xref: /linux/drivers/md/dm-thin.c (revision d97b46a64674a267bc41c9e16132ee2a98c3347d)
1 /*
2  * Copyright (C) 2011 Red Hat UK.
3  *
4  * This file is released under the GPL.
5  */
6 
7 #include "dm-thin-metadata.h"
8 
9 #include <linux/device-mapper.h>
10 #include <linux/dm-io.h>
11 #include <linux/dm-kcopyd.h>
12 #include <linux/list.h>
13 #include <linux/init.h>
14 #include <linux/module.h>
15 #include <linux/slab.h>
16 
17 #define	DM_MSG_PREFIX	"thin"
18 
19 /*
20  * Tunable constants
21  */
22 #define ENDIO_HOOK_POOL_SIZE 10240
23 #define DEFERRED_SET_SIZE 64
24 #define MAPPING_POOL_SIZE 1024
25 #define PRISON_CELLS 1024
26 #define COMMIT_PERIOD HZ
27 
28 /*
29  * The block size of the device holding pool data must be
30  * between 64KB and 1GB.
31  */
32 #define DATA_DEV_BLOCK_SIZE_MIN_SECTORS (64 * 1024 >> SECTOR_SHIFT)
33 #define DATA_DEV_BLOCK_SIZE_MAX_SECTORS (1024 * 1024 * 1024 >> SECTOR_SHIFT)
34 
35 /*
36  * Device id is restricted to 24 bits.
37  */
38 #define MAX_DEV_ID ((1 << 24) - 1)
39 
40 /*
41  * How do we handle breaking sharing of data blocks?
42  * =================================================
43  *
44  * We use a standard copy-on-write btree to store the mappings for the
45  * devices (note I'm talking about copy-on-write of the metadata here, not
46  * the data).  When you take an internal snapshot you clone the root node
47  * of the origin btree.  After this there is no concept of an origin or a
48  * snapshot.  They are just two device trees that happen to point to the
49  * same data blocks.
50  *
51  * When we get a write in we decide if it's to a shared data block using
52  * some timestamp magic.  If it is, we have to break sharing.
53  *
54  * Let's say we write to a shared block in what was the origin.  The
55  * steps are:
56  *
57  * i) plug io further to this physical block. (see bio_prison code).
58  *
59  * ii) quiesce any read io to that shared data block.  Obviously
60  * including all devices that share this block.  (see deferred_set code)
61  *
62  * iii) copy the data block to a newly allocate block.  This step can be
63  * missed out if the io covers the block. (schedule_copy).
64  *
65  * iv) insert the new mapping into the origin's btree
66  * (process_prepared_mapping).  This act of inserting breaks some
67  * sharing of btree nodes between the two devices.  Breaking sharing only
68  * effects the btree of that specific device.  Btrees for the other
69  * devices that share the block never change.  The btree for the origin
70  * device as it was after the last commit is untouched, ie. we're using
71  * persistent data structures in the functional programming sense.
72  *
73  * v) unplug io to this physical block, including the io that triggered
74  * the breaking of sharing.
75  *
76  * Steps (ii) and (iii) occur in parallel.
77  *
78  * The metadata _doesn't_ need to be committed before the io continues.  We
79  * get away with this because the io is always written to a _new_ block.
80  * If there's a crash, then:
81  *
82  * - The origin mapping will point to the old origin block (the shared
83  * one).  This will contain the data as it was before the io that triggered
84  * the breaking of sharing came in.
85  *
86  * - The snap mapping still points to the old block.  As it would after
87  * the commit.
88  *
89  * The downside of this scheme is the timestamp magic isn't perfect, and
90  * will continue to think that data block in the snapshot device is shared
91  * even after the write to the origin has broken sharing.  I suspect data
92  * blocks will typically be shared by many different devices, so we're
93  * breaking sharing n + 1 times, rather than n, where n is the number of
94  * devices that reference this data block.  At the moment I think the
95  * benefits far, far outweigh the disadvantages.
96  */
97 
98 /*----------------------------------------------------------------*/
99 
100 /*
101  * Sometimes we can't deal with a bio straight away.  We put them in prison
102  * where they can't cause any mischief.  Bios are put in a cell identified
103  * by a key, multiple bios can be in the same cell.  When the cell is
104  * subsequently unlocked the bios become available.
105  */
106 struct bio_prison;
107 
108 struct cell_key {
109 	int virtual;
110 	dm_thin_id dev;
111 	dm_block_t block;
112 };
113 
114 struct cell {
115 	struct hlist_node list;
116 	struct bio_prison *prison;
117 	struct cell_key key;
118 	struct bio *holder;
119 	struct bio_list bios;
120 };
121 
122 struct bio_prison {
123 	spinlock_t lock;
124 	mempool_t *cell_pool;
125 
126 	unsigned nr_buckets;
127 	unsigned hash_mask;
128 	struct hlist_head *cells;
129 };
130 
131 static uint32_t calc_nr_buckets(unsigned nr_cells)
132 {
133 	uint32_t n = 128;
134 
135 	nr_cells /= 4;
136 	nr_cells = min(nr_cells, 8192u);
137 
138 	while (n < nr_cells)
139 		n <<= 1;
140 
141 	return n;
142 }
143 
144 /*
145  * @nr_cells should be the number of cells you want in use _concurrently_.
146  * Don't confuse it with the number of distinct keys.
147  */
148 static struct bio_prison *prison_create(unsigned nr_cells)
149 {
150 	unsigned i;
151 	uint32_t nr_buckets = calc_nr_buckets(nr_cells);
152 	size_t len = sizeof(struct bio_prison) +
153 		(sizeof(struct hlist_head) * nr_buckets);
154 	struct bio_prison *prison = kmalloc(len, GFP_KERNEL);
155 
156 	if (!prison)
157 		return NULL;
158 
159 	spin_lock_init(&prison->lock);
160 	prison->cell_pool = mempool_create_kmalloc_pool(nr_cells,
161 							sizeof(struct cell));
162 	if (!prison->cell_pool) {
163 		kfree(prison);
164 		return NULL;
165 	}
166 
167 	prison->nr_buckets = nr_buckets;
168 	prison->hash_mask = nr_buckets - 1;
169 	prison->cells = (struct hlist_head *) (prison + 1);
170 	for (i = 0; i < nr_buckets; i++)
171 		INIT_HLIST_HEAD(prison->cells + i);
172 
173 	return prison;
174 }
175 
176 static void prison_destroy(struct bio_prison *prison)
177 {
178 	mempool_destroy(prison->cell_pool);
179 	kfree(prison);
180 }
181 
182 static uint32_t hash_key(struct bio_prison *prison, struct cell_key *key)
183 {
184 	const unsigned long BIG_PRIME = 4294967291UL;
185 	uint64_t hash = key->block * BIG_PRIME;
186 
187 	return (uint32_t) (hash & prison->hash_mask);
188 }
189 
190 static int keys_equal(struct cell_key *lhs, struct cell_key *rhs)
191 {
192 	       return (lhs->virtual == rhs->virtual) &&
193 		       (lhs->dev == rhs->dev) &&
194 		       (lhs->block == rhs->block);
195 }
196 
197 static struct cell *__search_bucket(struct hlist_head *bucket,
198 				    struct cell_key *key)
199 {
200 	struct cell *cell;
201 	struct hlist_node *tmp;
202 
203 	hlist_for_each_entry(cell, tmp, bucket, list)
204 		if (keys_equal(&cell->key, key))
205 			return cell;
206 
207 	return NULL;
208 }
209 
210 /*
211  * This may block if a new cell needs allocating.  You must ensure that
212  * cells will be unlocked even if the calling thread is blocked.
213  *
214  * Returns 1 if the cell was already held, 0 if @inmate is the new holder.
215  */
216 static int bio_detain(struct bio_prison *prison, struct cell_key *key,
217 		      struct bio *inmate, struct cell **ref)
218 {
219 	int r = 1;
220 	unsigned long flags;
221 	uint32_t hash = hash_key(prison, key);
222 	struct cell *cell, *cell2;
223 
224 	BUG_ON(hash > prison->nr_buckets);
225 
226 	spin_lock_irqsave(&prison->lock, flags);
227 
228 	cell = __search_bucket(prison->cells + hash, key);
229 	if (cell) {
230 		bio_list_add(&cell->bios, inmate);
231 		goto out;
232 	}
233 
234 	/*
235 	 * Allocate a new cell
236 	 */
237 	spin_unlock_irqrestore(&prison->lock, flags);
238 	cell2 = mempool_alloc(prison->cell_pool, GFP_NOIO);
239 	spin_lock_irqsave(&prison->lock, flags);
240 
241 	/*
242 	 * We've been unlocked, so we have to double check that
243 	 * nobody else has inserted this cell in the meantime.
244 	 */
245 	cell = __search_bucket(prison->cells + hash, key);
246 	if (cell) {
247 		mempool_free(cell2, prison->cell_pool);
248 		bio_list_add(&cell->bios, inmate);
249 		goto out;
250 	}
251 
252 	/*
253 	 * Use new cell.
254 	 */
255 	cell = cell2;
256 
257 	cell->prison = prison;
258 	memcpy(&cell->key, key, sizeof(cell->key));
259 	cell->holder = inmate;
260 	bio_list_init(&cell->bios);
261 	hlist_add_head(&cell->list, prison->cells + hash);
262 
263 	r = 0;
264 
265 out:
266 	spin_unlock_irqrestore(&prison->lock, flags);
267 
268 	*ref = cell;
269 
270 	return r;
271 }
272 
273 /*
274  * @inmates must have been initialised prior to this call
275  */
276 static void __cell_release(struct cell *cell, struct bio_list *inmates)
277 {
278 	struct bio_prison *prison = cell->prison;
279 
280 	hlist_del(&cell->list);
281 
282 	if (inmates) {
283 		bio_list_add(inmates, cell->holder);
284 		bio_list_merge(inmates, &cell->bios);
285 	}
286 
287 	mempool_free(cell, prison->cell_pool);
288 }
289 
290 static void cell_release(struct cell *cell, struct bio_list *bios)
291 {
292 	unsigned long flags;
293 	struct bio_prison *prison = cell->prison;
294 
295 	spin_lock_irqsave(&prison->lock, flags);
296 	__cell_release(cell, bios);
297 	spin_unlock_irqrestore(&prison->lock, flags);
298 }
299 
300 /*
301  * There are a couple of places where we put a bio into a cell briefly
302  * before taking it out again.  In these situations we know that no other
303  * bio may be in the cell.  This function releases the cell, and also does
304  * a sanity check.
305  */
306 static void __cell_release_singleton(struct cell *cell, struct bio *bio)
307 {
308 	BUG_ON(cell->holder != bio);
309 	BUG_ON(!bio_list_empty(&cell->bios));
310 
311 	__cell_release(cell, NULL);
312 }
313 
314 static void cell_release_singleton(struct cell *cell, struct bio *bio)
315 {
316 	unsigned long flags;
317 	struct bio_prison *prison = cell->prison;
318 
319 	spin_lock_irqsave(&prison->lock, flags);
320 	__cell_release_singleton(cell, bio);
321 	spin_unlock_irqrestore(&prison->lock, flags);
322 }
323 
324 /*
325  * Sometimes we don't want the holder, just the additional bios.
326  */
327 static void __cell_release_no_holder(struct cell *cell, struct bio_list *inmates)
328 {
329 	struct bio_prison *prison = cell->prison;
330 
331 	hlist_del(&cell->list);
332 	bio_list_merge(inmates, &cell->bios);
333 
334 	mempool_free(cell, prison->cell_pool);
335 }
336 
337 static void cell_release_no_holder(struct cell *cell, struct bio_list *inmates)
338 {
339 	unsigned long flags;
340 	struct bio_prison *prison = cell->prison;
341 
342 	spin_lock_irqsave(&prison->lock, flags);
343 	__cell_release_no_holder(cell, inmates);
344 	spin_unlock_irqrestore(&prison->lock, flags);
345 }
346 
347 static void cell_error(struct cell *cell)
348 {
349 	struct bio_prison *prison = cell->prison;
350 	struct bio_list bios;
351 	struct bio *bio;
352 	unsigned long flags;
353 
354 	bio_list_init(&bios);
355 
356 	spin_lock_irqsave(&prison->lock, flags);
357 	__cell_release(cell, &bios);
358 	spin_unlock_irqrestore(&prison->lock, flags);
359 
360 	while ((bio = bio_list_pop(&bios)))
361 		bio_io_error(bio);
362 }
363 
364 /*----------------------------------------------------------------*/
365 
366 /*
367  * We use the deferred set to keep track of pending reads to shared blocks.
