xref: /linux/drivers/md/dm-thin.c (revision cf2f33a4e54096f90652cca3511fd6a456ea5abe)
1 /*
2  * Copyright (C) 2011-2012 Red Hat UK.
3  *
4  * This file is released under the GPL.
5  */
6 
7 #include "dm-thin-metadata.h"
8 #include "dm-bio-prison.h"
9 #include "dm.h"
10 
11 #include <linux/device-mapper.h>
12 #include <linux/dm-io.h>
13 #include <linux/dm-kcopyd.h>
14 #include <linux/jiffies.h>
15 #include <linux/log2.h>
16 #include <linux/list.h>
17 #include <linux/rculist.h>
18 #include <linux/init.h>
19 #include <linux/module.h>
20 #include <linux/slab.h>
21 #include <linux/vmalloc.h>
22 #include <linux/sort.h>
23 #include <linux/rbtree.h>
24 
25 #define	DM_MSG_PREFIX	"thin"
26 
27 /*
28  * Tunable constants
29  */
30 #define ENDIO_HOOK_POOL_SIZE 1024
31 #define MAPPING_POOL_SIZE 1024
32 #define COMMIT_PERIOD HZ
33 #define NO_SPACE_TIMEOUT_SECS 60
34 
35 static unsigned no_space_timeout_secs = NO_SPACE_TIMEOUT_SECS;
36 
37 DECLARE_DM_KCOPYD_THROTTLE_WITH_MODULE_PARM(snapshot_copy_throttle,
38 		"A percentage of time allocated for copy on write");
39 
40 /*
41  * The block size of the device holding pool data must be
42  * between 64KB and 1GB.
43  */
44 #define DATA_DEV_BLOCK_SIZE_MIN_SECTORS (64 * 1024 >> SECTOR_SHIFT)
45 #define DATA_DEV_BLOCK_SIZE_MAX_SECTORS (1024 * 1024 * 1024 >> SECTOR_SHIFT)
46 
47 /*
48  * Device id is restricted to 24 bits.
49  */
50 #define MAX_DEV_ID ((1 << 24) - 1)
51 
52 /*
53  * How do we handle breaking sharing of data blocks?
54  * =================================================
55  *
56  * We use a standard copy-on-write btree to store the mappings for the
57  * devices (note I'm talking about copy-on-write of the metadata here, not
58  * the data).  When you take an internal snapshot you clone the root node
59  * of the origin btree.  After this there is no concept of an origin or a
60  * snapshot.  They are just two device trees that happen to point to the
61  * same data blocks.
62  *
63  * When we get a write in we decide if it's to a shared data block using
64  * some timestamp magic.  If it is, we have to break sharing.
65  *
66  * Let's say we write to a shared block in what was the origin.  The
67  * steps are:
68  *
69  * i) plug io further to this physical block. (see bio_prison code).
70  *
71  * ii) quiesce any read io to that shared data block.  Obviously
72  * including all devices that share this block.  (see dm_deferred_set code)
73  *
74  * iii) copy the data block to a newly allocate block.  This step can be
75  * missed out if the io covers the block. (schedule_copy).
76  *
77  * iv) insert the new mapping into the origin's btree
78  * (process_prepared_mapping).  This act of inserting breaks some
79  * sharing of btree nodes between the two devices.  Breaking sharing only
80  * effects the btree of that specific device.  Btrees for the other
81  * devices that share the block never change.  The btree for the origin
82  * device as it was after the last commit is untouched, ie. we're using
83  * persistent data structures in the functional programming sense.
84  *
85  * v) unplug io to this physical block, including the io that triggered
86  * the breaking of sharing.
87  *
88  * Steps (ii) and (iii) occur in parallel.
89  *
90  * The metadata _doesn't_ need to be committed before the io continues.  We
91  * get away with this because the io is always written to a _new_ block.
92  * If there's a crash, then:
93  *
94  * - The origin mapping will point to the old origin block (the shared
95  * one).  This will contain the data as it was before the io that triggered
96  * the breaking of sharing came in.
97  *
98  * - The snap mapping still points to the old block.  As it would after
99  * the commit.
100  *
101  * The downside of this scheme is the timestamp magic isn't perfect, and
102  * will continue to think that data block in the snapshot device is shared
103  * even after the write to the origin has broken sharing.  I suspect data
104  * blocks will typically be shared by many different devices, so we're
105  * breaking sharing n + 1 times, rather than n, where n is the number of
106  * devices that reference this data block.  At the moment I think the
107  * benefits far, far outweigh the disadvantages.
108  */
109 
110 /*----------------------------------------------------------------*/
111 
112 /*
113  * Key building.
114  */
115 enum lock_space {
116 	VIRTUAL,
117 	PHYSICAL
118 };
119 
120 static void build_key(struct dm_thin_device *td, enum lock_space ls,
121 		      dm_block_t b, dm_block_t e, struct dm_cell_key *key)
122 {
123 	key->virtual = (ls == VIRTUAL);
124 	key->dev = dm_thin_dev_id(td);
125 	key->block_begin = b;
126 	key->block_end = e;
127 }
128 
129 static void build_data_key(struct dm_thin_device *td, dm_block_t b,
130 			   struct dm_cell_key *key)
131 {
132 	build_key(td, PHYSICAL, b, b + 1llu, key);
133 }
134 
135 static void build_virtual_key(struct dm_thin_device *td, dm_block_t b,
136 			      struct dm_cell_key *key)
137 {
138 	build_key(td, VIRTUAL, b, b + 1llu, key);
139 }
140 
141 /*----------------------------------------------------------------*/
142 
143 #define THROTTLE_THRESHOLD (1 * HZ)
144 
145 struct throttle {
146 	struct rw_semaphore lock;
147 	unsigned long threshold;
148 	bool throttle_applied;
149 };
150 
151 static void throttle_init(struct throttle *t)
152 {
153 	init_rwsem(&t->lock);
154 	t->throttle_applied = false;
155 }
156 
157 static void throttle_work_start(struct throttle *t)
158 {
159 	t->threshold = jiffies + THROTTLE_THRESHOLD;
160 }
161 
162 static void throttle_work_update(struct throttle *t)
163 {
164 	if (!t->throttle_applied && jiffies > t->threshold) {
165 		down_write(&t->lock);
166 		t->throttle_applied = true;
167 	}
168 }
169 
170 static void throttle_work_complete(struct throttle *t)
171 {
172 	if (t->throttle_applied) {
173 		t->throttle_applied = false;
174 		up_write(&t->lock);
175 	}
176 }
177 
178 static void throttle_lock(struct throttle *t)
179 {
180 	down_read(&t->lock);
181 }
182 
183 static void throttle_unlock(struct throttle *t)
184 {
185 	up_read(&t->lock);
186 }
187 
188 /*----------------------------------------------------------------*/
189 
190 /*
191  * A pool device ties together a metadata device and a data device.  It
192  * also provides the interface for creating and destroying internal
193  * devices.
194  */
195 struct dm_thin_new_mapping;
196 
197 /*
198  * The pool runs in 4 modes.  Ordered in degraded order for comparisons.
199  */
200 enum pool_mode {
201 	PM_WRITE,		/* metadata may be changed */
202 	PM_OUT_OF_DATA_SPACE,	/* metadata may be changed, though data may not be allocated */
203 	PM_READ_ONLY,		/* metadata may not be changed */
204 	PM_FAIL,		/* all I/O fails */
205 };
206 
207 struct pool_features {
208 	enum pool_mode mode;
209 
210 	bool zero_new_blocks:1;
211 	bool discard_enabled:1;
212 	bool discard_passdown:1;
213 	bool error_if_no_space:1;
214 };
215 
216 struct thin_c;
217 typedef void (*process_bio_fn)(struct thin_c *tc, struct bio *bio);
218 typedef void (*process_cell_fn)(struct thin_c *tc, struct dm_bio_prison_cell *cell);
219 typedef void (*process_mapping_fn)(struct dm_thin_new_mapping *m);
220 
221 #define CELL_SORT_ARRAY_SIZE 8192
222 
223 struct pool {
224 	struct list_head list;
225 	struct dm_target *ti;	/* Only set if a pool target is bound */
226 
227 	struct mapped_device *pool_md;
228 	struct block_device *md_dev;
229 	struct dm_pool_metadata *pmd;
230 
231 	dm_block_t low_water_blocks;
232 	uint32_t sectors_per_block;
233 	int sectors_per_block_shift;
234 
235 	struct pool_features pf;
236 	bool low_water_triggered:1;	/* A dm event has been sent */
237 	bool suspended:1;
238 
239 	struct dm_bio_prison *prison;
240 	struct dm_kcopyd_client *copier;
241 
242 	struct workqueue_struct *wq;
243 	struct throttle throttle;
244 	struct work_struct worker;
245 	struct delayed_work waker;
246 	struct delayed_work no_space_timeout;
247 
248 	unsigned long last_commit_jiffies;
249 	unsigned ref_count;
250 
251 	spinlock_t lock;
252 	struct bio_list deferred_flush_bios;
253 	struct list_head prepared_mappings;
254 	struct list_head prepared_discards;
255 	struct list_head active_thins;
256 
257 	struct dm_deferred_set *shared_read_ds;
258 	struct dm_deferred_set *all_io_ds;
259 
260 	struct dm_thin_new_mapping *next_mapping;
261 	mempool_t *mapping_pool;
262 
263 	process_bio_fn process_bio;
264 	process_bio_fn process_discard;
265 
266 	process_cell_fn process_cell;
267 	process_cell_fn process_discard_cell;
268 
269 	process_mapping_fn process_prepared_mapping;
270 	process_mapping_fn process_prepared_discard;
271 
272 	struct dm_bio_prison_cell **cell_sort_array;
273 };
274 
275 static enum pool_mode get_pool_mode(struct pool *pool);
276 static void metadata_operation_failed(struct pool *pool, const char *op, int r);
277 
278 /*
279  * Target context for a pool.
280  */
281 struct pool_c {
282 	struct dm_target *ti;
283 	struct pool *pool;
284 	struct dm_dev *data_dev;
285 	struct dm_dev *metadata_dev;
286 	struct dm_target_callbacks callbacks;
287 
288 	dm_block_t low_water_blocks;
289 	struct pool_features requested_pf; /* Features requested during table load */
290 	struct pool_features adjusted_pf;  /* Features used after adjusting for constituent devices */
291 };
292 
293 /*
294  * Target context for a thin.
295  */
296 struct thin_c {
297 	struct list_head list;
298 	struct dm_dev *pool_dev;
299 	struct dm_dev *origin_dev;
300 	sector_t origin_size;
301 	dm_thin_id dev_id;
302 
303 	struct pool *pool;
304 	struct dm_thin_device *td;
305 	struct mapped_device *thin_md;
306 
307 	bool requeue_mode:1;
308 	spinlock_t lock;
309 	struct list_head deferred_cells;
310 	struct bio_list deferred_bio_list;
311 	struct bio_list retry_on_resume_list;
312 	struct rb_root sort_bio_list; /* sorted list of deferred bios */
313 
314 	/*
315 	 * Ensures the thin is not destroyed until the worker has finished
316 	 * iterating the active_thins list.
317 	 */
318 	atomic_t refcount;
319 	struct completion can_destroy;
320 };
321 
322 /*----------------------------------------------------------------*/
323 
324 /**
325  * __blkdev_issue_discard_async - queue a discard with async completion
326  * @bdev:	blockdev to issue discard for
327  * @sector:	start sector
328  * @nr_sects:	number of sectors to discard
329  * @gfp_mask:	memory allocation flags (for bio_alloc)
330  * @flags:	BLKDEV_IFL_* flags to control behaviour
331  * @parent_bio: parent discard bio that all sub discards get chained to
332  *
333  * Description:
334  *    Asynchronously issue a discard request for the sectors in question.
335  *    NOTE: this variant of blk-core's blkdev_issue_discard() is a stop-gap
336  *    that is being kept local to DM thinp until the block changes to allow
337  *    late bio splitting land upstream.
338  */
339 static int __blkdev_issue_discard_async(struct block_device *bdev, sector_t sector,
340 					sector_t nr_sects, gfp_t gfp_mask, unsigned long flags,
341 					struct bio *parent_bio)
342 {
343 	struct request_queue *q = bdev_get_queue(bdev);
344 	int type = REQ_WRITE | REQ_DISCARD;
345 	unsigned int max_discard_sectors, granularity;
346 	int alignment;
347 	struct bio *bio;
348 	int ret = 0;
349 	struct blk_plug plug;
350 
351 	if (!q)
352 		return -ENXIO;
353 
354 	if (!blk_queue_discard(q))
355 		return -EOPNOTSUPP;
356 
357 	/* Zero-sector (unknown) and one-sector granularities are the same.  */
358 	granularity = max(q->limits.discard_granularity >> 9, 1U);
359 	alignment = (bdev_discard_alignment(bdev) >> 9) % granularity;
360 
361 	/*
362 	 * Ensure that max_discard_sectors is of the proper
363 	 * granularity, so that requests stay aligned after a split.
364 	 */
365 	max_discard_sectors = min(q->limits.max_discard_sectors, UINT_MAX >> 9);
366 	max_discard_sectors -= max_discard_sectors % granularity;
367 	if (unlikely(!max_discard_sectors)) {
368 		/* Avoid infinite loop below. Being cautious never hurts. */
369 		return -EOPNOTSUPP;
370 	}
371 
372 	if (flags & BLKDEV_DISCARD_SECURE) {
373 		if (!blk_queue_secdiscard(q))
374 			return -EOPNOTSUPP;
375 		type |= REQ_SECURE;
376 	}
377 
378 	blk_start_plug(&plug);
379 	while (nr_sects) {
380 		unsigned int req_sects;
381 		sector_t end_sect, tmp;
382 
383 		/*
384 		 * Required bio_put occurs in bio_endio thanks to bio_chain below
385 		 */
386 		bio = bio_alloc(gfp_mask, 1);
387 		if (!bio) {
388 			ret = -ENOMEM;
389 			break;
390 		}
391 
392 		req_sects = min_t(sector_t, nr_sects, max_discard_sectors);
393 
394 		/*
395 		 * If splitting a request, and the next starting sector would be
396 		 * misaligned, stop the discard at the previous aligned sector.
397 		 */
398 		end_sect = sector + req_sects;
399 		tmp = end_sect;
400 		if (req_sects < nr_sects &&
401 		    sector_div(tmp, granularity) != alignment) {
402 			end_sect = end_sect - alignment;
403 			sector_div(end_sect, granularity);
404 			end_sect = end_sect * granularity + alignment;
405 			req_sects = end_sect - sector;
406 		}
407 
408 		bio_chain(bio, parent_bio);
409 
410 		bio->bi_iter.bi_sector = sector;
411 		bio->bi_bdev = bdev;
412 
413 		bio->bi_iter.bi_size = req_sects << 9;
414 		nr_sects -= req_sects;
415 		sector = end_sect;
416 
417 		submit_bio(type, bio);
418 
419 		/*
420 		 * We can loop for a long time in here, if someone does
421 		 * full device discards (like mkfs). Be nice and allow
422 		 * us to schedule out to avoid softlocking if preempt
423 		 * is disabled.
424 		 */
425 		cond_resched();
426 	}
427 	blk_finish_plug(&plug);
428 
429 	return ret;
430 }
431 
432 static bool block_size_is_power_of_two(struct pool *pool)
433 {
434 	return pool->sectors_per_block_shift >= 0;
435 }
436 
437 static sector_t block_to_sectors(struct pool *pool, dm_block_t b)
438 {
439 	return block_size_is_power_of_two(pool) ?
440 		(b << pool->sectors_per_block_shift) :
441 		(b * pool->sectors_per_block);
442 }
443 
444 static int issue_discard(struct thin_c *tc, dm_block_t data_b, dm_block_t data_e,
445 			 struct bio *parent_bio)
446 {
447 	sector_t s = block_to_sectors(tc->pool, data_b);
448 	sector_t len = block_to_sectors(tc->pool, data_e - data_b);
449 
450 	return __blkdev_issue_discard_async(tc->pool_dev->bdev, s, len,
451 					    GFP_NOWAIT, 0, parent_bio);
452 }
453 
454 /*----------------------------------------------------------------*/
455 
456 /*
457  * wake_worker() is used when new work is queued and when pool_resume is
458  * ready to continue deferred IO processing.
459  */
460 static void wake_worker(struct pool *pool)
461 {
462 	queue_work(pool->wq, &pool->worker);
463 }
464 
465 /*----------------------------------------------------------------*/
466 
467 static int bio_detain(struct pool *pool, struct dm_cell_key *key, struct bio *bio,
468 		      struct dm_bio_prison_cell **cell_result)
469 {
470 	int r;
471 	struct dm_bio_prison_cell *cell_prealloc;
472 
473 	/*
474 	 * Allocate a cell from the prison's mempool.
475 	 * This might block but it can't fail.
476 	 */
477 	cell_prealloc = dm_bio_prison_alloc_cell(pool->prison, GFP_NOIO);
478 
479 	r = dm_bio_detain(pool->prison, key, bio, cell_prealloc, cell_result);
480 	if (r)
481 		/*
482 		 * We reused an old cell; we can get rid of
483 		 * the new one.
484 		 */
485 		dm_bio_prison_free_cell(pool->prison, cell_prealloc);
486 
487 	return r;
488 }
489 
490 static void cell_release(struct pool *pool,
491 			 struct dm_bio_prison_cell *cell,
492 			 struct bio_list *bios)
493 {
494 	dm_cell_release(pool->prison, cell, bios);
495 	dm_bio_prison_free_cell(pool->prison, cell);
496 }
497 
498 static void cell_visit_release(struct pool *pool,
499 			       void (*fn)(void *, struct dm_bio_prison_cell *),
500 			       void *context,
501 			       struct dm_bio_prison_cell *cell)
502 {
503 	dm_cell_visit_release(pool->prison, fn, context, cell);
504 	dm_bio_prison_free_cell(pool->prison, cell);
505 }
506 
507 static void cell_release_no_holder(struct pool *pool,
508 				   struct dm_bio_prison_cell *cell,
509 				   struct bio_list *bios)
510 {
511 	dm_cell_release_no_holder(pool->prison, cell, bios);
512 	dm_bio_prison_free_cell(pool->prison, cell);
513 }
514 
515 static void cell_error_with_code(struct pool *pool,
516 				 struct dm_bio_prison_cell *cell, int error_code)
517 {
518 	dm_cell_error(pool->prison, cell, error_code);
519 	dm_bio_prison_free_cell(pool->prison, cell);
520 }
521 
522 static void cell_error(struct pool *pool, struct dm_bio_prison_cell *cell)
523 {
524 	cell_error_with_code(pool, cell, -EIO);
525 }
526 
527 static void cell_success(struct pool *pool, struct dm_bio_prison_cell *cell)
528 {
529 	cell_error_with_code(pool, cell, 0);
530 }
531 
532 static void cell_requeue(struct pool *pool, struct dm_bio_prison_cell *cell)
533 {
534 	cell_error_with_code(pool, cell, DM_ENDIO_REQUEUE);
535 }
536 
537 /*----------------------------------------------------------------*/
538 
539 /*
540  * A global list of pools that uses a struct mapped_device as a key.
