1 /* 2 * Copyright (C) 2011-2012 Red Hat UK. 3 * 4 * This file is released under the GPL. 5 */ 6 7 #include "dm-thin-metadata.h" 8 #include "dm-bio-prison.h" 9 #include "dm.h" 10 11 #include <linux/device-mapper.h> 12 #include <linux/dm-io.h> 13 #include <linux/dm-kcopyd.h> 14 #include <linux/list.h> 15 #include <linux/init.h> 16 #include <linux/module.h> 17 #include <linux/slab.h> 18 19 #define DM_MSG_PREFIX "thin" 20 21 /* 22 * Tunable constants 23 */ 24 #define ENDIO_HOOK_POOL_SIZE 1024 25 #define MAPPING_POOL_SIZE 1024 26 #define PRISON_CELLS 1024 27 #define COMMIT_PERIOD HZ 28 29 DECLARE_DM_KCOPYD_THROTTLE_WITH_MODULE_PARM(snapshot_copy_throttle, 30 "A percentage of time allocated for copy on write"); 31 32 /* 33 * The block size of the device holding pool data must be 34 * between 64KB and 1GB. 35 */ 36 #define DATA_DEV_BLOCK_SIZE_MIN_SECTORS (64 * 1024 >> SECTOR_SHIFT) 37 #define DATA_DEV_BLOCK_SIZE_MAX_SECTORS (1024 * 1024 * 1024 >> SECTOR_SHIFT) 38 39 /* 40 * Device id is restricted to 24 bits. 41 */ 42 #define MAX_DEV_ID ((1 << 24) - 1) 43 44 /* 45 * How do we handle breaking sharing of data blocks? 46 * ================================================= 47 * 48 * We use a standard copy-on-write btree to store the mappings for the 49 * devices (note I'm talking about copy-on-write of the metadata here, not 50 * the data). When you take an internal snapshot you clone the root node 51 * of the origin btree. After this there is no concept of an origin or a 52 * snapshot. They are just two device trees that happen to point to the 53 * same data blocks. 54 * 55 * When we get a write in we decide if it's to a shared data block using 56 * some timestamp magic. If it is, we have to break sharing. 57 * 58 * Let's say we write to a shared block in what was the origin. The 59 * steps are: 60 * 61 * i) plug io further to this physical block. (see bio_prison code). 62 * 63 * ii) quiesce any read io to that shared data block. Obviously 64 * including all devices that share this block. (see dm_deferred_set code) 65 * 66 * iii) copy the data block to a newly allocate block. This step can be 67 * missed out if the io covers the block. (schedule_copy). 68 * 69 * iv) insert the new mapping into the origin's btree 70 * (process_prepared_mapping). This act of inserting breaks some 71 * sharing of btree nodes between the two devices. Breaking sharing only 72 * effects the btree of that specific device. Btrees for the other 73 * devices that share the block never change. The btree for the origin 74 * device as it was after the last commit is untouched, ie. we're using 75 * persistent data structures in the functional programming sense. 76 * 77 * v) unplug io to this physical block, including the io that triggered 78 * the breaking of sharing. 79 * 80 * Steps (ii) and (iii) occur in parallel. 81 * 82 * The metadata _doesn't_ need to be committed before the io continues. We 83 * get away with this because the io is always written to a _new_ block. 84 * If there's a crash, then: 85 * 86 * - The origin mapping will point to the old origin block (the shared 87 * one). This will contain the data as it was before the io that triggered 88 * the breaking of sharing came in. 89 * 90 * - The snap mapping still points to the old block. As it would after 91 * the commit. 92 * 93 * The downside of this scheme is the timestamp magic isn't perfect, and 94 * will continue to think that data block in the snapshot device is shared 95 * even after the write to the origin has broken sharing. I suspect data 96 * blocks will typically be shared by many different devices, so we're 97 * breaking sharing n + 1 times, rather than n, where n is the number of 98 * devices that reference this data block. At the moment I think the 99 * benefits far, far outweigh the disadvantages. 100 */ 101 102 /*----------------------------------------------------------------*/ 103 104 /* 105 * Key building. 106 */ 107 static void build_data_key(struct dm_thin_device *td, 108 dm_block_t b, struct dm_cell_key *key) 109 { 110 key->virtual = 0; 111 key->dev = dm_thin_dev_id(td); 112 key->block = b; 113 } 114 115 static void build_virtual_key(struct dm_thin_device *td, dm_block_t b, 116 struct dm_cell_key *key) 117 { 118 key->virtual = 1; 119 key->dev = dm_thin_dev_id(td); 120 key->block = b; 121 } 122 123 /*----------------------------------------------------------------*/ 124 125 /* 126 * A pool device ties together a metadata device and a data device. It 127 * also provides the interface for creating and destroying internal 128 * devices. 129 */ 130 struct dm_thin_new_mapping; 131 132 /* 133 * The pool runs in 3 modes. Ordered in degraded order for comparisons. 134 */ 135 enum pool_mode { 136 PM_WRITE, /* metadata may be changed */ 137 PM_READ_ONLY, /* metadata may not be changed */ 138 PM_FAIL, /* all I/O fails */ 139 }; 140 141 struct pool_features { 142 enum pool_mode mode; 143 144 bool zero_new_blocks:1; 145 bool discard_enabled:1; 146 bool discard_passdown:1; 147 }; 148 149 struct thin_c; 150 typedef void (*process_bio_fn)(struct thin_c *tc, struct bio *bio); 151 typedef void (*process_mapping_fn)(struct dm_thin_new_mapping *m); 152 153 struct pool { 154 struct list_head list; 155 struct dm_target *ti; /* Only set if a pool target is bound */ 156 157 struct mapped_device *pool_md; 158 struct block_device *md_dev; 159 struct dm_pool_metadata *pmd; 160 161 dm_block_t low_water_blocks; 162 uint32_t sectors_per_block; 163 int sectors_per_block_shift; 164 165 struct pool_features pf; 166 unsigned low_water_triggered:1; /* A dm event has been sent */ 167 unsigned no_free_space:1; /* A -ENOSPC warning has been issued */ 168 169 struct dm_bio_prison *prison; 170 struct dm_kcopyd_client *copier; 171 172 struct workqueue_struct *wq; 173 struct work_struct worker; 174 struct delayed_work waker; 175 176 unsigned long last_commit_jiffies; 177 unsigned ref_count; 178 179 spinlock_t lock; 180 struct bio_list deferred_bios; 181 struct bio_list deferred_flush_bios; 182 struct list_head prepared_mappings; 183 struct list_head prepared_discards; 184 185 struct bio_list retry_on_resume_list; 186 187 struct dm_deferred_set *shared_read_ds; 188 struct dm_deferred_set *all_io_ds; 189 190 struct dm_thin_new_mapping *next_mapping; 191 mempool_t *mapping_pool; 192 193 process_bio_fn process_bio; 194 process_bio_fn process_discard; 195 196 process_mapping_fn process_prepared_mapping; 197 process_mapping_fn process_prepared_discard; 198 }; 199 200 static enum pool_mode get_pool_mode(struct pool *pool); 201 static void set_pool_mode(struct pool *pool, enum pool_mode mode); 202 203 /* 204 * Target context for a pool. 205 */ 206 struct pool_c { 207 struct dm_target *ti; 208 struct pool *pool; 209 struct dm_dev *data_dev; 210 struct dm_dev *metadata_dev; 211 struct dm_target_callbacks callbacks; 212 213 dm_block_t low_water_blocks; 214 struct pool_features requested_pf; /* Features requested during table load */ 215 struct pool_features adjusted_pf; /* Features used after adjusting for constituent devices */ 216 }; 217 218 /* 219 * Target context for a thin. 220 */ 221 struct thin_c { 222 struct dm_dev *pool_dev; 223 struct dm_dev *origin_dev; 224 dm_thin_id dev_id; 225 226 struct pool *pool; 227 struct dm_thin_device *td; 228 }; 229 230 /*----------------------------------------------------------------*/ 231 232 /* 233 * wake_worker() is used when new work is queued and when pool_resume is 234 * ready to continue deferred IO processing. 235 */ 236 static void wake_worker(struct pool *pool) 237 { 238 queue_work(pool->wq, &pool->worker); 239 } 240 241 /*----------------------------------------------------------------*/ 242 243 static int bio_detain(struct pool *pool, struct dm_cell_key *key, struct bio *bio, 244 struct dm_bio_prison_cell **cell_result) 245 { 246 int r; 247 struct dm_bio_prison_cell *cell_prealloc; 248 249 /* 250 * Allocate a cell from the prison's mempool. 251 * This might block but it can't fail. 252 */ 253 cell_prealloc = dm_bio_prison_alloc_cell(pool->prison, GFP_NOIO); 254 255 r = dm_bio_detain(pool->prison, key, bio, cell_prealloc, cell_result); 256 if (r) 257 /* 258 * We reused an old cell; we can get rid of 259 * the new one. 260 */ 261 dm_bio_prison_free_cell(pool->prison, cell_prealloc); 262 263 return r; 264 } 265 266 static void cell_release(struct pool *pool, 267 struct dm_bio_prison_cell *cell, 268 struct bio_list *bios) 269 { 270 dm_cell_release(pool->prison, cell, bios); 271 dm_bio_prison_free_cell(pool->prison, cell); 272 } 273 274 static void cell_release_no_holder(struct pool *pool, 275 struct dm_bio_prison_cell *cell, 276 struct bio_list *bios) 277 { 278 dm_cell_release_no_holder(pool->prison, cell, bios); 279 dm_bio_prison_free_cell(pool->prison, cell); 280 } 281 282 static void cell_defer_no_holder_no_free(struct thin_c *tc, 283 struct dm_bio_prison_cell *cell) 284 { 285 struct pool *pool = tc->pool; 286 unsigned long flags; 287 288 spin_lock_irqsave(&pool->lock, flags); 289 dm_cell_release_no_holder(pool->prison, cell, &pool->deferred_bios); 290 spin_unlock_irqrestore(&pool->lock, flags); 291 292 wake_worker(pool); 293 } 294 295 static void cell_error(struct pool *pool, 296 struct dm_bio_prison_cell *cell) 297 { 298 dm_cell_error(pool->prison, cell); 299 dm_bio_prison_free_cell(pool->prison, cell); 300 } 301 302 /*----------------------------------------------------------------*/ 303 304 /* 305 * A global list of pools that uses a struct mapped_device as a key. 306 */ 307 static struct dm_thin_pool_table { 308 struct mutex mutex; 309 struct list_head pools; 310 } dm_thin_pool_table; 311 312 static void pool_table_init(void) 313 { 314 mutex_init(&dm_thin_pool_table.mutex); 315 INIT_LIST_HEAD(&dm_thin_pool_table.pools); 316 } 317 318 static void __pool_table_insert(struct pool *pool) 319 { 320 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex)); 321 list_add(&pool->list, &dm_thin_pool_table.pools); 322 } 323 324 static void __pool_table_remove(struct pool *pool) 325 { 326 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex)); 327 list_del(&pool->list); 328 } 329 330 static struct pool *__pool_table_lookup(struct mapped_device *md) 331 { 332 struct pool *pool = NULL, *tmp; 333 334 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex)); 335 336 list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) { 337 if (tmp->pool_md == md) { 338 pool = tmp; 339 break; 340 } 341 } 342 343 return pool; 344 } 345 346 static struct pool *__pool_table_lookup_metadata_dev(struct block_device *md_dev) 347 { 348 struct pool *pool = NULL, *tmp; 349 350 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex)); 351 352 list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) { 353 if (tmp->md_dev == md_dev) { 354 pool = tmp; 355 break; 356 } 357 } 358 359 return pool; 360 } 361 362 /*----------------------------------------------------------------*/ 363 364 struct dm_thin_endio_hook { 365 struct thin_c *tc; 366 struct dm_deferred_entry *shared_read_entry; 367 struct dm_deferred_entry *all_io_entry; 368 struct dm_thin_new_mapping *overwrite_mapping; 369 }; 370 371 static void __requeue_bio_list(struct thin_c *tc, struct bio_list *master) 372 { 373 struct bio *bio; 374 struct bio_list bios; 375 376 bio_list_init(&bios); 377 bio_list_merge(&bios, master); 378 bio_list_init(master); 379 380 while ((bio = bio_list_pop(&bios))) { 381 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook)); 382 383 if (h->tc == tc) 384 bio_endio(bio, DM_ENDIO_REQUEUE); 385 else 386 bio_list_add(master, bio); 387 } 388 } 389 390 static void requeue_io(struct thin_c *tc) 391 { 392 struct pool *pool = tc->pool; 393 unsigned long flags; 394 395 spin_lock_irqsave(&pool->lock, flags); 396 __requeue_bio_list(tc, &pool->deferred_bios); 397 __requeue_bio_list(tc, &pool->retry_on_resume_list); 398 spin_unlock_irqrestore(&pool->lock, flags); 399 } 400 401 /* 402 * This section of code contains the logic for processing a thin device's IO. 403 * Much of the code depends on pool object resources (lists, workqueues, etc) 404 * but most is exclusively called from the thin target rather than the thin-pool 405 * target. 406 */ 407 408 static bool block_size_is_power_of_two(struct pool *pool) 409 { 410 return pool->sectors_per_block_shift >= 0; 411 } 412 413 static dm_block_t get_bio_block(struct thin_c *tc, struct bio *bio) 414 { 415 struct pool *pool = tc->pool; 416 sector_t block_nr = bio->bi_sector; 417 418 if (block_size_is_power_of_two(pool)) 419 block_nr >>= pool->sectors_per_block_shift; 420 else 421 (void) sector_div(block_nr, pool->sectors_per_block); 422 423 return block_nr; 424 } 425 426 static void remap(struct thin_c *tc, struct bio *bio, dm_block_t block) 427 { 428 struct pool *pool = tc->pool; 429 sector_t bi_sector = bio->bi_sector; 430 431 bio->bi_bdev = tc->pool_dev->bdev; 432 if (block_size_is_power_of_two(pool)) 433 bio->bi_sector = (block << pool->sectors_per_block_shift) | 434 (bi_sector & (pool->sectors_per_block - 1)); 435 else 436 bio->bi_sector = (block * pool->sectors_per_block) + 437 sector_div(bi_sector, pool->sectors_per_block); 438 } 439 440 static void remap_to_origin(struct thin_c *tc, struct bio *bio) 441 { 442 bio->bi_bdev = tc->origin_dev->bdev; 443 } 444 445 static int bio_triggers_commit(struct thin_c *tc, struct bio *bio) 446 { 447 return (bio->bi_rw & (REQ_FLUSH | REQ_FUA)) && 448 dm_thin_changed_this_transaction(tc->td); 449 } 450 451 static void inc_all_io_entry(struct pool *pool, struct bio *bio) 452 { 453 struct dm_thin_endio_hook *h; 454 455 if (bio->bi_rw & REQ_DISCARD) 456 return; 457 458 h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook)); 459 h->all_io_entry = dm_deferred_entry_inc(pool->all_io_ds); 460 } 461 462 static void issue(struct thin_c *tc, struct bio *bio) 463 { 464 struct pool *pool = tc->pool; 465 unsigned long flags; 466 467 if (!bio_triggers_commit(tc, bio)) { 468 generic_make_request(bio); 469 return; 470 } 471 472 /* 473 * Complete bio with an error if earlier I/O caused changes to 474 * the metadata that can't be committed e.g, due to I/O errors 475 * on the metadata device. 476 */ 477 if (dm_thin_aborted_changes(tc->td)) { 478 bio_io_error(bio); 479 return; 480 } 481 482 /* 483 * Batch together any bios that trigger commits and then issue a 484 * single commit for them in process_deferred_bios(). 485 */ 486 spin_lock_irqsave(&pool->lock, flags); 487 bio_list_add(&pool->deferred_flush_bios, bio); 488 spin_unlock_irqrestore(&pool->lock, flags); 489 } 490 491 static void remap_to_origin_and_issue(struct thin_c *tc, struct bio *bio) 492 { 493 remap_to_origin(tc, bio); 494 issue(tc, bio); 495 } 496 497 static void remap_and_issue(struct thin_c *tc, struct bio *bio, 498 dm_block_t block) 499 { 500 remap(tc, bio, block); 501 issue(tc, bio); 502 } 503 504 /*----------------------------------------------------------------*/ 505 506 /* 507 * Bio endio functions. 508 */ 509 struct dm_thin_new_mapping { 510 struct list_head list; 511 512 unsigned quiesced:1; 513 unsigned prepared:1; 514 unsigned pass_discard:1; 515 516 struct thin_c *tc; 517 dm_block_t virt_block; 518 dm_block_t data_block; 519 struct dm_bio_prison_cell *cell, *cell2; 520 int err; 521 522 /* 523 * If the bio covers the whole area of a block then we can avoid 524 * zeroing or copying. Instead this bio is hooked. The bio will 525 * still be in the cell, so care has to be taken to avoid issuing 526 * the bio twice. 527 */ 528 struct bio *bio; 529 bio_end_io_t *saved_bi_end_io; 530 }; 531 532 static void __maybe_add_mapping(struct dm_thin_new_mapping *m) 533 { 534 struct pool *pool = m->tc->pool; 535 536 if (m->quiesced && m->prepared) { 537 list_add(&m->list, &pool->prepared_mappings); 538 wake_worker(pool); 539 } 540 } 541 542 static void copy_complete(int read_err, unsigned long write_err, void *context) 543 { 544 unsigned long flags; 545 struct dm_thin_new_mapping *m = context; 546 struct pool *pool = m->tc->pool; 547 548 m->err = read_err || write_err ? -EIO : 0; 549 550 spin_lock_irqsave(&pool->lock, flags); 551 m->prepared = 1; 552 __maybe_add_mapping(m); 553 spin_unlock_irqrestore(&pool->lock, flags); 554 } 555 556 static void overwrite_endio(struct bio *bio, int err) 557 { 558 unsigned long flags; 559 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook)); 560 struct dm_thin_new_mapping *m = h->overwrite_mapping; 561 struct pool *pool = m->tc->pool; 562 563 m->err = err; 564 565 spin_lock_irqsave(&pool->lock, flags); 566 m->prepared = 1; 567 __maybe_add_mapping(m); 568 spin_unlock_irqrestore(&pool->lock, flags); 569 } 570 571 /*----------------------------------------------------------------*/ 572 573 /* 574 * Workqueue. 575 */ 576 577 /* 578 * Prepared mapping jobs. 579 */ 580 581 /* 582 * This sends the bios in the cell back to the deferred_bios list. 583 */ 584 static void cell_defer(struct thin_c *tc, struct dm_bio_prison_cell *cell) 585 { 586 struct pool *pool = tc->pool; 587 unsigned long flags; 588 589 spin_lock_irqsave(&pool->lock, flags); 590 cell_release(pool, cell, &pool->deferred_bios); 591 spin_unlock_irqrestore(&tc->pool->lock, flags); 592 593 wake_worker(pool); 594 } 595 596 /* 597 * Same as cell_defer above, except it omits the original holder of the cell. 598 */ 599 static void cell_defer_no_holder(struct thin_c *tc, struct dm_bio_prison_cell *cell) 600 { 601 struct pool *pool = tc->pool; 602 unsigned long flags; 603 604 spin_lock_irqsave(&pool->lock, flags); 605 cell_release_no_holder(pool, cell, &pool->deferred_bios); 606 spin_unlock_irqrestore(&pool->lock, flags); 607 608 wake_worker(pool); 609 } 610 611 static void process_prepared_mapping_fail(struct dm_thin_new_mapping *m) 612 { 613 if (m->bio) 614 m->bio->bi_end_io = m->saved_bi_end_io; 615 cell_error(m->tc->pool, m->cell); 616 list_del(&m->list); 617 mempool_free(m, m->tc->pool->mapping_pool); 618 } 619 620 static void process_prepared_mapping(struct dm_thin_new_mapping *m) 621 { 622 struct thin_c *tc = m->tc; 623 struct pool *pool = tc->pool; 624 struct bio *bio; 625 int r; 626 627 bio = m->bio; 628 if (bio) 629 bio->bi_end_io = m->saved_bi_end_io; 630 631 if (m->err) { 632 cell_error(pool, m->cell); 633 goto out; 634 } 635 636 /* 637 * Commit the prepared block into the mapping btree. 638 * Any I/O for this block arriving after this point will get 639 * remapped to it directly. 640 */ 641 r = dm_thin_insert_block(tc->td, m->virt_block, m->data_block); 642 if (r) { 643 DMERR_LIMIT("dm_thin_insert_block() failed"); 644 cell_error(pool, m->cell); 645 goto out; 646 } 647 648 /* 649 * Release any bios held while the block was being provisioned. 650 * If we are processing a write bio that completely covers the block, 651 * we already processed it so can ignore it now when processing 652 * the bios in the cell. 653 */ 654 if (bio) { 655 cell_defer_no_holder(tc, m->cell); 656 bio_endio(bio, 0); 657 } else 658 cell_defer(tc, m->cell); 659 660 out: 661 list_del(&m->list); 662 mempool_free(m, pool->mapping_pool); 663 } 664 665 static void process_prepared_discard_fail(struct dm_thin_new_mapping *m) 666 { 667 struct thin_c *tc = m->tc; 668 669 bio_io_error(m->bio); 670 cell_defer_no_holder(tc, m->cell); 671 cell_defer_no_holder(tc, m->cell2); 672 mempool_free(m, tc->pool->mapping_pool); 673 } 674 675 static void process_prepared_discard_passdown(struct dm_thin_new_mapping *m) 676 { 677 struct thin_c *tc = m->tc; 678 679 inc_all_io_entry(tc->pool, m->bio); 680 cell_defer_no_holder(tc, m->cell); 681 cell_defer_no_holder(tc, m->cell2); 682 683 if (m->pass_discard) 684 remap_and_issue(tc, m->bio, m->data_block); 685 else 686 bio_endio(m->bio, 0); 687 688 mempool_free(m, tc->pool->mapping_pool); 689 } 690 691 static void process_prepared_discard(struct dm_thin_new_mapping *m) 692 { 693 int r; 694 struct thin_c *tc = m->tc; 695 696 r = dm_thin_remove_block(tc->td, m->virt_block); 697 if (r) 698 DMERR_LIMIT("dm_thin_remove_block() failed"); 699 700 process_prepared_discard_passdown(m); 701 } 702 703 static void process_prepared(struct pool *pool, struct list_head *head, 704 process_mapping_fn *fn) 705 { 706 unsigned long flags; 707 struct list_head maps; 708 struct dm_thin_new_mapping *m, *tmp; 709 710 INIT_LIST_HEAD(&maps); 711 spin_lock_irqsave(&pool->lock, flags); 712 list_splice_init(head, &maps); 713 spin_unlock_irqrestore(&pool->lock, flags); 714 715 list_for_each_entry_safe(m, tmp, &maps, list) 716 (*fn)(m); 717 } 718 719 /* 720 * Deferred bio jobs. 721 */ 722 static int io_overlaps_block(struct pool *pool, struct bio *bio) 723 { 724 return bio->bi_size == (pool->sectors_per_block << SECTOR_SHIFT); 725 } 726 727 static int io_overwrites_block(struct pool *pool, struct bio *bio) 728 { 729 return (bio_data_dir(bio) == WRITE) && 730 io_overlaps_block(pool, bio); 731 } 732 733 static void save_and_set_endio(struct bio *bio, bio_end_io_t **save, 734 bio_end_io_t *fn) 735 { 736 *save = bio->bi_end_io; 737 bio->bi_end_io = fn; 738 } 739 740 static int ensure_next_mapping(struct pool *pool) 741 { 742 if (pool->next_mapping) 743 return 0; 744 745 pool->next_mapping = mempool_alloc(pool->mapping_pool, GFP_ATOMIC); 746 747 return pool->next_mapping ? 