xref: /linux/drivers/md/dm-thin.c (revision eb01fe7abbe2d0b38824d2a93fdb4cc3eaf2ccc1)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2011-2012 Red Hat UK.
4  *
5  * This file is released under the GPL.
6  */
7 
8 #include "dm-thin-metadata.h"
9 #include "dm-bio-prison-v1.h"
10 #include "dm.h"
11 
12 #include <linux/device-mapper.h>
13 #include <linux/dm-io.h>
14 #include <linux/dm-kcopyd.h>
15 #include <linux/jiffies.h>
16 #include <linux/log2.h>
17 #include <linux/list.h>
18 #include <linux/rculist.h>
19 #include <linux/init.h>
20 #include <linux/module.h>
21 #include <linux/slab.h>
22 #include <linux/vmalloc.h>
23 #include <linux/sort.h>
24 #include <linux/rbtree.h>
25 
26 #define	DM_MSG_PREFIX	"thin"
27 
28 /*
29  * Tunable constants
30  */
31 #define ENDIO_HOOK_POOL_SIZE 1024
32 #define MAPPING_POOL_SIZE 1024
33 #define COMMIT_PERIOD HZ
34 #define NO_SPACE_TIMEOUT_SECS 60
35 
36 static unsigned int no_space_timeout_secs = NO_SPACE_TIMEOUT_SECS;
37 
38 DECLARE_DM_KCOPYD_THROTTLE_WITH_MODULE_PARM(snapshot_copy_throttle,
39 		"A percentage of time allocated for copy on write");
40 
41 /*
42  * The block size of the device holding pool data must be
43  * between 64KB and 1GB.
44  */
45 #define DATA_DEV_BLOCK_SIZE_MIN_SECTORS (64 * 1024 >> SECTOR_SHIFT)
46 #define DATA_DEV_BLOCK_SIZE_MAX_SECTORS (1024 * 1024 * 1024 >> SECTOR_SHIFT)
47 
48 /*
49  * Device id is restricted to 24 bits.
50  */
51 #define MAX_DEV_ID ((1 << 24) - 1)
52 
53 /*
54  * How do we handle breaking sharing of data blocks?
55  * =================================================
56  *
57  * We use a standard copy-on-write btree to store the mappings for the
58  * devices (note I'm talking about copy-on-write of the metadata here, not
59  * the data).  When you take an internal snapshot you clone the root node
60  * of the origin btree.  After this there is no concept of an origin or a
61  * snapshot.  They are just two device trees that happen to point to the
62  * same data blocks.
63  *
64  * When we get a write in we decide if it's to a shared data block using
65  * some timestamp magic.  If it is, we have to break sharing.
66  *
67  * Let's say we write to a shared block in what was the origin.  The
68  * steps are:
69  *
70  * i) plug io further to this physical block. (see bio_prison code).
71  *
72  * ii) quiesce any read io to that shared data block.  Obviously
73  * including all devices that share this block.  (see dm_deferred_set code)
74  *
75  * iii) copy the data block to a newly allocate block.  This step can be
76  * missed out if the io covers the block. (schedule_copy).
77  *
78  * iv) insert the new mapping into the origin's btree
79  * (process_prepared_mapping).  This act of inserting breaks some
80  * sharing of btree nodes between the two devices.  Breaking sharing only
81  * effects the btree of that specific device.  Btrees for the other
82  * devices that share the block never change.  The btree for the origin
83  * device as it was after the last commit is untouched, ie. we're using
84  * persistent data structures in the functional programming sense.
85  *
86  * v) unplug io to this physical block, including the io that triggered
87  * the breaking of sharing.
88  *
89  * Steps (ii) and (iii) occur in parallel.
90  *
91  * The metadata _doesn't_ need to be committed before the io continues.  We
92  * get away with this because the io is always written to a _new_ block.
93  * If there's a crash, then:
94  *
95  * - The origin mapping will point to the old origin block (the shared
96  * one).  This will contain the data as it was before the io that triggered
97  * the breaking of sharing came in.
98  *
99  * - The snap mapping still points to the old block.  As it would after
100  * the commit.
101  *
102  * The downside of this scheme is the timestamp magic isn't perfect, and
103  * will continue to think that data block in the snapshot device is shared
104  * even after the write to the origin has broken sharing.  I suspect data
105  * blocks will typically be shared by many different devices, so we're
106  * breaking sharing n + 1 times, rather than n, where n is the number of
107  * devices that reference this data block.  At the moment I think the
108  * benefits far, far outweigh the disadvantages.
109  */
110 
111 /*----------------------------------------------------------------*/
112 
113 /*
114  * Key building.
115  */
116 enum lock_space {
117 	VIRTUAL,
118 	PHYSICAL
119 };
120 
121 static bool build_key(struct dm_thin_device *td, enum lock_space ls,
122 		      dm_block_t b, dm_block_t e, struct dm_cell_key *key)
123 {
124 	key->virtual = (ls == VIRTUAL);
125 	key->dev = dm_thin_dev_id(td);
126 	key->block_begin = b;
127 	key->block_end = e;
128 
129 	return dm_cell_key_has_valid_range(key);
130 }
131 
132 static void build_data_key(struct dm_thin_device *td, dm_block_t b,
133 			   struct dm_cell_key *key)
134 {
135 	(void) build_key(td, PHYSICAL, b, b + 1llu, key);
136 }
137 
138 static void build_virtual_key(struct dm_thin_device *td, dm_block_t b,
139 			      struct dm_cell_key *key)
140 {
141 	(void) build_key(td, VIRTUAL, b, b + 1llu, key);
142 }
143 
144 /*----------------------------------------------------------------*/
145 
146 #define THROTTLE_THRESHOLD (1 * HZ)
147 
148 struct throttle {
149 	struct rw_semaphore lock;
150 	unsigned long threshold;
151 	bool throttle_applied;
152 };
153 
154 static void throttle_init(struct throttle *t)
155 {
156 	init_rwsem(&t->lock);
157 	t->throttle_applied = false;
158 }
159 
160 static void throttle_work_start(struct throttle *t)
161 {
162 	t->threshold = jiffies + THROTTLE_THRESHOLD;
163 }
164 
165 static void throttle_work_update(struct throttle *t)
166 {
167 	if (!t->throttle_applied && time_is_before_jiffies(t->threshold)) {
168 		down_write(&t->lock);
169 		t->throttle_applied = true;
170 	}
171 }
172 
173 static void throttle_work_complete(struct throttle *t)
174 {
175 	if (t->throttle_applied) {
176 		t->throttle_applied = false;
177 		up_write(&t->lock);
178 	}
179 }
180 
181 static void throttle_lock(struct throttle *t)
182 {
183 	down_read(&t->lock);
184 }
185 
186 static void throttle_unlock(struct throttle *t)
187 {
188 	up_read(&t->lock);
189 }
190 
191 /*----------------------------------------------------------------*/
192 
193 /*
194  * A pool device ties together a metadata device and a data device.  It
195  * also provides the interface for creating and destroying internal
196  * devices.
197  */
198 struct dm_thin_new_mapping;
199 
200 /*
201  * The pool runs in various modes.  Ordered in degraded order for comparisons.
202  */
203 enum pool_mode {
204 	PM_WRITE,		/* metadata may be changed */
205 	PM_OUT_OF_DATA_SPACE,	/* metadata may be changed, though data may not be allocated */
206 
207 	/*
208 	 * Like READ_ONLY, except may switch back to WRITE on metadata resize. Reported as READ_ONLY.
209 	 */
210 	PM_OUT_OF_METADATA_SPACE,
211 	PM_READ_ONLY,		/* metadata may not be changed */
212 
213 	PM_FAIL,		/* all I/O fails */
214 };
215 
216 struct pool_features {
217 	enum pool_mode mode;
218 
219 	bool zero_new_blocks:1;
220 	bool discard_enabled:1;
221 	bool discard_passdown:1;
222 	bool error_if_no_space:1;
223 };
224 
225 struct thin_c;
226 typedef void (*process_bio_fn)(struct thin_c *tc, struct bio *bio);
227 typedef void (*process_cell_fn)(struct thin_c *tc, struct dm_bio_prison_cell *cell);
228 typedef void (*process_mapping_fn)(struct dm_thin_new_mapping *m);
229 
230 #define CELL_SORT_ARRAY_SIZE 8192
231 
232 struct pool {
233 	struct list_head list;
234 	struct dm_target *ti;	/* Only set if a pool target is bound */
235 
236 	struct mapped_device *pool_md;
237 	struct block_device *data_dev;
238 	struct block_device *md_dev;
239 	struct dm_pool_metadata *pmd;
240 
241 	dm_block_t low_water_blocks;
242 	uint32_t sectors_per_block;
243 	int sectors_per_block_shift;
244 
245 	struct pool_features pf;
246 	bool low_water_triggered:1;	/* A dm event has been sent */
247 	bool suspended:1;
248 	bool out_of_data_space:1;
249 
250 	struct dm_bio_prison *prison;
251 	struct dm_kcopyd_client *copier;
252 
253 	struct work_struct worker;
254 	struct workqueue_struct *wq;
255 	struct throttle throttle;
256 	struct delayed_work waker;
257 	struct delayed_work no_space_timeout;
258 
259 	unsigned long last_commit_jiffies;
260 	unsigned int ref_count;
261 
262 	spinlock_t lock;
263 	struct bio_list deferred_flush_bios;
264 	struct bio_list deferred_flush_completions;
265 	struct list_head prepared_mappings;
266 	struct list_head prepared_discards;
267 	struct list_head prepared_discards_pt2;
268 	struct list_head active_thins;
269 
270 	struct dm_deferred_set *shared_read_ds;
271 	struct dm_deferred_set *all_io_ds;
272 
273 	struct dm_thin_new_mapping *next_mapping;
274 
275 	process_bio_fn process_bio;
276 	process_bio_fn process_discard;
277 
278 	process_cell_fn process_cell;
279 	process_cell_fn process_discard_cell;
280 
281 	process_mapping_fn process_prepared_mapping;
282 	process_mapping_fn process_prepared_discard;
283 	process_mapping_fn process_prepared_discard_pt2;
284 
285 	struct dm_bio_prison_cell **cell_sort_array;
286 
287 	mempool_t mapping_pool;
288 };
289 
290 static void metadata_operation_failed(struct pool *pool, const char *op, int r);
291 
292 static enum pool_mode get_pool_mode(struct pool *pool)
293 {
294 	return pool->pf.mode;
295 }
296 
297 static void notify_of_pool_mode_change(struct pool *pool)
298 {
299 	static const char *descs[] = {
300 		"write",
301 		"out-of-data-space",
302 		"read-only",
303 		"read-only",
304 		"fail"
305 	};
306 	const char *extra_desc = NULL;
307 	enum pool_mode mode = get_pool_mode(pool);
308 
309 	if (mode == PM_OUT_OF_DATA_SPACE) {
310 		if (!pool->pf.error_if_no_space)
311 			extra_desc = " (queue IO)";
312 		else
313 			extra_desc = " (error IO)";
314 	}
315 
316 	dm_table_event(pool->ti->table);
317 	DMINFO("%s: switching pool to %s%s mode",
318 	       dm_device_name(pool->pool_md),
319 	       descs[(int)mode], extra_desc ? : "");
320 }
321 
322 /*
323  * Target context for a pool.
324  */
325 struct pool_c {
326 	struct dm_target *ti;
327 	struct pool *pool;
328 	struct dm_dev *data_dev;
329 	struct dm_dev *metadata_dev;
330 
331 	dm_block_t low_water_blocks;
332 	struct pool_features requested_pf; /* Features requested during table load */
333 	struct pool_features adjusted_pf;  /* Features used after adjusting for constituent devices */
334 };
335 
336 /*
337  * Target context for a thin.
338  */
339 struct thin_c {
340 	struct list_head list;
341 	struct dm_dev *pool_dev;
342 	struct dm_dev *origin_dev;
343 	sector_t origin_size;
344 	dm_thin_id dev_id;
345 
346 	struct pool *pool;
347 	struct dm_thin_device *td;
348 	struct mapped_device *thin_md;
349 
350 	bool requeue_mode:1;
351 	spinlock_t lock;
352 	struct list_head deferred_cells;
353 	struct bio_list deferred_bio_list;
354 	struct bio_list retry_on_resume_list;
355 	struct rb_root sort_bio_list; /* sorted list of deferred bios */
356 
357 	/*
358 	 * Ensures the thin is not destroyed until the worker has finished
359 	 * iterating the active_thins list.
360 	 */
361 	refcount_t refcount;
362 	struct completion can_destroy;
363 };
364 
365 /*----------------------------------------------------------------*/
366 
367 static bool block_size_is_power_of_two(struct pool *pool)
368 {
369 	return pool->sectors_per_block_shift >= 0;
370 }
371 
372 static sector_t block_to_sectors(struct pool *pool, dm_block_t b)
373 {
374 	return block_size_is_power_of_two(pool) ?
375 		(b << pool->sectors_per_block_shift) :
376 		(b * pool->sectors_per_block);
377 }
378 
379 /*----------------------------------------------------------------*/
380 
381 struct discard_op {
382 	struct thin_c *tc;
383 	struct blk_plug plug;
384 	struct bio *parent_bio;
385 	struct bio *bio;
386 };
387 
388 static void begin_discard(struct discard_op *op, struct thin_c *tc, struct bio *parent)
389 {
390 	BUG_ON(!parent);
391 
392 	op->tc = tc;
393 	blk_start_plug(&op->plug);
394 	op->parent_bio = parent;
395 	op->bio = NULL;
396 }
397 
398 static int issue_discard(struct discard_op *op, dm_block_t data_b, dm_block_t data_e)
399 {
400 	struct thin_c *tc = op->tc;
401 	sector_t s = block_to_sectors(tc->pool, data_b);
402 	sector_t len = block_to_sectors(tc->pool, data_e - data_b);
403 
404 	return __blkdev_issue_discard(tc->pool_dev->bdev, s, len, GFP_NOIO, &op->bio);
405 }
406 
407 static void end_discard(struct discard_op *op, int r)
408 {
409 	if (op->bio) {
410 		/*
411 		 * Even if one of the calls to issue_discard failed, we
412 		 * need to wait for the chain to complete.
413 		 */
414 		bio_chain(op->bio, op->parent_bio);
415 		op->bio->bi_opf = REQ_OP_DISCARD;
416 		submit_bio(op->bio);
417 	}
418 
419 	blk_finish_plug(&op->plug);
420 
421 	/*
422 	 * Even if r is set, there could be sub discards in flight that we
423 	 * need to wait for.
424 	 */
425 	if (r && !op->parent_bio->bi_status)
426 		op->parent_bio->bi_status = errno_to_blk_status(r);
427 	bio_endio(op->parent_bio);
428 }
429 
430 /*----------------------------------------------------------------*/
431 
432 /*
433  * wake_worker() is used when new work is queued and when pool_resume is
434  * ready to continue deferred IO processing.
435  */
436 static void wake_worker(struct pool *pool)
437 {
438 	queue_work(pool->wq, &pool->worker);
439 }
440 
441 /*----------------------------------------------------------------*/
442 
443 static int bio_detain(struct pool *pool, struct dm_cell_key *key, struct bio *bio,
444 		      struct dm_bio_prison_cell **cell_result)
445 {
446 	int r;
447 	struct dm_bio_prison_cell *cell_prealloc;
448 
449 	/*
450 	 * Allocate a cell from the prison's mempool.
451 	 * This might block but it can't fail.
452 	 */
453 	cell_prealloc = dm_bio_prison_alloc_cell(pool->prison, GFP_NOIO);
454 
455 	r = dm_bio_detain(pool->prison, key, bio, cell_prealloc, cell_result);
456 	if (r) {
457 		/*
458 		 * We reused an old cell; we can get rid of
459 		 * the new one.
460 		 */
461 		dm_bio_prison_free_cell(pool->prison, cell_prealloc);
462 	}
463 
464 	return r;
465 }
466 
467 static void cell_release(struct pool *pool,
468 			 struct dm_bio_prison_cell *cell,
469 			 struct bio_list *bios)
470 {
471 	dm_cell_release(pool->prison, cell, bios);
472 	dm_bio_prison_free_cell(pool->prison, cell);
473 }
474 
475 static void cell_visit_release(struct pool *pool,
476 			       void (*fn)(void *, struct dm_bio_prison_cell *),
477 			       void *context,
478 			       struct dm_bio_prison_cell *cell)
479 {
480 	dm_cell_visit_release(pool->prison, fn, context, cell);
481 	dm_bio_prison_free_cell(pool->prison, cell);
482 }
483 
484 static void cell_release_no_holder(struct pool *pool,
485 				   struct dm_bio_prison_cell *cell,
486 				   struct bio_list *bios)
487 {
488 	dm_cell_release_no_holder(pool->prison, cell, bios);
489 	dm_bio_prison_free_cell(pool->prison, cell);
490 }
491 
492 static void cell_error_with_code(struct pool *pool,
493 		struct dm_bio_prison_cell *cell, blk_status_t error_code)
494 {
495 	dm_cell_error(pool->prison, cell, error_code);
496 	dm_bio_prison_free_cell(pool->prison, cell);
497 }
498 
499 static blk_status_t get_pool_io_error_code(struct pool *pool)
500 {
501 	return pool->out_of_data_space ? BLK_STS_NOSPC : BLK_STS_IOERR;
502 }
503 
504 static void cell_error(struct pool *pool, struct dm_bio_prison_cell *cell)
505 {
506 	cell_error_with_code(pool, cell, get_pool_io_error_code(pool));
507 }
508 
509 static void cell_success(struct pool *pool, struct dm_bio_prison_cell *cell)
510 {
511 	cell_error_with_code(pool, cell, 0);
512 }
513 
514 static void cell_requeue(struct pool *pool, struct dm_bio_prison_cell *cell)
515 {
516 	cell_error_with_code(pool, cell, BLK_STS_DM_REQUEUE);
517 }
518 
519 /*----------------------------------------------------------------*/
520 
521 /*
522  * A global list of pools that uses a struct mapped_device as a key.
523  */
524 static struct dm_thin_pool_table {
525 	struct mutex mutex;
526 	struct list_head pools;
527 } dm_thin_pool_table;
528 
529 static void pool_table_init(void)
530 {
531 	mutex_init(&dm_thin_pool_table.mutex);
532 	INIT_LIST_HEAD(&dm_thin_pool_table.pools);
533 }
534 
535 static void pool_table_exit(void)
536 {
537 	mutex_destroy(&dm_thin_pool_table.mutex);
538 }
539 
540 static void __pool_table_insert(struct pool *pool)
541 {
542 	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
543 	list_add(&pool->list, &dm_thin_pool_table.pools);
544 }
545 
546 static void __pool_table_remove(struct pool *pool)
547 {
548 	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
549 	list_del(&pool->list);
550 }
551 
552 static struct pool *__pool_table_lookup(struct mapped_device *md)
553 {
554 	struct pool *pool = NULL, *tmp;
555 
556 	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
557 
558 	list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
559 		if (tmp->pool_md == md) {
560 			pool = tmp;
561 			break;
562 		}
563 	}
564 
565 	return pool;
566 }
567 
568 static struct pool *__pool_table_lookup_metadata_dev(struct block_device *md_dev)
569 {
570 	struct pool *pool = NULL, *tmp;
571 
572 	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
573 
574 	list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
575 		if (tmp->md_dev == md_dev) {
576 			pool = tmp;
577 			break;
578 		}
579 	}
580 
581 	return pool;
582 }
583 
584 /*----------------------------------------------------------------*/
585 
586 struct dm_thin_endio_hook {
587 	struct thin_c *tc;
588 	struct dm_deferred_entry *shared_read_entry;
589 	struct dm_deferred_entry *all_io_entry;
590 	struct dm_thin_new_mapping *overwrite_mapping;
591 	struct rb_node rb_node;
592 	struct dm_bio_prison_cell *cell;
593 };
594 
595 static void __merge_bio_list(struct bio_list *bios, struct bio_list *master)
596 {
597 	bio_list_merge(bios, master);
598 	bio_list_init(master);
599 }
600 
601 static void error_bio_list(struct bio_list *bios, blk_status_t error)
602 {
603 	struct bio *bio;
604 
605 	while ((bio = bio_list_pop(bios))) {
606 		bio->bi_status = error;
607 		bio_endio(bio);
608 	}
609 }
610 
611 static void error_thin_bio_list(struct thin_c *tc, struct bio_list *master,
612 		blk_status_t error)
613 {
614 	struct bio_list bios;
615 
616 	bio_list_init(&bios);
617 
618 	spin_lock_irq(&tc->lock);
619 	__merge_bio_list(&bios, master);
620 	spin_unlock_irq(&tc->lock);
621 
622 	error_bio_list(&bios, error);
623 }
624 
625 static void requeue_deferred_cells(struct thin_c *tc)
626 {
627 	struct pool *pool = tc->pool;
628 	struct list_head cells;
629 	struct dm_bio_prison_cell *cell, *tmp;
630 
631 	INIT_LIST_HEAD(&cells);
632 
633 	spin_lock_irq(&tc->lock);
634 	list_splice_init(&tc->deferred_cells, &cells);
635 	spin_unlock_irq(&tc->lock);
636 
637 	list_for_each_entry_safe(cell, tmp, &cells, user_list)
638 		cell_requeue(pool, cell);
639 }
640 
641 static void requeue_io(struct thin_c *tc)
642 {
643 	struct bio_list bios;
644 
645 	bio_list_init(&bios);
646 
647 	spin_lock_irq(&tc->lock);
648 	__merge_bio_list(&bios, &tc->deferred_bio_list);
649 	__merge_bio_list(&bios, &tc->retry_on_resume_list);
650 	spin_unlock_irq(&tc->lock);
651 
652 	error_bio_list(&bios, BLK_STS_DM_REQUEUE);
653 	requeue_deferred_cells(tc);
654 }
655 
656 static void error_retry_list_with_code(struct pool *pool, blk_status_t error)
657 {
658 	struct thin_c *tc;
659 
660 	rcu_read_lock();
661 	list_for_each_entry_rcu(tc, &pool->active_thins, list)
662 		error_thin_bio_list(tc, &tc->retry_on_resume_list, error);
663 	rcu_read_unlock();
664 }
665 
666 static void error_retry_list(struct pool *pool)
667 {
668 	error_retry_list_with_code(pool, get_pool_io_error_code(pool));
669 }
670 
671 /*
672  * This section of code contains the logic for processing a thin device's IO.
