xref: /linux/drivers/md/dm-thin.c (revision c75c5ab575af7db707689cdbb5a5c458e9a034bb)
1 /*
2  * Copyright (C) 2011-2012 Red Hat UK.
3  *
4  * This file is released under the GPL.
5  */
6 
7 #include "dm-thin-metadata.h"
8 #include "dm-bio-prison.h"
9 #include "dm.h"
10 
11 #include <linux/device-mapper.h>
12 #include <linux/dm-io.h>
13 #include <linux/dm-kcopyd.h>
14 #include <linux/list.h>
15 #include <linux/init.h>
16 #include <linux/module.h>
17 #include <linux/slab.h>
18 
19 #define	DM_MSG_PREFIX	"thin"
20 
21 /*
22  * Tunable constants
23  */
24 #define ENDIO_HOOK_POOL_SIZE 1024
25 #define MAPPING_POOL_SIZE 1024
26 #define PRISON_CELLS 1024
27 #define COMMIT_PERIOD HZ
28 
29 DECLARE_DM_KCOPYD_THROTTLE_WITH_MODULE_PARM(snapshot_copy_throttle,
30 		"A percentage of time allocated for copy on write");
31 
32 /*
33  * The block size of the device holding pool data must be
34  * between 64KB and 1GB.
35  */
36 #define DATA_DEV_BLOCK_SIZE_MIN_SECTORS (64 * 1024 >> SECTOR_SHIFT)
37 #define DATA_DEV_BLOCK_SIZE_MAX_SECTORS (1024 * 1024 * 1024 >> SECTOR_SHIFT)
38 
39 /*
40  * Device id is restricted to 24 bits.
41  */
42 #define MAX_DEV_ID ((1 << 24) - 1)
43 
44 /*
45  * How do we handle breaking sharing of data blocks?
46  * =================================================
47  *
48  * We use a standard copy-on-write btree to store the mappings for the
49  * devices (note I'm talking about copy-on-write of the metadata here, not
50  * the data).  When you take an internal snapshot you clone the root node
51  * of the origin btree.  After this there is no concept of an origin or a
52  * snapshot.  They are just two device trees that happen to point to the
53  * same data blocks.
54  *
55  * When we get a write in we decide if it's to a shared data block using
56  * some timestamp magic.  If it is, we have to break sharing.
57  *
58  * Let's say we write to a shared block in what was the origin.  The
59  * steps are:
60  *
61  * i) plug io further to this physical block. (see bio_prison code).
62  *
63  * ii) quiesce any read io to that shared data block.  Obviously
64  * including all devices that share this block.  (see dm_deferred_set code)
65  *
66  * iii) copy the data block to a newly allocate block.  This step can be
67  * missed out if the io covers the block. (schedule_copy).
68  *
69  * iv) insert the new mapping into the origin's btree
70  * (process_prepared_mapping).  This act of inserting breaks some
71  * sharing of btree nodes between the two devices.  Breaking sharing only
72  * effects the btree of that specific device.  Btrees for the other
73  * devices that share the block never change.  The btree for the origin
74  * device as it was after the last commit is untouched, ie. we're using
75  * persistent data structures in the functional programming sense.
76  *
77  * v) unplug io to this physical block, including the io that triggered
78  * the breaking of sharing.
79  *
80  * Steps (ii) and (iii) occur in parallel.
81  *
82  * The metadata _doesn't_ need to be committed before the io continues.  We
83  * get away with this because the io is always written to a _new_ block.
84  * If there's a crash, then:
85  *
86  * - The origin mapping will point to the old origin block (the shared
87  * one).  This will contain the data as it was before the io that triggered
88  * the breaking of sharing came in.
89  *
90  * - The snap mapping still points to the old block.  As it would after
91  * the commit.
92  *
93  * The downside of this scheme is the timestamp magic isn't perfect, and
94  * will continue to think that data block in the snapshot device is shared
95  * even after the write to the origin has broken sharing.  I suspect data
96  * blocks will typically be shared by many different devices, so we're
97  * breaking sharing n + 1 times, rather than n, where n is the number of
98  * devices that reference this data block.  At the moment I think the
99  * benefits far, far outweigh the disadvantages.
100  */
101 
102 /*----------------------------------------------------------------*/
103 
104 /*
105  * Key building.
