1 /* 2 * Copyright (C) 2011-2012 Red Hat UK. 3 * 4 * This file is released under the GPL. 5 */ 6 7 #include "dm-thin-metadata.h" 8 #include "dm-bio-prison-v1.h" 9 #include "dm.h" 10 11 #include <linux/device-mapper.h> 12 #include <linux/dm-io.h> 13 #include <linux/dm-kcopyd.h> 14 #include <linux/jiffies.h> 15 #include <linux/log2.h> 16 #include <linux/list.h> 17 #include <linux/rculist.h> 18 #include <linux/init.h> 19 #include <linux/module.h> 20 #include <linux/slab.h> 21 #include <linux/vmalloc.h> 22 #include <linux/sort.h> 23 #include <linux/rbtree.h> 24 25 #define DM_MSG_PREFIX "thin" 26 27 /* 28 * Tunable constants 29 */ 30 #define ENDIO_HOOK_POOL_SIZE 1024 31 #define MAPPING_POOL_SIZE 1024 32 #define COMMIT_PERIOD HZ 33 #define NO_SPACE_TIMEOUT_SECS 60 34 35 static unsigned no_space_timeout_secs = NO_SPACE_TIMEOUT_SECS; 36 37 DECLARE_DM_KCOPYD_THROTTLE_WITH_MODULE_PARM(snapshot_copy_throttle, 38 "A percentage of time allocated for copy on write"); 39 40 /* 41 * The block size of the device holding pool data must be 42 * between 64KB and 1GB. 43 */ 44 #define DATA_DEV_BLOCK_SIZE_MIN_SECTORS (64 * 1024 >> SECTOR_SHIFT) 45 #define DATA_DEV_BLOCK_SIZE_MAX_SECTORS (1024 * 1024 * 1024 >> SECTOR_SHIFT) 46 47 /* 48 * Device id is restricted to 24 bits. 49 */ 50 #define MAX_DEV_ID ((1 << 24) - 1) 51 52 /* 53 * How do we handle breaking sharing of data blocks? 54 * ================================================= 55 * 56 * We use a standard copy-on-write btree to store the mappings for the 57 * devices (note I'm talking about copy-on-write of the metadata here, not 58 * the data). When you take an internal snapshot you clone the root node 59 * of the origin btree. After this there is no concept of an origin or a 60 * snapshot. They are just two device trees that happen to point to the 61 * same data blocks. 62 * 63 * When we get a write in we decide if it's to a shared data block using 64 * some timestamp magic. If it is, we have to break sharing. 65 * 66 * Let's say we write to a shared block in what was the origin. The 67 * steps are: 68 * 69 * i) plug io further to this physical block. (see bio_prison code). 70 * 71 * ii) quiesce any read io to that shared data block. Obviously 72 * including all devices that share this block. (see dm_deferred_set code) 73 * 74 * iii) copy the data block to a newly allocate block. This step can be 75 * missed out if the io covers the block. (schedule_copy). 76 * 77 * iv) insert the new mapping into the origin's btree 78 * (process_prepared_mapping). This act of inserting breaks some 79 * sharing of btree nodes between the two devices. Breaking sharing only 80 * effects the btree of that specific device. Btrees for the other 81 * devices that share the block never change. The btree for the origin 82 * device as it was after the last commit is untouched, ie. we're using 83 * persistent data structures in the functional programming sense. 84 * 85 * v) unplug io to this physical block, including the io that triggered 86 * the breaking of sharing. 87 * 88 * Steps (ii) and (iii) occur in parallel. 89 * 90 * The metadata _doesn't_ need to be committed before the io continues. We 91 * get away with this because the io is always written to a _new_ block. 92 * If there's a crash, then: 93 * 94 * - The origin mapping will point to the old origin block (the shared 95 * one). This will contain the data as it was before the io that triggered 96 * the breaking of sharing came in. 97 * 98 * - The snap mapping still points to the old block. As it would after 99 * the commit. 100 * 101 * The downside of this scheme is the timestamp magic isn't perfect, and 102 * will continue to think that data block in the snapshot device is shared 103 * even after the write to the origin has broken sharing. I suspect data 104 * blocks will typically be shared by many different devices, so we're 105 * breaking sharing n + 1 times, rather than n, where n is the number of 106 * devices that reference this data block. At the moment I think the 107 * benefits far, far outweigh the disadvantages. 108 */ 109 110 /*----------------------------------------------------------------*/ 111 112 /* 113 * Key building. 114 */ 115 enum lock_space { 116 VIRTUAL, 117 PHYSICAL 118 }; 119 120 static void build_key(struct dm_thin_device *td, enum lock_space ls, 121 dm_block_t b, dm_block_t e, struct dm_cell_key *key) 122 { 123 key->virtual = (ls == VIRTUAL); 124 key->dev = dm_thin_dev_id(td); 125 key->block_begin = b; 126 key->block_end = e; 127 } 128 129 static void build_data_key(struct dm_thin_device *td, dm_block_t b, 130 struct dm_cell_key *key) 131 { 132 build_key(td, PHYSICAL, b, b + 1llu, key); 133 } 134 135 static void build_virtual_key(struct dm_thin_device *td, dm_block_t b, 136 struct dm_cell_key *key) 137 { 138 build_key(td, VIRTUAL, b, b + 1llu, key); 139 } 140 141 /*----------------------------------------------------------------*/ 142 143 #define THROTTLE_THRESHOLD (1 * HZ) 144 145 struct throttle { 146 struct rw_semaphore lock; 147 unsigned long threshold; 148 bool throttle_applied; 149 }; 150 151 static void throttle_init(struct throttle *t) 152 { 153 init_rwsem(&t->lock); 154 t->throttle_applied = false; 155 } 156 157 static void throttle_work_start(struct throttle *t) 158 { 159 t->threshold = jiffies + THROTTLE_THRESHOLD; 160 } 161 162 static void throttle_work_update(struct throttle *t) 163 { 164 if (!t->throttle_applied && jiffies > t->threshold) { 165 down_write(&t->lock); 166 t->throttle_applied = true; 167 } 168 } 169 170 static void throttle_work_complete(struct throttle *t) 171 { 172 if (t->throttle_applied) { 173 t->throttle_applied = false; 174 up_write(&t->lock); 175 } 176 } 177 178 static void throttle_lock(struct throttle *t) 179 { 180 down_read(&t->lock); 181 } 182 183 static void throttle_unlock(struct throttle *t) 184 { 185 up_read(&t->lock); 186 } 187 188 /*----------------------------------------------------------------*/ 189 190 /* 191 * A pool device ties together a metadata device and a data device. It 192 * also provides the interface for creating and destroying internal 193 * devices. 194 */ 195 struct dm_thin_new_mapping; 196 197 /* 198 * The pool runs in various modes. Ordered in degraded order for comparisons. 199 */ 200 enum pool_mode { 201 PM_WRITE, /* metadata may be changed */ 202 PM_OUT_OF_DATA_SPACE, /* metadata may be changed, though data may not be allocated */ 203 204 /* 205 * Like READ_ONLY, except may switch back to WRITE on metadata resize. Reported as READ_ONLY. 206 */ 207 PM_OUT_OF_METADATA_SPACE, 208 PM_READ_ONLY, /* metadata may not be changed */ 209 210 PM_FAIL, /* all I/O fails */ 211 }; 212 213 struct pool_features { 214 enum pool_mode mode; 215 216 bool zero_new_blocks:1; 217 bool discard_enabled:1; 218 bool discard_passdown:1; 219 bool error_if_no_space:1; 220 }; 221 222 struct thin_c; 223 typedef void (*process_bio_fn)(struct thin_c *tc, struct bio *bio); 224 typedef void (*process_cell_fn)(struct thin_c *tc, struct dm_bio_prison_cell *cell); 225 typedef void (*process_mapping_fn)(struct dm_thin_new_mapping *m); 226 227 #define CELL_SORT_ARRAY_SIZE 8192 228 229 struct pool { 230 struct list_head list; 231 struct dm_target *ti; /* Only set if a pool target is bound */ 232 233 struct mapped_device *pool_md; 234 struct block_device *data_dev; 235 struct block_device *md_dev; 236 struct dm_pool_metadata *pmd; 237 238 dm_block_t low_water_blocks; 239 uint32_t sectors_per_block; 240 int sectors_per_block_shift; 241 242 struct pool_features pf; 243 bool low_water_triggered:1; /* A dm event has been sent */ 244 bool suspended:1; 245 bool out_of_data_space:1; 246 247 struct dm_bio_prison *prison; 248 struct dm_kcopyd_client *copier; 249 250 struct work_struct worker; 251 struct workqueue_struct *wq; 252 struct throttle throttle; 253 struct delayed_work waker; 254 struct delayed_work no_space_timeout; 255 256 unsigned long last_commit_jiffies; 257 unsigned ref_count; 258 259 spinlock_t lock; 260 struct bio_list deferred_flush_bios; 261 struct bio_list deferred_flush_completions; 262 struct list_head prepared_mappings; 263 struct list_head prepared_discards; 264 struct list_head prepared_discards_pt2; 265 struct list_head active_thins; 266 267 struct dm_deferred_set *shared_read_ds; 268 struct dm_deferred_set *all_io_ds; 269 270 struct dm_thin_new_mapping *next_mapping; 271 272 process_bio_fn process_bio; 273 process_bio_fn process_discard; 274 275 process_cell_fn process_cell; 276 process_cell_fn process_discard_cell; 277 278 process_mapping_fn process_prepared_mapping; 279 process_mapping_fn process_prepared_discard; 280 process_mapping_fn process_prepared_discard_pt2; 281 282 struct dm_bio_prison_cell **cell_sort_array; 283 284 mempool_t mapping_pool; 285 286 struct bio flush_bio; 287 }; 288 289 static void metadata_operation_failed(struct pool *pool, const char *op, int r); 290 291 static enum pool_mode get_pool_mode(struct pool *pool) 292 { 293 return pool->pf.mode; 294 } 295 296 static void notify_of_pool_mode_change(struct pool *pool) 297 { 298 const char *descs[] = { 299 "write", 300 "out-of-data-space", 301 "read-only", 302 "read-only", 303 "fail" 304 }; 305 const char *extra_desc = NULL; 306 enum pool_mode mode = get_pool_mode(pool); 307 308 if (mode == PM_OUT_OF_DATA_SPACE) { 309 if (!pool->pf.error_if_no_space) 310 extra_desc = " (queue IO)"; 311 else 312 extra_desc = " (error IO)"; 313 } 314 315 dm_table_event(pool->ti->table); 316 DMINFO("%s: switching pool to %s%s mode", 317 dm_device_name(pool->pool_md), 318 descs[(int)mode], extra_desc ? : ""); 319 } 320 321 /* 322 * Target context for a pool. 323 */ 324 struct pool_c { 325 struct dm_target *ti; 326 struct pool *pool; 327 struct dm_dev *data_dev; 328 struct dm_dev *metadata_dev; 329 330 dm_block_t low_water_blocks; 331 struct pool_features requested_pf; /* Features requested during table load */ 332 struct pool_features adjusted_pf; /* Features used after adjusting for constituent devices */ 333 }; 334 335 /* 336 * Target context for a thin. 337 */ 338 struct thin_c { 339 struct list_head list; 340 struct dm_dev *pool_dev; 341 struct dm_dev *origin_dev; 342 sector_t origin_size; 343 dm_thin_id dev_id; 344 345 struct pool *pool; 346 struct dm_thin_device *td; 347 struct mapped_device *thin_md; 348 349 bool requeue_mode:1; 350 spinlock_t lock; 351 struct list_head deferred_cells; 352 struct bio_list deferred_bio_list; 353 struct bio_list retry_on_resume_list; 354 struct rb_root sort_bio_list; /* sorted list of deferred bios */ 355 356 /* 357 * Ensures the thin is not destroyed until the worker has finished 358 * iterating the active_thins list. 359 */ 360 refcount_t refcount; 361 struct completion can_destroy; 362 }; 363 364 /*----------------------------------------------------------------*/ 365 366 static bool block_size_is_power_of_two(struct pool *pool) 367 { 368 return pool->sectors_per_block_shift >= 0; 369 } 370 371 static sector_t block_to_sectors(struct pool *pool, dm_block_t b) 372 { 373 return block_size_is_power_of_two(pool) ? 374 (b << pool->sectors_per_block_shift) : 375 (b * pool->sectors_per_block); 376 } 377 378 /*----------------------------------------------------------------*/ 379 380 struct discard_op { 381 struct thin_c *tc; 382 struct blk_plug plug; 383 struct bio *parent_bio; 384 struct bio *bio; 385 }; 386 387 static void begin_discard(struct discard_op *op, struct thin_c *tc, struct bio *parent) 388 { 389 BUG_ON(!parent); 390 391 op->tc = tc; 392 blk_start_plug(&op->plug); 393 op->parent_bio = parent; 394 op->bio = NULL; 395 } 396 397 static int issue_discard(struct discard_op *op, dm_block_t data_b, dm_block_t data_e) 398 { 399 struct thin_c *tc = op->tc; 400 sector_t s = block_to_sectors(tc->pool, data_b); 401 sector_t len = block_to_sectors(tc->pool, data_e - data_b); 402 403 return __blkdev_issue_discard(tc->pool_dev->bdev, s, len, 404 GFP_NOWAIT, 0, &op->bio); 405 } 406 407 static void end_discard(struct discard_op *op, int r) 408 { 409 if (op->bio) { 410 /* 411 * Even if one of the calls to issue_discard failed, we 412 * need to wait for the chain to complete. 413 */ 414 bio_chain(op->bio, op->parent_bio); 415 bio_set_op_attrs(op->bio, REQ_OP_DISCARD, 0); 416 submit_bio(op->bio); 417 } 418 419 blk_finish_plug(&op->plug); 420 421 /* 422 * Even if r is set, there could be sub discards in flight that we 423 * need to wait for. 424 */ 425 if (r && !op->parent_bio->bi_status) 426 op->parent_bio->bi_status = errno_to_blk_status(r); 427 bio_endio(op->parent_bio); 428 } 429 430 /*----------------------------------------------------------------*/ 431 432 /* 433 * wake_worker() is used when new work is queued and when pool_resume is 434 * ready to continue deferred IO processing. 435 */ 436 static void wake_worker(struct pool *pool) 437 { 438 queue_work(pool->wq, &pool->worker); 439 } 440 441 /*----------------------------------------------------------------*/ 442 443 static int bio_detain(struct pool *pool, struct dm_cell_key *key, struct bio *bio, 444 struct dm_bio_prison_cell **cell_result) 445 { 446 int r; 447 struct dm_bio_prison_cell *cell_prealloc; 448 449 /* 450 * Allocate a cell from the prison's mempool. 451 * This might block but it can't fail. 452 */ 453 cell_prealloc = dm_bio_prison_alloc_cell(pool->prison, GFP_NOIO); 454 455 r = dm_bio_detain(pool->prison, key, bio, cell_prealloc, cell_result); 456 if (r) 457 /* 458 * We reused an old cell; we can get rid of 459 * the new one. 460 */ 461 dm_bio_prison_free_cell(pool->prison, cell_prealloc); 462 463 return r; 464 } 465 466 static void cell_release(struct pool *pool, 467 struct dm_bio_prison_cell *cell, 468 struct bio_list *bios) 469 { 470 dm_cell_release(pool->prison, cell, bios); 471 dm_bio_prison_free_cell(pool->prison, cell); 472 } 473 474 static void cell_visit_release(struct pool *pool, 475 void (*fn)(void *, struct dm_bio_prison_cell *), 476 void *context, 477 struct dm_bio_prison_cell *cell) 478 { 479 dm_cell_visit_release(pool->prison, fn, context, cell); 480 dm_bio_prison_free_cell(pool->prison, cell); 481 } 482 483 static void cell_release_no_holder(struct pool *pool, 484 struct dm_bio_prison_cell *cell, 485 struct bio_list *bios) 486 { 487 dm_cell_release_no_holder(pool->prison, cell, bios); 488 dm_bio_prison_free_cell(pool->prison, cell); 489 } 490 491 static void cell_error_with_code(struct pool *pool, 492 struct dm_bio_prison_cell *cell, blk_status_t error_code) 493 { 494 dm_cell_error(pool->prison, cell, error_code); 495 dm_bio_prison_free_cell(pool->prison, cell); 496 } 497 498 static blk_status_t get_pool_io_error_code(struct pool *pool) 499 { 500 return pool->out_of_data_space ? BLK_STS_NOSPC : BLK_STS_IOERR; 501 } 502 503 static void cell_error(struct pool *pool, struct dm_bio_prison_cell *cell) 504 { 505 cell_error_with_code(pool, cell, get_pool_io_error_code(pool)); 506 } 507 508 static void cell_success(struct pool *pool, struct dm_bio_prison_cell *cell) 509 { 510 cell_error_with_code(pool, cell, 0); 511 } 512 513 static void cell_requeue(struct pool *pool, struct dm_bio_prison_cell *cell) 514 { 515 cell_error_with_code(pool, cell, BLK_STS_DM_REQUEUE); 516 } 517 518 /*----------------------------------------------------------------*/ 519 520 /* 521 * A global list of pools that uses a struct mapped_device as a key. 522 */ 523 static struct dm_thin_pool_table { 524 struct mutex mutex; 525 struct list_head pools; 526 } dm_thin_pool_table; 527 528 static void pool_table_init(void) 529 { 530 mutex_init(&dm_thin_pool_table.mutex); 531 INIT_LIST_HEAD(&dm_thin_pool_table.pools); 532 } 533 534 static void pool_table_exit(void) 535 { 536 mutex_destroy(&dm_thin_pool_table.mutex); 537 } 538 539 static void __pool_table_insert(struct pool *pool) 540 { 541 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex)); 542 list_add(&pool->list, &dm_thin_pool_table.pools); 543 } 544 545 static void __pool_table_remove(struct pool *pool) 546 { 547 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex)); 548 list_del(&pool->list); 549 } 550 551 static struct pool *__pool_table_lookup(struct mapped_device *md) 552 { 553 struct pool *pool = NULL, *tmp; 554 555 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex)); 556 557 list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) { 