANUP_START : VIO_RELEASE_LOGICAL));
1320 }
1321 
1322 static void enter_read_only_mode(struct vdo_completion *completion)
1323 {
1324 	if (vdo_is_read_only(completion->vdo))
1325 		return;
1326 
1327 	if (completion->result != VDO_READ_ONLY) {
1328 		struct data_vio *data_vio = as_data_vio(completion);
1329 
1330 		vdo_log_error_strerror(completion->result,
1331 				       "Preparing to enter read-only mode: data_vio for LBN %llu (becoming mapped to %llu, previously mapped to %llu, allocated %llu) is completing with a fatal error after operation %s",
1332 				       (unsigned long long) data_vio->logical.lbn,
1333 				       (unsigned long long) data_vio->new_mapped.pbn,
1334 				       (unsigned long long) data_vio->mapped.pbn,
1335 				       (unsigned long long) data_vio->allocation.pbn,
1336 				       get_data_vio_operation_name(data_vio));
1337 	}
1338 
1339 	vdo_enter_read_only_mode(completion->vdo, completion->result);
1340 }
1341 
1342 void handle_data_vio_error(struct vdo_completion *completion)
1343 {
1344 	struct data_vio *data_vio = as_data_vio(completion);
1345 
1346 	if ((completion->result == VDO_READ_ONLY) || (data_vio->user_bio == NULL))
1347 		enter_read_only_mode(completion);
1348 
1349 	update_data_vio_error_stats(data_vio);
1350 	complete_data_vio(completion);
1351 }
1352 
1353 /**
1354  * get_data_vio_operation_name() - Get the name of the last asynchronous operation performed on a
1355  *				   data_vio.
1356  */
1357 const char *get_data_vio_operation_name(struct data_vio *data_vio)
1358 {
1359 	BUILD_BUG_ON((MAX_VIO_ASYNC_OPERATION_NUMBER - MIN_VIO_ASYNC_OPERATION_NUMBER) !=
1360 		     ARRAY_SIZE(ASYNC_OPERATION_NAMES));
1361 
1362 	return ((data_vio->last_async_operation < MAX_VIO_ASYNC_OPERATION_NUMBER) ?
1363 		ASYNC_OPERATION_NAMES[data_vio->last_async_operation] :
1364 		"unknown async operation");
1365 }
1366 
1367 /**
1368  * data_vio_allocate_data_block() - Allocate a data block.
1369  *
1370  * @write_lock_type: The type of write lock to obtain on the block.
1371  * @callback: The callback which will attempt an allocation in the current zone and continue if it
1372  *	      succeeds.
1373  * @error_handler: The handler for errors while allocating.
1374  */
1375 void data_vio_allocate_data_block(struct data_vio *data_vio,
1376 				  enum pbn_lock_type write_lock_type,
1377 				  vdo_action_fn callback, vdo_action_fn error_handler)
1378 {
1379 	struct allocation *allocation = &data_vio->allocation;
1380 
1381 	VDO_ASSERT_LOG_ONLY((allocation->pbn == VDO_ZERO_BLOCK),
1382 			    "data_vio does not have an allocation");
1383 	allocation->write_lock_type = write_lock_type;
1384 	allocation->zone = vdo_get_next_allocation_zone(data_vio->logical.zone);
1385 	allocation->first_allocation_zone = allocation->zone->zone_number;
1386 
1387 	data_vio->vio.completion.error_handler = error_handler;
1388 	launch_data_vio_allocated_zone_callback(data_vio, callback);
1389 }
1390 
1391 /**
1392  * release_data_vio_allocation_lock() - Release the PBN lock on a data_vio's allocated block.
1393  * @reset: If true, the allocation will be reset (i.e. any allocated pbn will be forgotten).
1394  *
1395  * If the reference to the locked block is still provisional, it will be released as well.