0 : -ENOMEM; 748 } 749 750 static struct dm_thin_new_mapping *get_next_mapping(struct pool *pool) 751 { 752 struct dm_thin_new_mapping *r = pool->next_mapping; 753 754 BUG_ON(!pool->next_mapping); 755 756 pool->next_mapping = NULL; 757 758 return r; 759 } 760 761 static void schedule_copy(struct thin_c *tc, dm_block_t virt_block, 762 struct dm_dev *origin, dm_block_t data_origin, 763 dm_block_t data_dest, 764 struct dm_bio_prison_cell *cell, struct bio *bio) 765 { 766 int r; 767 struct pool *pool = tc->pool; 768 struct dm_thin_new_mapping *m = get_next_mapping(pool); 769 770 INIT_LIST_HEAD(&m->list); 771 m->quiesced = 0; 772 m->prepared = 0; 773 m->tc = tc; 774 m->virt_block = virt_block; 775 m->data_block = data_dest; 776 m->cell = cell; 777 m->err = 0; 778 m->bio = NULL; 779 780 if (!dm_deferred_set_add_work(pool->shared_read_ds, &m->list)) 781 m->quiesced = 1; 782 783 /* 784 * IO to pool_dev remaps to the pool target's data_dev. 785 * 786 * If the whole block of data is being overwritten, we can issue the 787 * bio immediately. Otherwise we use kcopyd to clone the data first. 788 */ 789 if (io_overwrites_block(pool, bio)) { 790 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook)); 791 792 h->overwrite_mapping = m; 793 m->bio = bio; 794 save_and_set_endio(bio, &m->saved_bi_end_io, overwrite_endio); 795 inc_all_io_entry(pool, bio); 796 remap_and_issue(tc, bio, data_dest); 797 } else { 798 struct dm_io_region from, to; 799 800 from.bdev = origin->bdev; 801 from.sector = data_origin * pool->sectors_per_block; 802 from.count = pool->sectors_per_block; 803 804 to.bdev = tc->pool_dev->bdev; 805 to.sector = data_dest * pool->sectors_per_block; 806 to.count = pool->sectors_per_block; 807 808 r = dm_kcopyd_copy(pool->copier, &from, 1, &to, 809 0, copy_complete, m); 810 if (r < 0) { 811 mempool_free(m, pool->mapping_pool); 812 DMERR_LIMIT("dm_kcopyd_copy() failed"); 813 cell_error(pool, cell); 814 } 815 } 816 } 817 818 static void schedule_internal_copy(struct thin_c *tc, dm_block_t virt_block, 819 dm_block_t data_origin, dm_block_t data_dest, 820 struct dm_bio_prison_cell *cell, struct bio *bio) 821 { 822 schedule_copy(tc, virt_block, tc->pool_dev, 823 data_origin, data_dest, cell, bio); 824 } 825 826 static void schedule_external_copy(struct thin_c *tc, dm_block_t virt_block, 827 dm_block_t data_dest, 828 struct dm_bio_prison_cell *cell, struct bio *bio) 829 { 830 schedule_copy(tc, virt_block, tc->origin_dev, 831 virt_block, data_dest, cell, bio); 832 } 833 834 static void schedule_zero(struct thin_c *tc, dm_block_t virt_block, 835 dm_block_t data_block, struct dm_bio_prison_cell *cell, 836 struct bio *bio) 837 { 838 struct pool *pool = tc->pool; 839 struct dm_thin_new_mapping *m = get_next_mapping(pool); 840 841 INIT_LIST_HEAD(&m->list); 842 m->quiesced = 1; 843 m->prepared = 0; 844 m->tc = tc; 845 m->virt_block = virt_block; 846 m->data_block = data_block; 847 m->cell = cell; 848 m->err = 0; 849 m->bio = NULL; 850 851 /* 852 * If the whole block of data is being overwritten or we are not 853 * zeroing pre-existing data, we can issue the bio immediately. 854 * Otherwise we use kcopyd to zero the data first. 855 */ 856 if (!pool->pf.zero_new_blocks) 857 process_prepared_mapping(m); 858 859 else if (io_overwrites_block(pool, bio)) { 860 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook)); 861 862 h->overwrite_mapping = m; 863 m->bio = bio; 864 save_and_set_endio(bio, &m->saved_bi_end_io, overwrite_endio); 865 inc_all_io_entry(pool, bio); 866 remap_and_issue(tc, bio, data_block); 867 } else { 868 int r; 869 struct dm_io_region to; 870 871 to.bdev = tc->pool_dev->bdev; 872 to.sector = data_block * pool->sectors_per_block; 873 to.count = pool->sectors_per_block; 874 875 r = dm_kcopyd_zero(pool->copier, 1, &to, 0, copy_complete, m); 876 if (r < 0) { 877 mempool_free(m, pool->mapping_pool); 878 DMERR_LIMIT("dm_kcopyd_zero() failed"); 879 cell_error(pool, cell); 880 } 881 } 882 } 883 884 static int commit(struct pool *pool) 885 { 886 int r; 887 888 r = dm_pool_commit_metadata(pool->pmd); 889 if (r) 890 DMERR_LIMIT("commit failed: error = %d", r); 891 892 return r; 893 } 894 895 /* 896 * A non-zero return indicates read_only or fail_io mode. 897 * Many callers don't care about the return value. 898 */ 899 static int commit_or_fallback(struct pool *pool) 900 { 901 int r; 902 903 if (get_pool_mode(pool) != PM_WRITE) 904 return -EINVAL; 905 906 r = commit(pool); 907 if (r) 908 set_pool_mode(pool, PM_READ_ONLY); 909 910 return r; 911 } 912 913 static int alloc_data_block(struct thin_c *tc, dm_block_t *result) 914 { 915 int r; 916 dm_block_t free_blocks; 917 unsigned long flags; 918 struct pool *pool = tc->pool; 919 920 r = dm_pool_get_free_block_count(pool->pmd, &free_blocks); 921 if (r) 922 return r; 923 924 if (free_blocks <= pool->low_water_blocks && !pool->low_water_triggered) { 925 DMWARN("%s: reached low water mark, sending event.", 926 dm_device_name(pool->pool_md)); 927 spin_lock_irqsave(&pool->lock, flags); 928 pool->low_water_triggered = 1; 929 spin_unlock_irqrestore(&pool->lock, flags); 930 dm_table_event(pool->ti->table); 931 } 932 933 if (!free_blocks) { 934 if (pool->no_free_space) 935 return -ENOSPC; 936 else { 937 /* 938 * Try to commit to see if that will free up some 939 * more space. 940 */ 941 (void) commit_or_fallback(pool); 942 943 r = dm_pool_get_free_block_count(pool->pmd, &free_blocks); 944 if (r) 945 return r; 946 947 /* 948 * If we still have no space we set a flag to avoid 949 * doing all this checking and return -ENOSPC. 950 */ 951 if (!free_blocks) { 952 DMWARN("%s: no free space available.", 953 dm_device_name(pool->pool_md)); 954 spin_lock_irqsave(&pool->lock, flags); 955 pool->no_free_space = 1; 956 spin_unlock_irqrestore(&pool->lock, flags); 957 return -ENOSPC; 958 } 959 } 960 } 961 962 r = dm_pool_alloc_data_block(pool->pmd, result); 963 if (r) 964 return r; 965 966 return 0; 967 } 968 969 /* 970 * If we have run out of space, queue bios until the device is 971 * resumed, presumably after having been reloaded with more space. 972 */ 973 static void retry_on_resume(struct bio *bio) 974 { 975 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook)); 976 struct thin_c *tc = h->tc; 977 struct pool *pool = tc->pool; 978 unsigned long flags; 979 980 spin_lock_irqsave(&pool->lock, flags); 981 bio_list_add(&pool->retry_on_resume_list, bio); 982 spin_unlock_irqrestore(&pool->lock, flags); 983 } 984 985 static void no_space(struct pool *pool, struct dm_bio_prison_cell *cell) 986 { 987 struct bio *bio; 988 struct bio_list bios; 989 990 bio_list_init(&bios); 991 cell_release(pool, cell, &bios); 992 993 while ((bio = bio_list_pop(&bios))) 994 retry_on_resume(bio); 995 } 996 997 static void process_discard(struct thin_c *tc, struct bio *bio) 998 { 999 int r; 1000 unsigned long flags; 1001 struct pool *pool = tc->pool; 1002 struct dm_bio_prison_cell *cell, *cell2; 1003 struct dm_cell_key key, key2; 1004 dm_block_t block = get_bio_block(tc, bio); 1005 struct dm_thin_lookup_result lookup_result; 1006 struct dm_thin_new_mapping *m; 1007 1008 build_virtual_key(tc->td, block, &key); 1009 if (bio_detain(tc->pool, &key, bio, &cell)) 1010 return; 1011 1012 r = dm_thin_find_block(tc->td, block, 1, &lookup_result); 1013 switch (r) { 1014 case 0: 1015 /* 1016 * Check nobody is fiddling with this pool block. This can 1017 * happen if someone's in the process of breaking sharing 1018 * on this block. 1019 */ 1020 build_data_key(tc->td, lookup_result.block, &key2); 1021 if (bio_detain(tc->pool, &key2, bio, &cell2)) { 1022 cell_defer_no_holder(tc, cell); 1023 break; 1024 } 1025 1026 if (io_overlaps_block(pool, bio)) { 1027 /* 1028 * IO may still be going to the destination block. We must 1029 * quiesce before we can do the removal. 1030 */ 1031 m = get_next_mapping(pool); 1032 m->tc = tc; 1033 m->pass_discard = (!lookup_result.shared) && pool->pf.discard_passdown; 1034 m->virt_block = block; 1035 m->data_block = lookup_result.block; 1036 m->cell = cell; 1037 m->cell2 = cell2; 1038 m->err = 0; 1039 m->bio = bio; 1040 1041 if (!dm_deferred_set_add_work(pool->all_io_ds, &m->list)) { 1042 spin_lock_irqsave(&pool->lock, flags); 1043 list_add(&m->list, &pool->prepared_discards); 1044 spin_unlock_irqrestore(&pool->lock, flags); 1045 wake_worker(pool); 1046 } 1047 } else { 1048 inc_all_io_entry(pool, bio); 1049 cell_defer_no_holder(tc, cell); 1050 cell_defer_no_holder(tc, cell2); 1051 1052 /* 1053 * The DM core makes sure that the discard doesn't span 1054 * a block boundary. So we submit the discard of a 1055 * partial block appropriately. 