558 if (tmp->pool_md == md) { 559 pool = tmp; 560 break; 561 } 562 } 563 564 return pool; 565 } 566 567 static struct pool *__pool_table_lookup_metadata_dev(struct block_device *md_dev) 568 { 569 struct pool *pool = NULL, *tmp; 570 571 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex)); 572 573 list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) { 574 if (tmp->md_dev == md_dev) { 575 pool = tmp; 576 break; 577 } 578 } 579 580 return pool; 581 } 582 583 /*----------------------------------------------------------------*/ 584 585 struct dm_thin_endio_hook { 586 struct thin_c *tc; 587 struct dm_deferred_entry *shared_read_entry; 588 struct dm_deferred_entry *all_io_entry; 589 struct dm_thin_new_mapping *overwrite_mapping; 590 struct rb_node rb_node; 591 struct dm_bio_prison_cell *cell; 592 }; 593 594 static void __merge_bio_list(struct bio_list *bios, struct bio_list *master) 595 { 596 bio_list_merge(bios, master); 597 bio_list_init(master); 598 } 599 600 static void error_bio_list(struct bio_list *bios, blk_status_t error) 601 { 602 struct bio *bio; 603 604 while ((bio = bio_list_pop(bios))) { 605 bio->bi_status = error; 606 bio_endio(bio); 607 } 608 } 609 610 static void error_thin_bio_list(struct thin_c *tc, struct bio_list *master, 611 blk_status_t error) 612 { 613 struct bio_list bios; 614 615 bio_list_init(&bios); 616 617 spin_lock_irq(&tc->lock); 618 __merge_bio_list(&bios, master); 619 spin_unlock_irq(&tc->lock); 620 621 error_bio_list(&bios, error); 622 } 623 624 static void requeue_deferred_cells(struct thin_c *tc) 625 { 626 struct pool *pool = tc->pool; 627 struct list_head cells; 628 struct dm_bio_prison_cell *cell, *tmp; 629 630 INIT_LIST_HEAD(&cells); 631 632 spin_lock_irq(&tc->lock); 633 list_splice_init(&tc->deferred_cells, &cells); 634 spin_unlock_irq(&tc->lock); 635 636 list_for_each_entry_safe(cell, tmp, &cells, user_list) 637 cell_requeue(pool, cell); 638 } 639 640 static void requeue_io(struct thin_c *tc) 641 { 642 struct bio_list bios; 643 644 bio_list_init(&bios); 645 646 spin_lock_irq(&tc->lock); 647 __merge_bio_list(&bios, &tc->deferred_bio_list); 648 __merge_bio_list(&bios, &tc->retry_on_resume_list); 649 spin_unlock_irq(&tc->lock); 650 651 error_bio_list(&bios, BLK_STS_DM_REQUEUE); 652 requeue_deferred_cells(tc); 653 } 654 655 static void error_retry_list_with_code(struct pool *pool, blk_status_t error) 656 { 657 struct thin_c *tc; 658 659 rcu_read_lock(); 660 list_for_each_entry_rcu(tc, &pool->active_thins, list) 661 error_thin_bio_list(tc, &tc->retry_on_resume_list, error); 662 rcu_read_unlock(); 663 } 664 665 static void error_retry_list(struct pool *pool) 666 { 667 error_retry_list_with_code(pool, get_pool_io_error_code(pool)); 668 } 669 670 /* 671 * This section of code contains the logic for processing a thin device's IO. 672 * Much of the code depends on pool object resources (lists, workqueues, etc) 673 * but most is exclusively called from the thin target rather than the thin-pool 674 * target. 675 */ 676 677 static dm_block_t get_bio_block(struct thin_c *tc, struct bio *bio) 678 { 679 struct pool *pool = tc->pool; 680 sector_t block_nr = bio->bi_iter.bi_sector; 681 682 if (block_size_is_power_of_two(pool)) 683 block_nr >>= pool->sectors_per_block_shift; 684 else 685 (void) sector_div(block_nr, pool->sectors_per_block); 686 687 return block_nr; 688 } 689 690 /* 691 * Returns the _complete_ blocks that this bio covers. 692 */ 693 static void get_bio_block_range(struct thin_c *tc, struct bio *bio, 694 dm_block_t *begin, dm_block_t *end) 695 { 696 struct pool *pool = tc->pool; 697 sector_t b = bio->bi_iter.bi_sector; 698 sector_t e = b + (bio->bi_iter.bi_size >> SECTOR_SHIFT); 699 700 b += pool->sectors_per_block - 1ull; /* so we round up */ 701 702 if (block_size_is_power_of_two(pool)) { 703 b >>= pool->sectors_per_block_shift; 704 e >>= pool->sectors_per_block_shift; 705 } else { 706 (void) sector_div(b, pool->sectors_per_block); 707 (void) sector_div(e, pool->sectors_per_block); 708 } 709 710 if (e < b) 711 /* Can happen if the bio is within a single block. */ 712 e = b; 713 714 *begin = b; 715 *end = e; 716 } 717 718 static void remap(struct thin_c *tc, struct bio *bio, dm_block_t block) 719 { 720 struct pool *pool = tc->pool; 721 sector_t bi_sector = bio->bi_iter.bi_sector; 722 723 bio_set_dev(bio, tc->pool_dev->bdev); 724 if (block_size_is_power_of_two(pool)) 725 bio->bi_iter.bi_sector = 726 (block << pool->sectors_per_block_shift) | 727 (bi_sector & (pool->sectors_per_block - 1)); 728 else 729 bio->bi_iter.bi_sector = (block * pool->sectors_per_block) + 730 sector_div(bi_sector, pool->sectors_per_block); 731 } 732 733 static void remap_to_origin(struct thin_c *tc, struct bio *bio) 734 { 735 bio_set_dev(bio, tc->origin_dev->bdev); 736 } 737 738 static int bio_triggers_commit(struct thin_c *tc, struct bio *bio) 739 { 740 return op_is_flush(bio->bi_opf) && 741 dm_thin_changed_this_transaction(tc->td); 742 } 743 744 static void inc_all_io_entry(struct pool *pool, struct bio *bio) 745 { 746 struct dm_thin_endio_hook *h; 747 748 if (bio_op(bio) == REQ_OP_DISCARD) 749 return; 750 751 h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook)); 752 h->all_io_entry = dm_deferred_entry_inc(pool->all_io_ds); 753 } 754 755 static void issue(struct thin_c *tc, struct bio *bio) 756 { 757 struct pool *pool = tc->pool; 758 759 if (!bio_triggers_commit(tc, bio)) { 760 submit_bio_noacct(bio); 761 return; 762 } 763 764 /* 765 * Complete bio with an error if earlier I/O caused changes to 766 * the metadata that can't be committed e.g, due to I/O errors 767 * on the metadata device. 768 */ 769 if (dm_thin_aborted_changes(tc->td)) { 770 bio_io_error(bio); 771 return; 772 } 773 774 /* 775 * Batch together any bios that trigger commits and then issue a 776 * single commit for them in process_deferred_bios(). 777 */ 778 spin_lock_irq(&pool->lock); 779 bio_list_add(&pool->deferred_flush_bios, bio); 780 spin_unlock_irq(&pool->lock); 781 } 782 783 static void remap_to_origin_and_issue(struct thin_c *tc, struct bio *bio) 784 { 785 remap_to_origin(tc, bio); 786 issue(tc, bio); 787 } 788 789 static void remap_and_issue(struct thin_c *tc, struct bio *bio, 790 dm_block_t block) 791 { 792 remap(tc, bio, block); 793 issue(tc, bio); 794 } 795 796 /*----------------------------------------------------------------*/ 797 798 /* 799 * Bio endio functions. 800 */ 801 struct dm_thin_new_mapping { 802 struct list_head list; 803 804 bool pass_discard:1; 805 bool maybe_shared:1; 806 807 /* 808 * Track quiescing, copying and zeroing preparation actions. When this 809 * counter hits zero the block is prepared and can be inserted into the 810 * btree. 811 */ 812 atomic_t prepare_actions; 813 814 blk_status_t status; 815 struct thin_c *tc; 816 dm_block_t virt_begin, virt_end; 817 dm_block_t data_block; 818 struct dm_bio_prison_cell *cell; 819 820 /* 821 * If the bio covers the whole area of a block then we can avoid 822 * zeroing or copying. Instead this bio is hooked. The bio will 823 * still be in the cell, so care has to be taken to avoid issuing 824 * the bio twice. 825 */ 826 struct bio *bio; 827 bio_end_io_t *saved_bi_end_io; 828 }; 829 830 static void __complete_mapping_preparation(struct dm_thin_new_mapping *m) 831 { 832 struct pool *pool = m->tc->pool; 833 834 if (atomic_dec_and_test(&m->prepare_actions)) { 835 list_add_tail(&m->list, &pool->prepared_mappings); 836 wake_worker(pool); 837 } 838 } 839 840 static void complete_mapping_preparation(struct dm_thin_new_mapping *m) 841 { 842 unsigned long flags; 843 struct pool *pool = m->tc->pool; 844 845 spin_lock_irqsave(&pool->lock, flags); 846 __complete_mapping_preparation(m); 847 spin_unlock_irqrestore(&pool->lock, flags); 848 } 849 850 static void copy_complete(int read_err, unsigned long write_err, void *context) 851 { 852 struct dm_thin_new_mapping *m = context; 853 854 m->status = read_err || write_err ? BLK_STS_IOERR : 0; 855 complete_mapping_preparation(m); 856 } 857 858 static void overwrite_endio(struct bio *bio) 859 { 860 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook)); 861 struct dm_thin_new_mapping *m = h->overwrite_mapping; 862 863 bio->bi_end_io = m->saved_bi_end_io; 864 865 m->status = bio->bi_status; 866 complete_mapping_preparation(m); 867 } 868 869 /*----------------------------------------------------------------*/ 870 871 /* 872 * Workqueue. 873 */ 874 875 /* 876 * Prepared mapping jobs. 877 */ 878 879 /* 880 * This sends the bios in the cell, except the original holder, back 881 * to the deferred_bios list. 882 */ 883 static void cell_defer_no_holder(struct thin_c *tc, struct dm_bio_prison_cell *cell) 884 { 885 struct pool *pool = tc->pool; 886 unsigned long flags; 887 int has_work; 888 889 spin_lock_irqsave(&tc->lock, flags); 890 cell_release_no_holder(pool, cell, &tc->deferred_bio_list); 891 has_work = !bio_list_empty(&tc->deferred_bio_list); 892 spin_unlock_irqrestore(&tc->lock, flags); 893 894 if (has_work) 895 wake_worker(pool); 896 } 897 898 static void thin_defer_bio(struct thin_c *tc, struct bio *bio); 899 900 struct remap_info { 901 struct thin_c *tc; 902 struct bio_list defer_bios; 903 struct bio_list issue_bios; 904 }; 905 906 static void __inc_remap_and_issue_cell(void *context, 907 struct dm_bio_prison_cell *cell) 908 { 909 struct remap_info *info = context; 910 struct bio *bio; 911 912 while ((bio = bio_list_pop(&cell->bios))) { 913 if (op_is_flush(bio->bi_opf) || bio_op(bio) == REQ_OP_DISCARD) 914 bio_list_add(&info->defer_bios, bio); 915 else { 916 inc_all_io_entry(info->tc->pool, bio); 917 918 /* 919 * We can't issue the bios with the bio prison lock 920 * held, so we add them to a list to issue on 921 * return from this function. 922 */ 923 bio_list_add(&info->issue_bios, bio); 924 } 925 } 926 } 927 928 static void inc_remap_and_issue_cell(struct thin_c *tc, 929 struct dm_bio_prison_cell *cell, 930 dm_block_t block) 931 { 932 struct bio *bio; 933 struct remap_info info; 934 935 info.tc = tc; 936 bio_list_init(&info.defer_bios); 937 bio_list_init(&info.issue_bios); 938 939 /* 940 * We have to be careful to inc any bios we're about to issue 941 * before the cell is released, and avoid a race with new bios 942 * being added to the cell. 943 */ 944 cell_visit_release(tc->pool, __inc_remap_and_issue_cell, 945 &info, cell); 946 947 while ((bio = bio_list_pop(&info.defer_bios))) 948 thin_defer_bio(tc, bio); 949 950 while ((bio = bio_list_pop(&info.issue_bios))) 951 remap_and_issue(info.tc, bio, block); 952 } 953 954 static void process_prepared_mapping_fail(struct dm_thin_new_mapping *m) 955 { 956 cell_error(m->tc->pool, m->cell); 957 list_del(&m->list); 958 mempool_free(m, &m->tc->pool->mapping_pool); 959 } 960 961 static void complete_overwrite_bio(struct thin_c *tc, struct bio *bio) 962 { 963 struct pool *pool = tc->pool; 964 965 /* 966 * If the bio has the REQ_FUA flag set we must commit the metadata 967 * before signaling its completion. 968 */ 969 if (!bio_triggers_commit(tc, bio)) { 970 bio_endio(bio); 971 return; 972 } 973 974 /* 975 * Complete bio with an error if earlier I/O caused changes to the 976 * metadata that can't be committed, e.g, due to I/O errors on the 977 * metadata device. 978 */ 979 if (dm_thin_aborted_changes(tc->td)) { 980 bio_io_error(bio); 981 return; 982 } 983 984 /* 985 * Batch together any bios that trigger commits and then issue a 986 * single commit for them in process_deferred_bios(). 987 */ 988 spin_lock_irq(&pool->lock); 989 bio_list_add(&pool->deferred_flush_completions, bio); 990 spin_unlock_irq(&pool->lock); 991 } 992 993 static void process_prepared_mapping(struct dm_thin_new_mapping *m) 994 { 995 struct thin_c *tc = m->tc; 996 struct pool *pool = tc->pool; 997 struct bio *bio = m->bio; 998 int r; 999 1000 if (m->status) { 1001 cell_error(pool, m->cell); 1002 goto out; 1003 } 1004 1005 /* 1006 * Commit the prepared block into the mapping btree. 1007 * Any I/O for this block arriving after this point will get 1008 * remapped to it directly. 1009 */ 1010 r = dm_thin_insert_block(tc->td, m->virt_begin, m->data_block); 1011 if (r) { 1012 metadata_operation_failed(pool, "dm_thin_insert_block", r); 1013 cell_error(pool, m->cell); 1014 goto out; 1015 } 1016 1017 /* 1018 * Release any bios held while the block was being provisioned. 1019 * If we are processing a write bio that completely covers the block, 1020 * we already processed it so can ignore it now when processing 1021 * the bios in the cell. 1022 */ 1023 if (bio) { 1024 inc_remap_and_issue_cell(tc, m->cell, m->data_block); 1025 complete_overwrite_bio(tc, bio); 1026 } else { 1027 inc_all_io_entry(tc->pool, m->cell->holder); 1028 remap_and_issue(tc, m->cell->holder, m->data_block); 1029 inc_remap_and_issue_cell(tc, m->cell, m->data_block); 1030 } 1031 1032 out: 1033 list_del(&m->list); 1034 mempool_free(m, &pool->mapping_pool); 1035 } 1036 1037 /*----------------------------------------------------------------*/ 1038 1039 static void free_discard_mapping(struct dm_thin_new_mapping *m) 1040 { 1041 struct thin_c *tc = m->tc; 1042 if (m->cell) 1043 cell_defer_no_holder(tc, m->cell); 1044 mempool_free(m, &tc->pool->mapping_pool); 1045 } 1046 1047 static void process_prepared_discard_fail(struct dm_thin_new_mapping *m) 1048 { 1049 bio_io_error(m->bio); 1050 free_discard_mapping(m); 1051 } 1052 1053 static void process_prepared_discard_success(struct dm_thin_new_mapping *m) 1054 { 1055 bio_endio(m->bio); 1056 free_discard_mapping(m); 1057 } 1058 1059 static void process_prepared_discard_no_passdown(struct dm_thin_new_mapping *m) 1060 { 1061 int r; 1062 struct thin_c *tc = m->tc; 1063 1064 r = dm_thin_remove_range(tc->td, m->cell->key.block_begin, m->cell->key.block_end); 1065 if (r) { 1066 metadata_operation_failed(tc->pool, "dm_thin_remove_range", r); 1067 bio_io_error(m->bio); 1068 } else 1069 bio_endio(m->bio); 1070 1071 cell_defer_no_holder(tc, m->cell); 1072 mempool_free(m, &tc->pool->mapping_pool); 1073 } 1074 1075 /*----------------------------------------------------------------*/ 1076 1077 static void passdown_double_checking_shared_status(struct dm_thin_new_mapping *m, 1078 struct bio *discard_parent) 1079 { 1080 /* 1081 * We've already unmapped this range of blocks, but before we 1082 * passdown we have to check that these blocks are now unused. 1083 */ 1084 int r = 0; 1085 bool shared = true; 1086 struct thin_c *tc = m->tc; 1087 struct pool *pool = tc->pool; 1088 dm_block_t b = m->data_block, e, end = m->data_block + m->virt_end - m->virt_begin; 1089 struct discard_op op; 1090 1091 begin_discard(&op, tc, discard_parent); 1092 while (b != end) { 1093 /* find start of unmapped run */ 1094 for (; b < end; b++) { 1095 r = dm_pool_block_is_shared(pool->pmd, b, &shared); 1096 if (r) 1097 goto out; 1098 1099 if (!shared) 1100 break; 1101 } 1102 1103 if (b == end) 1104 break; 1105 1106 /* find end of run */ 1107 for (e = b + 1; e != end; e++) { 1108 r = dm_pool_block_is_shared(pool->pmd, e, &shared); 1109 if (r) 1110 goto out; 1111 1112 if (shared) 1113 break; 1114 } 1115 1116 r = issue_discard(&op, b, e); 1117 if (r) 1118 goto out; 1119 1120 b = e; 1121 } 1122 out: 1123 end_discard(&op, r); 1124 } 1125 1126 static void queue_passdown_pt2(struct dm_thin_new_mapping *m) 1127 { 1128 unsigned long flags; 1129 struct pool *pool = m->tc->pool; 1130 1131 spin_lock_irqsave(&pool->lock, flags); 1132 list_add_tail(&m->list, &pool->prepared_discards_pt2); 1133 spin_unlock_irqrestore(&pool->lock, flags); 1134 wake_worker(pool); 1135 } 1136 1137 static void passdown_endio(struct bio *bio) 1138 { 1139 /* 1140 * It doesn't matter if the passdown discard failed, we still want 1141 * to unmap (we ignore err). 1142 */ 1143 queue_passdown_pt2(bio->bi_private); 1144 bio_put(bio); 1145 } 1146 1147 static void process_prepared_discard_passdown_pt1(struct dm_thin_new_mapping *m) 1148 { 1149 int r; 1150 struct thin_c *tc = m->tc; 1151 struct pool *pool = tc->pool; 1152 struct bio *discard_parent; 1153 dm_block_t data_end = m->data_block + (m->virt_end - m->virt_begin); 1154 1155 /* 1156 * Only this thread allocates blocks, so we can be sure that the 1157 * newly unmapped blocks will not be allocated before the end of 1158 * the function. 