1396  */
1397 void release_data_vio_allocation_lock(struct data_vio *data_vio, bool reset)
1398 {
1399 	struct allocation *allocation = &data_vio->allocation;
1400 	physical_block_number_t locked_pbn = allocation->pbn;
1401 
1402 	assert_data_vio_in_allocated_zone(data_vio);
1403 
1404 	if (reset || vdo_pbn_lock_has_provisional_reference(allocation->lock))
1405 		allocation->pbn = VDO_ZERO_BLOCK;
1406 
1407 	vdo_release_physical_zone_pbn_lock(allocation->zone, locked_pbn,
1408 					   vdo_forget(allocation->lock));
1409 }
1410 
1411 /**
1412  * uncompress_data_vio() - Uncompress the data a data_vio has just read.
1413  * @mapping_state: The mapping state indicating which fragment to decompress.
1414  * @buffer: The buffer to receive the uncompressed data.
1415  */
1416 int uncompress_data_vio(struct data_vio *data_vio,
1417 			enum block_mapping_state mapping_state, char *buffer)
1418 {
1419 	int size;
1420 	u16 fragment_offset, fragment_size;
1421 	struct compressed_block *block = data_vio->compression.block;
1422 	int result = vdo_get_compressed_block_fragment(mapping_state, block,
1423 						       &fragment_offset, &fragment_size);
1424 
1425 	if (result != VDO_SUCCESS) {
1426 		vdo_log_debug("%s: compressed fragment error %d", __func__, result);
1427 		return result;
1428 	}
1429 
1430 	size = LZ4_decompress_safe((block->data + fragment_offset), buffer,
1431 				   fragment_size, VDO_BLOCK_SIZE);
1432 	if (size != VDO_BLOCK_SIZE) {
1433 		vdo_log_debug("%s: lz4 error", __func__);
1434 		return VDO_INVALID_FRAGMENT;
1435 	}
1436 
1437 	return VDO_SUCCESS;
1438 }
1439 
1440 /**
1441  * modify_for_partial_write() - Do the modify-write part of a read-modify-write cycle.
1442  * @completion: The data_vio which has just finished its read.
1443  *
1444  * This callback is registered in read_block().
1445  */
1446 static void modify_for_partial_write(struct vdo_completion *completion)
1447 {
1448 	struct data_vio *data_vio = as_data_vio(completion);
1449 	char *data = data_vio->vio.data;
1450 	struct bio *bio = data_vio->user_bio;
1451 
1452 	assert_data_vio_on_cpu_thread(data_vio);
1453 
1454 	if (bio_op(bio) == REQ_OP_DISCARD) {
1455 		memset(data + data_vio->offset, '\0', min_t(u32,
1456 							    data_vio->remaining_discard,
1457 							    VDO_BLOCK_SIZE - data_vio->offset));
1458 	} else {
1459 		copy_from_bio(bio, data + data_vio->offset);
1460 	}
1461 
1462 	data_vio->is_zero = is_zero_block(data);
1463 	data_vio->read = false;
1464 	launch_data_vio_logical_callback(data_vio,
1465 					 continue_data_vio_with_block_map_slot);
1466 }
1467 
1468 static void complete_read(struct vdo_completion *completion)
1469 {
1470 	struct data_vio *data_vio = as_data_vio(completion);
1471 	char *data = data_vio->vio.data;
1472 	bool compressed = vdo_is_state_compressed(data_vio->mapped.state);
1473 
1474 	assert_data_vio_on_cpu_thread(data_vio);
1475 
1476 	if (compressed) {
1477 		int result = uncompress_data_vio(data_vio, data_vio->mapped.state, data);
1478 
1479 		if (result != VDO_SUCCESS) {
1480 			continue_data_vio_with_error(data_vio, result);
1481 			return;
1482 		}
1483 	}
1484 
1485 	if (data_vio->write) {
1486 		modify_for_partial_write(completion);
1487 		return;
1488 	}
1489 
1490 	if (compressed || data_vio->is_partial)
1491 		copy_to_bio(data_vio->user_bio, data + data_vio->offset);
1492 
1493 	acknowledge_data_vio(data_vio);
1494 	complete_data_vio(completion);
1495 }
1496 
1497 static void read_endio(struct bio *bio)
1498 {
1499 	struct data_vio *data_vio = vio_as_data_vio(bio->bi_private);
1500 	int result = blk_status_to_errno(bio->bi_status);
1501 
1502 	vdo_count_completed_bios(bio);
1503 	if (result != VDO_SUCCESS) {
1504 		continue_data_vio_with_error(data_vio, result);
1505 		return;
1506 	}
1507 
1508 	launch_data_vio_cpu_callback(data_vio, complete_read,
1509 				     CPU_Q_COMPLETE_READ_PRIORITY);
1510 }
1511 
1512 static void complete_zero_read(struct vdo_completion *completion)
1513 {
1514 	struct data_vio *data_vio = as_data_vio(completion);
1515 
1516 	assert_data_vio_on_cpu_thread(data_vio);
1517 
1518 	if (data_vio->is_partial) {
1519 		memset(data_vio->vio.data, 0, VDO_BLOCK_SIZE);
1520 		if (data_vio->write) {
1521 			modify_for_partial_write(completion);
1522 			return;
1523 		}
1524 	} else {
1525 		zero_fill_bio(data_vio->user_bio);
1526 	}
1527 
1528 	complete_read(completion);
1529 }
1530 
1531 /**
1532  * read_block() - Read a block asynchronously.