1056 */ 1057 if ((!lookup_result.shared) && pool->pf.discard_passdown) 1058 remap_and_issue(tc, bio, lookup_result.block); 1059 else 1060 bio_endio(bio, 0); 1061 } 1062 break; 1063 1064 case -ENODATA: 1065 /* 1066 * It isn't provisioned, just forget it. 1067 */ 1068 cell_defer_no_holder(tc, cell); 1069 bio_endio(bio, 0); 1070 break; 1071 1072 default: 1073 DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d", 1074 __func__, r); 1075 cell_defer_no_holder(tc, cell); 1076 bio_io_error(bio); 1077 break; 1078 } 1079 } 1080 1081 static void break_sharing(struct thin_c *tc, struct bio *bio, dm_block_t block, 1082 struct dm_cell_key *key, 1083 struct dm_thin_lookup_result *lookup_result, 1084 struct dm_bio_prison_cell *cell) 1085 { 1086 int r; 1087 dm_block_t data_block; 1088 1089 r = alloc_data_block(tc, &data_block); 1090 switch (r) { 1091 case 0: 1092 schedule_internal_copy(tc, block, lookup_result->block, 1093 data_block, cell, bio); 1094 break; 1095 1096 case -ENOSPC: 1097 no_space(tc->pool, cell); 1098 break; 1099 1100 default: 1101 DMERR_LIMIT("%s: alloc_data_block() failed: error = %d", 1102 __func__, r); 1103 cell_error(tc->pool, cell); 1104 break; 1105 } 1106 } 1107 1108 static void process_shared_bio(struct thin_c *tc, struct bio *bio, 1109 dm_block_t block, 1110 struct dm_thin_lookup_result *lookup_result) 1111 { 1112 struct dm_bio_prison_cell *cell; 1113 struct pool *pool = tc->pool; 1114 struct dm_cell_key key; 1115 1116 /* 1117 * If cell is already occupied, then sharing is already in the process 1118 * of being broken so we have nothing further to do here. 1119 */ 1120 build_data_key(tc->td, lookup_result->block, &key); 1121 if (bio_detain(pool, &key, bio, &cell)) 1122 return; 1123 1124 if (bio_data_dir(bio) == WRITE && bio->bi_size) 1125 break_sharing(tc, bio, block, &key, lookup_result, cell); 1126 else { 1127 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook)); 1128 1129 h->shared_read_entry = dm_deferred_entry_inc(pool->shared_read_ds); 1130 inc_all_io_entry(pool, bio); 1131 cell_defer_no_holder(tc, cell); 1132 1133 remap_and_issue(tc, bio, lookup_result->block); 1134 } 1135 } 1136 1137 static void provision_block(struct thin_c *tc, struct bio *bio, dm_block_t block, 1138 struct dm_bio_prison_cell *cell) 1139 { 1140 int r; 1141 dm_block_t data_block; 1142 struct pool *pool = tc->pool; 1143 1144 /* 1145 * Remap empty bios (flushes) immediately, without provisioning. 1146 */ 1147 if (!bio->bi_size) { 1148 inc_all_io_entry(pool, bio); 1149 cell_defer_no_holder(tc, cell); 1150 1151 remap_and_issue(tc, bio, 0); 1152 return; 1153 } 1154 1155 /* 1156 * Fill read bios with zeroes and complete them immediately. 1157 */ 1158 if (bio_data_dir(bio) == READ) { 1159 zero_fill_bio(bio); 1160 cell_defer_no_holder(tc, cell); 1161 bio_endio(bio, 0); 1162 return; 1163 } 1164 1165 r = alloc_data_block(tc, &data_block); 1166 switch (r) { 1167 case 0: 1168 if (tc->origin_dev) 1169 schedule_external_copy(tc, block, data_block, cell, bio); 1170 else 1171 schedule_zero(tc, block, data_block, cell, bio); 1172 break; 1173 1174 case -ENOSPC: 1175 no_space(pool, cell); 1176 break; 1177 1178 default: 1179 DMERR_LIMIT("%s: alloc_data_block() failed: error = %d", 1180 __func__, r); 1181 set_pool_mode(pool, PM_READ_ONLY); 1182 cell_error(pool, cell); 1183 break; 1184 } 1185 } 1186 1187 static void process_bio(struct thin_c *tc, struct bio *bio) 1188 { 1189 int r; 1190 struct pool *pool = tc->pool; 1191 dm_block_t block = get_bio_block(tc, bio); 1192 struct dm_bio_prison_cell *cell; 1193 struct dm_cell_key key; 1194 struct dm_thin_lookup_result lookup_result; 1195 1196 /* 1197 * If cell is already occupied, then the block is already 1198 * being provisioned so we have nothing further to do here. 1199 */ 1200 build_virtual_key(tc->td, block, &key); 1201 if (bio_detain(pool, &key, bio, &cell)) 1202 return; 1203 1204 r = dm_thin_find_block(tc->td, block, 1, &lookup_result); 1205 switch (r) { 1206 case 0: 1207 if (lookup_result.shared) { 1208 process_shared_bio(tc, bio, block, &lookup_result); 1209 cell_defer_no_holder(tc, cell); /* FIXME: pass this cell into process_shared? */ 1210 } else { 1211 inc_all_io_entry(pool, bio); 1212 cell_defer_no_holder(tc, cell); 1213 1214 remap_and_issue(tc, bio, lookup_result.block); 1215 } 1216 break; 1217 1218 case -ENODATA: 1219 if (bio_data_dir(bio) == READ && tc->origin_dev) { 1220 inc_all_io_entry(pool, bio); 1221 cell_defer_no_holder(tc, cell); 1222 1223 remap_to_origin_and_issue(tc, bio); 1224 } else 1225 provision_block(tc, bio, block, cell); 1226 break; 1227 1228 default: 1229 DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d", 1230 __func__, r); 1231 cell_defer_no_holder(tc, cell); 1232 bio_io_error(bio); 1233 break; 1234 } 1235 } 1236 1237 static void process_bio_read_only(struct thin_c *tc, struct bio *bio) 1238 { 1239 int r; 1240 int rw = bio_data_dir(bio); 1241 dm_block_t block = get_bio_block(tc, bio); 1242 struct dm_thin_lookup_result lookup_result; 1243 1244 r = dm_thin_find_block(tc->td, block, 1, &lookup_result); 1245 switch (r) { 1246 case 0: 1247 if (lookup_result.shared && (rw == WRITE) && bio->bi_size) 1248 bio_io_error(bio); 1249 else { 1250 inc_all_io_entry(tc->pool, bio); 1251 remap_and_issue(tc, bio, lookup_result.block); 1252 } 1253 break; 1254 1255 case -ENODATA: 1256 if (rw != READ) { 1257 bio_io_error(bio); 1258 break; 1259 } 1260 1261 if (tc->origin_dev) { 1262 inc_all_io_entry(tc->pool, bio); 1263 remap_to_origin_and_issue(tc, bio); 1264 break; 1265 } 1266 1267 zero_fill_bio(bio); 1268 bio_endio(bio, 0); 1269 break; 1270 1271 default: 1272 DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d", 1273 __func__, r); 1274 bio_io_error(bio); 1275 break; 1276 } 1277 } 1278 1279 static void process_bio_fail(struct thin_c *tc, struct bio *bio) 1280 { 1281 bio_io_error(bio); 1282 } 1283 1284 static int need_commit_due_to_time(struct pool *pool) 1285 { 1286 return jiffies < pool->last_commit_jiffies || 1287 jiffies > pool->last_commit_jiffies + COMMIT_PERIOD; 1288 } 1289 1290 static void process_deferred_bios(struct pool *pool) 1291 { 1292 unsigned long flags; 1293 struct bio *bio; 1294 struct bio_list bios; 1295 1296 bio_list_init(&bios); 1297 1298 spin_lock_irqsave(&pool->lock, flags); 1299 bio_list_merge(&bios, &pool->deferred_bios); 1300 bio_list_init(&pool->deferred_bios); 1301 spin_unlock_irqrestore(&pool->lock, flags); 1302 1303 while ((bio = bio_list_pop(&bios))) { 1304 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook)); 1305 struct thin_c *tc = h->tc; 1306 1307 /* 1308 * If we've got no free new_mapping structs, and processing 1309 * this bio might require one, we pause until there are some 1310 * prepared mappings to process. 1311 */ 1312 if (ensure_next_mapping(pool)) { 1313 spin_lock_irqsave(&pool->lock, flags); 1314 bio_list_merge(&pool->deferred_bios, &bios); 1315 spin_unlock_irqrestore(&pool->lock, flags); 1316 1317 break; 1318 } 1319 1320 if (bio->bi_rw & REQ_DISCARD) 1321 pool->process_discard(tc, bio); 1322 else 1323 pool->process_bio(tc, bio); 1324 } 1325 1326 /* 1327 * If there are any deferred flush bios, we must commit 1328 * the metadata before issuing them. 1329 */ 1330 bio_list_init(&bios); 1331 spin_lock_irqsave(&pool->lock, flags); 1332 bio_list_merge(&bios, &pool->deferred_flush_bios); 1333 bio_list_init(&pool->deferred_flush_bios); 1334 spin_unlock_irqrestore(&pool->lock, flags); 1335 1336 if (bio_list_empty(&bios) && !need_commit_due_to_time(pool)) 1337 return; 1338 1339 if (commit_or_fallback(pool)) { 1340 while ((bio = bio_list_pop(&bios))) 1341 bio_io_error(bio); 1342 return; 1343 } 1344 pool->last_commit_jiffies = jiffies; 1345 1346 while ((bio = bio_list_pop(&bios))) 1347 generic_make_request(bio); 1348 } 1349 1350 static void do_worker(struct work_struct *ws) 1351 { 1352 struct pool *pool = container_of(ws, struct pool, worker); 1353 1354 process_prepared(pool, &pool->prepared_mappings, &pool->process_prepared_mapping); 1355 process_prepared(pool, &pool->prepared_discards, &pool->process_prepared_discard); 1356 process_deferred_bios(pool); 1357 } 1358 1359 /* 1360 * We want to commit periodically so that not too much 1361 * unwritten data builds up. 1362 */ 1363 static void do_waker(struct work_struct *ws) 1364 { 1365 struct pool *pool = container_of(to_delayed_work(ws), struct pool, waker); 1366 wake_worker(pool); 1367 queue_delayed_work(pool->wq, &pool->waker, COMMIT_PERIOD); 1368 } 1369 1370 /*----------------------------------------------------------------*/ 1371 1372 static enum pool_mode get_pool_mode(struct pool *pool) 1373 { 1374 return pool->pf.mode; 1375 } 1376 1377 static void set_pool_mode(struct pool *pool, enum pool_mode mode) 1378 { 1379 int r; 1380 1381 pool->pf.mode = mode; 1382 1383 switch (mode) { 1384 case PM_FAIL: 1385 DMERR("switching pool to failure mode"); 1386 pool->process_bio = process_bio_fail; 1387 pool->process_discard = process_bio_fail; 1388 pool->process_prepared_mapping = process_prepared_mapping_fail; 1389 pool->process_prepared_discard = process_prepared_discard_fail; 1390 break; 1391 1392 case PM_READ_ONLY: 1393 DMERR("switching pool to read-only mode"); 1394 r = dm_pool_abort_metadata(pool->pmd); 1395 if (r) { 1396 DMERR("aborting transaction failed"); 1397 set_pool_mode(pool, PM_FAIL); 1398 } else { 1399 dm_pool_metadata_read_only(pool->pmd); 1400 pool->process_bio = process_bio_read_only; 1401 pool->process_discard = process_discard; 1402 pool->process_prepared_mapping = process_prepared_mapping_fail; 1403 pool->process_prepared_discard = process_prepared_discard_passdown; 1404 } 1405 break; 1406 1407 case PM_WRITE: 1408 pool->process_bio = process_bio; 1409 pool->process_discard = process_discard; 1410 pool->process_prepared_mapping = process_prepared_mapping; 1411 pool->process_prepared_discard = process_prepared_discard; 1412 break; 1413 } 1414 } 1415 1416 /*----------------------------------------------------------------*/ 1417 1418 /* 1419 * Mapping functions. 1420 */ 1421 1422 /* 1423 * Called only while mapping a thin bio to hand it over to the workqueue. 1424 */ 1425 static void thin_defer_bio(struct thin_c *tc, struct bio *bio) 1426 { 1427 unsigned long flags; 1428 struct pool *pool = tc->pool; 1429 1430 spin_lock_irqsave(&pool->lock, flags); 1431 bio_list_add(&pool->deferred_bios, bio); 1432 spin_unlock_irqrestore(&pool->lock, flags); 1433 1434 wake_worker(pool); 1435 } 1436 1437 static void thin_hook_bio(struct thin_c *tc, struct bio *bio) 1438 { 1439 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook)); 1440 1441 h->tc = tc; 1442 h->shared_read_entry = NULL; 1443 h->all_io_entry = NULL; 1444 h->overwrite_mapping = NULL; 1445 } 1446 1447 /* 1448 * Non-blocking function called from the thin target's map function. 