541  */
542 static struct dm_thin_pool_table {
543 	struct mutex mutex;
544 	struct list_head pools;
545 } dm_thin_pool_table;
546 
547 static void pool_table_init(void)
548 {
549 	mutex_init(&dm_thin_pool_table.mutex);
550 	INIT_LIST_HEAD(&dm_thin_pool_table.pools);
551 }
552 
553 static void __pool_table_insert(struct pool *pool)
554 {
555 	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
556 	list_add(&pool->list, &dm_thin_pool_table.pools);
557 }
558 
559 static void __pool_table_remove(struct pool *pool)
560 {
561 	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
562 	list_del(&pool->list);
563 }
564 
565 static struct pool *__pool_table_lookup(struct mapped_device *md)
566 {
567 	struct pool *pool = NULL, *tmp;
568 
569 	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
570 
571 	list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
572 		if (tmp->pool_md == md) {
573 			pool = tmp;
574 			break;
575 		}
576 	}
577 
578 	return pool;
579 }
580 
581 static struct pool *__pool_table_lookup_metadata_dev(struct block_device *md_dev)
582 {
583 	struct pool *pool = NULL, *tmp;
584 
585 	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
586 
587 	list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
588 		if (tmp->md_dev == md_dev) {
589 			pool = tmp;
590 			break;
591 		}
592 	}
593 
594 	return pool;
595 }
596 
597 /*----------------------------------------------------------------*/
598 
599 struct dm_thin_endio_hook {
600 	struct thin_c *tc;
601 	struct dm_deferred_entry *shared_read_entry;
602 	struct dm_deferred_entry *all_io_entry;
603 	struct dm_thin_new_mapping *overwrite_mapping;
604 	struct rb_node rb_node;
605 	struct dm_bio_prison_cell *cell;
606 };
607 
608 static void __merge_bio_list(struct bio_list *bios, struct bio_list *master)
609 {
610 	bio_list_merge(bios, master);
611 	bio_list_init(master);
612 }
613 
614 static void error_bio_list(struct bio_list *bios, int error)
615 {
616 	struct bio *bio;
617 
618 	while ((bio = bio_list_pop(bios)))
619 		bio_endio(bio, error);
620 }
621 
622 static void error_thin_bio_list(struct thin_c *tc, struct bio_list *master, int error)
623 {
624 	struct bio_list bios;
625 	unsigned long flags;
626 
627 	bio_list_init(&bios);
628 
629 	spin_lock_irqsave(&tc->lock, flags);
630 	__merge_bio_list(&bios, master);
631 	spin_unlock_irqrestore(&tc->lock, flags);
632 
633 	error_bio_list(&bios, error);
634 }
635 
636 static void requeue_deferred_cells(struct thin_c *tc)
637 {
638 	struct pool *pool = tc->pool;
639 	unsigned long flags;
640 	struct list_head cells;
641 	struct dm_bio_prison_cell *cell, *tmp;
642 
643 	INIT_LIST_HEAD(&cells);
644 
645 	spin_lock_irqsave(&tc->lock, flags);
646 	list_splice_init(&tc->deferred_cells, &cells);
647 	spin_unlock_irqrestore(&tc->lock, flags);
648 
649 	list_for_each_entry_safe(cell, tmp, &cells, user_list)
650 		cell_requeue(pool, cell);
651 }
652 
653 static void requeue_io(struct thin_c *tc)
654 {
655 	struct bio_list bios;
656 	unsigned long flags;
657 
658 	bio_list_init(&bios);
659 
660 	spin_lock_irqsave(&tc->lock, flags);
661 	__merge_bio_list(&bios, &tc->deferred_bio_list);
662 	__merge_bio_list(&bios, &tc->retry_on_resume_list);
663 	spin_unlock_irqrestore(&tc->lock, flags);
664 
665 	error_bio_list(&bios, DM_ENDIO_REQUEUE);
666 	requeue_deferred_cells(tc);
667 }
668 
669 static void error_retry_list_with_code(struct pool *pool, int error)
670 {
671 	struct thin_c *tc;
672 
673 	rcu_read_lock();
674 	list_for_each_entry_rcu(tc, &pool->active_thins, list)
675 		error_thin_bio_list(tc, &tc->retry_on_resume_list, error);
676 	rcu_read_unlock();
677 }
678 
679 static void error_retry_list(struct pool *pool)
680 {
681 	return error_retry_list_with_code(pool, -EIO);
682 }
683 
684 /*
685  * This section of code contains the logic for processing a thin device's IO.
686  * Much of the code depends on pool object resources (lists, workqueues, etc)
687  * but most is exclusively called from the thin target rather than the thin-pool
688  * target.
689  */
690 
691 static dm_block_t get_bio_block(struct thin_c *tc, struct bio *bio)
692 {
693 	struct pool *pool = tc->pool;
694 	sector_t block_nr = bio->bi_iter.bi_sector;
695 
696 	if (block_size_is_power_of_two(pool))
697 		block_nr >>= pool->sectors_per_block_shift;
698 	else
699 		(void) sector_div(block_nr, pool->sectors_per_block);
700 
701 	return block_nr;
702 }
703 
704 /*
705  * Returns the _complete_ blocks that this bio covers.
706  */
707 static void get_bio_block_range(struct thin_c *tc, struct bio *bio,
708 				dm_block_t *begin, dm_block_t *end)
709 {
710 	struct pool *pool = tc->pool;
711 	sector_t b = bio->bi_iter.bi_sector;
712 	sector_t e = b + (bio->bi_iter.bi_size >> SECTOR_SHIFT);
713 
714 	b += pool->sectors_per_block - 1ull; /* so we round up */
715 
716 	if (block_size_is_power_of_two(pool)) {
717 		b >>= pool->sectors_per_block_shift;
718 		e >>= pool->sectors_per_block_shift;
719 	} else {
720 		(void) sector_div(b, pool->sectors_per_block);
721 		(void) sector_div(e, pool->sectors_per_block);
722 	}
723 
724 	if (e < b)
725 		/* Can happen if the bio is within a single block. */
726 		e = b;
727 
728 	*begin = b;
729 	*end = e;
730 }
731 
732 static void remap(struct thin_c *tc, struct bio *bio, dm_block_t block)
733 {
734 	struct pool *pool = tc->pool;
735 	sector_t bi_sector = bio->bi_iter.bi_sector;
736 
737 	bio->bi_bdev = tc->pool_dev->bdev;
738 	if (block_size_is_power_of_two(pool))
739 		bio->bi_iter.bi_sector =
740 			(block << pool->sectors_per_block_shift) |
741 			(bi_sector & (pool->sectors_per_block - 1));
742 	else
743 		bio->bi_iter.bi_sector = (block * pool->sectors_per_block) +
744 				 sector_div(bi_sector, pool->sectors_per_block);
745 }
746 
747 static void remap_to_origin(struct thin_c *tc, struct bio *bio)
748 {
749 	bio->bi_bdev = tc->origin_dev->bdev;
750 }
751 
752 static int bio_triggers_commit(struct thin_c *tc, struct bio *bio)
753 {
754 	return (bio->bi_rw & (REQ_FLUSH | REQ_FUA)) &&
755 		dm_thin_changed_this_transaction(tc->td);
756 }
757 
758 static void inc_all_io_entry(struct pool *pool, struct bio *bio)
759 {
760 	struct dm_thin_endio_hook *h;
761 
762 	if (bio->bi_rw & REQ_DISCARD)
763 		return;
764 
765 	h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
766 	h->all_io_entry = dm_deferred_entry_inc(pool->all_io_ds);
767 }
768 
769 static void issue(struct thin_c *tc, struct bio *bio)
770 {
771 	struct pool *pool = tc->pool;
772 	unsigned long flags;
773 
774 	if (!bio_triggers_commit(tc, bio)) {
775 		generic_make_request(bio);
776 		return;
777 	}
778 
779 	/*
780 	 * Complete bio with an error if earlier I/O caused changes to
781 	 * the metadata that can't be committed e.g, due to I/O errors
782 	 * on the metadata device.
783 	 */
784 	if (dm_thin_aborted_changes(tc->td)) {
785 		bio_io_error(bio);
786 		return;
787 	}
788 
789 	/*
790 	 * Batch together any bios that trigger commits and then issue a
791 	 * single commit for them in process_deferred_bios().
792 	 */
793 	spin_lock_irqsave(&pool->lock, flags);
794 	bio_list_add(&pool->deferred_flush_bios, bio);
795 	spin_unlock_irqrestore(&pool->lock, flags);
796 }
797 
798 static void remap_to_origin_and_issue(struct thin_c *tc, struct bio *bio)
799 {
800 	remap_to_origin(tc, bio);
801 	issue(tc, bio);
802 }
803 
804 static void remap_and_issue(struct thin_c *tc, struct bio *bio,
805 			    dm_block_t block)
806 {
807 	remap(tc, bio, block);
808 	issue(tc, bio);
809 }
810 
811 /*----------------------------------------------------------------*/
812 
813 /*
814  * Bio endio functions.
815  */
816 struct dm_thin_new_mapping {
817 	struct list_head list;
818 
819 	bool pass_discard:1;
820 	bool maybe_shared:1;
821 
822 	/*
823 	 * Track quiescing, copying and zeroing preparation actions.  When this
824 	 * counter hits zero the block is prepared and can be inserted into the
825 	 * btree.
826 	 */
827 	atomic_t prepare_actions;
828 
829 	int err;
830 	struct thin_c *tc;
831 	dm_block_t virt_begin, virt_end;
832 	dm_block_t data_block;
833 	struct dm_bio_prison_cell *cell;
834 
835 	/*
836 	 * If the bio covers the whole area of a block then we can avoid
837 	 * zeroing or copying.  Instead this bio is hooked.  The bio will
838 	 * still be in the cell, so care has to be taken to avoid issuing
839 	 * the bio twice.
840 	 */
841 	struct bio *bio;
842 	bio_end_io_t *saved_bi_end_io;
843 };
844 
845 static void __complete_mapping_preparation(struct dm_thin_new_mapping *m)
846 {
847 	struct pool *pool = m->tc->pool;
848 
849 	if (atomic_dec_and_test(&m->prepare_actions)) {
850 		list_add_tail(&m->list, &pool->prepared_mappings);
851 		wake_worker(pool);
852 	}
853 }
854 
855 static void complete_mapping_preparation(struct dm_thin_new_mapping *m)
856 {
857 	unsigned long flags;
858 	struct pool *pool = m->tc->pool;
859 
860 	spin_lock_irqsave(&pool->lock, flags);
861 	__complete_mapping_preparation(m);
862 	spin_unlock_irqrestore(&pool->lock, flags);
863 }
864 
865 static void copy_complete(int read_err, unsigned long write_err, void *context)
866 {
867 	struct dm_thin_new_mapping *m = context;
868 
869 	m->err = read_err || write_err ? -EIO : 0;
870 	complete_mapping_preparation(m);
871 }
872 
873 static void overwrite_endio(struct bio *bio, int err)
874 {
875 	struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
876 	struct dm_thin_new_mapping *m = h->overwrite_mapping;
877 
878 	bio->bi_end_io = m->saved_bi_end_io;
879 
880 	m->err = err;
881 	complete_mapping_preparation(m);
882 }
883 
884 /*----------------------------------------------------------------*/
885 
886 /*
887  * Workqueue.
888  */
889 
890 /*
891  * Prepared mapping jobs.
892  */
893 
894 /*
895  * This sends the bios in the cell, except the original holder, back
896  * to the deferred_bios list.
897  */
898 static void cell_defer_no_holder(struct thin_c *tc, struct dm_bio_prison_cell *cell)
899 {
900 	struct pool *pool = tc->pool;
901 	unsigned long flags;
902 
903 	spin_lock_irqsave(&tc->lock, flags);
904 	cell_release_no_holder(pool, cell, &tc->deferred_bio_list);
905 	spin_unlock_irqrestore(&tc->lock, flags);
906 
907 	wake_worker(pool);
908 }
909 
910 static void thin_defer_bio(struct thin_c *tc, struct bio *bio);
911 
912 struct remap_info {
913 	struct thin_c *tc;
914 	struct bio_list defer_bios;
915 	struct bio_list issue_bios;
916 };
917 
918 static void __inc_remap_and_issue_cell(void *context,
919 				       struct dm_bio_prison_cell *cell)
920 {
921 	struct remap_info *info = context;
922 	struct bio *bio;
923 
924 	while ((bio = bio_list_pop(&cell->bios))) {
925 		if (bio->bi_rw & (REQ_DISCARD | REQ_FLUSH | REQ_FUA))
926 			bio_list_add(&info->defer_bios, bio);
927 		else {
928 			inc_all_io_entry(info->tc->pool, bio);
929 
930 			/*
931 			 * We can't issue the bios with the bio prison lock
932 			 * held, so we add them to a list to issue on
933 			 * return from this function.
934 			 */
935 			bio_list_add(&info->issue_bios, bio);
936 		}
937 	}
938 }
939 
940 static void inc_remap_and_issue_cell(struct thin_c *tc,
941 				     struct dm_bio_prison_cell *cell,
942 				     dm_block_t block)
943 {
944 	struct bio *bio;
945 	struct remap_info info;
946 
947 	info.tc = tc;
948 	bio_list_init(&info.defer_bios);
949 	bio_list_init(&info.issue_bios);
950 
951 	/*
952 	 * We have to be careful to inc any bios we're about to issue
953 	 * before the cell is released, and avoid a race with new bios
954 	 * being added to the cell.
955 	 */
956 	cell_visit_release(tc->pool, __inc_remap_and_issue_cell,
957 			   &info, cell);
958 
959 	while ((bio = bio_list_pop(&info.defer_bios)))
960 		thin_defer_bio(tc, bio);
961 
962 	while ((bio = bio_list_pop(&info.issue_bios)))
963 		remap_and_issue(info.tc, bio, block);
964 }
965 
966 static void process_prepared_mapping_fail(struct dm_thin_new_mapping *m)
967 {
968 	cell_error(m->tc->pool, m->cell);
969 	list_del(&m->list);
970 	mempool_free(m, m->tc->pool->mapping_pool);
971 }
972 
973 static void process_prepared_mapping(struct dm_thin_new_mapping *m)
974 {
975 	struct thin_c *tc = m->tc;
976 	struct pool *pool = tc->pool;
977 	struct bio *bio = m->bio;
978 	int r;
979 
980 	if (m->err) {
981 		cell_error(pool, m->cell);
982 		goto out;
983 	}
984 
985 	/*
986 	 * Commit the prepared block into the mapping btree.
987 	 * Any I/O for this block arriving after this point will get
988 	 * remapped to it directly.
989 	 */
990 	r = dm_thin_insert_block(tc->td, m->virt_begin, m->data_block);
991 	if (r) {
992 		metadata_operation_failed(pool, "dm_thin_insert_block", r);
993 		cell_error(pool, m->cell);
994 		goto out;
995 	}
996 
997 	/*
998 	 * Release any bios held while the block was being provisioned.
999 	 * If we are processing a write bio that completely covers the block,
1000 	 * we already processed it so can ignore it now when processing
1001 	 * the bios in the cell.
1002 	 */
1003 	if (bio) {
1004 		inc_remap_and_issue_cell(tc, m->cell, m->data_block);
1005 		bio_endio(bio, 0);
1006 	} else {
1007 		inc_all_io_entry(tc->pool, m->cell->holder);
1008 		remap_and_issue(tc, m->cell->holder, m->data_block);
1009 		inc_remap_and_issue_cell(tc, m->cell, m->data_block);
1010 	}
1011 
1012 out:
1013 	list_del(&m->list);
1014 	mempool_free(m, pool->mapping_pool);
1015 }
1016 
1017 /*----------------------------------------------------------------*/
1018 
1019 static void free_discard_mapping(struct dm_thin_new_mapping *m)
1020 {
1021 	struct thin_c *tc = m->tc;
1022 	if (m->cell)
1023 		cell_defer_no_holder(tc, m->cell);
1024 	mempool_free(m, tc->pool->mapping_pool);
1025 }
1026 
1027 static void process_prepared_discard_fail(struct dm_thin_new_mapping *m)
1028 {
1029 	bio_io_error(m->bio);
1030 	free_discard_mapping(m);
1031 }
1032 
1033 static void process_prepared_discard_success(struct dm_thin_new_mapping *m)
1034 {
1035 	bio_endio(m->bio, 0);
1036 	free_discard_mapping(m);
1037 }
1038 
1039 static void process_prepared_discard_no_passdown(struct dm_thin_new_mapping *m)
1040 {
1041 	int r;
1042 	struct thin_c *tc = m->tc;
1043 
1044 	r = dm_thin_remove_range(tc->td, m->cell->key.block_begin, m->cell->key.block_end);
1045 	if (r) {
1046 		metadata_operation_failed(tc->pool, "dm_thin_remove_range", r);
1047 		bio_io_error(m->bio);
1048 	} else
1049 		bio_endio(m->bio, 0);
1050 
1051 	cell_defer_no_holder(tc, m->cell);
1052 	mempool_free(m, tc->pool->mapping_pool);
1053 }
1054 
1055 static int passdown_double_checking_shared_status(struct dm_thin_new_mapping *m)
1056 {
1057 	/*
1058 	 * We've already unmapped this range of blocks, but before we
1059 	 * passdown we have to check that these blocks are now unused.
1060 	 */
1061 	int r;
1062 	bool used = true;
1063 	struct thin_c *tc = m->tc;
1064 	struct pool *pool = tc->pool;
1065 	dm_block_t b = m->data_block, e, end = m->data_block + m->virt_end - m->virt_begin;
1066 
1067 	while (b != end) {
1068 		/* find start of unmapped run */
1069 		for (; b < end; b++) {
1070 			r = dm_pool_block_is_used(pool->pmd, b, &used);
1071 			if (r)
1072 				return r;
1073 
1074 			if (!used)
1075 				break;
1076 		}
1077 
1078 		if (b == end)
1079 			break;
1080 
1081 		/* find end of run */
1082 		for (e = b + 1; e != end; e++) {
1083 			r = dm_pool_block_is_used(pool->pmd, e, &used);
1084 			if (r)
1085 				return r;
1086 
1087 			if (used)
1088 				break;
1089 		}
1090 
1091 		r = issue_discard(tc, b, e, m->bio);
1092 		if (r)
1093 			return r;
1094 
1095 		b = e;
1096 	}
1097 
1098 	return 0;
1099 }
1100 
1101 static void process_prepared_discard_passdown(struct dm_thin_new_mapping *m)
1102 {
1103 	int r;
1104 	struct thin_c *tc = m->tc;
1105 	struct pool *pool = tc->pool;
1106 
1107 	r = dm_thin_remove_range(tc->td, m->virt_begin, m->virt_end);
1108 	if (r)
1109 		metadata_operation_failed(pool, "dm_thin_remove_range", r);
1110 
1111 	else if (m->maybe_shared)
1112 		r = passdown_double_checking_shared_status(m);
1113 	else
1114 		r = issue_discard(tc, m->data_block, m->data_block + (m->virt_end - m->virt_begin), m->bio);
1115 
1116 	/*
1117 	 * Even if r is set, there could be sub discards in flight that we
1118 	 * need to wait for.
1119 	 */
1120 	bio_endio(m->bio, r);
1121 	cell_defer_no_holder(tc, m->cell);
1122 	mempool_free(m, pool->mapping_pool);
1123 }
1124 
1125 static void process_prepared(struct pool *pool, struct list_head *head,
1126 			     process_mapping_fn *fn)
1127 {
1128 	unsigned long flags;
1129 	struct list_head maps;
1130 	struct dm_thin_new_mapping *m, *tmp;
1131 
1132 	INIT_LIST_HEAD(&maps);
1133 	spin_lock_irqsave(&pool->lock, flags);
1134 	list_splice_init(head, &maps);
1135 	spin_unlock_irqrestore(&pool->lock, flags);
1136 
1137 	list_for_each_entry_safe(m, tmp, &maps, list)
1138 		(*fn)(m);
1139 }
1140 
1141 /*
1142  * Deferred bio jobs.
1143  */
1144 static int io_overlaps_block(struct pool *pool, struct bio *bio)
1145 {
1146 	return bio->bi_iter.bi_size ==
1147 		(pool->sectors_per_block << SECTOR_SHIFT);
1148 }
1149 
1150 static int io_overwrites_block(struct pool *pool, struct bio *bio)
1151 {
1152 	return (bio_data_dir(bio) == WRITE) &&
1153 		io_overlaps_block(pool, bio);
1154 }
1155 
1156 static void save_and_set_endio(struct bio *bio, bio_end_io_t **save,
1157 			       bio_end_io_t *fn)
1158 {
1159 	*save = bio->bi_end_io;
1160 	bio->bi_end_io = fn;
1161 }
1162 
1163 static int ensure_next_mapping(struct pool *pool)
1164 {
1165 	if (pool->next_mapping)
1166 		return 0;
1167 
1168 	pool->next_mapping = mempool_alloc(pool->mapping_pool, GFP_ATOMIC);
1169 
1170 	return pool->next_mapping ? 0 : -ENOMEM;
1171 }
1172 
1173 static struct dm_thin_new_mapping *get_next_mapping(struct pool *pool)
1174 {
1175 	struct dm_thin_new_mapping *m = pool->next_mapping;
1176 
1177 	BUG_ON(!pool->next_mapping);
1178 
1179 	memset(m, 0, sizeof(struct dm_thin_new_mapping));
1180 	INIT_LIST_HEAD(&m->list);
1181 	m->bio = NULL;
1182 
1183 	pool->next_mapping = NULL;
1184 
1185 	return m;
1186 }
1187 
1188 static void ll_zero(struct thin_c *tc, struct dm_thin_new_mapping *m,
1189 		    sector_t begin, sector_t end)
1190 {
1191 	int r;
1192 	struct dm_io_region to;
1193 
1194 	to.bdev = tc->pool_dev->bdev;
1195 	to.sector = begin;
1196 	to.count = end - begin;
1197 
1198 	r = dm_kcopyd_zero(tc->pool->copier, 1, &to, 0, copy_complete, m);
1199 	if (r < 0) {
1200 		DMERR_LIMIT("dm_kcopyd_zero() failed");
1201 		copy_complete(1, 1, m);
1202 	}
1203 }
1204 
1205 static void remap_and_issue_overwrite(struct thin_c *tc, struct bio *bio,
1206 				      dm_block_t data_begin,
1207 				      struct dm_thin_new_mapping *m)
1208 {
1209 	struct pool *pool = tc->pool;
1210 	struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1211 
1212 	h->overwrite_mapping = m;
1213 	m->bio = bio;
1214 	save_and_set_endio(bio, &m->saved_bi_end_io, overwrite_endio);
1215 	inc_all_io_entry(pool, bio);
1216 	remap_and_issue(tc, bio, data_begin);
1217 }
1218 
1219 /*
1220  * A partial copy also needs to zero the uncopied region.