1533  *
1534  * This is the callback registered in read_block_mapping().
1535  */
1536 static void read_block(struct vdo_completion *completion)
1537 {
1538 	struct data_vio *data_vio = as_data_vio(completion);
1539 	struct vio *vio = as_vio(completion);
1540 	int result = VDO_SUCCESS;
1541 
1542 	if (data_vio->mapped.pbn == VDO_ZERO_BLOCK) {
1543 		launch_data_vio_cpu_callback(data_vio, complete_zero_read,
1544 					     CPU_Q_COMPLETE_VIO_PRIORITY);
1545 		return;
1546 	}
1547 
1548 	data_vio->last_async_operation = VIO_ASYNC_OP_READ_DATA_VIO;
1549 	if (vdo_is_state_compressed(data_vio->mapped.state)) {
1550 		result = vio_reset_bio(vio, (char *) data_vio->compression.block,
1551 				       read_endio, REQ_OP_READ, data_vio->mapped.pbn);
1552 	} else {
1553 		blk_opf_t opf = ((data_vio->user_bio->bi_opf & PASSTHROUGH_FLAGS) | REQ_OP_READ);
1554 
1555 		if (data_vio->is_partial) {
1556 			result = vio_reset_bio(vio, vio->data, read_endio, opf,
1557 					       data_vio->mapped.pbn);
1558 		} else {
1559 			/* A full 4k read. Use the incoming bio to avoid having to copy the data */
1560 			bio_reset(vio->bio, vio->bio->bi_bdev, opf);
1561 			bio_init_clone(data_vio->user_bio->bi_bdev, vio->bio,
1562 				       data_vio->user_bio, GFP_KERNEL);
1563 
1564 			/* Copy over the original bio iovec and opflags. */
1565 			vdo_set_bio_properties(vio->bio, vio, read_endio, opf,
1566 					       data_vio->mapped.pbn);
1567 		}
1568 	}
1569 
1570 	if (result != VDO_SUCCESS) {
1571 		continue_data_vio_with_error(data_vio, result);
1572 		return;
1573 	}
1574 
1575 	vdo_submit_data_vio(data_vio);
1576 }
1577 
1578 static inline struct data_vio *
1579 reference_count_update_completion_as_data_vio(struct vdo_completion *completion)
1580 {
1581 	if (completion->type == VIO_COMPLETION)
1582 		return as_data_vio(completion);
1583 
1584 	return container_of(completion, struct data_vio, decrement_completion);
1585 }
1586 
1587 /**
1588  * update_block_map() - Rendezvous of the data_vio and decrement completions after each has
1589  *                      made its reference updates. Handle any error from either, or proceed
1590  *                      to updating the block map.
1591  * @completion: The completion of the write in progress.