1159 */ 1160 r = dm_thin_remove_range(tc->td, m->virt_begin, m->virt_end); 1161 if (r) { 1162 metadata_operation_failed(pool, "dm_thin_remove_range", r); 1163 bio_io_error(m->bio); 1164 cell_defer_no_holder(tc, m->cell); 1165 mempool_free(m, &pool->mapping_pool); 1166 return; 1167 } 1168 1169 /* 1170 * Increment the unmapped blocks. This prevents a race between the 1171 * passdown io and reallocation of freed blocks. 1172 */ 1173 r = dm_pool_inc_data_range(pool->pmd, m->data_block, data_end); 1174 if (r) { 1175 metadata_operation_failed(pool, "dm_pool_inc_data_range", r); 1176 bio_io_error(m->bio); 1177 cell_defer_no_holder(tc, m->cell); 1178 mempool_free(m, &pool->mapping_pool); 1179 return; 1180 } 1181 1182 discard_parent = bio_alloc(GFP_NOIO, 1); 1183 if (!discard_parent) { 1184 DMWARN("%s: unable to allocate top level discard bio for passdown. Skipping passdown.", 1185 dm_device_name(tc->pool->pool_md)); 1186 queue_passdown_pt2(m); 1187 1188 } else { 1189 discard_parent->bi_end_io = passdown_endio; 1190 discard_parent->bi_private = m; 1191 1192 if (m->maybe_shared) 1193 passdown_double_checking_shared_status(m, discard_parent); 1194 else { 1195 struct discard_op op; 1196 1197 begin_discard(&op, tc, discard_parent); 1198 r = issue_discard(&op, m->data_block, data_end); 1199 end_discard(&op, r); 1200 } 1201 } 1202 } 1203 1204 static void process_prepared_discard_passdown_pt2(struct dm_thin_new_mapping *m) 1205 { 1206 int r; 1207 struct thin_c *tc = m->tc; 1208 struct pool *pool = tc->pool; 1209 1210 /* 1211 * The passdown has completed, so now we can decrement all those 1212 * unmapped blocks. 1213 */ 1214 r = dm_pool_dec_data_range(pool->pmd, m->data_block, 1215 m->data_block + (m->virt_end - m->virt_begin)); 1216 if (r) { 1217 metadata_operation_failed(pool, "dm_pool_dec_data_range", r); 1218 bio_io_error(m->bio); 1219 } else 1220 bio_endio(m->bio); 1221 1222 cell_defer_no_holder(tc, m->cell); 1223 mempool_free(m, &pool->mapping_pool); 1224 } 1225 1226 static void process_prepared(struct pool *pool, struct list_head *head, 1227 process_mapping_fn *fn) 1228 { 1229 struct list_head maps; 1230 struct dm_thin_new_mapping *m, *tmp; 1231 1232 INIT_LIST_HEAD(&maps); 1233 spin_lock_irq(&pool->lock); 1234 list_splice_init(head, &maps); 1235 spin_unlock_irq(&pool->lock); 1236 1237 list_for_each_entry_safe(m, tmp, &maps, list) 1238 (*fn)(m); 1239 } 1240 1241 /* 1242 * Deferred bio jobs. 1243 */ 1244 static int io_overlaps_block(struct pool *pool, struct bio *bio) 1245 { 1246 return bio->bi_iter.bi_size == 1247 (pool->sectors_per_block << SECTOR_SHIFT); 1248 } 1249 1250 static int io_overwrites_block(struct pool *pool, struct bio *bio) 1251 { 1252 return (bio_data_dir(bio) == WRITE) && 1253 io_overlaps_block(pool, bio); 1254 } 1255 1256 static void save_and_set_endio(struct bio *bio, bio_end_io_t **save, 1257 bio_end_io_t *fn) 1258 { 1259 *save = bio->bi_end_io; 1260 bio->bi_end_io = fn; 1261 } 1262 1263 static int ensure_next_mapping(struct pool *pool) 1264 { 1265 if (pool->next_mapping) 1266 return 0; 1267 1268 pool->next_mapping = mempool_alloc(&pool->mapping_pool, GFP_ATOMIC); 1269 1270 return pool->next_mapping ? 0 : -ENOMEM; 1271 } 1272 1273 static struct dm_thin_new_mapping *get_next_mapping(struct pool *pool) 1274 { 1275 struct dm_thin_new_mapping *m = pool->next_mapping; 1276 1277 BUG_ON(!pool->next_mapping); 1278 1279 memset(m, 0, sizeof(struct dm_thin_new_mapping)); 1280 INIT_LIST_HEAD(&m->list); 1281 m->bio = NULL; 1282 1283 pool->next_mapping = NULL; 1284 1285 return m; 1286 } 1287 1288 static void ll_zero(struct thin_c *tc, struct dm_thin_new_mapping *m, 1289 sector_t begin, sector_t end) 1290 { 1291 struct dm_io_region to; 1292 1293 to.bdev = tc->pool_dev->bdev; 1294 to.sector = begin; 1295 to.count = end - begin; 1296 1297 dm_kcopyd_zero(tc->pool->copier, 1, &to, 0, copy_complete, m); 1298 } 1299 1300 static void remap_and_issue_overwrite(struct thin_c *tc, struct bio *bio, 1301 dm_block_t data_begin, 1302 struct dm_thin_new_mapping *m) 1303 { 1304 struct pool *pool = tc->pool; 1305 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook)); 1306 1307 h->overwrite_mapping = m; 1308 m->bio = bio; 1309 save_and_set_endio(bio, &m->saved_bi_end_io, overwrite_endio); 1310 inc_all_io_entry(pool, bio); 1311 remap_and_issue(tc, bio, data_begin); 1312 } 1313 1314 /* 1315 * A partial copy also needs to zero the uncopied region. 1316 */ 1317 static void schedule_copy(struct thin_c *tc, dm_block_t virt_block, 1318 struct dm_dev *origin, dm_block_t data_origin, 1319 dm_block_t data_dest, 1320 struct dm_bio_prison_cell *cell, struct bio *bio, 1321 sector_t len) 1322 { 1323 struct pool *pool = tc->pool; 1324 struct dm_thin_new_mapping *m = get_next_mapping(pool); 1325 1326 m->tc = tc; 1327 m->virt_begin = virt_block; 1328 m->virt_end = virt_block + 1u; 1329 m->data_block = data_dest; 1330 m->cell = cell; 1331 1332 /* 1333 * quiesce action + copy action + an extra reference held for the 1334 * duration of this function (we may need to inc later for a 1335 * partial zero). 1336 */ 1337 atomic_set(&m->prepare_actions, 3); 1338 1339 if (!dm_deferred_set_add_work(pool->shared_read_ds, &m->list)) 1340 complete_mapping_preparation(m); /* already quiesced */ 1341 1342 /* 1343 * IO to pool_dev remaps to the pool target's data_dev. 1344 * 1345 * If the whole block of data is being overwritten, we can issue the 1346 * bio immediately. Otherwise we use kcopyd to clone the data first. 1347 */ 1348 if (io_overwrites_block(pool, bio)) 1349 remap_and_issue_overwrite(tc, bio, data_dest, m); 1350 else { 1351 struct dm_io_region from, to; 1352 1353 from.bdev = origin->bdev; 1354 from.sector = data_origin * pool->sectors_per_block; 1355 from.count = len; 1356 1357 to.bdev = tc->pool_dev->bdev; 1358 to.sector = data_dest * pool->sectors_per_block; 1359 to.count = len; 1360 1361 dm_kcopyd_copy(pool->copier, &from, 1, &to, 1362 0, copy_complete, m); 1363 1364 /* 1365 * Do we need to zero a tail region? 1366 */ 1367 if (len < pool->sectors_per_block && pool->pf.zero_new_blocks) { 1368 atomic_inc(&m->prepare_actions); 1369 ll_zero(tc, m, 1370 data_dest * pool->sectors_per_block + len, 1371 (data_dest + 1) * pool->sectors_per_block); 1372 } 1373 } 1374 1375 complete_mapping_preparation(m); /* drop our ref */ 1376 } 1377 1378 static void schedule_internal_copy(struct thin_c *tc, dm_block_t virt_block, 1379 dm_block_t data_origin, dm_block_t data_dest, 1380 struct dm_bio_prison_cell *cell, struct bio *bio) 1381 { 1382 schedule_copy(tc, virt_block, tc->pool_dev, 1383 data_origin, data_dest, cell, bio, 1384 tc->pool->sectors_per_block); 1385 } 1386 1387 static void schedule_zero(struct thin_c *tc, dm_block_t virt_block, 1388 dm_block_t data_block, struct dm_bio_prison_cell *cell, 1389 struct bio *bio) 1390 { 1391 struct pool *pool = tc->pool; 1392 struct dm_thin_new_mapping *m = get_next_mapping(pool); 1393 1394 atomic_set(&m->prepare_actions, 1); /* no need to quiesce */ 1395 m->tc = tc; 1396 m->virt_begin = virt_block; 1397 m->virt_end = virt_block + 1u; 1398 m->data_block = data_block; 1399 m->cell = cell; 1400 1401 /* 1402 * If the whole block of data is being overwritten or we are not 1403 * zeroing pre-existing data, we can issue the bio immediately. 1404 * Otherwise we use kcopyd to zero the data first. 1405 */ 1406 if (pool->pf.zero_new_blocks) { 1407 if (io_overwrites_block(pool, bio)) 1408 remap_and_issue_overwrite(tc, bio, data_block, m); 1409 else 1410 ll_zero(tc, m, data_block * pool->sectors_per_block, 1411 (data_block + 1) * pool->sectors_per_block); 1412 } else 1413 process_prepared_mapping(m); 1414 } 1415 1416 static void schedule_external_copy(struct thin_c *tc, dm_block_t virt_block, 1417 dm_block_t data_dest, 1418 struct dm_bio_prison_cell *cell, struct bio *bio) 1419 { 1420 struct pool *pool = tc->pool; 1421 sector_t virt_block_begin = virt_block * pool->sectors_per_block; 1422 sector_t virt_block_end = (virt_block + 1) * pool->sectors_per_block; 1423 1424 if (virt_block_end <= tc->origin_size) 1425 schedule_copy(tc, virt_block, tc->origin_dev, 1426 virt_block, data_dest, cell, bio, 1427 pool->sectors_per_block); 1428 1429 else if (virt_block_begin < tc->origin_size) 1430 schedule_copy(tc, virt_block, tc->origin_dev, 1431 virt_block, data_dest, cell, bio, 1432 tc->origin_size - virt_block_begin); 1433 1434 else 1435 schedule_zero(tc, virt_block, data_dest, cell, bio); 1436 } 1437 1438 static void set_pool_mode(struct pool *pool, enum pool_mode new_mode); 1439 1440 static void requeue_bios(struct pool *pool); 1441 1442 static bool is_read_only_pool_mode(enum pool_mode mode) 1443 { 1444 return (mode == PM_OUT_OF_METADATA_SPACE || mode == PM_READ_ONLY); 1445 } 1446 1447 static bool is_read_only(struct pool *pool) 1448 { 1449 return is_read_only_pool_mode(get_pool_mode(pool)); 1450 } 1451 1452 static void check_for_metadata_space(struct pool *pool) 1453 { 1454 int r; 1455 const char *ooms_reason = NULL; 1456 dm_block_t nr_free; 1457 1458 r = dm_pool_get_free_metadata_block_count(pool->pmd, &nr_free); 1459 if (r) 1460 ooms_reason = "Could not get free metadata blocks"; 1461 else if (!nr_free) 1462 ooms_reason = "No free metadata blocks"; 1463 1464 if (ooms_reason && !is_read_only(pool)) { 1465 DMERR("%s", ooms_reason); 1466 set_pool_mode(pool, PM_OUT_OF_METADATA_SPACE); 1467 } 1468 } 1469 1470 static void check_for_data_space(struct pool *pool) 1471 { 1472 int r; 1473 dm_block_t nr_free; 1474 1475 if (get_pool_mode(pool) != PM_OUT_OF_DATA_SPACE) 1476 return; 1477 1478 r = dm_pool_get_free_block_count(pool->pmd, &nr_free); 1479 if (r) 1480 return; 1481 1482 if (nr_free) { 1483 set_pool_mode(pool, PM_WRITE); 1484 requeue_bios(pool); 1485 } 1486 } 1487 1488 /* 1489 * A non-zero return indicates read_only or fail_io mode. 1490 * Many callers don't care about the return value. 1491 */ 1492 static int commit(struct pool *pool) 1493 { 1494 int r; 1495 1496 if (get_pool_mode(pool) >= PM_OUT_OF_METADATA_SPACE) 1497 return -EINVAL; 1498 1499 r = dm_pool_commit_metadata(pool->pmd); 1500 if (r) 1501 metadata_operation_failed(pool, "dm_pool_commit_metadata", r); 1502 else { 1503 check_for_metadata_space(pool); 1504 check_for_data_space(pool); 1505 } 1506 1507 return r; 1508 } 1509 1510 static void check_low_water_mark(struct pool *pool, dm_block_t free_blocks) 1511 { 1512 if (free_blocks <= pool->low_water_blocks && !pool->low_water_triggered) { 1513 DMWARN("%s: reached low water mark for data device: sending event.", 1514 dm_device_name(pool->pool_md)); 1515 spin_lock_irq(&pool->lock); 1516 pool->low_water_triggered = true; 1517 spin_unlock_irq(&pool->lock); 1518 dm_table_event(pool->ti->table); 1519 } 1520 } 1521 1522 static int alloc_data_block(struct thin_c *tc, dm_block_t *result) 1523 { 1524 int r; 1525 dm_block_t free_blocks; 1526 struct pool *pool = tc->pool; 1527 1528 if (WARN_ON(get_pool_mode(pool) != PM_WRITE)) 1529 return -EINVAL; 1530 1531 r = dm_pool_get_free_block_count(pool->pmd, &free_blocks); 1532 if (r) { 1533 metadata_operation_failed(pool, "dm_pool_get_free_block_count", r); 1534 return r; 1535 } 1536 1537 check_low_water_mark(pool, free_blocks); 1538 1539 if (!free_blocks) { 1540 /* 1541 * Try to commit to see if that will free up some 1542 * more space. 1543 */ 1544 r = commit(pool); 1545 if (r) 1546 return r; 1547 1548 r = dm_pool_get_free_block_count(pool->pmd, &free_blocks); 1549 if (r) { 1550 metadata_operation_failed(pool, "dm_pool_get_free_block_count", r); 1551 return r; 1552 } 1553 1554 if (!free_blocks) { 1555 set_pool_mode(pool, PM_OUT_OF_DATA_SPACE); 1556 return -ENOSPC; 1557 } 1558 } 1559 1560 r = dm_pool_alloc_data_block(pool->pmd, result); 1561 if (r) { 1562 if (r == -ENOSPC) 1563 set_pool_mode(pool, PM_OUT_OF_DATA_SPACE); 1564 else 1565 metadata_operation_failed(pool, "dm_pool_alloc_data_block", r); 1566 return r; 1567 } 1568 1569 r = dm_pool_get_free_metadata_block_count(pool->pmd, &free_blocks); 1570 if (r) { 1571 metadata_operation_failed(pool, "dm_pool_get_free_metadata_block_count", r); 1572 return r; 1573 } 1574 1575 if (!free_blocks) { 1576 /* Let's commit before we use up the metadata reserve. */ 1577 r = commit(pool); 1578 if (r) 1579 return r; 1580 } 1581 1582 return 0; 1583 } 1584 1585 /* 1586 * If we have run out of space, queue bios until the device is 1587 * resumed, presumably after having been reloaded with more space. 1588 */ 1589 static void retry_on_resume(struct bio *bio) 1590 { 1591 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook)); 1592 struct thin_c *tc = h->tc; 1593 1594 spin_lock_irq(&tc->lock); 1595 bio_list_add(&tc->retry_on_resume_list, bio); 1596 spin_unlock_irq(&tc->lock); 1597 } 1598 1599 static blk_status_t should_error_unserviceable_bio(struct pool *pool) 1600 { 1601 enum pool_mode m = get_pool_mode(pool); 1602 1603 switch (m) { 1604 case PM_WRITE: 1605 /* Shouldn't get here */ 1606 DMERR_LIMIT("bio unserviceable, yet pool is in PM_WRITE mode"); 1607 return BLK_STS_IOERR; 1608 1609 case PM_OUT_OF_DATA_SPACE: 1610 return pool->pf.error_if_no_space ? BLK_STS_NOSPC : 0; 1611 1612 case PM_OUT_OF_METADATA_SPACE: 1613 case PM_READ_ONLY: 1614 case PM_FAIL: 1615 return BLK_STS_IOERR; 1616 default: 1617 /* Shouldn't get here */ 1618 DMERR_LIMIT("bio unserviceable, yet pool has an unknown mode"); 1619 return BLK_STS_IOERR; 1620 } 1621 } 1622 1623 static void handle_unserviceable_bio(struct pool *pool, struct bio *bio) 1624 { 1625 blk_status_t error = should_error_unserviceable_bio(pool); 1626 1627 if (error) { 1628 bio->bi_status = error; 1629 bio_endio(bio); 1630 } else 1631 retry_on_resume(bio); 1632 } 1633 1634 static void retry_bios_on_resume(struct pool *pool, struct dm_bio_prison_cell *cell) 1635 { 1636 struct bio *bio; 1637 struct bio_list bios; 1638 blk_status_t error; 1639 1640 error = should_error_unserviceable_bio(pool); 1641 if (error) { 1642 cell_error_with_code(pool, cell, error); 1643 return; 1644 } 1645 1646 bio_list_init(&bios); 1647 cell_release(pool, cell, &bios); 1648 1649 while ((bio = bio_list_pop(&bios))) 1650 retry_on_resume(bio); 1651 } 1652 1653 static void process_discard_cell_no_passdown(struct thin_c *tc, 1654 struct dm_bio_prison_cell *virt_cell) 1655 { 1656 struct pool *pool = tc->pool; 1657 struct dm_thin_new_mapping *m = get_next_mapping(pool); 1658 1659 /* 1660 * We don't need to lock the data blocks, since there's no 1661 * passdown. We only lock data blocks for allocation and breaking sharing. 1662 */ 1663 m->tc = tc; 1664 m->virt_begin = virt_cell->key.block_begin; 1665 m->virt_end = virt_cell->key.block_end; 1666 m->cell = virt_cell; 1667 m->bio = virt_cell->holder; 1668 1669 if (!dm_deferred_set_add_work(pool->all_io_ds, &m->list)) 1670 pool->process_prepared_discard(m); 1671 } 1672 1673 static void break_up_discard_bio(struct thin_c *tc, dm_block_t begin, dm_block_t end, 1674 struct bio *bio) 1675 { 1676 struct pool *pool = tc->pool; 1677 1678 int r; 1679 bool maybe_shared; 1680 struct dm_cell_key data_key; 1681 struct dm_bio_prison_cell *data_cell; 1682 struct dm_thin_new_mapping *m; 1683 dm_block_t virt_begin, virt_end, data_begin; 1684 1685 while (begin != end) { 1686 r = ensure_next_mapping(pool); 1687 if (r) 1688 /* we did our best */ 1689 return; 1690 1691 r = dm_thin_find_mapped_range(tc->td, begin, end, &virt_begin, &virt_end, 1692 &data_begin, &maybe_shared); 1693 if (r) 1694 /* 1695 * Silently fail, letting any mappings we've 1696 * created complete. 1697 */ 1698 break; 1699 1700 build_key(tc->td, PHYSICAL, data_begin, data_begin + (virt_end - virt_begin), &data_key); 1701 if (bio_detain(tc->pool, &data_key, NULL, &data_cell)) { 1702 /* contention, we'll give up with this range */ 1703 begin = virt_end; 1704 continue; 1705 } 1706 1707 /* 1708 * IO may still be going to the destination block. We must 1709 * quiesce before we can do the removal. 1710 */ 1711 m = get_next_mapping(pool); 1712 m->tc = tc; 1713 m->maybe_shared = maybe_shared; 1714 m->virt_begin = virt_begin; 1715 m->virt_end = virt_end; 1716 m->data_block = data_begin; 1717 m->cell = data_cell; 1718 m->bio = bio; 1719 1720 /* 1721 * The parent bio must not complete before sub discard bios are 1722 * chained to it (see end_discard's bio_chain)! 1723 * 1724 * This per-mapping bi_remaining increment is paired with 1725 * the implicit decrement that occurs via bio_endio() in 1726 * end_discard(). 