673  * Much of the code depends on pool object resources (lists, workqueues, etc)
674  * but most is exclusively called from the thin target rather than the thin-pool
675  * target.
676  */
677 
678 static dm_block_t get_bio_block(struct thin_c *tc, struct bio *bio)
679 {
680 	struct pool *pool = tc->pool;
681 	sector_t block_nr = bio->bi_iter.bi_sector;
682 
683 	if (block_size_is_power_of_two(pool))
684 		block_nr >>= pool->sectors_per_block_shift;
685 	else
686 		(void) sector_div(block_nr, pool->sectors_per_block);
687 
688 	return block_nr;
689 }
690 
691 /*
692  * Returns the _complete_ blocks that this bio covers.
693  */
694 static void get_bio_block_range(struct thin_c *tc, struct bio *bio,
695 				dm_block_t *begin, dm_block_t *end)
696 {
697 	struct pool *pool = tc->pool;
698 	sector_t b = bio->bi_iter.bi_sector;
699 	sector_t e = b + (bio->bi_iter.bi_size >> SECTOR_SHIFT);
700 
701 	b += pool->sectors_per_block - 1ull; /* so we round up */
702 
703 	if (block_size_is_power_of_two(pool)) {
704 		b >>= pool->sectors_per_block_shift;
705 		e >>= pool->sectors_per_block_shift;
706 	} else {
707 		(void) sector_div(b, pool->sectors_per_block);
708 		(void) sector_div(e, pool->sectors_per_block);
709 	}
710 
711 	if (e < b) {
712 		/* Can happen if the bio is within a single block. */
713 		e = b;
714 	}
715 
716 	*begin = b;
717 	*end = e;
718 }
719 
720 static void remap(struct thin_c *tc, struct bio *bio, dm_block_t block)
721 {
722 	struct pool *pool = tc->pool;
723 	sector_t bi_sector = bio->bi_iter.bi_sector;
724 
725 	bio_set_dev(bio, tc->pool_dev->bdev);
726 	if (block_size_is_power_of_two(pool)) {
727 		bio->bi_iter.bi_sector =
728 			(block << pool->sectors_per_block_shift) |
729 			(bi_sector & (pool->sectors_per_block - 1));
730 	} else {
731 		bio->bi_iter.bi_sector = (block * pool->sectors_per_block) +
732 				 sector_div(bi_sector, pool->sectors_per_block);
733 	}
734 }
735 
736 static void remap_to_origin(struct thin_c *tc, struct bio *bio)
737 {
738 	bio_set_dev(bio, tc->origin_dev->bdev);
739 }
740 
741 static int bio_triggers_commit(struct thin_c *tc, struct bio *bio)
742 {
743 	return op_is_flush(bio->bi_opf) &&
744 		dm_thin_changed_this_transaction(tc->td);
745 }
746 
747 static void inc_all_io_entry(struct pool *pool, struct bio *bio)
748 {
749 	struct dm_thin_endio_hook *h;
750 
751 	if (bio_op(bio) == REQ_OP_DISCARD)
752 		return;
753 
754 	h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
755 	h->all_io_entry = dm_deferred_entry_inc(pool->all_io_ds);
756 }
757 
758 static void issue(struct thin_c *tc, struct bio *bio)
759 {
760 	struct pool *pool = tc->pool;
761 
762 	if (!bio_triggers_commit(tc, bio)) {
763 		dm_submit_bio_remap(bio, NULL);
764 		return;
765 	}
766 
767 	/*
768 	 * Complete bio with an error if earlier I/O caused changes to
769 	 * the metadata that can't be committed e.g, due to I/O errors
770 	 * on the metadata device.
771 	 */
772 	if (dm_thin_aborted_changes(tc->td)) {
773 		bio_io_error(bio);
774 		return;
775 	}
776 
777 	/*
778 	 * Batch together any bios that trigger commits and then issue a
779 	 * single commit for them in process_deferred_bios().
780 	 */
781 	spin_lock_irq(&pool->lock);
782 	bio_list_add(&pool->deferred_flush_bios, bio);
783 	spin_unlock_irq(&pool->lock);
784 }
785 
786 static void remap_to_origin_and_issue(struct thin_c *tc, struct bio *bio)
787 {
788 	remap_to_origin(tc, bio);
789 	issue(tc, bio);
790 }
791 
792 static void remap_and_issue(struct thin_c *tc, struct bio *bio,
793 			    dm_block_t block)
794 {
795 	remap(tc, bio, block);
796 	issue(tc, bio);
797 }
798 
799 /*----------------------------------------------------------------*/
800 
801 /*
802  * Bio endio functions.
803  */
804 struct dm_thin_new_mapping {
805 	struct list_head list;
806 
807 	bool pass_discard:1;
808 	bool maybe_shared:1;
809 
810 	/*
811 	 * Track quiescing, copying and zeroing preparation actions.  When this
812 	 * counter hits zero the block is prepared and can be inserted into the
813 	 * btree.
814 	 */
815 	atomic_t prepare_actions;
816 
817 	blk_status_t status;
818 	struct thin_c *tc;
819 	dm_block_t virt_begin, virt_end;
820 	dm_block_t data_block;
821 	struct dm_bio_prison_cell *cell;
822 
823 	/*
824 	 * If the bio covers the whole area of a block then we can avoid
825 	 * zeroing or copying.  Instead this bio is hooked.  The bio will
826 	 * still be in the cell, so care has to be taken to avoid issuing
827 	 * the bio twice.
828 	 */
829 	struct bio *bio;
830 	bio_end_io_t *saved_bi_end_io;
831 };
832 
833 static void __complete_mapping_preparation(struct dm_thin_new_mapping *m)
834 {
835 	struct pool *pool = m->tc->pool;
836 
837 	if (atomic_dec_and_test(&m->prepare_actions)) {
838 		list_add_tail(&m->list, &pool->prepared_mappings);
839 		wake_worker(pool);
840 	}
841 }
842 
843 static void complete_mapping_preparation(struct dm_thin_new_mapping *m)
844 {
845 	unsigned long flags;
846 	struct pool *pool = m->tc->pool;
847 
848 	spin_lock_irqsave(&pool->lock, flags);
849 	__complete_mapping_preparation(m);
850 	spin_unlock_irqrestore(&pool->lock, flags);
851 }
852 
853 static void copy_complete(int read_err, unsigned long write_err, void *context)
854 {
855 	struct dm_thin_new_mapping *m = context;
856 
857 	m->status = read_err || write_err ? BLK_STS_IOERR : 0;
858 	complete_mapping_preparation(m);
859 }
860 
861 static void overwrite_endio(struct bio *bio)
862 {
863 	struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
864 	struct dm_thin_new_mapping *m = h->overwrite_mapping;
865 
866 	bio->bi_end_io = m->saved_bi_end_io;
867 
868 	m->status = bio->bi_status;
869 	complete_mapping_preparation(m);
870 }
871 
872 /*----------------------------------------------------------------*/
873 
874 /*
875  * Workqueue.
876  */
877 
878 /*
879  * Prepared mapping jobs.
880  */
881 
882 /*
883  * This sends the bios in the cell, except the original holder, back
884  * to the deferred_bios list.
885  */
886 static void cell_defer_no_holder(struct thin_c *tc, struct dm_bio_prison_cell *cell)
887 {
888 	struct pool *pool = tc->pool;
889 	unsigned long flags;
890 	struct bio_list bios;
891 
892 	bio_list_init(&bios);
893 	cell_release_no_holder(pool, cell, &bios);
894 
895 	if (!bio_list_empty(&bios)) {
896 		spin_lock_irqsave(&tc->lock, flags);
897 		bio_list_merge(&tc->deferred_bio_list, &bios);
898 		spin_unlock_irqrestore(&tc->lock, flags);
899 		wake_worker(pool);
900 	}
901 }
902 
903 static void thin_defer_bio(struct thin_c *tc, struct bio *bio);
904 
905 struct remap_info {
906 	struct thin_c *tc;
907 	struct bio_list defer_bios;
908 	struct bio_list issue_bios;
909 };
910 
911 static void __inc_remap_and_issue_cell(void *context,
912 				       struct dm_bio_prison_cell *cell)
913 {
914 	struct remap_info *info = context;
915 	struct bio *bio;
916 
917 	while ((bio = bio_list_pop(&cell->bios))) {
918 		if (op_is_flush(bio->bi_opf) || bio_op(bio) == REQ_OP_DISCARD)
919 			bio_list_add(&info->defer_bios, bio);
920 		else {
921 			inc_all_io_entry(info->tc->pool, bio);
922 
923 			/*
924 			 * We can't issue the bios with the bio prison lock
925 			 * held, so we add them to a list to issue on
926 			 * return from this function.
927 			 */
928 			bio_list_add(&info->issue_bios, bio);
929 		}
930 	}
931 }
932 
933 static void inc_remap_and_issue_cell(struct thin_c *tc,
934 				     struct dm_bio_prison_cell *cell,
935 				     dm_block_t block)
936 {
937 	struct bio *bio;
938 	struct remap_info info;
939 
940 	info.tc = tc;
941 	bio_list_init(&info.defer_bios);
942 	bio_list_init(&info.issue_bios);
943 
944 	/*
945 	 * We have to be careful to inc any bios we're about to issue
946 	 * before the cell is released, and avoid a race with new bios
947 	 * being added to the cell.
948 	 */
949 	cell_visit_release(tc->pool, __inc_remap_and_issue_cell,
950 			   &info, cell);
951 
952 	while ((bio = bio_list_pop(&info.defer_bios)))
953 		thin_defer_bio(tc, bio);
954 
955 	while ((bio = bio_list_pop(&info.issue_bios)))
956 		remap_and_issue(info.tc, bio, block);
957 }
958 
959 static void process_prepared_mapping_fail(struct dm_thin_new_mapping *m)
960 {
961 	cell_error(m->tc->pool, m->cell);
962 	list_del(&m->list);
963 	mempool_free(m, &m->tc->pool->mapping_pool);
964 }
965 
966 static void complete_overwrite_bio(struct thin_c *tc, struct bio *bio)
967 {
968 	struct pool *pool = tc->pool;
969 
970 	/*
971 	 * If the bio has the REQ_FUA flag set we must commit the metadata
972 	 * before signaling its completion.
973 	 */
974 	if (!bio_triggers_commit(tc, bio)) {
975 		bio_endio(bio);
976 		return;
977 	}
978 
979 	/*
980 	 * Complete bio with an error if earlier I/O caused changes to the
981 	 * metadata that can't be committed, e.g, due to I/O errors on the
982 	 * metadata device.
983 	 */
984 	if (dm_thin_aborted_changes(tc->td)) {
985 		bio_io_error(bio);
986 		return;
987 	}
988 
989 	/*
990 	 * Batch together any bios that trigger commits and then issue a
991 	 * single commit for them in process_deferred_bios().
992 	 */
993 	spin_lock_irq(&pool->lock);
994 	bio_list_add(&pool->deferred_flush_completions, bio);
995 	spin_unlock_irq(&pool->lock);
996 }
997 
998 static void process_prepared_mapping(struct dm_thin_new_mapping *m)
999 {
1000 	struct thin_c *tc = m->tc;
1001 	struct pool *pool = tc->pool;
1002 	struct bio *bio = m->bio;
1003 	int r;
1004 
1005 	if (m->status) {
1006 		cell_error(pool, m->cell);
1007 		goto out;
1008 	}
1009 
1010 	/*
1011 	 * Commit the prepared block into the mapping btree.
1012 	 * Any I/O for this block arriving after this point will get
1013 	 * remapped to it directly.
1014 	 */
1015 	r = dm_thin_insert_block(tc->td, m->virt_begin, m->data_block);
1016 	if (r) {
1017 		metadata_operation_failed(pool, "dm_thin_insert_block", r);
1018 		cell_error(pool, m->cell);
1019 		goto out;
1020 	}
1021 
1022 	/*
1023 	 * Release any bios held while the block was being provisioned.
1024 	 * If we are processing a write bio that completely covers the block,
1025 	 * we already processed it so can ignore it now when processing
1026 	 * the bios in the cell.
1027 	 */
1028 	if (bio) {
1029 		inc_remap_and_issue_cell(tc, m->cell, m->data_block);
1030 		complete_overwrite_bio(tc, bio);
1031 	} else {
1032 		inc_all_io_entry(tc->pool, m->cell->holder);
1033 		remap_and_issue(tc, m->cell->holder, m->data_block);
1034 		inc_remap_and_issue_cell(tc, m->cell, m->data_block);
1035 	}
1036 
1037 out:
1038 	list_del(&m->list);
1039 	mempool_free(m, &pool->mapping_pool);
1040 }
1041 
1042 /*----------------------------------------------------------------*/
1043 
1044 static void free_discard_mapping(struct dm_thin_new_mapping *m)
1045 {
1046 	struct thin_c *tc = m->tc;
1047 
1048 	if (m->cell)
1049 		cell_defer_no_holder(tc, m->cell);
1050 	mempool_free(m, &tc->pool->mapping_pool);
1051 }
1052 
1053 static void process_prepared_discard_fail(struct dm_thin_new_mapping *m)
1054 {
1055 	bio_io_error(m->bio);
1056 	free_discard_mapping(m);
1057 }
1058 
1059 static void process_prepared_discard_success(struct dm_thin_new_mapping *m)
1060 {
1061 	bio_endio(m->bio);
1062 	free_discard_mapping(m);
1063 }
1064 
1065 static void process_prepared_discard_no_passdown(struct dm_thin_new_mapping *m)
1066 {
1067 	int r;
1068 	struct thin_c *tc = m->tc;
1069 
1070 	r = dm_thin_remove_range(tc->td, m->cell->key.block_begin, m->cell->key.block_end);
1071 	if (r) {
1072 		metadata_operation_failed(tc->pool, "dm_thin_remove_range", r);
1073 		bio_io_error(m->bio);
1074 	} else
1075 		bio_endio(m->bio);
1076 
1077 	cell_defer_no_holder(tc, m->cell);
1078 	mempool_free(m, &tc->pool->mapping_pool);
1079 }
1080 
1081 /*----------------------------------------------------------------*/
1082 
1083 static void passdown_double_checking_shared_status(struct dm_thin_new_mapping *m,
1084 						   struct bio *discard_parent)
1085 {
1086 	/*
1087 	 * We've already unmapped this range of blocks, but before we
1088 	 * passdown we have to check that these blocks are now unused.
1089 	 */
1090 	int r = 0;
1091 	bool shared = true;
1092 	struct thin_c *tc = m->tc;
1093 	struct pool *pool = tc->pool;
1094 	dm_block_t b = m->data_block, e, end = m->data_block + m->virt_end - m->virt_begin;
1095 	struct discard_op op;
1096 
1097 	begin_discard(&op, tc, discard_parent);
1098 	while (b != end) {
1099 		/* find start of unmapped run */
1100 		for (; b < end; b++) {
1101 			r = dm_pool_block_is_shared(pool->pmd, b, &shared);
1102 			if (r)
1103 				goto out;
1104 
1105 			if (!shared)
1106 				break;
1107 		}
1108 
1109 		if (b == end)
1110 			break;
1111 
1112 		/* find end of run */
1113 		for (e = b + 1; e != end; e++) {
1114 			r = dm_pool_block_is_shared(pool->pmd, e, &shared);
1115 			if (r)
1116 				goto out;
1117 
1118 			if (shared)
1119 				break;
1120 		}
1121 
1122 		r = issue_discard(&op, b, e);
1123 		if (r)
1124 			goto out;
1125 
1126 		b = e;
1127 	}
1128 out:
1129 	end_discard(&op, r);
1130 }
1131 
1132 static void queue_passdown_pt2(struct dm_thin_new_mapping *m)
1133 {
1134 	unsigned long flags;
1135 	struct pool *pool = m->tc->pool;
1136 
1137 	spin_lock_irqsave(&pool->lock, flags);
1138 	list_add_tail(&m->list, &pool->prepared_discards_pt2);
1139 	spin_unlock_irqrestore(&pool->lock, flags);
1140 	wake_worker(pool);
1141 }
1142 
1143 static void passdown_endio(struct bio *bio)
1144 {
1145 	/*
1146 	 * It doesn't matter if the passdown discard failed, we still want
1147 	 * to unmap (we ignore err).
1148 	 */
1149 	queue_passdown_pt2(bio->bi_private);
1150 	bio_put(bio);
1151 }
1152 
1153 static void process_prepared_discard_passdown_pt1(struct dm_thin_new_mapping *m)
1154 {
1155 	int r;
1156 	struct thin_c *tc = m->tc;
1157 	struct pool *pool = tc->pool;
1158 	struct bio *discard_parent;
1159 	dm_block_t data_end = m->data_block + (m->virt_end - m->virt_begin);
1160 
1161 	/*
1162 	 * Only this thread allocates blocks, so we can be sure that the
1163 	 * newly unmapped blocks will not be allocated before the end of
1164 	 * the function.
1165 	 */
1166 	r = dm_thin_remove_range(tc->td, m->virt_begin, m->virt_end);
1167 	if (r) {
1168 		metadata_operation_failed(pool, "dm_thin_remove_range", r);
1169 		bio_io_error(m->bio);
1170 		cell_defer_no_holder(tc, m->cell);
1171 		mempool_free(m, &pool->mapping_pool);
1172 		return;
1173 	}
1174 
1175 	/*
1176 	 * Increment the unmapped blocks.  This prevents a race between the
1177 	 * passdown io and reallocation of freed blocks.
1178 	 */
1179 	r = dm_pool_inc_data_range(pool->pmd, m->data_block, data_end);
1180 	if (r) {
1181 		metadata_operation_failed(pool, "dm_pool_inc_data_range", r);
1182 		bio_io_error(m->bio);
1183 		cell_defer_no_holder(tc, m->cell);
1184 		mempool_free(m, &pool->mapping_pool);
1185 		return;
1186 	}
1187 
1188 	discard_parent = bio_alloc(NULL, 1, 0, GFP_NOIO);
1189 	discard_parent->bi_end_io = passdown_endio;
1190 	discard_parent->bi_private = m;
1191 	if (m->maybe_shared)
1192 		passdown_double_checking_shared_status(m, discard_parent);
1193 	else {
1194 		struct discard_op op;
1195 
1196 		begin_discard(&op, tc, discard_parent);
1197 		r = issue_discard(&op, m->data_block, data_end);
1198 		end_discard(&op, r);
1199 	}
1200 }
1201 
1202 static void process_prepared_discard_passdown_pt2(struct dm_thin_new_mapping *m)
1203 {
1204 	int r;
1205 	struct thin_c *tc = m->tc;
1206 	struct pool *pool = tc->pool;
1207 
1208 	/*
1209 	 * The passdown has completed, so now we can decrement all those
1210 	 * unmapped blocks.
1211 	 */
1212 	r = dm_pool_dec_data_range(pool->pmd, m->data_block,
1213 				   m->data_block + (m->virt_end - m->virt_begin));
1214 	if (r) {
1215 		metadata_operation_failed(pool, "dm_pool_dec_data_range", r);
1216 		bio_io_error(m->bio);
1217 	} else
1218 		bio_endio(m->bio);
1219 
1220 	cell_defer_no_holder(tc, m->cell);
1221 	mempool_free(m, &pool->mapping_pool);
1222 }
1223 
1224 static void process_prepared(struct pool *pool, struct list_head *head,
1225 			     process_mapping_fn *fn)
1226 {
1227 	struct list_head maps;
1228 	struct dm_thin_new_mapping *m, *tmp;
1229 
1230 	INIT_LIST_HEAD(&maps);
1231 	spin_lock_irq(&pool->lock);
1232 	list_splice_init(head, &maps);
1233 	spin_unlock_irq(&pool->lock);
1234 
1235 	list_for_each_entry_safe(m, tmp, &maps, list)
1236 		(*fn)(m);
1237 }
1238 
1239 /*
1240  * Deferred bio jobs.