1592  */
1593 static void update_block_map(struct vdo_completion *completion)
1594 {
1595 	struct data_vio *data_vio = reference_count_update_completion_as_data_vio(completion);
1596 
1597 	assert_data_vio_in_logical_zone(data_vio);
1598 
1599 	if (!data_vio->first_reference_operation_complete) {
1600 		/* Rendezvous, we're first */
1601 		data_vio->first_reference_operation_complete = true;
1602 		return;
1603 	}
1604 
1605 	completion = &data_vio->vio.completion;
1606 	vdo_set_completion_result(completion, data_vio->decrement_completion.result);
1607 	if (completion->result != VDO_SUCCESS) {
1608 		handle_data_vio_error(completion);
1609 		return;
1610 	}
1611 
1612 	completion->error_handler = handle_data_vio_error;
1613 	if (data_vio->hash_lock != NULL)
1614 		set_data_vio_hash_zone_callback(data_vio, vdo_continue_hash_lock);
1615 	else
1616 		completion->callback = complete_data_vio;
1617 
1618 	data_vio->last_async_operation = VIO_ASYNC_OP_PUT_MAPPED_BLOCK;
1619 	vdo_put_mapped_block(data_vio);
1620 }
1621 
1622 static void decrement_reference_count(struct vdo_completion *completion)
1623 {
1624 	struct data_vio *data_vio = container_of(completion, struct data_vio,
1625 						 decrement_completion);
1626 
1627 	assert_data_vio_in_mapped_zone(data_vio);
1628 
1629 	vdo_set_completion_callback(completion, update_block_map,
1630 				    data_vio->logical.zone->thread_id);
1631 	completion->error_handler = update_block_map;
1632 	vdo_modify_reference_count(completion, &data_vio->decrement_updater);
1633 }
1634 
1635 static void increment_reference_count(struct vdo_completion *completion)
1636 {
1637 	struct data_vio *data_vio = as_data_vio(completion);
1638 
1639 	assert_data_vio_in_new_mapped_zone(data_vio);
1640 
1641 	if (data_vio->downgrade_allocation_lock) {
1642 		/*
1643 		 * Now that the data has been written, it's safe to deduplicate against the
1644 		 * block. Downgrade the allocation lock to a read lock so it can be used later by
1645 		 * the hash lock. This is done here since it needs to happen sometime before we
1646 		 * return to the hash zone, and we are currently on the correct thread. For
1647 		 * compressed blocks, the downgrade will have already been done.
1648 		 */
1649 		vdo_downgrade_pbn_write_lock(data_vio->allocation.lock, false);
1650 	}
1651 
1652 	set_data_vio_logical_callback(data_vio, update_block_map);
1653 	completion->error_handler = update_block_map;
1654 	vdo_modify_reference_count(completion, &data_vio->increment_updater);
1655 }
1656 
1657 /** journal_remapping() - Add a recovery journal entry for a data remapping. */
1658 static void journal_remapping(struct vdo_completion *completion)
1659 {
1660 	struct data_vio *data_vio = as_data_vio(completion);
1661 
1662 	assert_data_vio_in_journal_zone(data_vio);
1663 
1664 	data_vio->decrement_updater.operation = VDO_JOURNAL_DATA_REMAPPING;
1665 	data_vio->decrement_updater.zpbn = data_vio->mapped;
1666 	if (data_vio->new_mapped.pbn == VDO_ZERO_BLOCK) {
1667 		data_vio->first_reference_operation_complete = true;
1668 		if (data_vio->mapped.pbn == VDO_ZERO_BLOCK)
1669 			set_data_vio_logical_callback(data_vio, update_block_map);
1670 	} else {
1671 		set_data_vio_new_mapped_zone_callback(data_vio,
1672 						      increment_reference_count);
1673 	}
1674 
1675 	if (data_vio->mapped.pbn == VDO_ZERO_BLOCK) {
1676 		data_vio->first_reference_operation_complete = true;
1677 	} else {
1678 		vdo_set_completion_callback(&data_vio->decrement_completion,
1679 					    decrement_reference_count,
1680 					    data_vio->mapped.zone->thread_id);
1681 	}
1682 
1683 	data_vio->last_async_operation = VIO_ASYNC_OP_JOURNAL_REMAPPING;
1684 	vdo_add_recovery_journal_entry(completion->vdo->recovery_journal, data_vio);
1685 }
1686 
1687 /**
1688  * read_old_block_mapping() - Get the previous PBN/LBN mapping of an in-progress write.