1221  */
1222 static void schedule_copy(struct thin_c *tc, dm_block_t virt_block,
1223 			  struct dm_dev *origin, dm_block_t data_origin,
1224 			  dm_block_t data_dest,
1225 			  struct dm_bio_prison_cell *cell, struct bio *bio,
1226 			  sector_t len)
1227 {
1228 	int r;
1229 	struct pool *pool = tc->pool;
1230 	struct dm_thin_new_mapping *m = get_next_mapping(pool);
1231 
1232 	m->tc = tc;
1233 	m->virt_begin = virt_block;
1234 	m->virt_end = virt_block + 1u;
1235 	m->data_block = data_dest;
1236 	m->cell = cell;
1237 
1238 	/*
1239 	 * quiesce action + copy action + an extra reference held for the
1240 	 * duration of this function (we may need to inc later for a
1241 	 * partial zero).
1242 	 */
1243 	atomic_set(&m->prepare_actions, 3);
1244 
1245 	if (!dm_deferred_set_add_work(pool->shared_read_ds, &m->list))
1246 		complete_mapping_preparation(m); /* already quiesced */
1247 
1248 	/*
1249 	 * IO to pool_dev remaps to the pool target's data_dev.
1250 	 *
1251 	 * If the whole block of data is being overwritten, we can issue the
1252 	 * bio immediately. Otherwise we use kcopyd to clone the data first.
1253 	 */
1254 	if (io_overwrites_block(pool, bio))
1255 		remap_and_issue_overwrite(tc, bio, data_dest, m);
1256 	else {
1257 		struct dm_io_region from, to;
1258 
1259 		from.bdev = origin->bdev;
1260 		from.sector = data_origin * pool->sectors_per_block;
1261 		from.count = len;
1262 
1263 		to.bdev = tc->pool_dev->bdev;
1264 		to.sector = data_dest * pool->sectors_per_block;
1265 		to.count = len;
1266 
1267 		r = dm_kcopyd_copy(pool->copier, &from, 1, &to,
1268 				   0, copy_complete, m);
1269 		if (r < 0) {
1270 			DMERR_LIMIT("dm_kcopyd_copy() failed");
1271 			copy_complete(1, 1, m);
1272 
1273 			/*
1274 			 * We allow the zero to be issued, to simplify the
1275 			 * error path.  Otherwise we'd need to start
1276 			 * worrying about decrementing the prepare_actions
1277 			 * counter.
1278 			 */
1279 		}
1280 
1281 		/*
1282 		 * Do we need to zero a tail region?
1283 		 */
1284 		if (len < pool->sectors_per_block && pool->pf.zero_new_blocks) {
1285 			atomic_inc(&m->prepare_actions);
1286 			ll_zero(tc, m,
1287 				data_dest * pool->sectors_per_block + len,
1288 				(data_dest + 1) * pool->sectors_per_block);
1289 		}
1290 	}
1291 
1292 	complete_mapping_preparation(m); /* drop our ref */
1293 }
1294 
1295 static void schedule_internal_copy(struct thin_c *tc, dm_block_t virt_block,
1296 				   dm_block_t data_origin, dm_block_t data_dest,
1297 				   struct dm_bio_prison_cell *cell, struct bio *bio)
1298 {
1299 	schedule_copy(tc, virt_block, tc->pool_dev,
1300 		      data_origin, data_dest, cell, bio,
1301 		      tc->pool->sectors_per_block);
1302 }
1303 
1304 static void schedule_zero(struct thin_c *tc, dm_block_t virt_block,
1305 			  dm_block_t data_block, struct dm_bio_prison_cell *cell,
1306 			  struct bio *bio)
1307 {
1308 	struct pool *pool = tc->pool;
1309 	struct dm_thin_new_mapping *m = get_next_mapping(pool);
1310 
1311 	atomic_set(&m->prepare_actions, 1); /* no need to quiesce */
1312 	m->tc = tc;
1313 	m->virt_begin = virt_block;
1314 	m->virt_end = virt_block + 1u;
1315 	m->data_block = data_block;
1316 	m->cell = cell;
1317 
1318 	/*
1319 	 * If the whole block of data is being overwritten or we are not
1320 	 * zeroing pre-existing data, we can issue the bio immediately.
1321 	 * Otherwise we use kcopyd to zero the data first.
1322 	 */
1323 	if (pool->pf.zero_new_blocks) {
1324 		if (io_overwrites_block(pool, bio))
1325 			remap_and_issue_overwrite(tc, bio, data_block, m);
1326 		else
1327 			ll_zero(tc, m, data_block * pool->sectors_per_block,
1328 				(data_block + 1) * pool->sectors_per_block);
1329 	} else
1330 		process_prepared_mapping(m);
1331 }
1332 
1333 static void schedule_external_copy(struct thin_c *tc, dm_block_t virt_block,
1334 				   dm_block_t data_dest,
1335 				   struct dm_bio_prison_cell *cell, struct bio *bio)
1336 {
1337 	struct pool *pool = tc->pool;
1338 	sector_t virt_block_begin = virt_block * pool->sectors_per_block;
1339 	sector_t virt_block_end = (virt_block + 1) * pool->sectors_per_block;
1340 
1341 	if (virt_block_end <= tc->origin_size)
1342 		schedule_copy(tc, virt_block, tc->origin_dev,
1343 			      virt_block, data_dest, cell, bio,
1344 			      pool->sectors_per_block);
1345 
1346 	else if (virt_block_begin < tc->origin_size)
1347 		schedule_copy(tc, virt_block, tc->origin_dev,
1348 			      virt_block, data_dest, cell, bio,
1349 			      tc->origin_size - virt_block_begin);
1350 
1351 	else
1352 		schedule_zero(tc, virt_block, data_dest, cell, bio);
1353 }
1354 
1355 static void set_pool_mode(struct pool *pool, enum pool_mode new_mode);
1356 
1357 static void check_for_space(struct pool *pool)
1358 {
1359 	int r;
1360 	dm_block_t nr_free;
1361 
1362 	if (get_pool_mode(pool) != PM_OUT_OF_DATA_SPACE)
1363 		return;
1364 
1365 	r = dm_pool_get_free_block_count(pool->pmd, &nr_free);
1366 	if (r)
1367 		return;
1368 
1369 	if (nr_free)
1370 		set_pool_mode(pool, PM_WRITE);
1371 }
1372 
1373 /*
1374  * A non-zero return indicates read_only or fail_io mode.
1375  * Many callers don't care about the return value.
1376  */
1377 static int commit(struct pool *pool)
1378 {
1379 	int r;
1380 
1381 	if (get_pool_mode(pool) >= PM_READ_ONLY)
1382 		return -EINVAL;
1383 
1384 	r = dm_pool_commit_metadata(pool->pmd);
1385 	if (r)
1386 		metadata_operation_failed(pool, "dm_pool_commit_metadata", r);
1387 	else
1388 		check_for_space(pool);
1389 
1390 	return r;
1391 }
1392 
1393 static void check_low_water_mark(struct pool *pool, dm_block_t free_blocks)
1394 {
1395 	unsigned long flags;
1396 
1397 	if (free_blocks <= pool->low_water_blocks && !pool->low_water_triggered) {
1398 		DMWARN("%s: reached low water mark for data device: sending event.",
1399 		       dm_device_name(pool->pool_md));
1400 		spin_lock_irqsave(&pool->lock, flags);
1401 		pool->low_water_triggered = true;
1402 		spin_unlock_irqrestore(&pool->lock, flags);
1403 		dm_table_event(pool->ti->table);
1404 	}
1405 }
1406 
1407 static int alloc_data_block(struct thin_c *tc, dm_block_t *result)
1408 {
1409 	int r;
1410 	dm_block_t free_blocks;
1411 	struct pool *pool = tc->pool;
1412 
1413 	if (WARN_ON(get_pool_mode(pool) != PM_WRITE))
1414 		return -EINVAL;
1415 
1416 	r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
1417 	if (r) {
1418 		metadata_operation_failed(pool, "dm_pool_get_free_block_count", r);
1419 		return r;
1420 	}
1421 
1422 	check_low_water_mark(pool, free_blocks);
1423 
1424 	if (!free_blocks) {
1425 		/*
1426 		 * Try to commit to see if that will free up some
1427 		 * more space.
1428 		 */
1429 		r = commit(pool);
1430 		if (r)
1431 			return r;
1432 
1433 		r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
1434 		if (r) {
1435 			metadata_operation_failed(pool, "dm_pool_get_free_block_count", r);
1436 			return r;
1437 		}
1438 
1439 		if (!free_blocks) {
1440 			set_pool_mode(pool, PM_OUT_OF_DATA_SPACE);
1441 			return -ENOSPC;
1442 		}
1443 	}
1444 
1445 	r = dm_pool_alloc_data_block(pool->pmd, result);
1446 	if (r) {
1447 		metadata_operation_failed(pool, "dm_pool_alloc_data_block", r);
1448 		return r;
1449 	}
1450 
1451 	return 0;
1452 }
1453 
1454 /*
1455  * If we have run out of space, queue bios until the device is
1456  * resumed, presumably after having been reloaded with more space.
1457  */
1458 static void retry_on_resume(struct bio *bio)
1459 {
1460 	struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1461 	struct thin_c *tc = h->tc;
1462 	unsigned long flags;
1463 
1464 	spin_lock_irqsave(&tc->lock, flags);
1465 	bio_list_add(&tc->retry_on_resume_list, bio);
1466 	spin_unlock_irqrestore(&tc->lock, flags);
1467 }
1468 
1469 static int should_error_unserviceable_bio(struct pool *pool)
1470 {
1471 	enum pool_mode m = get_pool_mode(pool);
1472 
1473 	switch (m) {
1474 	case PM_WRITE:
1475 		/* Shouldn't get here */
1476 		DMERR_LIMIT("bio unserviceable, yet pool is in PM_WRITE mode");
1477 		return -EIO;
1478 
1479 	case PM_OUT_OF_DATA_SPACE:
1480 		return pool->pf.error_if_no_space ? -ENOSPC : 0;
1481 
1482 	case PM_READ_ONLY:
1483 	case PM_FAIL:
1484 		return -EIO;
1485 	default:
1486 		/* Shouldn't get here */
1487 		DMERR_LIMIT("bio unserviceable, yet pool has an unknown mode");
1488 		return -EIO;
1489 	}
1490 }
1491 
1492 static void handle_unserviceable_bio(struct pool *pool, struct bio *bio)
1493 {
1494 	int error = should_error_unserviceable_bio(pool);
1495 
1496 	if (error)
1497 		bio_endio(bio, error);
1498 	else
1499 		retry_on_resume(bio);
1500 }
1501 
1502 static void retry_bios_on_resume(struct pool *pool, struct dm_bio_prison_cell *cell)
1503 {
1504 	struct bio *bio;
1505 	struct bio_list bios;
1506 	int error;
1507 
1508 	error = should_error_unserviceable_bio(pool);
1509 	if (error) {
1510 		cell_error_with_code(pool, cell, error);
1511 		return;
1512 	}
1513 
1514 	bio_list_init(&bios);
1515 	cell_release(pool, cell, &bios);
1516 
1517 	while ((bio = bio_list_pop(&bios)))
1518 		retry_on_resume(bio);
1519 }
1520 
1521 static void process_discard_cell_no_passdown(struct thin_c *tc,
1522 					     struct dm_bio_prison_cell *virt_cell)
1523 {
1524 	struct pool *pool = tc->pool;
1525 	struct dm_thin_new_mapping *m = get_next_mapping(pool);
1526 
1527 	/*
1528 	 * We don't need to lock the data blocks, since there's no
1529 	 * passdown.  We only lock data blocks for allocation and breaking sharing.
1530 	 */
1531 	m->tc = tc;
1532 	m->virt_begin = virt_cell->key.block_begin;
1533 	m->virt_end = virt_cell->key.block_end;
1534 	m->cell = virt_cell;
1535 	m->bio = virt_cell->holder;
1536 
1537 	if (!dm_deferred_set_add_work(pool->all_io_ds, &m->list))
1538 		pool->process_prepared_discard(m);
1539 }
1540 
1541 /*
1542  * FIXME: DM local hack to defer parent bios's end_io until we
1543  * _know_ all chained sub range discard bios have completed.
1544  * Will go away once late bio splitting lands upstream!
1545  */
1546 static inline void __bio_inc_remaining(struct bio *bio)
1547 {
1548 	bio->bi_flags |= (1 << BIO_CHAIN);
1549 	smp_mb__before_atomic();
1550 	atomic_inc(&bio->__bi_remaining);
1551 }
1552 
1553 static void break_up_discard_bio(struct thin_c *tc, dm_block_t begin, dm_block_t end,
1554 				 struct bio *bio)
1555 {
1556 	struct pool *pool = tc->pool;
1557 
1558 	int r;
1559 	bool maybe_shared;
1560 	struct dm_cell_key data_key;
1561 	struct dm_bio_prison_cell *data_cell;
1562 	struct dm_thin_new_mapping *m;
1563 	dm_block_t virt_begin, virt_end, data_begin;
1564 
1565 	while (begin != end) {
1566 		r = ensure_next_mapping(pool);
1567 		if (r)
1568 			/* we did our best */
1569 			return;
1570 
1571 		r = dm_thin_find_mapped_range(tc->td, begin, end, &virt_begin, &virt_end,
1572 					      &data_begin, &maybe_shared);
1573 		if (r)
1574 			/*
1575 			 * Silently fail, letting any mappings we've
1576 			 * created complete.
1577 			 */
1578 			break;
1579 
1580 		build_key(tc->td, PHYSICAL, data_begin, data_begin + (virt_end - virt_begin), &data_key);
1581 		if (bio_detain(tc->pool, &data_key, NULL, &data_cell)) {
1582 			/* contention, we'll give up with this range */
1583 			begin = virt_end;
1584 			continue;
1585 		}
1586 
1587 		/*
1588 		 * IO may still be going to the destination block.  We must
1589 		 * quiesce before we can do the removal.
1590 		 */
1591 		m = get_next_mapping(pool);
1592 		m->tc = tc;
1593 		m->maybe_shared = maybe_shared;
1594 		m->virt_begin = virt_begin;
1595 		m->virt_end = virt_end;
1596 		m->data_block = data_begin;
1597 		m->cell = data_cell;
1598 		m->bio = bio;
1599 
1600 		/*
1601 		 * The parent bio must not complete before sub discard bios are
1602 		 * chained to it (see __blkdev_issue_discard_async's bio_chain)!
1603 		 *
1604 		 * This per-mapping bi_remaining increment is paired with
1605 		 * the implicit decrement that occurs via bio_endio() in
1606 		 * process_prepared_discard_{passdown,no_passdown}.
1607 		 */
1608 		__bio_inc_remaining(bio);
1609 		if (!dm_deferred_set_add_work(pool->all_io_ds, &m->list))
1610 			pool->process_prepared_discard(m);
1611 
1612 		begin = virt_end;
1613 	}
1614 }
1615 
1616 static void process_discard_cell_passdown(struct thin_c *tc, struct dm_bio_prison_cell *virt_cell)
1617 {
1618 	struct bio *bio = virt_cell->holder;
1619 	struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1620 
1621 	/*
1622 	 * The virt_cell will only get freed once the origin bio completes.
1623 	 * This means it will remain locked while all the individual
1624 	 * passdown bios are in flight.
1625 	 */
1626 	h->cell = virt_cell;
1627 	break_up_discard_bio(tc, virt_cell->key.block_begin, virt_cell->key.block_end, bio);
1628 
1629 	/*
1630 	 * We complete the bio now, knowing that the bi_remaining field
1631 	 * will prevent completion until the sub range discards have
1632 	 * completed.
1633 	 */
1634 	bio_endio(bio, 0);
1635 }
1636 
1637 static void process_discard_bio(struct thin_c *tc, struct bio *bio)
1638 {
1639 	dm_block_t begin, end;
1640 	struct dm_cell_key virt_key;
1641 	struct dm_bio_prison_cell *virt_cell;
1642 
1643 	get_bio_block_range(tc, bio, &begin, &end);
1644 	if (begin == end) {
1645 		/*
1646 		 * The discard covers less than a block.
1647 		 */
1648 		bio_endio(bio, 0);
1649 		return;
1650 	}
1651 
1652 	build_key(tc->td, VIRTUAL, begin, end, &virt_key);
1653 	if (bio_detain(tc->pool, &virt_key, bio, &virt_cell))
1654 		/*
1655 		 * Potential starvation issue: We're relying on the
1656 		 * fs/application being well behaved, and not trying to
1657 		 * send IO to a region at the same time as discarding it.
1658 		 * If they do this persistently then it's possible this
1659 		 * cell will never be granted.
1660 		 */
1661 		return;
1662 
1663 	tc->pool->process_discard_cell(tc, virt_cell);
1664 }
1665 
1666 static void break_sharing(struct thin_c *tc, struct bio *bio, dm_block_t block,
1667 			  struct dm_cell_key *key,
1668 			  struct dm_thin_lookup_result *lookup_result,
1669 			  struct dm_bio_prison_cell *cell)
1670 {
1671 	int r;
1672 	dm_block_t data_block;
1673 	struct pool *pool = tc->pool;
1674 
1675 	r = alloc_data_block(tc, &data_block);
1676 	switch (r) {
1677 	case 0:
1678 		schedule_internal_copy(tc, block, lookup_result->block,
1679 				       data_block, cell, bio);
1680 		break;
1681 
1682 	case -ENOSPC:
1683 		retry_bios_on_resume(pool, cell);
1684 		break;
1685 
1686 	default:
1687 		DMERR_LIMIT("%s: alloc_data_block() failed: error = %d",
1688 			    __func__, r);
1689 		cell_error(pool, cell);
1690 		break;
1691 	}
1692 }
1693 
1694 static void __remap_and_issue_shared_cell(void *context,
1695 					  struct dm_bio_prison_cell *cell)
1696 {
1697 	struct remap_info *info = context;
1698 	struct bio *bio;
1699 
1700 	while ((bio = bio_list_pop(&cell->bios))) {
1701 		if ((bio_data_dir(bio) == WRITE) ||
1702 		    (bio->bi_rw & (REQ_DISCARD | REQ_FLUSH | REQ_FUA)))
1703 			bio_list_add(&info->defer_bios, bio);
1704 		else {
1705 			struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));;
1706 
1707 			h->shared_read_entry = dm_deferred_entry_inc(info->tc->pool->shared_read_ds);
1708 			inc_all_io_entry(info->tc->pool, bio);
1709 			bio_list_add(&info->issue_bios, bio);
1710 		}
1711 	}
1712 }
1713 
1714 static void remap_and_issue_shared_cell(struct thin_c *tc,
1715 					struct dm_bio_prison_cell *cell,
1716 					dm_block_t block)
1717 {
1718 	struct bio *bio;
1719 	struct remap_info info;
1720 
1721 	info.tc = tc;
1722 	bio_list_init(&info.defer_bios);
1723 	bio_list_init(&info.issue_bios);
1724 
1725 	cell_visit_release(tc->pool, __remap_and_issue_shared_cell,
1726 			   &info, cell);
1727 
1728 	while ((bio = bio_list_pop(&info.defer_bios)))
1729 		thin_defer_bio(tc, bio);
1730 
1731 	while ((bio = bio_list_pop(&info.issue_bios)))
1732 		remap_and_issue(tc, bio, block);
1733 }
1734 
1735 static void process_shared_bio(struct thin_c *tc, struct bio *bio,
1736 			       dm_block_t block,
1737 			       struct dm_thin_lookup_result *lookup_result,
1738 			       struct dm_bio_prison_cell *virt_cell)
1739 {
1740 	struct dm_bio_prison_cell *data_cell;
1741 	struct pool *pool = tc->pool;
1742 	struct dm_cell_key key;
1743 
1744 	/*
1745 	 * If cell is already occupied, then sharing is already in the process
1746 	 * of being broken so we have nothing further to do here.