368  * We do this to ensure the new mapping caused by a write isn't performed
369  * until these prior reads have completed.  Otherwise the insertion of the
370  * new mapping could free the old block that the read bios are mapped to.
371  */
372 
373 struct deferred_set;
374 struct deferred_entry {
375 	struct deferred_set *ds;
376 	unsigned count;
377 	struct list_head work_items;
378 };
379 
380 struct deferred_set {
381 	spinlock_t lock;
382 	unsigned current_entry;
383 	unsigned sweeper;
384 	struct deferred_entry entries[DEFERRED_SET_SIZE];
385 };
386 
387 static void ds_init(struct deferred_set *ds)
388 {
389 	int i;
390 
391 	spin_lock_init(&ds->lock);
392 	ds->current_entry = 0;
393 	ds->sweeper = 0;
394 	for (i = 0; i < DEFERRED_SET_SIZE; i++) {
395 		ds->entries[i].ds = ds;
396 		ds->entries[i].count = 0;
397 		INIT_LIST_HEAD(&ds->entries[i].work_items);
398 	}
399 }
400 
401 static struct deferred_entry *ds_inc(struct deferred_set *ds)
402 {
403 	unsigned long flags;
404 	struct deferred_entry *entry;
405 
406 	spin_lock_irqsave(&ds->lock, flags);
407 	entry = ds->entries + ds->current_entry;
408 	entry->count++;
409 	spin_unlock_irqrestore(&ds->lock, flags);
410 
411 	return entry;
412 }
413 
414 static unsigned ds_next(unsigned index)
415 {
416 	return (index + 1) % DEFERRED_SET_SIZE;
417 }
418 
419 static void __sweep(struct deferred_set *ds, struct list_head *head)
420 {
421 	while ((ds->sweeper != ds->current_entry) &&
422 	       !ds->entries[ds->sweeper].count) {
423 		list_splice_init(&ds->entries[ds->sweeper].work_items, head);
424 		ds->sweeper = ds_next(ds->sweeper);
425 	}
426 
427 	if ((ds->sweeper == ds->current_entry) && !ds->entries[ds->sweeper].count)
428 		list_splice_init(&ds->entries[ds->sweeper].work_items, head);
429 }
430 
431 static void ds_dec(struct deferred_entry *entry, struct list_head *head)
432 {
433 	unsigned long flags;
434 
435 	spin_lock_irqsave(&entry->ds->lock, flags);
436 	BUG_ON(!entry->count);
437 	--entry->count;
438 	__sweep(entry->ds, head);
439 	spin_unlock_irqrestore(&entry->ds->lock, flags);
440 }
441 
442 /*
443  * Returns 1 if deferred or 0 if no pending items to delay job.
444  */
445 static int ds_add_work(struct deferred_set *ds, struct list_head *work)
446 {
447 	int r = 1;
448 	unsigned long flags;
449 	unsigned next_entry;
450 
451 	spin_lock_irqsave(&ds->lock, flags);
452 	if ((ds->sweeper == ds->current_entry) &&
453 	    !ds->entries[ds->current_entry].count)
454 		r = 0;
455 	else {
456 		list_add(work, &ds->entries[ds->current_entry].work_items);
457 		next_entry = ds_next(ds->current_entry);
458 		if (!ds->entries[next_entry].count)
459 			ds->current_entry = next_entry;
460 	}
461 	spin_unlock_irqrestore(&ds->lock, flags);
462 
463 	return r;
464 }
465 
466 /*----------------------------------------------------------------*/
467 
468 /*
469  * Key building.
470  */
471 static void build_data_key(struct dm_thin_device *td,
472 			   dm_block_t b, struct cell_key *key)
473 {
474 	key->virtual = 0;
475 	key->dev = dm_thin_dev_id(td);
476 	key->block = b;
477 }
478 
479 static void build_virtual_key(struct dm_thin_device *td, dm_block_t b,
480 			      struct cell_key *key)
481 {
482 	key->virtual = 1;
483 	key->dev = dm_thin_dev_id(td);
484 	key->block = b;
485 }
486 
487 /*----------------------------------------------------------------*/
488 
489 /*
490  * A pool device ties together a metadata device and a data device.  It
491  * also provides the interface for creating and destroying internal
492  * devices.
493  */
494 struct new_mapping;
495 
496 struct pool_features {
497 	unsigned zero_new_blocks:1;
498 	unsigned discard_enabled:1;
499 	unsigned discard_passdown:1;
500 };
501 
502 struct pool {
503 	struct list_head list;
504 	struct dm_target *ti;	/* Only set if a pool target is bound */
505 
506 	struct mapped_device *pool_md;
507 	struct block_device *md_dev;
508 	struct dm_pool_metadata *pmd;
509 
510 	uint32_t sectors_per_block;
511 	unsigned block_shift;
512 	dm_block_t offset_mask;
513 	dm_block_t low_water_blocks;
514 
515 	struct pool_features pf;
516 	unsigned low_water_triggered:1;	/* A dm event has been sent */
517 	unsigned no_free_space:1;	/* A -ENOSPC warning has been issued */
518 
519 	struct bio_prison *prison;
520 	struct dm_kcopyd_client *copier;
521 
522 	struct workqueue_struct *wq;
523 	struct work_struct worker;
524 	struct delayed_work waker;
525 
526 	unsigned ref_count;
527 	unsigned long last_commit_jiffies;
528 
529 	spinlock_t lock;
530 	struct bio_list deferred_bios;
531 	struct bio_list deferred_flush_bios;
532 	struct list_head prepared_mappings;
533 	struct list_head prepared_discards;
534 
535 	struct bio_list retry_on_resume_list;
536 
537 	struct deferred_set shared_read_ds;
538 	struct deferred_set all_io_ds;
539 
540 	struct new_mapping *next_mapping;
541 	mempool_t *mapping_pool;
542 	mempool_t *endio_hook_pool;
543 };
544 
545 /*
546  * Target context for a pool.
547  */
548 struct pool_c {
549 	struct dm_target *ti;
550 	struct pool *pool;
551 	struct dm_dev *data_dev;
552 	struct dm_dev *metadata_dev;
553 	struct dm_target_callbacks callbacks;
554 
555 	dm_block_t low_water_blocks;
556 	struct pool_features pf;
557 };
558 
559 /*
560  * Target context for a thin.
561  */
562 struct thin_c {
563 	struct dm_dev *pool_dev;
564 	struct dm_dev *origin_dev;
565 	dm_thin_id dev_id;
566 
567 	struct pool *pool;
568 	struct dm_thin_device *td;
569 };
570 
571 /*----------------------------------------------------------------*/
572 
573 /*
574  * A global list of pools that uses a struct mapped_device as a key.
575  */
576 static struct dm_thin_pool_table {
577 	struct mutex mutex;
578 	struct list_head pools;
579 } dm_thin_pool_table;
580 
581 static void pool_table_init(void)
582 {
583 	mutex_init(&dm_thin_pool_table.mutex);
584 	INIT_LIST_HEAD(&dm_thin_pool_table.pools);
585 }
586 
587 static void __pool_table_insert(struct pool *pool)
588 {
589 	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
590 	list_add(&pool->list, &dm_thin_pool_table.pools);
591 }
592 
593 static void __pool_table_remove(struct pool *pool)
594 {
595 	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
596 	list_del(&pool->list);
597 }
598 
599 static struct pool *__pool_table_lookup(struct mapped_device *md)
600 {
601 	struct pool *pool = NULL, *tmp;
602 
603 	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
604 
605 	list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
606 		if (tmp->pool_md == md) {
607 			pool = tmp;
608 			break;
609 		}
610 	}
611 
612 	return pool;
613 }
614 
615 static struct pool *__pool_table_lookup_metadata_dev(struct block_device *md_dev)
616 {
617 	struct pool *pool = NULL, *tmp;
618 
619 	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
620 
621 	list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
622 		if (tmp->md_dev == md_dev) {
623 			pool = tmp;
624 			break;
625 		}
626 	}
627 
628 	return pool;
629 }
630 
631 /*----------------------------------------------------------------*/
632 
633 struct endio_hook {
634 	struct thin_c *tc;
635 	struct deferred_entry *shared_read_entry;
636 	struct deferred_entry *all_io_entry;
637 	struct new_mapping *overwrite_mapping;
638 };
639 
640 static void __requeue_bio_list(struct thin_c *tc, struct bio_list *master)
641 {
642 	struct bio *bio;
643 	struct bio_list bios;
644 
645 	bio_list_init(&bios);
646 	bio_list_merge(&bios, master);
647 	bio_list_init(master);
648 
649 	while ((bio = bio_list_pop(&bios))) {
650 		struct endio_hook *h = dm_get_mapinfo(bio)->ptr;
651 		if (h->tc == tc)
652 			bio_endio(bio, DM_ENDIO_REQUEUE);
653 		else
654 			bio_list_add(master, bio);
655 	}
656 }
657 
658 static void requeue_io(struct thin_c *tc)
659 {
660 	struct pool *pool = tc->pool;
661 	unsigned long flags;
662 
663 	spin_lock_irqsave(&pool->lock, flags);
664 	__requeue_bio_list(tc, &pool->deferred_bios);
665 	__requeue_bio_list(tc, &pool->retry_on_resume_list);
666 	spin_unlock_irqrestore(&pool->lock, flags);
667 }
668 
669 /*
670  * This section of code contains the logic for processing a thin device's IO.
671  * Much of the code depends on pool object resources (lists, workqueues, etc)
672  * but most is exclusively called from the thin target rather than the thin-pool
673  * target.
674  */
675 
676 static dm_block_t get_bio_block(struct thin_c *tc, struct bio *bio)
677 {
678 	return bio->bi_sector >> tc->pool->block_shift;
679 }
680 
681 static void remap(struct thin_c *tc, struct bio *bio, dm_block_t block)
682 {
683 	struct pool *pool = tc->pool;
684 
685 	bio->bi_bdev = tc->pool_dev->bdev;
686 	bio->bi_sector = (block << pool->block_shift) +
687 		(bio->bi_sector & pool->offset_mask);
688 }
689 
690 static void remap_to_origin(struct thin_c *tc, struct bio *bio)
691 {
692 	bio->bi_bdev = tc->origin_dev->bdev;
693 }
694 
695 static void issue(struct thin_c *tc, struct bio *bio)
696 {
697 	struct pool *pool = tc->pool;
698 	unsigned long flags;
699 
700 	/*
701 	 * Batch together any FUA/FLUSH bios we find and then issue
702 	 * a single commit for them in process_deferred_bios().
703 	 */
704 	if (bio->bi_rw & (REQ_FLUSH | REQ_FUA)) {
705 		spin_lock_irqsave(&pool->lock, flags);
706 		bio_list_add(&pool->deferred_flush_bios, bio);
707 		spin_unlock_irqrestore(&pool->lock, flags);
708 	} else
709 		generic_make_request(bio);
710 }
711 
712 static void remap_to_origin_and_issue(struct thin_c *tc, struct bio *bio)
713 {
714 	remap_to_origin(tc, bio);
715 	issue(tc, bio);
716 }
717 
718 static void remap_and_issue(struct thin_c *tc, struct bio *bio,
719 			    dm_block_t block)
720 {
721 	remap(tc, bio, block);
722 	issue(tc, bio);
723 }
724 
725 /*
726  * wake_worker() is used when new work is queued and when pool_resume is
727  * ready to continue deferred IO processing.
728  */
729 static void wake_worker(struct pool *pool)
730 {
731 	queue_work(pool->wq, &pool->worker);
732 }
733 
734 /*----------------------------------------------------------------*/
735 
736 /*
737  * Bio endio functions.
738  */
739 struct new_mapping {
740 	struct list_head list;
741 
742 	unsigned quiesced:1;
743 	unsigned prepared:1;
744 	unsigned pass_discard:1;
745 
746 	struct thin_c *tc;
747 	dm_block_t virt_block;
748 	dm_block_t data_block;
749 	struct cell *cell, *cell2;
750 	int err;
751 
752 	/*
753 	 * If the bio covers the whole area of a block then we can avoid
754 	 * zeroing or copying.  Instead this bio is hooked.  The bio will
755 	 * still be in the cell, so care has to be taken to avoid issuing
756 	 * the bio twice.