1727 */ 1728 bio_inc_remaining(bio); 1729 if (!dm_deferred_set_add_work(pool->all_io_ds, &m->list)) 1730 pool->process_prepared_discard(m); 1731 1732 begin = virt_end; 1733 } 1734 } 1735 1736 static void process_discard_cell_passdown(struct thin_c *tc, struct dm_bio_prison_cell *virt_cell) 1737 { 1738 struct bio *bio = virt_cell->holder; 1739 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook)); 1740 1741 /* 1742 * The virt_cell will only get freed once the origin bio completes. 1743 * This means it will remain locked while all the individual 1744 * passdown bios are in flight. 1745 */ 1746 h->cell = virt_cell; 1747 break_up_discard_bio(tc, virt_cell->key.block_begin, virt_cell->key.block_end, bio); 1748 1749 /* 1750 * We complete the bio now, knowing that the bi_remaining field 1751 * will prevent completion until the sub range discards have 1752 * completed. 1753 */ 1754 bio_endio(bio); 1755 } 1756 1757 static void process_discard_bio(struct thin_c *tc, struct bio *bio) 1758 { 1759 dm_block_t begin, end; 1760 struct dm_cell_key virt_key; 1761 struct dm_bio_prison_cell *virt_cell; 1762 1763 get_bio_block_range(tc, bio, &begin, &end); 1764 if (begin == end) { 1765 /* 1766 * The discard covers less than a block. 1767 */ 1768 bio_endio(bio); 1769 return; 1770 } 1771 1772 build_key(tc->td, VIRTUAL, begin, end, &virt_key); 1773 if (bio_detain(tc->pool, &virt_key, bio, &virt_cell)) 1774 /* 1775 * Potential starvation issue: We're relying on the 1776 * fs/application being well behaved, and not trying to 1777 * send IO to a region at the same time as discarding it. 1778 * If they do this persistently then it's possible this 1779 * cell will never be granted. 1780 */ 1781 return; 1782 1783 tc->pool->process_discard_cell(tc, virt_cell); 1784 } 1785 1786 static void break_sharing(struct thin_c *tc, struct bio *bio, dm_block_t block, 1787 struct dm_cell_key *key, 1788 struct dm_thin_lookup_result *lookup_result, 1789 struct dm_bio_prison_cell *cell) 1790 { 1791 int r; 1792 dm_block_t data_block; 1793 struct pool *pool = tc->pool; 1794 1795 r = alloc_data_block(tc, &data_block); 1796 switch (r) { 1797 case 0: 1798 schedule_internal_copy(tc, block, lookup_result->block, 1799 data_block, cell, bio); 1800 break; 1801 1802 case -ENOSPC: 1803 retry_bios_on_resume(pool, cell); 1804 break; 1805 1806 default: 1807 DMERR_LIMIT("%s: alloc_data_block() failed: error = %d", 1808 __func__, r); 1809 cell_error(pool, cell); 1810 break; 1811 } 1812 } 1813 1814 static void __remap_and_issue_shared_cell(void *context, 1815 struct dm_bio_prison_cell *cell) 1816 { 1817 struct remap_info *info = context; 1818 struct bio *bio; 1819 1820 while ((bio = bio_list_pop(&cell->bios))) { 1821 if (bio_data_dir(bio) == WRITE || op_is_flush(bio->bi_opf) || 1822 bio_op(bio) == REQ_OP_DISCARD) 1823 bio_list_add(&info->defer_bios, bio); 1824 else { 1825 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook)); 1826 1827 h->shared_read_entry = dm_deferred_entry_inc(info->tc->pool->shared_read_ds); 1828 inc_all_io_entry(info->tc->pool, bio); 1829 bio_list_add(&info->issue_bios, bio); 1830 } 1831 } 1832 } 1833 1834 static void remap_and_issue_shared_cell(struct thin_c *tc, 1835 struct dm_bio_prison_cell *cell, 1836 dm_block_t block) 1837 { 1838 struct bio *bio; 1839 struct remap_info info; 1840 1841 info.tc = tc; 1842 bio_list_init(&info.defer_bios); 1843 bio_list_init(&info.issue_bios); 1844 1845 cell_visit_release(tc->pool, __remap_and_issue_shared_cell, 1846 &info, cell); 1847 1848 while ((bio = bio_list_pop(&info.defer_bios))) 1849 thin_defer_bio(tc, bio); 1850 1851 while ((bio = bio_list_pop(&info.issue_bios))) 1852 remap_and_issue(tc, bio, block); 1853 } 1854 1855 static void process_shared_bio(struct thin_c *tc, struct bio *bio, 1856 dm_block_t block, 1857 struct dm_thin_lookup_result *lookup_result, 1858 struct dm_bio_prison_cell *virt_cell) 1859 { 1860 struct dm_bio_prison_cell *data_cell; 1861 struct pool *pool = tc->pool; 1862 struct dm_cell_key key; 1863 1864 /* 1865 * If cell is already occupied, then sharing is already in the process 1866 * of being broken so we have nothing further to do here. 1867 */ 1868 build_data_key(tc->td, lookup_result->block, &key); 1869 if (bio_detain(pool, &key, bio, &data_cell)) { 1870 cell_defer_no_holder(tc, virt_cell); 1871 return; 1872 } 1873 1874 if (bio_data_dir(bio) == WRITE && bio->bi_iter.bi_size) { 1875 break_sharing(tc, bio, block, &key, lookup_result, data_cell); 1876 cell_defer_no_holder(tc, virt_cell); 1877 } else { 1878 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook)); 1879 1880 h->shared_read_entry = dm_deferred_entry_inc(pool->shared_read_ds); 1881 inc_all_io_entry(pool, bio); 1882 remap_and_issue(tc, bio, lookup_result->block); 1883 1884 remap_and_issue_shared_cell(tc, data_cell, lookup_result->block); 1885 remap_and_issue_shared_cell(tc, virt_cell, lookup_result->block); 1886 } 1887 } 1888 1889 static void provision_block(struct thin_c *tc, struct bio *bio, dm_block_t block, 1890 struct dm_bio_prison_cell *cell) 1891 { 1892 int r; 1893 dm_block_t data_block; 1894 struct pool *pool = tc->pool; 1895 1896 /* 1897 * Remap empty bios (flushes) immediately, without provisioning. 1898 */ 1899 if (!bio->bi_iter.bi_size) { 1900 inc_all_io_entry(pool, bio); 1901 cell_defer_no_holder(tc, cell); 1902 1903 remap_and_issue(tc, bio, 0); 1904 return; 1905 } 1906 1907 /* 1908 * Fill read bios with zeroes and complete them immediately. 1909 */ 1910 if (bio_data_dir(bio) == READ) { 1911 zero_fill_bio(bio); 1912 cell_defer_no_holder(tc, cell); 1913 bio_endio(bio); 1914 return; 1915 } 1916 1917 r = alloc_data_block(tc, &data_block); 1918 switch (r) { 1919 case 0: 1920 if (tc->origin_dev) 1921 schedule_external_copy(tc, block, data_block, cell, bio); 1922 else 1923 schedule_zero(tc, block, data_block, cell, bio); 1924 break; 1925 1926 case -ENOSPC: 1927 retry_bios_on_resume(pool, cell); 1928 break; 1929 1930 default: 1931 DMERR_LIMIT("%s: alloc_data_block() failed: error = %d", 1932 __func__, r); 1933 cell_error(pool, cell); 1934 break; 1935 } 1936 } 1937 1938 static void process_cell(struct thin_c *tc, struct dm_bio_prison_cell *cell) 1939 { 1940 int r; 1941 struct pool *pool = tc->pool; 1942 struct bio *bio = cell->holder; 1943 dm_block_t block = get_bio_block(tc, bio); 1944 struct dm_thin_lookup_result lookup_result; 1945 1946 if (tc->requeue_mode) { 1947 cell_requeue(pool, cell); 1948 return; 1949 } 1950 1951 r = dm_thin_find_block(tc->td, block, 1, &lookup_result); 1952 switch (r) { 1953 case 0: 1954 if (lookup_result.shared) 1955 process_shared_bio(tc, bio, block, &lookup_result, cell); 1956 else { 1957 inc_all_io_entry(pool, bio); 1958 remap_and_issue(tc, bio, lookup_result.block); 1959 inc_remap_and_issue_cell(tc, cell, lookup_result.block); 1960 } 1961 break; 1962 1963 case -ENODATA: 1964 if (bio_data_dir(bio) == READ && tc->origin_dev) { 1965 inc_all_io_entry(pool, bio); 1966 cell_defer_no_holder(tc, cell); 1967 1968 if (bio_end_sector(bio) <= tc->origin_size) 1969 remap_to_origin_and_issue(tc, bio); 1970 1971 else if (bio->bi_iter.bi_sector < tc->origin_size) { 1972 zero_fill_bio(bio); 1973 bio->bi_iter.bi_size = (tc->origin_size - bio->bi_iter.bi_sector) << SECTOR_SHIFT; 1974 remap_to_origin_and_issue(tc, bio); 1975 1976 } else { 1977 zero_fill_bio(bio); 1978 bio_endio(bio); 1979 } 1980 } else 1981 provision_block(tc, bio, block, cell); 1982 break; 1983 1984 default: 1985 DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d", 1986 __func__, r); 1987 cell_defer_no_holder(tc, cell); 1988 bio_io_error(bio); 1989 break; 1990 } 1991 } 1992 1993 static void process_bio(struct thin_c *tc, struct bio *bio) 1994 { 1995 struct pool *pool = tc->pool; 1996 dm_block_t block = get_bio_block(tc, bio); 1997 struct dm_bio_prison_cell *cell; 1998 struct dm_cell_key key; 1999 2000 /* 2001 * If cell is already occupied, then the block is already 2002 * being provisioned so we have nothing further to do here. 2003 */ 2004 build_virtual_key(tc->td, block, &key); 2005 if (bio_detain(pool, &key, bio, &cell)) 2006 return; 2007 2008 process_cell(tc, cell); 2009 } 2010 2011 static void __process_bio_read_only(struct thin_c *tc, struct bio *bio, 2012 struct dm_bio_prison_cell *cell) 2013 { 2014 int r; 2015 int rw = bio_data_dir(bio); 2016 dm_block_t block = get_bio_block(tc, bio); 2017 struct dm_thin_lookup_result lookup_result; 2018 2019 r = dm_thin_find_block(tc->td, block, 1, &lookup_result); 2020 switch (r) { 2021 case 0: 2022 if (lookup_result.shared && (rw == WRITE) && bio->bi_iter.bi_size) { 2023 handle_unserviceable_bio(tc->pool, bio); 2024 if (cell) 2025 cell_defer_no_holder(tc, cell); 2026 } else { 2027 inc_all_io_entry(tc->pool, bio); 2028 remap_and_issue(tc, bio, lookup_result.block); 2029 if (cell) 2030 inc_remap_and_issue_cell(tc, cell, lookup_result.block); 2031 } 2032 break; 2033 2034 case -ENODATA: 2035 if (cell) 2036 cell_defer_no_holder(tc, cell); 2037 if (rw != READ) { 2038 handle_unserviceable_bio(tc->pool, bio); 2039 break; 2040 } 2041 2042 if (tc->origin_dev) { 2043 inc_all_io_entry(tc->pool, bio); 2044 remap_to_origin_and_issue(tc, bio); 2045 break; 2046 } 2047 2048 zero_fill_bio(bio); 2049 bio_endio(bio); 2050 break; 2051 2052 default: 2053 DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d", 2054 __func__, r); 2055 if (cell) 2056 cell_defer_no_holder(tc, cell); 2057 bio_io_error(bio); 2058 break; 2059 } 2060 } 2061 2062 static void process_bio_read_only(struct thin_c *tc, struct bio *bio) 2063 { 2064 __process_bio_read_only(tc, bio, NULL); 2065 } 2066 2067 static void process_cell_read_only(struct thin_c *tc, struct dm_bio_prison_cell *cell) 2068 { 2069 __process_bio_read_only(tc, cell->holder, cell); 2070 } 2071 2072 static void process_bio_success(struct thin_c *tc, struct bio *bio) 2073 { 2074 bio_endio(bio); 2075 } 2076 2077 static void process_bio_fail(struct thin_c *tc, struct bio *bio) 2078 { 2079 bio_io_error(bio); 2080 } 2081 2082 static void process_cell_success(struct thin_c *tc, struct dm_bio_prison_cell *cell) 2083 { 2084 cell_success(tc->pool, cell); 2085 } 2086 2087 static void process_cell_fail(struct thin_c *tc, struct dm_bio_prison_cell *cell) 2088 { 2089 cell_error(tc->pool, cell); 2090 } 2091 2092 /* 2093 * FIXME: should we also commit due to size of transaction, measured in 2094 * metadata blocks? 2095 */ 2096 static int need_commit_due_to_time(struct pool *pool) 2097 { 2098 return !time_in_range(jiffies, pool->last_commit_jiffies, 2099 pool->last_commit_jiffies + COMMIT_PERIOD); 2100 } 2101 2102 #define thin_pbd(node) rb_entry((node), struct dm_thin_endio_hook, rb_node) 2103 #define thin_bio(pbd) dm_bio_from_per_bio_data((pbd), sizeof(struct dm_thin_endio_hook)) 2104 2105 static void __thin_bio_rb_add(struct thin_c *tc, struct bio *bio) 2106 { 2107 struct rb_node **rbp, *parent; 2108 struct dm_thin_endio_hook *pbd; 2109 sector_t bi_sector = bio->bi_iter.bi_sector; 2110 2111 rbp = &tc->sort_bio_list.rb_node; 2112 parent = NULL; 2113 while (*rbp) { 2114 parent = *rbp; 2115 pbd = thin_pbd(parent); 2116 2117 if (bi_sector < thin_bio(pbd)->bi_iter.bi_sector) 2118 rbp = &(*rbp)->rb_left; 2119 else 2120 rbp = &(*rbp)->rb_right; 2121 } 2122 2123 pbd = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook)); 2124 rb_link_node(&pbd->rb_node, parent, rbp); 2125 rb_insert_color(&pbd->rb_node, &tc->sort_bio_list); 2126 } 2127 2128 static void __extract_sorted_bios(struct thin_c *tc) 2129 { 2130 struct rb_node *node; 2131 struct dm_thin_endio_hook *pbd; 2132 struct bio *bio; 2133 2134 for (node = rb_first(&tc->sort_bio_list); node; node = rb_next(node)) { 2135 pbd = thin_pbd(node); 2136 bio = thin_bio(pbd); 2137 2138 bio_list_add(&tc->deferred_bio_list, bio); 2139 rb_erase(&pbd->rb_node, &tc->sort_bio_list); 2140 } 2141 2142 WARN_ON(!RB_EMPTY_ROOT(&tc->sort_bio_list)); 2143 } 2144 2145 static void __sort_thin_deferred_bios(struct thin_c *tc) 2146 { 2147 struct bio *bio; 2148 struct bio_list bios; 2149 2150 bio_list_init(&bios); 2151 bio_list_merge(&bios, &tc->deferred_bio_list); 2152 bio_list_init(&tc->deferred_bio_list); 2153 2154 /* Sort deferred_bio_list using rb-tree */ 2155 while ((bio = bio_list_pop(&bios))) 2156 __thin_bio_rb_add(tc, bio); 2157 2158 /* 2159 * Transfer the sorted bios in sort_bio_list back to 2160 * deferred_bio_list to allow lockless submission of 2161 * all bios. 2162 */ 2163 __extract_sorted_bios(tc); 2164 } 2165 2166 static void process_thin_deferred_bios(struct thin_c *tc) 2167 { 2168 struct pool *pool = tc->pool; 2169 struct bio *bio; 2170 struct bio_list bios; 2171 struct blk_plug plug; 2172 unsigned count = 0; 2173 2174 if (tc->requeue_mode) { 2175 error_thin_bio_list(tc, &tc->deferred_bio_list, 2176 BLK_STS_DM_REQUEUE); 2177 return; 2178 } 2179 2180 bio_list_init(&bios); 2181 2182 spin_lock_irq(&tc->lock); 2183 2184 if (bio_list_empty(&tc->deferred_bio_list)) { 2185 spin_unlock_irq(&tc->lock); 2186 return; 2187 } 2188 2189 __sort_thin_deferred_bios(tc); 2190 2191 bio_list_merge(&bios, &tc->deferred_bio_list); 2192 bio_list_init(&tc->deferred_bio_list); 2193 2194 spin_unlock_irq(&tc->lock); 2195 2196 blk_start_plug(&plug); 2197 while ((bio = bio_list_pop(&bios))) { 2198 /* 2199 * If we've got no free new_mapping structs, and processing 2200 * this bio might require one, we pause until there are some 2201 * prepared mappings to process. 2202 */ 2203 if (ensure_next_mapping(pool)) { 2204 spin_lock_irq(&tc->lock); 2205 bio_list_add(&tc->deferred_bio_list, bio); 2206 bio_list_merge(&tc->deferred_bio_list, &bios); 2207 spin_unlock_irq(&tc->lock); 2208 break; 2209 } 2210 2211 if (bio_op(bio) == REQ_OP_DISCARD) 2212 pool->process_discard(tc, bio); 2213 else 2214 pool->process_bio(tc, bio); 2215 2216 if ((count++ & 127) == 0) { 2217 throttle_work_update(&pool->throttle); 2218 dm_pool_issue_prefetches(pool->pmd); 2219 } 2220 } 2221 blk_finish_plug(&plug); 2222 } 2223 2224 static int cmp_cells(const void *lhs, const void *rhs) 2225 { 2226 struct dm_bio_prison_cell *lhs_cell = *((struct dm_bio_prison_cell **) lhs); 2227 struct dm_bio_prison_cell *rhs_cell = *((struct dm_bio_prison_cell **) rhs); 2228 2229 BUG_ON(!lhs_cell->holder); 2230 BUG_ON(!rhs_cell->holder); 2231 2232 if (lhs_cell->holder->bi_iter.bi_sector < rhs_cell->holder->bi_iter.bi_sector) 2233 return -1; 2234 2235 if (lhs_cell->holder->bi_iter.bi_sector > rhs_cell->holder->bi_iter.bi_sector) 2236 return 1; 2237 2238 return 0; 2239 } 2240 2241 static unsigned sort_cells(struct pool *pool, struct list_head *cells) 2242 { 2243 unsigned count = 0; 2244 struct dm_bio_prison_cell *cell, *tmp; 2245 2246 list_for_each_entry_safe(cell, tmp, cells, user_list) { 2247 if (count >= CELL_SORT_ARRAY_SIZE) 2248 break; 2249 2250 pool->cell_sort_array[count++] = cell; 2251 list_del(&cell->user_list); 2252 } 2253 2254 sort(pool->cell_sort_array, count, sizeof(cell), cmp_cells, NULL); 2255 2256 return count; 2257 } 2258 2259 static void process_thin_deferred_cells(struct thin_c *tc) 2260 { 2261 struct pool *pool = tc->pool; 2262 struct list_head cells; 2263 struct dm_bio_prison_cell *cell; 2264 unsigned i, j, count; 2265 2266 INIT_LIST_HEAD(&cells); 2267 2268 spin_lock_irq(&tc->lock); 2269 list_splice_init(&tc->deferred_cells, &cells); 2270 spin_unlock_irq(&tc->lock); 2271 2272 if (list_empty(&cells)) 2273 return; 2274 2275 do { 2276 count = sort_cells(tc->pool, &cells); 2277 2278 for (i = 0; i < count; i++) { 2279 cell = pool->cell_sort_array[i]; 2280 BUG_ON(!cell->holder); 2281 2282 /* 2283 * If we've got no free new_mapping structs, and processing 2284 * this bio might require one, we pause until there are some 2285 * prepared mappings to process. 