1747 	 */
1748 	build_data_key(tc->td, lookup_result->block, &key);
1749 	if (bio_detain(pool, &key, bio, &data_cell)) {
1750 		cell_defer_no_holder(tc, virt_cell);
1751 		return;
1752 	}
1753 
1754 	if (bio_data_dir(bio) == WRITE && bio->bi_iter.bi_size) {
1755 		break_sharing(tc, bio, block, &key, lookup_result, data_cell);
1756 		cell_defer_no_holder(tc, virt_cell);
1757 	} else {
1758 		struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1759 
1760 		h->shared_read_entry = dm_deferred_entry_inc(pool->shared_read_ds);
1761 		inc_all_io_entry(pool, bio);
1762 		remap_and_issue(tc, bio, lookup_result->block);
1763 
1764 		remap_and_issue_shared_cell(tc, data_cell, lookup_result->block);
1765 		remap_and_issue_shared_cell(tc, virt_cell, lookup_result->block);
1766 	}
1767 }
1768 
1769 static void provision_block(struct thin_c *tc, struct bio *bio, dm_block_t block,
1770 			    struct dm_bio_prison_cell *cell)
1771 {
1772 	int r;
1773 	dm_block_t data_block;
1774 	struct pool *pool = tc->pool;
1775 
1776 	/*
1777 	 * Remap empty bios (flushes) immediately, without provisioning.
1778 	 */
1779 	if (!bio->bi_iter.bi_size) {
1780 		inc_all_io_entry(pool, bio);
1781 		cell_defer_no_holder(tc, cell);
1782 
1783 		remap_and_issue(tc, bio, 0);
1784 		return;
1785 	}
1786 
1787 	/*
1788 	 * Fill read bios with zeroes and complete them immediately.
1789 	 */
1790 	if (bio_data_dir(bio) == READ) {
1791 		zero_fill_bio(bio);
1792 		cell_defer_no_holder(tc, cell);
1793 		bio_endio(bio, 0);
1794 		return;
1795 	}
1796 
1797 	r = alloc_data_block(tc, &data_block);
1798 	switch (r) {
1799 	case 0:
1800 		if (tc->origin_dev)
1801 			schedule_external_copy(tc, block, data_block, cell, bio);
1802 		else
1803 			schedule_zero(tc, block, data_block, cell, bio);
1804 		break;
1805 
1806 	case -ENOSPC:
1807 		retry_bios_on_resume(pool, cell);
1808 		break;
1809 
1810 	default:
1811 		DMERR_LIMIT("%s: alloc_data_block() failed: error = %d",
1812 			    __func__, r);
1813 		cell_error(pool, cell);
1814 		break;
1815 	}
1816 }
1817 
1818 static void process_cell(struct thin_c *tc, struct dm_bio_prison_cell *cell)
1819 {
1820 	int r;
1821 	struct pool *pool = tc->pool;
1822 	struct bio *bio = cell->holder;
1823 	dm_block_t block = get_bio_block(tc, bio);
1824 	struct dm_thin_lookup_result lookup_result;
1825 
1826 	if (tc->requeue_mode) {
1827 		cell_requeue(pool, cell);
1828 		return;
1829 	}
1830 
1831 	r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1832 	switch (r) {
1833 	case 0:
1834 		if (lookup_result.shared)
1835 			process_shared_bio(tc, bio, block, &lookup_result, cell);
1836 		else {
1837 			inc_all_io_entry(pool, bio);
1838 			remap_and_issue(tc, bio, lookup_result.block);
1839 			inc_remap_and_issue_cell(tc, cell, lookup_result.block);
1840 		}
1841 		break;
1842 
1843 	case -ENODATA:
1844 		if (bio_data_dir(bio) == READ && tc->origin_dev) {
1845 			inc_all_io_entry(pool, bio);
1846 			cell_defer_no_holder(tc, cell);
1847 
1848 			if (bio_end_sector(bio) <= tc->origin_size)
1849 				remap_to_origin_and_issue(tc, bio);
1850 
1851 			else if (bio->bi_iter.bi_sector < tc->origin_size) {
1852 				zero_fill_bio(bio);
1853 				bio->bi_iter.bi_size = (tc->origin_size - bio->bi_iter.bi_sector) << SECTOR_SHIFT;
1854 				remap_to_origin_and_issue(tc, bio);
1855 
1856 			} else {
1857 				zero_fill_bio(bio);
1858 				bio_endio(bio, 0);
1859 			}
1860 		} else
1861 			provision_block(tc, bio, block, cell);
1862 		break;
1863 
1864 	default:
1865 		DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
1866 			    __func__, r);
1867 		cell_defer_no_holder(tc, cell);
1868 		bio_io_error(bio);
1869 		break;
1870 	}
1871 }
1872 
1873 static void process_bio(struct thin_c *tc, struct bio *bio)
1874 {
1875 	struct pool *pool = tc->pool;
1876 	dm_block_t block = get_bio_block(tc, bio);
1877 	struct dm_bio_prison_cell *cell;
1878 	struct dm_cell_key key;
1879 
1880 	/*
1881 	 * If cell is already occupied, then the block is already
1882 	 * being provisioned so we have nothing further to do here.
1883 	 */
1884 	build_virtual_key(tc->td, block, &key);
1885 	if (bio_detain(pool, &key, bio, &cell))
1886 		return;
1887 
1888 	process_cell(tc, cell);
1889 }
1890 
1891 static void __process_bio_read_only(struct thin_c *tc, struct bio *bio,
1892 				    struct dm_bio_prison_cell *cell)
1893 {
1894 	int r;
1895 	int rw = bio_data_dir(bio);
1896 	dm_block_t block = get_bio_block(tc, bio);
1897 	struct dm_thin_lookup_result lookup_result;
1898 
1899 	r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1900 	switch (r) {
1901 	case 0:
1902 		if (lookup_result.shared && (rw == WRITE) && bio->bi_iter.bi_size) {
1903 			handle_unserviceable_bio(tc->pool, bio);
1904 			if (cell)
1905 				cell_defer_no_holder(tc, cell);
1906 		} else {
1907 			inc_all_io_entry(tc->pool, bio);
1908 			remap_and_issue(tc, bio, lookup_result.block);
1909 			if (cell)
1910 				inc_remap_and_issue_cell(tc, cell, lookup_result.block);
1911 		}
1912 		break;
1913 
1914 	case -ENODATA:
1915 		if (cell)
1916 			cell_defer_no_holder(tc, cell);
1917 		if (rw != READ) {
1918 			handle_unserviceable_bio(tc->pool, bio);
1919 			break;
1920 		}
1921 
1922 		if (tc->origin_dev) {
1923 			inc_all_io_entry(tc->pool, bio);
1924 			remap_to_origin_and_issue(tc, bio);
1925 			break;
1926 		}
1927 
1928 		zero_fill_bio(bio);
1929 		bio_endio(bio, 0);
1930 		break;
1931 
1932 	default:
1933 		DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
1934 			    __func__, r);
1935 		if (cell)
1936 			cell_defer_no_holder(tc, cell);
1937 		bio_io_error(bio);
1938 		break;
1939 	}
1940 }
1941 
1942 static void process_bio_read_only(struct thin_c *tc, struct bio *bio)
1943 {
1944 	__process_bio_read_only(tc, bio, NULL);
1945 }
1946 
1947 static void process_cell_read_only(struct thin_c *tc, struct dm_bio_prison_cell *cell)
1948 {
1949 	__process_bio_read_only(tc, cell->holder, cell);
1950 }
1951 
1952 static void process_bio_success(struct thin_c *tc, struct bio *bio)
1953 {
1954 	bio_endio(bio, 0);
1955 }
1956 
1957 static void process_bio_fail(struct thin_c *tc, struct bio *bio)
1958 {
1959 	bio_io_error(bio);
1960 }
1961 
1962 static void process_cell_success(struct thin_c *tc, struct dm_bio_prison_cell *cell)
1963 {
1964 	cell_success(tc->pool, cell);
1965 }
1966 
1967 static void process_cell_fail(struct thin_c *tc, struct dm_bio_prison_cell *cell)
1968 {
1969 	cell_error(tc->pool, cell);
1970 }
1971 
1972 /*
1973  * FIXME: should we also commit due to size of transaction, measured in
1974  * metadata blocks?
1975  */
1976 static int need_commit_due_to_time(struct pool *pool)
1977 {
1978 	return !time_in_range(jiffies, pool->last_commit_jiffies,
1979 			      pool->last_commit_jiffies + COMMIT_PERIOD);
1980 }
1981 
1982 #define thin_pbd(node) rb_entry((node), struct dm_thin_endio_hook, rb_node)
1983 #define thin_bio(pbd) dm_bio_from_per_bio_data((pbd), sizeof(struct dm_thin_endio_hook))
1984 
1985 static void __thin_bio_rb_add(struct thin_c *tc, struct bio *bio)
1986 {
1987 	struct rb_node **rbp, *parent;
1988 	struct dm_thin_endio_hook *pbd;
1989 	sector_t bi_sector = bio->bi_iter.bi_sector;
1990 
1991 	rbp = &tc->sort_bio_list.rb_node;
1992 	parent = NULL;
1993 	while (*rbp) {
1994 		parent = *rbp;
1995 		pbd = thin_pbd(parent);
1996 
1997 		if (bi_sector < thin_bio(pbd)->bi_iter.bi_sector)
1998 			rbp = &(*rbp)->rb_left;
1999 		else
2000 			rbp = &(*rbp)->rb_right;
2001 	}
2002 
2003 	pbd = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
2004 	rb_link_node(&pbd->rb_node, parent, rbp);
2005 	rb_insert_color(&pbd->rb_node, &tc->sort_bio_list);
2006 }
2007 
2008 static void __extract_sorted_bios(struct thin_c *tc)
2009 {
2010 	struct rb_node *node;
2011 	struct dm_thin_endio_hook *pbd;
2012 	struct bio *bio;
2013 
2014 	for (node = rb_first(&tc->sort_bio_list); node; node = rb_next(node)) {
2015 		pbd = thin_pbd(node);
2016 		bio = thin_bio(pbd);
2017 
2018 		bio_list_add(&tc->deferred_bio_list, bio);
2019 		rb_erase(&pbd->rb_node, &tc->sort_bio_list);
2020 	}
2021 
2022 	WARN_ON(!RB_EMPTY_ROOT(&tc->sort_bio_list));
2023 }
2024 
2025 static void __sort_thin_deferred_bios(struct thin_c *tc)
2026 {
2027 	struct bio *bio;
2028 	struct bio_list bios;
2029 
2030 	bio_list_init(&bios);
2031 	bio_list_merge(&bios, &tc->deferred_bio_list);
2032 	bio_list_init(&tc->deferred_bio_list);
2033 
2034 	/* Sort deferred_bio_list using rb-tree */
2035 	while ((bio = bio_list_pop(&bios)))
2036 		__thin_bio_rb_add(tc, bio);
2037 
2038 	/*
2039 	 * Transfer the sorted bios in sort_bio_list back to
2040 	 * deferred_bio_list to allow lockless submission of
2041 	 * all bios.
2042 	 */
2043 	__extract_sorted_bios(tc);
2044 }
2045 
2046 static void process_thin_deferred_bios(struct thin_c *tc)
2047 {
2048 	struct pool *pool = tc->pool;
2049 	unsigned long flags;
2050 	struct bio *bio;
2051 	struct bio_list bios;
2052 	struct blk_plug plug;
2053 	unsigned count = 0;
2054 
2055 	if (tc->requeue_mode) {
2056 		error_thin_bio_list(tc, &tc->deferred_bio_list, DM_ENDIO_REQUEUE);
2057 		return;
2058 	}
2059 
2060 	bio_list_init(&bios);
2061 
2062 	spin_lock_irqsave(&tc->lock, flags);
2063 
2064 	if (bio_list_empty(&tc->deferred_bio_list)) {
2065 		spin_unlock_irqrestore(&tc->lock, flags);
2066 		return;
2067 	}
2068 
2069 	__sort_thin_deferred_bios(tc);
2070 
2071 	bio_list_merge(&bios, &tc->deferred_bio_list);
2072 	bio_list_init(&tc->deferred_bio_list);
2073 
2074 	spin_unlock_irqrestore(&tc->lock, flags);
2075 
2076 	blk_start_plug(&plug);
2077 	while ((bio = bio_list_pop(&bios))) {
2078 		/*
2079 		 * If we've got no free new_mapping structs, and processing
2080 		 * this bio might require one, we pause until there are some
2081 		 * prepared mappings to process.
2082 		 */
2083 		if (ensure_next_mapping(pool)) {
2084 			spin_lock_irqsave(&tc->lock, flags);
2085 			bio_list_add(&tc->deferred_bio_list, bio);
2086 			bio_list_merge(&tc->deferred_bio_list, &bios);
2087 			spin_unlock_irqrestore(&tc->lock, flags);
2088 			break;
2089 		}
2090 
2091 		if (bio->bi_rw & REQ_DISCARD)
2092 			pool->process_discard(tc, bio);
2093 		else
2094 			pool->process_bio(tc, bio);
2095 
2096 		if ((count++ & 127) == 0) {
2097 			throttle_work_update(&pool->throttle);
2098 			dm_pool_issue_prefetches(pool->pmd);
2099 		}
2100 	}
2101 	blk_finish_plug(&plug);
2102 }
2103 
2104 static int cmp_cells(const void *lhs, const void *rhs)
2105 {
2106 	struct dm_bio_prison_cell *lhs_cell = *((struct dm_bio_prison_cell **) lhs);
2107 	struct dm_bio_prison_cell *rhs_cell = *((struct dm_bio_prison_cell **) rhs);
2108 
2109 	BUG_ON(!lhs_cell->holder);
2110 	BUG_ON(!rhs_cell->holder);
2111 
2112 	if (lhs_cell->holder->bi_iter.bi_sector < rhs_cell->holder->bi_iter.bi_sector)
2113 		return -1;
2114 
2115 	if (lhs_cell->holder->bi_iter.bi_sector > rhs_cell->holder->bi_iter.bi_sector)
2116 		return 1;
2117 
2118 	return 0;
2119 }
2120 
2121 static unsigned sort_cells(struct pool *pool, struct list_head *cells)
2122 {
2123 	unsigned count = 0;
2124 	struct dm_bio_prison_cell *cell, *tmp;
2125 
2126 	list_for_each_entry_safe(cell, tmp, cells, user_list) {
2127 		if (count >= CELL_SORT_ARRAY_SIZE)
2128 			break;
2129 
2130 		pool->cell_sort_array[count++] = cell;
2131 		list_del(&cell->user_list);
2132 	}
2133 
2134 	sort(pool->cell_sort_array, count, sizeof(cell), cmp_cells, NULL);
2135 
2136 	return count;
2137 }
2138 
2139 static void process_thin_deferred_cells(struct thin_c *tc)
2140 {
2141 	struct pool *pool = tc->pool;
2142 	unsigned long flags;
2143 	struct list_head cells;
2144 	struct dm_bio_prison_cell *cell;
2145 	unsigned i, j, count;
2146 
2147 	INIT_LIST_HEAD(&cells);
2148 
2149 	spin_lock_irqsave(&tc->lock, flags);
2150 	list_splice_init(&tc->deferred_cells, &cells);
2151 	spin_unlock_irqrestore(&tc->lock, flags);
2152 
2153 	if (list_empty(&cells))
2154 		return;
2155 
2156 	do {
2157 		count = sort_cells(tc->pool, &cells);
2158 
2159 		for (i = 0; i < count; i++) {
2160 			cell = pool->cell_sort_array[i];
2161 			BUG_ON(!cell->holder);
2162 
2163 			/*
2164 			 * If we've got no free new_mapping structs, and processing
2165 			 * this bio might require one, we pause until there are some
2166 			 * prepared mappings to process.
2167 			 */
2168 			if (ensure_next_mapping(pool)) {
2169 				for (j = i; j < count; j++)
2170 					list_add(&pool->cell_sort_array[j]->user_list, &cells);
2171 
2172 				spin_lock_irqsave(&tc->lock, flags);
2173 				list_splice(&cells, &tc->deferred_cells);
2174 				spin_unlock_irqrestore(&tc->lock, flags);
2175 				return;
2176 			}
2177 
2178 			if (cell->holder->bi_rw & REQ_DISCARD)
2179 				pool->process_discard_cell(tc, cell);
2180 			else
2181 				pool->process_cell(tc, cell);
2182 		}
2183 	} while (!list_empty(&cells));
2184 }
2185 
2186 static void thin_get(struct thin_c *tc);
2187 static void thin_put(struct thin_c *tc);
2188 
2189 /*
2190  * We can't hold rcu_read_lock() around code that can block.  So we
2191  * find a thin with the rcu lock held; bump a refcount; then drop
2192  * the lock.
2193  */
2194 static struct thin_c *get_first_thin(struct pool *pool)
2195 {
2196 	struct thin_c *tc = NULL;
2197 
2198 	rcu_read_lock();
2199 	if (!list_empty(&pool->active_thins)) {
2200 		tc = list_entry_rcu(pool->active_thins.next, struct thin_c, list);
2201 		thin_get(tc);
2202 	}
2203 	rcu_read_unlock();
2204 
2205 	return tc;
2206 }
2207 
2208 static struct thin_c *get_next_thin(struct pool *pool, struct thin_c *tc)
2209 {
2210 	struct thin_c *old_tc = tc;
2211 
2212 	rcu_read_lock();
2213 	list_for_each_entry_continue_rcu(tc, &pool->active_thins, list) {
2214 		thin_get(tc);
2215 		thin_put(old_tc);
2216 		rcu_read_unlock();
2217 		return tc;
2218 	}
2219 	thin_put(old_tc);
2220 	rcu_read_unlock();
2221 
2222 	return NULL;
2223 }
2224 
2225 static void process_deferred_bios(struct pool *pool)
2226 {
2227 	unsigned long flags;
2228 	struct bio *bio;
2229 	struct bio_list bios;
2230 	struct thin_c *tc;
2231 
2232 	tc = get_first_thin(pool);
2233 	while (tc) {
2234 		process_thin_deferred_cells(tc);
2235 		process_thin_deferred_bios(tc);
2236 		tc = get_next_thin(pool, tc);
2237 	}
2238 
2239 	/*
2240 	 * If there are any deferred flush bios, we must commit
2241 	 * the metadata before issuing them.
2242 	 */
2243 	bio_list_init(&bios);
2244 	spin_lock_irqsave(&pool->lock, flags);
2245 	bio_list_merge(&bios, &pool->deferred_flush_bios);
2246 	bio_list_init(&pool->deferred_flush_bios);
2247 	spin_unlock_irqrestore(&pool->lock, flags);
2248 
2249 	if (bio_list_empty(&bios) &&
2250 	    !(dm_pool_changed_this_transaction(pool->pmd) && need_commit_due_to_time(pool)))
2251 		return;
2252 
2253 	if (commit(pool)) {
2254 		while ((bio = bio_list_pop(&bios)))
2255 			bio_io_error(bio);
2256 		return;
2257 	}
2258 	pool->last_commit_jiffies = jiffies;
2259 
2260 	while ((bio = bio_list_pop(&bios)))
2261 		generic_make_request(bio);
2262 }
2263 
2264 static void do_worker(struct work_struct *ws)
2265 {
2266 	struct pool *pool = container_of(ws, struct pool, worker);
2267 
2268 	throttle_work_start(&pool->throttle);
2269 	dm_pool_issue_prefetches(pool->pmd);
2270 	throttle_work_update(&pool->throttle);
2271 	process_prepared(pool, &pool->prepared_mappings, &pool->process_prepared_mapping);
2272 	throttle_work_update(&pool->throttle);
2273 	process_prepared(pool, &pool->prepared_discards, &pool->process_prepared_discard);
2274 	throttle_work_update(&pool->throttle);
2275 	process_deferred_bios(pool);
2276 	throttle_work_complete(&pool->throttle);
2277 }
2278 
2279 /*
2280  * We want to commit periodically so that not too much
2281  * unwritten data builds up.