757 	 */
758 	struct bio *bio;
759 	bio_end_io_t *saved_bi_end_io;
760 };
761 
762 static void __maybe_add_mapping(struct new_mapping *m)
763 {
764 	struct pool *pool = m->tc->pool;
765 
766 	if (m->quiesced && m->prepared) {
767 		list_add(&m->list, &pool->prepared_mappings);
768 		wake_worker(pool);
769 	}
770 }
771 
772 static void copy_complete(int read_err, unsigned long write_err, void *context)
773 {
774 	unsigned long flags;
775 	struct new_mapping *m = context;
776 	struct pool *pool = m->tc->pool;
777 
778 	m->err = read_err || write_err ? -EIO : 0;
779 
780 	spin_lock_irqsave(&pool->lock, flags);
781 	m->prepared = 1;
782 	__maybe_add_mapping(m);
783 	spin_unlock_irqrestore(&pool->lock, flags);
784 }
785 
786 static void overwrite_endio(struct bio *bio, int err)
787 {
788 	unsigned long flags;
789 	struct endio_hook *h = dm_get_mapinfo(bio)->ptr;
790 	struct new_mapping *m = h->overwrite_mapping;
791 	struct pool *pool = m->tc->pool;
792 
793 	m->err = err;
794 
795 	spin_lock_irqsave(&pool->lock, flags);
796 	m->prepared = 1;
797 	__maybe_add_mapping(m);
798 	spin_unlock_irqrestore(&pool->lock, flags);
799 }
800 
801 /*----------------------------------------------------------------*/
802 
803 /*
804  * Workqueue.
805  */
806 
807 /*
808  * Prepared mapping jobs.
809  */
810 
811 /*
812  * This sends the bios in the cell back to the deferred_bios list.
813  */
814 static void cell_defer(struct thin_c *tc, struct cell *cell,
815 		       dm_block_t data_block)
816 {
817 	struct pool *pool = tc->pool;
818 	unsigned long flags;
819 
820 	spin_lock_irqsave(&pool->lock, flags);
821 	cell_release(cell, &pool->deferred_bios);
822 	spin_unlock_irqrestore(&tc->pool->lock, flags);
823 
824 	wake_worker(pool);
825 }
826 
827 /*
828  * Same as cell_defer above, except it omits one particular detainee,
829  * a write bio that covers the block and has already been processed.
830  */
831 static void cell_defer_except(struct thin_c *tc, struct cell *cell)
832 {
833 	struct bio_list bios;
834 	struct pool *pool = tc->pool;
835 	unsigned long flags;
836 
837 	bio_list_init(&bios);
838 
839 	spin_lock_irqsave(&pool->lock, flags);
840 	cell_release_no_holder(cell, &pool->deferred_bios);
841 	spin_unlock_irqrestore(&pool->lock, flags);
842 
843 	wake_worker(pool);
844 }
845 
846 static void process_prepared_mapping(struct new_mapping *m)
847 {
848 	struct thin_c *tc = m->tc;
849 	struct bio *bio;
850 	int r;
851 
852 	bio = m->bio;
853 	if (bio)
854 		bio->bi_end_io = m->saved_bi_end_io;
855 
856 	if (m->err) {
857 		cell_error(m->cell);
858 		return;
859 	}
860 
861 	/*
862 	 * Commit the prepared block into the mapping btree.
863 	 * Any I/O for this block arriving after this point will get
864 	 * remapped to it directly.
865 	 */
866 	r = dm_thin_insert_block(tc->td, m->virt_block, m->data_block);
867 	if (r) {
868 		DMERR("dm_thin_insert_block() failed");
869 		cell_error(m->cell);
870 		return;
871 	}
872 
873 	/*
874 	 * Release any bios held while the block was being provisioned.
875 	 * If we are processing a write bio that completely covers the block,
876 	 * we already processed it so can ignore it now when processing
877 	 * the bios in the cell.
878 	 */
879 	if (bio) {
880 		cell_defer_except(tc, m->cell);
881 		bio_endio(bio, 0);
882 	} else
883 		cell_defer(tc, m->cell, m->data_block);
884 
885 	list_del(&m->list);
886 	mempool_free(m, tc->pool->mapping_pool);
887 }
888 
889 static void process_prepared_discard(struct new_mapping *m)
890 {
891 	int r;
892 	struct thin_c *tc = m->tc;
893 
894 	r = dm_thin_remove_block(tc->td, m->virt_block);
895 	if (r)
896 		DMERR("dm_thin_remove_block() failed");
897 
898 	/*
899 	 * Pass the discard down to the underlying device?
900 	 */
901 	if (m->pass_discard)
902 		remap_and_issue(tc, m->bio, m->data_block);
903 	else
904 		bio_endio(m->bio, 0);
905 
906 	cell_defer_except(tc, m->cell);
907 	cell_defer_except(tc, m->cell2);
908 	mempool_free(m, tc->pool->mapping_pool);
909 }
910 
911 static void process_prepared(struct pool *pool, struct list_head *head,
912 			     void (*fn)(struct new_mapping *))
913 {
914 	unsigned long flags;
915 	struct list_head maps;
916 	struct new_mapping *m, *tmp;
917 
918 	INIT_LIST_HEAD(&maps);
919 	spin_lock_irqsave(&pool->lock, flags);
920 	list_splice_init(head, &maps);
921 	spin_unlock_irqrestore(&pool->lock, flags);
922 
923 	list_for_each_entry_safe(m, tmp, &maps, list)
924 		fn(m);
925 }
926 
927 /*
928  * Deferred bio jobs.
929  */
930 static int io_overlaps_block(struct pool *pool, struct bio *bio)
931 {
932 	return !(bio->bi_sector & pool->offset_mask) &&
933 		(bio->bi_size == (pool->sectors_per_block << SECTOR_SHIFT));
934 
935 }
936 
937 static int io_overwrites_block(struct pool *pool, struct bio *bio)
938 {
939 	return (bio_data_dir(bio) == WRITE) &&
940 		io_overlaps_block(pool, bio);
941 }
942 
943 static void save_and_set_endio(struct bio *bio, bio_end_io_t **save,
944 			       bio_end_io_t *fn)
945 {
946 	*save = bio->bi_end_io;
947 	bio->bi_end_io = fn;
948 }
949 
950 static int ensure_next_mapping(struct pool *pool)
951 {
952 	if (pool->next_mapping)
953 		return 0;
954 
955 	pool->next_mapping = mempool_alloc(pool->mapping_pool, GFP_ATOMIC);
956 
957 	return pool->next_mapping ? 0 : -ENOMEM;
958 }
959 
960 static struct new_mapping *get_next_mapping(struct pool *pool)
961 {
962 	struct new_mapping *r = pool->next_mapping;
963 
964 	BUG_ON(!pool->next_mapping);
965 
966 	pool->next_mapping = NULL;
967 
968 	return r;
969 }
970 
971 static void schedule_copy(struct thin_c *tc, dm_block_t virt_block,
972 			  struct dm_dev *origin, dm_block_t data_origin,
973 			  dm_block_t data_dest,
974 			  struct cell *cell, struct bio *bio)
975 {
976 	int r;
977 	struct pool *pool = tc->pool;
978 	struct new_mapping *m = get_next_mapping(pool);
979 
980 	INIT_LIST_HEAD(&m->list);
981 	m->quiesced = 0;
982 	m->prepared = 0;
983 	m->tc = tc;
984 	m->virt_block = virt_block;
985 	m->data_block = data_dest;
986 	m->cell = cell;
987 	m->err = 0;
988 	m->bio = NULL;
989 
990 	if (!ds_add_work(&pool->shared_read_ds, &m->list))
991 		m->quiesced = 1;
992 
993 	/*
994 	 * IO to pool_dev remaps to the pool target's data_dev.
995 	 *
996 	 * If the whole block of data is being overwritten, we can issue the
997 	 * bio immediately. Otherwise we use kcopyd to clone the data first.
998 	 */
999 	if (io_overwrites_block(pool, bio)) {
1000 		struct endio_hook *h = dm_get_mapinfo(bio)->ptr;
1001 		h->overwrite_mapping = m;
1002 		m->bio = bio;
1003 		save_and_set_endio(bio, &m->saved_bi_end_io, overwrite_endio);
1004 		remap_and_issue(tc, bio, data_dest);
1005 	} else {
1006 		struct dm_io_region from, to;
1007 
1008 		from.bdev = origin->bdev;
1009 		from.sector = data_origin * pool->sectors_per_block;
1010 		from.count = pool->sectors_per_block;
1011 
1012 		to.bdev = tc->pool_dev->bdev;
1013 		to.sector = data_dest * pool->sectors_per_block;
1014 		to.count = pool->sectors_per_block;
1015 
1016 		r = dm_kcopyd_copy(pool->copier, &from, 1, &to,
1017 				   0, copy_complete, m);
1018 		if (r < 0) {
1019 			mempool_free(m, pool->mapping_pool);
1020 			DMERR("dm_kcopyd_copy() failed");
1021 			cell_error(cell);
1022 		}
1023 	}
1024 }
1025 
1026 static void schedule_internal_copy(struct thin_c *tc, dm_block_t virt_block,
1027 				   dm_block_t data_origin, dm_block_t data_dest,
1028 				   struct cell *cell, struct bio *bio)
1029 {
1030 	schedule_copy(tc, virt_block, tc->pool_dev,
1031 		      data_origin, data_dest, cell, bio);
1032 }
1033 
1034 static void schedule_external_copy(struct thin_c *tc, dm_block_t virt_block,
1035 				   dm_block_t data_dest,
1036 				   struct cell *cell, struct bio *bio)
1037 {
1038 	schedule_copy(tc, virt_block, tc->origin_dev,
1039 		      virt_block, data_dest, cell, bio);
1040 }
1041 
1042 static void schedule_zero(struct thin_c *tc, dm_block_t virt_block,
1043 			  dm_block_t data_block, struct cell *cell,
1044 			  struct bio *bio)
1045 {
1046 	struct pool *pool = tc->pool;
1047 	struct new_mapping *m = get_next_mapping(pool);
1048 
1049 	INIT_LIST_HEAD(&m->list);
1050 	m->quiesced = 1;
1051 	m->prepared = 0;
1052 	m->tc = tc;
1053 	m->virt_block = virt_block;
1054 	m->data_block = data_block;
1055 	m->cell = cell;
1056 	m->err = 0;
1057 	m->bio = NULL;
1058 
1059 	/*
1060 	 * If the whole block of data is being overwritten or we are not
1061 	 * zeroing pre-existing data, we can issue the bio immediately.
1062 	 * Otherwise we use kcopyd to zero the data first.
1063 	 */
1064 	if (!pool->pf.zero_new_blocks)
1065 		process_prepared_mapping(m);
1066 
1067 	else if (io_overwrites_block(pool, bio)) {
1068 		struct endio_hook *h = dm_get_mapinfo(bio)->ptr;
1069 		h->overwrite_mapping = m;
1070 		m->bio = bio;
1071 		save_and_set_endio(bio, &m->saved_bi_end_io, overwrite_endio);
1072 		remap_and_issue(tc, bio, data_block);
1073 
1074 	} else {
1075 		int r;
1076 		struct dm_io_region to;
1077 
1078 		to.bdev = tc->pool_dev->bdev;
1079 		to.sector = data_block * pool->sectors_per_block;
1080 		to.count = pool->sectors_per_block;
1081 
1082 		r = dm_kcopyd_zero(pool->copier, 1, &to, 0, copy_complete, m);
1083 		if (r < 0) {
1084 			mempool_free(m, pool->mapping_pool);
1085 			DMERR("dm_kcopyd_zero() failed");
1086 			cell_error(cell);
1087 		}
1088 	}
1089 }
1090 
1091 static int alloc_data_block(struct thin_c *tc, dm_block_t *result)
1092 {
1093 	int r;
1094 	dm_block_t free_blocks;
1095 	unsigned long flags;
1096 	struct pool *pool = tc->pool;
1097 
1098 	r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
1099 	if (r)
1100 		return r;
1101 
1102 	if (free_blocks <= pool->low_water_blocks && !pool->low_water_triggered) {
1103 		DMWARN("%s: reached low water mark, sending event.",
1104 		       dm_device_name(pool->pool_md));
1105 		spin_lock_irqsave(&pool->lock, flags);
1106 		pool->low_water_triggered = 1;
1107 		spin_unlock_irqrestore(&pool->lock, flags);
1108 		dm_table_event(pool->ti->table);
1109 	}
1110 
1111 	if (!free_blocks) {
1112 		if (pool->no_free_space)
1113 			return -ENOSPC;
1114 		else {
1115 			/*
1116 			 * Try to commit to see if that will free up some
1117 			 * more space.