1241  */
1242 static int io_overlaps_block(struct pool *pool, struct bio *bio)
1243 {
1244 	return bio->bi_iter.bi_size ==
1245 		(pool->sectors_per_block << SECTOR_SHIFT);
1246 }
1247 
1248 static int io_overwrites_block(struct pool *pool, struct bio *bio)
1249 {
1250 	return (bio_data_dir(bio) == WRITE) &&
1251 		io_overlaps_block(pool, bio);
1252 }
1253 
1254 static void save_and_set_endio(struct bio *bio, bio_end_io_t **save,
1255 			       bio_end_io_t *fn)
1256 {
1257 	*save = bio->bi_end_io;
1258 	bio->bi_end_io = fn;
1259 }
1260 
1261 static int ensure_next_mapping(struct pool *pool)
1262 {
1263 	if (pool->next_mapping)
1264 		return 0;
1265 
1266 	pool->next_mapping = mempool_alloc(&pool->mapping_pool, GFP_ATOMIC);
1267 
1268 	return pool->next_mapping ? 0 : -ENOMEM;
1269 }
1270 
1271 static struct dm_thin_new_mapping *get_next_mapping(struct pool *pool)
1272 {
1273 	struct dm_thin_new_mapping *m = pool->next_mapping;
1274 
1275 	BUG_ON(!pool->next_mapping);
1276 
1277 	memset(m, 0, sizeof(struct dm_thin_new_mapping));
1278 	INIT_LIST_HEAD(&m->list);
1279 	m->bio = NULL;
1280 
1281 	pool->next_mapping = NULL;
1282 
1283 	return m;
1284 }
1285 
1286 static void ll_zero(struct thin_c *tc, struct dm_thin_new_mapping *m,
1287 		    sector_t begin, sector_t end)
1288 {
1289 	struct dm_io_region to;
1290 
1291 	to.bdev = tc->pool_dev->bdev;
1292 	to.sector = begin;
1293 	to.count = end - begin;
1294 
1295 	dm_kcopyd_zero(tc->pool->copier, 1, &to, 0, copy_complete, m);
1296 }
1297 
1298 static void remap_and_issue_overwrite(struct thin_c *tc, struct bio *bio,
1299 				      dm_block_t data_begin,
1300 				      struct dm_thin_new_mapping *m)
1301 {
1302 	struct pool *pool = tc->pool;
1303 	struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1304 
1305 	h->overwrite_mapping = m;
1306 	m->bio = bio;
1307 	save_and_set_endio(bio, &m->saved_bi_end_io, overwrite_endio);
1308 	inc_all_io_entry(pool, bio);
1309 	remap_and_issue(tc, bio, data_begin);
1310 }
1311 
1312 /*
1313  * A partial copy also needs to zero the uncopied region.
1314  */
1315 static void schedule_copy(struct thin_c *tc, dm_block_t virt_block,
1316 			  struct dm_dev *origin, dm_block_t data_origin,
1317 			  dm_block_t data_dest,
1318 			  struct dm_bio_prison_cell *cell, struct bio *bio,
1319 			  sector_t len)
1320 {
1321 	struct pool *pool = tc->pool;
1322 	struct dm_thin_new_mapping *m = get_next_mapping(pool);
1323 
1324 	m->tc = tc;
1325 	m->virt_begin = virt_block;
1326 	m->virt_end = virt_block + 1u;
1327 	m->data_block = data_dest;
1328 	m->cell = cell;
1329 
1330 	/*
1331 	 * quiesce action + copy action + an extra reference held for the
1332 	 * duration of this function (we may need to inc later for a
1333 	 * partial zero).
1334 	 */
1335 	atomic_set(&m->prepare_actions, 3);
1336 
1337 	if (!dm_deferred_set_add_work(pool->shared_read_ds, &m->list))
1338 		complete_mapping_preparation(m); /* already quiesced */
1339 
1340 	/*
1341 	 * IO to pool_dev remaps to the pool target's data_dev.
1342 	 *
1343 	 * If the whole block of data is being overwritten, we can issue the
1344 	 * bio immediately. Otherwise we use kcopyd to clone the data first.
1345 	 */
1346 	if (io_overwrites_block(pool, bio))
1347 		remap_and_issue_overwrite(tc, bio, data_dest, m);
1348 	else {
1349 		struct dm_io_region from, to;
1350 
1351 		from.bdev = origin->bdev;
1352 		from.sector = data_origin * pool->sectors_per_block;
1353 		from.count = len;
1354 
1355 		to.bdev = tc->pool_dev->bdev;
1356 		to.sector = data_dest * pool->sectors_per_block;
1357 		to.count = len;
1358 
1359 		dm_kcopyd_copy(pool->copier, &from, 1, &to,
1360 			       0, copy_complete, m);
1361 
1362 		/*
1363 		 * Do we need to zero a tail region?
1364 		 */
1365 		if (len < pool->sectors_per_block && pool->pf.zero_new_blocks) {
1366 			atomic_inc(&m->prepare_actions);
1367 			ll_zero(tc, m,
1368 				data_dest * pool->sectors_per_block + len,
1369 				(data_dest + 1) * pool->sectors_per_block);
1370 		}
1371 	}
1372 
1373 	complete_mapping_preparation(m); /* drop our ref */
1374 }
1375 
1376 static void schedule_internal_copy(struct thin_c *tc, dm_block_t virt_block,
1377 				   dm_block_t data_origin, dm_block_t data_dest,
1378 				   struct dm_bio_prison_cell *cell, struct bio *bio)
1379 {
1380 	schedule_copy(tc, virt_block, tc->pool_dev,
1381 		      data_origin, data_dest, cell, bio,
1382 		      tc->pool->sectors_per_block);
1383 }
1384 
1385 static void schedule_zero(struct thin_c *tc, dm_block_t virt_block,
1386 			  dm_block_t data_block, struct dm_bio_prison_cell *cell,
1387 			  struct bio *bio)
1388 {
1389 	struct pool *pool = tc->pool;
1390 	struct dm_thin_new_mapping *m = get_next_mapping(pool);
1391 
1392 	atomic_set(&m->prepare_actions, 1); /* no need to quiesce */
1393 	m->tc = tc;
1394 	m->virt_begin = virt_block;
1395 	m->virt_end = virt_block + 1u;
1396 	m->data_block = data_block;
1397 	m->cell = cell;
1398 
1399 	/*
1400 	 * If the whole block of data is being overwritten or we are not
1401 	 * zeroing pre-existing data, we can issue the bio immediately.
1402 	 * Otherwise we use kcopyd to zero the data first.
1403 	 */
1404 	if (pool->pf.zero_new_blocks) {
1405 		if (io_overwrites_block(pool, bio))
1406 			remap_and_issue_overwrite(tc, bio, data_block, m);
1407 		else {
1408 			ll_zero(tc, m, data_block * pool->sectors_per_block,
1409 				(data_block + 1) * pool->sectors_per_block);
1410 		}
1411 	} else
1412 		process_prepared_mapping(m);
1413 }
1414 
1415 static void schedule_external_copy(struct thin_c *tc, dm_block_t virt_block,
1416 				   dm_block_t data_dest,
1417 				   struct dm_bio_prison_cell *cell, struct bio *bio)
1418 {
1419 	struct pool *pool = tc->pool;
1420 	sector_t virt_block_begin = virt_block * pool->sectors_per_block;
1421 	sector_t virt_block_end = (virt_block + 1) * pool->sectors_per_block;
1422 
1423 	if (virt_block_end <= tc->origin_size) {
1424 		schedule_copy(tc, virt_block, tc->origin_dev,
1425 			      virt_block, data_dest, cell, bio,
1426 			      pool->sectors_per_block);
1427 
1428 	} else if (virt_block_begin < tc->origin_size) {
1429 		schedule_copy(tc, virt_block, tc->origin_dev,
1430 			      virt_block, data_dest, cell, bio,
1431 			      tc->origin_size - virt_block_begin);
1432 
1433 	} else
1434 		schedule_zero(tc, virt_block, data_dest, cell, bio);
1435 }
1436 
1437 static void set_pool_mode(struct pool *pool, enum pool_mode new_mode);
1438 
1439 static void requeue_bios(struct pool *pool);
1440 
1441 static bool is_read_only_pool_mode(enum pool_mode mode)
1442 {
1443 	return (mode == PM_OUT_OF_METADATA_SPACE || mode == PM_READ_ONLY);
1444 }
1445 
1446 static bool is_read_only(struct pool *pool)
1447 {
1448 	return is_read_only_pool_mode(get_pool_mode(pool));
1449 }
1450 
1451 static void check_for_metadata_space(struct pool *pool)
1452 {
1453 	int r;
1454 	const char *ooms_reason = NULL;
1455 	dm_block_t nr_free;
1456 
1457 	r = dm_pool_get_free_metadata_block_count(pool->pmd, &nr_free);
1458 	if (r)
1459 		ooms_reason = "Could not get free metadata blocks";
1460 	else if (!nr_free)
1461 		ooms_reason = "No free metadata blocks";
1462 
1463 	if (ooms_reason && !is_read_only(pool)) {
1464 		DMERR("%s", ooms_reason);
1465 		set_pool_mode(pool, PM_OUT_OF_METADATA_SPACE);
1466 	}
1467 }
1468 
1469 static void check_for_data_space(struct pool *pool)
1470 {
1471 	int r;
1472 	dm_block_t nr_free;
1473 
1474 	if (get_pool_mode(pool) != PM_OUT_OF_DATA_SPACE)
1475 		return;
1476 
1477 	r = dm_pool_get_free_block_count(pool->pmd, &nr_free);
1478 	if (r)
1479 		return;
1480 
1481 	if (nr_free) {
1482 		set_pool_mode(pool, PM_WRITE);
1483 		requeue_bios(pool);
1484 	}
1485 }
1486 
1487 /*
1488  * A non-zero return indicates read_only or fail_io mode.
1489  * Many callers don't care about the return value.
1490  */
1491 static int commit(struct pool *pool)
1492 {
1493 	int r;
1494 
1495 	if (get_pool_mode(pool) >= PM_OUT_OF_METADATA_SPACE)
1496 		return -EINVAL;
1497 
1498 	r = dm_pool_commit_metadata(pool->pmd);
1499 	if (r)
1500 		metadata_operation_failed(pool, "dm_pool_commit_metadata", r);
1501 	else {
1502 		check_for_metadata_space(pool);
1503 		check_for_data_space(pool);
1504 	}
1505 
1506 	return r;
1507 }
1508 
1509 static void check_low_water_mark(struct pool *pool, dm_block_t free_blocks)
1510 {
1511 	if (free_blocks <= pool->low_water_blocks && !pool->low_water_triggered) {
1512 		DMWARN("%s: reached low water mark for data device: sending event.",
1513 		       dm_device_name(pool->pool_md));
1514 		spin_lock_irq(&pool->lock);
1515 		pool->low_water_triggered = true;
1516 		spin_unlock_irq(&pool->lock);
1517 		dm_table_event(pool->ti->table);
1518 	}
1519 }
1520 
1521 static int alloc_data_block(struct thin_c *tc, dm_block_t *result)
1522 {
1523 	int r;
1524 	dm_block_t free_blocks;
1525 	struct pool *pool = tc->pool;
1526 
1527 	if (WARN_ON(get_pool_mode(pool) != PM_WRITE))
1528 		return -EINVAL;
1529 
1530 	r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
1531 	if (r) {
1532 		metadata_operation_failed(pool, "dm_pool_get_free_block_count", r);
1533 		return r;
1534 	}
1535 
1536 	check_low_water_mark(pool, free_blocks);
1537 
1538 	if (!free_blocks) {
1539 		/*
1540 		 * Try to commit to see if that will free up some
1541 		 * more space.
1542 		 */
1543 		r = commit(pool);
1544 		if (r)
1545 			return r;
1546 
1547 		r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
1548 		if (r) {
1549 			metadata_operation_failed(pool, "dm_pool_get_free_block_count", r);
1550 			return r;
1551 		}
1552 
1553 		if (!free_blocks) {
1554 			set_pool_mode(pool, PM_OUT_OF_DATA_SPACE);
1555 			return -ENOSPC;
1556 		}
1557 	}
1558 
1559 	r = dm_pool_alloc_data_block(pool->pmd, result);
1560 	if (r) {
1561 		if (r == -ENOSPC)
1562 			set_pool_mode(pool, PM_OUT_OF_DATA_SPACE);
1563 		else
1564 			metadata_operation_failed(pool, "dm_pool_alloc_data_block", r);
1565 		return r;
1566 	}
1567 
1568 	r = dm_pool_get_free_metadata_block_count(pool->pmd, &free_blocks);
1569 	if (r) {
1570 		metadata_operation_failed(pool, "dm_pool_get_free_metadata_block_count", r);
1571 		return r;
1572 	}
1573 
1574 	if (!free_blocks) {
1575 		/* Let's commit before we use up the metadata reserve. */
1576 		r = commit(pool);
1577 		if (r)
1578 			return r;
1579 	}
1580 
1581 	return 0;
1582 }
1583 
1584 /*
1585  * If we have run out of space, queue bios until the device is
1586  * resumed, presumably after having been reloaded with more space.
1587  */
1588 static void retry_on_resume(struct bio *bio)
1589 {
1590 	struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1591 	struct thin_c *tc = h->tc;
1592 
1593 	spin_lock_irq(&tc->lock);
1594 	bio_list_add(&tc->retry_on_resume_list, bio);
1595 	spin_unlock_irq(&tc->lock);
1596 }
1597 
1598 static blk_status_t should_error_unserviceable_bio(struct pool *pool)
1599 {
1600 	enum pool_mode m = get_pool_mode(pool);
1601 
1602 	switch (m) {
1603 	case PM_WRITE:
1604 		/* Shouldn't get here */
1605 		DMERR_LIMIT("bio unserviceable, yet pool is in PM_WRITE mode");
1606 		return BLK_STS_IOERR;
1607 
1608 	case PM_OUT_OF_DATA_SPACE:
1609 		return pool->pf.error_if_no_space ? BLK_STS_NOSPC : 0;
1610 
1611 	case PM_OUT_OF_METADATA_SPACE:
1612 	case PM_READ_ONLY:
1613 	case PM_FAIL:
1614 		return BLK_STS_IOERR;
1615 	default:
1616 		/* Shouldn't get here */
1617 		DMERR_LIMIT("bio unserviceable, yet pool has an unknown mode");
1618 		return BLK_STS_IOERR;
1619 	}
1620 }
1621 
1622 static void handle_unserviceable_bio(struct pool *pool, struct bio *bio)
1623 {
1624 	blk_status_t error = should_error_unserviceable_bio(pool);
1625 
1626 	if (error) {
1627 		bio->bi_status = error;
1628 		bio_endio(bio);
1629 	} else
1630 		retry_on_resume(bio);
1631 }
1632 
1633 static void retry_bios_on_resume(struct pool *pool, struct dm_bio_prison_cell *cell)
1634 {
1635 	struct bio *bio;
1636 	struct bio_list bios;
1637 	blk_status_t error;
1638 
1639 	error = should_error_unserviceable_bio(pool);
1640 	if (error) {
1641 		cell_error_with_code(pool, cell, error);
1642 		return;
1643 	}
1644 
1645 	bio_list_init(&bios);
1646 	cell_release(pool, cell, &bios);
1647 
1648 	while ((bio = bio_list_pop(&bios)))
1649 		retry_on_resume(bio);
1650 }
1651 
1652 static void process_discard_cell_no_passdown(struct thin_c *tc,
1653 					     struct dm_bio_prison_cell *virt_cell)
1654 {
1655 	struct pool *pool = tc->pool;
1656 	struct dm_thin_new_mapping *m = get_next_mapping(pool);
1657 
1658 	/*
1659 	 * We don't need to lock the data blocks, since there's no
1660 	 * passdown.  We only lock data blocks for allocation and breaking sharing.
1661 	 */
1662 	m->tc = tc;
1663 	m->virt_begin = virt_cell->key.block_begin;
1664 	m->virt_end = virt_cell->key.block_end;
1665 	m->cell = virt_cell;
1666 	m->bio = virt_cell->holder;
1667 
1668 	if (!dm_deferred_set_add_work(pool->all_io_ds, &m->list))
1669 		pool->process_prepared_discard(m);
1670 }
1671 
1672 static void break_up_discard_bio(struct thin_c *tc, dm_block_t begin, dm_block_t end,
1673 				 struct bio *bio)
1674 {
1675 	struct pool *pool = tc->pool;
1676 
1677 	int r;
1678 	bool maybe_shared;
1679 	struct dm_cell_key data_key;
1680 	struct dm_bio_prison_cell *data_cell;
1681 	struct dm_thin_new_mapping *m;
1682 	dm_block_t virt_begin, virt_end, data_begin, data_end;
1683 	dm_block_t len, next_boundary;
1684 
1685 	while (begin != end) {
1686 		r = dm_thin_find_mapped_range(tc->td, begin, end, &virt_begin, &virt_end,
1687 					      &data_begin, &maybe_shared);
1688 		if (r) {
1689 			/*
1690 			 * Silently fail, letting any mappings we've
1691 			 * created complete.
1692 			 */
1693 			break;
1694 		}
1695 
1696 		data_end = data_begin + (virt_end - virt_begin);
1697 
1698 		/*
1699 		 * Make sure the data region obeys the bio prison restrictions.
1700 		 */
1701 		while (data_begin < data_end) {
1702 			r = ensure_next_mapping(pool);
1703 			if (r)
1704 				return; /* we did our best */
1705 
1706 			next_boundary = ((data_begin >> BIO_PRISON_MAX_RANGE_SHIFT) + 1)
1707 				<< BIO_PRISON_MAX_RANGE_SHIFT;
1708 			len = min_t(sector_t, data_end - data_begin, next_boundary - data_begin);
1709 
1710 			/* This key is certainly within range given the above splitting */
1711 			(void) build_key(tc->td, PHYSICAL, data_begin, data_begin + len, &data_key);
1712 			if (bio_detain(tc->pool, &data_key, NULL, &data_cell)) {
1713 				/* contention, we'll give up with this range */
1714 				data_begin += len;
1715 				continue;
1716 			}
1717 
1718 			/*
1719 			 * IO may still be going to the destination block.  We must
1720 			 * quiesce before we can do the removal.
1721 			 */
1722 			m = get_next_mapping(pool);
1723 			m->tc = tc;
1724 			m->maybe_shared = maybe_shared;
1725 			m->virt_begin = virt_begin;
1726 			m->virt_end = virt_begin + len;
1727 			m->data_block = data_begin;
1728 			m->cell = data_cell;
1729 			m->bio = bio;
1730 
1731 			/*
1732 			 * The parent bio must not complete before sub discard bios are
1733 			 * chained to it (see end_discard's bio_chain)!
1734 			 *
1735 			 * This per-mapping bi_remaining increment is paired with
1736 			 * the implicit decrement that occurs via bio_endio() in
1737 			 * end_discard().
1738 			 */
1739 			bio_inc_remaining(bio);
1740 			if (!dm_deferred_set_add_work(pool->all_io_ds, &m->list))
1741 				pool->process_prepared_discard(m);
1742 
1743 			virt_begin += len;
1744 			data_begin += len;
1745 		}
1746 
1747 		begin = virt_end;
1748 	}
1749 }
1750 
1751 static void process_discard_cell_passdown(struct thin_c *tc, struct dm_bio_prison_cell *virt_cell)
1752 {
1753 	struct bio *bio = virt_cell->holder;
1754 	struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1755 
1756 	/*
1757 	 * The virt_cell will only get freed once the origin bio completes.
1758 	 * This means it will remain locked while all the individual
1759 	 * passdown bios are in flight.
1760 	 */
1761 	h->cell = virt_cell;
1762 	break_up_discard_bio(tc, virt_cell->key.block_begin, virt_cell->key.block_end, bio);
1763 
1764 	/*
1765 	 * We complete the bio now, knowing that the bi_remaining field
1766 	 * will prevent completion until the sub range discards have
1767 	 * completed.
1768 	 */
1769 	bio_endio(bio);
1770 }
1771 
1772 static void process_discard_bio(struct thin_c *tc, struct bio *bio)
1773 {
1774 	dm_block_t begin, end;
1775 	struct dm_cell_key virt_key;
1776 	struct dm_bio_prison_cell *virt_cell;
1777 
1778 	get_bio_block_range(tc, bio, &begin, &end);
1779 	if (begin == end) {
1780 		/*
1781 		 * The discard covers less than a block.
1782 		 */
1783 		bio_endio(bio);
1784 		return;
1785 	}
1786 
1787 	if (unlikely(!build_key(tc->td, VIRTUAL, begin, end, &virt_key))) {
1788 		DMERR_LIMIT("Discard doesn't respect bio prison limits");
1789 		bio_endio(bio);
1790 		return;
1791 	}
1792 
1793 	if (bio_detain(tc->pool, &virt_key, bio, &virt_cell)) {
1794 		/*
1795 		 * Potential starvation issue: We're relying on the
1796 		 * fs/application being well behaved, and not trying to
1797 		 * send IO to a region at the same time as discarding it.