2286 */ 2287 if (ensure_next_mapping(pool)) { 2288 for (j = i; j < count; j++) 2289 list_add(&pool->cell_sort_array[j]->user_list, &cells); 2290 2291 spin_lock_irq(&tc->lock); 2292 list_splice(&cells, &tc->deferred_cells); 2293 spin_unlock_irq(&tc->lock); 2294 return; 2295 } 2296 2297 if (bio_op(cell->holder) == REQ_OP_DISCARD) 2298 pool->process_discard_cell(tc, cell); 2299 else 2300 pool->process_cell(tc, cell); 2301 } 2302 } while (!list_empty(&cells)); 2303 } 2304 2305 static void thin_get(struct thin_c *tc); 2306 static void thin_put(struct thin_c *tc); 2307 2308 /* 2309 * We can't hold rcu_read_lock() around code that can block. So we 2310 * find a thin with the rcu lock held; bump a refcount; then drop 2311 * the lock. 2312 */ 2313 static struct thin_c *get_first_thin(struct pool *pool) 2314 { 2315 struct thin_c *tc = NULL; 2316 2317 rcu_read_lock(); 2318 if (!list_empty(&pool->active_thins)) { 2319 tc = list_entry_rcu(pool->active_thins.next, struct thin_c, list); 2320 thin_get(tc); 2321 } 2322 rcu_read_unlock(); 2323 2324 return tc; 2325 } 2326 2327 static struct thin_c *get_next_thin(struct pool *pool, struct thin_c *tc) 2328 { 2329 struct thin_c *old_tc = tc; 2330 2331 rcu_read_lock(); 2332 list_for_each_entry_continue_rcu(tc, &pool->active_thins, list) { 2333 thin_get(tc); 2334 thin_put(old_tc); 2335 rcu_read_unlock(); 2336 return tc; 2337 } 2338 thin_put(old_tc); 2339 rcu_read_unlock(); 2340 2341 return NULL; 2342 } 2343 2344 static void process_deferred_bios(struct pool *pool) 2345 { 2346 struct bio *bio; 2347 struct bio_list bios, bio_completions; 2348 struct thin_c *tc; 2349 2350 tc = get_first_thin(pool); 2351 while (tc) { 2352 process_thin_deferred_cells(tc); 2353 process_thin_deferred_bios(tc); 2354 tc = get_next_thin(pool, tc); 2355 } 2356 2357 /* 2358 * If there are any deferred flush bios, we must commit the metadata 2359 * before issuing them or signaling their completion. 2360 */ 2361 bio_list_init(&bios); 2362 bio_list_init(&bio_completions); 2363 2364 spin_lock_irq(&pool->lock); 2365 bio_list_merge(&bios, &pool->deferred_flush_bios); 2366 bio_list_init(&pool->deferred_flush_bios); 2367 2368 bio_list_merge(&bio_completions, &pool->deferred_flush_completions); 2369 bio_list_init(&pool->deferred_flush_completions); 2370 spin_unlock_irq(&pool->lock); 2371 2372 if (bio_list_empty(&bios) && bio_list_empty(&bio_completions) && 2373 !(dm_pool_changed_this_transaction(pool->pmd) && need_commit_due_to_time(pool))) 2374 return; 2375 2376 if (commit(pool)) { 2377 bio_list_merge(&bios, &bio_completions); 2378 2379 while ((bio = bio_list_pop(&bios))) 2380 bio_io_error(bio); 2381 return; 2382 } 2383 pool->last_commit_jiffies = jiffies; 2384 2385 while ((bio = bio_list_pop(&bio_completions))) 2386 bio_endio(bio); 2387 2388 while ((bio = bio_list_pop(&bios))) { 2389 /* 2390 * The data device was flushed as part of metadata commit, 2391 * so complete redundant flushes immediately. 2392 */ 2393 if (bio->bi_opf & REQ_PREFLUSH) 2394 bio_endio(bio); 2395 else 2396 submit_bio_noacct(bio); 2397 } 2398 } 2399 2400 static void do_worker(struct work_struct *ws) 2401 { 2402 struct pool *pool = container_of(ws, struct pool, worker); 2403 2404 throttle_work_start(&pool->throttle); 2405 dm_pool_issue_prefetches(pool->pmd); 2406 throttle_work_update(&pool->throttle); 2407 process_prepared(pool, &pool->prepared_mappings, &pool->process_prepared_mapping); 2408 throttle_work_update(&pool->throttle); 2409 process_prepared(pool, &pool->prepared_discards, &pool->process_prepared_discard); 2410 throttle_work_update(&pool->throttle); 2411 process_prepared(pool, &pool->prepared_discards_pt2, &pool->process_prepared_discard_pt2); 2412 throttle_work_update(&pool->throttle); 2413 process_deferred_bios(pool); 2414 throttle_work_complete(&pool->throttle); 2415 } 2416 2417 /* 2418 * We want to commit periodically so that not too much 2419 * unwritten data builds up. 2420 */ 2421 static void do_waker(struct work_struct *ws) 2422 { 2423 struct pool *pool = container_of(to_delayed_work(ws), struct pool, waker); 2424 wake_worker(pool); 2425 queue_delayed_work(pool->wq, &pool->waker, COMMIT_PERIOD); 2426 } 2427 2428 /* 2429 * We're holding onto IO to allow userland time to react. After the 2430 * timeout either the pool will have been resized (and thus back in 2431 * PM_WRITE mode), or we degrade to PM_OUT_OF_DATA_SPACE w/ error_if_no_space. 2432 */ 2433 static void do_no_space_timeout(struct work_struct *ws) 2434 { 2435 struct pool *pool = container_of(to_delayed_work(ws), struct pool, 2436 no_space_timeout); 2437 2438 if (get_pool_mode(pool) == PM_OUT_OF_DATA_SPACE && !pool->pf.error_if_no_space) { 2439 pool->pf.error_if_no_space = true; 2440 notify_of_pool_mode_change(pool); 2441 error_retry_list_with_code(pool, BLK_STS_NOSPC); 2442 } 2443 } 2444 2445 /*----------------------------------------------------------------*/ 2446 2447 struct pool_work { 2448 struct work_struct worker; 2449 struct completion complete; 2450 }; 2451 2452 static struct pool_work *to_pool_work(struct work_struct *ws) 2453 { 2454 return container_of(ws, struct pool_work, worker); 2455 } 2456 2457 static void pool_work_complete(struct pool_work *pw) 2458 { 2459 complete(&pw->complete); 2460 } 2461 2462 static void pool_work_wait(struct pool_work *pw, struct pool *pool, 2463 void (*fn)(struct work_struct *)) 2464 { 2465 INIT_WORK_ONSTACK(&pw->worker, fn); 2466 init_completion(&pw->complete); 2467 queue_work(pool->wq, &pw->worker); 2468 wait_for_completion(&pw->complete); 2469 } 2470 2471 /*----------------------------------------------------------------*/ 2472 2473 struct noflush_work { 2474 struct pool_work pw; 2475 struct thin_c *tc; 2476 }; 2477 2478 static struct noflush_work *to_noflush(struct work_struct *ws) 2479 { 2480 return container_of(to_pool_work(ws), struct noflush_work, pw); 2481 } 2482 2483 static void do_noflush_start(struct work_struct *ws) 2484 { 2485 struct noflush_work *w = to_noflush(ws); 2486 w->tc->requeue_mode = true; 2487 requeue_io(w->tc); 2488 pool_work_complete(&w->pw); 2489 } 2490 2491 static void do_noflush_stop(struct work_struct *ws) 2492 { 2493 struct noflush_work *w = to_noflush(ws); 2494 w->tc->requeue_mode = false; 2495 pool_work_complete(&w->pw); 2496 } 2497 2498 static void noflush_work(struct thin_c *tc, void (*fn)(struct work_struct *)) 2499 { 2500 struct noflush_work w; 2501 2502 w.tc = tc; 2503 pool_work_wait(&w.pw, tc->pool, fn); 2504 } 2505 2506 /*----------------------------------------------------------------*/ 2507 2508 static bool passdown_enabled(struct pool_c *pt) 2509 { 2510 return pt->adjusted_pf.discard_passdown; 2511 } 2512 2513 static void set_discard_callbacks(struct pool *pool) 2514 { 2515 struct pool_c *pt = pool->ti->private; 2516 2517 if (passdown_enabled(pt)) { 2518 pool->process_discard_cell = process_discard_cell_passdown; 2519 pool->process_prepared_discard = process_prepared_discard_passdown_pt1; 2520 pool->process_prepared_discard_pt2 = process_prepared_discard_passdown_pt2; 2521 } else { 2522 pool->process_discard_cell = process_discard_cell_no_passdown; 2523 pool->process_prepared_discard = process_prepared_discard_no_passdown; 2524 } 2525 } 2526 2527 static void set_pool_mode(struct pool *pool, enum pool_mode new_mode) 2528 { 2529 struct pool_c *pt = pool->ti->private; 2530 bool needs_check = dm_pool_metadata_needs_check(pool->pmd); 2531 enum pool_mode old_mode = get_pool_mode(pool); 2532 unsigned long no_space_timeout = READ_ONCE(no_space_timeout_secs) * HZ; 2533 2534 /* 2535 * Never allow the pool to transition to PM_WRITE mode if user 2536 * intervention is required to verify metadata and data consistency. 2537 */ 2538 if (new_mode == PM_WRITE && needs_check) { 2539 DMERR("%s: unable to switch pool to write mode until repaired.", 2540 dm_device_name(pool->pool_md)); 2541 if (old_mode != new_mode) 2542 new_mode = old_mode; 2543 else 2544 new_mode = PM_READ_ONLY; 2545 } 2546 /* 2547 * If we were in PM_FAIL mode, rollback of metadata failed. We're 2548 * not going to recover without a thin_repair. So we never let the 2549 * pool move out of the old mode. 2550 */ 2551 if (old_mode == PM_FAIL) 2552 new_mode = old_mode; 2553 2554 switch (new_mode) { 2555 case PM_FAIL: 2556 dm_pool_metadata_read_only(pool->pmd); 2557 pool->process_bio = process_bio_fail; 2558 pool->process_discard = process_bio_fail; 2559 pool->process_cell = process_cell_fail; 2560 pool->process_discard_cell = process_cell_fail; 2561 pool->process_prepared_mapping = process_prepared_mapping_fail; 2562 pool->process_prepared_discard = process_prepared_discard_fail; 2563 2564 error_retry_list(pool); 2565 break; 2566 2567 case PM_OUT_OF_METADATA_SPACE: 2568 case PM_READ_ONLY: 2569 dm_pool_metadata_read_only(pool->pmd); 2570 pool->process_bio = process_bio_read_only; 2571 pool->process_discard = process_bio_success; 2572 pool->process_cell = process_cell_read_only; 2573 pool->process_discard_cell = process_cell_success; 2574 pool->process_prepared_mapping = process_prepared_mapping_fail; 2575 pool->process_prepared_discard = process_prepared_discard_success; 2576 2577 error_retry_list(pool); 2578 break; 2579 2580 case PM_OUT_OF_DATA_SPACE: 2581 /* 2582 * Ideally we'd never hit this state; the low water mark 2583 * would trigger userland to extend the pool before we 2584 * completely run out of data space. However, many small 2585 * IOs to unprovisioned space can consume data space at an 2586 * alarming rate. Adjust your low water mark if you're 2587 * frequently seeing this mode. 2588 */ 2589 pool->out_of_data_space = true; 2590 pool->process_bio = process_bio_read_only; 2591 pool->process_discard = process_discard_bio; 2592 pool->process_cell = process_cell_read_only; 2593 pool->process_prepared_mapping = process_prepared_mapping; 2594 set_discard_callbacks(pool); 2595 2596 if (!pool->pf.error_if_no_space && no_space_timeout) 2597 queue_delayed_work(pool->wq, &pool->no_space_timeout, no_space_timeout); 2598 break; 2599 2600 case PM_WRITE: 2601 if (old_mode == PM_OUT_OF_DATA_SPACE) 2602 cancel_delayed_work_sync(&pool->no_space_timeout); 2603 pool->out_of_data_space = false; 2604 pool->pf.error_if_no_space = pt->requested_pf.error_if_no_space; 2605 dm_pool_metadata_read_write(pool->pmd); 2606 pool->process_bio = process_bio; 2607 pool->process_discard = process_discard_bio; 2608 pool->process_cell = process_cell; 2609 pool->process_prepared_mapping = process_prepared_mapping; 2610 set_discard_callbacks(pool); 2611 break; 2612 } 2613 2614 pool->pf.mode = new_mode; 2615 /* 2616 * The pool mode may have changed, sync it so bind_control_target() 2617 * doesn't cause an unexpected mode transition on resume. 2618 */ 2619 pt->adjusted_pf.mode = new_mode; 2620 2621 if (old_mode != new_mode) 2622 notify_of_pool_mode_change(pool); 2623 } 2624 2625 static void abort_transaction(struct pool *pool) 2626 { 2627 const char *dev_name = dm_device_name(pool->pool_md); 2628 2629 DMERR_LIMIT("%s: aborting current metadata transaction", dev_name); 2630 if (dm_pool_abort_metadata(pool->pmd)) { 2631 DMERR("%s: failed to abort metadata transaction", dev_name); 2632 set_pool_mode(pool, PM_FAIL); 2633 } 2634 2635 if (dm_pool_metadata_set_needs_check(pool->pmd)) { 2636 DMERR("%s: failed to set 'needs_check' flag in metadata", dev_name); 2637 set_pool_mode(pool, PM_FAIL); 2638 } 2639 } 2640 2641 static void metadata_operation_failed(struct pool *pool, const char *op, int r) 2642 { 2643 DMERR_LIMIT("%s: metadata operation '%s' failed: error = %d", 2644 dm_device_name(pool->pool_md), op, r); 2645 2646 abort_transaction(pool); 2647 set_pool_mode(pool, PM_READ_ONLY); 2648 } 2649 2650 /*----------------------------------------------------------------*/ 2651 2652 /* 2653 * Mapping functions. 2654 */ 2655 2656 /* 2657 * Called only while mapping a thin bio to hand it over to the workqueue. 2658 */ 2659 static void thin_defer_bio(struct thin_c *tc, struct bio *bio) 2660 { 2661 struct pool *pool = tc->pool; 2662 2663 spin_lock_irq(&tc->lock); 2664 bio_list_add(&tc->deferred_bio_list, bio); 2665 spin_unlock_irq(&tc->lock); 2666 2667 wake_worker(pool); 2668 } 2669 2670 static void thin_defer_bio_with_throttle(struct thin_c *tc, struct bio *bio) 2671 { 2672 struct pool *pool = tc->pool; 2673 2674 throttle_lock(&pool->throttle); 2675 thin_defer_bio(tc, bio); 2676 throttle_unlock(&pool->throttle); 2677 } 2678 2679 static void thin_defer_cell(struct thin_c *tc, struct dm_bio_prison_cell *cell) 2680 { 2681 struct pool *pool = tc->pool; 2682 2683 throttle_lock(&pool->throttle); 2684 spin_lock_irq(&tc->lock); 2685 list_add_tail(&cell->user_list, &tc->deferred_cells); 2686 spin_unlock_irq(&tc->lock); 2687 throttle_unlock(&pool->throttle); 2688 2689 wake_worker(pool); 2690 } 2691 2692 static void thin_hook_bio(struct thin_c *tc, struct bio *bio) 2693 { 2694 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook)); 2695 2696 h->tc = tc; 2697 h->shared_read_entry = NULL; 2698 h->all_io_entry = NULL; 2699 h->overwrite_mapping = NULL; 2700 h->cell = NULL; 2701 } 2702 2703 /* 2704 * Non-blocking function called from the thin target's map function. 2705 */ 2706 static int thin_bio_map(struct dm_target *ti, struct bio *bio) 2707 { 2708 int r; 2709 struct thin_c *tc = ti->private; 2710 dm_block_t block = get_bio_block(tc, bio); 2711 struct dm_thin_device *td = tc->td; 2712 struct dm_thin_lookup_result result; 2713 struct dm_bio_prison_cell *virt_cell, *data_cell; 2714 struct dm_cell_key key; 2715 2716 thin_hook_bio(tc, bio); 2717 2718 if (tc->requeue_mode) { 2719 bio->bi_status = BLK_STS_DM_REQUEUE; 2720 bio_endio(bio); 2721 return DM_MAPIO_SUBMITTED; 2722 } 2723 2724 if (get_pool_mode(tc->pool) == PM_FAIL) { 2725 bio_io_error(bio); 2726 return DM_MAPIO_SUBMITTED; 2727 } 2728 2729 if (op_is_flush(bio->bi_opf) || bio_op(bio) == REQ_OP_DISCARD) { 2730 thin_defer_bio_with_throttle(tc, bio); 2731 return DM_MAPIO_SUBMITTED; 2732 } 2733 2734 /* 2735 * We must hold the virtual cell before doing the lookup, otherwise 2736 * there's a race with discard. 2737 */ 2738 build_virtual_key(tc->td, block, &key); 2739 if (bio_detain(tc->pool, &key, bio, &virt_cell)) 2740 return DM_MAPIO_SUBMITTED; 2741 2742 r = dm_thin_find_block(td, block, 0, &result); 2743 2744 /* 2745 * Note that we defer readahead too. 2746 */ 2747 switch (r) { 2748 case 0: 2749 if (unlikely(result.shared)) { 2750 /* 2751 * We have a race condition here between the 2752 * result.shared value returned by the lookup and 2753 * snapshot creation, which may cause new 2754 * sharing. 2755 * 2756 * To avoid this always quiesce the origin before 2757 * taking the snap. You want to do this anyway to 2758 * ensure a consistent application view 2759 * (i.e. lockfs). 2760 * 2761 * More distant ancestors are irrelevant. The 2762 * shared flag will be set in their case. 2763 */ 2764 thin_defer_cell(tc, virt_cell); 2765 return DM_MAPIO_SUBMITTED; 2766 } 2767 2768 build_data_key(tc->td, result.block, &key); 2769 if (bio_detain(tc->pool, &key, bio, &data_cell)) { 2770 cell_defer_no_holder(tc, virt_cell); 2771 return DM_MAPIO_SUBMITTED; 2772 } 2773 2774 inc_all_io_entry(tc->pool, bio); 2775 cell_defer_no_holder(tc, data_cell); 2776 cell_defer_no_holder(tc, virt_cell); 2777 2778 remap(tc, bio, result.block); 2779 return DM_MAPIO_REMAPPED; 2780 2781 case -ENODATA: 2782 case -EWOULDBLOCK: 2783 thin_defer_cell(tc, virt_cell); 2784 return DM_MAPIO_SUBMITTED; 2785 2786 default: 2787 /* 2788 * Must always call bio_io_error on failure. 2789 * dm_thin_find_block can fail with -EINVAL if the 2790 * pool is switched to fail-io mode. 2791 */ 2792 bio_io_error(bio); 2793 cell_defer_no_holder(tc, virt_cell); 2794 return DM_MAPIO_SUBMITTED; 2795 } 2796 } 2797 2798 static void requeue_bios(struct pool *pool) 2799 { 2800 struct thin_c *tc; 2801 2802 rcu_read_lock(); 2803 list_for_each_entry_rcu(tc, &pool->active_thins, list) { 2804 spin_lock_irq(&tc->lock); 2805 bio_list_merge(&tc->deferred_bio_list, &tc->retry_on_resume_list); 2806 bio_list_init(&tc->retry_on_resume_list); 2807 spin_unlock_irq(&tc->lock); 2808 } 2809 rcu_read_unlock(); 2810 } 2811 2812 /*---------------------------------------------------------------- 2813 * Binding of control targets to a pool object 2814 *--------------------------------------------------------------*/ 2815 static bool data_dev_supports_discard(struct pool_c *pt) 2816 { 2817 struct request_queue *q = bdev_get_queue(pt->data_dev->bdev); 2818 2819 return blk_queue_discard(q); 2820 } 2821 2822 static bool is_factor(sector_t block_size, uint32_t n) 2823 { 2824 return !sector_div(block_size, n); 2825 } 2826 2827 /* 2828 * If discard_passdown was enabled verify that the data device 2829 * supports discards. Disable discard_passdown if not. 2830 */ 2831 static void disable_passdown_if_not_supported(struct pool_c *pt) 2832 { 2833 struct pool *pool = pt->pool; 2834 struct block_device *data_bdev = pt->data_dev->bdev; 2835 struct queue_limits *data_limits = &bdev_get_queue(data_bdev)->limits; 2836 const char *reason = NULL; 2837 char buf[BDEVNAME_SIZE]; 2838 2839 if (!pt->adjusted_pf.discard_passdown) 2840 return; 2841 2842 if (!data_dev_supports_discard(pt)) 2843 reason = "discard unsupported"; 2844 2845 else if (data_limits->max_discard_sectors < pool->sectors_per_block) 2846 reason = "max discard sectors smaller than a block"; 2847 2848 if (reason) { 2849 DMWARN("Data device (%s) %s: Disabling discard passdown.", bdevname(data_bdev, buf), reason); 2850 pt->adjusted_pf.discard_passdown = false; 2851 } 2852 } 2853 2854 static int bind_control_target(struct pool *pool, struct dm_target *ti) 2855 { 2856 struct pool_c *pt = ti->private; 2857 2858 /* 2859 * We want to make sure that a pool in PM_FAIL mode is never upgraded. 