1118 			 */
1119 			r = dm_pool_commit_metadata(pool->pmd);
1120 			if (r) {
1121 				DMERR("%s: dm_pool_commit_metadata() failed, error = %d",
1122 				      __func__, r);
1123 				return r;
1124 			}
1125 
1126 			r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
1127 			if (r)
1128 				return r;
1129 
1130 			/*
1131 			 * If we still have no space we set a flag to avoid
1132 			 * doing all this checking and return -ENOSPC.
1133 			 */
1134 			if (!free_blocks) {
1135 				DMWARN("%s: no free space available.",
1136 				       dm_device_name(pool->pool_md));
1137 				spin_lock_irqsave(&pool->lock, flags);
1138 				pool->no_free_space = 1;
1139 				spin_unlock_irqrestore(&pool->lock, flags);
1140 				return -ENOSPC;
1141 			}
1142 		}
1143 	}
1144 
1145 	r = dm_pool_alloc_data_block(pool->pmd, result);
1146 	if (r)
1147 		return r;
1148 
1149 	return 0;
1150 }
1151 
1152 /*
1153  * If we have run out of space, queue bios until the device is
1154  * resumed, presumably after having been reloaded with more space.
1155  */
1156 static void retry_on_resume(struct bio *bio)
1157 {
1158 	struct endio_hook *h = dm_get_mapinfo(bio)->ptr;
1159 	struct thin_c *tc = h->tc;
1160 	struct pool *pool = tc->pool;
1161 	unsigned long flags;
1162 
1163 	spin_lock_irqsave(&pool->lock, flags);
1164 	bio_list_add(&pool->retry_on_resume_list, bio);
1165 	spin_unlock_irqrestore(&pool->lock, flags);
1166 }
1167 
1168 static void no_space(struct cell *cell)
1169 {
1170 	struct bio *bio;
1171 	struct bio_list bios;
1172 
1173 	bio_list_init(&bios);
1174 	cell_release(cell, &bios);
1175 
1176 	while ((bio = bio_list_pop(&bios)))
1177 		retry_on_resume(bio);
1178 }
1179 
1180 static void process_discard(struct thin_c *tc, struct bio *bio)
1181 {
1182 	int r;
1183 	unsigned long flags;
1184 	struct pool *pool = tc->pool;
1185 	struct cell *cell, *cell2;
1186 	struct cell_key key, key2;
1187 	dm_block_t block = get_bio_block(tc, bio);
1188 	struct dm_thin_lookup_result lookup_result;
1189 	struct new_mapping *m;
1190 
1191 	build_virtual_key(tc->td, block, &key);
1192 	if (bio_detain(tc->pool->prison, &key, bio, &cell))
1193 		return;
1194 
1195 	r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1196 	switch (r) {
1197 	case 0:
1198 		/*
1199 		 * Check nobody is fiddling with this pool block.  This can
1200 		 * happen if someone's in the process of breaking sharing
1201 		 * on this block.
1202 		 */
1203 		build_data_key(tc->td, lookup_result.block, &key2);
1204 		if (bio_detain(tc->pool->prison, &key2, bio, &cell2)) {
1205 			cell_release_singleton(cell, bio);
1206 			break;
1207 		}
1208 
1209 		if (io_overlaps_block(pool, bio)) {
1210 			/*
1211 			 * IO may still be going to the destination block.  We must
1212 			 * quiesce before we can do the removal.
1213 			 */
1214 			m = get_next_mapping(pool);
1215 			m->tc = tc;
1216 			m->pass_discard = (!lookup_result.shared) & pool->pf.discard_passdown;
1217 			m->virt_block = block;
1218 			m->data_block = lookup_result.block;
1219 			m->cell = cell;
1220 			m->cell2 = cell2;
1221 			m->err = 0;
1222 			m->bio = bio;
1223 
1224 			if (!ds_add_work(&pool->all_io_ds, &m->list)) {
1225 				spin_lock_irqsave(&pool->lock, flags);
1226 				list_add(&m->list, &pool->prepared_discards);
1227 				spin_unlock_irqrestore(&pool->lock, flags);
1228 				wake_worker(pool);
1229 			}
1230 		} else {
1231 			/*
1232 			 * This path is hit if people are ignoring
1233 			 * limits->discard_granularity.  It ignores any
1234 			 * part of the discard that is in a subsequent
1235 			 * block.
1236 			 */
1237 			sector_t offset = bio->bi_sector - (block << pool->block_shift);
1238 			unsigned remaining = (pool->sectors_per_block - offset) << 9;
1239 			bio->bi_size = min(bio->bi_size, remaining);
1240 
1241 			cell_release_singleton(cell, bio);
1242 			cell_release_singleton(cell2, bio);
1243 			remap_and_issue(tc, bio, lookup_result.block);
1244 		}
1245 		break;
1246 
1247 	case -ENODATA:
1248 		/*
1249 		 * It isn't provisioned, just forget it.
1250 		 */
1251 		cell_release_singleton(cell, bio);
1252 		bio_endio(bio, 0);
1253 		break;
1254 
1255 	default:
1256 		DMERR("discard: find block unexpectedly returned %d", r);
1257 		cell_release_singleton(cell, bio);
1258 		bio_io_error(bio);
1259 		break;
1260 	}
1261 }
1262 
1263 static void break_sharing(struct thin_c *tc, struct bio *bio, dm_block_t block,
1264 			  struct cell_key *key,
1265 			  struct dm_thin_lookup_result *lookup_result,
1266 			  struct cell *cell)
1267 {
1268 	int r;
1269 	dm_block_t data_block;
1270 
1271 	r = alloc_data_block(tc, &data_block);
1272 	switch (r) {
1273 	case 0:
1274 		schedule_internal_copy(tc, block, lookup_result->block,
1275 				       data_block, cell, bio);
1276 		break;
1277 
1278 	case -ENOSPC:
1279 		no_space(cell);
1280 		break;
1281 
1282 	default:
1283 		DMERR("%s: alloc_data_block() failed, error = %d", __func__, r);
1284 		cell_error(cell);
1285 		break;
1286 	}
1287 }
1288 
1289 static void process_shared_bio(struct thin_c *tc, struct bio *bio,
1290 			       dm_block_t block,
1291 			       struct dm_thin_lookup_result *lookup_result)
1292 {
1293 	struct cell *cell;
1294 	struct pool *pool = tc->pool;
1295 	struct cell_key key;
1296 
1297 	/*
1298 	 * If cell is already occupied, then sharing is already in the process
1299 	 * of being broken so we have nothing further to do here.
1300 	 */
1301 	build_data_key(tc->td, lookup_result->block, &key);
1302 	if (bio_detain(pool->prison, &key, bio, &cell))
1303 		return;
1304 
1305 	if (bio_data_dir(bio) == WRITE)
1306 		break_sharing(tc, bio, block, &key, lookup_result, cell);
1307 	else {
1308 		struct endio_hook *h = dm_get_mapinfo(bio)->ptr;
1309 
1310 		h->shared_read_entry = ds_inc(&pool->shared_read_ds);
1311 
1312 		cell_release_singleton(cell, bio);
1313 		remap_and_issue(tc, bio, lookup_result->block);
1314 	}
1315 }
1316 
1317 static void provision_block(struct thin_c *tc, struct bio *bio, dm_block_t block,
1318 			    struct cell *cell)
1319 {
1320 	int r;
1321 	dm_block_t data_block;
1322 
1323 	/*
1324 	 * Remap empty bios (flushes) immediately, without provisioning.
1325 	 */
1326 	if (!bio->bi_size) {
1327 		cell_release_singleton(cell, bio);
1328 		remap_and_issue(tc, bio, 0);
1329 		return;
1330 	}
1331 
1332 	/*
1333 	 * Fill read bios with zeroes and complete them immediately.
1334 	 */
1335 	if (bio_data_dir(bio) == READ) {
1336 		zero_fill_bio(bio);
1337 		cell_release_singleton(cell, bio);
1338 		bio_endio(bio, 0);
1339 		return;
1340 	}
1341 
1342 	r = alloc_data_block(tc, &data_block);
1343 	switch (r) {
1344 	case 0:
1345 		if (tc->origin_dev)
1346 			schedule_external_copy(tc, block, data_block, cell, bio);
1347 		else
1348 			schedule_zero(tc, block, data_block, cell, bio);
1349 		break;
1350 
1351 	case -ENOSPC:
1352 		no_space(cell);
1353 		break;
1354 
1355 	default:
1356 		DMERR("%s: alloc_data_block() failed, error = %d", __func__, r);
1357 		cell_error(cell);
1358 		break;
1359 	}
1360 }
1361 
1362 static void process_bio(struct thin_c *tc, struct bio *bio)
1363 {
1364 	int r;
1365 	dm_block_t block = get_bio_block(tc, bio);
1366 	struct cell *cell;
1367 	struct cell_key key;
1368 	struct dm_thin_lookup_result lookup_result;
1369 
1370 	/*
1371 	 * If cell is already occupied, then the block is already
1372 	 * being provisioned so we have nothing further to do here.
1373 	 */
1374 	build_virtual_key(tc->td, block, &key);
1375 	if (bio_detain(tc->pool->prison, &key, bio, &cell))
1376 		return;
1377 
1378 	r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1379 	switch (r) {
1380 	case 0:
1381 		/*
1382 		 * We can release this cell now.  This thread is the only
1383 		 * one that puts bios into a cell, and we know there were
1384 		 * no preceding bios.
1385 		 */
1386 		/*
1387 		 * TODO: this will probably have to change when discard goes
1388 		 * back in.
1389 		 */
1390 		cell_release_singleton(cell, bio);
1391 
1392 		if (lookup_result.shared)
1393 			process_shared_bio(tc, bio, block, &lookup_result);
1394 		else
1395 			remap_and_issue(tc, bio, lookup_result.block);
1396 		break;
1397 
1398 	case -ENODATA:
1399 		if (bio_data_dir(bio) == READ && tc->origin_dev) {
1400 			cell_release_singleton(cell, bio);
1401 			remap_to_origin_and_issue(tc, bio);
1402 		} else
1403 			provision_block(tc, bio, block, cell);
1404 		break;
1405 
1406 	default:
1407 		DMERR("dm_thin_find_block() failed, error = %d", r);
1408 		cell_release_singleton(cell, bio);
1409 		bio_io_error(bio);
1410 		break;
1411 	}
1412 }
1413 
1414 static int need_commit_due_to_time(struct pool *pool)
1415 {
1416 	return jiffies < pool->last_commit_jiffies ||
1417 	       jiffies > pool->last_commit_jiffies + COMMIT_PERIOD;
1418 }
1419 
1420 static void process_deferred_bios(struct pool *pool)
1421 {
1422 	unsigned long flags;
1423 	struct bio *bio;
1424 	struct bio_list bios;
1425 	int r;
1426 
1427 	bio_list_init(&bios);
1428 
1429 	spin_lock_irqsave(&pool->lock, flags);
1430 	bio_list_merge(&bios, &pool->deferred_bios);
1431 	bio_list_init(&pool->deferred_bios);
1432 	spin_unlock_irqrestore(&pool->lock, flags);
1433 
1434 	while ((bio = bio_list_pop(&bios))) {
1435 		struct endio_hook *h = dm_get_mapinfo(bio)->ptr;
1436 		struct thin_c *tc = h->tc;
1437 
1438 		/*
1439 		 * If we've got no free new_mapping structs, and processing
1440 		 * this bio might require one, we pause until there are some
1441 		 * prepared mappings to process.
1442 		 */
1443 		if (ensure_next_mapping(pool)) {
1444 			spin_lock_irqsave(&pool->lock, flags);
1445 			bio_list_merge(&pool->deferred_bios, &bios);
1446 			spin_unlock_irqrestore(&pool->lock, flags);
1447 
1448 			break;
1449 		}
1450 
1451 		if (bio->bi_rw & REQ_DISCARD)
1452 			process_discard(tc, bio);
1453 		else
1454 			process_bio(tc, bio);
1455 	}
1456 
1457 	/*
1458 	 * If there are any deferred flush bios, we must commit
1459 	 * the metadata before issuing them.