2282  */
2283 static void do_waker(struct work_struct *ws)
2284 {
2285 	struct pool *pool = container_of(to_delayed_work(ws), struct pool, waker);
2286 	wake_worker(pool);
2287 	queue_delayed_work(pool->wq, &pool->waker, COMMIT_PERIOD);
2288 }
2289 
2290 static void notify_of_pool_mode_change_to_oods(struct pool *pool);
2291 
2292 /*
2293  * We're holding onto IO to allow userland time to react.  After the
2294  * timeout either the pool will have been resized (and thus back in
2295  * PM_WRITE mode), or we degrade to PM_OUT_OF_DATA_SPACE w/ error_if_no_space.
2296  */
2297 static void do_no_space_timeout(struct work_struct *ws)
2298 {
2299 	struct pool *pool = container_of(to_delayed_work(ws), struct pool,
2300 					 no_space_timeout);
2301 
2302 	if (get_pool_mode(pool) == PM_OUT_OF_DATA_SPACE && !pool->pf.error_if_no_space) {
2303 		pool->pf.error_if_no_space = true;
2304 		notify_of_pool_mode_change_to_oods(pool);
2305 		error_retry_list_with_code(pool, -ENOSPC);
2306 	}
2307 }
2308 
2309 /*----------------------------------------------------------------*/
2310 
2311 struct pool_work {
2312 	struct work_struct worker;
2313 	struct completion complete;
2314 };
2315 
2316 static struct pool_work *to_pool_work(struct work_struct *ws)
2317 {
2318 	return container_of(ws, struct pool_work, worker);
2319 }
2320 
2321 static void pool_work_complete(struct pool_work *pw)
2322 {
2323 	complete(&pw->complete);
2324 }
2325 
2326 static void pool_work_wait(struct pool_work *pw, struct pool *pool,
2327 			   void (*fn)(struct work_struct *))
2328 {
2329 	INIT_WORK_ONSTACK(&pw->worker, fn);
2330 	init_completion(&pw->complete);
2331 	queue_work(pool->wq, &pw->worker);
2332 	wait_for_completion(&pw->complete);
2333 }
2334 
2335 /*----------------------------------------------------------------*/
2336 
2337 struct noflush_work {
2338 	struct pool_work pw;
2339 	struct thin_c *tc;
2340 };
2341 
2342 static struct noflush_work *to_noflush(struct work_struct *ws)
2343 {
2344 	return container_of(to_pool_work(ws), struct noflush_work, pw);
2345 }
2346 
2347 static void do_noflush_start(struct work_struct *ws)
2348 {
2349 	struct noflush_work *w = to_noflush(ws);
2350 	w->tc->requeue_mode = true;
2351 	requeue_io(w->tc);
2352 	pool_work_complete(&w->pw);
2353 }
2354 
2355 static void do_noflush_stop(struct work_struct *ws)
2356 {
2357 	struct noflush_work *w = to_noflush(ws);
2358 	w->tc->requeue_mode = false;
2359 	pool_work_complete(&w->pw);
2360 }
2361 
2362 static void noflush_work(struct thin_c *tc, void (*fn)(struct work_struct *))
2363 {
2364 	struct noflush_work w;
2365 
2366 	w.tc = tc;
2367 	pool_work_wait(&w.pw, tc->pool, fn);
2368 }
2369 
2370 /*----------------------------------------------------------------*/
2371 
2372 static enum pool_mode get_pool_mode(struct pool *pool)
2373 {
2374 	return pool->pf.mode;
2375 }
2376 
2377 static void notify_of_pool_mode_change(struct pool *pool, const char *new_mode)
2378 {
2379 	dm_table_event(pool->ti->table);
2380 	DMINFO("%s: switching pool to %s mode",
2381 	       dm_device_name(pool->pool_md), new_mode);
2382 }
2383 
2384 static void notify_of_pool_mode_change_to_oods(struct pool *pool)
2385 {
2386 	if (!pool->pf.error_if_no_space)
2387 		notify_of_pool_mode_change(pool, "out-of-data-space (queue IO)");
2388 	else
2389 		notify_of_pool_mode_change(pool, "out-of-data-space (error IO)");
2390 }
2391 
2392 static bool passdown_enabled(struct pool_c *pt)
2393 {
2394 	return pt->adjusted_pf.discard_passdown;
2395 }
2396 
2397 static void set_discard_callbacks(struct pool *pool)
2398 {
2399 	struct pool_c *pt = pool->ti->private;
2400 
2401 	if (passdown_enabled(pt)) {
2402 		pool->process_discard_cell = process_discard_cell_passdown;
2403 		pool->process_prepared_discard = process_prepared_discard_passdown;
2404 	} else {
2405 		pool->process_discard_cell = process_discard_cell_no_passdown;
2406 		pool->process_prepared_discard = process_prepared_discard_no_passdown;
2407 	}
2408 }
2409 
2410 static void set_pool_mode(struct pool *pool, enum pool_mode new_mode)
2411 {
2412 	struct pool_c *pt = pool->ti->private;
2413 	bool needs_check = dm_pool_metadata_needs_check(pool->pmd);
2414 	enum pool_mode old_mode = get_pool_mode(pool);
2415 	unsigned long no_space_timeout = ACCESS_ONCE(no_space_timeout_secs) * HZ;
2416 
2417 	/*
2418 	 * Never allow the pool to transition to PM_WRITE mode if user
2419 	 * intervention is required to verify metadata and data consistency.
2420 	 */
2421 	if (new_mode == PM_WRITE && needs_check) {
2422 		DMERR("%s: unable to switch pool to write mode until repaired.",
2423 		      dm_device_name(pool->pool_md));
2424 		if (old_mode != new_mode)
2425 			new_mode = old_mode;
2426 		else
2427 			new_mode = PM_READ_ONLY;
2428 	}
2429 	/*
2430 	 * If we were in PM_FAIL mode, rollback of metadata failed.  We're
2431 	 * not going to recover without a thin_repair.	So we never let the
2432 	 * pool move out of the old mode.
2433 	 */
2434 	if (old_mode == PM_FAIL)
2435 		new_mode = old_mode;
2436 
2437 	switch (new_mode) {
2438 	case PM_FAIL:
2439 		if (old_mode != new_mode)
2440 			notify_of_pool_mode_change(pool, "failure");
2441 		dm_pool_metadata_read_only(pool->pmd);
2442 		pool->process_bio = process_bio_fail;
2443 		pool->process_discard = process_bio_fail;
2444 		pool->process_cell = process_cell_fail;
2445 		pool->process_discard_cell = process_cell_fail;
2446 		pool->process_prepared_mapping = process_prepared_mapping_fail;
2447 		pool->process_prepared_discard = process_prepared_discard_fail;
2448 
2449 		error_retry_list(pool);
2450 		break;
2451 
2452 	case PM_READ_ONLY:
2453 		if (old_mode != new_mode)
2454 			notify_of_pool_mode_change(pool, "read-only");
2455 		dm_pool_metadata_read_only(pool->pmd);
2456 		pool->process_bio = process_bio_read_only;
2457 		pool->process_discard = process_bio_success;
2458 		pool->process_cell = process_cell_read_only;
2459 		pool->process_discard_cell = process_cell_success;
2460 		pool->process_prepared_mapping = process_prepared_mapping_fail;
2461 		pool->process_prepared_discard = process_prepared_discard_success;
2462 
2463 		error_retry_list(pool);
2464 		break;
2465 
2466 	case PM_OUT_OF_DATA_SPACE:
2467 		/*
2468 		 * Ideally we'd never hit this state; the low water mark
2469 		 * would trigger userland to extend the pool before we
2470 		 * completely run out of data space.  However, many small
2471 		 * IOs to unprovisioned space can consume data space at an
2472 		 * alarming rate.  Adjust your low water mark if you're
2473 		 * frequently seeing this mode.
2474 		 */
2475 		if (old_mode != new_mode)
2476 			notify_of_pool_mode_change_to_oods(pool);
2477 		pool->process_bio = process_bio_read_only;
2478 		pool->process_discard = process_discard_bio;
2479 		pool->process_cell = process_cell_read_only;
2480 		pool->process_prepared_mapping = process_prepared_mapping;
2481 		set_discard_callbacks(pool);
2482 
2483 		if (!pool->pf.error_if_no_space && no_space_timeout)
2484 			queue_delayed_work(pool->wq, &pool->no_space_timeout, no_space_timeout);
2485 		break;
2486 
2487 	case PM_WRITE:
2488 		if (old_mode != new_mode)
2489 			notify_of_pool_mode_change(pool, "write");
2490 		dm_pool_metadata_read_write(pool->pmd);
2491 		pool->process_bio = process_bio;
2492 		pool->process_discard = process_discard_bio;
2493 		pool->process_cell = process_cell;
2494 		pool->process_prepared_mapping = process_prepared_mapping;
2495 		set_discard_callbacks(pool);
2496 		break;
2497 	}
2498 
2499 	pool->pf.mode = new_mode;
2500 	/*
2501 	 * The pool mode may have changed, sync it so bind_control_target()
2502 	 * doesn't cause an unexpected mode transition on resume.
2503 	 */
2504 	pt->adjusted_pf.mode = new_mode;
2505 }
2506 
2507 static void abort_transaction(struct pool *pool)
2508 {
2509 	const char *dev_name = dm_device_name(pool->pool_md);
2510 
2511 	DMERR_LIMIT("%s: aborting current metadata transaction", dev_name);
2512 	if (dm_pool_abort_metadata(pool->pmd)) {
2513 		DMERR("%s: failed to abort metadata transaction", dev_name);
2514 		set_pool_mode(pool, PM_FAIL);
2515 	}
2516 
2517 	if (dm_pool_metadata_set_needs_check(pool->pmd)) {
2518 		DMERR("%s: failed to set 'needs_check' flag in metadata", dev_name);
2519 		set_pool_mode(pool, PM_FAIL);
2520 	}
2521 }
2522 
2523 static void metadata_operation_failed(struct pool *pool, const char *op, int r)
2524 {
2525 	DMERR_LIMIT("%s: metadata operation '%s' failed: error = %d",
2526 		    dm_device_name(pool->pool_md), op, r);
2527 
2528 	abort_transaction(pool);
2529 	set_pool_mode(pool, PM_READ_ONLY);
2530 }
2531 
2532 /*----------------------------------------------------------------*/
2533 
2534 /*
2535  * Mapping functions.
2536  */
2537 
2538 /*
2539  * Called only while mapping a thin bio to hand it over to the workqueue.
2540  */
2541 static void thin_defer_bio(struct thin_c *tc, struct bio *bio)
2542 {
2543 	unsigned long flags;
2544 	struct pool *pool = tc->pool;
2545 
2546 	spin_lock_irqsave(&tc->lock, flags);
2547 	bio_list_add(&tc->deferred_bio_list, bio);
2548 	spin_unlock_irqrestore(&tc->lock, flags);
2549 
2550 	wake_worker(pool);
2551 }
2552 
2553 static void thin_defer_bio_with_throttle(struct thin_c *tc, struct bio *bio)
2554 {
2555 	struct pool *pool = tc->pool;
2556 
2557 	throttle_lock(&pool->throttle);
2558 	thin_defer_bio(tc, bio);
2559 	throttle_unlock(&pool->throttle);
2560 }
2561 
2562 static void thin_defer_cell(struct thin_c *tc, struct dm_bio_prison_cell *cell)
2563 {
2564 	unsigned long flags;
2565 	struct pool *pool = tc->pool;
2566 
2567 	throttle_lock(&pool->throttle);
2568 	spin_lock_irqsave(&tc->lock, flags);
2569 	list_add_tail(&cell->user_list, &tc->deferred_cells);
2570 	spin_unlock_irqrestore(&tc->lock, flags);
2571 	throttle_unlock(&pool->throttle);
2572 
2573 	wake_worker(pool);
2574 }
2575 
2576 static void thin_hook_bio(struct thin_c *tc, struct bio *bio)
2577 {
2578 	struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
2579 
2580 	h->tc = tc;
2581 	h->shared_read_entry = NULL;
2582 	h->all_io_entry = NULL;
2583 	h->overwrite_mapping = NULL;
2584 	h->cell = NULL;
2585 }
2586 
2587 /*
2588  * Non-blocking function called from the thin target's map function.
2589  */
2590 static int thin_bio_map(struct dm_target *ti, struct bio *bio)
2591 {
2592 	int r;
2593 	struct thin_c *tc = ti->private;
2594 	dm_block_t block = get_bio_block(tc, bio);
2595 	struct dm_thin_device *td = tc->td;
2596 	struct dm_thin_lookup_result result;
2597 	struct dm_bio_prison_cell *virt_cell, *data_cell;
2598 	struct dm_cell_key key;
2599 
2600 	thin_hook_bio(tc, bio);
2601 
2602 	if (tc->requeue_mode) {
2603 		bio_endio(bio, DM_ENDIO_REQUEUE);
2604 		return DM_MAPIO_SUBMITTED;
2605 	}
2606 
2607 	if (get_pool_mode(tc->pool) == PM_FAIL) {
2608 		bio_io_error(bio);
2609 		return DM_MAPIO_SUBMITTED;
2610 	}
2611 
2612 	if (bio->bi_rw & (REQ_DISCARD | REQ_FLUSH | REQ_FUA)) {
2613 		thin_defer_bio_with_throttle(tc, bio);
2614 		return DM_MAPIO_SUBMITTED;
2615 	}
2616 
2617 	/*
2618 	 * We must hold the virtual cell before doing the lookup, otherwise
2619 	 * there's a race with discard.
2620 	 */
2621 	build_virtual_key(tc->td, block, &key);
2622 	if (bio_detain(tc->pool, &key, bio, &virt_cell))
2623 		return DM_MAPIO_SUBMITTED;
2624 
2625 	r = dm_thin_find_block(td, block, 0, &result);
2626 
2627 	/*
2628 	 * Note that we defer readahead too.
2629 	 */
2630 	switch (r) {
2631 	case 0:
2632 		if (unlikely(result.shared)) {
2633 			/*
2634 			 * We have a race condition here between the
2635 			 * result.shared value returned by the lookup and
2636 			 * snapshot creation, which may cause new
2637 			 * sharing.
2638 			 *
2639 			 * To avoid this always quiesce the origin before
2640 			 * taking the snap.  You want to do this anyway to
2641 			 * ensure a consistent application view
2642 			 * (i.e. lockfs).
2643 			 *
2644 			 * More distant ancestors are irrelevant. The
2645 			 * shared flag will be set in their case.
2646 			 */
2647 			thin_defer_cell(tc, virt_cell);
2648 			return DM_MAPIO_SUBMITTED;
2649 		}
2650 
2651 		build_data_key(tc->td, result.block, &key);
2652 		if (bio_detain(tc->pool, &key, bio, &data_cell)) {
2653 			cell_defer_no_holder(tc, virt_cell);
2654 			return DM_MAPIO_SUBMITTED;
2655 		}
2656 
2657 		inc_all_io_entry(tc->pool, bio);
2658 		cell_defer_no_holder(tc, data_cell);
2659 		cell_defer_no_holder(tc, virt_cell);
2660 
2661 		remap(tc, bio, result.block);
2662 		return DM_MAPIO_REMAPPED;
2663 
2664 	case -ENODATA:
2665 	case -EWOULDBLOCK:
2666 		thin_defer_cell(tc, virt_cell);
2667 		return DM_MAPIO_SUBMITTED;
2668 
2669 	default:
2670 		/*
2671 		 * Must always call bio_io_error on failure.
2672 		 * dm_thin_find_block can fail with -EINVAL if the
2673 		 * pool is switched to fail-io mode.
2674 		 */
2675 		bio_io_error(bio);
2676 		cell_defer_no_holder(tc, virt_cell);
2677 		return DM_MAPIO_SUBMITTED;
2678 	}
2679 }
2680 
2681 static int pool_is_congested(struct dm_target_callbacks *cb, int bdi_bits)
2682 {
2683 	struct pool_c *pt = container_of(cb, struct pool_c, callbacks);
2684 	struct request_queue *q;
2685 
2686 	if (get_pool_mode(pt->pool) == PM_OUT_OF_DATA_SPACE)
2687 		return 1;
2688 
2689 	q = bdev_get_queue(pt->data_dev->bdev);
2690 	return bdi_congested(&q->backing_dev_info, bdi_bits);
2691 }
2692 
2693 static void requeue_bios(struct pool *pool)
2694 {
2695 	unsigned long flags;
2696 	struct thin_c *tc;
2697 
2698 	rcu_read_lock();
2699 	list_for_each_entry_rcu(tc, &pool->active_thins, list) {
2700 		spin_lock_irqsave(&tc->lock, flags);
2701 		bio_list_merge(&tc->deferred_bio_list, &tc->retry_on_resume_list);
2702 		bio_list_init(&tc->retry_on_resume_list);
2703 		spin_unlock_irqrestore(&tc->lock, flags);
2704 	}
2705 	rcu_read_unlock();
2706 }
2707 
2708 /*----------------------------------------------------------------
2709  * Binding of control targets to a pool object
2710  *--------------------------------------------------------------*/
2711 static bool data_dev_supports_discard(struct pool_c *pt)
2712 {
2713 	struct request_queue *q = bdev_get_queue(pt->data_dev->bdev);
2714 
2715 	return q && blk_queue_discard(q);
2716 }
2717 
2718 static bool is_factor(sector_t block_size, uint32_t n)
2719 {
2720 	return !sector_div(block_size, n);
2721 }
2722 
2723 /*
2724  * If discard_passdown was enabled verify that the data device
2725  * supports discards.  Disable discard_passdown if not.
2726  */
2727 static void disable_passdown_if_not_supported(struct pool_c *pt)
2728 {
2729 	struct pool *pool = pt->pool;
2730 	struct block_device *data_bdev = pt->data_dev->bdev;
2731 	struct queue_limits *data_limits = &bdev_get_queue(data_bdev)->limits;
2732 	const char *reason = NULL;
2733 	char buf[BDEVNAME_SIZE];
2734 
2735 	if (!pt->adjusted_pf.discard_passdown)
2736 		return;
2737 
2738 	if (!data_dev_supports_discard(pt))
2739 		reason = "discard unsupported";
2740 
2741 	else if (data_limits->max_discard_sectors < pool->sectors_per_block)
2742 		reason = "max discard sectors smaller than a block";
2743 
2744 	if (reason) {
2745 		DMWARN("Data device (%s) %s: Disabling discard passdown.", bdevname(data_bdev, buf), reason);
2746 		pt->adjusted_pf.discard_passdown = false;
2747 	}
2748 }
2749 
2750 static int bind_control_target(struct pool *pool, struct dm_target *ti)
2751 {
2752 	struct pool_c *pt = ti->private;
2753 
2754 	/*
2755 	 * We want to make sure that a pool in PM_FAIL mode is never upgraded.
2756 	 */
2757 	enum pool_mode old_mode = get_pool_mode(pool);
2758 	enum pool_mode new_mode = pt->adjusted_pf.mode;
2759 
2760 	/*
2761 	 * Don't change the pool's mode until set_pool_mode() below.
2762 	 * Otherwise the pool's process_* function pointers may
2763 	 * not match the desired pool mode.