1449 */ 1450 static int thin_bio_map(struct dm_target *ti, struct bio *bio) 1451 { 1452 int r; 1453 struct thin_c *tc = ti->private; 1454 dm_block_t block = get_bio_block(tc, bio); 1455 struct dm_thin_device *td = tc->td; 1456 struct dm_thin_lookup_result result; 1457 struct dm_bio_prison_cell cell1, cell2; 1458 struct dm_bio_prison_cell *cell_result; 1459 struct dm_cell_key key; 1460 1461 thin_hook_bio(tc, bio); 1462 1463 if (get_pool_mode(tc->pool) == PM_FAIL) { 1464 bio_io_error(bio); 1465 return DM_MAPIO_SUBMITTED; 1466 } 1467 1468 if (bio->bi_rw & (REQ_DISCARD | REQ_FLUSH | REQ_FUA)) { 1469 thin_defer_bio(tc, bio); 1470 return DM_MAPIO_SUBMITTED; 1471 } 1472 1473 r = dm_thin_find_block(td, block, 0, &result); 1474 1475 /* 1476 * Note that we defer readahead too. 1477 */ 1478 switch (r) { 1479 case 0: 1480 if (unlikely(result.shared)) { 1481 /* 1482 * We have a race condition here between the 1483 * result.shared value returned by the lookup and 1484 * snapshot creation, which may cause new 1485 * sharing. 1486 * 1487 * To avoid this always quiesce the origin before 1488 * taking the snap. You want to do this anyway to 1489 * ensure a consistent application view 1490 * (i.e. lockfs). 1491 * 1492 * More distant ancestors are irrelevant. The 1493 * shared flag will be set in their case. 1494 */ 1495 thin_defer_bio(tc, bio); 1496 return DM_MAPIO_SUBMITTED; 1497 } 1498 1499 build_virtual_key(tc->td, block, &key); 1500 if (dm_bio_detain(tc->pool->prison, &key, bio, &cell1, &cell_result)) 1501 return DM_MAPIO_SUBMITTED; 1502 1503 build_data_key(tc->td, result.block, &key); 1504 if (dm_bio_detain(tc->pool->prison, &key, bio, &cell2, &cell_result)) { 1505 cell_defer_no_holder_no_free(tc, &cell1); 1506 return DM_MAPIO_SUBMITTED; 1507 } 1508 1509 inc_all_io_entry(tc->pool, bio); 1510 cell_defer_no_holder_no_free(tc, &cell2); 1511 cell_defer_no_holder_no_free(tc, &cell1); 1512 1513 remap(tc, bio, result.block); 1514 return DM_MAPIO_REMAPPED; 1515 1516 case -ENODATA: 1517 if (get_pool_mode(tc->pool) == PM_READ_ONLY) { 1518 /* 1519 * This block isn't provisioned, and we have no way 1520 * of doing so. Just error it. 1521 */ 1522 bio_io_error(bio); 1523 return DM_MAPIO_SUBMITTED; 1524 } 1525 /* fall through */ 1526 1527 case -EWOULDBLOCK: 1528 /* 1529 * In future, the failed dm_thin_find_block above could 1530 * provide the hint to load the metadata into cache. 1531 */ 1532 thin_defer_bio(tc, bio); 1533 return DM_MAPIO_SUBMITTED; 1534 1535 default: 1536 /* 1537 * Must always call bio_io_error on failure. 1538 * dm_thin_find_block can fail with -EINVAL if the 1539 * pool is switched to fail-io mode. 1540 */ 1541 bio_io_error(bio); 1542 return DM_MAPIO_SUBMITTED; 1543 } 1544 } 1545 1546 static int pool_is_congested(struct dm_target_callbacks *cb, int bdi_bits) 1547 { 1548 int r; 1549 unsigned long flags; 1550 struct pool_c *pt = container_of(cb, struct pool_c, callbacks); 1551 1552 spin_lock_irqsave(&pt->pool->lock, flags); 1553 r = !bio_list_empty(&pt->pool->retry_on_resume_list); 1554 spin_unlock_irqrestore(&pt->pool->lock, flags); 1555 1556 if (!r) { 1557 struct request_queue *q = bdev_get_queue(pt->data_dev->bdev); 1558 r = bdi_congested(&q->backing_dev_info, bdi_bits); 1559 } 1560 1561 return r; 1562 } 1563 1564 static void __requeue_bios(struct pool *pool) 1565 { 1566 bio_list_merge(&pool->deferred_bios, &pool->retry_on_resume_list); 1567 bio_list_init(&pool->retry_on_resume_list); 1568 } 1569 1570 /*---------------------------------------------------------------- 1571 * Binding of control targets to a pool object 1572 *--------------------------------------------------------------*/ 1573 static bool data_dev_supports_discard(struct pool_c *pt) 1574 { 1575 struct request_queue *q = bdev_get_queue(pt->data_dev->bdev); 1576 1577 return q && blk_queue_discard(q); 1578 } 1579 1580 static bool is_factor(sector_t block_size, uint32_t n) 1581 { 1582 return !sector_div(block_size, n); 1583 } 1584 1585 /* 1586 * If discard_passdown was enabled verify that the data device 1587 * supports discards. Disable discard_passdown if not. 1588 */ 1589 static void disable_passdown_if_not_supported(struct pool_c *pt) 1590 { 1591 struct pool *pool = pt->pool; 1592 struct block_device *data_bdev = pt->data_dev->bdev; 1593 struct queue_limits *data_limits = &bdev_get_queue(data_bdev)->limits; 1594 sector_t block_size = pool->sectors_per_block << SECTOR_SHIFT; 1595 const char *reason = NULL; 1596 char buf[BDEVNAME_SIZE]; 1597 1598 if (!pt->adjusted_pf.discard_passdown) 1599 return; 1600 1601 if (!data_dev_supports_discard(pt)) 1602 reason = "discard unsupported"; 1603 1604 else if (data_limits->max_discard_sectors < pool->sectors_per_block) 1605 reason = "max discard sectors smaller than a block"; 1606 1607 else if (data_limits->discard_granularity > block_size) 1608 reason = "discard granularity larger than a block"; 1609 1610 else if (!is_factor(block_size, data_limits->discard_granularity)) 1611 reason = "discard granularity not a factor of block size"; 1612 1613 if (reason) { 1614 DMWARN("Data device (%s) %s: Disabling discard passdown.", bdevname(data_bdev, buf), reason); 1615 pt->adjusted_pf.discard_passdown = false; 1616 } 1617 } 1618 1619 static int bind_control_target(struct pool *pool, struct dm_target *ti) 1620 { 1621 struct pool_c *pt = ti->private; 1622 1623 /* 1624 * We want to make sure that degraded pools are never upgraded. 1625 */ 1626 enum pool_mode old_mode = pool->pf.mode; 1627 enum pool_mode new_mode = pt->adjusted_pf.mode; 1628 1629 if (old_mode > new_mode) 1630 new_mode = old_mode; 1631 1632 pool->ti = ti; 1633 pool->low_water_blocks = pt->low_water_blocks; 1634 pool->pf = pt->adjusted_pf; 1635 1636 set_pool_mode(pool, new_mode); 1637 1638 return 0; 1639 } 1640 1641 static void unbind_control_target(struct pool *pool, struct dm_target *ti) 1642 { 1643 if (pool->ti == ti) 1644 pool->ti = NULL; 1645 } 1646 1647 /*---------------------------------------------------------------- 1648 * Pool creation 1649 *--------------------------------------------------------------*/ 1650 /* Initialize pool features. */ 1651 static void pool_features_init(struct pool_features *pf) 1652 { 1653 pf->mode = PM_WRITE; 1654 pf->zero_new_blocks = true; 1655 pf->discard_enabled = true; 1656 pf->discard_passdown = true; 1657 } 1658 1659 static void __pool_destroy(struct pool *pool) 1660 { 1661 __pool_table_remove(pool); 1662 1663 if (dm_pool_metadata_close(pool->pmd) < 0) 1664 DMWARN("%s: dm_pool_metadata_close() failed.", __func__); 1665 1666 dm_bio_prison_destroy(pool->prison); 1667 dm_kcopyd_client_destroy(pool->copier); 1668 1669 if (pool->wq) 1670 destroy_workqueue(pool->wq); 1671 1672 if (pool->next_mapping) 1673 mempool_free(pool->next_mapping, pool->mapping_pool); 1674 mempool_destroy(pool->mapping_pool); 1675 dm_deferred_set_destroy(pool->shared_read_ds); 1676 dm_deferred_set_destroy(pool->all_io_ds); 1677 kfree(pool); 1678 } 1679 1680 static struct kmem_cache *_new_mapping_cache; 1681 1682 static struct pool *pool_create(struct mapped_device *pool_md, 1683 struct block_device *metadata_dev, 1684 unsigned long block_size, 1685 int read_only, char **error) 1686 { 1687 int r; 1688 void *err_p; 1689 struct pool *pool; 1690 struct dm_pool_metadata *pmd; 1691 bool format_device = read_only ? false : true; 1692 1693 pmd = dm_pool_metadata_open(metadata_dev, block_size, format_device); 1694 if (IS_ERR(pmd)) { 1695 *error = "Error creating metadata object"; 1696 return (struct pool *)pmd; 1697 } 1698 1699 pool = kmalloc(sizeof(*pool), GFP_KERNEL); 1700 if (!pool) { 1701 *error = "Error allocating memory for pool"; 1702 err_p = ERR_PTR(-ENOMEM); 1703 goto bad_pool; 1704 } 1705 1706 pool->pmd = pmd; 1707 pool->sectors_per_block = block_size; 1708 if (block_size & (block_size - 1)) 1709 pool->sectors_per_block_shift = -1; 1710 else 1711 pool->sectors_per_block_shift = __ffs(block_size); 1712 pool->low_water_blocks = 0; 1713 pool_features_init(&pool->pf); 1714 pool->prison = dm_bio_prison_create(PRISON_CELLS); 1715 if (!pool->prison) { 1716 *error = "Error creating pool's bio prison"; 1717 err_p = ERR_PTR(-ENOMEM); 1718 goto bad_prison; 1719 } 1720 1721 pool->copier = dm_kcopyd_client_create(&dm_kcopyd_throttle); 1722 if (IS_ERR(pool->copier)) { 1723 r = PTR_ERR(pool->copier); 1724 *error = "Error creating pool's kcopyd client"; 1725 err_p = ERR_PTR(r); 1726 goto bad_kcopyd_client; 1727 } 1728 1729 /* 1730 * Create singlethreaded workqueue that will service all devices 1731 * that use this metadata. 1732 */ 1733 pool->wq = alloc_ordered_workqueue("dm-" DM_MSG_PREFIX, WQ_MEM_RECLAIM); 1734 if (!pool->wq) { 1735 *error = "Error creating pool's workqueue"; 1736 err_p = ERR_PTR(-ENOMEM); 1737 goto bad_wq; 1738 } 1739 1740 INIT_WORK(&pool->worker, do_worker); 1741 INIT_DELAYED_WORK(&pool->waker, do_waker); 1742 spin_lock_init(&pool->lock); 1743 bio_list_init(&pool->deferred_bios); 1744 bio_list_init(&pool->deferred_flush_bios); 1745 INIT_LIST_HEAD(&pool->prepared_mappings); 1746 INIT_LIST_HEAD(&pool->prepared_discards); 1747 pool->low_water_triggered = 0; 1748 pool->no_free_space = 0; 1749 bio_list_init(&pool->retry_on_resume_list); 1750 1751 pool->shared_read_ds = dm_deferred_set_create(); 1752 if (!pool->shared_read_ds) { 1753 *error = "Error creating pool's shared read deferred set"; 1754 err_p = ERR_PTR(-ENOMEM); 1755 goto bad_shared_read_ds; 1756 } 1757 1758 pool->all_io_ds = dm_deferred_set_create(); 1759 if (!pool->all_io_ds) { 1760 *error = "Error creating pool's all io deferred set"; 1761 err_p = ERR_PTR(-ENOMEM); 1762 goto bad_all_io_ds; 1763 } 1764 1765 pool->next_mapping = NULL; 1766 pool->mapping_pool = mempool_create_slab_pool(MAPPING_POOL_SIZE, 1767 _new_mapping_cache); 1768 if (!pool->mapping_pool) { 1769 *error = "Error creating pool's mapping mempool"; 1770 err_p = ERR_PTR(-ENOMEM); 1771 goto bad_mapping_pool; 1772 } 1773 1774 pool->ref_count = 1; 1775 pool->last_commit_jiffies = jiffies; 1776 pool->pool_md = pool_md; 1777 pool->md_dev = metadata_dev; 1778 __pool_table_insert(pool); 1779 1780 return pool; 1781 1782 bad_mapping_pool: 1783 dm_deferred_set_destroy(pool->all_io_ds); 1784 bad_all_io_ds: 1785 dm_deferred_set_destroy(pool->shared_read_ds); 1786 bad_shared_read_ds: 1787 destroy_workqueue(pool->wq); 1788 bad_wq: 1789 dm_kcopyd_client_destroy(pool->copier); 1790 bad_kcopyd_client: 1791 dm_bio_prison_destroy(pool->prison); 1792 bad_prison: 1793 kfree(pool); 1794 bad_pool: 1795 if (dm_pool_metadata_close(pmd)) 1796 DMWARN("%s: dm_pool_metadata_close() failed.", __func__); 1797 1798 return err_p; 1799 } 1800 1801 static void __pool_inc(struct pool *pool) 1802 { 1803 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex)); 1804 pool->ref_count++; 1805 } 1806 1807 static void __pool_dec(struct pool *pool) 1808 { 1809 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex)); 1810 BUG_ON(!pool->ref_count); 1811 if (!