1460 	 */
1461 	bio_list_init(&bios);
1462 	spin_lock_irqsave(&pool->lock, flags);
1463 	bio_list_merge(&bios, &pool->deferred_flush_bios);
1464 	bio_list_init(&pool->deferred_flush_bios);
1465 	spin_unlock_irqrestore(&pool->lock, flags);
1466 
1467 	if (bio_list_empty(&bios) && !need_commit_due_to_time(pool))
1468 		return;
1469 
1470 	r = dm_pool_commit_metadata(pool->pmd);
1471 	if (r) {
1472 		DMERR("%s: dm_pool_commit_metadata() failed, error = %d",
1473 		      __func__, r);
1474 		while ((bio = bio_list_pop(&bios)))
1475 			bio_io_error(bio);
1476 		return;
1477 	}
1478 	pool->last_commit_jiffies = jiffies;
1479 
1480 	while ((bio = bio_list_pop(&bios)))
1481 		generic_make_request(bio);
1482 }
1483 
1484 static void do_worker(struct work_struct *ws)
1485 {
1486 	struct pool *pool = container_of(ws, struct pool, worker);
1487 
1488 	process_prepared(pool, &pool->prepared_mappings, process_prepared_mapping);
1489 	process_prepared(pool, &pool->prepared_discards, process_prepared_discard);
1490 	process_deferred_bios(pool);
1491 }
1492 
1493 /*
1494  * We want to commit periodically so that not too much
1495  * unwritten data builds up.
1496  */
1497 static void do_waker(struct work_struct *ws)
1498 {
1499 	struct pool *pool = container_of(to_delayed_work(ws), struct pool, waker);
1500 	wake_worker(pool);
1501 	queue_delayed_work(pool->wq, &pool->waker, COMMIT_PERIOD);
1502 }
1503 
1504 /*----------------------------------------------------------------*/
1505 
1506 /*
1507  * Mapping functions.
1508  */
1509 
1510 /*
1511  * Called only while mapping a thin bio to hand it over to the workqueue.
1512  */
1513 static void thin_defer_bio(struct thin_c *tc, struct bio *bio)
1514 {
1515 	unsigned long flags;
1516 	struct pool *pool = tc->pool;
1517 
1518 	spin_lock_irqsave(&pool->lock, flags);
1519 	bio_list_add(&pool->deferred_bios, bio);
1520 	spin_unlock_irqrestore(&pool->lock, flags);
1521 
1522 	wake_worker(pool);
1523 }
1524 
1525 static struct endio_hook *thin_hook_bio(struct thin_c *tc, struct bio *bio)
1526 {
1527 	struct pool *pool = tc->pool;
1528 	struct endio_hook *h = mempool_alloc(pool->endio_hook_pool, GFP_NOIO);
1529 
1530 	h->tc = tc;
1531 	h->shared_read_entry = NULL;
1532 	h->all_io_entry = bio->bi_rw & REQ_DISCARD ? NULL : ds_inc(&pool->all_io_ds);
1533 	h->overwrite_mapping = NULL;
1534 
1535 	return h;
1536 }
1537 
1538 /*
1539  * Non-blocking function called from the thin target's map function.
1540  */
1541 static int thin_bio_map(struct dm_target *ti, struct bio *bio,
1542 			union map_info *map_context)
1543 {
1544 	int r;
1545 	struct thin_c *tc = ti->private;
1546 	dm_block_t block = get_bio_block(tc, bio);
1547 	struct dm_thin_device *td = tc->td;
1548 	struct dm_thin_lookup_result result;
1549 
1550 	map_context->ptr = thin_hook_bio(tc, bio);
1551 	if (bio->bi_rw & (REQ_DISCARD | REQ_FLUSH | REQ_FUA)) {
1552 		thin_defer_bio(tc, bio);
1553 		return DM_MAPIO_SUBMITTED;
1554 	}
1555 
1556 	r = dm_thin_find_block(td, block, 0, &result);
1557 
1558 	/*
1559 	 * Note that we defer readahead too.
1560 	 */
1561 	switch (r) {
1562 	case 0:
1563 		if (unlikely(result.shared)) {
1564 			/*
1565 			 * We have a race condition here between the
1566 			 * result.shared value returned by the lookup and
1567 			 * snapshot creation, which may cause new
1568 			 * sharing.
1569 			 *
1570 			 * To avoid this always quiesce the origin before
1571 			 * taking the snap.  You want to do this anyway to
1572 			 * ensure a consistent application view
1573 			 * (i.e. lockfs).
1574 			 *
1575 			 * More distant ancestors are irrelevant. The
1576 			 * shared flag will be set in their case.
1577 			 */
1578 			thin_defer_bio(tc, bio);
1579 			r = DM_MAPIO_SUBMITTED;
1580 		} else {
1581 			remap(tc, bio, result.block);
1582 			r = DM_MAPIO_REMAPPED;
1583 		}
1584 		break;
1585 
1586 	case -ENODATA:
1587 		/*
1588 		 * In future, the failed dm_thin_find_block above could
1589 		 * provide the hint to load the metadata into cache.
1590 		 */
1591 	case -EWOULDBLOCK:
1592 		thin_defer_bio(tc, bio);
1593 		r = DM_MAPIO_SUBMITTED;
1594 		break;
1595 	}
1596 
1597 	return r;
1598 }
1599 
1600 static int pool_is_congested(struct dm_target_callbacks *cb, int bdi_bits)
1601 {
1602 	int r;
1603 	unsigned long flags;
1604 	struct pool_c *pt = container_of(cb, struct pool_c, callbacks);
1605 
1606 	spin_lock_irqsave(&pt->pool->lock, flags);
1607 	r = !bio_list_empty(&pt->pool->retry_on_resume_list);
1608 	spin_unlock_irqrestore(&pt->pool->lock, flags);
1609 
1610 	if (!r) {
1611 		struct request_queue *q = bdev_get_queue(pt->data_dev->bdev);
1612 		r = bdi_congested(&q->backing_dev_info, bdi_bits);
1613 	}
1614 
1615 	return r;
1616 }
1617 
1618 static void __requeue_bios(struct pool *pool)
1619 {
1620 	bio_list_merge(&pool->deferred_bios, &pool->retry_on_resume_list);
1621 	bio_list_init(&pool->retry_on_resume_list);
1622 }
1623 
1624 /*----------------------------------------------------------------
1625  * Binding of control targets to a pool object
1626  *--------------------------------------------------------------*/
1627 static int bind_control_target(struct pool *pool, struct dm_target *ti)
1628 {
1629 	struct pool_c *pt = ti->private;
1630 
1631 	pool->ti = ti;
1632 	pool->low_water_blocks = pt->low_water_blocks;
1633 	pool->pf = pt->pf;
1634 
1635 	/*
1636 	 * If discard_passdown was enabled verify that the data device
1637 	 * supports discards.  Disable discard_passdown if not; otherwise
1638 	 * -EOPNOTSUPP will be returned.
1639 	 */
1640 	if (pt->pf.discard_passdown) {
1641 		struct request_queue *q = bdev_get_queue(pt->data_dev->bdev);
1642 		if (!q || !blk_queue_discard(q)) {
1643 			char buf[BDEVNAME_SIZE];
1644 			DMWARN("Discard unsupported by data device (%s): Disabling discard passdown.",
1645 			       bdevname(pt->data_dev->bdev, buf));
1646 			pool->pf.discard_passdown = 0;
1647 		}
1648 	}
1649 
1650 	return 0;
1651 }
1652 
1653 static void unbind_control_target(struct pool *pool, struct dm_target *ti)
1654 {
1655 	if (pool->ti == ti)
1656 		pool->ti = NULL;
1657 }
1658 
1659 /*----------------------------------------------------------------
1660  * Pool creation
1661  *--------------------------------------------------------------*/
1662 /* Initialize pool features. */
1663 static void pool_features_init(struct pool_features *pf)
1664 {
1665 	pf->zero_new_blocks = 1;
1666 	pf->discard_enabled = 1;
1667 	pf->discard_passdown = 1;
1668 }
1669 
1670 static void __pool_destroy(struct pool *pool)
1671 {
1672 	__pool_table_remove(pool);
1673 
1674 	if (dm_pool_metadata_close(pool->pmd) < 0)
1675 		DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
1676 
1677 	prison_destroy(pool->prison);
1678 	dm_kcopyd_client_destroy(pool->copier);
1679 
1680 	if (pool->wq)
1681 		destroy_workqueue(pool->wq);
1682 
1683 	if (pool->next_mapping)
1684 		mempool_free(pool->next_mapping, pool->mapping_pool);
1685 	mempool_destroy(pool->mapping_pool);
1686 	mempool_destroy(pool->endio_hook_pool);
1687 	kfree(pool);
1688 }
1689 
1690 static struct pool *pool_create(struct mapped_device *pool_md,
1691 				struct block_device *metadata_dev,
1692 				unsigned long block_size, char **error)
1693 {
1694 	int r;
1695 	void *err_p;
1696 	struct pool *pool;
1697 	struct dm_pool_metadata *pmd;
1698 
1699 	pmd = dm_pool_metadata_open(metadata_dev, block_size);
1700 	if (IS_ERR(pmd)) {
1701 		*error = "Error creating metadata object";
1702 		return (struct pool *)pmd;
1703 	}
1704 
1705 	pool = kmalloc(sizeof(*pool), GFP_KERNEL);
1706 	if (!pool) {
1707 		*error = "Error allocating memory for pool";
1708 		err_p = ERR_PTR(-ENOMEM);
1709 		goto bad_pool;
1710 	}
1711 
1712 	pool->pmd = pmd;
1713 	pool->sectors_per_block = block_size;
1714 	pool->block_shift = ffs(block_size) - 1;
1715 	pool->offset_mask = block_size - 1;
1716 	pool->low_water_blocks = 0;
1717 	pool_features_init(&pool->pf);
1718 	pool->prison = prison_create(PRISON_CELLS);
1719 	if (!pool->prison) {
1720 		*error = "Error creating pool's bio prison";
1721 		err_p = ERR_PTR(-ENOMEM);
1722 		goto bad_prison;
1723 	}
1724 
1725 	pool->copier = dm_kcopyd_client_create();
1726 	if (IS_ERR(pool->copier)) {
1727 		r = PTR_ERR(pool->copier);
1728 		*error = "Error creating pool's kcopyd client";
1729 		err_p = ERR_PTR(r);
1730 		goto bad_kcopyd_client;
1731 	}
1732 
1733 	/*
1734 	 * Create singlethreaded workqueue that will service all devices
1735 	 * that use this metadata.