106  */
107 static void build_data_key(struct dm_thin_device *td,
108 			   dm_block_t b, struct dm_cell_key *key)
109 {
110 	key->virtual = 0;
111 	key->dev = dm_thin_dev_id(td);
112 	key->block = b;
113 }
114 
115 static void build_virtual_key(struct dm_thin_device *td, dm_block_t b,
116 			      struct dm_cell_key *key)
117 {
118 	key->virtual = 1;
119 	key->dev = dm_thin_dev_id(td);
120 	key->block = b;
121 }
122 
123 /*----------------------------------------------------------------*/
124 
125 /*
126  * A pool device ties together a metadata device and a data device.  It
127  * also provides the interface for creating and destroying internal
128  * devices.
129  */
130 struct dm_thin_new_mapping;
131 
132 /*
133  * The pool runs in 3 modes.  Ordered in degraded order for comparisons.
134  */
135 enum pool_mode {
136 	PM_WRITE,		/* metadata may be changed */
137 	PM_READ_ONLY,		/* metadata may not be changed */
138 	PM_FAIL,		/* all I/O fails */
139 };
140 
141 struct pool_features {
142 	enum pool_mode mode;
143 
144 	bool zero_new_blocks:1;
145 	bool discard_enabled:1;
146 	bool discard_passdown:1;
147 };
148 
149 struct thin_c;
150 typedef void (*process_bio_fn)(struct thin_c *tc, struct bio *bio);
151 typedef void (*process_mapping_fn)(struct dm_thin_new_mapping *m);
152 
153 struct pool {
154 	struct list_head list;
155 	struct dm_target *ti;	/* Only set if a pool target is bound */
156 
157 	struct mapped_device *pool_md;
158 	struct block_device *md_dev;
159 	struct dm_pool_metadata *pmd;
160 
161 	dm_block_t low_water_blocks;
162 	uint32_t sectors_per_block;
163 	int sectors_per_block_shift;
164 
165 	struct pool_features pf;
166 	unsigned low_water_triggered:1;	/* A dm event has been sent */
167 	unsigned no_free_space:1;	/* A -ENOSPC warning has been issued */
168 
169 	struct dm_bio_prison *prison;
170 	struct dm_kcopyd_client *copier;
171 
172 	struct workqueue_struct *wq;
173 	struct work_struct worker;
174 	struct delayed_work waker;
175 
176 	unsigned long last_commit_jiffies;
177 	unsigned ref_count;
178 
179 	spinlock_t lock;
180 	struct bio_list deferred_bios;
181 	struct bio_list deferred_flush_bios;
182 	struct list_head prepared_mappings;
183 	struct list_head prepared_discards;
184 
185 	struct bio_list retry_on_resume_list;
186 
187 	struct dm_deferred_set *shared_read_ds;
188 	struct dm_deferred_set *all_io_ds;
189 
190 	struct dm_thin_new_mapping *next_mapping;
191 	mempool_t *mapping_pool;
192 
193 	process_bio_fn process_bio;
194 	process_bio_fn process_discard;
195 
196 	process_mapping_fn process_prepared_mapping;
197 	process_mapping_fn process_prepared_discard;
198 };
199 
200 static enum pool_mode get_pool_mode(struct pool *pool);
201 static void set_pool_mode(struct pool *pool, enum pool_mode mode);
202 
203 /*
204  * Target context for a pool.
205  */
206 struct pool_c {
207 	struct dm_target *ti;
208 	struct pool *pool;
209 	struct dm_dev *data_dev;
210 	struct dm_dev *metadata_dev;
211 	struct dm_target_callbacks callbacks;
212 
213 	dm_block_t low_water_blocks;
214 	struct pool_features requested_pf; /* Features requested during table load */
215 	struct pool_features adjusted_pf;  /* Features used after adjusting for constituent devices */
216 };
217 
218 /*
219  * Target context for a thin.
220  */
221 struct thin_c {
222 	struct dm_dev *pool_dev;
223 	struct dm_dev *origin_dev;
224 	dm_thin_id dev_id;
225 
226 	struct pool *pool;
227 	struct dm_thin_device *td;
228 };
229 
230 /*----------------------------------------------------------------*/
231 
232 /*
233  * wake_worker() is used when new work is queued and when pool_resume is
234  * ready to continue deferred IO processing.