2860 */ 2861 enum pool_mode old_mode = get_pool_mode(pool); 2862 enum pool_mode new_mode = pt->adjusted_pf.mode; 2863 2864 /* 2865 * Don't change the pool's mode until set_pool_mode() below. 2866 * Otherwise the pool's process_* function pointers may 2867 * not match the desired pool mode. 2868 */ 2869 pt->adjusted_pf.mode = old_mode; 2870 2871 pool->ti = ti; 2872 pool->pf = pt->adjusted_pf; 2873 pool->low_water_blocks = pt->low_water_blocks; 2874 2875 set_pool_mode(pool, new_mode); 2876 2877 return 0; 2878 } 2879 2880 static void unbind_control_target(struct pool *pool, struct dm_target *ti) 2881 { 2882 if (pool->ti == ti) 2883 pool->ti = NULL; 2884 } 2885 2886 /*---------------------------------------------------------------- 2887 * Pool creation 2888 *--------------------------------------------------------------*/ 2889 /* Initialize pool features. */ 2890 static void pool_features_init(struct pool_features *pf) 2891 { 2892 pf->mode = PM_WRITE; 2893 pf->zero_new_blocks = true; 2894 pf->discard_enabled = true; 2895 pf->discard_passdown = true; 2896 pf->error_if_no_space = false; 2897 } 2898 2899 static void __pool_destroy(struct pool *pool) 2900 { 2901 __pool_table_remove(pool); 2902 2903 vfree(pool->cell_sort_array); 2904 if (dm_pool_metadata_close(pool->pmd) < 0) 2905 DMWARN("%s: dm_pool_metadata_close() failed.", __func__); 2906 2907 dm_bio_prison_destroy(pool->prison); 2908 dm_kcopyd_client_destroy(pool->copier); 2909 2910 if (pool->wq) 2911 destroy_workqueue(pool->wq); 2912 2913 if (pool->next_mapping) 2914 mempool_free(pool->next_mapping, &pool->mapping_pool); 2915 mempool_exit(&pool->mapping_pool); 2916 bio_uninit(&pool->flush_bio); 2917 dm_deferred_set_destroy(pool->shared_read_ds); 2918 dm_deferred_set_destroy(pool->all_io_ds); 2919 kfree(pool); 2920 } 2921 2922 static struct kmem_cache *_new_mapping_cache; 2923 2924 static struct pool *pool_create(struct mapped_device *pool_md, 2925 struct block_device *metadata_dev, 2926 struct block_device *data_dev, 2927 unsigned long block_size, 2928 int read_only, char **error) 2929 { 2930 int r; 2931 void *err_p; 2932 struct pool *pool; 2933 struct dm_pool_metadata *pmd; 2934 bool format_device = read_only ? false : true; 2935 2936 pmd = dm_pool_metadata_open(metadata_dev, block_size, format_device); 2937 if (IS_ERR(pmd)) { 2938 *error = "Error creating metadata object"; 2939 return (struct pool *)pmd; 2940 } 2941 2942 pool = kzalloc(sizeof(*pool), GFP_KERNEL); 2943 if (!pool) { 2944 *error = "Error allocating memory for pool"; 2945 err_p = ERR_PTR(-ENOMEM); 2946 goto bad_pool; 2947 } 2948 2949 pool->pmd = pmd; 2950 pool->sectors_per_block = block_size; 2951 if (block_size & (block_size - 1)) 2952 pool->sectors_per_block_shift = -1; 2953 else 2954 pool->sectors_per_block_shift = __ffs(block_size); 2955 pool->low_water_blocks = 0; 2956 pool_features_init(&pool->pf); 2957 pool->prison = dm_bio_prison_create(); 2958 if (!pool->prison) { 2959 *error = "Error creating pool's bio prison"; 2960 err_p = ERR_PTR(-ENOMEM); 2961 goto bad_prison; 2962 } 2963 2964 pool->copier = dm_kcopyd_client_create(&dm_kcopyd_throttle); 2965 if (IS_ERR(pool->copier)) { 2966 r = PTR_ERR(pool->copier); 2967 *error = "Error creating pool's kcopyd client"; 2968 err_p = ERR_PTR(r); 2969 goto bad_kcopyd_client; 2970 } 2971 2972 /* 2973 * Create singlethreaded workqueue that will service all devices 2974 * that use this metadata. 2975 */ 2976 pool->wq = alloc_ordered_workqueue("dm-" DM_MSG_PREFIX, WQ_MEM_RECLAIM); 2977 if (!pool->wq) { 2978 *error = "Error creating pool's workqueue"; 2979 err_p = ERR_PTR(-ENOMEM); 2980 goto bad_wq; 2981 } 2982 2983 throttle_init(&pool->throttle); 2984 INIT_WORK(&pool->worker, do_worker); 2985 INIT_DELAYED_WORK(&pool->waker, do_waker); 2986 INIT_DELAYED_WORK(&pool->no_space_timeout, do_no_space_timeout); 2987 spin_lock_init(&pool->lock); 2988 bio_list_init(&pool->deferred_flush_bios); 2989 bio_list_init(&pool->deferred_flush_completions); 2990 INIT_LIST_HEAD(&pool->prepared_mappings); 2991 INIT_LIST_HEAD(&pool->prepared_discards); 2992 INIT_LIST_HEAD(&pool->prepared_discards_pt2); 2993 INIT_LIST_HEAD(&pool->active_thins); 2994 pool->low_water_triggered = false; 2995 pool->suspended = true; 2996 pool->out_of_data_space = false; 2997 bio_init(&pool->flush_bio, NULL, 0); 2998 2999 pool->shared_read_ds = dm_deferred_set_create(); 3000 if (!pool->shared_read_ds) { 3001 *error = "Error creating pool's shared read deferred set"; 3002 err_p = ERR_PTR(-ENOMEM); 3003 goto bad_shared_read_ds; 3004 } 3005 3006 pool->all_io_ds = dm_deferred_set_create(); 3007 if (!pool->all_io_ds) { 3008 *error = "Error creating pool's all io deferred set"; 3009 err_p = ERR_PTR(-ENOMEM); 3010 goto bad_all_io_ds; 3011 } 3012 3013 pool->next_mapping = NULL; 3014 r = mempool_init_slab_pool(&pool->mapping_pool, MAPPING_POOL_SIZE, 3015 _new_mapping_cache); 3016 if (r) { 3017 *error = "Error creating pool's mapping mempool"; 3018 err_p = ERR_PTR(r); 3019 goto bad_mapping_pool; 3020 } 3021 3022 pool->cell_sort_array = 3023 vmalloc(array_size(CELL_SORT_ARRAY_SIZE, 3024 sizeof(*pool->cell_sort_array))); 3025 if (!pool->cell_sort_array) { 3026 *error = "Error allocating cell sort array"; 3027 err_p = ERR_PTR(-ENOMEM); 3028 goto bad_sort_array; 3029 } 3030 3031 pool->ref_count = 1; 3032 pool->last_commit_jiffies = jiffies; 3033 pool->pool_md = pool_md; 3034 pool->md_dev = metadata_dev; 3035 pool->data_dev = data_dev; 3036 __pool_table_insert(pool); 3037 3038 return pool; 3039 3040 bad_sort_array: 3041 mempool_exit(&pool->mapping_pool); 3042 bad_mapping_pool: 3043 dm_deferred_set_destroy(pool->all_io_ds); 3044 bad_all_io_ds: 3045 dm_deferred_set_destroy(pool->shared_read_ds); 3046 bad_shared_read_ds: 3047 destroy_workqueue(pool->wq); 3048 bad_wq: 3049 dm_kcopyd_client_destroy(pool->copier); 3050 bad_kcopyd_client: 3051 dm_bio_prison_destroy(pool->prison); 3052 bad_prison: 3053 kfree(pool); 3054 bad_pool: 3055 if (dm_pool_metadata_close(pmd)) 3056 DMWARN("%s: dm_pool_metadata_close() failed.", __func__); 3057 3058 return err_p; 3059 } 3060 3061 static void __pool_inc(struct pool *pool) 3062 { 3063 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex)); 3064 pool->ref_count++; 3065 } 3066 3067 static void __pool_dec(struct pool *pool) 3068 { 3069 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex)); 3070 BUG_ON(!pool->ref_count); 3071 if (!--pool->ref_count) 3072 __pool_destroy(pool); 3073 } 3074 3075 static struct pool *__pool_find(struct mapped_device *pool_md, 3076 struct block_device *metadata_dev, 3077 struct block_device *data_dev, 3078 unsigned long block_size, int read_only, 3079 char **error, int *created) 3080 { 3081 struct pool *pool = __pool_table_lookup_metadata_dev(metadata_dev); 3082 3083 if (pool) { 3084 if (pool->pool_md != pool_md) { 3085 *error = "metadata device already in use by a pool"; 3086 return ERR_PTR(-EBUSY); 3087 } 3088 if (pool->data_dev != data_dev) { 3089 *error = "data device already in use by a pool"; 3090 return ERR_PTR(-EBUSY); 3091 } 3092 __pool_inc(pool); 3093 3094 } else { 3095 pool = __pool_table_lookup(pool_md); 3096 if (pool) { 3097 if (pool->md_dev != metadata_dev || pool->data_dev != data_dev) { 3098 *error = "different pool cannot replace a pool"; 3099 return ERR_PTR(-EINVAL); 3100 } 3101 __pool_inc(pool); 3102 3103 } else { 3104 pool = pool_create(pool_md, metadata_dev, data_dev, block_size, read_only, error); 3105 *created = 1; 3106 } 3107 } 3108 3109 return pool; 3110 } 3111 3112 /*---------------------------------------------------------------- 3113 * Pool target methods 3114 *--------------------------------------------------------------*/ 3115 static void pool_dtr(struct dm_target *ti) 3116 { 3117 struct pool_c *pt = ti->private; 3118 3119 mutex_lock(&dm_thin_pool_table.mutex); 3120 3121 unbind_control_target(pt->pool, ti); 3122 __pool_dec(pt->pool); 3123 dm_put_device(ti, pt->metadata_dev); 3124 dm_put_device(ti, pt->data_dev); 3125 kfree(pt); 3126 3127 mutex_unlock(&dm_thin_pool_table.mutex); 3128 } 3129 3130 static int parse_pool_features(struct dm_arg_set *as, struct pool_features *pf, 3131 struct dm_target *ti) 3132 { 3133 int r; 3134 unsigned argc; 3135 const char *arg_name; 3136 3137 static const struct dm_arg _args[] = { 3138 {0, 4, "Invalid number of pool feature arguments"}, 3139 }; 3140 3141 /* 3142 * No feature arguments supplied. 3143 */ 3144 if (!as->argc) 3145 return 0; 3146 3147 r = dm_read_arg_group(_args, as, &argc, &ti->error); 3148 if (r) 3149 return -EINVAL; 3150 3151 while (argc && !r) { 3152 arg_name = dm_shift_arg(as); 3153 argc--; 3154 3155 if (!strcasecmp(arg_name, "skip_block_zeroing")) 3156 pf->zero_new_blocks = false; 3157 3158 else if (!strcasecmp(arg_name, "ignore_discard")) 3159 pf->discard_enabled = false; 3160 3161 else if (!strcasecmp(arg_name, "no_discard_passdown")) 3162 pf->discard_passdown = false; 3163 3164 else if (!strcasecmp(arg_name, "read_only")) 3165 pf->mode = PM_READ_ONLY; 3166 3167 else if (!strcasecmp(arg_name, "error_if_no_space")) 3168 pf->error_if_no_space = true; 3169 3170 else { 3171 ti->error = "Unrecognised pool feature requested"; 3172 r = -EINVAL; 3173 break; 3174 } 3175 } 3176 3177 return r; 3178 } 3179 3180 static void metadata_low_callback(void *context) 3181 { 3182 struct pool *pool = context; 3183 3184 DMWARN("%s: reached low water mark for metadata device: sending event.", 3185 dm_device_name(pool->pool_md)); 3186 3187 dm_table_event(pool->ti->table); 3188 } 3189 3190 /* 3191 * We need to flush the data device **before** committing the metadata. 3192 * 3193 * This ensures that the data blocks of any newly inserted mappings are 3194 * properly written to non-volatile storage and won't be lost in case of a 3195 * crash. 3196 * 3197 * Failure to do so can result in data corruption in the case of internal or 3198 * external snapshots and in the case of newly provisioned blocks, when block 3199 * zeroing is enabled. 3200 */ 3201 static int metadata_pre_commit_callback(void *context) 3202 { 3203 struct pool *pool = context; 3204 struct bio *flush_bio = &pool->flush_bio; 3205 3206 bio_reset(flush_bio); 3207 bio_set_dev(flush_bio, pool->data_dev); 3208 flush_bio->bi_opf = REQ_OP_WRITE | REQ_PREFLUSH; 3209 3210 return submit_bio_wait(flush_bio); 3211 } 3212 3213 static sector_t get_dev_size(struct block_device *bdev) 3214 { 3215 return bdev_nr_sectors(bdev); 3216 } 3217 3218 static void warn_if_metadata_device_too_big(struct block_device *bdev) 3219 { 3220 sector_t metadata_dev_size = get_dev_size(bdev); 3221 char buffer[BDEVNAME_SIZE]; 3222 3223 if (metadata_dev_size > THIN_METADATA_MAX_SECTORS_WARNING) 3224 DMWARN("Metadata device %s is larger than %u sectors: excess space will not be used.", 3225 bdevname(bdev, buffer), THIN_METADATA_MAX_SECTORS); 3226 } 3227 3228 static sector_t get_metadata_dev_size(struct block_device *bdev) 3229 { 3230 sector_t metadata_dev_size = get_dev_size(bdev); 3231 3232 if (metadata_dev_size > THIN_METADATA_MAX_SECTORS) 3233 metadata_dev_size = THIN_METADATA_MAX_SECTORS; 3234 3235 return metadata_dev_size; 3236 } 3237 3238 static dm_block_t get_metadata_dev_size_in_blocks(struct block_device *bdev) 3239 { 3240 sector_t metadata_dev_size = get_metadata_dev_size(bdev); 3241 3242 sector_div(metadata_dev_size, THIN_METADATA_BLOCK_SIZE); 3243 3244 return metadata_dev_size; 3245 } 3246 3247 /* 3248 * When a metadata threshold is crossed a dm event is triggered, and 3249 * userland should respond by growing the metadata device. We could let 3250 * userland set the threshold, like we do with the data threshold, but I'm 3251 * not sure they know enough to do this well. 3252 */ 3253 static dm_block_t calc_metadata_threshold(struct pool_c *pt) 3254 { 3255 /* 3256 * 4M is ample for all ops with the possible exception of thin 3257 * device deletion which is harmless if it fails (just retry the 3258 * delete after you've grown the device). 3259 */ 3260 dm_block_t quarter = get_metadata_dev_size_in_blocks(pt->metadata_dev->bdev) / 4; 3261 return min((dm_block_t)1024ULL /* 4M */, quarter); 3262 } 3263 3264 /* 3265 * thin-pool <metadata dev> <data dev> 3266 * <data block size (sectors)> 3267 * <low water mark (blocks)> 3268 * [<#feature args> [<arg>]*] 3269 * 3270 * Optional feature arguments are: 3271 * skip_block_zeroing: skips the zeroing of newly-provisioned blocks. 3272 * ignore_discard: disable discard 3273 * no_discard_passdown: don't pass discards down to the data device 3274 * read_only: Don't allow any changes to be made to the pool metadata. 3275 * error_if_no_space: error IOs, instead of queueing, if no space. 3276 */ 3277 static int pool_ctr(struct dm_target *ti, unsigned argc, char **argv) 3278 { 3279 int r, pool_created = 0; 3280 struct pool_c *pt; 3281 struct pool *pool; 3282 struct pool_features pf; 3283 struct dm_arg_set as; 3284 struct dm_dev *data_dev; 3285 unsigned long block_size; 3286 dm_block_t low_water_blocks; 3287 struct dm_dev *metadata_dev; 3288 fmode_t metadata_mode; 3289 3290 /* 3291 * FIXME Remove validation from scope of lock. 3292 */ 3293 mutex_lock(&dm_thin_pool_table.mutex); 3294 3295 if (argc < 4) { 3296 ti->error = "Invalid argument count"; 3297 r = -EINVAL; 3298 goto out_unlock; 3299 } 3300 3301 as.argc = argc; 3302 as.argv = argv; 3303 3304 /* make sure metadata and data are different devices */ 3305 if (!strcmp(argv[0], argv[1])) { 3306 ti->error = "Error setting metadata or data device"; 3307 r = -EINVAL; 3308 goto out_unlock; 3309 } 3310 3311 /* 3312 * Set default pool features. 3313 */ 3314 pool_features_init(&pf); 3315 3316 dm_consume_args(&as, 4); 3317 r = parse_pool_features(&as, &pf, ti); 3318 if (r) 3319 goto out_unlock; 3320 3321 metadata_mode = FMODE_READ | ((pf.mode == PM_READ_ONLY) ? 0 : FMODE_WRITE); 3322 r = dm_get_device(ti, argv[0], metadata_mode, &metadata_dev); 3323 if (r) { 3324 ti->error = "Error opening metadata block device"; 3325 goto out_unlock; 3326 } 3327 warn_if_metadata_device_too_big(metadata_dev->bdev); 3328 3329 r = dm_get_device(ti, argv[1], FMODE_READ | FMODE_WRITE, &data_dev); 3330 if (r) { 3331 ti->error = "Error getting data device"; 3332 goto out_metadata; 3333 } 3334 3335 if (kstrtoul(argv[2], 10, &block_size) || !block_size || 3336 block_size < DATA_DEV_BLOCK_SIZE_MIN_SECTORS || 3337 block_size > DATA_DEV_BLOCK_SIZE_MAX_SECTORS || 3338 block_size & (DATA_DEV_BLOCK_SIZE_MIN_SECTORS - 1)) { 3339 ti->error = "Invalid block size"; 3340 r = -EINVAL; 3341 goto out; 3342 } 3343 3344 if (kstrtoull(argv[3], 10, (unsigned long long *)&low_water_blocks)) { 3345 ti->error = "Invalid low water mark"; 3346 r = -EINVAL; 3347 goto out; 3348 } 3349 3350 pt = kzalloc(sizeof(*pt), GFP_KERNEL); 3351 if (!pt) { 3352 r = -ENOMEM; 3353 goto out; 3354 } 3355 3356 pool = __pool_find(dm_table_get_md(ti->table), metadata_dev->bdev, data_dev->bdev, 3357 block_size, pf.mode == PM_READ_ONLY, &ti->error, &pool_created); 3358 if (IS_ERR(pool)) { 3359 r = PTR_ERR(pool); 3360 goto out_free_pt; 3361 } 3362 3363 /* 3364 * 'pool_created' reflects whether this is the first table load. 3365 * Top level discard support is not allowed to be changed after 3366 * initial load. This would require a pool reload to trigger thin 3367 * device changes. 