1689  *
1690  * Gets the previous PBN mapped to this LBN from the block map, so as to make an appropriate
1691  * journal entry referencing the removal of this LBN->PBN mapping.
1692  */
1693 static void read_old_block_mapping(struct vdo_completion *completion)
1694 {
1695 	struct data_vio *data_vio = as_data_vio(completion);
1696 
1697 	assert_data_vio_in_logical_zone(data_vio);
1698 
1699 	data_vio->last_async_operation = VIO_ASYNC_OP_GET_MAPPED_BLOCK_FOR_WRITE;
1700 	set_data_vio_journal_callback(data_vio, journal_remapping);
1701 	vdo_get_mapped_block(data_vio);
1702 }
1703 
1704 void update_metadata_for_data_vio_write(struct data_vio *data_vio, struct pbn_lock *lock)
1705 {
1706 	data_vio->increment_updater = (struct reference_updater) {
1707 		.operation = VDO_JOURNAL_DATA_REMAPPING,
1708 		.increment = true,
1709 		.zpbn = data_vio->new_mapped,
1710 		.lock = lock,
1711 	};
1712 
1713 	launch_data_vio_logical_callback(data_vio, read_old_block_mapping);
1714 }
1715 
1716 /**
1717  * pack_compressed_data() - Attempt to pack the compressed data_vio into a block.
1718  *
1719  * This is the callback registered in launch_compress_data_vio().
1720  */
1721 static void pack_compressed_data(struct vdo_completion *completion)
1722 {
1723 	struct data_vio *data_vio = as_data_vio(completion);
1724 
1725 	assert_data_vio_in_packer_zone(data_vio);
1726 
1727 	if (!vdo_get_compressing(vdo_from_data_vio(data_vio)) ||
1728 	    get_data_vio_compression_status(data_vio).may_not_compress) {
1729 		write_data_vio(data_vio);
1730 		return;
1731 	}
1732 
1733 	data_vio->last_async_operation = VIO_ASYNC_OP_ATTEMPT_PACKING;
1734 	vdo_attempt_packing(data_vio);
1735 }
1736 
1737 /**
1738  * compress_data_vio() - Do the actual work of compressing the data on a CPU queue.
1739  *
1740  * This callback is registered in launch_compress_data_vio().
1741  */
1742 static void compress_data_vio(struct vdo_completion *completion)
1743 {
1744 	struct data_vio *data_vio = as_data_vio(completion);
1745 	int size;
1746 
1747 	assert_data_vio_on_cpu_thread(data_vio);
1748 
1749 	/*
1750 	 * By putting the compressed data at the start of the compressed block data field, we won't
1751 	 * need to copy it if this data_vio becomes a compressed write agent.
1752 	 */
1753 	size = LZ4_compress_default(data_vio->vio.data,
1754 				    data_vio->compression.block->data, VDO_BLOCK_SIZE,
1755 				    VDO_MAX_COMPRESSED_FRAGMENT_SIZE,
1756 				    (char *) vdo_get_work_queue_private_data());
1757 	if ((size > 0) && (size < VDO_COMPRESSED_BLOCK_DATA_SIZE)) {
1758 		data_vio->compression.size = size;
1759 		launch_data_vio_packer_callback(data_vio, pack_compressed_data);
1760 		return;
1761 	}
1762 
1763 	write_data_vio(data_vio);
1764 }
1765 
1766 /**
1767  * launch_compress_data_vio() - Continue a write by attempting to compress the data.
1768  *
1769  * This is a re-entry point to vio_write used by hash locks.
1770  */
1771 void launch_compress_data_vio(struct data_vio *data_vio)
1772 {
1773 	VDO_ASSERT_LOG_ONLY(!data_vio->is_duplicate, "compressing a non-duplicate block");
1774 	VDO_ASSERT_LOG_ONLY(data_vio->hash_lock != NULL,
1775 			    "data_vio to compress has a hash_lock");
1776 	VDO_ASSERT_LOG_ONLY(data_vio_has_allocation(data_vio),
1777 			    "data_vio to compress has an allocation");
1778 
1779 	/*
1780 	 * There are 4 reasons why a data_vio which has reached this point will not be eligible for
1781 	 * compression:
1782 	 *
1783 	 * 1) Since data_vios can block indefinitely in the packer, it would be bad to do so if the
1784 	 * write request also requests FUA.