1736 	 */
1737 	pool->wq = alloc_ordered_workqueue("dm-" DM_MSG_PREFIX, WQ_MEM_RECLAIM);
1738 	if (!pool->wq) {
1739 		*error = "Error creating pool's workqueue";
1740 		err_p = ERR_PTR(-ENOMEM);
1741 		goto bad_wq;
1742 	}
1743 
1744 	INIT_WORK(&pool->worker, do_worker);
1745 	INIT_DELAYED_WORK(&pool->waker, do_waker);
1746 	spin_lock_init(&pool->lock);
1747 	bio_list_init(&pool->deferred_bios);
1748 	bio_list_init(&pool->deferred_flush_bios);
1749 	INIT_LIST_HEAD(&pool->prepared_mappings);
1750 	INIT_LIST_HEAD(&pool->prepared_discards);
1751 	pool->low_water_triggered = 0;
1752 	pool->no_free_space = 0;
1753 	bio_list_init(&pool->retry_on_resume_list);
1754 	ds_init(&pool->shared_read_ds);
1755 	ds_init(&pool->all_io_ds);
1756 
1757 	pool->next_mapping = NULL;
1758 	pool->mapping_pool =
1759 		mempool_create_kmalloc_pool(MAPPING_POOL_SIZE, sizeof(struct new_mapping));
1760 	if (!pool->mapping_pool) {
1761 		*error = "Error creating pool's mapping mempool";
1762 		err_p = ERR_PTR(-ENOMEM);
1763 		goto bad_mapping_pool;
1764 	}
1765 
1766 	pool->endio_hook_pool =
1767 		mempool_create_kmalloc_pool(ENDIO_HOOK_POOL_SIZE, sizeof(struct endio_hook));
1768 	if (!pool->endio_hook_pool) {
1769 		*error = "Error creating pool's endio_hook mempool";
1770 		err_p = ERR_PTR(-ENOMEM);
1771 		goto bad_endio_hook_pool;
1772 	}
1773 	pool->ref_count = 1;
1774 	pool->last_commit_jiffies = jiffies;
1775 	pool->pool_md = pool_md;
1776 	pool->md_dev = metadata_dev;
1777 	__pool_table_insert(pool);
1778 
1779 	return pool;
1780 
1781 bad_endio_hook_pool:
1782 	mempool_destroy(pool->mapping_pool);
1783 bad_mapping_pool:
1784 	destroy_workqueue(pool->wq);
1785 bad_wq:
1786 	dm_kcopyd_client_destroy(pool->copier);
1787 bad_kcopyd_client:
1788 	prison_destroy(pool->prison);
1789 bad_prison:
1790 	kfree(pool);
1791 bad_pool:
1792 	if (dm_pool_metadata_close(pmd))
1793 		DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
1794 
1795 	return err_p;
1796 }
1797 
1798 static void __pool_inc(struct pool *pool)
1799 {
1800 	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
1801 	pool->ref_count++;
1802 }
1803 
1804 static void __pool_dec(struct pool *pool)
1805 {
1806 	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
1807 	BUG_ON(!pool->ref_count);
1808 	if (!--pool->ref_count)
1809 		__pool_destroy(pool);
1810 }
1811 
1812 static struct pool *__pool_find(struct mapped_device *pool_md,
1813 				struct block_device *metadata_dev,
1814 				unsigned long block_size, char **error,
1815 				int *created)
1816 {
1817 	struct pool *pool = __pool_table_lookup_metadata_dev(metadata_dev);
1818 
1819 	if (pool) {
1820 		if (pool->pool_md != pool_md)
1821 			return ERR_PTR(-EBUSY);
1822 		__pool_inc(pool);
1823 
1824 	} else {
1825 		pool = __pool_table_lookup(pool_md);
1826 		if (pool) {
1827 			if (pool->md_dev != metadata_dev)
1828 				return ERR_PTR(-EINVAL);
1829 			__pool_inc(pool);
1830 
1831 		} else {
1832 			pool = pool_create(pool_md, metadata_dev, block_size, error);
1833 			*created = 1;
1834 		}
1835 	}
1836 
1837 	return pool;
1838 }
1839 
1840 /*----------------------------------------------------------------
1841  * Pool target methods
1842  *--------------------------------------------------------------*/
1843 static void pool_dtr(struct dm_target *ti)
1844 {
1845 	struct pool_c *pt = ti->private;
1846 
1847 	mutex_lock(&dm_thin_pool_table.mutex);
1848 
1849 	unbind_control_target(pt->pool, ti);
1850 	__pool_dec(pt->pool);
1851 	dm_put_device(ti, pt->metadata_dev);
1852 	dm_put_device(ti, pt->data_dev);
1853 	kfree(pt);
1854 
1855 	mutex_unlock(&dm_thin_pool_table.mutex);
1856 }
1857 
1858 static int parse_pool_features(struct dm_arg_set *as, struct pool_features *pf,
1859 			       struct dm_target *ti)
1860 {
1861 	int r;
1862 	unsigned argc;
1863 	const char *arg_name;
1864 
1865 	static struct dm_arg _args[] = {
1866 		{0, 3, "Invalid number of pool feature arguments"},
1867 	};
1868 
1869 	/*
1870 	 * No feature arguments supplied.
1871 	 */
1872 	if (!as->argc)
1873 		return 0;
1874 
1875 	r = dm_read_arg_group(_args, as, &argc, &ti->error);
1876 	if (r)
1877 		return -EINVAL;
1878 
1879 	while (argc && !r) {
1880 		arg_name = dm_shift_arg(as);
1881 		argc--;
1882 
1883 		if (!strcasecmp(arg_name, "skip_block_zeroing")) {
1884 			pf->zero_new_blocks = 0;
1885 			continue;
1886 		} else if (!strcasecmp(arg_name, "ignore_discard")) {
1887 			pf->discard_enabled = 0;
1888 			continue;
1889 		} else if (!strcasecmp(arg_name, "no_discard_passdown")) {
1890 			pf->discard_passdown = 0;
1891 			continue;
1892 		}
1893 
1894 		ti->error = "Unrecognised pool feature requested";
1895 		r = -EINVAL;
1896 	}
1897 
1898 	return r;
1899 }
1900 
1901 /*
1902  * thin-pool <metadata dev> <data dev>
1903  *	     <data block size (sectors)>
1904  *	     <low water mark (blocks)>
1905  *	     [<#feature args> [<arg>]*]
1906  *
1907  * Optional feature arguments are:
1908  *	     skip_block_zeroing: skips the zeroing of newly-provisioned blocks.
1909  *	     ignore_discard: disable discard
1910  *	     no_discard_passdown: don't pass discards down to the data device
1911  */
1912 static int pool_ctr(struct dm_target *ti, unsigned argc, char **argv)
1913 {
1914 	int r, pool_created = 0;
1915 	struct pool_c *pt;
1916 	struct pool *pool;
1917 	struct pool_features pf;
1918 	struct dm_arg_set as;
1919 	struct dm_dev *data_dev;
1920 	unsigned long block_size;
1921 	dm_block_t low_water_blocks;
1922 	struct dm_dev *metadata_dev;
1923 	sector_t metadata_dev_size;
1924 	char b[BDEVNAME_SIZE];
1925 
1926 	/*
1927 	 * FIXME Remove validation from scope of lock.
1928 	 */
1929 	mutex_lock(&dm_thin_pool_table.mutex);
1930 
1931 	if (argc < 4) {
1932 		ti->error = "Invalid argument count";
1933 		r = -EINVAL;
1934 		goto out_unlock;
1935 	}
1936 	as.argc = argc;
1937 	as.argv = argv;
1938 
1939 	r = dm_get_device(ti, argv[0], FMODE_READ | FMODE_WRITE, &metadata_dev);
1940 	if (r) {
1941 		ti->error = "Error opening metadata block device";
1942 		goto out_unlock;
1943 	}
1944 
1945 	metadata_dev_size = i_size_read(metadata_dev->bdev->bd_inode) >> SECTOR_SHIFT;
1946 	if (metadata_dev_size > THIN_METADATA_MAX_SECTORS_WARNING)
1947 		DMWARN("Metadata device %s is larger than %u sectors: excess space will not be used.",
1948 		       bdevname(metadata_dev->bdev, b), THIN_METADATA_MAX_SECTORS);
1949 
1950 	r = dm_get_device(ti, argv[1], FMODE_READ | FMODE_WRITE, &data_dev);
1951 	if (r) {
1952 		ti->error = "Error getting data device";
1953 		goto out_metadata;
1954 	}
1955 
1956 	if (kstrtoul(argv[2], 10, &block_size) || !block_size ||
1957 	    block_size < DATA_DEV_BLOCK_SIZE_MIN_SECTORS ||
1958 	    block_size > DATA_DEV_BLOCK_SIZE_MAX_SECTORS ||
1959 	    !is_power_of_2(block_size)) {
1960 		ti->error = "Invalid block size";
1961 		r = -EINVAL;
1962 		goto out;
1963 	}
1964 
1965 	if (kstrtoull(argv[3], 10, (unsigned long long *)&low_water_blocks)) {
1966 		ti->error = "Invalid low water mark";
1967 		r = -EINVAL;
1968 		goto out;
1969 	}
1970 
1971 	/*
1972 	 * Set default pool features.
1973 	 */
1974 	pool_features_init(&pf);
1975 
1976 	dm_consume_args(&as, 4);
1977 	r = parse_pool_features(&as, &pf, ti);
1978 	if (r)
1979 		goto out;
1980 
1981 	pt = kzalloc(sizeof(*pt), GFP_KERNEL);
1982 	if (!pt) {
1983 		r = -ENOMEM;
1984 		goto out;
1985 	}
1986 
1987 	pool = __pool_find(dm_table_get_md(ti->table), metadata_dev->bdev,
1988 			   block_size, &ti->error, &pool_created);
1989 	if (IS_ERR(pool)) {
1990 		r = PTR_ERR(pool);
1991 		goto out_free_pt;
1992 	}
1993 
1994 	/*
1995 	 * 'pool_created' reflects whether this is the first table load.
1996 	 * Top level discard support is not allowed to be changed after
1997 	 * initial load.  This would require a pool reload to trigger thin
1998 	 * device changes.
1999 	 */
2000 	if (!pool_created && pf.discard_enabled != pool->pf.discard_enabled) {
2001 		ti->error = "Discard support cannot be disabled once enabled";
2002 		r = -EINVAL;
2003 		goto out_flags_changed;
2004 	}
2005 
2006 	pt->pool = pool;
2007 	pt->ti = ti;
2008 	pt->metadata_dev = metadata_dev;
2009 	pt->data_dev = data_dev;
2010 	pt->low_water_blocks = low_water_blocks;
2011 	pt->pf = pf;
2012 	ti->num_flush_requests = 1;
2013 	/*
2014 	 * Only need to enable discards if the pool should pass
2015 	 * them down to the data device.  The thin device's discard
2016 	 * processing will cause mappings to be removed from the btree.
2017 	 */
2018 	if (pf.discard_enabled && pf.discard_passdown) {
2019 		ti->num_discard_requests = 1;
2020 		/*
2021 		 * Setting 'discards_supported' circumvents the normal
2022 		 * stacking of discard limits (this keeps the pool and
2023 		 * thin devices' discard limits consistent).
2024 		 */
2025 		ti->discards_supported = 1;
2026 	}
2027 	ti->private = pt;
2028 
2029 	pt->callbacks.congested_fn = pool_is_congested;
2030 	dm_table_add_target_callbacks(ti->table, &pt->callbacks);
2031 
2032 	mutex_unlock(&dm_thin_pool_table.mutex);
2033 
2034 	return 0;
2035 
2036 out_flags_changed:
2037 	__pool_dec(pool);
2038 out_free_pt:
2039 	kfree(pt);
2040 out:
2041 	dm_put_device(ti, data_dev);
2042 out_metadata:
2043 	dm_put_device(ti, metadata_dev);
2044 out_unlock:
2045 	mutex_unlock(&dm_thin_pool_table.mutex);
2046 
2047 	return r;
2048 }
2049 
2050 static int pool_map(struct dm_target *ti, struct bio *bio,
2051 		    union map_info *map_context)
2052 {
2053 	int r;
2054 	struct pool_c *pt = ti->private;
2055 	struct pool *pool = pt->pool;
2056 	unsigned long flags;
2057 
2058 	/*
2059 	 * As this is a singleton target, ti->begin is always zero.
2060 	 */
2061 	spin_lock_irqsave(&pool->lock, flags);
2062 	bio->bi_bdev = pt->data_dev->bdev;
2063 	r = DM_MAPIO_REMAPPED;
2064 	spin_unlock_irqrestore(&pool->lock, flags);
2065 
2066 	return r;
2067 }
2068 
2069 /*
2070  * Retrieves the number of blocks of the data device from
2071  * the superblock and compares it to the actual device size,
2072  * thus resizing the data device in case it has grown.
2073  *
2074  * This both copes with opening preallocated data devices in the ctr
2075  * being followed by a resume
2076  * -and-
2077  * calling the resume method individually after userspace has
2078  * grown the data device in reaction to a table event.
2079  */
2080 static int pool_preresume(struct dm_target *ti)
2081 {
2082 	int r;
2083 	struct pool_c *pt = ti->private;
2084 	struct pool *pool = pt->pool;
2085 	dm_block_t data_size, sb_data_size;
2086 
2087 	/*
2088 	 * Take control of the pool object.