2764 	 */
2765 	pt->adjusted_pf.mode = old_mode;
2766 
2767 	pool->ti = ti;
2768 	pool->pf = pt->adjusted_pf;
2769 	pool->low_water_blocks = pt->low_water_blocks;
2770 
2771 	set_pool_mode(pool, new_mode);
2772 
2773 	return 0;
2774 }
2775 
2776 static void unbind_control_target(struct pool *pool, struct dm_target *ti)
2777 {
2778 	if (pool->ti == ti)
2779 		pool->ti = NULL;
2780 }
2781 
2782 /*----------------------------------------------------------------
2783  * Pool creation
2784  *--------------------------------------------------------------*/
2785 /* Initialize pool features. */
2786 static void pool_features_init(struct pool_features *pf)
2787 {
2788 	pf->mode = PM_WRITE;
2789 	pf->zero_new_blocks = true;
2790 	pf->discard_enabled = true;
2791 	pf->discard_passdown = true;
2792 	pf->error_if_no_space = false;
2793 }
2794 
2795 static void __pool_destroy(struct pool *pool)
2796 {
2797 	__pool_table_remove(pool);
2798 
2799 	vfree(pool->cell_sort_array);
2800 	if (dm_pool_metadata_close(pool->pmd) < 0)
2801 		DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
2802 
2803 	dm_bio_prison_destroy(pool->prison);
2804 	dm_kcopyd_client_destroy(pool->copier);
2805 
2806 	if (pool->wq)
2807 		destroy_workqueue(pool->wq);
2808 
2809 	if (pool->next_mapping)
2810 		mempool_free(pool->next_mapping, pool->mapping_pool);
2811 	mempool_destroy(pool->mapping_pool);
2812 	dm_deferred_set_destroy(pool->shared_read_ds);
2813 	dm_deferred_set_destroy(pool->all_io_ds);
2814 	kfree(pool);
2815 }
2816 
2817 static struct kmem_cache *_new_mapping_cache;
2818 
2819 static struct pool *pool_create(struct mapped_device *pool_md,
2820 				struct block_device *metadata_dev,
2821 				unsigned long block_size,
2822 				int read_only, char **error)
2823 {
2824 	int r;
2825 	void *err_p;
2826 	struct pool *pool;
2827 	struct dm_pool_metadata *pmd;
2828 	bool format_device = read_only ? false : true;
2829 
2830 	pmd = dm_pool_metadata_open(metadata_dev, block_size, format_device);
2831 	if (IS_ERR(pmd)) {
2832 		*error = "Error creating metadata object";
2833 		return (struct pool *)pmd;
2834 	}
2835 
2836 	pool = kmalloc(sizeof(*pool), GFP_KERNEL);
2837 	if (!pool) {
2838 		*error = "Error allocating memory for pool";
2839 		err_p = ERR_PTR(-ENOMEM);
2840 		goto bad_pool;
2841 	}
2842 
2843 	pool->pmd = pmd;
2844 	pool->sectors_per_block = block_size;
2845 	if (block_size & (block_size - 1))
2846 		pool->sectors_per_block_shift = -1;
2847 	else
2848 		pool->sectors_per_block_shift = __ffs(block_size);
2849 	pool->low_water_blocks = 0;
2850 	pool_features_init(&pool->pf);
2851 	pool->prison = dm_bio_prison_create();
2852 	if (!pool->prison) {
2853 		*error = "Error creating pool's bio prison";
2854 		err_p = ERR_PTR(-ENOMEM);
2855 		goto bad_prison;
2856 	}
2857 
2858 	pool->copier = dm_kcopyd_client_create(&dm_kcopyd_throttle);
2859 	if (IS_ERR(pool->copier)) {
2860 		r = PTR_ERR(pool->copier);
2861 		*error = "Error creating pool's kcopyd client";
2862 		err_p = ERR_PTR(r);
2863 		goto bad_kcopyd_client;
2864 	}
2865 
2866 	/*
2867 	 * Create singlethreaded workqueue that will service all devices
2868 	 * that use this metadata.
2869 	 */
2870 	pool->wq = alloc_ordered_workqueue("dm-" DM_MSG_PREFIX, WQ_MEM_RECLAIM);
2871 	if (!pool->wq) {
2872 		*error = "Error creating pool's workqueue";
2873 		err_p = ERR_PTR(-ENOMEM);
2874 		goto bad_wq;
2875 	}
2876 
2877 	throttle_init(&pool->throttle);
2878 	INIT_WORK(&pool->worker, do_worker);
2879 	INIT_DELAYED_WORK(&pool->waker, do_waker);
2880 	INIT_DELAYED_WORK(&pool->no_space_timeout, do_no_space_timeout);
2881 	spin_lock_init(&pool->lock);
2882 	bio_list_init(&pool->deferred_flush_bios);
2883 	INIT_LIST_HEAD(&pool->prepared_mappings);
2884 	INIT_LIST_HEAD(&pool->prepared_discards);
2885 	INIT_LIST_HEAD(&pool->active_thins);
2886 	pool->low_water_triggered = false;
2887 	pool->suspended = true;
2888 
2889 	pool->shared_read_ds = dm_deferred_set_create();
2890 	if (!pool->shared_read_ds) {
2891 		*error = "Error creating pool's shared read deferred set";
2892 		err_p = ERR_PTR(-ENOMEM);
2893 		goto bad_shared_read_ds;
2894 	}
2895 
2896 	pool->all_io_ds = dm_deferred_set_create();
2897 	if (!pool->all_io_ds) {
2898 		*error = "Error creating pool's all io deferred set";
2899 		err_p = ERR_PTR(-ENOMEM);
2900 		goto bad_all_io_ds;
2901 	}
2902 
2903 	pool->next_mapping = NULL;
2904 	pool->mapping_pool = mempool_create_slab_pool(MAPPING_POOL_SIZE,
2905 						      _new_mapping_cache);
2906 	if (!pool->mapping_pool) {
2907 		*error = "Error creating pool's mapping mempool";
2908 		err_p = ERR_PTR(-ENOMEM);
2909 		goto bad_mapping_pool;
2910 	}
2911 
2912 	pool->cell_sort_array = vmalloc(sizeof(*pool->cell_sort_array) * CELL_SORT_ARRAY_SIZE);
2913 	if (!pool->cell_sort_array) {
2914 		*error = "Error allocating cell sort array";
2915 		err_p = ERR_PTR(-ENOMEM);
2916 		goto bad_sort_array;
2917 	}
2918 
2919 	pool->ref_count = 1;
2920 	pool->last_commit_jiffies = jiffies;
2921 	pool->pool_md = pool_md;
2922 	pool->md_dev = metadata_dev;
2923 	__pool_table_insert(pool);
2924 
2925 	return pool;
2926 
2927 bad_sort_array:
2928 	mempool_destroy(pool->mapping_pool);
2929 bad_mapping_pool:
2930 	dm_deferred_set_destroy(pool->all_io_ds);
2931 bad_all_io_ds:
2932 	dm_deferred_set_destroy(pool->shared_read_ds);
2933 bad_shared_read_ds:
2934 	destroy_workqueue(pool->wq);
2935 bad_wq:
2936 	dm_kcopyd_client_destroy(pool->copier);
2937 bad_kcopyd_client:
2938 	dm_bio_prison_destroy(pool->prison);
2939 bad_prison:
2940 	kfree(pool);
2941 bad_pool:
2942 	if (dm_pool_metadata_close(pmd))
2943 		DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
2944 
2945 	return err_p;
2946 }
2947 
2948 static void __pool_inc(struct pool *pool)
2949 {
2950 	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
2951 	pool->ref_count++;
2952 }
2953 
2954 static void __pool_dec(struct pool *pool)
2955 {
2956 	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
2957 	BUG_ON(!pool->ref_count);
2958 	if (!--pool->ref_count)
2959 		__pool_destroy(pool);
2960 }
2961 
2962 static struct pool *__pool_find(struct mapped_device *pool_md,
2963 				struct block_device *metadata_dev,
2964 				unsigned long block_size, int read_only,
2965 				char **error, int *created)
2966 {
2967 	struct pool *pool = __pool_table_lookup_metadata_dev(metadata_dev);
2968 
2969 	if (pool) {
2970 		if (pool->pool_md != pool_md) {
2971 			*error = "metadata device already in use by a pool";
2972 			return ERR_PTR(-EBUSY);
2973 		}
2974 		__pool_inc(pool);
2975 
2976 	} else {
2977 		pool = __pool_table_lookup(pool_md);
2978 		if (pool) {
2979 			if (pool->md_dev != metadata_dev) {
2980 				*error = "different pool cannot replace a pool";
2981 				return ERR_PTR(-EINVAL);
2982 			}
2983 			__pool_inc(pool);
2984 
2985 		} else {
2986 			pool = pool_create(pool_md, metadata_dev, block_size, read_only, error);
2987 			*created = 1;
2988 		}
2989 	}
2990 
2991 	return pool;
2992 }
2993 
2994 /*----------------------------------------------------------------
2995  * Pool target methods
2996  *--------------------------------------------------------------*/
2997 static void pool_dtr(struct dm_target *ti)
2998 {
2999 	struct pool_c *pt = ti->private;
3000 
3001 	mutex_lock(&dm_thin_pool_table.mutex);
3002 
3003 	unbind_control_target(pt->pool, ti);
3004 	__pool_dec(pt->pool);
3005 	dm_put_device(ti, pt->metadata_dev);
3006 	dm_put_device(ti, pt->data_dev);
3007 	kfree(pt);
3008 
3009 	mutex_unlock(&dm_thin_pool_table.mutex);
3010 }
3011 
3012 static int parse_pool_features(struct dm_arg_set *as, struct pool_features *pf,
3013 			       struct dm_target *ti)
3014 {
3015 	int r;
3016 	unsigned argc;
3017 	const char *arg_name;
3018 
3019 	static struct dm_arg _args[] = {
3020 		{0, 4, "Invalid number of pool feature arguments"},
3021 	};
3022 
3023 	/*
3024 	 * No feature arguments supplied.
3025 	 */
3026 	if (!as->argc)
3027 		return 0;
3028 
3029 	r = dm_read_arg_group(_args, as, &argc, &ti->error);
3030 	if (r)
3031 		return -EINVAL;
3032 
3033 	while (argc && !r) {
3034 		arg_name = dm_shift_arg(as);
3035 		argc--;
3036 
3037 		if (!strcasecmp(arg_name, "skip_block_zeroing"))
3038 			pf->zero_new_blocks = false;
3039 
3040 		else if (!strcasecmp(arg_name, "ignore_discard"))
3041 			pf->discard_enabled = false;
3042 
3043 		else if (!strcasecmp(arg_name, "no_discard_passdown"))
3044 			pf->discard_passdown = false;
3045 
3046 		else if (!strcasecmp(arg_name, "read_only"))
3047 			pf->mode = PM_READ_ONLY;
3048 
3049 		else if (!strcasecmp(arg_name, "error_if_no_space"))
3050 			pf->error_if_no_space = true;
3051 
3052 		else {
3053 			ti->error = "Unrecognised pool feature requested";
3054 			r = -EINVAL;
3055 			break;
3056 		}
3057 	}
3058 
3059 	return r;
3060 }
3061 
3062 static void metadata_low_callback(void *context)
3063 {
3064 	struct pool *pool = context;
3065 
3066 	DMWARN("%s: reached low water mark for metadata device: sending event.",
3067 	       dm_device_name(pool->pool_md));
3068 
3069 	dm_table_event(pool->ti->table);
3070 }
3071 
3072 static sector_t get_dev_size(struct block_device *bdev)
3073 {
3074 	return i_size_read(bdev->bd_inode) >> SECTOR_SHIFT;
3075 }
3076 
3077 static void warn_if_metadata_device_too_big(struct block_device *bdev)
3078 {
3079 	sector_t metadata_dev_size = get_dev_size(bdev);
3080 	char buffer[BDEVNAME_SIZE];
3081 
3082 	if (metadata_dev_size > THIN_METADATA_MAX_SECTORS_WARNING)
3083 		DMWARN("Metadata device %s is larger than %u sectors: excess space will not be used.",
3084 		       bdevname(bdev, buffer), THIN_METADATA_MAX_SECTORS);
3085 }
3086 
3087 static sector_t get_metadata_dev_size(struct block_device *bdev)
3088 {
3089 	sector_t metadata_dev_size = get_dev_size(bdev);
3090 
3091 	if (metadata_dev_size > THIN_METADATA_MAX_SECTORS)
3092 		metadata_dev_size = THIN_METADATA_MAX_SECTORS;
3093 
3094 	return metadata_dev_size;
3095 }
3096 
3097 static dm_block_t get_metadata_dev_size_in_blocks(struct block_device *bdev)
3098 {
3099 	sector_t metadata_dev_size = get_metadata_dev_size(bdev);
3100 
3101 	sector_div(metadata_dev_size, THIN_METADATA_BLOCK_SIZE);
3102 
3103 	return metadata_dev_size;
3104 }
3105 
3106 /*
3107  * When a metadata threshold is crossed a dm event is triggered, and
3108  * userland should respond by growing the metadata device.  We could let
3109  * userland set the threshold, like we do with the data threshold, but I'm
3110  * not sure they know enough to do this well.
3111  */
3112 static dm_block_t calc_metadata_threshold(struct pool_c *pt)
3113 {
3114 	/*
3115 	 * 4M is ample for all ops with the possible exception of thin
3116 	 * device deletion which is harmless if it fails (just retry the
3117 	 * delete after you've grown the device).
3118 	 */
3119 	dm_block_t quarter = get_metadata_dev_size_in_blocks(pt->metadata_dev->bdev) / 4;
3120 	return min((dm_block_t)1024ULL /* 4M */, quarter);
3121 }
3122 
3123 /*
3124  * thin-pool <metadata dev> <data dev>
3125  *	     <data block size (sectors)>
3126  *	     <low water mark (blocks)>
3127  *	     [<#feature args> [<arg>]*]
3128  *
3129  * Optional feature arguments are:
3130  *	     skip_block_zeroing: skips the zeroing of newly-provisioned blocks.
3131  *	     ignore_discard: disable discard
3132  *	     no_discard_passdown: don't pass discards down to the data device
3133  *	     read_only: Don't allow any changes to be made to the pool metadata.
3134  *	     error_if_no_space: error IOs, instead of queueing, if no space.
3135  */
3136 static int pool_ctr(struct dm_target *ti, unsigned argc, char **argv)
3137 {
3138 	int r, pool_created = 0;
3139 	struct pool_c *pt;
3140 	struct pool *pool;
3141 	struct pool_features pf;
3142 	struct dm_arg_set as;
3143 	struct dm_dev *data_dev;
3144 	unsigned long block_size;
3145 	dm_block_t low_water_blocks;
3146 	struct dm_dev *metadata_dev;
3147 	fmode_t metadata_mode;
3148 
3149 	/*
3150 	 * FIXME Remove validation from scope of lock.
3151 	 */
3152 	mutex_lock(&dm_thin_pool_table.mutex);
3153 
3154 	if (argc < 4) {
3155 		ti->error = "Invalid argument count";
3156 		r = -EINVAL;
3157 		goto out_unlock;
3158 	}
3159 
3160 	as.argc = argc;
3161 	as.argv = argv;
3162 
3163 	/*
3164 	 * Set default pool features.
3165 	 */
3166 	pool_features_init(&pf);
3167 
3168 	dm_consume_args(&as, 4);
3169 	r = parse_pool_features(&as, &pf, ti);
3170 	if (r)
3171 		goto out_unlock;
3172 
3173 	metadata_mode = FMODE_READ | ((pf.mode == PM_READ_ONLY) ? 0 : FMODE_WRITE);
3174 	r = dm_get_device(ti, argv[0], metadata_mode, &metadata_dev);
3175 	if (r) {
3176 		ti->error = "Error opening metadata block device";
3177 		goto out_unlock;
3178 	}
3179 	warn_if_metadata_device_too_big(metadata_dev->bdev);
3180 
3181 	r = dm_get_device(ti, argv[1], FMODE_READ | FMODE_WRITE, &data_dev);
3182 	if (r) {
3183 		ti->error = "Error getting data device";
3184 		goto out_metadata;
3185 	}
3186 
3187 	if (kstrtoul(argv[2], 10, &block_size) || !block_size ||
3188 	    block_size < DATA_DEV_BLOCK_SIZE_MIN_SECTORS ||
3189 	    block_size > DATA_DEV_BLOCK_SIZE_MAX_SECTORS ||
3190 	    block_size & (DATA_DEV_BLOCK_SIZE_MIN_SECTORS - 1)) {
3191 		ti->error = "Invalid block size";
3192 		r = -EINVAL;
3193 		goto out;
3194 	}
3195 
3196 	if (kstrtoull(argv[3], 10, (unsigned long long *)&low_water_blocks)) {
3197 		ti->error = "Invalid low water mark";
3198 		r = -EINVAL;
3199 		goto out;
3200 	}
3201 
3202 	pt = kzalloc(sizeof(*pt), GFP_KERNEL);
3203 	if (!pt) {
3204 		r = -ENOMEM;
3205 		goto out;
3206 	}
3207 
3208 	pool = __pool_find(dm_table_get_md(ti->table), metadata_dev->bdev,
3209 			   block_size, pf.mode == PM_READ_ONLY, &ti->error, &pool_created);
3210 	if (IS_ERR(pool)) {
3211 		r = PTR_ERR(pool);
3212 		goto out_free_pt;
3213 	}
3214 
3215 	/*
3216 	 * 'pool_created' reflects whether this is the first table load.
3217 	 * Top level discard support is not allowed to be changed after
3218 	 * initial load.  This would require a pool reload to trigger thin
3219 	 * device changes.
3220 	 */
3221 	if (!pool_created && pf.discard_enabled != pool->pf.discard_enabled) {
3222 		ti->error = "Discard support cannot be disabled once enabled";
3223 		r = -EINVAL;
3224 		goto out_flags_changed;
3225 	}
3226 
3227 	pt->pool = pool;
3228 	pt->ti = ti;
3229 	pt->metadata_dev = metadata_dev;
3230 	pt->data_dev = data_dev;
3231 	pt->low_water_blocks = low_water_blocks;
3232 	pt->adjusted_pf = pt->requested_pf = pf;
3233 	ti->num_flush_bios = 1;
3234 
3235 	/*
3236 	 * Only need to enable discards if the pool should pass
3237 	 * them down to the data device.  The thin device's discard
3238 	 * processing will cause mappings to be removed from the btree.
3239 	 */
3240 	ti->discard_zeroes_data_unsupported = true;
3241 	if (pf.discard_enabled && pf.discard_passdown) {
3242 		ti->num_discard_bios = 1;
3243 
3244 		/*
3245 		 * Setting 'discards_supported' circumvents the normal
3246 		 * stacking of discard limits (this keeps the pool and
3247 		 * thin devices' discard limits consistent).
3248 		 */
3249 		ti->discards_supported = true;
3250 	}
3251 	ti->private = pt;
3252 
3253 	r = dm_pool_register_metadata_threshold(pt->pool->pmd,
3254 						calc_metadata_threshold(pt),
3255 						metadata_low_callback,
3256 						pool);
3257 	if (r)
3258 		goto out_free_pt;
3259 
3260 	pt->callbacks.congested_fn = pool_is_congested;
3261 	dm_table_add_target_callbacks(ti->table, &pt->callbacks);
3262 
3263 	mutex_unlock(&dm_thin_pool_table.mutex);
3264 
3265 	return 0;
3266 
3267 out_flags_changed:
3268 	__pool_dec(pool);
3269 out_free_pt:
3270 	kfree(pt);
3271 out:
3272 	dm_put_device(ti, data_dev);
3273 out_metadata:
3274 	dm_put_device(ti, metadata_dev);
3275 out_unlock:
3276 	mutex_unlock(&dm_thin_pool_table.mutex);
3277 
3278 	return r;
3279 }
3280 
3281 static int pool_map(struct dm_target *ti, struct bio *bio)
3282 {
3283 	int r;
3284 	struct pool_c *pt = ti->private;
3285 	struct pool *pool = pt->pool;
3286 	unsigned long flags;
3287 
3288 	/*
3289 	 * As this is a singleton target, ti->begin is always zero.