1785 	 *
1786 	 * 2) A data_vio should not be compressed when compression is disabled for the vdo.
1787 	 *
1788 	 * 3) A data_vio could be doing a partial write on behalf of a larger discard which has not
1789 	 * yet been acknowledged and hence blocking in the packer would be bad.
1790 	 *
1791 	 * 4) Some other data_vio may be waiting on this data_vio in which case blocking in the
1792 	 * packer would also be bad.
1793 	 */
1794 	if (data_vio->fua ||
1795 	    !vdo_get_compressing(vdo_from_data_vio(data_vio)) ||
1796 	    ((data_vio->user_bio != NULL) && (bio_op(data_vio->user_bio) == REQ_OP_DISCARD)) ||
1797 	    (advance_data_vio_compression_stage(data_vio).stage != DATA_VIO_COMPRESSING)) {
1798 		write_data_vio(data_vio);
1799 		return;
1800 	}
1801 
1802 	data_vio->last_async_operation = VIO_ASYNC_OP_COMPRESS_DATA_VIO;
1803 	launch_data_vio_cpu_callback(data_vio, compress_data_vio,
1804 				     CPU_Q_COMPRESS_BLOCK_PRIORITY);
1805 }
1806 
1807 /**
1808  * hash_data_vio() - Hash the data in a data_vio and set the hash zone (which also flags the record
1809  *		     name as set).
1810 
1811  * This callback is registered in prepare_for_dedupe().
1812  */
1813 static void hash_data_vio(struct vdo_completion *completion)
1814 {
1815 	struct data_vio *data_vio = as_data_vio(completion);
1816 
1817 	assert_data_vio_on_cpu_thread(data_vio);
1818 	VDO_ASSERT_LOG_ONLY(!data_vio->is_zero, "zero blocks should not be hashed");
1819 
1820 	murmurhash3_128(data_vio->vio.data, VDO_BLOCK_SIZE, 0x62ea60be,
1821 			&data_vio->record_name);
1822 
1823 	data_vio->hash_zone = vdo_select_hash_zone(vdo_from_data_vio(data_vio)->hash_zones,
1824 						   &data_vio->record_name);
1825 	data_vio->last_async_operation = VIO_ASYNC_OP_ACQUIRE_VDO_HASH_LOCK;
1826 	launch_data_vio_hash_zone_callback(data_vio, vdo_acquire_hash_lock);
1827 }
1828 
1829 /** prepare_for_dedupe() - Prepare for the dedupe path after attempting to get an allocation. */
1830 static void prepare_for_dedupe(struct data_vio *data_vio)
1831 {
1832 	/* We don't care what thread we are on. */
1833 	VDO_ASSERT_LOG_ONLY(!data_vio->is_zero, "must not prepare to dedupe zero blocks");
1834 
1835 	/*
1836 	 * Before we can dedupe, we need to know the record name, so the first
1837 	 * step is to hash the block data.
1838 	 */
1839 	data_vio->last_async_operation = VIO_ASYNC_OP_HASH_DATA_VIO;
1840 	launch_data_vio_cpu_callback(data_vio, hash_data_vio, CPU_Q_HASH_BLOCK_PRIORITY);
1841 }
1842 
1843 /**
1844  * write_bio_finished() - This is the bio_end_io function registered in write_block() to be called
1845  *			  when a data_vio's write to the underlying storage has completed.