--pool->ref_count) 1812 __pool_destroy(pool); 1813 } 1814 1815 static struct pool *__pool_find(struct mapped_device *pool_md, 1816 struct block_device *metadata_dev, 1817 unsigned long block_size, int read_only, 1818 char **error, int *created) 1819 { 1820 struct pool *pool = __pool_table_lookup_metadata_dev(metadata_dev); 1821 1822 if (pool) { 1823 if (pool->pool_md != pool_md) { 1824 *error = "metadata device already in use by a pool"; 1825 return ERR_PTR(-EBUSY); 1826 } 1827 __pool_inc(pool); 1828 1829 } else { 1830 pool = __pool_table_lookup(pool_md); 1831 if (pool) { 1832 if (pool->md_dev != metadata_dev) { 1833 *error = "different pool cannot replace a pool"; 1834 return ERR_PTR(-EINVAL); 1835 } 1836 __pool_inc(pool); 1837 1838 } else { 1839 pool = pool_create(pool_md, metadata_dev, block_size, read_only, error); 1840 *created = 1; 1841 } 1842 } 1843 1844 return pool; 1845 } 1846 1847 /*---------------------------------------------------------------- 1848 * Pool target methods 1849 *--------------------------------------------------------------*/ 1850 static void pool_dtr(struct dm_target *ti) 1851 { 1852 struct pool_c *pt = ti->private; 1853 1854 mutex_lock(&dm_thin_pool_table.mutex); 1855 1856 unbind_control_target(pt->pool, ti); 1857 __pool_dec(pt->pool); 1858 dm_put_device(ti, pt->metadata_dev); 1859 dm_put_device(ti, pt->data_dev); 1860 kfree(pt); 1861 1862 mutex_unlock(&dm_thin_pool_table.mutex); 1863 } 1864 1865 static int parse_pool_features(struct dm_arg_set *as, struct pool_features *pf, 1866 struct dm_target *ti) 1867 { 1868 int r; 1869 unsigned argc; 1870 const char *arg_name; 1871 1872 static struct dm_arg _args[] = { 1873 {0, 3, "Invalid number of pool feature arguments"}, 1874 }; 1875 1876 /* 1877 * No feature arguments supplied. 1878 */ 1879 if (!as->argc) 1880 return 0; 1881 1882 r = dm_read_arg_group(_args, as, &argc, &ti->error); 1883 if (r) 1884 return -EINVAL; 1885 1886 while (argc && !r) { 1887 arg_name = dm_shift_arg(as); 1888 argc--; 1889 1890 if (!strcasecmp(arg_name, "skip_block_zeroing")) 1891 pf->zero_new_blocks = false; 1892 1893 else if (!strcasecmp(arg_name, "ignore_discard")) 1894 pf->discard_enabled = false; 1895 1896 else if (!strcasecmp(arg_name, "no_discard_passdown")) 1897 pf->discard_passdown = false; 1898 1899 else if (!strcasecmp(arg_name, "read_only")) 1900 pf->mode = PM_READ_ONLY; 1901 1902 else { 1903 ti->error = "Unrecognised pool feature requested"; 1904 r = -EINVAL; 1905 break; 1906 } 1907 } 1908 1909 return r; 1910 } 1911 1912 /* 1913 * thin-pool <metadata dev> <data dev> 1914 * <data block size (sectors)> 1915 * <low water mark (blocks)> 1916 * [<#feature args> [<arg>]*] 1917 * 1918 * Optional feature arguments are: 1919 * skip_block_zeroing: skips the zeroing of newly-provisioned blocks. 1920 * ignore_discard: disable discard 1921 * no_discard_passdown: don't pass discards down to the data device 1922 */ 1923 static int pool_ctr(struct dm_target *ti, unsigned argc, char **argv) 1924 { 1925 int r, pool_created = 0; 1926 struct pool_c *pt; 1927 struct pool *pool; 1928 struct pool_features pf; 1929 struct dm_arg_set as; 1930 struct dm_dev *data_dev; 1931 unsigned long block_size; 1932 dm_block_t low_water_blocks; 1933 struct dm_dev *metadata_dev; 1934 sector_t metadata_dev_size; 1935 char b[BDEVNAME_SIZE]; 1936 1937 /* 1938 * FIXME Remove validation from scope of lock. 1939 */ 1940 mutex_lock(&dm_thin_pool_table.mutex); 1941 1942 if (argc < 4) { 1943 ti->error = "Invalid argument count"; 1944 r = -EINVAL; 1945 goto out_unlock; 1946 } 1947 as.argc = argc; 1948 as.argv = argv; 1949 1950 r = dm_get_device(ti, argv[0], FMODE_READ | FMODE_WRITE, &metadata_dev); 1951 if (r) { 1952 ti->error = "Error opening metadata block device"; 1953 goto out_unlock; 1954 } 1955 1956 metadata_dev_size = i_size_read(metadata_dev->bdev->bd_inode) >> SECTOR_SHIFT; 1957 if (metadata_dev_size > THIN_METADATA_MAX_SECTORS_WARNING) 1958 DMWARN("Metadata device %s is larger than %u sectors: excess space will not be used.", 1959 bdevname(metadata_dev->bdev, b), THIN_METADATA_MAX_SECTORS); 1960 1961 r = dm_get_device(ti, argv[1], FMODE_READ | FMODE_WRITE, &data_dev); 1962 if (r) { 1963 ti->error = "Error getting data device"; 1964 goto out_metadata; 1965 } 1966 1967 if (kstrtoul(argv[2], 10, &block_size) || !block_size || 1968 block_size < DATA_DEV_BLOCK_SIZE_MIN_SECTORS || 1969 block_size > DATA_DEV_BLOCK_SIZE_MAX_SECTORS || 1970 block_size & (DATA_DEV_BLOCK_SIZE_MIN_SECTORS - 1)) { 1971 ti->error = "Invalid block size"; 1972 r = -EINVAL; 1973 goto out; 1974 } 1975 1976 if (kstrtoull(argv[3], 10, (unsigned long long *)&low_water_blocks)) { 1977 ti->error = "Invalid low water mark"; 1978 r = -EINVAL; 1979 goto out; 1980 } 1981 1982 /* 1983 * Set default pool features. 1984 */ 1985 pool_features_init(&pf); 1986 1987 dm_consume_args(&as, 4); 1988 r = parse_pool_features(&as, &pf, ti); 1989 if (r) 1990 goto out; 1991 1992 pt = kzalloc(sizeof(*pt), GFP_KERNEL); 1993 if (!pt) { 1994 r = -ENOMEM; 1995 goto out; 1996 } 1997 1998 pool = __pool_find(dm_table_get_md(ti->table), metadata_dev->bdev, 1999 block_size, pf.mode == PM_READ_ONLY, &ti->error, &pool_created); 2000 if (IS_ERR(pool)) { 2001 r = PTR_ERR(pool); 2002 goto out_free_pt; 2003 } 2004 2005 /* 2006 * 'pool_created' reflects whether this is the first table load. 2007 * Top level discard support is not allowed to be changed after 2008 * initial load. This would require a pool reload to trigger thin 2009 * device changes. 2010 */ 2011 if (!pool_created && pf.discard_enabled != pool->pf.discard_enabled) { 2012 ti->error = "Discard support cannot be disabled once enabled"; 2013 r = -EINVAL; 2014 goto out_flags_changed; 2015 } 2016 2017 pt->pool = pool; 2018 pt->ti = ti; 2019 pt->metadata_dev = metadata_dev; 2020 pt->data_dev = data_dev; 2021 pt->low_water_blocks = low_water_blocks; 2022 pt->adjusted_pf = pt->requested_pf = pf; 2023 ti->num_flush_bios = 1; 2024 2025 /* 2026 * Only need to enable discards if the pool should pass 2027 * them down to the data device. The thin device's discard 2028 * processing will cause mappings to be removed from the btree. 2029 */ 2030 if (pf.discard_enabled && pf.discard_passdown) { 2031 ti->num_discard_bios = 1; 2032 2033 /* 2034 * Setting 'discards_supported' circumvents the normal 2035 * stacking of discard limits (this keeps the pool and 2036 * thin devices' discard limits consistent). 2037 */ 2038 ti->discards_supported = true; 2039 ti->discard_zeroes_data_unsupported = true; 2040 } 2041 ti->private = pt; 2042 2043 pt->callbacks.congested_fn = pool_is_congested; 2044 dm_table_add_target_callbacks(ti->table, &pt->callbacks); 2045 2046 mutex_unlock(&dm_thin_pool_table.mutex); 2047 2048 return 0; 2049 2050 out_flags_changed: 2051 __pool_dec(pool); 2052 out_free_pt: 2053 kfree(pt); 2054 out: 2055 dm_put_device(ti, data_dev); 2056 out_metadata: 2057 dm_put_device(ti, metadata_dev); 2058 out_unlock: 2059 mutex_unlock(&dm_thin_pool_table.mutex); 2060 2061 return r; 2062 } 2063 2064 static int pool_map(struct dm_target *ti, struct bio *bio) 2065 { 2066 int r; 2067 struct pool_c *pt = ti->private; 2068 struct pool *pool = pt->pool; 2069 unsigned long flags; 2070 2071 /* 2072 * As this is a singleton target, ti->begin is always zero. 2073 */ 2074 spin_lock_irqsave(&pool->lock, flags); 2075 bio->bi_bdev = pt->data_dev->bdev; 2076 r = DM_MAPIO_REMAPPED; 2077 spin_unlock_irqrestore(&pool->lock, flags); 2078 2079 return r; 2080 } 2081 2082 /* 2083 * Retrieves the number of blocks of the data device from 2084 * the superblock and compares it to the actual device size, 2085 * thus resizing the data device in case it has grown. 2086 * 2087 * This both copes with opening preallocated data devices in the ctr 2088 * being followed by a resume 2089 * -and- 2090 * calling the resume method individually after userspace has 2091 * grown the data device in reaction to a table event. 2092 */ 2093 static int pool_preresume(struct dm_target *ti) 2094 { 2095 int r; 2096 struct pool_c *pt = ti->private; 2097 struct pool *pool = pt->pool; 2098 sector_t data_size = ti->len; 2099 dm_block_t sb_data_size; 2100 2101 /* 2102 * Take control of the pool object. 