3290 	 */
3291 	spin_lock_irqsave(&pool->lock, flags);
3292 	bio->bi_bdev = pt->data_dev->bdev;
3293 	r = DM_MAPIO_REMAPPED;
3294 	spin_unlock_irqrestore(&pool->lock, flags);
3295 
3296 	return r;
3297 }
3298 
3299 static int maybe_resize_data_dev(struct dm_target *ti, bool *need_commit)
3300 {
3301 	int r;
3302 	struct pool_c *pt = ti->private;
3303 	struct pool *pool = pt->pool;
3304 	sector_t data_size = ti->len;
3305 	dm_block_t sb_data_size;
3306 
3307 	*need_commit = false;
3308 
3309 	(void) sector_div(data_size, pool->sectors_per_block);
3310 
3311 	r = dm_pool_get_data_dev_size(pool->pmd, &sb_data_size);
3312 	if (r) {
3313 		DMERR("%s: failed to retrieve data device size",
3314 		      dm_device_name(pool->pool_md));
3315 		return r;
3316 	}
3317 
3318 	if (data_size < sb_data_size) {
3319 		DMERR("%s: pool target (%llu blocks) too small: expected %llu",
3320 		      dm_device_name(pool->pool_md),
3321 		      (unsigned long long)data_size, sb_data_size);
3322 		return -EINVAL;
3323 
3324 	} else if (data_size > sb_data_size) {
3325 		if (dm_pool_metadata_needs_check(pool->pmd)) {
3326 			DMERR("%s: unable to grow the data device until repaired.",
3327 			      dm_device_name(pool->pool_md));
3328 			return 0;
3329 		}
3330 
3331 		if (sb_data_size)
3332 			DMINFO("%s: growing the data device from %llu to %llu blocks",
3333 			       dm_device_name(pool->pool_md),
3334 			       sb_data_size, (unsigned long long)data_size);
3335 		r = dm_pool_resize_data_dev(pool->pmd, data_size);
3336 		if (r) {
3337 			metadata_operation_failed(pool, "dm_pool_resize_data_dev", r);
3338 			return r;
3339 		}
3340 
3341 		*need_commit = true;
3342 	}
3343 
3344 	return 0;
3345 }
3346 
3347 static int maybe_resize_metadata_dev(struct dm_target *ti, bool *need_commit)
3348 {
3349 	int r;
3350 	struct pool_c *pt = ti->private;
3351 	struct pool *pool = pt->pool;
3352 	dm_block_t metadata_dev_size, sb_metadata_dev_size;
3353 
3354 	*need_commit = false;
3355 
3356 	metadata_dev_size = get_metadata_dev_size_in_blocks(pool->md_dev);
3357 
3358 	r = dm_pool_get_metadata_dev_size(pool->pmd, &sb_metadata_dev_size);
3359 	if (r) {
3360 		DMERR("%s: failed to retrieve metadata device size",
3361 		      dm_device_name(pool->pool_md));
3362 		return r;
3363 	}
3364 
3365 	if (metadata_dev_size < sb_metadata_dev_size) {
3366 		DMERR("%s: metadata device (%llu blocks) too small: expected %llu",
3367 		      dm_device_name(pool->pool_md),
3368 		      metadata_dev_size, sb_metadata_dev_size);
3369 		return -EINVAL;
3370 
3371 	} else if (metadata_dev_size > sb_metadata_dev_size) {
3372 		if (dm_pool_metadata_needs_check(pool->pmd)) {
3373 			DMERR("%s: unable to grow the metadata device until repaired.",
3374 			      dm_device_name(pool->pool_md));
3375 			return 0;
3376 		}
3377 
3378 		warn_if_metadata_device_too_big(pool->md_dev);
3379 		DMINFO("%s: growing the metadata device from %llu to %llu blocks",
3380 		       dm_device_name(pool->pool_md),
3381 		       sb_metadata_dev_size, metadata_dev_size);
3382 		r = dm_pool_resize_metadata_dev(pool->pmd, metadata_dev_size);
3383 		if (r) {
3384 			metadata_operation_failed(pool, "dm_pool_resize_metadata_dev", r);
3385 			return r;
3386 		}
3387 
3388 		*need_commit = true;
3389 	}
3390 
3391 	return 0;
3392 }
3393 
3394 /*
3395  * Retrieves the number of blocks of the data device from
3396  * the superblock and compares it to the actual device size,
3397  * thus resizing the data device in case it has grown.
3398  *
3399  * This both copes with opening preallocated data devices in the ctr
3400  * being followed by a resume
3401  * -and-
3402  * calling the resume method individually after userspace has
3403  * grown the data device in reaction to a table event.
3404  */
3405 static int pool_preresume(struct dm_target *ti)
3406 {
3407 	int r;
3408 	bool need_commit1, need_commit2;
3409 	struct pool_c *pt = ti->private;
3410 	struct pool *pool = pt->pool;
3411 
3412 	/*
3413 	 * Take control of the pool object.
3414 	 */
3415 	r = bind_control_target(pool, ti);
3416 	if (r)
3417 		return r;
3418 
3419 	r = maybe_resize_data_dev(ti, &need_commit1);
3420 	if (r)
3421 		return r;
3422 
3423 	r = maybe_resize_metadata_dev(ti, &need_commit2);
3424 	if (r)
3425 		return r;
3426 
3427 	if (need_commit1 || need_commit2)
3428 		(void) commit(pool);
3429 
3430 	return 0;
3431 }
3432 
3433 static void pool_suspend_active_thins(struct pool *pool)
3434 {
3435 	struct thin_c *tc;
3436 
3437 	/* Suspend all active thin devices */
3438 	tc = get_first_thin(pool);
3439 	while (tc) {
3440 		dm_internal_suspend_noflush(tc->thin_md);
3441 		tc = get_next_thin(pool, tc);
3442 	}
3443 }
3444 
3445 static void pool_resume_active_thins(struct pool *pool)
3446 {
3447 	struct thin_c *tc;
3448 
3449 	/* Resume all active thin devices */
3450 	tc = get_first_thin(pool);
3451 	while (tc) {
3452 		dm_internal_resume(tc->thin_md);
3453 		tc = get_next_thin(pool, tc);
3454 	}
3455 }
3456 
3457 static void pool_resume(struct dm_target *ti)
3458 {
3459 	struct pool_c *pt = ti->private;
3460 	struct pool *pool = pt->pool;
3461 	unsigned long flags;
3462 
3463 	/*
3464 	 * Must requeue active_thins' bios and then resume
3465 	 * active_thins _before_ clearing 'suspend' flag.
3466 	 */
3467 	requeue_bios(pool);
3468 	pool_resume_active_thins(pool);
3469 
3470 	spin_lock_irqsave(&pool->lock, flags);
3471 	pool->low_water_triggered = false;
3472 	pool->suspended = false;
3473 	spin_unlock_irqrestore(&pool->lock, flags);
3474 
3475 	do_waker(&pool->waker.work);
3476 }
3477 
3478 static void pool_presuspend(struct dm_target *ti)
3479 {
3480 	struct pool_c *pt = ti->private;
3481 	struct pool *pool = pt->pool;
3482 	unsigned long flags;
3483 
3484 	spin_lock_irqsave(&pool->lock, flags);
3485 	pool->suspended = true;
3486 	spin_unlock_irqrestore(&pool->lock, flags);
3487 
3488 	pool_suspend_active_thins(pool);
3489 }
3490 
3491 static void pool_presuspend_undo(struct dm_target *ti)
3492 {
3493 	struct pool_c *pt = ti->private;
3494 	struct pool *pool = pt->pool;
3495 	unsigned long flags;
3496 
3497 	pool_resume_active_thins(pool);
3498 
3499 	spin_lock_irqsave(&pool->lock, flags);
3500 	pool->suspended = false;
3501 	spin_unlock_irqrestore(&pool->lock, flags);
3502 }
3503 
3504 static void pool_postsuspend(struct dm_target *ti)
3505 {
3506 	struct pool_c *pt = ti->private;
3507 	struct pool *pool = pt->pool;
3508 
3509 	cancel_delayed_work(&pool->waker);
3510 	cancel_delayed_work(&pool->no_space_timeout);
3511 	flush_workqueue(pool->wq);
3512 	(void) commit(pool);
3513 }
3514 
3515 static int check_arg_count(unsigned argc, unsigned args_required)
3516 {
3517 	if (argc != args_required) {
3518 		DMWARN("Message received with %u arguments instead of %u.",
3519 		       argc, args_required);
3520 		return -EINVAL;
3521 	}
3522 
3523 	return 0;
3524 }
3525 
3526 static int read_dev_id(char *arg, dm_thin_id *dev_id, int warning)
3527 {
3528 	if (!kstrtoull(arg, 10, (unsigned long long *)dev_id) &&
3529 	    *dev_id <= MAX_DEV_ID)
3530 		return 0;
3531 
3532 	if (warning)
3533 		DMWARN("Message received with invalid device id: %s", arg);
3534 
3535 	return -EINVAL;
3536 }
3537 
3538 static int process_create_thin_mesg(unsigned argc, char **argv, struct pool *pool)
3539 {
3540 	dm_thin_id dev_id;
3541 	int r;
3542 
3543 	r = check_arg_count(argc, 2);
3544 	if (r)
3545 		return r;
3546 
3547 	r = read_dev_id(argv[1], &dev_id, 1);
3548 	if (r)
3549 		return r;
3550 
3551 	r = dm_pool_create_thin(pool->pmd, dev_id);
3552 	if (r) {
3553 		DMWARN("Creation of new thinly-provisioned device with id %s failed.",
3554 		       argv[1]);
3555 		return r;
3556 	}
3557 
3558 	return 0;
3559 }
3560 
3561 static int process_create_snap_mesg(unsigned argc, char **argv, struct pool *pool)
3562 {
3563 	dm_thin_id dev_id;
3564 	dm_thin_id origin_dev_id;
3565 	int r;
3566 
3567 	r = check_arg_count(argc, 3);
3568 	if (r)
3569 		return r;
3570 
3571 	r = read_dev_id(argv[1], &dev_id, 1);
3572 	if (r)
3573 		return r;
3574 
3575 	r = read_dev_id(argv[2], &origin_dev_id, 1);
3576 	if (r)
3577 		return r;
3578 
3579 	r = dm_pool_create_snap(pool->pmd, dev_id, origin_dev_id);
3580 	if (r) {
3581 		DMWARN("Creation of new snapshot %s of device %s failed.",
3582 		       argv[1], argv[2]);
3583 		return r;
3584 	}
3585 
3586 	return 0;
3587 }
3588 
3589 static int process_delete_mesg(unsigned argc, char **argv, struct pool *pool)
3590 {
3591 	dm_thin_id dev_id;
3592 	int r;
3593 
3594 	r = check_arg_count(argc, 2);
3595 	if (r)
3596 		return r;
3597 
3598 	r = read_dev_id(argv[1], &dev_id, 1);
3599 	if (r)
3600 		return r;
3601 
3602 	r = dm_pool_delete_thin_device(pool->pmd, dev_id);
3603 	if (r)
3604 		DMWARN("Deletion of thin device %s failed.", argv[1]);
3605 
3606 	return r;
3607 }
3608 
3609 static int process_set_transaction_id_mesg(unsigned argc, char **argv, struct pool *pool)
3610 {
3611 	dm_thin_id old_id, new_id;
3612 	int r;
3613 
3614 	r = check_arg_count(argc, 3);
3615 	if (r)
3616 		return r;
3617 
3618 	if (kstrtoull(argv[1], 10, (unsigned long long *)&old_id)) {
3619 		DMWARN("set_transaction_id message: Unrecognised id %s.", argv[1]);
3620 		return -EINVAL;
3621 	}
3622 
3623 	if (kstrtoull(argv[2], 10, (unsigned long long *)&new_id)) {
3624 		DMWARN("set_transaction_id message: Unrecognised new id %s.", argv[2]);
3625 		return -EINVAL;
3626 	}
3627 
3628 	r = dm_pool_set_metadata_transaction_id(pool->pmd, old_id, new_id);
3629 	if (r) {
3630 		DMWARN("Failed to change transaction id from %s to %s.",
3631 		       argv[1], argv[2]);
3632 		return r;
3633 	}
3634 
3635 	return 0;
3636 }
3637 
3638 static int process_reserve_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool)
3639 {
3640 	int r;
3641 
3642 	r = check_arg_count(argc, 1);
3643 	if (r)
3644 		return r;
3645 
3646 	(void) commit(pool);
3647 
3648 	r = dm_pool_reserve_metadata_snap(pool->pmd);
3649 	if (r)
3650 		DMWARN("reserve_metadata_snap message failed.");
3651 
3652 	return r;
3653 }
3654 
3655 static int process_release_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool)
3656 {
3657 	int r;
3658 
3659 	r = check_arg_count(argc, 1);
3660 	if (r)
3661 		return r;
3662 
3663 	r = dm_pool_release_metadata_snap(pool->pmd);
3664 	if (r)
3665 		DMWARN("release_metadata_snap message failed.");
3666 
3667 	return r;
3668 }
3669 
3670 /*
3671  * Messages supported:
3672  *   create_thin	<dev_id>
3673  *   create_snap	<dev_id> <origin_id>
3674  *   delete		<dev_id>
3675  *   set_transaction_id <current_trans_id> <new_trans_id>
3676  *   reserve_metadata_snap
3677  *   release_metadata_snap
3678  */
3679 static int pool_message(struct dm_target *ti, unsigned argc, char **argv)
3680 {
3681 	int r = -EINVAL;
3682 	struct pool_c *pt = ti->private;
3683 	struct pool *pool = pt->pool;
3684 
3685 	if (get_pool_mode(pool) >= PM_READ_ONLY) {
3686 		DMERR("%s: unable to service pool target messages in READ_ONLY or FAIL mode",
3687 		      dm_device_name(pool->pool_md));
3688 		return -EOPNOTSUPP;
3689 	}
3690 
3691 	if (!strcasecmp(argv[0], "create_thin"))
3692 		r = process_create_thin_mesg(argc, argv, pool);
3693 
3694 	else if (!strcasecmp(argv[0], "create_snap"))
3695 		r = process_create_snap_mesg(argc, argv, pool);
3696 
3697 	else if (!strcasecmp(argv[0], "delete"))
3698 		r = process_delete_mesg(argc, argv, pool);
3699 
3700 	else if (!strcasecmp(argv[0], "set_transaction_id"))
3701 		r = process_set_transaction_id_mesg(argc, argv, pool);
3702 
3703 	else if (!strcasecmp(argv[0], "reserve_metadata_snap"))
3704 		r = process_reserve_metadata_snap_mesg(argc, argv, pool);
3705 
3706 	else if (!strcasecmp(argv[0], "release_metadata_snap"))
3707 		r = process_release_metadata_snap_mesg(argc, argv, pool);
3708 
3709 	else
3710 		DMWARN("Unrecognised thin pool target message received: %s", argv[0]);
3711 
3712 	if (!r)
3713 		(void) commit(pool);
3714 
3715 	return r;
3716 }
3717 
3718 static void emit_flags(struct pool_features *pf, char *result,
3719 		       unsigned sz, unsigned maxlen)
3720 {
3721 	unsigned count = !pf->zero_new_blocks + !pf->discard_enabled +
3722 		!pf->discard_passdown + (pf->mode == PM_READ_ONLY) +
3723 		pf->error_if_no_space;
3724 	DMEMIT("%u ", count);
3725 
3726 	if (!pf->zero_new_blocks)
3727 		DMEMIT("skip_block_zeroing ");
3728 
3729 	if (!pf->discard_enabled)
3730 		DMEMIT("ignore_discard ");
3731 
3732 	if (!pf->discard_passdown)
3733 		DMEMIT("no_discard_passdown ");
3734 
3735 	if (pf->mode == PM_READ_ONLY)
3736 		DMEMIT("read_only ");
3737 
3738 	if (pf->error_if_no_space)
3739 		DMEMIT("error_if_no_space ");
3740 }
3741 
3742 /*
3743  * Status line is:
3744  *    <transaction id> <used metadata sectors>/<total metadata sectors>
3745  *    <used data sectors>/<total data sectors> <held metadata root>
3746  *    <pool mode> <discard config> <no space config> <needs_check>
3747  */
3748 static void pool_status(struct dm_target *ti, status_type_t type,
3749 			unsigned status_flags, char *result, unsigned maxlen)
3750 {
3751 	int r;
3752 	unsigned sz = 0;
3753 	uint64_t transaction_id;
3754 	dm_block_t nr_free_blocks_data;
3755 	dm_block_t nr_free_blocks_metadata;
3756 	dm_block_t nr_blocks_data;
3757 	dm_block_t nr_blocks_metadata;
3758 	dm_block_t held_root;
3759 	char buf[BDEVNAME_SIZE];
3760 	char buf2[BDEVNAME_SIZE];
3761 	struct pool_c *pt = ti->private;
3762 	struct pool *pool = pt->pool;
3763 
3764 	switch (type) {
3765 	case STATUSTYPE_INFO:
3766 		if (get_pool_mode(pool) == PM_FAIL) {
3767 			DMEMIT("Fail");
3768 			break;
3769 		}
3770 
3771 		/* Commit to ensure statistics aren't out-of-date */
3772 		if (!(status_flags & DM_STATUS_NOFLUSH_FLAG) && !dm_suspended(ti))
3773 			(void) commit(pool);
3774 
3775 		r = dm_pool_get_metadata_transaction_id(pool->pmd, &transaction_id);
3776 		if (r) {
3777 			DMERR("%s: dm_pool_get_metadata_transaction_id returned %d",
3778 			      dm_device_name(pool->pool_md), r);
3779 			goto err;
3780 		}
3781 
3782 		r = dm_pool_get_free_metadata_block_count(pool->pmd, &nr_free_blocks_metadata);
3783 		if (r) {
3784 			DMERR("%s: dm_pool_get_free_metadata_block_count returned %d",
3785 			      dm_device_name(pool->pool_md), r);
3786 			goto err;
3787 		}
3788 
3789 		r = dm_pool_get_metadata_dev_size(pool->pmd, &nr_blocks_metadata);
3790 		if (r) {
3791 			DMERR("%s: dm_pool_get_metadata_dev_size returned %d",
3792 			      dm_device_name(pool->pool_md), r);
3793 			goto err;
3794 		}
3795 
3796 		r = dm_pool_get_free_block_count(pool->pmd, &nr_free_blocks_data);
3797 		if (r) {
3798 			DMERR("%s: dm_pool_get_free_block_count returned %d",
3799 			      dm_device_name(pool->pool_md), r);
3800 			goto err;
3801 		}
3802 
3803 		r = dm_pool_get_data_dev_size(pool->pmd, &nr_blocks_data);
3804 		if (r) {
3805 			DMERR("%s: dm_pool_get_data_dev_size returned %d",
3806 			      dm_device_name(pool->pool_md), r);
3807 			goto err;
3808 		}
3809 
3810 		r = dm_pool_get_metadata_snap(pool->pmd, &held_root);
3811 		if (r) {
3812 			DMERR("%s: dm_pool_get_metadata_snap returned %d",
3813 			      dm_device_name(pool->pool_md), r);
3814 			goto err;
3815 		}
3816 
3817 		DMEMIT("%llu %llu/%llu %llu/%llu ",
3818 		       (unsigned long long)transaction_id,
3819 		       (unsigned long long)(nr_blocks_metadata - nr_free_blocks_metadata),
3820 		       (unsigned long long)nr_blocks_metadata,
3821 		       (unsigned long long)(nr_blocks_data - nr_free_blocks_data),
3822 		       (unsigned long long)nr_blocks_data);
3823 
3824 		if (held_root)
3825 			DMEMIT("%llu ", held_root);
3826 		else
3827 			DMEMIT("- ");
3828 
3829 		if (pool->pf.mode == PM_OUT_OF_DATA_SPACE)
3830 			DMEMIT("out_of_data_space ");
3831 		else if (pool->pf.mode == PM_READ_ONLY)
3832 			DMEMIT("ro ");
3833 		else
3834 			DMEMIT("rw ");
3835 
3836 		if (!pool->pf.discard_enabled)
3837 			DMEMIT("ignore_discard ");
3838 		else if (pool->pf.discard_passdown)
3839 			DMEMIT("discard_passdown ");
3840 		else
3841 			DMEMIT("no_discard_passdown ");
3842 
3843 		if (pool->pf.error_if_no_space)
3844 			DMEMIT("error_if_no_space ");
3845 		else
3846 			DMEMIT("queue_if_no_space ");
3847 
3848 		if (dm_pool_metadata_needs_check(pool->pmd))
3849 			DMEMIT("needs_check ");
3850 		else
3851 			DMEMIT("- ");
3852 
3853 		break;
3854 
3855 	case STATUSTYPE_TABLE:
3856 		DMEMIT("%s %s %lu %llu ",
3857 		       format_dev_t(buf, pt->metadata_dev->bdev->bd_dev),
3858 		       format_dev_t(buf2, pt->data_dev->bdev->bd_dev),
3859 		       (unsigned long)pool->sectors_per_block,
3860 		       (unsigned long long)pt->low_water_blocks);
3861 		emit_flags(&pt->requested_pf, result, sz, maxlen);
3862 		break;
3863 	}
3864 	return;
3865 
3866 err:
3867 	DMEMIT("Error");
3868 }
3869 
3870 static int pool_iterate_devices(struct dm_target *ti,
3871 				iterate_devices_callout_fn fn, void *data)
3872 {
3873 	struct pool_c *pt = ti->private;
3874 
3875 	return fn(ti, pt->data_dev, 0, ti->len, data);
3876 }
3877 
3878 static int pool_merge(struct dm_target *ti, struct bvec_merge_data *bvm,
3879 		      struct bio_vec *biovec, int max_size)
3880 {
3881 	struct pool_c *pt = ti->private;
3882 	struct request_queue *q = bdev_get_queue(pt->data_dev->bdev);
3883 
3884 	if (!q->merge_bvec_fn)
3885 		return max_size;
3886 
3887 	bvm->bi_bdev = pt->data_dev->bdev;
3888 
3889 	return min(max_size, q->merge_bvec_fn(q, bvm, biovec));
3890 }
3891 
3892 static void pool_io_hints(struct dm_target *ti, struct queue_limits *limits)
3893 {
3894 	struct pool_c *pt = ti->private;
3895 	struct pool *pool = pt->pool;
3896 	sector_t io_opt_sectors = limits->io_opt >> SECTOR_SHIFT;
3897 
3898 	/*
3899 	 * If max_sectors is smaller than pool->sectors_per_block adjust it
3900 	 * to the highest possible power-of-2 factor of pool->sectors_per_block.