1846  */
1847 static void write_bio_finished(struct bio *bio)
1848 {
1849 	struct data_vio *data_vio = vio_as_data_vio((struct vio *) bio->bi_private);
1850 
1851 	vdo_count_completed_bios(bio);
1852 	vdo_set_completion_result(&data_vio->vio.completion,
1853 				  blk_status_to_errno(bio->bi_status));
1854 	data_vio->downgrade_allocation_lock = true;
1855 	update_metadata_for_data_vio_write(data_vio, data_vio->allocation.lock);
1856 }
1857 
1858 /** write_data_vio() - Write a data block to storage without compression. */
1859 void write_data_vio(struct data_vio *data_vio)
1860 {
1861 	struct data_vio_compression_status status, new_status;
1862 	int result;
1863 
1864 	if (!data_vio_has_allocation(data_vio)) {
1865 		/*
1866 		 * There was no space to write this block and we failed to deduplicate or compress
1867 		 * it.
1868 		 */
1869 		continue_data_vio_with_error(data_vio, VDO_NO_SPACE);
1870 		return;
1871 	}
1872 
1873 	new_status = (struct data_vio_compression_status) {
1874 		.stage = DATA_VIO_POST_PACKER,
1875 		.may_not_compress = true,
1876 	};
1877 
1878 	do {
1879 		status = get_data_vio_compression_status(data_vio);
1880 	} while ((status.stage != DATA_VIO_POST_PACKER) &&
1881 		 !set_data_vio_compression_status(data_vio, status, new_status));
1882 
1883 	/* Write the data from the data block buffer. */
1884 	result = vio_reset_bio(&data_vio->vio, data_vio->vio.data,
1885 			       write_bio_finished, REQ_OP_WRITE,
1886 			       data_vio->allocation.pbn);
1887 	if (result != VDO_SUCCESS) {
1888 		continue_data_vio_with_error(data_vio, result);
1889 		return;
1890 	}
1891 
1892 	data_vio->last_async_operation = VIO_ASYNC_OP_WRITE_DATA_VIO;
1893 	vdo_submit_data_vio(data_vio);
1894 }
1895 
1896 /**
1897  * acknowledge_write_callback() - Acknowledge a write to the requestor.
1898  *
1899  * This callback is registered in allocate_block() and continue_write_with_block_map_slot().
1900  */
1901 static void acknowledge_write_callback(struct vdo_completion *completion)
1902 {
1903 	struct data_vio *data_vio = as_data_vio(completion);
1904 	struct vdo *vdo = completion->vdo;
1905 
1906 	VDO_ASSERT_LOG_ONLY((!vdo_uses_bio_ack_queue(vdo) ||
1907 			     (vdo_get_callback_thread_id() == vdo->thread_config.bio_ack_thread)),
1908 			    "%s() called on bio ack queue", __func__);
1909 	VDO_ASSERT_LOG_ONLY(data_vio_has_flush_generation_lock(data_vio),
1910 			    "write VIO to be acknowledged has a flush generation lock");
1911 	acknowledge_data_vio(data_vio);
1912 	if (data_vio->new_mapped.pbn == VDO_ZERO_BLOCK) {
1913 		/* This is a zero write or discard */
1914 		update_metadata_for_data_vio_write(data_vio, NULL);
1915 		return;
1916 	}
1917 
1918 	prepare_for_dedupe(data_vio);
1919 }
1920 
1921 /**
1922  * allocate_block() - Attempt to allocate a block in the current allocation zone.
1923  *
1924  * This callback is registered in continue_write_with_block_map_slot().
1925  */
1926 static void allocate_block(struct vdo_completion *completion)
1927 {
1928 	struct data_vio *data_vio = as_data_vio(completion);
1929 
1930 	assert_data_vio_in_allocated_zone(data_vio);
1931 
1932 	if (!vdo_allocate_block_in_zone(data_vio))
1933 		return;
1934 
1935 	completion->error_handler = handle_data_vio_error;
1936 	WRITE_ONCE(data_vio->allocation_succeeded, true);
1937 	data_vio->new_mapped = (struct zoned_pbn) {
1938 		.zone = data_vio->allocation.zone,
1939 		.pbn = data_vio->allocation.pbn,
1940 		.state = VDO_MAPPING_STATE_UNCOMPRESSED,
1941 	};
1942 
1943 	if (data_vio->fua ||
1944 	    data_vio->remaining_discard > (u32) (VDO_BLOCK_SIZE - data_vio->offset)) {
1945 		prepare_for_dedupe(data_vio);
1946 		return;
1947 	}
1948 
1949 	data_vio->last_async_operation = VIO_ASYNC_OP_ACKNOWLEDGE_WRITE;
1950 	launch_data_vio_on_bio_ack_queue(data_vio, acknowledge_write_callback);
1951 }
1952 
1953 /**
1954  * handle_allocation_error() - Handle an error attempting to allocate a block.