2103 */ 2104 r = bind_control_target(pool, ti); 2105 if (r) 2106 return r; 2107 2108 (void) sector_div(data_size, pool->sectors_per_block); 2109 2110 r = dm_pool_get_data_dev_size(pool->pmd, &sb_data_size); 2111 if (r) { 2112 DMERR("failed to retrieve data device size"); 2113 return r; 2114 } 2115 2116 if (data_size < sb_data_size) { 2117 DMERR("pool target too small, is %llu blocks (expected %llu)", 2118 (unsigned long long)data_size, sb_data_size); 2119 return -EINVAL; 2120 2121 } else if (data_size > sb_data_size) { 2122 r = dm_pool_resize_data_dev(pool->pmd, data_size); 2123 if (r) { 2124 DMERR("failed to resize data device"); 2125 /* FIXME Stricter than necessary: Rollback transaction instead here */ 2126 set_pool_mode(pool, PM_READ_ONLY); 2127 return r; 2128 } 2129 2130 (void) commit_or_fallback(pool); 2131 } 2132 2133 return 0; 2134 } 2135 2136 static void pool_resume(struct dm_target *ti) 2137 { 2138 struct pool_c *pt = ti->private; 2139 struct pool *pool = pt->pool; 2140 unsigned long flags; 2141 2142 spin_lock_irqsave(&pool->lock, flags); 2143 pool->low_water_triggered = 0; 2144 pool->no_free_space = 0; 2145 __requeue_bios(pool); 2146 spin_unlock_irqrestore(&pool->lock, flags); 2147 2148 do_waker(&pool->waker.work); 2149 } 2150 2151 static void pool_postsuspend(struct dm_target *ti) 2152 { 2153 struct pool_c *pt = ti->private; 2154 struct pool *pool = pt->pool; 2155 2156 cancel_delayed_work(&pool->waker); 2157 flush_workqueue(pool->wq); 2158 (void) commit_or_fallback(pool); 2159 } 2160 2161 static int check_arg_count(unsigned argc, unsigned args_required) 2162 { 2163 if (argc != args_required) { 2164 DMWARN("Message received with %u arguments instead of %u.", 2165 argc, args_required); 2166 return -EINVAL; 2167 } 2168 2169 return 0; 2170 } 2171 2172 static int read_dev_id(char *arg, dm_thin_id *dev_id, int warning) 2173 { 2174 if (!kstrtoull(arg, 10, (unsigned long long *)dev_id) && 2175 *dev_id <= MAX_DEV_ID) 2176 return 0; 2177 2178 if (warning) 2179 DMWARN("Message received with invalid device id: %s", arg); 2180 2181 return -EINVAL; 2182 } 2183 2184 static int process_create_thin_mesg(unsigned argc, char **argv, struct pool *pool) 2185 { 2186 dm_thin_id dev_id; 2187 int r; 2188 2189 r = check_arg_count(argc, 2); 2190 if (r) 2191 return r; 2192 2193 r = read_dev_id(argv[1], &dev_id, 1); 2194 if (r) 2195 return r; 2196 2197 r = dm_pool_create_thin(pool->pmd, dev_id); 2198 if (r) { 2199 DMWARN("Creation of new thinly-provisioned device with id %s failed.", 2200 argv[1]); 2201 return r; 2202 } 2203 2204 return 0; 2205 } 2206 2207 static int process_create_snap_mesg(unsigned argc, char **argv, struct pool *pool) 2208 { 2209 dm_thin_id dev_id; 2210 dm_thin_id origin_dev_id; 2211 int r; 2212 2213 r = check_arg_count(argc, 3); 2214 if (r) 2215 return r; 2216 2217 r = read_dev_id(argv[1], &dev_id, 1); 2218 if (r) 2219 return r; 2220 2221 r = read_dev_id(argv[2], &origin_dev_id, 1); 2222 if (r) 2223 return r; 2224 2225 r = dm_pool_create_snap(pool->pmd, dev_id, origin_dev_id); 2226 if (r) { 2227 DMWARN("Creation of new snapshot %s of device %s failed.", 2228 argv[1], argv[2]); 2229 return r; 2230 } 2231 2232 return 0; 2233 } 2234 2235 static int process_delete_mesg(unsigned argc, char **argv, struct pool *pool) 2236 { 2237 dm_thin_id dev_id; 2238 int r; 2239 2240 r = check_arg_count(argc, 2); 2241 if (r) 2242 return r; 2243 2244 r = read_dev_id(argv[1], &dev_id, 1); 2245 if (r) 2246 return r; 2247 2248 r = dm_pool_delete_thin_device(pool->pmd, dev_id); 2249 if (r) 2250 DMWARN("Deletion of thin device %s failed.", argv[1]); 2251 2252 return r; 2253 } 2254 2255 static int process_set_transaction_id_mesg(unsigned argc, char **argv, struct pool *pool) 2256 { 2257 dm_thin_id old_id, new_id; 2258 int r; 2259 2260 r = check_arg_count(argc, 3); 2261 if (r) 2262 return r; 2263 2264 if (kstrtoull(argv[1], 10, (unsigned long long *)&old_id)) { 2265 DMWARN("set_transaction_id message: Unrecognised id %s.", argv[1]); 2266 return -EINVAL; 2267 } 2268 2269 if (kstrtoull(argv[2], 10, (unsigned long long *)&new_id)) { 2270 DMWARN("set_transaction_id message: Unrecognised new id %s.", argv[2]); 2271 return -EINVAL; 2272 } 2273 2274 r = dm_pool_set_metadata_transaction_id(pool->pmd, old_id, new_id); 2275 if (r) { 2276 DMWARN("Failed to change transaction id from %s to %s.", 2277 argv[1], argv[2]); 2278 return r; 2279 } 2280 2281 return 0; 2282 } 2283 2284 static int process_reserve_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool) 2285 { 2286 int r; 2287 2288 r = check_arg_count(argc, 1); 2289 if (r) 2290 return r; 2291 2292 (void) commit_or_fallback(pool); 2293 2294 r = dm_pool_reserve_metadata_snap(pool->pmd); 2295 if (r) 2296 DMWARN("reserve_metadata_snap message failed."); 2297 2298 return r; 2299 } 2300 2301 static int process_release_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool) 2302 { 2303 int r; 2304 2305 r = check_arg_count(argc, 1); 2306 if (r) 2307 return r; 2308 2309 r = dm_pool_release_metadata_snap(pool->pmd); 2310 if (r) 2311 DMWARN("release_metadata_snap message failed."); 2312 2313 return r; 2314 } 2315 2316 /* 2317 * Messages supported: 2318 * create_thin <dev_id> 2319 * create_snap <dev_id> <origin_id> 2320 * delete <dev_id> 2321 * trim <dev_id> <new_size_in_sectors> 2322 * set_transaction_id <current_trans_id> <new_trans_id> 2323 * reserve_metadata_snap 2324 * release_metadata_snap 2325 */ 2326 static int pool_message(struct dm_target *ti, unsigned argc, char **argv) 2327 { 2328 int r = -EINVAL; 2329 struct pool_c *pt = ti->private; 2330 struct pool *pool = pt->pool; 2331 2332 if (!strcasecmp(argv[0], "create_thin")) 2333 r = process_create_thin_mesg(argc, argv, pool); 2334 2335 else if (!strcasecmp(argv[0], "create_snap")) 2336 r = process_create_snap_mesg(argc, argv, pool); 2337 2338 else if (!strcasecmp(argv[0], "delete")) 2339 r = process_delete_mesg(argc, argv, pool); 2340 2341 else if (!strcasecmp(argv[0], "set_transaction_id")) 2342 r = process_set_transaction_id_mesg(argc, argv, pool); 2343 2344 else if (!strcasecmp(argv[0], "reserve_metadata_snap")) 2345 r = process_reserve_metadata_snap_mesg(argc, argv, pool); 2346 2347 else if (!strcasecmp(argv[0], "release_metadata_snap")) 2348 r = process_release_metadata_snap_mesg(argc, argv, pool); 2349 2350 else 2351 DMWARN("Unrecognised thin pool target message received: %s", argv[0]); 2352 2353 if (!r) 2354 (void) commit_or_fallback(pool); 2355 2356 return r; 2357 } 2358 2359 static void emit_flags(struct pool_features *pf, char *result, 2360 unsigned sz, unsigned maxlen) 2361 { 2362 unsigned count = !pf->zero_new_blocks + !pf->discard_enabled + 2363 !pf->discard_passdown + (pf->mode == PM_READ_ONLY); 2364 DMEMIT("%u ", count); 2365 2366 if (!pf->zero_new_blocks) 2367 DMEMIT("skip_block_zeroing "); 2368 2369 if (!pf->discard_enabled) 2370 DMEMIT("ignore_discard "); 2371 2372 if (!pf->discard_passdown) 2373 DMEMIT("no_discard_passdown "); 2374 2375 if (pf->mode == PM_READ_ONLY) 2376 DMEMIT("read_only "); 2377 } 2378 2379 /* 2380 * Status line is: 2381 * <transaction id> <used metadata sectors>/<total metadata sectors> 2382 * <used data sectors>/<total data sectors> <held metadata root> 2383 */ 2384 static void pool_status(struct dm_target *ti, status_type_t type, 2385 unsigned status_flags, char *result, unsigned maxlen) 2386 { 2387 int r; 2388 unsigned sz = 0; 2389 uint64_t transaction_id; 2390 dm_block_t nr_free_blocks_data; 2391 dm_block_t nr_free_blocks_metadata; 2392 dm_block_t nr_blocks_data; 2393 dm_block_t nr_blocks_metadata; 2394 dm_block_t held_root; 2395 char buf[BDEVNAME_SIZE]; 2396 char buf2[BDEVNAME_SIZE]; 2397 struct pool_c *pt = ti->private; 2398 struct pool *pool = pt->pool; 2399 2400 switch (type) { 2401 case STATUSTYPE_INFO: 2402 if (get_pool_mode(pool) == PM_FAIL) { 2403 DMEMIT("Fail"); 2404 break; 2405 } 2406 2407 /* Commit to ensure statistics aren't out-of-date */ 2408 if (!(status_flags & DM_STATUS_NOFLUSH_FLAG) && !dm_suspended(ti)) 2409 (void) commit_or_fallback(pool); 2410 2411 r = dm_pool_get_metadata_transaction_id(pool->pmd, &transaction_id); 2412 if (r) { 2413 DMERR("dm_pool_get_metadata_transaction_id returned %d", r); 2414 goto err; 2415 } 2416 2417 r = dm_pool_get_free_metadata_block_count(pool->pmd, &nr_free_blocks_metadata); 2418 if (r) { 2419 DMERR("dm_pool_get_free_metadata_block_count returned %d", r); 2420 goto err; 2421 } 2422 2423 r = dm_pool_get_metadata_dev_size(pool->pmd, &nr_blocks_metadata); 2424 if (r) { 2425 DMERR("dm_pool_get_metadata_dev_size returned %d", r); 2426 goto err; 2427 } 2428 2429 r = dm_pool_get_free_block_count(pool->pmd, &nr_free_blocks_data); 2430 if (r) { 2431 DMERR("dm_pool_get_free_block_count returned %d", r); 2432 goto err; 2433 } 2434 2435 r = dm_pool_get_data_dev_size(pool->pmd, &nr_blocks_data); 2436 if (r) { 2437 DMERR("dm_pool_get_data_dev_size returned %d", r); 2438 goto err; 2439 } 2440 2441 r = dm_pool_get_metadata_snap(pool->pmd, &held_root); 2442 if (r) { 2443 DMERR("dm_pool_get_metadata_snap returned %d", r); 2444 goto err; 2445 } 2446 2447 DMEMIT("%llu %llu/%llu %llu/%llu ", 2448 (unsigned long long)transaction_id, 2449 (unsigned long long)(nr_blocks_metadata - nr_free_blocks_metadata), 2450 (unsigned long long)nr_blocks_metadata, 2451 (unsigned long long)(nr_blocks_data - nr_free_blocks_data), 2452 (unsigned long long)nr_blocks_data); 2453 2454 if (held_root) 2455 DMEMIT("%llu ", held_root); 2456 else 2457 DMEMIT("- "); 2458 2459 if (pool->pf.mode == PM_READ_ONLY) 2460 DMEMIT("ro "); 2461 else 2462 DMEMIT("rw "); 2463 2464 if (!pool->pf.discard_enabled) 2465 DMEMIT("ignore_discard"); 2466 else if (pool->pf.discard_passdown) 2467 DMEMIT("discard_passdown"); 2468 else 2469 DMEMIT("no_discard_passdown"); 2470 2471 break; 2472 2473 case STATUSTYPE_TABLE: 2474 DMEMIT("%s %s %lu %llu ", 2475 format_dev_t(buf, pt->metadata_dev->bdev->bd_dev), 2476 format_dev_t(buf2, pt->data_dev->bdev->bd_dev), 2477 (unsigned long)pool->sectors_per_block, 2478 (unsigned long long)pt->low_water_blocks); 2479 emit_flags(&pt->requested_pf, result, sz, maxlen); 2480 break; 2481 } 2482 return; 2483 2484 err: 2485 DMEMIT("Error"); 2486 } 2487 2488 static int pool_iterate_devices(struct dm_target *ti, 2489 iterate_devices_callout_fn fn, void *data) 2490 { 2491 struct pool_c *pt = ti->private; 2492 2493 return fn(ti, pt->data_dev, 0, ti->len, data); 2494 } 2495 2496 static int pool_merge(struct dm_target *ti, struct bvec_merge_data *bvm, 2497 struct bio_vec *biovec, int max_size) 2498 { 2499 struct pool_c *pt = ti->private; 2500 struct request_queue *q = bdev_get_queue(pt->data_dev->bdev); 2501 2502 if (!q->merge_bvec_fn) 2503 return max_size; 2504 2505 bvm->bi_bdev = pt->data_dev->bdev; 2506 2507 return min(max_size, q->merge_bvec_fn(q, bvm, biovec)); 2508 } 2509 2510 static void set_discard_limits(struct pool_c *pt, struct queue_limits *limits) 2511 { 2512 struct pool *pool = pt->pool; 2513 struct queue_limits *data_limits; 2514 2515 limits->max_discard_sectors = pool->sectors_per_block; 2516 2517 /* 2518 * discard_granularity is just a hint, and not enforced. 