1798 		 * If they do this persistently then it's possible this
1799 		 * cell will never be granted.
1800 		 */
1801 		return;
1802 	}
1803 
1804 	tc->pool->process_discard_cell(tc, virt_cell);
1805 }
1806 
1807 static void break_sharing(struct thin_c *tc, struct bio *bio, dm_block_t block,
1808 			  struct dm_cell_key *key,
1809 			  struct dm_thin_lookup_result *lookup_result,
1810 			  struct dm_bio_prison_cell *cell)
1811 {
1812 	int r;
1813 	dm_block_t data_block;
1814 	struct pool *pool = tc->pool;
1815 
1816 	r = alloc_data_block(tc, &data_block);
1817 	switch (r) {
1818 	case 0:
1819 		schedule_internal_copy(tc, block, lookup_result->block,
1820 				       data_block, cell, bio);
1821 		break;
1822 
1823 	case -ENOSPC:
1824 		retry_bios_on_resume(pool, cell);
1825 		break;
1826 
1827 	default:
1828 		DMERR_LIMIT("%s: alloc_data_block() failed: error = %d",
1829 			    __func__, r);
1830 		cell_error(pool, cell);
1831 		break;
1832 	}
1833 }
1834 
1835 static void __remap_and_issue_shared_cell(void *context,
1836 					  struct dm_bio_prison_cell *cell)
1837 {
1838 	struct remap_info *info = context;
1839 	struct bio *bio;
1840 
1841 	while ((bio = bio_list_pop(&cell->bios))) {
1842 		if (bio_data_dir(bio) == WRITE || op_is_flush(bio->bi_opf) ||
1843 		    bio_op(bio) == REQ_OP_DISCARD)
1844 			bio_list_add(&info->defer_bios, bio);
1845 		else {
1846 			struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1847 
1848 			h->shared_read_entry = dm_deferred_entry_inc(info->tc->pool->shared_read_ds);
1849 			inc_all_io_entry(info->tc->pool, bio);
1850 			bio_list_add(&info->issue_bios, bio);
1851 		}
1852 	}
1853 }
1854 
1855 static void remap_and_issue_shared_cell(struct thin_c *tc,
1856 					struct dm_bio_prison_cell *cell,
1857 					dm_block_t block)
1858 {
1859 	struct bio *bio;
1860 	struct remap_info info;
1861 
1862 	info.tc = tc;
1863 	bio_list_init(&info.defer_bios);
1864 	bio_list_init(&info.issue_bios);
1865 
1866 	cell_visit_release(tc->pool, __remap_and_issue_shared_cell,
1867 			   &info, cell);
1868 
1869 	while ((bio = bio_list_pop(&info.defer_bios)))
1870 		thin_defer_bio(tc, bio);
1871 
1872 	while ((bio = bio_list_pop(&info.issue_bios)))
1873 		remap_and_issue(tc, bio, block);
1874 }
1875 
1876 static void process_shared_bio(struct thin_c *tc, struct bio *bio,
1877 			       dm_block_t block,
1878 			       struct dm_thin_lookup_result *lookup_result,
1879 			       struct dm_bio_prison_cell *virt_cell)
1880 {
1881 	struct dm_bio_prison_cell *data_cell;
1882 	struct pool *pool = tc->pool;
1883 	struct dm_cell_key key;
1884 
1885 	/*
1886 	 * If cell is already occupied, then sharing is already in the process
1887 	 * of being broken so we have nothing further to do here.
1888 	 */
1889 	build_data_key(tc->td, lookup_result->block, &key);
1890 	if (bio_detain(pool, &key, bio, &data_cell)) {
1891 		cell_defer_no_holder(tc, virt_cell);
1892 		return;
1893 	}
1894 
1895 	if (bio_data_dir(bio) == WRITE && bio->bi_iter.bi_size) {
1896 		break_sharing(tc, bio, block, &key, lookup_result, data_cell);
1897 		cell_defer_no_holder(tc, virt_cell);
1898 	} else {
1899 		struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1900 
1901 		h->shared_read_entry = dm_deferred_entry_inc(pool->shared_read_ds);
1902 		inc_all_io_entry(pool, bio);
1903 		remap_and_issue(tc, bio, lookup_result->block);
1904 
1905 		remap_and_issue_shared_cell(tc, data_cell, lookup_result->block);
1906 		remap_and_issue_shared_cell(tc, virt_cell, lookup_result->block);
1907 	}
1908 }
1909 
1910 static void provision_block(struct thin_c *tc, struct bio *bio, dm_block_t block,
1911 			    struct dm_bio_prison_cell *cell)
1912 {
1913 	int r;
1914 	dm_block_t data_block;
1915 	struct pool *pool = tc->pool;
1916 
1917 	/*
1918 	 * Remap empty bios (flushes) immediately, without provisioning.
1919 	 */
1920 	if (!bio->bi_iter.bi_size) {
1921 		inc_all_io_entry(pool, bio);
1922 		cell_defer_no_holder(tc, cell);
1923 
1924 		remap_and_issue(tc, bio, 0);
1925 		return;
1926 	}
1927 
1928 	/*
1929 	 * Fill read bios with zeroes and complete them immediately.
1930 	 */
1931 	if (bio_data_dir(bio) == READ) {
1932 		zero_fill_bio(bio);
1933 		cell_defer_no_holder(tc, cell);
1934 		bio_endio(bio);
1935 		return;
1936 	}
1937 
1938 	r = alloc_data_block(tc, &data_block);
1939 	switch (r) {
1940 	case 0:
1941 		if (tc->origin_dev)
1942 			schedule_external_copy(tc, block, data_block, cell, bio);
1943 		else
1944 			schedule_zero(tc, block, data_block, cell, bio);
1945 		break;
1946 
1947 	case -ENOSPC:
1948 		retry_bios_on_resume(pool, cell);
1949 		break;
1950 
1951 	default:
1952 		DMERR_LIMIT("%s: alloc_data_block() failed: error = %d",
1953 			    __func__, r);
1954 		cell_error(pool, cell);
1955 		break;
1956 	}
1957 }
1958 
1959 static void process_cell(struct thin_c *tc, struct dm_bio_prison_cell *cell)
1960 {
1961 	int r;
1962 	struct pool *pool = tc->pool;
1963 	struct bio *bio = cell->holder;
1964 	dm_block_t block = get_bio_block(tc, bio);
1965 	struct dm_thin_lookup_result lookup_result;
1966 
1967 	if (tc->requeue_mode) {
1968 		cell_requeue(pool, cell);
1969 		return;
1970 	}
1971 
1972 	r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1973 	switch (r) {
1974 	case 0:
1975 		if (lookup_result.shared)
1976 			process_shared_bio(tc, bio, block, &lookup_result, cell);
1977 		else {
1978 			inc_all_io_entry(pool, bio);
1979 			remap_and_issue(tc, bio, lookup_result.block);
1980 			inc_remap_and_issue_cell(tc, cell, lookup_result.block);
1981 		}
1982 		break;
1983 
1984 	case -ENODATA:
1985 		if (bio_data_dir(bio) == READ && tc->origin_dev) {
1986 			inc_all_io_entry(pool, bio);
1987 			cell_defer_no_holder(tc, cell);
1988 
1989 			if (bio_end_sector(bio) <= tc->origin_size)
1990 				remap_to_origin_and_issue(tc, bio);
1991 
1992 			else if (bio->bi_iter.bi_sector < tc->origin_size) {
1993 				zero_fill_bio(bio);
1994 				bio->bi_iter.bi_size = (tc->origin_size - bio->bi_iter.bi_sector) << SECTOR_SHIFT;
1995 				remap_to_origin_and_issue(tc, bio);
1996 
1997 			} else {
1998 				zero_fill_bio(bio);
1999 				bio_endio(bio);
2000 			}
2001 		} else
2002 			provision_block(tc, bio, block, cell);
2003 		break;
2004 
2005 	default:
2006 		DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
2007 			    __func__, r);
2008 		cell_defer_no_holder(tc, cell);
2009 		bio_io_error(bio);
2010 		break;
2011 	}
2012 }
2013 
2014 static void process_bio(struct thin_c *tc, struct bio *bio)
2015 {
2016 	struct pool *pool = tc->pool;
2017 	dm_block_t block = get_bio_block(tc, bio);
2018 	struct dm_bio_prison_cell *cell;
2019 	struct dm_cell_key key;
2020 
2021 	/*
2022 	 * If cell is already occupied, then the block is already
2023 	 * being provisioned so we have nothing further to do here.
2024 	 */
2025 	build_virtual_key(tc->td, block, &key);
2026 	if (bio_detain(pool, &key, bio, &cell))
2027 		return;
2028 
2029 	process_cell(tc, cell);
2030 }
2031 
2032 static void __process_bio_read_only(struct thin_c *tc, struct bio *bio,
2033 				    struct dm_bio_prison_cell *cell)
2034 {
2035 	int r;
2036 	int rw = bio_data_dir(bio);
2037 	dm_block_t block = get_bio_block(tc, bio);
2038 	struct dm_thin_lookup_result lookup_result;
2039 
2040 	r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
2041 	switch (r) {
2042 	case 0:
2043 		if (lookup_result.shared && (rw == WRITE) && bio->bi_iter.bi_size) {
2044 			handle_unserviceable_bio(tc->pool, bio);
2045 			if (cell)
2046 				cell_defer_no_holder(tc, cell);
2047 		} else {
2048 			inc_all_io_entry(tc->pool, bio);
2049 			remap_and_issue(tc, bio, lookup_result.block);
2050 			if (cell)
2051 				inc_remap_and_issue_cell(tc, cell, lookup_result.block);
2052 		}
2053 		break;
2054 
2055 	case -ENODATA:
2056 		if (cell)
2057 			cell_defer_no_holder(tc, cell);
2058 		if (rw != READ) {
2059 			handle_unserviceable_bio(tc->pool, bio);
2060 			break;
2061 		}
2062 
2063 		if (tc->origin_dev) {
2064 			inc_all_io_entry(tc->pool, bio);
2065 			remap_to_origin_and_issue(tc, bio);
2066 			break;
2067 		}
2068 
2069 		zero_fill_bio(bio);
2070 		bio_endio(bio);
2071 		break;
2072 
2073 	default:
2074 		DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
2075 			    __func__, r);
2076 		if (cell)
2077 			cell_defer_no_holder(tc, cell);
2078 		bio_io_error(bio);
2079 		break;
2080 	}
2081 }
2082 
2083 static void process_bio_read_only(struct thin_c *tc, struct bio *bio)
2084 {
2085 	__process_bio_read_only(tc, bio, NULL);
2086 }
2087 
2088 static void process_cell_read_only(struct thin_c *tc, struct dm_bio_prison_cell *cell)
2089 {
2090 	__process_bio_read_only(tc, cell->holder, cell);
2091 }
2092 
2093 static void process_bio_success(struct thin_c *tc, struct bio *bio)
2094 {
2095 	bio_endio(bio);
2096 }
2097 
2098 static void process_bio_fail(struct thin_c *tc, struct bio *bio)
2099 {
2100 	bio_io_error(bio);
2101 }
2102 
2103 static void process_cell_success(struct thin_c *tc, struct dm_bio_prison_cell *cell)
2104 {
2105 	cell_success(tc->pool, cell);
2106 }
2107 
2108 static void process_cell_fail(struct thin_c *tc, struct dm_bio_prison_cell *cell)
2109 {
2110 	cell_error(tc->pool, cell);
2111 }
2112 
2113 /*
2114  * FIXME: should we also commit due to size of transaction, measured in
2115  * metadata blocks?
2116  */
2117 static int need_commit_due_to_time(struct pool *pool)
2118 {
2119 	return !time_in_range(jiffies, pool->last_commit_jiffies,
2120 			      pool->last_commit_jiffies + COMMIT_PERIOD);
2121 }
2122 
2123 #define thin_pbd(node) rb_entry((node), struct dm_thin_endio_hook, rb_node)
2124 #define thin_bio(pbd) dm_bio_from_per_bio_data((pbd), sizeof(struct dm_thin_endio_hook))
2125 
2126 static void __thin_bio_rb_add(struct thin_c *tc, struct bio *bio)
2127 {
2128 	struct rb_node **rbp, *parent;
2129 	struct dm_thin_endio_hook *pbd;
2130 	sector_t bi_sector = bio->bi_iter.bi_sector;
2131 
2132 	rbp = &tc->sort_bio_list.rb_node;
2133 	parent = NULL;
2134 	while (*rbp) {
2135 		parent = *rbp;
2136 		pbd = thin_pbd(parent);
2137 
2138 		if (bi_sector < thin_bio(pbd)->bi_iter.bi_sector)
2139 			rbp = &(*rbp)->rb_left;
2140 		else
2141 			rbp = &(*rbp)->rb_right;
2142 	}
2143 
2144 	pbd = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
2145 	rb_link_node(&pbd->rb_node, parent, rbp);
2146 	rb_insert_color(&pbd->rb_node, &tc->sort_bio_list);
2147 }
2148 
2149 static void __extract_sorted_bios(struct thin_c *tc)
2150 {
2151 	struct rb_node *node;
2152 	struct dm_thin_endio_hook *pbd;
2153 	struct bio *bio;
2154 
2155 	for (node = rb_first(&tc->sort_bio_list); node; node = rb_next(node)) {
2156 		pbd = thin_pbd(node);
2157 		bio = thin_bio(pbd);
2158 
2159 		bio_list_add(&tc->deferred_bio_list, bio);
2160 		rb_erase(&pbd->rb_node, &tc->sort_bio_list);
2161 	}
2162 
2163 	WARN_ON(!RB_EMPTY_ROOT(&tc->sort_bio_list));
2164 }
2165 
2166 static void __sort_thin_deferred_bios(struct thin_c *tc)
2167 {
2168 	struct bio *bio;
2169 	struct bio_list bios;
2170 
2171 	bio_list_init(&bios);
2172 	bio_list_merge(&bios, &tc->deferred_bio_list);
2173 	bio_list_init(&tc->deferred_bio_list);
2174 
2175 	/* Sort deferred_bio_list using rb-tree */
2176 	while ((bio = bio_list_pop(&bios)))
2177 		__thin_bio_rb_add(tc, bio);
2178 
2179 	/*
2180 	 * Transfer the sorted bios in sort_bio_list back to
2181 	 * deferred_bio_list to allow lockless submission of
2182 	 * all bios.
2183 	 */
2184 	__extract_sorted_bios(tc);
2185 }
2186 
2187 static void process_thin_deferred_bios(struct thin_c *tc)
2188 {
2189 	struct pool *pool = tc->pool;
2190 	struct bio *bio;
2191 	struct bio_list bios;
2192 	struct blk_plug plug;
2193 	unsigned int count = 0;
2194 
2195 	if (tc->requeue_mode) {
2196 		error_thin_bio_list(tc, &tc->deferred_bio_list,
2197 				BLK_STS_DM_REQUEUE);
2198 		return;
2199 	}
2200 
2201 	bio_list_init(&bios);
2202 
2203 	spin_lock_irq(&tc->lock);
2204 
2205 	if (bio_list_empty(&tc->deferred_bio_list)) {
2206 		spin_unlock_irq(&tc->lock);
2207 		return;
2208 	}
2209 
2210 	__sort_thin_deferred_bios(tc);
2211 
2212 	bio_list_merge(&bios, &tc->deferred_bio_list);
2213 	bio_list_init(&tc->deferred_bio_list);
2214 
2215 	spin_unlock_irq(&tc->lock);
2216 
2217 	blk_start_plug(&plug);
2218 	while ((bio = bio_list_pop(&bios))) {
2219 		/*
2220 		 * If we've got no free new_mapping structs, and processing
2221 		 * this bio might require one, we pause until there are some
2222 		 * prepared mappings to process.
2223 		 */
2224 		if (ensure_next_mapping(pool)) {
2225 			spin_lock_irq(&tc->lock);
2226 			bio_list_add(&tc->deferred_bio_list, bio);
2227 			bio_list_merge(&tc->deferred_bio_list, &bios);
2228 			spin_unlock_irq(&tc->lock);
2229 			break;
2230 		}
2231 
2232 		if (bio_op(bio) == REQ_OP_DISCARD)
2233 			pool->process_discard(tc, bio);
2234 		else
2235 			pool->process_bio(tc, bio);
2236 
2237 		if ((count++ & 127) == 0) {
2238 			throttle_work_update(&pool->throttle);
2239 			dm_pool_issue_prefetches(pool->pmd);
2240 		}
2241 		cond_resched();
2242 	}
2243 	blk_finish_plug(&plug);
2244 }
2245 
2246 static int cmp_cells(const void *lhs, const void *rhs)
2247 {
2248 	struct dm_bio_prison_cell *lhs_cell = *((struct dm_bio_prison_cell **) lhs);
2249 	struct dm_bio_prison_cell *rhs_cell = *((struct dm_bio_prison_cell **) rhs);
2250 
2251 	BUG_ON(!lhs_cell->holder);
2252 	BUG_ON(!rhs_cell->holder);
2253 
2254 	if (lhs_cell->holder->bi_iter.bi_sector < rhs_cell->holder->bi_iter.bi_sector)
2255 		return -1;
2256 
2257 	if (lhs_cell->holder->bi_iter.bi_sector > rhs_cell->holder->bi_iter.bi_sector)
2258 		return 1;
2259 
2260 	return 0;
2261 }
2262 
2263 static unsigned int sort_cells(struct pool *pool, struct list_head *cells)
2264 {
2265 	unsigned int count = 0;
2266 	struct dm_bio_prison_cell *cell, *tmp;
2267 
2268 	list_for_each_entry_safe(cell, tmp, cells, user_list) {
2269 		if (count >= CELL_SORT_ARRAY_SIZE)
2270 			break;
2271 
2272 		pool->cell_sort_array[count++] = cell;
2273 		list_del(&cell->user_list);
2274 	}
2275 
2276 	sort(pool->cell_sort_array, count, sizeof(cell), cmp_cells, NULL);
2277 
2278 	return count;
2279 }
2280 
2281 static void process_thin_deferred_cells(struct thin_c *tc)
2282 {
2283 	struct pool *pool = tc->pool;
2284 	struct list_head cells;
2285 	struct dm_bio_prison_cell *cell;
2286 	unsigned int i, j, count;
2287 
2288 	INIT_LIST_HEAD(&cells);
2289 
2290 	spin_lock_irq(&tc->lock);
2291 	list_splice_init(&tc->deferred_cells, &cells);
2292 	spin_unlock_irq(&tc->lock);
2293 
2294 	if (list_empty(&cells))
2295 		return;
2296 
2297 	do {
2298 		count = sort_cells(tc->pool, &cells);
2299 
2300 		for (i = 0; i < count; i++) {
2301 			cell = pool->cell_sort_array[i];
2302 			BUG_ON(!cell->holder);
2303 
2304 			/*
2305 			 * If we've got no free new_mapping structs, and processing
2306 			 * this bio might require one, we pause until there are some
2307 			 * prepared mappings to process.
2308 			 */
2309 			if (ensure_next_mapping(pool)) {
2310 				for (j = i; j < count; j++)
2311 					list_add(&pool->cell_sort_array[j]->user_list, &cells);
2312 
2313 				spin_lock_irq(&tc->lock);
2314 				list_splice(&cells, &tc->deferred_cells);
2315 				spin_unlock_irq(&tc->lock);
2316 				return;
2317 			}
2318 
2319 			if (bio_op(cell->holder) == REQ_OP_DISCARD)
2320 				pool->process_discard_cell(tc, cell);
2321 			else
2322 				pool->process_cell(tc, cell);
2323 		}
2324 		cond_resched();
2325 	} while (!list_empty(&cells));
2326 }
2327 
2328 static void thin_get(struct thin_c *tc);
2329 static void thin_put(struct thin_c *tc);
2330 
2331 /*
2332  * We can't hold rcu_read_lock() around code that can block.  So we
2333  * find a thin with the rcu lock held; bump a refcount; then drop
2334  * the lock.
2335  */
2336 static struct thin_c *get_first_thin(struct pool *pool)
2337 {
2338 	struct thin_c *tc = NULL;
2339 
2340 	rcu_read_lock();
2341 	if (!list_empty(&pool->active_thins)) {
2342 		tc = list_entry_rcu(pool->active_thins.next, struct thin_c, list);
2343 		thin_get(tc);
2344 	}
2345 	rcu_read_unlock();
2346 
2347 	return tc;
2348 }
2349 
2350 static struct thin_c *get_next_thin(struct pool *pool, struct thin_c *tc)
2351 {
2352 	struct thin_c *old_tc = tc;
2353 
2354 	rcu_read_lock();
2355 	list_for_each_entry_continue_rcu(tc, &pool->active_thins, list) {
2356 		thin_get(tc);
2357 		thin_put(old_tc);
2358 		rcu_read_unlock();
2359 		return tc;
2360 	}
2361 	thin_put(old_tc);
2362 	rcu_read_unlock();
2363 
2364 	return NULL;
2365 }
2366 
2367 static void process_deferred_bios(struct pool *pool)
2368 {
2369 	struct bio *bio;
2370 	struct bio_list bios, bio_completions;
2371 	struct thin_c *tc;
2372 
2373 	tc = get_first_thin(pool);
2374 	while (tc) {
2375 		process_thin_deferred_cells(tc);
2376 		process_thin_deferred_bios(tc);
2377 		tc = get_next_thin(pool, tc);
2378 	}
2379 
2380 	/*
2381 	 * If there are any deferred flush bios, we must commit the metadata
2382 	 * before issuing them or signaling their completion.