1955  *
1956  * This error handler is registered in continue_write_with_block_map_slot().
1957  */
1958 static void handle_allocation_error(struct vdo_completion *completion)
1959 {
1960 	struct data_vio *data_vio = as_data_vio(completion);
1961 
1962 	if (completion->result == VDO_NO_SPACE) {
1963 		/* We failed to get an allocation, but we can try to dedupe. */
1964 		vdo_reset_completion(completion);
1965 		completion->error_handler = handle_data_vio_error;
1966 		prepare_for_dedupe(data_vio);
1967 		return;
1968 	}
1969 
1970 	/* We got a "real" error, not just a failure to allocate, so fail the request. */
1971 	handle_data_vio_error(completion);
1972 }
1973 
1974 static int assert_is_discard(struct data_vio *data_vio)
1975 {
1976 	int result = VDO_ASSERT(data_vio->is_discard,
1977 				"data_vio with no block map page is a discard");
1978 
1979 	return ((result == VDO_SUCCESS) ? result : VDO_READ_ONLY);
1980 }
1981 
1982 /**
1983  * continue_data_vio_with_block_map_slot() - Read the data_vio's mapping from the block map.
1984  *
1985  * This callback is registered in launch_read_data_vio().
1986  */
1987 void continue_data_vio_with_block_map_slot(struct vdo_completion *completion)
1988 {
1989 	struct data_vio *data_vio = as_data_vio(completion);
1990 
1991 	assert_data_vio_in_logical_zone(data_vio);
1992 	if (data_vio->read) {
1993 		set_data_vio_logical_callback(data_vio, read_block);
1994 		data_vio->last_async_operation = VIO_ASYNC_OP_GET_MAPPED_BLOCK_FOR_READ;
1995 		vdo_get_mapped_block(data_vio);
1996 		return;
1997 	}
1998 
1999 	vdo_acquire_flush_generation_lock(data_vio);
2000 
2001 	if (data_vio->tree_lock.tree_slots[0].block_map_slot.pbn == VDO_ZERO_BLOCK) {
2002 		/*
2003 		 * This is a discard for a block on a block map page which has not been allocated, so
2004 		 * there's nothing more we need to do.
2005 		 */
2006 		completion->callback = complete_data_vio;
2007 		continue_data_vio_with_error(data_vio, assert_is_discard(data_vio));
2008 		return;
2009 	}
2010 
2011 	/*
2012 	 * We need an allocation if this is neither a full-block discard nor a
2013 	 * full-block zero write.
2014 	 */
2015 	if (!data_vio->is_zero && (!data_vio->is_discard || data_vio->is_partial)) {
2016 		data_vio_allocate_data_block(data_vio, VIO_WRITE_LOCK, allocate_block,
2017 					     handle_allocation_error);
2018 		return;
2019 	}
2020 
2021 	/*
2022 	 * We don't need to write any data, so skip allocation and just update the block map and
2023 	 * reference counts (via the journal).
2024 	 */
2025 	data_vio->new_mapped.pbn = VDO_ZERO_BLOCK;
2026 	if (data_vio->is_zero)
2027 		data_vio->new_mapped.state = VDO_MAPPING_STATE_UNCOMPRESSED;
2028 
2029 	if (data_vio->remaining_discard > (u32) (VDO_BLOCK_SIZE - data_vio->offset)) {
2030 		/* This is not the final block of a discard so we can't acknowledge it yet. */
2031 		update_metadata_for_data_vio_write(data_vio, NULL);
2032 		return;
2033 	}
2034 
2035 	data_vio->last_async_operation = VIO_ASYNC_OP_ACKNOWLEDGE_WRITE;
2036 	launch_data_vio_on_bio_ack_queue(data_vio, acknowledge_write_callback);
2037 }
2038