3368 */ 3369 if (!pool_created && pf.discard_enabled != pool->pf.discard_enabled) { 3370 ti->error = "Discard support cannot be disabled once enabled"; 3371 r = -EINVAL; 3372 goto out_flags_changed; 3373 } 3374 3375 pt->pool = pool; 3376 pt->ti = ti; 3377 pt->metadata_dev = metadata_dev; 3378 pt->data_dev = data_dev; 3379 pt->low_water_blocks = low_water_blocks; 3380 pt->adjusted_pf = pt->requested_pf = pf; 3381 ti->num_flush_bios = 1; 3382 3383 /* 3384 * Only need to enable discards if the pool should pass 3385 * them down to the data device. The thin device's discard 3386 * processing will cause mappings to be removed from the btree. 3387 */ 3388 if (pf.discard_enabled && pf.discard_passdown) { 3389 ti->num_discard_bios = 1; 3390 3391 /* 3392 * Setting 'discards_supported' circumvents the normal 3393 * stacking of discard limits (this keeps the pool and 3394 * thin devices' discard limits consistent). 3395 */ 3396 ti->discards_supported = true; 3397 } 3398 ti->private = pt; 3399 3400 r = dm_pool_register_metadata_threshold(pt->pool->pmd, 3401 calc_metadata_threshold(pt), 3402 metadata_low_callback, 3403 pool); 3404 if (r) 3405 goto out_flags_changed; 3406 3407 dm_pool_register_pre_commit_callback(pool->pmd, 3408 metadata_pre_commit_callback, pool); 3409 3410 mutex_unlock(&dm_thin_pool_table.mutex); 3411 3412 return 0; 3413 3414 out_flags_changed: 3415 __pool_dec(pool); 3416 out_free_pt: 3417 kfree(pt); 3418 out: 3419 dm_put_device(ti, data_dev); 3420 out_metadata: 3421 dm_put_device(ti, metadata_dev); 3422 out_unlock: 3423 mutex_unlock(&dm_thin_pool_table.mutex); 3424 3425 return r; 3426 } 3427 3428 static int pool_map(struct dm_target *ti, struct bio *bio) 3429 { 3430 int r; 3431 struct pool_c *pt = ti->private; 3432 struct pool *pool = pt->pool; 3433 3434 /* 3435 * As this is a singleton target, ti->begin is always zero. 3436 */ 3437 spin_lock_irq(&pool->lock); 3438 bio_set_dev(bio, pt->data_dev->bdev); 3439 r = DM_MAPIO_REMAPPED; 3440 spin_unlock_irq(&pool->lock); 3441 3442 return r; 3443 } 3444 3445 static int maybe_resize_data_dev(struct dm_target *ti, bool *need_commit) 3446 { 3447 int r; 3448 struct pool_c *pt = ti->private; 3449 struct pool *pool = pt->pool; 3450 sector_t data_size = ti->len; 3451 dm_block_t sb_data_size; 3452 3453 *need_commit = false; 3454 3455 (void) sector_div(data_size, pool->sectors_per_block); 3456 3457 r = dm_pool_get_data_dev_size(pool->pmd, &sb_data_size); 3458 if (r) { 3459 DMERR("%s: failed to retrieve data device size", 3460 dm_device_name(pool->pool_md)); 3461 return r; 3462 } 3463 3464 if (data_size < sb_data_size) { 3465 DMERR("%s: pool target (%llu blocks) too small: expected %llu", 3466 dm_device_name(pool->pool_md), 3467 (unsigned long long)data_size, sb_data_size); 3468 return -EINVAL; 3469 3470 } else if (data_size > sb_data_size) { 3471 if (dm_pool_metadata_needs_check(pool->pmd)) { 3472 DMERR("%s: unable to grow the data device until repaired.", 3473 dm_device_name(pool->pool_md)); 3474 return 0; 3475 } 3476 3477 if (sb_data_size) 3478 DMINFO("%s: growing the data device from %llu to %llu blocks", 3479 dm_device_name(pool->pool_md), 3480 sb_data_size, (unsigned long long)data_size); 3481 r = dm_pool_resize_data_dev(pool->pmd, data_size); 3482 if (r) { 3483 metadata_operation_failed(pool, "dm_pool_resize_data_dev", r); 3484 return r; 3485 } 3486 3487 *need_commit = true; 3488 } 3489 3490 return 0; 3491 } 3492 3493 static int maybe_resize_metadata_dev(struct dm_target *ti, bool *need_commit) 3494 { 3495 int r; 3496 struct pool_c *pt = ti->private; 3497 struct pool *pool = pt->pool; 3498 dm_block_t metadata_dev_size, sb_metadata_dev_size; 3499 3500 *need_commit = false; 3501 3502 metadata_dev_size = get_metadata_dev_size_in_blocks(pool->md_dev); 3503 3504 r = dm_pool_get_metadata_dev_size(pool->pmd, &sb_metadata_dev_size); 3505 if (r) { 3506 DMERR("%s: failed to retrieve metadata device size", 3507 dm_device_name(pool->pool_md)); 3508 return r; 3509 } 3510 3511 if (metadata_dev_size < sb_metadata_dev_size) { 3512 DMERR("%s: metadata device (%llu blocks) too small: expected %llu", 3513 dm_device_name(pool->pool_md), 3514 metadata_dev_size, sb_metadata_dev_size); 3515 return -EINVAL; 3516 3517 } else if (metadata_dev_size > sb_metadata_dev_size) { 3518 if (dm_pool_metadata_needs_check(pool->pmd)) { 3519 DMERR("%s: unable to grow the metadata device until repaired.", 3520 dm_device_name(pool->pool_md)); 3521 return 0; 3522 } 3523 3524 warn_if_metadata_device_too_big(pool->md_dev); 3525 DMINFO("%s: growing the metadata device from %llu to %llu blocks", 3526 dm_device_name(pool->pool_md), 3527 sb_metadata_dev_size, metadata_dev_size); 3528 3529 if (get_pool_mode(pool) == PM_OUT_OF_METADATA_SPACE) 3530 set_pool_mode(pool, PM_WRITE); 3531 3532 r = dm_pool_resize_metadata_dev(pool->pmd, metadata_dev_size); 3533 if (r) { 3534 metadata_operation_failed(pool, "dm_pool_resize_metadata_dev", r); 3535 return r; 3536 } 3537 3538 *need_commit = true; 3539 } 3540 3541 return 0; 3542 } 3543 3544 /* 3545 * Retrieves the number of blocks of the data device from 3546 * the superblock and compares it to the actual device size, 3547 * thus resizing the data device in case it has grown. 3548 * 3549 * This both copes with opening preallocated data devices in the ctr 3550 * being followed by a resume 3551 * -and- 3552 * calling the resume method individually after userspace has 3553 * grown the data device in reaction to a table event. 3554 */ 3555 static int pool_preresume(struct dm_target *ti) 3556 { 3557 int r; 3558 bool need_commit1, need_commit2; 3559 struct pool_c *pt = ti->private; 3560 struct pool *pool = pt->pool; 3561 3562 /* 3563 * Take control of the pool object. 3564 */ 3565 r = bind_control_target(pool, ti); 3566 if (r) 3567 return r; 3568 3569 r = maybe_resize_data_dev(ti, &need_commit1); 3570 if (r) 3571 return r; 3572 3573 r = maybe_resize_metadata_dev(ti, &need_commit2); 3574 if (r) 3575 return r; 3576 3577 if (need_commit1 || need_commit2) 3578 (void) commit(pool); 3579 3580 return 0; 3581 } 3582 3583 static void pool_suspend_active_thins(struct pool *pool) 3584 { 3585 struct thin_c *tc; 3586 3587 /* Suspend all active thin devices */ 3588 tc = get_first_thin(pool); 3589 while (tc) { 3590 dm_internal_suspend_noflush(tc->thin_md); 3591 tc = get_next_thin(pool, tc); 3592 } 3593 } 3594 3595 static void pool_resume_active_thins(struct pool *pool) 3596 { 3597 struct thin_c *tc; 3598 3599 /* Resume all active thin devices */ 3600 tc = get_first_thin(pool); 3601 while (tc) { 3602 dm_internal_resume(tc->thin_md); 3603 tc = get_next_thin(pool, tc); 3604 } 3605 } 3606 3607 static void pool_resume(struct dm_target *ti) 3608 { 3609 struct pool_c *pt = ti->private; 3610 struct pool *pool = pt->pool; 3611 3612 /* 3613 * Must requeue active_thins' bios and then resume 3614 * active_thins _before_ clearing 'suspend' flag. 3615 */ 3616 requeue_bios(pool); 3617 pool_resume_active_thins(pool); 3618 3619 spin_lock_irq(&pool->lock); 3620 pool->low_water_triggered = false; 3621 pool->suspended = false; 3622 spin_unlock_irq(&pool->lock); 3623 3624 do_waker(&pool->waker.work); 3625 } 3626 3627 static void pool_presuspend(struct dm_target *ti) 3628 { 3629 struct pool_c *pt = ti->private; 3630 struct pool *pool = pt->pool; 3631 3632 spin_lock_irq(&pool->lock); 3633 pool->suspended = true; 3634 spin_unlock_irq(&pool->lock); 3635 3636 pool_suspend_active_thins(pool); 3637 } 3638 3639 static void pool_presuspend_undo(struct dm_target *ti) 3640 { 3641 struct pool_c *pt = ti->private; 3642 struct pool *pool = pt->pool; 3643 3644 pool_resume_active_thins(pool); 3645 3646 spin_lock_irq(&pool->lock); 3647 pool->suspended = false; 3648 spin_unlock_irq(&pool->lock); 3649 } 3650 3651 static void pool_postsuspend(struct dm_target *ti) 3652 { 3653 struct pool_c *pt = ti->private; 3654 struct pool *pool = pt->pool; 3655 3656 cancel_delayed_work_sync(&pool->waker); 3657 cancel_delayed_work_sync(&pool->no_space_timeout); 3658 flush_workqueue(pool->wq); 3659 (void) commit(pool); 3660 } 3661 3662 static int check_arg_count(unsigned argc, unsigned args_required) 3663 { 3664 if (argc != args_required) { 3665 DMWARN("Message received with %u arguments instead of %u.", 3666 argc, args_required); 3667 return -EINVAL; 3668 } 3669 3670 return 0; 3671 } 3672 3673 static int read_dev_id(char *arg, dm_thin_id *dev_id, int warning) 3674 { 3675 if (!kstrtoull(arg, 10, (unsigned long long *)dev_id) && 3676 *dev_id <= MAX_DEV_ID) 3677 return 0; 3678 3679 if (warning) 3680 DMWARN("Message received with invalid device id: %s", arg); 3681 3682 return -EINVAL; 3683 } 3684 3685 static int process_create_thin_mesg(unsigned argc, char **argv, struct pool *pool) 3686 { 3687 dm_thin_id dev_id; 3688 int r; 3689 3690 r = check_arg_count(argc, 2); 3691 if (r) 3692 return r; 3693 3694 r = read_dev_id(argv[1], &dev_id, 1); 3695 if (r) 3696 return r; 3697 3698 r = dm_pool_create_thin(pool->pmd, dev_id); 3699 if (r) { 3700 DMWARN("Creation of new thinly-provisioned device with id %s failed.", 3701 argv[1]); 3702 return r; 3703 } 3704 3705 return 0; 3706 } 3707 3708 static int process_create_snap_mesg(unsigned argc, char **argv, struct pool *pool) 3709 { 3710 dm_thin_id dev_id; 3711 dm_thin_id origin_dev_id; 3712 int r; 3713 3714 r = check_arg_count(argc, 3); 3715 if (r) 3716 return r; 3717 3718 r = read_dev_id(argv[1], &dev_id, 1); 3719 if (r) 3720 return r; 3721 3722 r = read_dev_id(argv[2], &origin_dev_id, 1); 3723 if (r) 3724 return r; 3725 3726 r = dm_pool_create_snap(pool->pmd, dev_id, origin_dev_id); 3727 if (r) { 3728 DMWARN("Creation of new snapshot %s of device %s failed.", 3729 argv[1], argv[2]); 3730 return r; 3731 } 3732 3733 return 0; 3734 } 3735 3736 static int process_delete_mesg(unsigned argc, char **argv, struct pool *pool) 3737 { 3738 dm_thin_id dev_id; 3739 int r; 3740 3741 r = check_arg_count(argc, 2); 3742 if (r) 3743 return r; 3744 3745 r = read_dev_id(argv[1], &dev_id, 1); 3746 if (r) 3747 return r; 3748 3749 r = dm_pool_delete_thin_device(pool->pmd, dev_id); 3750 if (r) 3751 DMWARN("Deletion of thin device %s failed.", argv[1]); 3752 3753 return r; 3754 } 3755 3756 static int process_set_transaction_id_mesg(unsigned argc, char **argv, struct pool *pool) 3757 { 3758 dm_thin_id old_id, new_id; 3759 int r; 3760 3761 r = check_arg_count(argc, 3); 3762 if (r) 3763 return r; 3764 3765 if (kstrtoull(argv[1], 10, (unsigned long long *)&old_id)) { 3766 DMWARN("set_transaction_id message: Unrecognised id %s.", argv[1]); 3767 return -EINVAL; 3768 } 3769 3770 if (kstrtoull(argv[2], 10, (unsigned long long *)&new_id)) { 3771 DMWARN("set_transaction_id message: Unrecognised new id %s.", argv[2]); 3772 return -EINVAL; 3773 } 3774 3775 r = dm_pool_set_metadata_transaction_id(pool->pmd, old_id, new_id); 3776 if (r) { 3777 DMWARN("Failed to change transaction id from %s to %s.", 3778 argv[1], argv[2]); 3779 return r; 3780 } 3781 3782 return 0; 3783 } 3784 3785 static int process_reserve_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool) 3786 { 3787 int r; 3788 3789 r = check_arg_count(argc, 1); 3790 if (r) 3791 return r; 3792 3793 (void) commit(pool); 3794 3795 r = dm_pool_reserve_metadata_snap(pool->pmd); 3796 if (r) 3797 DMWARN("reserve_metadata_snap message failed."); 3798 3799 return r; 3800 } 3801 3802 static int process_release_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool) 3803 { 3804 int r; 3805 3806 r = check_arg_count(argc, 1); 3807 if (r) 3808 return r; 3809 3810 r = dm_pool_release_metadata_snap(pool->pmd); 3811 if (r) 3812 DMWARN("release_metadata_snap message failed."); 3813 3814 return r; 3815 } 3816 3817 /* 3818 * Messages supported: 3819 * create_thin <dev_id> 3820 * create_snap <dev_id> <origin_id> 3821 * delete <dev_id> 3822 * set_transaction_id <current_trans_id> <new_trans_id> 3823 * reserve_metadata_snap 3824 * release_metadata_snap 3825 */ 3826 static int pool_message(struct dm_target *ti, unsigned argc, char **argv, 3827 char *result, unsigned maxlen) 3828 { 3829 int r = -EINVAL; 3830 struct pool_c *pt = ti->private; 3831 struct pool *pool = pt->pool; 3832 3833 if (get_pool_mode(pool) >= PM_OUT_OF_METADATA_SPACE) { 3834 DMERR("%s: unable to service pool target messages in READ_ONLY or FAIL mode", 3835 dm_device_name(pool->pool_md)); 3836 return -EOPNOTSUPP; 3837 } 3838 3839 if (!strcasecmp(argv[0], "create_thin")) 3840 r = process_create_thin_mesg(argc, argv, pool); 3841 3842 else if (!strcasecmp(argv[0], "create_snap")) 3843 r = process_create_snap_mesg(argc, argv, pool); 3844 3845 else if (!strcasecmp(argv[0], "delete")) 3846 r = process_delete_mesg(argc, argv, pool); 3847 3848 else if (!strcasecmp(argv[0], "set_transaction_id")) 3849 r = process_set_transaction_id_mesg(argc, argv, pool); 3850 3851 else if (!strcasecmp(argv[0], "reserve_metadata_snap")) 3852 r = process_reserve_metadata_snap_mesg(argc, argv, pool); 3853 3854 else if (!strcasecmp(argv[0], "release_metadata_snap")) 3855 r = process_release_metadata_snap_mesg(argc, argv, pool); 3856 3857 else 3858 DMWARN("Unrecognised thin pool target message received: %s", argv[0]); 3859 3860 if (!r) 3861 (void) commit(pool); 3862 3863 return r; 3864 } 3865 3866 static void emit_flags(struct pool_features *pf, char *result, 3867 unsigned sz, unsigned maxlen) 3868 { 3869 unsigned count = !pf->zero_new_blocks + !pf->discard_enabled + 3870 !pf->discard_passdown + (pf->mode == PM_READ_ONLY) + 3871 pf->error_if_no_space; 3872 DMEMIT("%u ", count); 3873 3874 if (!pf->zero_new_blocks) 3875 DMEMIT("skip_block_zeroing "); 3876 3877 if (!pf->discard_enabled) 3878 DMEMIT("ignore_discard "); 3879 3880 if (!pf->discard_passdown) 3881 DMEMIT("no_discard_passdown "); 3882 3883 if (pf->mode == PM_READ_ONLY) 3884 DMEMIT("read_only "); 3885 3886 if (pf->error_if_no_space) 3887 DMEMIT("error_if_no_space "); 3888 } 3889 3890 /* 3891 * Status line is: 3892 * <transaction id> <used metadata sectors>/<total metadata sectors> 3893 * <used data sectors>/<total data sectors> <held metadata root> 3894 * <pool mode> <discard config> <no space config> <needs_check> 3895 */ 3896 static void pool_status(struct dm_target *ti, status_type_t type, 3897 unsigned status_flags, char *result, unsigned maxlen) 3898 { 3899 int r; 3900 unsigned sz = 0; 3901 uint64_t transaction_id; 3902 dm_block_t nr_free_blocks_data; 3903 dm_block_t nr_free_blocks_metadata; 3904 dm_block_t nr_blocks_data; 3905 dm_block_t nr_blocks_metadata; 3906 dm_block_t held_root; 3907 enum pool_mode mode; 3908 char buf[BDEVNAME_SIZE]; 3909 char buf2[BDEVNAME_SIZE]; 3910 struct pool_c *pt = ti->private; 3911 struct pool *pool = pt->pool; 3912 3913 switch (type) { 3914 case STATUSTYPE_INFO: 3915 if (get_pool_mode(pool) == PM_FAIL) { 3916 DMEMIT("Fail"); 3917 break; 3918 } 3919 3920 /* Commit to ensure statistics aren't out-of-date */ 3921 if (!