2383 	 */
2384 	bio_list_init(&bios);
2385 	bio_list_init(&bio_completions);
2386 
2387 	spin_lock_irq(&pool->lock);
2388 	bio_list_merge(&bios, &pool->deferred_flush_bios);
2389 	bio_list_init(&pool->deferred_flush_bios);
2390 
2391 	bio_list_merge(&bio_completions, &pool->deferred_flush_completions);
2392 	bio_list_init(&pool->deferred_flush_completions);
2393 	spin_unlock_irq(&pool->lock);
2394 
2395 	if (bio_list_empty(&bios) && bio_list_empty(&bio_completions) &&
2396 	    !(dm_pool_changed_this_transaction(pool->pmd) && need_commit_due_to_time(pool)))
2397 		return;
2398 
2399 	if (commit(pool)) {
2400 		bio_list_merge(&bios, &bio_completions);
2401 
2402 		while ((bio = bio_list_pop(&bios)))
2403 			bio_io_error(bio);
2404 		return;
2405 	}
2406 	pool->last_commit_jiffies = jiffies;
2407 
2408 	while ((bio = bio_list_pop(&bio_completions)))
2409 		bio_endio(bio);
2410 
2411 	while ((bio = bio_list_pop(&bios))) {
2412 		/*
2413 		 * The data device was flushed as part of metadata commit,
2414 		 * so complete redundant flushes immediately.
2415 		 */
2416 		if (bio->bi_opf & REQ_PREFLUSH)
2417 			bio_endio(bio);
2418 		else
2419 			dm_submit_bio_remap(bio, NULL);
2420 	}
2421 }
2422 
2423 static void do_worker(struct work_struct *ws)
2424 {
2425 	struct pool *pool = container_of(ws, struct pool, worker);
2426 
2427 	throttle_work_start(&pool->throttle);
2428 	dm_pool_issue_prefetches(pool->pmd);
2429 	throttle_work_update(&pool->throttle);
2430 	process_prepared(pool, &pool->prepared_mappings, &pool->process_prepared_mapping);
2431 	throttle_work_update(&pool->throttle);
2432 	process_prepared(pool, &pool->prepared_discards, &pool->process_prepared_discard);
2433 	throttle_work_update(&pool->throttle);
2434 	process_prepared(pool, &pool->prepared_discards_pt2, &pool->process_prepared_discard_pt2);
2435 	throttle_work_update(&pool->throttle);
2436 	process_deferred_bios(pool);
2437 	throttle_work_complete(&pool->throttle);
2438 }
2439 
2440 /*
2441  * We want to commit periodically so that not too much
2442  * unwritten data builds up.
2443  */
2444 static void do_waker(struct work_struct *ws)
2445 {
2446 	struct pool *pool = container_of(to_delayed_work(ws), struct pool, waker);
2447 
2448 	wake_worker(pool);
2449 	queue_delayed_work(pool->wq, &pool->waker, COMMIT_PERIOD);
2450 }
2451 
2452 /*
2453  * We're holding onto IO to allow userland time to react.  After the
2454  * timeout either the pool will have been resized (and thus back in
2455  * PM_WRITE mode), or we degrade to PM_OUT_OF_DATA_SPACE w/ error_if_no_space.
2456  */
2457 static void do_no_space_timeout(struct work_struct *ws)
2458 {
2459 	struct pool *pool = container_of(to_delayed_work(ws), struct pool,
2460 					 no_space_timeout);
2461 
2462 	if (get_pool_mode(pool) == PM_OUT_OF_DATA_SPACE && !pool->pf.error_if_no_space) {
2463 		pool->pf.error_if_no_space = true;
2464 		notify_of_pool_mode_change(pool);
2465 		error_retry_list_with_code(pool, BLK_STS_NOSPC);
2466 	}
2467 }
2468 
2469 /*----------------------------------------------------------------*/
2470 
2471 struct pool_work {
2472 	struct work_struct worker;
2473 	struct completion complete;
2474 };
2475 
2476 static struct pool_work *to_pool_work(struct work_struct *ws)
2477 {
2478 	return container_of(ws, struct pool_work, worker);
2479 }
2480 
2481 static void pool_work_complete(struct pool_work *pw)
2482 {
2483 	complete(&pw->complete);
2484 }
2485 
2486 static void pool_work_wait(struct pool_work *pw, struct pool *pool,
2487 			   void (*fn)(struct work_struct *))
2488 {
2489 	INIT_WORK_ONSTACK(&pw->worker, fn);
2490 	init_completion(&pw->complete);
2491 	queue_work(pool->wq, &pw->worker);
2492 	wait_for_completion(&pw->complete);
2493 }
2494 
2495 /*----------------------------------------------------------------*/
2496 
2497 struct noflush_work {
2498 	struct pool_work pw;
2499 	struct thin_c *tc;
2500 };
2501 
2502 static struct noflush_work *to_noflush(struct work_struct *ws)
2503 {
2504 	return container_of(to_pool_work(ws), struct noflush_work, pw);
2505 }
2506 
2507 static void do_noflush_start(struct work_struct *ws)
2508 {
2509 	struct noflush_work *w = to_noflush(ws);
2510 
2511 	w->tc->requeue_mode = true;
2512 	requeue_io(w->tc);
2513 	pool_work_complete(&w->pw);
2514 }
2515 
2516 static void do_noflush_stop(struct work_struct *ws)
2517 {
2518 	struct noflush_work *w = to_noflush(ws);
2519 
2520 	w->tc->requeue_mode = false;
2521 	pool_work_complete(&w->pw);
2522 }
2523 
2524 static void noflush_work(struct thin_c *tc, void (*fn)(struct work_struct *))
2525 {
2526 	struct noflush_work w;
2527 
2528 	w.tc = tc;
2529 	pool_work_wait(&w.pw, tc->pool, fn);
2530 }
2531 
2532 /*----------------------------------------------------------------*/
2533 
2534 static void set_discard_callbacks(struct pool *pool)
2535 {
2536 	struct pool_c *pt = pool->ti->private;
2537 
2538 	if (pt->adjusted_pf.discard_passdown) {
2539 		pool->process_discard_cell = process_discard_cell_passdown;
2540 		pool->process_prepared_discard = process_prepared_discard_passdown_pt1;
2541 		pool->process_prepared_discard_pt2 = process_prepared_discard_passdown_pt2;
2542 	} else {
2543 		pool->process_discard_cell = process_discard_cell_no_passdown;
2544 		pool->process_prepared_discard = process_prepared_discard_no_passdown;
2545 	}
2546 }
2547 
2548 static void set_pool_mode(struct pool *pool, enum pool_mode new_mode)
2549 {
2550 	struct pool_c *pt = pool->ti->private;
2551 	bool needs_check = dm_pool_metadata_needs_check(pool->pmd);
2552 	enum pool_mode old_mode = get_pool_mode(pool);
2553 	unsigned long no_space_timeout = READ_ONCE(no_space_timeout_secs) * HZ;
2554 
2555 	/*
2556 	 * Never allow the pool to transition to PM_WRITE mode if user
2557 	 * intervention is required to verify metadata and data consistency.
2558 	 */
2559 	if (new_mode == PM_WRITE && needs_check) {
2560 		DMERR("%s: unable to switch pool to write mode until repaired.",
2561 		      dm_device_name(pool->pool_md));
2562 		if (old_mode != new_mode)
2563 			new_mode = old_mode;
2564 		else
2565 			new_mode = PM_READ_ONLY;
2566 	}
2567 	/*
2568 	 * If we were in PM_FAIL mode, rollback of metadata failed.  We're
2569 	 * not going to recover without a thin_repair.	So we never let the
2570 	 * pool move out of the old mode.
2571 	 */
2572 	if (old_mode == PM_FAIL)
2573 		new_mode = old_mode;
2574 
2575 	switch (new_mode) {
2576 	case PM_FAIL:
2577 		dm_pool_metadata_read_only(pool->pmd);
2578 		pool->process_bio = process_bio_fail;
2579 		pool->process_discard = process_bio_fail;
2580 		pool->process_cell = process_cell_fail;
2581 		pool->process_discard_cell = process_cell_fail;
2582 		pool->process_prepared_mapping = process_prepared_mapping_fail;
2583 		pool->process_prepared_discard = process_prepared_discard_fail;
2584 
2585 		error_retry_list(pool);
2586 		break;
2587 
2588 	case PM_OUT_OF_METADATA_SPACE:
2589 	case PM_READ_ONLY:
2590 		dm_pool_metadata_read_only(pool->pmd);
2591 		pool->process_bio = process_bio_read_only;
2592 		pool->process_discard = process_bio_success;
2593 		pool->process_cell = process_cell_read_only;
2594 		pool->process_discard_cell = process_cell_success;
2595 		pool->process_prepared_mapping = process_prepared_mapping_fail;
2596 		pool->process_prepared_discard = process_prepared_discard_success;
2597 
2598 		error_retry_list(pool);
2599 		break;
2600 
2601 	case PM_OUT_OF_DATA_SPACE:
2602 		/*
2603 		 * Ideally we'd never hit this state; the low water mark
2604 		 * would trigger userland to extend the pool before we
2605 		 * completely run out of data space.  However, many small
2606 		 * IOs to unprovisioned space can consume data space at an
2607 		 * alarming rate.  Adjust your low water mark if you're
2608 		 * frequently seeing this mode.
2609 		 */
2610 		pool->out_of_data_space = true;
2611 		pool->process_bio = process_bio_read_only;
2612 		pool->process_discard = process_discard_bio;
2613 		pool->process_cell = process_cell_read_only;
2614 		pool->process_prepared_mapping = process_prepared_mapping;
2615 		set_discard_callbacks(pool);
2616 
2617 		if (!pool->pf.error_if_no_space && no_space_timeout)
2618 			queue_delayed_work(pool->wq, &pool->no_space_timeout, no_space_timeout);
2619 		break;
2620 
2621 	case PM_WRITE:
2622 		if (old_mode == PM_OUT_OF_DATA_SPACE)
2623 			cancel_delayed_work_sync(&pool->no_space_timeout);
2624 		pool->out_of_data_space = false;
2625 		pool->pf.error_if_no_space = pt->requested_pf.error_if_no_space;
2626 		dm_pool_metadata_read_write(pool->pmd);
2627 		pool->process_bio = process_bio;
2628 		pool->process_discard = process_discard_bio;
2629 		pool->process_cell = process_cell;
2630 		pool->process_prepared_mapping = process_prepared_mapping;
2631 		set_discard_callbacks(pool);
2632 		break;
2633 	}
2634 
2635 	pool->pf.mode = new_mode;
2636 	/*
2637 	 * The pool mode may have changed, sync it so bind_control_target()
2638 	 * doesn't cause an unexpected mode transition on resume.
2639 	 */
2640 	pt->adjusted_pf.mode = new_mode;
2641 
2642 	if (old_mode != new_mode)
2643 		notify_of_pool_mode_change(pool);
2644 }
2645 
2646 static void abort_transaction(struct pool *pool)
2647 {
2648 	const char *dev_name = dm_device_name(pool->pool_md);
2649 
2650 	DMERR_LIMIT("%s: aborting current metadata transaction", dev_name);
2651 	if (dm_pool_abort_metadata(pool->pmd)) {
2652 		DMERR("%s: failed to abort metadata transaction", dev_name);
2653 		set_pool_mode(pool, PM_FAIL);
2654 	}
2655 
2656 	if (dm_pool_metadata_set_needs_check(pool->pmd)) {
2657 		DMERR("%s: failed to set 'needs_check' flag in metadata", dev_name);
2658 		set_pool_mode(pool, PM_FAIL);
2659 	}
2660 }
2661 
2662 static void metadata_operation_failed(struct pool *pool, const char *op, int r)
2663 {
2664 	DMERR_LIMIT("%s: metadata operation '%s' failed: error = %d",
2665 		    dm_device_name(pool->pool_md), op, r);
2666 
2667 	abort_transaction(pool);
2668 	set_pool_mode(pool, PM_READ_ONLY);
2669 }
2670 
2671 /*----------------------------------------------------------------*/
2672 
2673 /*
2674  * Mapping functions.
2675  */
2676 
2677 /*
2678  * Called only while mapping a thin bio to hand it over to the workqueue.
2679  */
2680 static void thin_defer_bio(struct thin_c *tc, struct bio *bio)
2681 {
2682 	struct pool *pool = tc->pool;
2683 
2684 	spin_lock_irq(&tc->lock);
2685 	bio_list_add(&tc->deferred_bio_list, bio);
2686 	spin_unlock_irq(&tc->lock);
2687 
2688 	wake_worker(pool);
2689 }
2690 
2691 static void thin_defer_bio_with_throttle(struct thin_c *tc, struct bio *bio)
2692 {
2693 	struct pool *pool = tc->pool;
2694 
2695 	throttle_lock(&pool->throttle);
2696 	thin_defer_bio(tc, bio);
2697 	throttle_unlock(&pool->throttle);
2698 }
2699 
2700 static void thin_defer_cell(struct thin_c *tc, struct dm_bio_prison_cell *cell)
2701 {
2702 	struct pool *pool = tc->pool;
2703 
2704 	throttle_lock(&pool->throttle);
2705 	spin_lock_irq(&tc->lock);
2706 	list_add_tail(&cell->user_list, &tc->deferred_cells);
2707 	spin_unlock_irq(&tc->lock);
2708 	throttle_unlock(&pool->throttle);
2709 
2710 	wake_worker(pool);
2711 }
2712 
2713 static void thin_hook_bio(struct thin_c *tc, struct bio *bio)
2714 {
2715 	struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
2716 
2717 	h->tc = tc;
2718 	h->shared_read_entry = NULL;
2719 	h->all_io_entry = NULL;
2720 	h->overwrite_mapping = NULL;
2721 	h->cell = NULL;
2722 }
2723 
2724 /*
2725  * Non-blocking function called from the thin target's map function.
2726  */
2727 static int thin_bio_map(struct dm_target *ti, struct bio *bio)
2728 {
2729 	int r;
2730 	struct thin_c *tc = ti->private;
2731 	dm_block_t block = get_bio_block(tc, bio);
2732 	struct dm_thin_device *td = tc->td;
2733 	struct dm_thin_lookup_result result;
2734 	struct dm_bio_prison_cell *virt_cell, *data_cell;
2735 	struct dm_cell_key key;
2736 
2737 	thin_hook_bio(tc, bio);
2738 
2739 	if (tc->requeue_mode) {
2740 		bio->bi_status = BLK_STS_DM_REQUEUE;
2741 		bio_endio(bio);
2742 		return DM_MAPIO_SUBMITTED;
2743 	}
2744 
2745 	if (get_pool_mode(tc->pool) == PM_FAIL) {
2746 		bio_io_error(bio);
2747 		return DM_MAPIO_SUBMITTED;
2748 	}
2749 
2750 	if (op_is_flush(bio->bi_opf) || bio_op(bio) == REQ_OP_DISCARD) {
2751 		thin_defer_bio_with_throttle(tc, bio);
2752 		return DM_MAPIO_SUBMITTED;
2753 	}
2754 
2755 	/*
2756 	 * We must hold the virtual cell before doing the lookup, otherwise
2757 	 * there's a race with discard.
2758 	 */
2759 	build_virtual_key(tc->td, block, &key);
2760 	if (bio_detain(tc->pool, &key, bio, &virt_cell))
2761 		return DM_MAPIO_SUBMITTED;
2762 
2763 	r = dm_thin_find_block(td, block, 0, &result);
2764 
2765 	/*
2766 	 * Note that we defer readahead too.
2767 	 */
2768 	switch (r) {
2769 	case 0:
2770 		if (unlikely(result.shared)) {
2771 			/*
2772 			 * We have a race condition here between the
2773 			 * result.shared value returned by the lookup and
2774 			 * snapshot creation, which may cause new
2775 			 * sharing.
2776 			 *
2777 			 * To avoid this always quiesce the origin before
2778 			 * taking the snap.  You want to do this anyway to
2779 			 * ensure a consistent application view
2780 			 * (i.e. lockfs).
2781 			 *
2782 			 * More distant ancestors are irrelevant. The
2783 			 * shared flag will be set in their case.
2784 			 */
2785 			thin_defer_cell(tc, virt_cell);
2786 			return DM_MAPIO_SUBMITTED;
2787 		}
2788 
2789 		build_data_key(tc->td, result.block, &key);
2790 		if (bio_detain(tc->pool, &key, bio, &data_cell)) {
2791 			cell_defer_no_holder(tc, virt_cell);
2792 			return DM_MAPIO_SUBMITTED;
2793 		}
2794 
2795 		inc_all_io_entry(tc->pool, bio);
2796 		cell_defer_no_holder(tc, data_cell);
2797 		cell_defer_no_holder(tc, virt_cell);
2798 
2799 		remap(tc, bio, result.block);
2800 		return DM_MAPIO_REMAPPED;
2801 
2802 	case -ENODATA:
2803 	case -EWOULDBLOCK:
2804 		thin_defer_cell(tc, virt_cell);
2805 		return DM_MAPIO_SUBMITTED;
2806 
2807 	default:
2808 		/*
2809 		 * Must always call bio_io_error on failure.
2810 		 * dm_thin_find_block can fail with -EINVAL if the
2811 		 * pool is switched to fail-io mode.
2812 		 */
2813 		bio_io_error(bio);
2814 		cell_defer_no_holder(tc, virt_cell);
2815 		return DM_MAPIO_SUBMITTED;
2816 	}
2817 }
2818 
2819 static void requeue_bios(struct pool *pool)
2820 {
2821 	struct thin_c *tc;
2822 
2823 	rcu_read_lock();
2824 	list_for_each_entry_rcu(tc, &pool->active_thins, list) {
2825 		spin_lock_irq(&tc->lock);
2826 		bio_list_merge(&tc->deferred_bio_list, &tc->retry_on_resume_list);
2827 		bio_list_init(&tc->retry_on_resume_list);
2828 		spin_unlock_irq(&tc->lock);
2829 	}
2830 	rcu_read_unlock();
2831 }
2832 
2833 /*
2834  *--------------------------------------------------------------
2835  * Binding of control targets to a pool object
2836  *--------------------------------------------------------------
2837  */
2838 static bool is_factor(sector_t block_size, uint32_t n)
2839 {
2840 	return !sector_div(block_size, n);
2841 }
2842 
2843 /*
2844  * If discard_passdown was enabled verify that the data device
2845  * supports discards.  Disable discard_passdown if not.
2846  */
2847 static void disable_discard_passdown_if_not_supported(struct pool_c *pt)
2848 {
2849 	struct pool *pool = pt->pool;
2850 	struct block_device *data_bdev = pt->data_dev->bdev;
2851 	struct queue_limits *data_limits = &bdev_get_queue(data_bdev)->limits;
2852 	const char *reason = NULL;
2853 
2854 	if (!pt->adjusted_pf.discard_passdown)
2855 		return;
2856 
2857 	if (!bdev_max_discard_sectors(pt->data_dev->bdev))
2858 		reason = "discard unsupported";
2859 
2860 	else if (data_limits->max_discard_sectors < pool->sectors_per_block)
2861 		reason = "max discard sectors smaller than a block";
2862 
2863 	if (reason) {
2864 		DMWARN("Data device (%pg) %s: Disabling discard passdown.", data_bdev, reason);
2865 		pt->adjusted_pf.discard_passdown = false;
2866 	}
2867 }
2868 
2869 static int bind_control_target(struct pool *pool, struct dm_target *ti)
2870 {
2871 	struct pool_c *pt = ti->private;
2872 
2873 	/*
2874 	 * We want to make sure that a pool in PM_FAIL mode is never upgraded.
2875 	 */
2876 	enum pool_mode old_mode = get_pool_mode(pool);
2877 	enum pool_mode new_mode = pt->adjusted_pf.mode;
2878 
2879 	/*
2880 	 * Don't change the pool's mode until set_pool_mode() below.
2881 	 * Otherwise the pool's process_* function pointers may
2882 	 * not match the desired pool mode.