3901 	 * This is especially beneficial when the pool's data device is a RAID
3902 	 * device that has a full stripe width that matches pool->sectors_per_block
3903 	 * -- because even though partial RAID stripe-sized IOs will be issued to a
3904 	 *    single RAID stripe; when aggregated they will end on a full RAID stripe
3905 	 *    boundary.. which avoids additional partial RAID stripe writes cascading
3906 	 */
3907 	if (limits->max_sectors < pool->sectors_per_block) {
3908 		while (!is_factor(pool->sectors_per_block, limits->max_sectors)) {
3909 			if ((limits->max_sectors & (limits->max_sectors - 1)) == 0)
3910 				limits->max_sectors--;
3911 			limits->max_sectors = rounddown_pow_of_two(limits->max_sectors);
3912 		}
3913 	}
3914 
3915 	/*
3916 	 * If the system-determined stacked limits are compatible with the
3917 	 * pool's blocksize (io_opt is a factor) do not override them.
3918 	 */
3919 	if (io_opt_sectors < pool->sectors_per_block ||
3920 	    !is_factor(io_opt_sectors, pool->sectors_per_block)) {
3921 		if (is_factor(pool->sectors_per_block, limits->max_sectors))
3922 			blk_limits_io_min(limits, limits->max_sectors << SECTOR_SHIFT);
3923 		else
3924 			blk_limits_io_min(limits, pool->sectors_per_block << SECTOR_SHIFT);
3925 		blk_limits_io_opt(limits, pool->sectors_per_block << SECTOR_SHIFT);
3926 	}
3927 
3928 	/*
3929 	 * pt->adjusted_pf is a staging area for the actual features to use.
3930 	 * They get transferred to the live pool in bind_control_target()
3931 	 * called from pool_preresume().
3932 	 */
3933 	if (!pt->adjusted_pf.discard_enabled) {
3934 		/*
3935 		 * Must explicitly disallow stacking discard limits otherwise the
3936 		 * block layer will stack them if pool's data device has support.
3937 		 * QUEUE_FLAG_DISCARD wouldn't be set but there is no way for the
3938 		 * user to see that, so make sure to set all discard limits to 0.
3939 		 */
3940 		limits->discard_granularity = 0;
3941 		return;
3942 	}
3943 
3944 	disable_passdown_if_not_supported(pt);
3945 
3946 	/*
3947 	 * The pool uses the same discard limits as the underlying data
3948 	 * device.  DM core has already set this up.
3949 	 */
3950 }
3951 
3952 static struct target_type pool_target = {
3953 	.name = "thin-pool",
3954 	.features = DM_TARGET_SINGLETON | DM_TARGET_ALWAYS_WRITEABLE |
3955 		    DM_TARGET_IMMUTABLE,
3956 	.version = {1, 16, 0},
3957 	.module = THIS_MODULE,
3958 	.ctr = pool_ctr,
3959 	.dtr = pool_dtr,
3960 	.map = pool_map,
3961 	.presuspend = pool_presuspend,
3962 	.presuspend_undo = pool_presuspend_undo,
3963 	.postsuspend = pool_postsuspend,
3964 	.preresume = pool_preresume,
3965 	.resume = pool_resume,
3966 	.message = pool_message,
3967 	.status = pool_status,
3968 	.merge = pool_merge,
3969 	.iterate_devices = pool_iterate_devices,
3970 	.io_hints = pool_io_hints,
3971 };
3972 
3973 /*----------------------------------------------------------------
3974  * Thin target methods
3975  *--------------------------------------------------------------*/
3976 static void thin_get(struct thin_c *tc)
3977 {
3978 	atomic_inc(&tc->refcount);
3979 }
3980 
3981 static void thin_put(struct thin_c *tc)
3982 {
3983 	if (atomic_dec_and_test(&tc->refcount))
3984 		complete(&tc->can_destroy);
3985 }
3986 
3987 static void thin_dtr(struct dm_target *ti)
3988 {
3989 	struct thin_c *tc = ti->private;
3990 	unsigned long flags;
3991 
3992 	spin_lock_irqsave(&tc->pool->lock, flags);
3993 	list_del_rcu(&tc->list);
3994 	spin_unlock_irqrestore(&tc->pool->lock, flags);
3995 	synchronize_rcu();
3996 
3997 	thin_put(tc);
3998 	wait_for_completion(&tc->can_destroy);
3999 
4000 	mutex_lock(&dm_thin_pool_table.mutex);
4001 
4002 	__pool_dec(tc->pool);
4003 	dm_pool_close_thin_device(tc->td);
4004 	dm_put_device(ti, tc->pool_dev);
4005 	if (tc->origin_dev)
4006 		dm_put_device(ti, tc->origin_dev);
4007 	kfree(tc);
4008 
4009 	mutex_unlock(&dm_thin_pool_table.mutex);
4010 }
4011 
4012 /*
4013  * Thin target parameters:
4014  *
4015  * <pool_dev> <dev_id> [origin_dev]
4016  *
4017  * pool_dev: the path to the pool (eg, /dev/mapper/my_pool)
4018  * dev_id: the internal device identifier
4019  * origin_dev: a device external to the pool that should act as the origin
4020  *
4021  * If the pool device has discards disabled, they get disabled for the thin
4022  * device as well.
4023  */
4024 static int thin_ctr(struct dm_target *ti, unsigned argc, char **argv)
4025 {
4026 	int r;
4027 	struct thin_c *tc;
4028 	struct dm_dev *pool_dev, *origin_dev;
4029 	struct mapped_device *pool_md;
4030 	unsigned long flags;
4031 
4032 	mutex_lock(&dm_thin_pool_table.mutex);
4033 
4034 	if (argc != 2 && argc != 3) {
4035 		ti->error = "Invalid argument count";
4036 		r = -EINVAL;
4037 		goto out_unlock;
4038 	}
4039 
4040 	tc = ti->private = kzalloc(sizeof(*tc), GFP_KERNEL);
4041 	if (!tc) {
4042 		ti->error = "Out of memory";
4043 		r = -ENOMEM;
4044 		goto out_unlock;
4045 	}
4046 	tc->thin_md = dm_table_get_md(ti->table);
4047 	spin_lock_init(&tc->lock);
4048 	INIT_LIST_HEAD(&tc->deferred_cells);
4049 	bio_list_init(&tc->deferred_bio_list);
4050 	bio_list_init(&tc->retry_on_resume_list);
4051 	tc->sort_bio_list = RB_ROOT;
4052 
4053 	if (argc == 3) {
4054 		r = dm_get_device(ti, argv[2], FMODE_READ, &origin_dev);
4055 		if (r) {
4056 			ti->error = "Error opening origin device";
4057 			goto bad_origin_dev;
4058 		}
4059 		tc->origin_dev = origin_dev;
4060 	}
4061 
4062 	r = dm_get_device(ti, argv[0], dm_table_get_mode(ti->table), &pool_dev);
4063 	if (r) {
4064 		ti->error = "Error opening pool device";
4065 		goto bad_pool_dev;
4066 	}
4067 	tc->pool_dev = pool_dev;
4068 
4069 	if (read_dev_id(argv[1], (unsigned long long *)&tc->dev_id, 0)) {
4070 		ti->error = "Invalid device id";
4071 		r = -EINVAL;
4072 		goto bad_common;
4073 	}
4074 
4075 	pool_md = dm_get_md(tc->pool_dev->bdev->bd_dev);
4076 	if (!pool_md) {
4077 		ti->error = "Couldn't get pool mapped device";
4078 		r = -EINVAL;
4079 		goto bad_common;
4080 	}
4081 
4082 	tc->pool = __pool_table_lookup(pool_md);
4083 	if (!tc->pool) {
4084 		ti->error = "Couldn't find pool object";
4085 		r = -EINVAL;
4086 		goto bad_pool_lookup;
4087 	}
4088 	__pool_inc(tc->pool);
4089 
4090 	if (get_pool_mode(tc->pool) == PM_FAIL) {
4091 		ti->error = "Couldn't open thin device, Pool is in fail mode";
4092 		r = -EINVAL;
4093 		goto bad_pool;
4094 	}
4095 
4096 	r = dm_pool_open_thin_device(tc->pool->pmd, tc->dev_id, &tc->td);
4097 	if (r) {
4098 		ti->error = "Couldn't open thin internal device";
4099 		goto bad_pool;
4100 	}
4101 
4102 	r = dm_set_target_max_io_len(ti, tc->pool->sectors_per_block);
4103 	if (r)
4104 		goto bad;
4105 
4106 	ti->num_flush_bios = 1;
4107 	ti->flush_supported = true;
4108 	ti->per_bio_data_size = sizeof(struct dm_thin_endio_hook);
4109 
4110 	/* In case the pool supports discards, pass them on. */
4111 	ti->discard_zeroes_data_unsupported = true;
4112 	if (tc->pool->pf.discard_enabled) {
4113 		ti->discards_supported = true;
4114 		ti->num_discard_bios = 1;
4115 		ti->split_discard_bios = false;
4116 	}
4117 
4118 	mutex_unlock(&dm_thin_pool_table.mutex);
4119 
4120 	spin_lock_irqsave(&tc->pool->lock, flags);
4121 	if (tc->pool->suspended) {
4122 		spin_unlock_irqrestore(&tc->pool->lock, flags);
4123 		mutex_lock(&dm_thin_pool_table.mutex); /* reacquire for __pool_dec */
4124 		ti->error = "Unable to activate thin device while pool is suspended";
4125 		r = -EINVAL;
4126 		goto bad;
4127 	}
4128 	atomic_set(&tc->refcount, 1);
4129 	init_completion(&tc->can_destroy);
4130 	list_add_tail_rcu(&tc->list, &tc->pool->active_thins);
4131 	spin_unlock_irqrestore(&tc->pool->lock, flags);
4132 	/*
4133 	 * This synchronize_rcu() call is needed here otherwise we risk a
4134 	 * wake_worker() call finding no bios to process (because the newly
4135 	 * added tc isn't yet visible).  So this reduces latency since we
4136 	 * aren't then dependent on the periodic commit to wake_worker().
4137 	 */
4138 	synchronize_rcu();
4139 
4140 	dm_put(pool_md);
4141 
4142 	return 0;
4143 
4144 bad:
4145 	dm_pool_close_thin_device(tc->td);
4146 bad_pool:
4147 	__pool_dec(tc->pool);
4148 bad_pool_lookup:
4149 	dm_put(pool_md);
4150 bad_common:
4151 	dm_put_device(ti, tc->pool_dev);
4152 bad_pool_dev:
4153 	if (tc->origin_dev)
4154 		dm_put_device(ti, tc->origin_dev);
4155 bad_origin_dev:
4156 	kfree(tc);
4157 out_unlock:
4158 	mutex_unlock(&dm_thin_pool_table.mutex);
4159 
4160 	return r;
4161 }
4162 
4163 static int thin_map(struct dm_target *ti, struct bio *bio)
4164 {
4165 	bio->bi_iter.bi_sector = dm_target_offset(ti, bio->bi_iter.bi_sector);
4166 
4167 	return thin_bio_map(ti, bio);
4168 }
4169 
4170 static int thin_endio(struct dm_target *ti, struct bio *bio, int err)
4171 {
4172 	unsigned long flags;
4173 	struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
4174 	struct list_head work;
4175 	struct dm_thin_new_mapping *m, *tmp;
4176 	struct pool *pool = h->tc->pool;
4177 
4178 	if (h->shared_read_entry) {
4179 		INIT_LIST_HEAD(&work);
4180 		dm_deferred_entry_dec(h->shared_read_entry, &work);
4181 
4182 		spin_lock_irqsave(&pool->lock, flags);
4183 		list_for_each_entry_safe(m, tmp, &work, list) {
4184 			list_del(&m->list);
4185 			__complete_mapping_preparation(m);
4186 		}
4187 		spin_unlock_irqrestore(&pool->lock, flags);
4188 	}
4189 
4190 	if (h->all_io_entry) {
4191 		INIT_LIST_HEAD(&work);
4192 		dm_deferred_entry_dec(h->all_io_entry, &work);
4193 		if (!list_empty(&work)) {
4194 			spin_lock_irqsave(&pool->lock, flags);
4195 			list_for_each_entry_safe(m, tmp, &work, list)
4196 				list_add_tail(&m->list, &pool->prepared_discards);
4197 			spin_unlock_irqrestore(&pool->lock, flags);
4198 			wake_worker(pool);
4199 		}
4200 	}
4201 
4202 	if (h->cell)
4203 		cell_defer_no_holder(h->tc, h->cell);
4204 
4205 	return 0;
4206 }
4207 
4208 static void thin_presuspend(struct dm_target *ti)
4209 {
4210 	struct thin_c *tc = ti->private;
4211 
4212 	if (dm_noflush_suspending(ti))
4213 		noflush_work(tc, do_noflush_start);
4214 }
4215 
4216 static void thin_postsuspend(struct dm_target *ti)
4217 {
4218 	struct thin_c *tc = ti->private;
4219 
4220 	/*
4221 	 * The dm_noflush_suspending flag has been cleared by now, so
4222 	 * unfortunately we must always run this.
4223 	 */
4224 	noflush_work(tc, do_noflush_stop);
4225 }
4226 
4227 static int thin_preresume(struct dm_target *ti)
4228 {
4229 	struct thin_c *tc = ti->private;
4230 
4231 	if (tc->origin_dev)
4232 		tc->origin_size = get_dev_size(tc->origin_dev->bdev);
4233 
4234 	return 0;
4235 }
4236 
4237 /*
4238  * <nr mapped sectors> <highest mapped sector>
4239  */
4240 static void thin_status(struct dm_target *ti, status_type_t type,
4241 			unsigned status_flags, char *result, unsigned maxlen)
4242 {
4243 	int r;
4244 	ssize_t sz = 0;
4245 	dm_block_t mapped, highest;
4246 	char buf[BDEVNAME_SIZE];
4247 	struct thin_c *tc = ti->private;
4248 
4249 	if (get_pool_mode(tc->pool) == PM_FAIL) {
4250 		DMEMIT("Fail");
4251 		return;
4252 	}
4253 
4254 	if (!tc->td)
4255 		DMEMIT("-");
4256 	else {
4257 		switch (type) {
4258 		case STATUSTYPE_INFO:
4259 			r = dm_thin_get_mapped_count(tc->td, &mapped);
4260 			if (r) {
4261 				DMERR("dm_thin_get_mapped_count returned %d", r);
4262 				goto err;
4263 			}
4264 
4265 			r = dm_thin_get_highest_mapped_block(tc->td, &highest);
4266 			if (r < 0) {
4267 				DMERR("dm_thin_get_highest_mapped_block returned %d", r);
4268 				goto err;
4269 			}
4270 
4271 			DMEMIT("%llu ", mapped * tc->pool->sectors_per_block);
4272 			if (r)
4273 				DMEMIT("%llu", ((highest + 1) *
4274 						tc->pool->sectors_per_block) - 1);
4275 			else
4276 				DMEMIT("-");
4277 			break;
4278 
4279 		case STATUSTYPE_TABLE:
4280 			DMEMIT("%s %lu",
4281 			       format_dev_t(buf, tc->pool_dev->bdev->bd_dev),
4282 			       (unsigned long) tc->dev_id);
4283 			if (tc->origin_dev)
4284 				DMEMIT(" %s", format_dev_t(buf, tc->origin_dev->bdev->bd_dev));
4285 			break;
4286 		}
4287 	}
4288 
4289 	return;
4290 
4291 err:
4292 	DMEMIT("Error");
4293 }
4294 
4295 static int thin_merge(struct dm_target *ti, struct bvec_merge_data *bvm,
4296 		      struct bio_vec *biovec, int max_size)
4297 {
4298 	struct thin_c *tc = ti->private;
4299 	struct request_queue *q = bdev_get_queue(tc->pool_dev->bdev);
4300 
4301 	if (!q->merge_bvec_fn)
4302 		return max_size;
4303 
4304 	bvm->bi_bdev = tc->pool_dev->bdev;
4305 	bvm->bi_sector = dm_target_offset(ti, bvm->bi_sector);
4306 
4307 	return min(max_size, q->merge_bvec_fn(q, bvm, biovec));
4308 }
4309 
4310 static int thin_iterate_devices(struct dm_target *ti,
4311 				iterate_devices_callout_fn fn, void *data)
4312 {
4313 	sector_t blocks;
4314 	struct thin_c *tc = ti->private;
4315 	struct pool *pool = tc->pool;
4316 
4317 	/*
4318 	 * We can't call dm_pool_get_data_dev_size() since that blocks.  So
4319 	 * we follow a more convoluted path through to the pool's target.
4320 	 */
4321 	if (!pool->ti)
4322 		return 0;	/* nothing is bound */
4323 
4324 	blocks = pool->ti->len;
4325 	(void) sector_div(blocks, pool->sectors_per_block);
4326 	if (blocks)
4327 		return fn(ti, tc->pool_dev, 0, pool->sectors_per_block * blocks, data);
4328 
4329 	return 0;
4330 }
4331 
4332 static void thin_io_hints(struct dm_target *ti, struct queue_limits *limits)
4333 {
4334 	struct thin_c *tc = ti->private;
4335 	struct pool *pool = tc->pool;
4336 
4337 	limits->discard_granularity = pool->sectors_per_block << SECTOR_SHIFT;
4338 	limits->max_discard_sectors = 2048 * 1024 * 16; /* 16G */
4339 }
4340 
4341 static struct target_type thin_target = {
4342 	.name = "thin",
4343 	.version = {1, 16, 0},
4344 	.module	= THIS_MODULE,
4345 	.ctr = thin_ctr,
4346 	.dtr = thin_dtr,
4347 	.map = thin_map,
4348 	.end_io = thin_endio,
4349 	.preresume = thin_preresume,
4350 	.presuspend = thin_presuspend,
4351 	.postsuspend = thin_postsuspend,
4352 	.status = thin_status,
4353 	.merge = thin_merge,
4354 	.iterate_devices = thin_iterate_devices,
4355 	.io_hints = thin_io_hints,
4356 };
4357 
4358 /*----------------------------------------------------------------*/
4359 
4360 static int __init dm_thin_init(void)
4361 {
4362 	int r;
4363 
4364 	pool_table_init();
4365 
4366 	r = dm_register_target(&thin_target);
4367 	if (r)
4368 		return r;
4369 
4370 	r = dm_register_target(&pool_target);
4371 	if (r)
4372 		goto bad_pool_target;
4373 
4374 	r = -ENOMEM;
4375 
4376 	_new_mapping_cache = KMEM_CACHE(dm_thin_new_mapping, 0);
4377 	if (!_new_mapping_cache)
4378 		goto bad_new_mapping_cache;
4379 
4380 	return 0;
4381 
4382 bad_new_mapping_cache:
4383 	dm_unregister_target(&pool_target);
4384 bad_pool_target:
4385 	dm_unregister_target(&thin_target);
4386 
4387 	return r;
4388 }
4389 
4390 static void dm_thin_exit(void)
4391 {
4392 	dm_unregister_target(&thin_target);
4393 	dm_unregister_target(&pool_target);
4394 
4395 	kmem_cache_destroy(_new_mapping_cache);
4396 }
4397 
4398 module_init(dm_thin_init);
4399 module_exit(dm_thin_exit);
4400 
4401 module_param_named(no_space_timeout, no_space_timeout_secs, uint, S_IRUGO | S_IWUSR);
4402 MODULE_PARM_DESC(no_space_timeout, "Out of data space queue IO timeout in seconds");
4403 
4404 MODULE_DESCRIPTION(DM_NAME " thin provisioning target");
4405 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
4406 MODULE_LICENSE("GPL");
4407