235  */
236 static void wake_worker(struct pool *pool)
237 {
238 	queue_work(pool->wq, &pool->worker);
239 }
240 
241 /*----------------------------------------------------------------*/
242 
243 static int bio_detain(struct pool *pool, struct dm_cell_key *key, struct bio *bio,
244 		      struct dm_bio_prison_cell **cell_result)
245 {
246 	int r;
247 	struct dm_bio_prison_cell *cell_prealloc;
248 
249 	/*
250 	 * Allocate a cell from the prison's mempool.
251 	 * This might block but it can't fail.
252 	 */
253 	cell_prealloc = dm_bio_prison_alloc_cell(pool->prison, GFP_NOIO);
254 
255 	r = dm_bio_detain(pool->prison, key, bio, cell_prealloc, cell_result);
256 	if (r)
257 		/*
258 		 * We reused an old cell; we can get rid of
259 		 * the new one.
260 		 */
261 		dm_bio_prison_free_cell(pool->prison, cell_prealloc);
262 
263 	return r;
264 }
265 
266 static void cell_release(struct pool *pool,
267 			 struct dm_bio_prison_cell *cell,
268 			 struct bio_list *bios)
269 {
270 	dm_cell_release(pool->prison, cell, bios);
271 	dm_bio_prison_free_cell(pool->prison, cell);
272 }
273 
274 static void cell_release_no_holder(struct pool *pool,
275 				   struct dm_bio_prison_cell *cell,
276 				   struct bio_list *bios)
277 {
278 	dm_cell_release_no_holder(pool->prison, cell, bios);
279 	dm_bio_prison_free_cell(pool->prison, cell);
280 }
281 
282 static void cell_defer_no_holder_no_free(struct thin_c *tc,
283 					 struct dm_bio_prison_cell *cell)
284 {
285 	struct pool *pool = tc->pool;
286 	unsigned long flags;
287 
288 	spin_lock_irqsave(&pool->lock, flags);
289 	dm_cell_release_no_holder(pool->prison, cell, &pool->deferred_bios);
290 	spin_unlock_irqrestore(&pool->lock, flags);
291 
292 	wake_worker(pool);
293 }
294 
295 static void cell_error(struct pool *pool,
296 		       struct dm_bio_prison_cell *cell)
297 {
298 	dm_cell_error(pool->prison, cell);
299 	dm_bio_prison_free_cell(pool->prison, cell);
300 }
301 
302 /*----------------------------------------------------------------*/
303 
304 /*
305  * A global list of pools that uses a struct mapped_device as a key.
306  */
307 static struct dm_thin_pool_table {
308 	struct mutex mutex;
309 	struct list_head pools;
310 } dm_thin_pool_table;
311 
312 static void pool_table_init(void)
313 {
314 	mutex_init(&dm_thin_pool_table.mutex);
315 	INIT_LIST_HEAD(&dm_thin_pool_table.pools);
316 }
317 
318 static void __pool_table_insert(struct pool *pool)
319 {
320 	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
321 	list_add(&pool->list, &dm_thin_pool_table.pools);
322 }
323 
324 static void __pool_table_remove(struct pool *pool)
325 {
326 	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
327 	list_del(&pool->list);
328 }
329 
330 static struct pool *__pool_table_lookup(struct mapped_device *md)
331 {
332 	struct pool *pool = NULL, *tmp;
333 
334 	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
335 
336 	list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
337 		if (tmp->pool_md == md) {
338 			pool = tmp;
339 			break;
340 		}
341 	}
342 
343 	return pool;
344 }
345 
346 static struct pool *__pool_table_lookup_metadata_dev(struct block_device *md_dev)
347 {
348 	struct pool *pool = NULL, *tmp;
349 
350 	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
351 
352 	list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
353 		if (tmp->md_dev == md_dev) {
354 			pool = tmp;
355 			break;
356 		}
357 	}
358 
359 	return pool;
360 }
361 
362 /*----------------------------------------------------------------*/
363 
364 struct dm_thin_endio_hook {
365 	struct thin_c *tc;
366 	struct dm_deferred_entry *shared_read_entry;
367 	struct dm_deferred_entry *all_io_entry;
368 	struct dm_thin_new_mapping *overwrite_mapping;
369 };
370 
371 static void __requeue_bio_list(struct thin_c *tc, struct bio_list *master)
372 {
373 	struct bio *bio;
374 	struct bio_list bios;
375 
376 	bio_list_init(&bios);
377 	bio_list_merge(&bios, master);
378 	bio_list_init(master);
379 
380 	while ((bio = bio_list_pop(&bios))) {
381 		struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
382 
383 		if (h->tc == tc)
384 			bio_endio(bio, DM_ENDIO_REQUEUE);
385 		else
386 			bio_list_add(master, bio);
387 	}
388 }
389 
390 static void requeue_io(struct thin_c *tc)
391 {
392 	struct pool *pool = tc->pool;
393 	unsigned long flags;
394 
395 	spin_lock_irqsave(&pool->lock, flags);
396 	__requeue_bio_list(tc, &pool->deferred_bios);
397 	__requeue_bio_list(tc, &pool->retry_on_resume_list);
398 	spin_unlock_irqrestore(&pool->lock, flags);
399 }
400 
401 /*
402  * This section of code contains the logic for processing a thin device's IO.