2883 	 */
2884 	pt->adjusted_pf.mode = old_mode;
2885 
2886 	pool->ti = ti;
2887 	pool->pf = pt->adjusted_pf;
2888 	pool->low_water_blocks = pt->low_water_blocks;
2889 
2890 	set_pool_mode(pool, new_mode);
2891 
2892 	return 0;
2893 }
2894 
2895 static void unbind_control_target(struct pool *pool, struct dm_target *ti)
2896 {
2897 	if (pool->ti == ti)
2898 		pool->ti = NULL;
2899 }
2900 
2901 /*
2902  *--------------------------------------------------------------
2903  * Pool creation
2904  *--------------------------------------------------------------
2905  */
2906 /* Initialize pool features. */
2907 static void pool_features_init(struct pool_features *pf)
2908 {
2909 	pf->mode = PM_WRITE;
2910 	pf->zero_new_blocks = true;
2911 	pf->discard_enabled = true;
2912 	pf->discard_passdown = true;
2913 	pf->error_if_no_space = false;
2914 }
2915 
2916 static void __pool_destroy(struct pool *pool)
2917 {
2918 	__pool_table_remove(pool);
2919 
2920 	vfree(pool->cell_sort_array);
2921 	if (dm_pool_metadata_close(pool->pmd) < 0)
2922 		DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
2923 
2924 	dm_bio_prison_destroy(pool->prison);
2925 	dm_kcopyd_client_destroy(pool->copier);
2926 
2927 	cancel_delayed_work_sync(&pool->waker);
2928 	cancel_delayed_work_sync(&pool->no_space_timeout);
2929 	if (pool->wq)
2930 		destroy_workqueue(pool->wq);
2931 
2932 	if (pool->next_mapping)
2933 		mempool_free(pool->next_mapping, &pool->mapping_pool);
2934 	mempool_exit(&pool->mapping_pool);
2935 	dm_deferred_set_destroy(pool->shared_read_ds);
2936 	dm_deferred_set_destroy(pool->all_io_ds);
2937 	kfree(pool);
2938 }
2939 
2940 static struct kmem_cache *_new_mapping_cache;
2941 
2942 static struct pool *pool_create(struct mapped_device *pool_md,
2943 				struct block_device *metadata_dev,
2944 				struct block_device *data_dev,
2945 				unsigned long block_size,
2946 				int read_only, char **error)
2947 {
2948 	int r;
2949 	void *err_p;
2950 	struct pool *pool;
2951 	struct dm_pool_metadata *pmd;
2952 	bool format_device = read_only ? false : true;
2953 
2954 	pmd = dm_pool_metadata_open(metadata_dev, block_size, format_device);
2955 	if (IS_ERR(pmd)) {
2956 		*error = "Error creating metadata object";
2957 		return (struct pool *)pmd;
2958 	}
2959 
2960 	pool = kzalloc(sizeof(*pool), GFP_KERNEL);
2961 	if (!pool) {
2962 		*error = "Error allocating memory for pool";
2963 		err_p = ERR_PTR(-ENOMEM);
2964 		goto bad_pool;
2965 	}
2966 
2967 	pool->pmd = pmd;
2968 	pool->sectors_per_block = block_size;
2969 	if (block_size & (block_size - 1))
2970 		pool->sectors_per_block_shift = -1;
2971 	else
2972 		pool->sectors_per_block_shift = __ffs(block_size);
2973 	pool->low_water_blocks = 0;
2974 	pool_features_init(&pool->pf);
2975 	pool->prison = dm_bio_prison_create();
2976 	if (!pool->prison) {
2977 		*error = "Error creating pool's bio prison";
2978 		err_p = ERR_PTR(-ENOMEM);
2979 		goto bad_prison;
2980 	}
2981 
2982 	pool->copier = dm_kcopyd_client_create(&dm_kcopyd_throttle);
2983 	if (IS_ERR(pool->copier)) {
2984 		r = PTR_ERR(pool->copier);
2985 		*error = "Error creating pool's kcopyd client";
2986 		err_p = ERR_PTR(r);
2987 		goto bad_kcopyd_client;
2988 	}
2989 
2990 	/*
2991 	 * Create singlethreaded workqueue that will service all devices
2992 	 * that use this metadata.
2993 	 */
2994 	pool->wq = alloc_ordered_workqueue("dm-" DM_MSG_PREFIX, WQ_MEM_RECLAIM);
2995 	if (!pool->wq) {
2996 		*error = "Error creating pool's workqueue";
2997 		err_p = ERR_PTR(-ENOMEM);
2998 		goto bad_wq;
2999 	}
3000 
3001 	throttle_init(&pool->throttle);
3002 	INIT_WORK(&pool->worker, do_worker);
3003 	INIT_DELAYED_WORK(&pool->waker, do_waker);
3004 	INIT_DELAYED_WORK(&pool->no_space_timeout, do_no_space_timeout);
3005 	spin_lock_init(&pool->lock);
3006 	bio_list_init(&pool->deferred_flush_bios);
3007 	bio_list_init(&pool->deferred_flush_completions);
3008 	INIT_LIST_HEAD(&pool->prepared_mappings);
3009 	INIT_LIST_HEAD(&pool->prepared_discards);
3010 	INIT_LIST_HEAD(&pool->prepared_discards_pt2);
3011 	INIT_LIST_HEAD(&pool->active_thins);
3012 	pool->low_water_triggered = false;
3013 	pool->suspended = true;
3014 	pool->out_of_data_space = false;
3015 
3016 	pool->shared_read_ds = dm_deferred_set_create();
3017 	if (!pool->shared_read_ds) {
3018 		*error = "Error creating pool's shared read deferred set";
3019 		err_p = ERR_PTR(-ENOMEM);
3020 		goto bad_shared_read_ds;
3021 	}
3022 
3023 	pool->all_io_ds = dm_deferred_set_create();
3024 	if (!pool->all_io_ds) {
3025 		*error = "Error creating pool's all io deferred set";
3026 		err_p = ERR_PTR(-ENOMEM);
3027 		goto bad_all_io_ds;
3028 	}
3029 
3030 	pool->next_mapping = NULL;
3031 	r = mempool_init_slab_pool(&pool->mapping_pool, MAPPING_POOL_SIZE,
3032 				   _new_mapping_cache);
3033 	if (r) {
3034 		*error = "Error creating pool's mapping mempool";
3035 		err_p = ERR_PTR(r);
3036 		goto bad_mapping_pool;
3037 	}
3038 
3039 	pool->cell_sort_array =
3040 		vmalloc(array_size(CELL_SORT_ARRAY_SIZE,
3041 				   sizeof(*pool->cell_sort_array)));
3042 	if (!pool->cell_sort_array) {
3043 		*error = "Error allocating cell sort array";
3044 		err_p = ERR_PTR(-ENOMEM);
3045 		goto bad_sort_array;
3046 	}
3047 
3048 	pool->ref_count = 1;
3049 	pool->last_commit_jiffies = jiffies;
3050 	pool->pool_md = pool_md;
3051 	pool->md_dev = metadata_dev;
3052 	pool->data_dev = data_dev;
3053 	__pool_table_insert(pool);
3054 
3055 	return pool;
3056 
3057 bad_sort_array:
3058 	mempool_exit(&pool->mapping_pool);
3059 bad_mapping_pool:
3060 	dm_deferred_set_destroy(pool->all_io_ds);
3061 bad_all_io_ds:
3062 	dm_deferred_set_destroy(pool->shared_read_ds);
3063 bad_shared_read_ds:
3064 	destroy_workqueue(pool->wq);
3065 bad_wq:
3066 	dm_kcopyd_client_destroy(pool->copier);
3067 bad_kcopyd_client:
3068 	dm_bio_prison_destroy(pool->prison);
3069 bad_prison:
3070 	kfree(pool);
3071 bad_pool:
3072 	if (dm_pool_metadata_close(pmd))
3073 		DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
3074 
3075 	return err_p;
3076 }
3077 
3078 static void __pool_inc(struct pool *pool)
3079 {
3080 	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
3081 	pool->ref_count++;
3082 }
3083 
3084 static void __pool_dec(struct pool *pool)
3085 {
3086 	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
3087 	BUG_ON(!pool->ref_count);
3088 	if (!--pool->ref_count)
3089 		__pool_destroy(pool);
3090 }
3091 
3092 static struct pool *__pool_find(struct mapped_device *pool_md,
3093 				struct block_device *metadata_dev,
3094 				struct block_device *data_dev,
3095 				unsigned long block_size, int read_only,
3096 				char **error, int *created)
3097 {
3098 	struct pool *pool = __pool_table_lookup_metadata_dev(metadata_dev);
3099 
3100 	if (pool) {
3101 		if (pool->pool_md != pool_md) {
3102 			*error = "metadata device already in use by a pool";
3103 			return ERR_PTR(-EBUSY);
3104 		}
3105 		if (pool->data_dev != data_dev) {
3106 			*error = "data device already in use by a pool";
3107 			return ERR_PTR(-EBUSY);
3108 		}
3109 		__pool_inc(pool);
3110 
3111 	} else {
3112 		pool = __pool_table_lookup(pool_md);
3113 		if (pool) {
3114 			if (pool->md_dev != metadata_dev || pool->data_dev != data_dev) {
3115 				*error = "different pool cannot replace a pool";
3116 				return ERR_PTR(-EINVAL);
3117 			}
3118 			__pool_inc(pool);
3119 
3120 		} else {
3121 			pool = pool_create(pool_md, metadata_dev, data_dev, block_size, read_only, error);
3122 			*created = 1;
3123 		}
3124 	}
3125 
3126 	return pool;
3127 }
3128 
3129 /*
3130  *--------------------------------------------------------------
3131  * Pool target methods
3132  *--------------------------------------------------------------
3133  */
3134 static void pool_dtr(struct dm_target *ti)
3135 {
3136 	struct pool_c *pt = ti->private;
3137 
3138 	mutex_lock(&dm_thin_pool_table.mutex);
3139 
3140 	unbind_control_target(pt->pool, ti);
3141 	__pool_dec(pt->pool);
3142 	dm_put_device(ti, pt->metadata_dev);
3143 	dm_put_device(ti, pt->data_dev);
3144 	kfree(pt);
3145 
3146 	mutex_unlock(&dm_thin_pool_table.mutex);
3147 }
3148 
3149 static int parse_pool_features(struct dm_arg_set *as, struct pool_features *pf,
3150 			       struct dm_target *ti)
3151 {
3152 	int r;
3153 	unsigned int argc;
3154 	const char *arg_name;
3155 
3156 	static const struct dm_arg _args[] = {
3157 		{0, 4, "Invalid number of pool feature arguments"},
3158 	};
3159 
3160 	/*
3161 	 * No feature arguments supplied.
3162 	 */
3163 	if (!as->argc)
3164 		return 0;
3165 
3166 	r = dm_read_arg_group(_args, as, &argc, &ti->error);
3167 	if (r)
3168 		return -EINVAL;
3169 
3170 	while (argc && !r) {
3171 		arg_name = dm_shift_arg(as);
3172 		argc--;
3173 
3174 		if (!strcasecmp(arg_name, "skip_block_zeroing"))
3175 			pf->zero_new_blocks = false;
3176 
3177 		else if (!strcasecmp(arg_name, "ignore_discard"))
3178 			pf->discard_enabled = false;
3179 
3180 		else if (!strcasecmp(arg_name, "no_discard_passdown"))
3181 			pf->discard_passdown = false;
3182 
3183 		else if (!strcasecmp(arg_name, "read_only"))
3184 			pf->mode = PM_READ_ONLY;
3185 
3186 		else if (!strcasecmp(arg_name, "error_if_no_space"))
3187 			pf->error_if_no_space = true;
3188 
3189 		else {
3190 			ti->error = "Unrecognised pool feature requested";
3191 			r = -EINVAL;
3192 			break;
3193 		}
3194 	}
3195 
3196 	return r;
3197 }
3198 
3199 static void metadata_low_callback(void *context)
3200 {
3201 	struct pool *pool = context;
3202 
3203 	DMWARN("%s: reached low water mark for metadata device: sending event.",
3204 	       dm_device_name(pool->pool_md));
3205 
3206 	dm_table_event(pool->ti->table);
3207 }
3208 
3209 /*
3210  * We need to flush the data device **before** committing the metadata.
3211  *
3212  * This ensures that the data blocks of any newly inserted mappings are
3213  * properly written to non-volatile storage and won't be lost in case of a
3214  * crash.
3215  *
3216  * Failure to do so can result in data corruption in the case of internal or
3217  * external snapshots and in the case of newly provisioned blocks, when block
3218  * zeroing is enabled.
3219  */
3220 static int metadata_pre_commit_callback(void *context)
3221 {
3222 	struct pool *pool = context;
3223 
3224 	return blkdev_issue_flush(pool->data_dev);
3225 }
3226 
3227 static sector_t get_dev_size(struct block_device *bdev)
3228 {
3229 	return bdev_nr_sectors(bdev);
3230 }
3231 
3232 static void warn_if_metadata_device_too_big(struct block_device *bdev)
3233 {
3234 	sector_t metadata_dev_size = get_dev_size(bdev);
3235 
3236 	if (metadata_dev_size > THIN_METADATA_MAX_SECTORS_WARNING)
3237 		DMWARN("Metadata device %pg is larger than %u sectors: excess space will not be used.",
3238 		       bdev, THIN_METADATA_MAX_SECTORS);
3239 }
3240 
3241 static sector_t get_metadata_dev_size(struct block_device *bdev)
3242 {
3243 	sector_t metadata_dev_size = get_dev_size(bdev);
3244 
3245 	if (metadata_dev_size > THIN_METADATA_MAX_SECTORS)
3246 		metadata_dev_size = THIN_METADATA_MAX_SECTORS;
3247 
3248 	return metadata_dev_size;
3249 }
3250 
3251 static dm_block_t get_metadata_dev_size_in_blocks(struct block_device *bdev)
3252 {
3253 	sector_t metadata_dev_size = get_metadata_dev_size(bdev);
3254 
3255 	sector_div(metadata_dev_size, THIN_METADATA_BLOCK_SIZE);
3256 
3257 	return metadata_dev_size;
3258 }
3259 
3260 /*
3261  * When a metadata threshold is crossed a dm event is triggered, and
3262  * userland should respond by growing the metadata device.  We could let
3263  * userland set the threshold, like we do with the data threshold, but I'm
3264  * not sure they know enough to do this well.
3265  */
3266 static dm_block_t calc_metadata_threshold(struct pool_c *pt)
3267 {
3268 	/*
3269 	 * 4M is ample for all ops with the possible exception of thin
3270 	 * device deletion which is harmless if it fails (just retry the
3271 	 * delete after you've grown the device).
3272 	 */
3273 	dm_block_t quarter = get_metadata_dev_size_in_blocks(pt->metadata_dev->bdev) / 4;
3274 
3275 	return min((dm_block_t)1024ULL /* 4M */, quarter);
3276 }
3277 
3278 /*
3279  * thin-pool <metadata dev> <data dev>
3280  *	     <data block size (sectors)>
3281  *	     <low water mark (blocks)>
3282  *	     [<#feature args> [<arg>]*]
3283  *
3284  * Optional feature arguments are:
3285  *	     skip_block_zeroing: skips the zeroing of newly-provisioned blocks.
3286  *	     ignore_discard: disable discard
3287  *	     no_discard_passdown: don't pass discards down to the data device
3288  *	     read_only: Don't allow any changes to be made to the pool metadata.
3289  *	     error_if_no_space: error IOs, instead of queueing, if no space.
3290  */
3291 static int pool_ctr(struct dm_target *ti, unsigned int argc, char **argv)
3292 {
3293 	int r, pool_created = 0;
3294 	struct pool_c *pt;
3295 	struct pool *pool;
3296 	struct pool_features pf;
3297 	struct dm_arg_set as;
3298 	struct dm_dev *data_dev;
3299 	unsigned long block_size;
3300 	dm_block_t low_water_blocks;
3301 	struct dm_dev *metadata_dev;
3302 	blk_mode_t metadata_mode;
3303 
3304 	/*
3305 	 * FIXME Remove validation from scope of lock.
3306 	 */
3307 	mutex_lock(&dm_thin_pool_table.mutex);
3308 
3309 	if (argc < 4) {
3310 		ti->error = "Invalid argument count";
3311 		r = -EINVAL;
3312 		goto out_unlock;
3313 	}
3314 
3315 	as.argc = argc;
3316 	as.argv = argv;
3317 
3318 	/* make sure metadata and data are different devices */
3319 	if (!strcmp(argv[0], argv[1])) {
3320 		ti->error = "Error setting metadata or data device";
3321 		r = -EINVAL;
3322 		goto out_unlock;
3323 	}
3324 
3325 	/*
3326 	 * Set default pool features.
3327 	 */
3328 	pool_features_init(&pf);
3329 
3330 	dm_consume_args(&as, 4);
3331 	r = parse_pool_features(&as, &pf, ti);
3332 	if (r)
3333 		goto out_unlock;
3334 
3335 	metadata_mode = BLK_OPEN_READ |
3336 		((pf.mode == PM_READ_ONLY) ? 0 : BLK_OPEN_WRITE);
3337 	r = dm_get_device(ti, argv[0], metadata_mode, &metadata_dev);
3338 	if (r) {
3339 		ti->error = "Error opening metadata block device";
3340 		goto out_unlock;
3341 	}
3342 	warn_if_metadata_device_too_big(metadata_dev->bdev);
3343 
3344 	r = dm_get_device(ti, argv[1], BLK_OPEN_READ | BLK_OPEN_WRITE, &data_dev);
3345 	if (r) {
3346 		ti->error = "Error getting data device";
3347 		goto out_metadata;
3348 	}
3349 
3350 	if (kstrtoul(argv[2], 10, &block_size) || !block_size ||
3351 	    block_size < DATA_DEV_BLOCK_SIZE_MIN_SECTORS ||
3352 	    block_size > DATA_DEV_BLOCK_SIZE_MAX_SECTORS ||
3353 	    block_size & (DATA_DEV_BLOCK_SIZE_MIN_SECTORS - 1)) {
3354 		ti->error = "Invalid block size";
3355 		r = -EINVAL;
3356 		goto out;
3357 	}
3358 
3359 	if (kstrtoull(argv[3], 10, (unsigned long long *)&low_water_blocks)) {
3360 		ti->error = "Invalid low water mark";
3361 		r = -EINVAL;
3362 		goto out;
3363 	}
3364 
3365 	pt = kzalloc(sizeof(*pt), GFP_KERNEL);
3366 	if (!pt) {
3367 		r = -ENOMEM;
3368 		goto out;
3369 	}
3370 
3371 	pool = __pool_find(dm_table_get_md(ti->table), metadata_dev->bdev, data_dev->bdev,
3372 			   block_size, pf.mode == PM_READ_ONLY, &ti->error, &pool_created);
3373 	if (IS_ERR(pool)) {
3374 		r = PTR_ERR(pool);
3375 		goto out_free_pt;
3376 	}
3377 
3378 	/*
3379 	 * 'pool_created' reflects whether this is the first table load.
3380 	 * Top level discard support is not allowed to be changed after
3381 	 * initial load.  This would require a pool reload to trigger thin
3382 	 * device changes.
3383 	 */
3384 	if (!pool_created && pf.discard_enabled != pool->pf.discard_enabled) {
3385 		ti->error = "Discard support cannot be disabled once enabled";
3386 		r = -EINVAL;
3387 		goto out_flags_changed;
3388 	}
3389 
3390 	pt->pool = pool;
3391 	pt->ti = ti;
3392 	pt->metadata_dev = metadata_dev;
3393 	pt->data_dev = data_dev;
3394 	pt->low_water_blocks = low_water_blocks;
3395 	pt->adjusted_pf = pt->requested_pf = pf;
3396 	ti->num_flush_bios = 1;
3397 	ti->limit_swap_bios = true;
3398 
3399 	/*
3400 	 * Only need to enable discards if the pool should pass
3401 	 * them down to the data device.  The thin device's discard
3402 	 * processing will cause mappings to be removed from the btree.
3403 	 */
3404 	if (pf.discard_enabled && pf.discard_passdown) {
3405 		ti->num_discard_bios = 1;
3406 		/*
3407 		 * Setting 'discards_supported' circumvents the normal
3408 		 * stacking of discard limits (this keeps the pool and
3409 		 * thin devices' discard limits consistent).
3410 		 */
3411 		ti->discards_supported = true;
3412 		ti->max_discard_granularity = true;
3413 	}
3414 	ti->private = pt;
3415 
3416 	r = dm_pool_register_metadata_threshold(pt->pool->pmd,
3417 						calc_metadata_threshold(pt),
3418 						metadata_low_callback,
3419 						pool);
3420 	if (r) {
3421 		ti->error = "Error registering metadata threshold";
3422 		goto out_flags_changed;
3423 	}
3424 
3425 	dm_pool_register_pre_commit_callback(pool->pmd,
3426 					     metadata_pre_commit_callback, pool);
3427 
3428 	mutex_unlock(&dm_thin_pool_table.mutex);
3429 
3430 	return 0;
3431 
3432 out_flags_changed:
3433 	__pool_dec(pool);
3434 out_free_pt:
3435 	kfree(pt);
3436 out:
3437 	dm_put_device(ti, data_dev);
3438 out_metadata:
3439 	dm_put_device(ti, metadata_dev);
3440 out_unlock:
3441 	mutex_unlock(&dm_thin_pool_table.mutex);
3442 
3443 	return r;
3444 }
3445 
3446 static int pool_map(struct dm_target *ti, struct bio *bio)
3447 {
3448 	struct pool_c *pt = ti->private;
3449 	struct pool *pool = pt->pool;
3450 
3451 	/*
3452 	 * As this is a singleton target, ti->begin is always zero.