(status_flags & DM_STATUS_NOFLUSH_FLAG) && !dm_suspended(ti)) 3922 (void) commit(pool); 3923 3924 r = dm_pool_get_metadata_transaction_id(pool->pmd, &transaction_id); 3925 if (r) { 3926 DMERR("%s: dm_pool_get_metadata_transaction_id returned %d", 3927 dm_device_name(pool->pool_md), r); 3928 goto err; 3929 } 3930 3931 r = dm_pool_get_free_metadata_block_count(pool->pmd, &nr_free_blocks_metadata); 3932 if (r) { 3933 DMERR("%s: dm_pool_get_free_metadata_block_count returned %d", 3934 dm_device_name(pool->pool_md), r); 3935 goto err; 3936 } 3937 3938 r = dm_pool_get_metadata_dev_size(pool->pmd, &nr_blocks_metadata); 3939 if (r) { 3940 DMERR("%s: dm_pool_get_metadata_dev_size returned %d", 3941 dm_device_name(pool->pool_md), r); 3942 goto err; 3943 } 3944 3945 r = dm_pool_get_free_block_count(pool->pmd, &nr_free_blocks_data); 3946 if (r) { 3947 DMERR("%s: dm_pool_get_free_block_count returned %d", 3948 dm_device_name(pool->pool_md), r); 3949 goto err; 3950 } 3951 3952 r = dm_pool_get_data_dev_size(pool->pmd, &nr_blocks_data); 3953 if (r) { 3954 DMERR("%s: dm_pool_get_data_dev_size returned %d", 3955 dm_device_name(pool->pool_md), r); 3956 goto err; 3957 } 3958 3959 r = dm_pool_get_metadata_snap(pool->pmd, &held_root); 3960 if (r) { 3961 DMERR("%s: dm_pool_get_metadata_snap returned %d", 3962 dm_device_name(pool->pool_md), r); 3963 goto err; 3964 } 3965 3966 DMEMIT("%llu %llu/%llu %llu/%llu ", 3967 (unsigned long long)transaction_id, 3968 (unsigned long long)(nr_blocks_metadata - nr_free_blocks_metadata), 3969 (unsigned long long)nr_blocks_metadata, 3970 (unsigned long long)(nr_blocks_data - nr_free_blocks_data), 3971 (unsigned long long)nr_blocks_data); 3972 3973 if (held_root) 3974 DMEMIT("%llu ", held_root); 3975 else 3976 DMEMIT("- "); 3977 3978 mode = get_pool_mode(pool); 3979 if (mode == PM_OUT_OF_DATA_SPACE) 3980 DMEMIT("out_of_data_space "); 3981 else if (is_read_only_pool_mode(mode)) 3982 DMEMIT("ro "); 3983 else 3984 DMEMIT("rw "); 3985 3986 if (!pool->pf.discard_enabled) 3987 DMEMIT("ignore_discard "); 3988 else if (pool->pf.discard_passdown) 3989 DMEMIT("discard_passdown "); 3990 else 3991 DMEMIT("no_discard_passdown "); 3992 3993 if (pool->pf.error_if_no_space) 3994 DMEMIT("error_if_no_space "); 3995 else 3996 DMEMIT("queue_if_no_space "); 3997 3998 if (dm_pool_metadata_needs_check(pool->pmd)) 3999 DMEMIT("needs_check "); 4000 else 4001 DMEMIT("- "); 4002 4003 DMEMIT("%llu ", (unsigned long long)calc_metadata_threshold(pt)); 4004 4005 break; 4006 4007 case STATUSTYPE_TABLE: 4008 DMEMIT("%s %s %lu %llu ", 4009 format_dev_t(buf, pt->metadata_dev->bdev->bd_dev), 4010 format_dev_t(buf2, pt->data_dev->bdev->bd_dev), 4011 (unsigned long)pool->sectors_per_block, 4012 (unsigned long long)pt->low_water_blocks); 4013 emit_flags(&pt->requested_pf, result, sz, maxlen); 4014 break; 4015 4016 case STATUSTYPE_IMA: 4017 *result = '\0'; 4018 break; 4019 } 4020 return; 4021 4022 err: 4023 DMEMIT("Error"); 4024 } 4025 4026 static int pool_iterate_devices(struct dm_target *ti, 4027 iterate_devices_callout_fn fn, void *data) 4028 { 4029 struct pool_c *pt = ti->private; 4030 4031 return fn(ti, pt->data_dev, 0, ti->len, data); 4032 } 4033 4034 static void pool_io_hints(struct dm_target *ti, struct queue_limits *limits) 4035 { 4036 struct pool_c *pt = ti->private; 4037 struct pool *pool = pt->pool; 4038 sector_t io_opt_sectors = limits->io_opt >> SECTOR_SHIFT; 4039 4040 /* 4041 * If max_sectors is smaller than pool->sectors_per_block adjust it 4042 * to the highest possible power-of-2 factor of pool->sectors_per_block. 4043 * This is especially beneficial when the pool's data device is a RAID 4044 * device that has a full stripe width that matches pool->sectors_per_block 4045 * -- because even though partial RAID stripe-sized IOs will be issued to a 4046 * single RAID stripe; when aggregated they will end on a full RAID stripe 4047 * boundary.. which avoids additional partial RAID stripe writes cascading 4048 */ 4049 if (limits->max_sectors < pool->sectors_per_block) { 4050 while (!is_factor(pool->sectors_per_block, limits->max_sectors)) { 4051 if ((limits->max_sectors & (limits->max_sectors - 1)) == 0) 4052 limits->max_sectors--; 4053 limits->max_sectors = rounddown_pow_of_two(limits->max_sectors); 4054 } 4055 } 4056 4057 /* 4058 * If the system-determined stacked limits are compatible with the 4059 * pool's blocksize (io_opt is a factor) do not override them. 4060 */ 4061 if (io_opt_sectors < pool->sectors_per_block || 4062 !is_factor(io_opt_sectors, pool->sectors_per_block)) { 4063 if (is_factor(pool->sectors_per_block, limits->max_sectors)) 4064 blk_limits_io_min(limits, limits->max_sectors << SECTOR_SHIFT); 4065 else 4066 blk_limits_io_min(limits, pool->sectors_per_block << SECTOR_SHIFT); 4067 blk_limits_io_opt(limits, pool->sectors_per_block << SECTOR_SHIFT); 4068 } 4069 4070 /* 4071 * pt->adjusted_pf is a staging area for the actual features to use. 4072 * They get transferred to the live pool in bind_control_target() 4073 * called from pool_preresume(). 4074 */ 4075 if (!pt->adjusted_pf.discard_enabled) { 4076 /* 4077 * Must explicitly disallow stacking discard limits otherwise the 4078 * block layer will stack them if pool's data device has support. 4079 * QUEUE_FLAG_DISCARD wouldn't be set but there is no way for the 4080 * user to see that, so make sure to set all discard limits to 0. 4081 */ 4082 limits->discard_granularity = 0; 4083 return; 4084 } 4085 4086 disable_passdown_if_not_supported(pt); 4087 4088 /* 4089 * The pool uses the same discard limits as the underlying data 4090 * device. DM core has already set this up. 4091 */ 4092 } 4093 4094 static struct target_type pool_target = { 4095 .name = "thin-pool", 4096 .features = DM_TARGET_SINGLETON | DM_TARGET_ALWAYS_WRITEABLE | 4097 DM_TARGET_IMMUTABLE, 4098 .version = {1, 22, 0}, 4099 .module = THIS_MODULE, 4100 .ctr = pool_ctr, 4101 .dtr = pool_dtr, 4102 .map = pool_map, 4103 .presuspend = pool_presuspend, 4104 .presuspend_undo = pool_presuspend_undo, 4105 .postsuspend = pool_postsuspend, 4106 .preresume = pool_preresume, 4107 .resume = pool_resume, 4108 .message = pool_message, 4109 .status = pool_status, 4110 .iterate_devices = pool_iterate_devices, 4111 .io_hints = pool_io_hints, 4112 }; 4113 4114 /*---------------------------------------------------------------- 4115 * Thin target methods 4116 *--------------------------------------------------------------*/ 4117 static void thin_get(struct thin_c *tc) 4118 { 4119 refcount_inc(&tc->refcount); 4120 } 4121 4122 static void thin_put(struct thin_c *tc) 4123 { 4124 if (refcount_dec_and_test(&tc->refcount)) 4125 complete(&tc->can_destroy); 4126 } 4127 4128 static void thin_dtr(struct dm_target *ti) 4129 { 4130 struct thin_c *tc = ti->private; 4131 4132 spin_lock_irq(&tc->pool->lock); 4133 list_del_rcu(&tc->list); 4134 spin_unlock_irq(&tc->pool->lock); 4135 synchronize_rcu(); 4136 4137 thin_put(tc); 4138 wait_for_completion(&tc->can_destroy); 4139 4140 mutex_lock(&dm_thin_pool_table.mutex); 4141 4142 __pool_dec(tc->pool); 4143 dm_pool_close_thin_device(tc->td); 4144 dm_put_device(ti, tc->pool_dev); 4145 if (tc->origin_dev) 4146 dm_put_device(ti, tc->origin_dev); 4147 kfree(tc); 4148 4149 mutex_unlock(&dm_thin_pool_table.mutex); 4150 } 4151 4152 /* 4153 * Thin target parameters: 4154 * 4155 * <pool_dev> <dev_id> [origin_dev] 4156 * 4157 * pool_dev: the path to the pool (eg, /dev/mapper/my_pool) 4158 * dev_id: the internal device identifier 4159 * origin_dev: a device external to the pool that should act as the origin 4160 * 4161 * If the pool device has discards disabled, they get disabled for the thin 4162 * device as well. 4163 */ 4164 static int thin_ctr(struct dm_target *ti, unsigned argc, char **argv) 4165 { 4166 int r; 4167 struct thin_c *tc; 4168 struct dm_dev *pool_dev, *origin_dev; 4169 struct mapped_device *pool_md; 4170 4171 mutex_lock(&dm_thin_pool_table.mutex); 4172 4173 if (argc != 2 && argc != 3) { 4174 ti->error = "Invalid argument count"; 4175 r = -EINVAL; 4176 goto out_unlock; 4177 } 4178 4179 tc = ti->private = kzalloc(sizeof(*tc), GFP_KERNEL); 4180 if (!tc) { 4181 ti->error = "Out of memory"; 4182 r = -ENOMEM; 4183 goto out_unlock; 4184 } 4185 tc->thin_md = dm_table_get_md(ti->table); 4186 spin_lock_init(&tc->lock); 4187 INIT_LIST_HEAD(&tc->deferred_cells); 4188 bio_list_init(&tc->deferred_bio_list); 4189 bio_list_init(&tc->retry_on_resume_list); 4190 tc->sort_bio_list = RB_ROOT; 4191 4192 if (argc == 3) { 4193 if (!strcmp(argv[0], argv[2])) { 4194 ti->error = "Error setting origin device"; 4195 r = -EINVAL; 4196 goto bad_origin_dev; 4197 } 4198 4199 r = dm_get_device(ti, argv[2], FMODE_READ, &origin_dev); 4200 if (r) { 4201 ti->error = "Error opening origin device"; 4202 goto bad_origin_dev; 4203 } 4204 tc->origin_dev = origin_dev; 4205 } 4206 4207 r = dm_get_device(ti, argv[0], dm_table_get_mode(ti->table), &pool_dev); 4208 if (r) { 4209 ti->error = "Error opening pool device"; 4210 goto bad_pool_dev; 4211 } 4212 tc->pool_dev = pool_dev; 4213 4214 if (read_dev_id(argv[1], (unsigned long long *)&tc->dev_id, 0)) { 4215 ti->error = "Invalid device id"; 4216 r = -EINVAL; 4217 goto bad_common; 4218 } 4219 4220 pool_md = dm_get_md(tc->pool_dev->bdev->bd_dev); 4221 if (!pool_md) { 4222 ti->error = "Couldn't get pool mapped device"; 4223 r = -EINVAL; 4224 goto bad_common; 4225 } 4226 4227 tc->pool = __pool_table_lookup(pool_md); 4228 if (!tc->pool) { 4229 ti->error = "Couldn't find pool object"; 4230 r = -EINVAL; 4231 goto bad_pool_lookup; 4232 } 4233 __pool_inc(tc->pool); 4234 4235 if (get_pool_mode(tc->pool) == PM_FAIL) { 4236 ti->error = "Couldn't open thin device, Pool is in fail mode"; 4237 r = -EINVAL; 4238 goto bad_pool; 4239 } 4240 4241 r = dm_pool_open_thin_device(tc->pool->pmd, tc->dev_id, &tc->td); 4242 if (r) { 4243 ti->error = "Couldn't open thin internal device"; 4244 goto bad_pool; 4245 } 4246 4247 r = dm_set_target_max_io_len(ti, tc->pool->sectors_per_block); 4248 if (r) 4249 goto bad; 4250 4251 ti->num_flush_bios = 1; 4252 ti->flush_supported = true; 4253 ti->per_io_data_size = sizeof(struct dm_thin_endio_hook); 4254 4255 /* In case the pool supports discards, pass them on. */ 4256 if (tc->pool->pf.discard_enabled) { 4257 ti->discards_supported = true; 4258 ti->num_discard_bios = 1; 4259 } 4260 4261 mutex_unlock(&dm_thin_pool_table.mutex); 4262 4263 spin_lock_irq(&tc->pool->lock); 4264 if (tc->pool->suspended) { 4265 spin_unlock_irq(&tc->pool->lock); 4266 mutex_lock(&dm_thin_pool_table.mutex); /* reacquire for __pool_dec */ 4267 ti->error = "Unable to activate thin device while pool is suspended"; 4268 r = -EINVAL; 4269 goto bad; 4270 } 4271 refcount_set(&tc->refcount, 1); 4272 init_completion(&tc->can_destroy); 4273 list_add_tail_rcu(&tc->list, &tc->pool->active_thins); 4274 spin_unlock_irq(&tc->pool->lock); 4275 /* 4276 * This synchronize_rcu() call is needed here otherwise we risk a 4277 * wake_worker() call finding no bios to process (because the newly 4278 * added tc isn't yet visible). So this reduces latency since we 4279 * aren't then dependent on the periodic commit to wake_worker(). 4280 */ 4281 synchronize_rcu(); 4282 4283 dm_put(pool_md); 4284 4285 return 0; 4286 4287 bad: 4288 dm_pool_close_thin_device(tc->td); 4289 bad_pool: 4290 __pool_dec(tc->pool); 4291 bad_pool_lookup: 4292 dm_put(pool_md); 4293 bad_common: 4294 dm_put_device(ti, tc->pool_dev); 4295 bad_pool_dev: 4296 if (tc->origin_dev) 4297 dm_put_device(ti, tc->origin_dev); 4298 bad_origin_dev: 4299 kfree(tc); 4300 out_unlock: 4301 mutex_unlock(&dm_thin_pool_table.mutex); 4302 4303 return r; 4304 } 4305 4306 static int thin_map(struct dm_target *ti, struct bio *bio) 4307 { 4308 bio->bi_iter.bi_sector = dm_target_offset(ti, bio->bi_iter.bi_sector); 4309 4310 return thin_bio_map(ti, bio); 4311 } 4312 4313 static int thin_endio(struct dm_target *ti, struct bio *bio, 4314 blk_status_t *err) 4315 { 4316 unsigned long flags; 4317 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook)); 4318 struct list_head work; 4319 struct dm_thin_new_mapping *m, *tmp; 4320 struct pool *pool = h->tc->pool; 4321 4322 if (h->shared_read_entry) { 4323 INIT_LIST_HEAD(&work); 4324 dm_deferred_entry_dec(h->shared_read_entry, &work); 4325 4326 spin_lock_irqsave(&pool->lock, flags); 4327 list_for_each_entry_safe(m, tmp, &work, list) { 4328 list_del(&m->list); 4329 __complete_mapping_preparation(m); 4330 } 4331 spin_unlock_irqrestore(&pool->lock, flags); 4332 } 4333 4334 if (h->all_io_entry) { 4335 INIT_LIST_HEAD(&work); 4336 dm_deferred_entry_dec(h->all_io_entry, &work); 4337 if (!list_empty(&work)) { 4338 spin_lock_irqsave(&pool->lock, flags); 4339 list_for_each_entry_safe(m, tmp, &work, list) 4340 list_add_tail(&m->list, &pool->prepared_discards); 4341 spin_unlock_irqrestore(&pool->lock, flags); 4342 wake_worker(pool); 4343 } 4344 } 4345 4346 if (h->cell) 4347 cell_defer_no_holder(h->tc, h->cell); 4348 4349 return DM_ENDIO_DONE; 4350 } 4351 4352 static void thin_presuspend(struct dm_target *ti) 4353 { 4354 struct thin_c *tc = ti->private; 4355 4356 if (dm_noflush_suspending(ti)) 4357 noflush_work(tc, do_noflush_start); 4358 } 4359 4360 static void thin_postsuspend(struct dm_target *ti) 4361 { 4362 struct thin_c *tc = ti->private; 4363 4364 /* 4365 * The dm_noflush_suspending flag has been cleared by now, so 4366 * unfortunately we must always run this. 4367 */ 4368 noflush_work(tc, do_noflush_stop); 4369 } 4370 4371 static int thin_preresume(struct dm_target *ti) 4372 { 4373 struct thin_c *tc = ti->private; 4374 4375 if (tc->origin_dev) 4376 tc->origin_size = get_dev_size(tc->origin_dev->bdev); 4377 4378 return 0; 4379 } 4380 4381 /* 4382 * <nr mapped sectors> <highest mapped sector> 4383 */ 4384 static void thin_status(struct dm_target *ti, status_type_t type, 4385 unsigned status_flags, char *result, unsigned maxlen) 4386 { 4387 int r; 4388 ssize_t sz = 0; 4389 dm_block_t mapped, highest; 4390 char buf[BDEVNAME_SIZE]; 4391 struct thin_c *tc = ti->private; 4392 4393 if (get_pool_mode(tc->pool) == PM_FAIL) { 4394 DMEMIT("Fail"); 4395 return; 4396 } 4397 4398 if (!tc->td) 4399 DMEMIT("-"); 4400 else { 4401 switch (type) { 4402 case STATUSTYPE_INFO: 4403 r = dm_thin_get_mapped_count(tc->td, &mapped); 4404 if (r) { 4405 DMERR("dm_thin_get_mapped_count returned %d", r); 4406 goto err; 4407 } 4408 4409 r = dm_thin_get_highest_mapped_block(tc->td, &highest); 4410 if (r < 0) { 4411 DMERR("dm_thin_get_highest_mapped_block returned %d", r); 4412 goto err; 4413 } 4414 4415 DMEMIT("%llu ", mapped * tc->pool->sectors_per_block); 4416 if (r) 4417 DMEMIT("%llu", ((highest + 1) * 4418 tc->pool->sectors_per_block) - 1); 4419 else 4420 DMEMIT("-"); 4421 break; 4422 4423 case STATUSTYPE_TABLE: 4424 DMEMIT("%s %lu", 4425 format_dev_t(buf, tc->pool_dev->bdev->bd_dev), 4426 (unsigned long) tc->dev_id); 4427 if (tc->origin_dev) 4428 DMEMIT(" %s", format_dev_t(buf, tc->origin_dev->bdev->bd_dev)); 4429 break; 4430 4431 case STATUSTYPE_IMA: 4432 *result = '\0'; 4433 break; 4434 } 4435 } 4436 4437 return; 4438 4439 err: 4440 DMEMIT("Error"); 4441 } 4442 4443 static int thin_iterate_devices(struct dm_target *ti, 4444 iterate_devices_callout_fn fn, void *data) 4445 { 4446 sector_t blocks; 4447 struct thin_c *tc = ti->private; 4448 struct pool *pool = tc->pool; 4449 4450 /* 4451 * We can't call dm_pool_get_data_dev_size() since that blocks. So 4452 * we follow a more convoluted path through to the pool's target. 4453 */ 4454 if (!pool->ti) 4455 return 0; /* nothing is bound */ 4456 4457 blocks = pool->ti->len; 4458 (void) sector_div(blocks, pool->sectors_per_block); 4459 if (blocks) 4460 return fn(ti, tc->pool_dev, 0, pool->sectors_per_block * blocks, data); 4461 4462 return 0; 4463 } 4464 4465 static void thin_io_hints(struct dm_target *ti, struct queue_limits *limits) 4466 { 4467 struct thin_c *tc = ti->private; 4468 struct pool *pool = tc->pool; 4469 4470 if (!pool->pf.discard_enabled) 4471 return; 4472 4473 limits->discard_granularity = pool->sectors_per_block << SECTOR_SHIFT; 4474 limits->max_discard_sectors = 2048 * 1024 * 16; /* 16G */ 4475 } 4476 4477 static struct target_type thin_target = { 4478 .name = "thin", 4479 .version = {1, 22, 0}, 4480 .module = THIS_MODULE, 4481 .ctr = thin_ctr, 4482 .dtr = thin_dtr, 4483 .map = thin_map, 4484 .end_io = thin_endio, 4485 .preresume = thin_preresume, 4486 .presuspend = thin_presuspend, 4487 .postsuspend = thin_postsuspend, 4488 .status = thin_status, 4489 .iterate_devices = thin_iterate_devices, 4490 .io_hints = thin_io_hints, 4491 }; 4492 4493 /*----------------------------------------------------------------*/ 4494 4495 static int __init dm_thin_init(void) 4496 { 4497 int r = -ENOMEM; 4498 4499 pool_table_init(); 4500 4501 _new_mapping_cache = KMEM_CACHE(dm_thin_new_mapping, 0); 4502 if (!_new_mapping_cache) 4503 return r; 4504 4505 r = dm_register_target(&thin_target); 4506 if (r) 4507 goto bad_new_mapping_cache; 4508 4509 r = dm_register_target(&pool_target); 4510 if (r) 4511 goto bad_thin_target; 4512 4513 return 0; 4514 4515 bad_thin_target: 4516 dm_unregister_target(&thin_target); 4517 bad_new_mapping_cache: 4518 kmem_cache_destroy(_new_mapping_cache); 4519 4520 return r; 4521 } 4522 4523 static void dm_thin_exit(void) 4524 { 4525 dm_unregister_target(&thin_target); 4526 dm_unregister_target(&pool_target); 4527 4528 kmem_cache_destroy(_new_mapping_cache); 4529 4530 pool_table_exit(); 4531 } 4532 4533 module_init(dm_thin_init); 4534 module_exit(dm_thin_exit); 4535 4536 module_param_named(no_space_timeout, no_space_timeout_secs, uint, S_IRUGO | S_IWUSR); 4537 MODULE_PARM_DESC(no_space_timeout, "Out of data space queue IO timeout in seconds"); 4538 4539 MODULE_DESCRIPTION(DM_NAME " thin provisioning target"); 4540 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>"); 4541 MODULE_LICENSE("GPL"); 4542