403  * Much of the code depends on pool object resources (lists, workqueues, etc)
404  * but most is exclusively called from the thin target rather than the thin-pool
405  * target.
406  */
407 
408 static bool block_size_is_power_of_two(struct pool *pool)
409 {
410 	return pool->sectors_per_block_shift >= 0;
411 }
412 
413 static dm_block_t get_bio_block(struct thin_c *tc, struct bio *bio)
414 {
415 	struct pool *pool = tc->pool;
416 	sector_t block_nr = bio->bi_sector;
417 
418 	if (block_size_is_power_of_two(pool))
419 		block_nr >>= pool->sectors_per_block_shift;
420 	else
421 		(void) sector_div(block_nr, pool->sectors_per_block);
422 
423 	return block_nr;
424 }
425 
426 static void remap(struct thin_c *tc, struct bio *bio, dm_block_t block)
427 {
428 	struct pool *pool = tc->pool;
429 	sector_t bi_sector = bio->bi_sector;
430 
431 	bio->bi_bdev = tc->pool_dev->bdev;
432 	if (block_size_is_power_of_two(pool))
433 		bio->bi_sector = (block << pool->sectors_per_block_shift) |
434 				(bi_sector & (pool->sectors_per_block - 1));
435 	else
436 		bio->bi_sector = (block * pool->sectors_per_block) +
437 				 sector_div(bi_sector, pool->sectors_per_block);
438 }
439 
440 static void remap_to_origin(struct thin_c *tc, struct bio *bio)
441 {
442 	bio->bi_bdev = tc->origin_dev->bdev;
443 }
444 
445 static int bio_triggers_commit(struct thin_c *tc, struct bio *bio)
446 {
447 	return (bio->bi_rw & (REQ_FLUSH | REQ_FUA)) &&
448 		dm_thin_changed_this_transaction(tc->td);
449 }
450 
451 static void inc_all_io_entry(struct pool *pool, struct bio *bio)
452 {
453 	struct dm_thin_endio_hook *h;
454 
455 	if (bio->bi_rw & REQ_DISCARD)
456 		return;
457 
458 	h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
459 	h->all_io_entry = dm_deferred_entry_inc(pool->all_io_ds);
460 }
461 
462 static void issue(struct thin_c *tc, struct bio *bio)
463 {
464 	struct pool *pool = tc->pool;
465 	unsigned long flags;
466 
467 	if (!bio_triggers_commit(tc, bio)) {
468 		generic_make_request(bio);
469 		return;
470 	}
471 
472 	/*
473 	 * Complete bio with an error if earlier I/O caused changes to
474 	 * the metadata that can't be committed e.g, due to I/O errors
475 	 * on the metadata device.
476 	 */
477 	if (dm_thin_aborted_changes(tc->td)) {
478 		bio_io_error(bio);
479 		return;
480 	}
481 
482 	/*
483 	 * Batch together any bios that trigger commits and then issue a
484 	 * single commit for them in process_deferred_bios().