3453 	 */
3454 	spin_lock_irq(&pool->lock);
3455 	bio_set_dev(bio, pt->data_dev->bdev);
3456 	spin_unlock_irq(&pool->lock);
3457 
3458 	return DM_MAPIO_REMAPPED;
3459 }
3460 
3461 static int maybe_resize_data_dev(struct dm_target *ti, bool *need_commit)
3462 {
3463 	int r;
3464 	struct pool_c *pt = ti->private;
3465 	struct pool *pool = pt->pool;
3466 	sector_t data_size = ti->len;
3467 	dm_block_t sb_data_size;
3468 
3469 	*need_commit = false;
3470 
3471 	(void) sector_div(data_size, pool->sectors_per_block);
3472 
3473 	r = dm_pool_get_data_dev_size(pool->pmd, &sb_data_size);
3474 	if (r) {
3475 		DMERR("%s: failed to retrieve data device size",
3476 		      dm_device_name(pool->pool_md));
3477 		return r;
3478 	}
3479 
3480 	if (data_size < sb_data_size) {
3481 		DMERR("%s: pool target (%llu blocks) too small: expected %llu",
3482 		      dm_device_name(pool->pool_md),
3483 		      (unsigned long long)data_size, sb_data_size);
3484 		return -EINVAL;
3485 
3486 	} else if (data_size > sb_data_size) {
3487 		if (dm_pool_metadata_needs_check(pool->pmd)) {
3488 			DMERR("%s: unable to grow the data device until repaired.",
3489 			      dm_device_name(pool->pool_md));
3490 			return 0;
3491 		}
3492 
3493 		if (sb_data_size)
3494 			DMINFO("%s: growing the data device from %llu to %llu blocks",
3495 			       dm_device_name(pool->pool_md),
3496 			       sb_data_size, (unsigned long long)data_size);
3497 		r = dm_pool_resize_data_dev(pool->pmd, data_size);
3498 		if (r) {
3499 			metadata_operation_failed(pool, "dm_pool_resize_data_dev", r);
3500 			return r;
3501 		}
3502 
3503 		*need_commit = true;
3504 	}
3505 
3506 	return 0;
3507 }
3508 
3509 static int maybe_resize_metadata_dev(struct dm_target *ti, bool *need_commit)
3510 {
3511 	int r;
3512 	struct pool_c *pt = ti->private;
3513 	struct pool *pool = pt->pool;
3514 	dm_block_t metadata_dev_size, sb_metadata_dev_size;
3515 
3516 	*need_commit = false;
3517 
3518 	metadata_dev_size = get_metadata_dev_size_in_blocks(pool->md_dev);
3519 
3520 	r = dm_pool_get_metadata_dev_size(pool->pmd, &sb_metadata_dev_size);
3521 	if (r) {
3522 		DMERR("%s: failed to retrieve metadata device size",
3523 		      dm_device_name(pool->pool_md));
3524 		return r;
3525 	}
3526 
3527 	if (metadata_dev_size < sb_metadata_dev_size) {
3528 		DMERR("%s: metadata device (%llu blocks) too small: expected %llu",
3529 		      dm_device_name(pool->pool_md),
3530 		      metadata_dev_size, sb_metadata_dev_size);
3531 		return -EINVAL;
3532 
3533 	} else if (metadata_dev_size > sb_metadata_dev_size) {
3534 		if (dm_pool_metadata_needs_check(pool->pmd)) {
3535 			DMERR("%s: unable to grow the metadata device until repaired.",
3536 			      dm_device_name(pool->pool_md));
3537 			return 0;
3538 		}
3539 
3540 		warn_if_metadata_device_too_big(pool->md_dev);
3541 		DMINFO("%s: growing the metadata device from %llu to %llu blocks",
3542 		       dm_device_name(pool->pool_md),
3543 		       sb_metadata_dev_size, metadata_dev_size);
3544 
3545 		if (get_pool_mode(pool) == PM_OUT_OF_METADATA_SPACE)
3546 			set_pool_mode(pool, PM_WRITE);
3547 
3548 		r = dm_pool_resize_metadata_dev(pool->pmd, metadata_dev_size);
3549 		if (r) {
3550 			metadata_operation_failed(pool, "dm_pool_resize_metadata_dev", r);
3551 			return r;
3552 		}
3553 
3554 		*need_commit = true;
3555 	}
3556 
3557 	return 0;
3558 }
3559 
3560 /*
3561  * Retrieves the number of blocks of the data device from
3562  * the superblock and compares it to the actual device size,
3563  * thus resizing the data device in case it has grown.
3564  *
3565  * This both copes with opening preallocated data devices in the ctr
3566  * being followed by a resume
3567  * -and-
3568  * calling the resume method individually after userspace has
3569  * grown the data device in reaction to a table event.
3570  */
3571 static int pool_preresume(struct dm_target *ti)
3572 {
3573 	int r;
3574 	bool need_commit1, need_commit2;
3575 	struct pool_c *pt = ti->private;
3576 	struct pool *pool = pt->pool;
3577 
3578 	/*
3579 	 * Take control of the pool object.
3580 	 */
3581 	r = bind_control_target(pool, ti);
3582 	if (r)
3583 		goto out;
3584 
3585 	r = maybe_resize_data_dev(ti, &need_commit1);
3586 	if (r)
3587 		goto out;
3588 
3589 	r = maybe_resize_metadata_dev(ti, &need_commit2);
3590 	if (r)
3591 		goto out;
3592 
3593 	if (need_commit1 || need_commit2)
3594 		(void) commit(pool);
3595 out:
3596 	/*
3597 	 * When a thin-pool is PM_FAIL, it cannot be rebuilt if
3598 	 * bio is in deferred list. Therefore need to return 0
3599 	 * to allow pool_resume() to flush IO.
3600 	 */
3601 	if (r && get_pool_mode(pool) == PM_FAIL)
3602 		r = 0;
3603 
3604 	return r;
3605 }
3606 
3607 static void pool_suspend_active_thins(struct pool *pool)
3608 {
3609 	struct thin_c *tc;
3610 
3611 	/* Suspend all active thin devices */
3612 	tc = get_first_thin(pool);
3613 	while (tc) {
3614 		dm_internal_suspend_noflush(tc->thin_md);
3615 		tc = get_next_thin(pool, tc);
3616 	}
3617 }
3618 
3619 static void pool_resume_active_thins(struct pool *pool)
3620 {
3621 	struct thin_c *tc;
3622 
3623 	/* Resume all active thin devices */
3624 	tc = get_first_thin(pool);
3625 	while (tc) {
3626 		dm_internal_resume(tc->thin_md);
3627 		tc = get_next_thin(pool, tc);
3628 	}
3629 }
3630 
3631 static void pool_resume(struct dm_target *ti)
3632 {
3633 	struct pool_c *pt = ti->private;
3634 	struct pool *pool = pt->pool;
3635 
3636 	/*
3637 	 * Must requeue active_thins' bios and then resume
3638 	 * active_thins _before_ clearing 'suspend' flag.
3639 	 */
3640 	requeue_bios(pool);
3641 	pool_resume_active_thins(pool);
3642 
3643 	spin_lock_irq(&pool->lock);
3644 	pool->low_water_triggered = false;
3645 	pool->suspended = false;
3646 	spin_unlock_irq(&pool->lock);
3647 
3648 	do_waker(&pool->waker.work);
3649 }
3650 
3651 static void pool_presuspend(struct dm_target *ti)
3652 {
3653 	struct pool_c *pt = ti->private;
3654 	struct pool *pool = pt->pool;
3655 
3656 	spin_lock_irq(&pool->lock);
3657 	pool->suspended = true;
3658 	spin_unlock_irq(&pool->lock);
3659 
3660 	pool_suspend_active_thins(pool);
3661 }
3662 
3663 static void pool_presuspend_undo(struct dm_target *ti)
3664 {
3665 	struct pool_c *pt = ti->private;
3666 	struct pool *pool = pt->pool;
3667 
3668 	pool_resume_active_thins(pool);
3669 
3670 	spin_lock_irq(&pool->lock);
3671 	pool->suspended = false;
3672 	spin_unlock_irq(&pool->lock);
3673 }
3674 
3675 static void pool_postsuspend(struct dm_target *ti)
3676 {
3677 	struct pool_c *pt = ti->private;
3678 	struct pool *pool = pt->pool;
3679 
3680 	cancel_delayed_work_sync(&pool->waker);
3681 	cancel_delayed_work_sync(&pool->no_space_timeout);
3682 	flush_workqueue(pool->wq);
3683 	(void) commit(pool);
3684 }
3685 
3686 static int check_arg_count(unsigned int argc, unsigned int args_required)
3687 {
3688 	if (argc != args_required) {
3689 		DMWARN("Message received with %u arguments instead of %u.",
3690 		       argc, args_required);
3691 		return -EINVAL;
3692 	}
3693 
3694 	return 0;
3695 }
3696 
3697 static int read_dev_id(char *arg, dm_thin_id *dev_id, int warning)
3698 {
3699 	if (!kstrtoull(arg, 10, (unsigned long long *)dev_id) &&
3700 	    *dev_id <= MAX_DEV_ID)
3701 		return 0;
3702 
3703 	if (warning)
3704 		DMWARN("Message received with invalid device id: %s", arg);
3705 
3706 	return -EINVAL;
3707 }
3708 
3709 static int process_create_thin_mesg(unsigned int argc, char **argv, struct pool *pool)
3710 {
3711 	dm_thin_id dev_id;
3712 	int r;
3713 
3714 	r = check_arg_count(argc, 2);
3715 	if (r)
3716 		return r;
3717 
3718 	r = read_dev_id(argv[1], &dev_id, 1);
3719 	if (r)
3720 		return r;
3721 
3722 	r = dm_pool_create_thin(pool->pmd, dev_id);
3723 	if (r) {
3724 		DMWARN("Creation of new thinly-provisioned device with id %s failed.",
3725 		       argv[1]);
3726 		return r;
3727 	}
3728 
3729 	return 0;
3730 }
3731 
3732 static int process_create_snap_mesg(unsigned int argc, char **argv, struct pool *pool)
3733 {
3734 	dm_thin_id dev_id;
3735 	dm_thin_id origin_dev_id;
3736 	int r;
3737 
3738 	r = check_arg_count(argc, 3);
3739 	if (r)
3740 		return r;
3741 
3742 	r = read_dev_id(argv[1], &dev_id, 1);
3743 	if (r)
3744 		return r;
3745 
3746 	r = read_dev_id(argv[2], &origin_dev_id, 1);
3747 	if (r)
3748 		return r;
3749 
3750 	r = dm_pool_create_snap(pool->pmd, dev_id, origin_dev_id);
3751 	if (r) {
3752 		DMWARN("Creation of new snapshot %s of device %s failed.",
3753 		       argv[1], argv[2]);
3754 		return r;
3755 	}
3756 
3757 	return 0;
3758 }
3759 
3760 static int process_delete_mesg(unsigned int argc, char **argv, struct pool *pool)
3761 {
3762 	dm_thin_id dev_id;
3763 	int r;
3764 
3765 	r = check_arg_count(argc, 2);
3766 	if (r)
3767 		return r;
3768 
3769 	r = read_dev_id(argv[1], &dev_id, 1);
3770 	if (r)
3771 		return r;
3772 
3773 	r = dm_pool_delete_thin_device(pool->pmd, dev_id);
3774 	if (r)
3775 		DMWARN("Deletion of thin device %s failed.", argv[1]);
3776 
3777 	return r;
3778 }
3779 
3780 static int process_set_transaction_id_mesg(unsigned int argc, char **argv, struct pool *pool)
3781 {
3782 	dm_thin_id old_id, new_id;
3783 	int r;
3784 
3785 	r = check_arg_count(argc, 3);
3786 	if (r)
3787 		return r;
3788 
3789 	if (kstrtoull(argv[1], 10, (unsigned long long *)&old_id)) {
3790 		DMWARN("set_transaction_id message: Unrecognised id %s.", argv[1]);
3791 		return -EINVAL;
3792 	}
3793 
3794 	if (kstrtoull(argv[2], 10, (unsigned long long *)&new_id)) {
3795 		DMWARN("set_transaction_id message: Unrecognised new id %s.", argv[2]);
3796 		return -EINVAL;
3797 	}
3798 
3799 	r = dm_pool_set_metadata_transaction_id(pool->pmd, old_id, new_id);
3800 	if (r) {
3801 		DMWARN("Failed to change transaction id from %s to %s.",
3802 		       argv[1], argv[2]);
3803 		return r;
3804 	}
3805 
3806 	return 0;
3807 }
3808 
3809 static int process_reserve_metadata_snap_mesg(unsigned int argc, char **argv, struct pool *pool)
3810 {
3811 	int r;
3812 
3813 	r = check_arg_count(argc, 1);
3814 	if (r)
3815 		return r;
3816 
3817 	(void) commit(pool);
3818 
3819 	r = dm_pool_reserve_metadata_snap(pool->pmd);
3820 	if (r)
3821 		DMWARN("reserve_metadata_snap message failed.");
3822 
3823 	return r;
3824 }
3825 
3826 static int process_release_metadata_snap_mesg(unsigned int argc, char **argv, struct pool *pool)
3827 {
3828 	int r;
3829 
3830 	r = check_arg_count(argc, 1);
3831 	if (r)
3832 		return r;
3833 
3834 	r = dm_pool_release_metadata_snap(pool->pmd);
3835 	if (r)
3836 		DMWARN("release_metadata_snap message failed.");
3837 
3838 	return r;
3839 }
3840 
3841 /*
3842  * Messages supported:
3843  *   create_thin	<dev_id>
3844  *   create_snap	<dev_id> <origin_id>
3845  *   delete		<dev_id>
3846  *   set_transaction_id <current_trans_id> <new_trans_id>
3847  *   reserve_metadata_snap
3848  *   release_metadata_snap
3849  */
3850 static int pool_message(struct dm_target *ti, unsigned int argc, char **argv,
3851 			char *result, unsigned int maxlen)
3852 {
3853 	int r = -EINVAL;
3854 	struct pool_c *pt = ti->private;
3855 	struct pool *pool = pt->pool;
3856 
3857 	if (get_pool_mode(pool) >= PM_OUT_OF_METADATA_SPACE) {
3858 		DMERR("%s: unable to service pool target messages in READ_ONLY or FAIL mode",
3859 		      dm_device_name(pool->pool_md));
3860 		return -EOPNOTSUPP;
3861 	}
3862 
3863 	if (!strcasecmp(argv[0], "create_thin"))
3864 		r = process_create_thin_mesg(argc, argv, pool);
3865 
3866 	else if (!strcasecmp(argv[0], "create_snap"))
3867 		r = process_create_snap_mesg(argc, argv, pool);
3868 
3869 	else if (!strcasecmp(argv[0], "delete"))
3870 		r = process_delete_mesg(argc, argv, pool);
3871 
3872 	else if (!strcasecmp(argv[0], "set_transaction_id"))
3873 		r = process_set_transaction_id_mesg(argc, argv, pool);
3874 
3875 	else if (!strcasecmp(argv[0], "reserve_metadata_snap"))
3876 		r = process_reserve_metadata_snap_mesg(argc, argv, pool);
3877 
3878 	else if (!strcasecmp(argv[0], "release_metadata_snap"))
3879 		r = process_release_metadata_snap_mesg(argc, argv, pool);
3880 
3881 	else
3882 		DMWARN("Unrecognised thin pool target message received: %s", argv[0]);
3883 
3884 	if (!r)
3885 		(void) commit(pool);
3886 
3887 	return r;
3888 }
3889 
3890 static void emit_flags(struct pool_features *pf, char *result,
3891 		       unsigned int sz, unsigned int maxlen)
3892 {
3893 	unsigned int count = !pf->zero_new_blocks + !pf->discard_enabled +
3894 		!pf->discard_passdown + (pf->mode == PM_READ_ONLY) +
3895 		pf->error_if_no_space;
3896 	DMEMIT("%u ", count);
3897 
3898 	if (!pf->zero_new_blocks)
3899 		DMEMIT("skip_block_zeroing ");
3900 
3901 	if (!pf->discard_enabled)
3902 		DMEMIT("ignore_discard ");
3903 
3904 	if (!pf->discard_passdown)
3905 		DMEMIT("no_discard_passdown ");
3906 
3907 	if (pf->mode == PM_READ_ONLY)
3908 		DMEMIT("read_only ");
3909 
3910 	if (pf->error_if_no_space)
3911 		DMEMIT("error_if_no_space ");
3912 }
3913 
3914 /*
3915  * Status line is:
3916  *    <transaction id> <used metadata sectors>/<total metadata sectors>
3917  *    <used data sectors>/<total data sectors> <held metadata root>
3918  *    <pool mode> <discard config> <no space config> <needs_check>
3919  */
3920 static void pool_status(struct dm_target *ti, status_type_t type,
3921 			unsigned int status_flags, char *result, unsigned int maxlen)
3922 {
3923 	int r;
3924 	unsigned int sz = 0;
3925 	uint64_t transaction_id;
3926 	dm_block_t nr_free_blocks_data;
3927 	dm_block_t nr_free_blocks_metadata;
3928 	dm_block_t nr_blocks_data;
3929 	dm_block_t nr_blocks_metadata;
3930 	dm_block_t held_root;
3931 	enum pool_mode mode;
3932 	char buf[BDEVNAME_SIZE];
3933 	char buf2[BDEVNAME_SIZE];
3934 	struct pool_c *pt = ti->private;
3935 	struct pool *pool = pt->pool;
3936 
3937 	switch (type) {
3938 	case STATUSTYPE_INFO:
3939 		if (get_pool_mode(pool) == PM_FAIL) {
3940 			DMEMIT("Fail");
3941 			break;
3942 		}
3943 
3944 		/* Commit to ensure statistics aren't out-of-date */
3945 		if (!(status_flags & DM_STATUS_NOFLUSH_FLAG) && !dm_suspended(ti))
3946 			(void) commit(pool);
3947 
3948 		r = dm_pool_get_metadata_transaction_id(pool->pmd, &transaction_id);
3949 		if (r) {
3950 			DMERR("%s: dm_pool_get_metadata_transaction_id returned %d",
3951 			      dm_device_name(pool->pool_md), r);
3952 			goto err;
3953 		}
3954 
3955 		r = dm_pool_get_free_metadata_block_count(pool->pmd, &nr_free_blocks_metadata);
3956 		if (r) {
3957 			DMERR("%s: dm_pool_get_free_metadata_block_count returned %d",
3958 			      dm_device_name(pool->pool_md), r);
3959 			goto err;
3960 		}
3961 
3962 		r = dm_pool_get_metadata_dev_size(pool->pmd, &nr_blocks_metadata);
3963 		if (r) {
3964 			DMERR("%s: dm_pool_get_metadata_dev_size returned %d",
3965 			      dm_device_name(pool->pool_md), r);
3966 			goto err;
3967 		}
3968 
3969 		r = dm_pool_get_free_block_count(pool->pmd, &nr_free_blocks_data);
3970 		if (r) {
3971 			DMERR("%s: dm_pool_get_free_block_count returned %d",
3972 			      dm_device_name(pool->pool_md), r);
3973 			goto err;
3974 		}
3975 
3976 		r = dm_pool_get_data_dev_size(pool->pmd, &nr_blocks_data);
3977 		if (r) {
3978 			DMERR("%s: dm_pool_get_data_dev_size returned %d",
3979 			      dm_device_name(pool->pool_md), r);
3980 			goto err;
3981 		}
3982 
3983 		r = dm_pool_get_metadata_snap(pool->pmd, &held_root);
3984 		if (r) {
3985 			DMERR("%s: dm_pool_get_metadata_snap returned %d",
3986 			      dm_device_name(pool->pool_md), r);
3987 			goto err;
3988 		}
3989 
3990 		DMEMIT("%llu %llu/%llu %llu/%llu ",
3991 		       (unsigned long long)transaction_id,
3992 		       (unsigned long long)(nr_blocks_metadata - nr_free_blocks_metadata),
3993 		       (unsigned long long)nr_blocks_metadata,
3994 		       (unsigned long long)(nr_blocks_data - nr_free_blocks_data),
3995 		       (unsigned long long)nr_blocks_data);
3996 
3997 		if (held_root)
3998 			DMEMIT("%llu ", held_root);
3999 		else
4000 			DMEMIT("- ");
4001 
4002 		mode = get_pool_mode(pool);
4003 		if (mode == PM_OUT_OF_DATA_SPACE)
4004 			DMEMIT("out_of_data_space ");
4005 		else if (is_read_only_pool_mode(mode))
4006 			DMEMIT("ro ");
4007 		else
4008 			DMEMIT("rw ");
4009 
4010 		if (!pool->pf.discard_enabled)
4011 			DMEMIT("ignore_discard ");
4012 		else if (pool->pf.discard_passdown)
4013 			DMEMIT("discard_passdown ");
4014 		else
4015 			DMEMIT("no_discard_passdown ");
4016 
4017 		if (pool->pf.error_if_no_space)
4018 			DMEMIT("error_if_no_space ");
4019 		else
4020 			DMEMIT("queue_if_no_space ");
4021 
4022 		if (dm_pool_metadata_needs_check(pool->pmd))
4023 			DMEMIT("needs_check ");
4024 		else
4025 			DMEMIT("- ");
4026 
4027 		DMEMIT("%llu ", (unsigned long long)calc_metadata_threshold(pt));
4028 
4029 		break;
4030 
4031 	case STATUSTYPE_TABLE:
4032 		DMEMIT("%s %s %lu %llu ",
4033 		       format_dev_t(buf, pt->metadata_dev->bdev->bd_dev),
4034 		       format_dev_t(buf2, pt->data_dev->bdev->bd_dev),
4035 		       (unsigned long)pool->sectors_per_block,
4036 		       (unsigned long long)pt->low_water_blocks);
4037 		emit_flags(&pt->requested_pf, result, sz, maxlen);
4038 		break;
4039 
4040 	case STATUSTYPE_IMA:
4041 		*result = '\0';
4042 		break;
4043 	}
4044 	return;
4045 
4046 err:
4047 	DMEMIT("Error");
4048 }
4049 
4050 static int pool_iterate_devices(struct dm_target *ti,
4051 				iterate_devices_callout_fn fn, void *data)
4052 {
4053 	struct pool_c *pt = ti->private;
4054 
4055 	return fn(ti, pt->data_dev, 0, ti->len, data);
4056 }
4057 
4058 static void pool_io_hints(struct dm_target *ti, struct queue_limits *limits)
4059 {
4060 	struct pool_c *pt = ti->private;
4061 	struct pool *pool = pt->pool;
4062 	sector_t io_opt_sectors = limits->io_opt >> SECTOR_SHIFT;
4063 
4064 	/*
4065 	 * If max_sectors is smaller than pool->sectors_per_block adjust it
4066 	 * to the highest possible power-of-2 factor of pool->sectors_per_block.