2519 */ 2520 if (pt->adjusted_pf.discard_passdown) { 2521 data_limits = &bdev_get_queue(pt->data_dev->bdev)->limits; 2522 limits->discard_granularity = data_limits->discard_granularity; 2523 } else 2524 limits->discard_granularity = pool->sectors_per_block << SECTOR_SHIFT; 2525 } 2526 2527 static void pool_io_hints(struct dm_target *ti, struct queue_limits *limits) 2528 { 2529 struct pool_c *pt = ti->private; 2530 struct pool *pool = pt->pool; 2531 2532 blk_limits_io_min(limits, 0); 2533 blk_limits_io_opt(limits, pool->sectors_per_block << SECTOR_SHIFT); 2534 2535 /* 2536 * pt->adjusted_pf is a staging area for the actual features to use. 2537 * They get transferred to the live pool in bind_control_target() 2538 * called from pool_preresume(). 2539 */ 2540 if (!pt->adjusted_pf.discard_enabled) 2541 return; 2542 2543 disable_passdown_if_not_supported(pt); 2544 2545 set_discard_limits(pt, limits); 2546 } 2547 2548 static struct target_type pool_target = { 2549 .name = "thin-pool", 2550 .features = DM_TARGET_SINGLETON | DM_TARGET_ALWAYS_WRITEABLE | 2551 DM_TARGET_IMMUTABLE, 2552 .version = {1, 7, 0}, 2553 .module = THIS_MODULE, 2554 .ctr = pool_ctr, 2555 .dtr = pool_dtr, 2556 .map = pool_map, 2557 .postsuspend = pool_postsuspend, 2558 .preresume = pool_preresume, 2559 .resume = pool_resume, 2560 .message = pool_message, 2561 .status = pool_status, 2562 .merge = pool_merge, 2563 .iterate_devices = pool_iterate_devices, 2564 .io_hints = pool_io_hints, 2565 }; 2566 2567 /*---------------------------------------------------------------- 2568 * Thin target methods 2569 *--------------------------------------------------------------*/ 2570 static void thin_dtr(struct dm_target *ti) 2571 { 2572 struct thin_c *tc = ti->private; 2573 2574 mutex_lock(&dm_thin_pool_table.mutex); 2575 2576 __pool_dec(tc->pool); 2577 dm_pool_close_thin_device(tc->td); 2578 dm_put_device(ti, tc->pool_dev); 2579 if (tc->origin_dev) 2580 dm_put_device(ti, tc->origin_dev); 2581 kfree(tc); 2582 2583 mutex_unlock(&dm_thin_pool_table.mutex); 2584 } 2585 2586 /* 2587 * Thin target parameters: 2588 * 2589 * <pool_dev> <dev_id> [origin_dev] 2590 * 2591 * pool_dev: the path to the pool (eg, /dev/mapper/my_pool) 2592 * dev_id: the internal device identifier 2593 * origin_dev: a device external to the pool that should act as the origin 2594 * 2595 * If the pool device has discards disabled, they get disabled for the thin 2596 * device as well. 2597 */ 2598 static int thin_ctr(struct dm_target *ti, unsigned argc, char **argv) 2599 { 2600 int r; 2601 struct thin_c *tc; 2602 struct dm_dev *pool_dev, *origin_dev; 2603 struct mapped_device *pool_md; 2604 2605 mutex_lock(&dm_thin_pool_table.mutex); 2606 2607 if (argc != 2 && argc != 3) { 2608 ti->error = "Invalid argument count"; 2609 r = -EINVAL; 2610 goto out_unlock; 2611 } 2612 2613 tc = ti->private = kzalloc(sizeof(*tc), GFP_KERNEL); 2614 if (!tc) { 2615 ti->error = "Out of memory"; 2616 r = -ENOMEM; 2617 goto out_unlock; 2618 } 2619 2620 if (argc == 3) { 2621 r = dm_get_device(ti, argv[2], FMODE_READ, &origin_dev); 2622 if (r) { 2623 ti->error = "Error opening origin device"; 2624 goto bad_origin_dev; 2625 } 2626 tc->origin_dev = origin_dev; 2627 } 2628 2629 r = dm_get_device(ti, argv[0], dm_table_get_mode(ti->table), &pool_dev); 2630 if (r) { 2631 ti->error = "Error opening pool device"; 2632 goto bad_pool_dev; 2633 } 2634 tc->pool_dev = pool_dev; 2635 2636 if (read_dev_id(argv[1], (unsigned long long *)&tc->dev_id, 0)) { 2637 ti->error = "Invalid device id"; 2638 r = -EINVAL; 2639 goto bad_common; 2640 } 2641 2642 pool_md = dm_get_md(tc->pool_dev->bdev->bd_dev); 2643 if (!pool_md) { 2644 ti->error = "Couldn't get pool mapped device"; 2645 r = -EINVAL; 2646 goto bad_common; 2647 } 2648 2649 tc->pool = __pool_table_lookup(pool_md); 2650 if (!tc->pool) { 2651 ti->error = "Couldn't find pool object"; 2652 r = -EINVAL; 2653 goto bad_pool_lookup; 2654 } 2655 __pool_inc(tc->pool); 2656 2657 if (get_pool_mode(tc->pool) == PM_FAIL) { 2658 ti->error = "Couldn't open thin device, Pool is in fail mode"; 2659 goto bad_thin_open; 2660 } 2661 2662 r = dm_pool_open_thin_device(tc->pool->pmd, tc->dev_id, &tc->td); 2663 if (r) { 2664 ti->error = "Couldn't open thin internal device"; 2665 goto bad_thin_open; 2666 } 2667 2668 r = dm_set_target_max_io_len(ti, tc->pool->sectors_per_block); 2669 if (r) 2670 goto bad_thin_open; 2671 2672 ti->num_flush_bios = 1; 2673 ti->flush_supported = true; 2674 ti->per_bio_data_size = sizeof(struct dm_thin_endio_hook); 2675 2676 /* In case the pool supports discards, pass them on. */ 2677 if (tc->pool->pf.discard_enabled) { 2678 ti->discards_supported = true; 2679 ti->num_discard_bios = 1; 2680 ti->discard_zeroes_data_unsupported = true; 2681 /* Discard bios must be split on a block boundary */ 2682 ti->split_discard_bios = true; 2683 } 2684 2685 dm_put(pool_md); 2686 2687 mutex_unlock(&dm_thin_pool_table.mutex); 2688 2689 return 0; 2690 2691 bad_thin_open: 2692 __pool_dec(tc->pool); 2693 bad_pool_lookup: 2694 dm_put(pool_md); 2695 bad_common: 2696 dm_put_device(ti, tc->pool_dev); 2697 bad_pool_dev: 2698 if (tc->origin_dev) 2699 dm_put_device(ti, tc->origin_dev); 2700 bad_origin_dev: 2701 kfree(tc); 2702 out_unlock: 2703 mutex_unlock(&dm_thin_pool_table.mutex); 2704 2705 return r; 2706 } 2707 2708 static int thin_map(struct dm_target *ti, struct bio *bio) 2709 { 2710 bio->bi_sector = dm_target_offset(ti, bio->bi_sector); 2711 2712 return thin_bio_map(ti, bio); 2713 } 2714 2715 static int thin_endio(struct dm_target *ti, struct bio *bio, int err) 2716 { 2717 unsigned long flags; 2718 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook)); 2719 struct list_head work; 2720 struct dm_thin_new_mapping *m, *tmp; 2721 struct pool *pool = h->tc->pool; 2722 2723 if (h->shared_read_entry) { 2724 INIT_LIST_HEAD(&work); 2725 dm_deferred_entry_dec(h->shared_read_entry, &work); 2726 2727 spin_lock_irqsave(&pool->lock, flags); 2728 list_for_each_entry_safe(m, tmp, &work, list) { 2729 list_del(&m->list); 2730 m->quiesced = 1; 2731 __maybe_add_mapping(m); 2732 } 2733 spin_unlock_irqrestore(&pool->lock, flags); 2734 } 2735 2736 if (h->all_io_entry) { 2737 INIT_LIST_HEAD(&work); 2738 dm_deferred_entry_dec(h->all_io_entry, &work); 2739 if (!list_empty(&work)) { 2740 spin_lock_irqsave(&pool->lock, flags); 2741 list_for_each_entry_safe(m, tmp, &work, list) 2742 list_add(&m->list, &pool->prepared_discards); 2743 spin_unlock_irqrestore(&pool->lock, flags); 2744 wake_worker(pool); 2745 } 2746 } 2747 2748 return 0; 2749 } 2750 2751 static void thin_postsuspend(struct dm_target *ti) 2752 { 2753 if (dm_noflush_suspending(ti)) 2754 requeue_io((struct thin_c *)ti->private); 2755 } 2756 2757 /* 2758 * <nr mapped sectors> <highest mapped sector> 2759 */ 2760 static void thin_status(struct dm_target *ti, status_type_t type, 2761 unsigned status_flags, char *result, unsigned maxlen) 2762 { 2763 int r; 2764 ssize_t sz = 0; 2765 dm_block_t mapped, highest; 2766 char buf[BDEVNAME_SIZE]; 2767 struct thin_c *tc = ti->private; 2768 2769 if (get_pool_mode(tc->pool) == PM_FAIL) { 2770 DMEMIT("Fail"); 2771 return; 2772 } 2773 2774 if (!tc->td) 2775 DMEMIT("-"); 2776 else { 2777 switch (type) { 2778 case STATUSTYPE_INFO: 2779 r = dm_thin_get_mapped_count(tc->td, &mapped); 2780 if (r) { 2781 DMERR("dm_thin_get_mapped_count returned %d", r); 2782 goto err; 2783 } 2784 2785 r = dm_thin_get_highest_mapped_block(tc->td, &highest); 2786 if (r < 0) { 2787 DMERR("dm_thin_get_highest_mapped_block returned %d", r); 2788 goto err; 2789 } 2790 2791 DMEMIT("%llu ", mapped * tc->pool->sectors_per_block); 2792 if (r) 2793 DMEMIT("%llu", ((highest + 1) * 2794 tc->pool->sectors_per_block) - 1); 2795 else 2796 DMEMIT("-"); 2797 break; 2798 2799 case STATUSTYPE_TABLE: 2800 DMEMIT("%s %lu", 2801 format_dev_t(buf, tc->pool_dev->bdev->bd_dev), 2802 (unsigned long) tc->dev_id); 2803 if (tc->origin_dev) 2804 DMEMIT(" %s", format_dev_t(buf, tc->origin_dev->bdev->bd_dev)); 2805 break; 2806 } 2807 } 2808 2809 return; 2810 2811 err: 2812 DMEMIT("Error"); 2813 } 2814 2815 static int thin_iterate_devices(struct dm_target *ti, 2816 iterate_devices_callout_fn fn, void *data) 2817 { 2818 sector_t blocks; 2819 struct thin_c *tc = ti->private; 2820 struct pool *pool = tc->pool; 2821 2822 /* 2823 * We can't call dm_pool_get_data_dev_size() since that blocks. So 2824 * we follow a more convoluted path through to the pool's target. 2825 */ 2826 if (!pool->ti) 2827 return 0; /* nothing is bound */ 2828 2829 blocks = pool->ti->len; 2830 (void) sector_div(blocks, pool->sectors_per_block); 2831 if (blocks) 2832 return fn(ti, tc->pool_dev, 0, pool->sectors_per_block * blocks, data); 2833 2834 return 0; 2835 } 2836 2837 static struct target_type thin_target = { 2838 .name = "thin", 2839 .version = {1, 8, 0}, 2840 .module = THIS_MODULE, 2841 .ctr = thin_ctr, 2842 .dtr = thin_dtr, 2843 .map = thin_map, 2844 .end_io = thin_endio, 2845 .postsuspend = thin_postsuspend, 2846 .status = thin_status, 2847 .iterate_devices = thin_iterate_devices, 2848 }; 2849 2850 /*----------------------------------------------------------------*/ 2851 2852 static int __init dm_thin_init(void) 2853 { 2854 int r; 2855 2856 pool_table_init(); 2857 2858 r = dm_register_target(&thin_target); 2859 if (r) 2860 return r; 2861 2862 r = dm_register_target(&pool_target); 2863 if (r) 2864 goto bad_pool_target; 2865 2866 r = -ENOMEM; 2867 2868 _new_mapping_cache = KMEM_CACHE(dm_thin_new_mapping, 0); 2869 if (!_new_mapping_cache) 2870 goto bad_new_mapping_cache; 2871 2872 return 0; 2873 2874 bad_new_mapping_cache: 2875 dm_unregister_target(&pool_target); 2876 bad_pool_target: 2877 dm_unregister_target(&thin_target); 2878 2879 return r; 2880 } 2881 2882 static void dm_thin_exit(void) 2883 { 2884 dm_unregister_target(&thin_target); 2885 dm_unregister_target(&pool_target); 2886 2887 kmem_cache_destroy(_new_mapping_cache); 2888 } 2889 2890 module_init(dm_thin_init); 2891 module_exit(dm_thin_exit); 2892 2893 MODULE_DESCRIPTION(DM_NAME " thin provisioning target"); 2894 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>"); 2895 MODULE_LICENSE("GPL"); 2896