485 	 */
486 	spin_lock_irqsave(&pool->lock, flags);
487 	bio_list_add(&pool->deferred_flush_bios, bio);
488 	spin_unlock_irqrestore(&pool->lock, flags);
489 }
490 
491 static void remap_to_origin_and_issue(struct thin_c *tc, struct bio *bio)
492 {
493 	remap_to_origin(tc, bio);
494 	issue(tc, bio);
495 }
496 
497 static void remap_and_issue(struct thin_c *tc, struct bio *bio,
498 			    dm_block_t block)
499 {
500 	remap(tc, bio, block);
501 	issue(tc, bio);
502 }
503 
504 /*----------------------------------------------------------------*/
505 
506 /*
507  * Bio endio functions.
508  */
509 struct dm_thin_new_mapping {
510 	struct list_head list;
511 
512 	unsigned quiesced:1;
513 	unsigned prepared:1;
514 	unsigned pass_discard:1;
515 
516 	struct thin_c *tc;
517 	dm_block_t virt_block;
518 	dm_block_t data_block;
519 	struct dm_bio_prison_cell *cell, *cell2;
520 	int err;
521 
522 	/*
523 	 * If the bio covers the whole area of a block then we can avoid
524 	 * zeroing or copying.  Instead this bio is hooked.  The bio will
525 	 * still be in the cell, so care has to be taken to avoid issuing
526 	 * the bio twice.
527 	 */
528 	struct bio *bio;
529 	bio_end_io_t *saved_bi_end_io;
530 };
531 
532 static void __maybe_add_mapping(struct dm_thin_new_mapping *m)
533 {
534 	struct pool *pool = m->tc->pool;
535 
536 	if (m->quiesced && m->prepared) {
537 		list_add(&m->list, &pool->prepared_mappings);
538 		wake_worker(pool);
539 	}
540 }
541 
542 static void copy_complete(int read_err, unsigned long write_err, void *context)
543 {
544 	unsigned long flags;
545 	struct dm_thin_new_mapping *m = context;
546 	struct pool *pool = m->tc->pool;
547 
548 	m->err = read_err || write_err ? -EIO : 0;
549 
550 	spin_lock_irqsave(&pool->lock, flags);
551 	m->prepared = 1;
552 	__maybe_add_mapping(m);
553 	spin_unlock_irqrestore(&pool->lock, flags);
554 }
555 
556 static void overwrite_endio(struct bio *bio, int err)
557 {
558 	unsigned long flags;
559 	struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
560 	struct dm_thin_new_mapping *m = h->overwrite_mapping;
561 	struct pool *pool = m->tc->pool;
562 
563 	m->err = err;
564 
565 	spin_lock_irqsave(&pool->lock, flags);
566 	m->prepared = 1;
567 	__maybe_add_mapping(m);
568 	spin_unlock_irqrestore(&pool->lock, flags);
569 }
570 
571 /*----------------------------------------------------------------*/
572 
573 /*
574  * Workqueue.
575  */
576 
577 /*
578  * Prepared mapping jobs.
579  */
580 
581 /*
582  * This sends the bios in the cell back to the deferred_bios list.
583  */
584 static void cell_defer(struct thin_c *tc, struct dm_bio_prison_cell *cell)
585 {
586 	struct pool *pool = tc->pool;
587 	unsigned long flags;
588 
589 	spin_lock_irqsave(&pool->lock, flags);
590 	cell_release(pool, cell, &pool->deferred_bios);
591 	spin_unlock_irqrestore(&tc->pool->lock, flags);
592 
593 	wake_worker(pool);
594 }
595 
596 /*
597  * Same as cell_defer above, except it omits the original holder of the cell.
598  */
599 static void cell_defer_no_holder(struct thin_c *tc, struct dm_bio_prison_cell *cell)
600 {
601 	struct pool *pool = tc->pool;
602 	unsigned long flags;
603 
604 	spin_lock_irqsave(&pool->lock, flags);
605 	cell_release_no_holder(pool, cell, &pool->deferred_bios);
606 	spin_unlock_irqrestore(&pool->lock, flags);
607 
608 	wake_worker(pool);
609 }
610 
611 static void process_prepared_mapping_fail(struct dm_thin_new_mapping *m)
612 {
613 	if (m->bio)
614 		m->bio->bi_end_io = m->saved_bi_end_io;
615 	cell_error(m->tc->pool, m->cell);
616 	list_del(&m->list);
617 	mempool_free(m, m->tc->pool->mapping_pool);
618 }
619 
620 static void process_prepared_mapping(struct dm_thin_new_mapping *m)
621 {
622 	struct thin_c *tc = m->tc;
623 	struct pool *pool = tc->pool;
624 	struct bio *bio;
625 	int r;
626 
627 	bio = m->bio;
628 	if (bio)
629 		bio->bi_end_io = m->saved_bi_end_io;
630 
631 	if (m->err) {
632 		cell_error(pool, m->cell);
633 		goto out;
634 	}
635 
636 	/*
637 	 * Commit the prepared block into the mapping btree.