4067 	 * This is especially beneficial when the pool's data device is a RAID
4068 	 * device that has a full stripe width that matches pool->sectors_per_block
4069 	 * -- because even though partial RAID stripe-sized IOs will be issued to a
4070 	 *    single RAID stripe; when aggregated they will end on a full RAID stripe
4071 	 *    boundary.. which avoids additional partial RAID stripe writes cascading
4072 	 */
4073 	if (limits->max_sectors < pool->sectors_per_block) {
4074 		while (!is_factor(pool->sectors_per_block, limits->max_sectors)) {
4075 			if ((limits->max_sectors & (limits->max_sectors - 1)) == 0)
4076 				limits->max_sectors--;
4077 			limits->max_sectors = rounddown_pow_of_two(limits->max_sectors);
4078 		}
4079 	}
4080 
4081 	/*
4082 	 * If the system-determined stacked limits are compatible with the
4083 	 * pool's blocksize (io_opt is a factor) do not override them.
4084 	 */
4085 	if (io_opt_sectors < pool->sectors_per_block ||
4086 	    !is_factor(io_opt_sectors, pool->sectors_per_block)) {
4087 		if (is_factor(pool->sectors_per_block, limits->max_sectors))
4088 			blk_limits_io_min(limits, limits->max_sectors << SECTOR_SHIFT);
4089 		else
4090 			blk_limits_io_min(limits, pool->sectors_per_block << SECTOR_SHIFT);
4091 		blk_limits_io_opt(limits, pool->sectors_per_block << SECTOR_SHIFT);
4092 	}
4093 
4094 	/*
4095 	 * pt->adjusted_pf is a staging area for the actual features to use.
4096 	 * They get transferred to the live pool in bind_control_target()
4097 	 * called from pool_preresume().
4098 	 */
4099 
4100 	if (pt->adjusted_pf.discard_enabled) {
4101 		disable_discard_passdown_if_not_supported(pt);
4102 		if (!pt->adjusted_pf.discard_passdown)
4103 			limits->max_discard_sectors = 0;
4104 		/*
4105 		 * The pool uses the same discard limits as the underlying data
4106 		 * device.  DM core has already set this up.
4107 		 */
4108 	} else {
4109 		/*
4110 		 * Must explicitly disallow stacking discard limits otherwise the
4111 		 * block layer will stack them if pool's data device has support.
4112 		 */
4113 		limits->discard_granularity = 0;
4114 	}
4115 }
4116 
4117 static struct target_type pool_target = {
4118 	.name = "thin-pool",
4119 	.features = DM_TARGET_SINGLETON | DM_TARGET_ALWAYS_WRITEABLE |
4120 		    DM_TARGET_IMMUTABLE,
4121 	.version = {1, 23, 0},
4122 	.module = THIS_MODULE,
4123 	.ctr = pool_ctr,
4124 	.dtr = pool_dtr,
4125 	.map = pool_map,
4126 	.presuspend = pool_presuspend,
4127 	.presuspend_undo = pool_presuspend_undo,
4128 	.postsuspend = pool_postsuspend,
4129 	.preresume = pool_preresume,
4130 	.resume = pool_resume,
4131 	.message = pool_message,
4132 	.status = pool_status,
4133 	.iterate_devices = pool_iterate_devices,
4134 	.io_hints = pool_io_hints,
4135 };
4136 
4137 /*
4138  *--------------------------------------------------------------
4139  * Thin target methods
4140  *--------------------------------------------------------------
4141  */
4142 static void thin_get(struct thin_c *tc)
4143 {
4144 	refcount_inc(&tc->refcount);
4145 }
4146 
4147 static void thin_put(struct thin_c *tc)
4148 {
4149 	if (refcount_dec_and_test(&tc->refcount))
4150 		complete(&tc->can_destroy);
4151 }
4152 
4153 static void thin_dtr(struct dm_target *ti)
4154 {
4155 	struct thin_c *tc = ti->private;
4156 
4157 	spin_lock_irq(&tc->pool->lock);
4158 	list_del_rcu(&tc->list);
4159 	spin_unlock_irq(&tc->pool->lock);
4160 	synchronize_rcu();
4161 
4162 	thin_put(tc);
4163 	wait_for_completion(&tc->can_destroy);
4164 
4165 	mutex_lock(&dm_thin_pool_table.mutex);
4166 
4167 	__pool_dec(tc->pool);
4168 	dm_pool_close_thin_device(tc->td);
4169 	dm_put_device(ti, tc->pool_dev);
4170 	if (tc->origin_dev)
4171 		dm_put_device(ti, tc->origin_dev);
4172 	kfree(tc);
4173 
4174 	mutex_unlock(&dm_thin_pool_table.mutex);
4175 }
4176 
4177 /*
4178  * Thin target parameters:
4179  *
4180  * <pool_dev> <dev_id> [origin_dev]
4181  *
4182  * pool_dev: the path to the pool (eg, /dev/mapper/my_pool)
4183  * dev_id: the internal device identifier
4184  * origin_dev: a device external to the pool that should act as the origin
4185  *
4186  * If the pool device has discards disabled, they get disabled for the thin
4187  * device as well.
4188  */
4189 static int thin_ctr(struct dm_target *ti, unsigned int argc, char **argv)
4190 {
4191 	int r;
4192 	struct thin_c *tc;
4193 	struct dm_dev *pool_dev, *origin_dev;
4194 	struct mapped_device *pool_md;
4195 
4196 	mutex_lock(&dm_thin_pool_table.mutex);
4197 
4198 	if (argc != 2 && argc != 3) {
4199 		ti->error = "Invalid argument count";
4200 		r = -EINVAL;
4201 		goto out_unlock;
4202 	}
4203 
4204 	tc = ti->private = kzalloc(sizeof(*tc), GFP_KERNEL);
4205 	if (!tc) {
4206 		ti->error = "Out of memory";
4207 		r = -ENOMEM;
4208 		goto out_unlock;
4209 	}
4210 	tc->thin_md = dm_table_get_md(ti->table);
4211 	spin_lock_init(&tc->lock);
4212 	INIT_LIST_HEAD(&tc->deferred_cells);
4213 	bio_list_init(&tc->deferred_bio_list);
4214 	bio_list_init(&tc->retry_on_resume_list);
4215 	tc->sort_bio_list = RB_ROOT;
4216 
4217 	if (argc == 3) {
4218 		if (!strcmp(argv[0], argv[2])) {
4219 			ti->error = "Error setting origin device";
4220 			r = -EINVAL;
4221 			goto bad_origin_dev;
4222 		}
4223 
4224 		r = dm_get_device(ti, argv[2], BLK_OPEN_READ, &origin_dev);
4225 		if (r) {
4226 			ti->error = "Error opening origin device";
4227 			goto bad_origin_dev;
4228 		}
4229 		tc->origin_dev = origin_dev;
4230 	}
4231 
4232 	r = dm_get_device(ti, argv[0], dm_table_get_mode(ti->table), &pool_dev);
4233 	if (r) {
4234 		ti->error = "Error opening pool device";
4235 		goto bad_pool_dev;
4236 	}
4237 	tc->pool_dev = pool_dev;
4238 
4239 	if (read_dev_id(argv[1], (unsigned long long *)&tc->dev_id, 0)) {
4240 		ti->error = "Invalid device id";
4241 		r = -EINVAL;
4242 		goto bad_common;
4243 	}
4244 
4245 	pool_md = dm_get_md(tc->pool_dev->bdev->bd_dev);
4246 	if (!pool_md) {
4247 		ti->error = "Couldn't get pool mapped device";
4248 		r = -EINVAL;
4249 		goto bad_common;
4250 	}
4251 
4252 	tc->pool = __pool_table_lookup(pool_md);
4253 	if (!tc->pool) {
4254 		ti->error = "Couldn't find pool object";
4255 		r = -EINVAL;
4256 		goto bad_pool_lookup;
4257 	}
4258 	__pool_inc(tc->pool);
4259 
4260 	if (get_pool_mode(tc->pool) == PM_FAIL) {
4261 		ti->error = "Couldn't open thin device, Pool is in fail mode";
4262 		r = -EINVAL;
4263 		goto bad_pool;
4264 	}
4265 
4266 	r = dm_pool_open_thin_device(tc->pool->pmd, tc->dev_id, &tc->td);
4267 	if (r) {
4268 		ti->error = "Couldn't open thin internal device";
4269 		goto bad_pool;
4270 	}
4271 
4272 	r = dm_set_target_max_io_len(ti, tc->pool->sectors_per_block);
4273 	if (r)
4274 		goto bad;
4275 
4276 	ti->num_flush_bios = 1;
4277 	ti->limit_swap_bios = true;
4278 	ti->flush_supported = true;
4279 	ti->accounts_remapped_io = true;
4280 	ti->per_io_data_size = sizeof(struct dm_thin_endio_hook);
4281 
4282 	/* In case the pool supports discards, pass them on. */
4283 	if (tc->pool->pf.discard_enabled) {
4284 		ti->discards_supported = true;
4285 		ti->num_discard_bios = 1;
4286 		ti->max_discard_granularity = true;
4287 	}
4288 
4289 	mutex_unlock(&dm_thin_pool_table.mutex);
4290 
4291 	spin_lock_irq(&tc->pool->lock);
4292 	if (tc->pool->suspended) {
4293 		spin_unlock_irq(&tc->pool->lock);
4294 		mutex_lock(&dm_thin_pool_table.mutex); /* reacquire for __pool_dec */
4295 		ti->error = "Unable to activate thin device while pool is suspended";
4296 		r = -EINVAL;
4297 		goto bad;
4298 	}
4299 	refcount_set(&tc->refcount, 1);
4300 	init_completion(&tc->can_destroy);
4301 	list_add_tail_rcu(&tc->list, &tc->pool->active_thins);
4302 	spin_unlock_irq(&tc->pool->lock);
4303 	/*
4304 	 * This synchronize_rcu() call is needed here otherwise we risk a
4305 	 * wake_worker() call finding no bios to process (because the newly
4306 	 * added tc isn't yet visible).  So this reduces latency since we
4307 	 * aren't then dependent on the periodic commit to wake_worker().
4308 	 */
4309 	synchronize_rcu();
4310 
4311 	dm_put(pool_md);
4312 
4313 	return 0;
4314 
4315 bad:
4316 	dm_pool_close_thin_device(tc->td);
4317 bad_pool:
4318 	__pool_dec(tc->pool);
4319 bad_pool_lookup:
4320 	dm_put(pool_md);
4321 bad_common:
4322 	dm_put_device(ti, tc->pool_dev);
4323 bad_pool_dev:
4324 	if (tc->origin_dev)
4325 		dm_put_device(ti, tc->origin_dev);
4326 bad_origin_dev:
4327 	kfree(tc);
4328 out_unlock:
4329 	mutex_unlock(&dm_thin_pool_table.mutex);
4330 
4331 	return r;
4332 }
4333 
4334 static int thin_map(struct dm_target *ti, struct bio *bio)
4335 {
4336 	bio->bi_iter.bi_sector = dm_target_offset(ti, bio->bi_iter.bi_sector);
4337 
4338 	return thin_bio_map(ti, bio);
4339 }
4340 
4341 static int thin_endio(struct dm_target *ti, struct bio *bio,
4342 		blk_status_t *err)
4343 {
4344 	unsigned long flags;
4345 	struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
4346 	struct list_head work;
4347 	struct dm_thin_new_mapping *m, *tmp;
4348 	struct pool *pool = h->tc->pool;
4349 
4350 	if (h->shared_read_entry) {
4351 		INIT_LIST_HEAD(&work);
4352 		dm_deferred_entry_dec(h->shared_read_entry, &work);
4353 
4354 		spin_lock_irqsave(&pool->lock, flags);
4355 		list_for_each_entry_safe(m, tmp, &work, list) {
4356 			list_del(&m->list);
4357 			__complete_mapping_preparation(m);
4358 		}
4359 		spin_unlock_irqrestore(&pool->lock, flags);
4360 	}
4361 
4362 	if (h->all_io_entry) {
4363 		INIT_LIST_HEAD(&work);
4364 		dm_deferred_entry_dec(h->all_io_entry, &work);
4365 		if (!list_empty(&work)) {
4366 			spin_lock_irqsave(&pool->lock, flags);
4367 			list_for_each_entry_safe(m, tmp, &work, list)
4368 				list_add_tail(&m->list, &pool->prepared_discards);
4369 			spin_unlock_irqrestore(&pool->lock, flags);
4370 			wake_worker(pool);
4371 		}
4372 	}
4373 
4374 	if (h->cell)
4375 		cell_defer_no_holder(h->tc, h->cell);
4376 
4377 	return DM_ENDIO_DONE;
4378 }
4379 
4380 static void thin_presuspend(struct dm_target *ti)
4381 {
4382 	struct thin_c *tc = ti->private;
4383 
4384 	if (dm_noflush_suspending(ti))
4385 		noflush_work(tc, do_noflush_start);
4386 }
4387 
4388 static void thin_postsuspend(struct dm_target *ti)
4389 {
4390 	struct thin_c *tc = ti->private;
4391 
4392 	/*
4393 	 * The dm_noflush_suspending flag has been cleared by now, so
4394 	 * unfortunately we must always run this.
4395 	 */
4396 	noflush_work(tc, do_noflush_stop);
4397 }
4398 
4399 static int thin_preresume(struct dm_target *ti)
4400 {
4401 	struct thin_c *tc = ti->private;
4402 
4403 	if (tc->origin_dev)
4404 		tc->origin_size = get_dev_size(tc->origin_dev->bdev);
4405 
4406 	return 0;
4407 }
4408 
4409 /*
4410  * <nr mapped sectors> <highest mapped sector>
4411  */
4412 static void thin_status(struct dm_target *ti, status_type_t type,
4413 			unsigned int status_flags, char *result, unsigned int maxlen)
4414 {
4415 	int r;
4416 	ssize_t sz = 0;
4417 	dm_block_t mapped, highest;
4418 	char buf[BDEVNAME_SIZE];
4419 	struct thin_c *tc = ti->private;
4420 
4421 	if (get_pool_mode(tc->pool) == PM_FAIL) {
4422 		DMEMIT("Fail");
4423 		return;
4424 	}
4425 
4426 	if (!tc->td)
4427 		DMEMIT("-");
4428 	else {
4429 		switch (type) {
4430 		case STATUSTYPE_INFO:
4431 			r = dm_thin_get_mapped_count(tc->td, &mapped);
4432 			if (r) {
4433 				DMERR("dm_thin_get_mapped_count returned %d", r);
4434 				goto err;
4435 			}
4436 
4437 			r = dm_thin_get_highest_mapped_block(tc->td, &highest);
4438 			if (r < 0) {
4439 				DMERR("dm_thin_get_highest_mapped_block returned %d", r);
4440 				goto err;
4441 			}
4442 
4443 			DMEMIT("%llu ", mapped * tc->pool->sectors_per_block);
4444 			if (r)
4445 				DMEMIT("%llu", ((highest + 1) *
4446 						tc->pool->sectors_per_block) - 1);
4447 			else
4448 				DMEMIT("-");
4449 			break;
4450 
4451 		case STATUSTYPE_TABLE:
4452 			DMEMIT("%s %lu",
4453 			       format_dev_t(buf, tc->pool_dev->bdev->bd_dev),
4454 			       (unsigned long) tc->dev_id);
4455 			if (tc->origin_dev)
4456 				DMEMIT(" %s", format_dev_t(buf, tc->origin_dev->bdev->bd_dev));
4457 			break;
4458 
4459 		case STATUSTYPE_IMA:
4460 			*result = '\0';
4461 			break;
4462 		}
4463 	}
4464 
4465 	return;
4466 
4467 err:
4468 	DMEMIT("Error");
4469 }
4470 
4471 static int thin_iterate_devices(struct dm_target *ti,
4472 				iterate_devices_callout_fn fn, void *data)
4473 {
4474 	sector_t blocks;
4475 	struct thin_c *tc = ti->private;
4476 	struct pool *pool = tc->pool;
4477 
4478 	/*
4479 	 * We can't call dm_pool_get_data_dev_size() since that blocks.  So
4480 	 * we follow a more convoluted path through to the pool's target.
4481 	 */
4482 	if (!pool->ti)
4483 		return 0;	/* nothing is bound */
4484 
4485 	blocks = pool->ti->len;
4486 	(void) sector_div(blocks, pool->sectors_per_block);
4487 	if (blocks)
4488 		return fn(ti, tc->pool_dev, 0, pool->sectors_per_block * blocks, data);
4489 
4490 	return 0;
4491 }
4492 
4493 static void thin_io_hints(struct dm_target *ti, struct queue_limits *limits)
4494 {
4495 	struct thin_c *tc = ti->private;
4496 	struct pool *pool = tc->pool;
4497 
4498 	if (pool->pf.discard_enabled) {
4499 		limits->discard_granularity = pool->sectors_per_block << SECTOR_SHIFT;
4500 		limits->max_discard_sectors = pool->sectors_per_block * BIO_PRISON_MAX_RANGE;
4501 	}
4502 }
4503 
4504 static struct target_type thin_target = {
4505 	.name = "thin",
4506 	.version = {1, 23, 0},
4507 	.module	= THIS_MODULE,
4508 	.ctr = thin_ctr,
4509 	.dtr = thin_dtr,
4510 	.map = thin_map,
4511 	.end_io = thin_endio,
4512 	.preresume = thin_preresume,
4513 	.presuspend = thin_presuspend,
4514 	.postsuspend = thin_postsuspend,
4515 	.status = thin_status,
4516 	.iterate_devices = thin_iterate_devices,
4517 	.io_hints = thin_io_hints,
4518 };
4519 
4520 /*----------------------------------------------------------------*/
4521 
4522 static int __init dm_thin_init(void)
4523 {
4524 	int r = -ENOMEM;
4525 
4526 	pool_table_init();
4527 
4528 	_new_mapping_cache = KMEM_CACHE(dm_thin_new_mapping, 0);
4529 	if (!_new_mapping_cache)
4530 		return r;
4531 
4532 	r = dm_register_target(&thin_target);
4533 	if (r)
4534 		goto bad_new_mapping_cache;
4535 
4536 	r = dm_register_target(&pool_target);
4537 	if (r)
4538 		goto bad_thin_target;
4539 
4540 	return 0;
4541 
4542 bad_thin_target:
4543 	dm_unregister_target(&thin_target);
4544 bad_new_mapping_cache:
4545 	kmem_cache_destroy(_new_mapping_cache);
4546 
4547 	return r;
4548 }
4549 
4550 static void dm_thin_exit(void)
4551 {
4552 	dm_unregister_target(&thin_target);
4553 	dm_unregister_target(&pool_target);
4554 
4555 	kmem_cache_destroy(_new_mapping_cache);
4556 
4557 	pool_table_exit();
4558 }
4559 
4560 module_init(dm_thin_init);
4561 module_exit(dm_thin_exit);
4562 
4563 module_param_named(no_space_timeout, no_space_timeout_secs, uint, 0644);
4564 MODULE_PARM_DESC(no_space_timeout, "Out of data space queue IO timeout in seconds");
4565 
4566 MODULE_DESCRIPTION(DM_NAME " thin provisioning target");
4567 MODULE_AUTHOR("Joe Thornber <dm-devel@lists.linux.dev>");
4568 MODULE_LICENSE("GPL");
4569