2089 	 */
2090 	r = bind_control_target(pool, ti);
2091 	if (r)
2092 		return r;
2093 
2094 	data_size = ti->len >> pool->block_shift;
2095 	r = dm_pool_get_data_dev_size(pool->pmd, &sb_data_size);
2096 	if (r) {
2097 		DMERR("failed to retrieve data device size");
2098 		return r;
2099 	}
2100 
2101 	if (data_size < sb_data_size) {
2102 		DMERR("pool target too small, is %llu blocks (expected %llu)",
2103 		      data_size, sb_data_size);
2104 		return -EINVAL;
2105 
2106 	} else if (data_size > sb_data_size) {
2107 		r = dm_pool_resize_data_dev(pool->pmd, data_size);
2108 		if (r) {
2109 			DMERR("failed to resize data device");
2110 			return r;
2111 		}
2112 
2113 		r = dm_pool_commit_metadata(pool->pmd);
2114 		if (r) {
2115 			DMERR("%s: dm_pool_commit_metadata() failed, error = %d",
2116 			      __func__, r);
2117 			return r;
2118 		}
2119 	}
2120 
2121 	return 0;
2122 }
2123 
2124 static void pool_resume(struct dm_target *ti)
2125 {
2126 	struct pool_c *pt = ti->private;
2127 	struct pool *pool = pt->pool;
2128 	unsigned long flags;
2129 
2130 	spin_lock_irqsave(&pool->lock, flags);
2131 	pool->low_water_triggered = 0;
2132 	pool->no_free_space = 0;
2133 	__requeue_bios(pool);
2134 	spin_unlock_irqrestore(&pool->lock, flags);
2135 
2136 	do_waker(&pool->waker.work);
2137 }
2138 
2139 static void pool_postsuspend(struct dm_target *ti)
2140 {
2141 	int r;
2142 	struct pool_c *pt = ti->private;
2143 	struct pool *pool = pt->pool;
2144 
2145 	cancel_delayed_work(&pool->waker);
2146 	flush_workqueue(pool->wq);
2147 
2148 	r = dm_pool_commit_metadata(pool->pmd);
2149 	if (r < 0) {
2150 		DMERR("%s: dm_pool_commit_metadata() failed, error = %d",
2151 		      __func__, r);
2152 		/* FIXME: invalidate device? error the next FUA or FLUSH bio ?*/
2153 	}
2154 }
2155 
2156 static int check_arg_count(unsigned argc, unsigned args_required)
2157 {
2158 	if (argc != args_required) {
2159 		DMWARN("Message received with %u arguments instead of %u.",
2160 		       argc, args_required);
2161 		return -EINVAL;
2162 	}
2163 
2164 	return 0;
2165 }
2166 
2167 static int read_dev_id(char *arg, dm_thin_id *dev_id, int warning)
2168 {
2169 	if (!kstrtoull(arg, 10, (unsigned long long *)dev_id) &&
2170 	    *dev_id <= MAX_DEV_ID)
2171 		return 0;
2172 
2173 	if (warning)
2174 		DMWARN("Message received with invalid device id: %s", arg);
2175 
2176 	return -EINVAL;
2177 }
2178 
2179 static int process_create_thin_mesg(unsigned argc, char **argv, struct pool *pool)
2180 {
2181 	dm_thin_id dev_id;
2182 	int r;
2183 
2184 	r = check_arg_count(argc, 2);
2185 	if (r)
2186 		return r;
2187 
2188 	r = read_dev_id(argv[1], &dev_id, 1);
2189 	if (r)
2190 		return r;
2191 
2192 	r = dm_pool_create_thin(pool->pmd, dev_id);
2193 	if (r) {
2194 		DMWARN("Creation of new thinly-provisioned device with id %s failed.",
2195 		       argv[1]);
2196 		return r;
2197 	}
2198 
2199 	return 0;
2200 }
2201 
2202 static int process_create_snap_mesg(unsigned argc, char **argv, struct pool *pool)
2203 {
2204 	dm_thin_id dev_id;
2205 	dm_thin_id origin_dev_id;
2206 	int r;
2207 
2208 	r = check_arg_count(argc, 3);
2209 	if (r)
2210 		return r;
2211 
2212 	r = read_dev_id(argv[1], &dev_id, 1);
2213 	if (r)
2214 		return r;
2215 
2216 	r = read_dev_id(argv[2], &origin_dev_id, 1);
2217 	if (r)
2218 		return r;
2219 
2220 	r = dm_pool_create_snap(pool->pmd, dev_id, origin_dev_id);
2221 	if (r) {
2222 		DMWARN("Creation of new snapshot %s of device %s failed.",
2223 		       argv[1], argv[2]);
2224 		return r;
2225 	}
2226 
2227 	return 0;
2228 }
2229 
2230 static int process_delete_mesg(unsigned argc, char **argv, struct pool *pool)
2231 {
2232 	dm_thin_id dev_id;
2233 	int r;
2234 
2235 	r = check_arg_count(argc, 2);
2236 	if (r)
2237 		return r;
2238 
2239 	r = read_dev_id(argv[1], &dev_id, 1);
2240 	if (r)
2241 		return r;
2242 
2243 	r = dm_pool_delete_thin_device(pool->pmd, dev_id);
2244 	if (r)
2245 		DMWARN("Deletion of thin device %s failed.", argv[1]);
2246 
2247 	return r;
2248 }
2249 
2250 static int process_set_transaction_id_mesg(unsigned argc, char **argv, struct pool *pool)
2251 {
2252 	dm_thin_id old_id, new_id;
2253 	int r;
2254 
2255 	r = check_arg_count(argc, 3);
2256 	if (r)
2257 		return r;
2258 
2259 	if (kstrtoull(argv[1], 10, (unsigned long long *)&old_id)) {
2260 		DMWARN("set_transaction_id message: Unrecognised id %s.", argv[1]);
2261 		return -EINVAL;
2262 	}
2263 
2264 	if (kstrtoull(argv[2], 10, (unsigned long long *)&new_id)) {
2265 		DMWARN("set_transaction_id message: Unrecognised new id %s.", argv[2]);
2266 		return -EINVAL;
2267 	}
2268 
2269 	r = dm_pool_set_metadata_transaction_id(pool->pmd, old_id, new_id);
2270 	if (r) {
2271 		DMWARN("Failed to change transaction id from %s to %s.",
2272 		       argv[1], argv[2]);
2273 		return r;
2274 	}
2275 
2276 	return 0;
2277 }
2278 
2279 /*
2280  * Messages supported:
2281  *   create_thin	<dev_id>
2282  *   create_snap	<dev_id> <origin_id>
2283  *   delete		<dev_id>
2284  *   trim		<dev_id> <new_size_in_sectors>
2285  *   set_transaction_id <current_trans_id> <new_trans_id>
2286  */
2287 static int pool_message(struct dm_target *ti, unsigned argc, char **argv)
2288 {
2289 	int r = -EINVAL;
2290 	struct pool_c *pt = ti->private;
2291 	struct pool *pool = pt->pool;
2292 
2293 	if (!strcasecmp(argv[0], "create_thin"))
2294 		r = process_create_thin_mesg(argc, argv, pool);
2295 
2296 	else if (!strcasecmp(argv[0], "create_snap"))
2297 		r = process_create_snap_mesg(argc, argv, pool);
2298 
2299 	else if (!strcasecmp(argv[0], "delete"))
2300 		r = process_delete_mesg(argc, argv, pool);
2301 
2302 	else if (!strcasecmp(argv[0], "set_transaction_id"))
2303 		r = process_set_transaction_id_mesg(argc, argv, pool);
2304 
2305 	else
2306 		DMWARN("Unrecognised thin pool target message received: %s", argv[0]);
2307 
2308 	if (!r) {
2309 		r = dm_pool_commit_metadata(pool->pmd);
2310 		if (r)
2311 			DMERR("%s message: dm_pool_commit_metadata() failed, error = %d",
2312 			      argv[0], r);
2313 	}
2314 
2315 	return r;
2316 }
2317 
2318 /*
2319  * Status line is:
2320  *    <transaction id> <used metadata sectors>/<total metadata sectors>
2321  *    <used data sectors>/<total data sectors> <held metadata root>
2322  */
2323 static int pool_status(struct dm_target *ti, status_type_t type,
2324 		       char *result, unsigned maxlen)
2325 {
2326 	int r, count;
2327 	unsigned sz = 0;
2328 	uint64_t transaction_id;
2329 	dm_block_t nr_free_blocks_data;
2330 	dm_block_t nr_free_blocks_metadata;
2331 	dm_block_t nr_blocks_data;
2332 	dm_block_t nr_blocks_metadata;
2333 	dm_block_t held_root;
2334 	char buf[BDEVNAME_SIZE];
2335 	char buf2[BDEVNAME_SIZE];
2336 	struct pool_c *pt = ti->private;
2337 	struct pool *pool = pt->pool;
2338 
2339 	switch (type) {
2340 	case STATUSTYPE_INFO:
2341 		r = dm_pool_get_metadata_transaction_id(pool->pmd,
2342 							&transaction_id);
2343 		if (r)
2344 			return r;
2345 
2346 		r = dm_pool_get_free_metadata_block_count(pool->pmd,
2347 							  &nr_free_blocks_metadata);
2348 		if (r)
2349 			return r;
2350 
2351 		r = dm_pool_get_metadata_dev_size(pool->pmd, &nr_blocks_metadata);
2352 		if (r)
2353 			return r;
2354 
2355 		r = dm_pool_get_free_block_count(pool->pmd,
2356 						 &nr_free_blocks_data);
2357 		if (r)
2358 			return r;
2359 
2360 		r = dm_pool_get_data_dev_size(pool->pmd, &nr_blocks_data);
2361 		if (r)
2362 			return r;
2363 
2364 		r = dm_pool_get_held_metadata_root(pool->pmd, &held_root);
2365 		if (r)
2366 			return r;
2367 
2368 		DMEMIT("%llu %llu/%llu %llu/%llu ",
2369 		       (unsigned long long)transaction_id,
2370 		       (unsigned long long)(nr_blocks_metadata - nr_free_blocks_metadata),
2371 		       (unsigned long long)nr_blocks_metadata,
2372 		       (unsigned long long)(nr_blocks_data - nr_free_blocks_data),
2373 		       (unsigned long long)nr_blocks_data);
2374 
2375 		if (held_root)
2376 			DMEMIT("%llu", held_root);
2377 		else
2378 			DMEMIT("-");
2379 
2380 		break;
2381 
2382 	case STATUSTYPE_TABLE:
2383 		DMEMIT("%s %s %lu %llu ",
2384 		       format_dev_t(buf, pt->metadata_dev->bdev->bd_dev),
2385 		       format_dev_t(buf2, pt->data_dev->bdev->bd_dev),
2386 		       (unsigned long)pool->sectors_per_block,
2387 		       (unsigned long long)pt->low_water_blocks);
2388 
2389 		count = !pool->pf.zero_new_blocks + !pool->pf.discard_enabled +
2390 			!pt->pf.discard_passdown;
2391 		DMEMIT("%u ", count);
2392 
2393 		if (!pool->pf.zero_new_blocks)
2394 			DMEMIT("skip_block_zeroing ");
2395 
2396 		if (!pool->pf.discard_enabled)
2397 			DMEMIT("ignore_discard ");
2398 
2399 		if (!pt->pf.discard_passdown)
2400 			DMEMIT("no_discard_passdown ");
2401 
2402 		break;
2403 	}
2404 
2405 	return 0;
2406 }
2407 
2408 static int pool_iterate_devices(struct dm_target *ti,
2409 				iterate_devices_callout_fn fn, void *data)
2410 {
2411 	struct pool_c *pt = ti->private;
2412 
2413 	return fn(ti, pt->data_dev, 0, ti->len, data);
2414 }
2415 
2416 static int pool_merge(struct dm_target *ti, struct bvec_merge_data *bvm,
2417 		      struct bio_vec *biovec, int max_size)
2418 {
2419 	struct pool_c *pt = ti->private;
2420 	struct request_queue *q = bdev_get_queue(pt->data_dev->bdev);
2421 
2422 	if (!q->merge_bvec_fn)
2423 		return max_size;
2424 
2425 	bvm->bi_bdev = pt->data_dev->bdev;
2426 
2427 	return min(max_size, q->merge_bvec_fn(q, bvm, biovec));
2428 }
2429 
2430 static void set_discard_limits(struct pool *pool, struct queue_limits *limits)
2431 {
2432 	/*
2433 	 * FIXME: these limits may be incompatible with the pool's data device
2434 	 */
2435 	limits->max_discard_sectors = pool->sectors_per_block;
2436 
2437 	/*
2438 	 * This is just a hint, and not enforced.  We have to cope with
2439 	 * bios that overlap 2 blocks.
2440 	 */
2441 	limits->discard_granularity = pool->sectors_per_block << SECTOR_SHIFT;
2442 	limits->discard_zeroes_data = pool->pf.zero_new_blocks;
2443 }
2444 
2445 static void pool_io_hints(struct dm_target *ti, struct queue_limits *limits)
2446 {
2447 	struct pool_c *pt = ti->private;
2448 	struct pool *pool = pt->pool;
2449 
2450 	blk_limits_io_min(limits, 0);
2451 	blk_limits_io_opt(limits, pool->sectors_per_block << SECTOR_SHIFT);
2452 	if (pool->pf.discard_enabled)
2453 		set_discard_limits(pool, limits);
2454 }
2455 
2456 static struct target_type pool_target = {
2457 	.name = "thin-pool",
2458 	.features = DM_TARGET_SINGLETON | DM_TARGET_ALWAYS_WRITEABLE |
2459 		    DM_TARGET_IMMUTABLE,
2460 	.version = {1, 1, 0},
2461 	.module = THIS_MODULE,
2462 	.ctr = pool_ctr,
2463 	.dtr = pool_dtr,
2464 	.map = pool_map,
2465 	.postsuspend = pool_postsuspend,
2466 	.preresume = pool_preresume,
2467 	.resume = pool_resume,
2468 	.message = pool_message,
2469 	.status = pool_status,
2470 	.merge = pool_merge,
2471 	.iterate_devices = pool_iterate_devices,
2472 	.io_hints = pool_io_hints,
2473 };
2474 
2475 /*----------------------------------------------------------------
2476  * Thin target methods
2477  *--------------------------------------------------------------*/
2478 static void thin_dtr(struct dm_target *ti)
2479 {
2480 	struct thin_c *tc = ti->private;
2481 
2482 	mutex_lock(&dm_thin_pool_table.mutex);
2483 
2484 	__pool_dec(tc->pool);
2485 	dm_pool_close_thin_device(tc->td);
2486 	dm_put_device(ti, tc->pool_dev);
2487 	if (tc->origin_dev)
2488 		dm_put_device(ti, tc->origin_dev);
2489 	kfree(tc);
2490 
2491 	mutex_unlock(&dm_thin_pool_table.mutex);
2492 }
2493 
2494 /*
2495  * Thin target parameters:
2496  *
2497  * <pool_dev> <dev_id> [origin_dev]
2498  *
2499  * pool_dev: the path to the pool (eg, /dev/mapper/my_pool)
2500  * dev_id: the internal device identifier
2501  * origin_dev: a device external to the pool that should act as the origin
2502  *
2503  * If the pool device has discards disabled, they get disabled for the thin
2504  * device as well.
2505  */
2506 static int thin_ctr(struct dm_target *ti, unsigned argc, char **argv)
2507 {
2508 	int r;
2509 	struct thin_c *tc;
2510 	struct dm_dev *pool_dev, *origin_dev;
2511 	struct mapped_device *pool_md;
2512 
2513 	mutex_lock(&dm_thin_pool_table.mutex);
2514 
2515 	if (argc != 2 && argc != 3) {
2516 		ti->error = "Invalid argument count";
2517 		r = -EINVAL;
2518 		goto out_unlock;
2519 	}
2520 
2521 	tc = ti->private = kzalloc(sizeof(*tc), GFP_KERNEL);
2522 	if (!tc) {
2523 		ti->error = "Out of memory";
2524 		r = -ENOMEM;
2525 		goto out_unlock;
2526 	}
2527 
2528 	if (argc == 3) {
2529 		r = dm_get_device(ti, argv[2], FMODE_READ, &origin_dev);
2530 		if (r) {
2531 			ti->error = "Error opening origin device";
2532 			goto bad_origin_dev;
2533 		}
2534 		tc->origin_dev = origin_dev;
2535 	}
2536 
2537 	r = dm_get_device(ti, argv[0], dm_table_get_mode(ti->table), &pool_dev);
2538 	if (r) {
2539 		ti->error = "Error opening pool device";
2540 		goto bad_pool_dev;
2541 	}
2542 	tc->pool_dev = pool_dev;
2543 
2544 	if (read_dev_id(argv[1], (unsigned long long *)&tc->dev_id, 0)) {
2545 		ti->error = "Invalid device id";
2546 		r = -EINVAL;
2547 		goto bad_common;
2548 	}
2549 
2550 	pool_md = dm_get_md(tc->pool_dev->bdev->bd_dev);
2551 	if (!pool_md) {
2552 		ti->error = "Couldn't get pool mapped device";
2553 		r = -EINVAL;
2554 		goto bad_common;
2555 	}
2556 
2557 	tc->pool = __pool_table_lookup(pool_md);
2558 	if (!tc->pool) {
2559 		ti->error = "Couldn't find pool object";
2560 		r = -EINVAL;
2561 		goto bad_pool_lookup;
2562 	}
2563 	__pool_inc(tc->pool);
2564 
2565 	r = dm_pool_open_thin_device(tc->pool->pmd, tc->dev_id, &tc->td);
2566 	if (r) {
2567 		ti->error = "Couldn't open thin internal device";
2568 		goto bad_thin_open;
2569 	}
2570 
2571 	ti->split_io = tc->pool->sectors_per_block;
2572 	ti->num_flush_requests = 1;
2573 
2574 	/* In case the pool supports discards, pass them on. */
2575 	if (tc->pool->pf.discard_enabled) {
2576 		ti->discards_supported = 1;
2577 		ti->num_discard_requests = 1;
2578 	}
2579 
2580 	dm_put(pool_md);
2581 
2582 	mutex_unlock(&dm_thin_pool_table.mutex);
2583 
2584 	return 0;
2585 
2586 bad_thin_open:
2587 	__pool_dec(tc->pool);
2588 bad_pool_lookup:
2589 	dm_put(pool_md);
2590 bad_common:
2591 	dm_put_device(ti, tc->pool_dev);
2592 bad_pool_dev:
2593 	if (tc->origin_dev)
2594 		dm_put_device(ti, tc->origin_dev);
2595 bad_origin_dev:
2596 	kfree(tc);
2597 out_unlock:
2598 	mutex_unlock(&dm_thin_pool_table.mutex);
2599 
2600 	return r;
2601 }
2602 
2603 static int thin_map(struct dm_target *ti, struct bio *bio,
2604 		    union map_info *map_context)
2605 {
2606 	bio->bi_sector = dm_target_offset(ti, bio->bi_sector);
2607 
2608 	return thin_bio_map(ti, bio, map_context);
2609 }
2610 
2611 static int thin_endio(struct dm_target *ti,
2612 		      struct bio *bio, int err,
2613 		      union map_info *map_context)
2614 {
2615 	unsigned long flags;
2616 	struct endio_hook *h = map_context->ptr;
2617 	struct list_head work;
2618 	struct new_mapping *m, *tmp;
2619 	struct pool *pool = h->tc->pool;
2620 
2621 	if (h->shared_read_entry) {
2622 		INIT_LIST_HEAD(&work);
2623 		ds_dec(h->shared_read_entry, &work);
2624 
2625 		spin_lock_irqsave(&pool->lock, flags);
2626 		list_for_each_entry_safe(m, tmp, &work, list) {
2627 			list_del(&m->list);
2628 			m->quiesced = 1;
2629 			__maybe_add_mapping(m);
2630 		}
2631 		spin_unlock_irqrestore(&pool->lock, flags);
2632 	}
2633 
2634 	if (h->all_io_entry) {
2635 		INIT_LIST_HEAD(&work);
2636 		ds_dec(h->all_io_entry, &work);
2637 		spin_lock_irqsave(&pool->lock, flags);
2638 		list_for_each_entry_safe(m, tmp, &work, list)
2639 			list_add(&m->list, &pool->prepared_discards);
2640 		spin_unlock_irqrestore(&pool->lock, flags);
2641 	}
2642 
2643 	mempool_free(h, pool->endio_hook_pool);
2644 
2645 	return 0;
2646 }
2647 
2648 static void thin_postsuspend(struct dm_target *ti)
2649 {
2650 	if (dm_noflush_suspending(ti))
2651 		requeue_io((struct thin_c *)ti->private);
2652 }
2653 
2654 /*
2655  * <nr mapped sectors> <highest mapped sector>
2656  */
2657 static int thin_status(struct dm_target *ti, status_type_t type,
2658 		       char *result, unsigned maxlen)
2659 {
2660 	int r;
2661 	ssize_t sz = 0;
2662 	dm_block_t mapped, highest;
2663 	char buf[BDEVNAME_SIZE];
2664 	struct thin_c *tc = ti->private;
2665 
2666 	if (!tc->td)
2667 		DMEMIT("-");
2668 	else {
2669 		switch (type) {
2670 		case STATUSTYPE_INFO:
2671 			r = dm_thin_get_mapped_count(tc->td, &mapped);
2672 			if (r)
2673 				return r;
2674 
2675 			r = dm_thin_get_highest_mapped_block(tc->td, &highest);
2676 			if (r < 0)
2677 				return r;
2678 
2679 			DMEMIT("%llu ", mapped * tc->pool->sectors_per_block);
2680 			if (r)
2681 				DMEMIT("%llu", ((highest + 1) *
2682 						tc->pool->sectors_per_block) - 1);
2683 			else
2684 				DMEMIT("-");
2685 			break;
2686 
2687 		case STATUSTYPE_TABLE:
2688 			DMEMIT("%s %lu",
2689 			       format_dev_t(buf, tc->pool_dev->bdev->bd_dev),
2690 			       (unsigned long) tc->dev_id);
2691 			if (tc->origin_dev)
2692 				DMEMIT(" %s", format_dev_t(buf, tc->origin_dev->bdev->bd_dev));
2693 			break;
2694 		}
2695 	}
2696 
2697 	return 0;
2698 }
2699 
2700 static int thin_iterate_devices(struct dm_target *ti,
2701 				iterate_devices_callout_fn fn, void *data)
2702 {
2703 	dm_block_t blocks;
2704 	struct thin_c *tc = ti->private;
2705 
2706 	/*
2707 	 * We can't call dm_pool_get_data_dev_size() since that blocks.  So
2708 	 * we follow a more convoluted path through to the pool's target.
2709 	 */
2710 	if (!tc->pool->ti)
2711 		return 0;	/* nothing is bound */
2712 
2713 	blocks = tc->pool->ti->len >> tc->pool->block_shift;
2714 	if (blocks)
2715 		return fn(ti, tc->pool_dev, 0, tc->pool->sectors_per_block * blocks, data);
2716 
2717 	return 0;
2718 }
2719 
2720 static void thin_io_hints(struct dm_target *ti, struct queue_limits *limits)
2721 {
2722 	struct thin_c *tc = ti->private;
2723 	struct pool *pool = tc->pool;
2724 
2725 	blk_limits_io_min(limits, 0);
2726 	blk_limits_io_opt(limits, pool->sectors_per_block << SECTOR_SHIFT);
2727 	set_discard_limits(pool, limits);
2728 }
2729 
2730 static struct target_type thin_target = {
2731 	.name = "thin",
2732 	.version = {1, 1, 0},
2733 	.module	= THIS_MODULE,
2734 	.ctr = thin_ctr,
2735 	.dtr = thin_dtr,
2736 	.map = thin_map,
2737 	.end_io = thin_endio,
2738 	.postsuspend = thin_postsuspend,
2739 	.status = thin_status,
2740 	.iterate_devices = thin_iterate_devices,
2741 	.io_hints = thin_io_hints,
2742 };
2743 
2744 /*----------------------------------------------------------------*/
2745 
2746 static int __init dm_thin_init(void)
2747 {
2748 	int r;
2749 
2750 	pool_table_init();
2751 
2752 	r = dm_register_target(&thin_target);
2753 	if (r)
2754 		return r;
2755 
2756 	r = dm_register_target(&pool_target);
2757 	if (r)
2758 		dm_unregister_target(&thin_target);
2759 
2760 	return r;
2761 }
2762 
2763 static void dm_thin_exit(void)
2764 {
2765 	dm_unregister_target(&thin_target);
2766 	dm_unregister_target(&pool_target);
2767 }
2768 
2769 module_init(dm_thin_init);
2770 module_exit(dm_thin_exit);
2771 
2772 MODULE_DESCRIPTION(DM_NAME " thin provisioning target");
2773 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
2774 MODULE_LICENSE("GPL");
2775