638 	 * Any I/O for this block arriving after this point will get
639 	 * remapped to it directly.
640 	 */
641 	r = dm_thin_insert_block(tc->td, m->virt_block, m->data_block);
642 	if (r) {
643 		DMERR_LIMIT("dm_thin_insert_block() failed");
644 		cell_error(pool, m->cell);
645 		goto out;
646 	}
647 
648 	/*
649 	 * Release any bios held while the block was being provisioned.
650 	 * If we are processing a write bio that completely covers the block,
651 	 * we already processed it so can ignore it now when processing
652 	 * the bios in the cell.
653 	 */
654 	if (bio) {
655 		cell_defer_no_holder(tc, m->cell);
656 		bio_endio(bio, 0);
657 	} else
658 		cell_defer(tc, m->cell);
659 
660 out:
661 	list_del(&m->list);
662 	mempool_free(m, pool->mapping_pool);
663 }
664 
665 static void process_prepared_discard_fail(struct dm_thin_new_mapping *m)
666 {
667 	struct thin_c *tc = m->tc;
668 
669 	bio_io_error(m->bio);
670 	cell_defer_no_holder(tc, m->cell);
671 	cell_defer_no_holder(tc, m->cell2);
672 	mempool_free(m, tc->pool->mapping_pool);
673 }
674 
675 static void process_prepared_discard_passdown(struct dm_thin_new_mapping *m)
676 {
677 	struct thin_c *tc = m->tc;
678 
679 	inc_all_io_entry(tc->pool, m->bio);
680 	cell_defer_no_holder(tc, m->cell);
681 	cell_defer_no_holder(tc, m->cell2);
682 
683 	if (m->pass_discard)
684 		remap_and_issue(tc, m->bio, m->data_block);
685 	else
686 		bio_endio(m->bio, 0);
687 
688 	mempool_free(m, tc->pool->mapping_pool);
689 }
690 
691 static void process_prepared_discard(struct dm_thin_new_mapping *m)
692 {
693 	int r;
694 	struct thin_c *tc = m->tc;
695 
696 	r = dm_thin_remove_block(tc->td, m->virt_block);
697 	if (r)
698 		DMERR_LIMIT("dm_thin_remove_block() failed");
699 
700 	process_prepared_discard_passdown(m);
701 }
702 
703 static void process_prepared(struct pool *pool, struct list_head *head,
704 			     process_mapping_fn *fn)
705 {
706 	unsigned long flags;
707 	struct list_head maps;
708 	struct dm_thin_new_mapping *m, *tmp;
709 
710 	INIT_LIST_HEAD(&maps);
711 	spin_lock_irqsave(&pool->lock, flags);
712 	list_splice_init(head, &maps);
713 	spin_unlock_irqrestore(&pool->lock, flags);
714 
715 	list_for_each_entry_safe(m, tmp, &maps, list)
716 		(*fn)(m);
717 }
718 
719 /*
720  * Deferred bio jobs.
721  */
722 static int io_overlaps_block(struct pool *pool, struct bio *bio)
723 {
724 	return bio->bi_size == (pool->sectors_per_block << SECTOR_SHIFT);
725 }
726 
727 static int io_overwrites_block(struct pool *pool, struct bio *bio)
728 {
729 	return (bio_data_dir(bio) == WRITE) &&
730 		io_overlaps_block(pool, bio);
731 }
732 
733 static void save_and_set_endio(struct bio *bio, bio_end_io_t **save,
734 			       bio_end_io_t *fn)
735 {
736 	*save = bio->bi_end_io;
737 	bio->bi_end_io = fn;
738 }
739 
740 static int ensure_next_mapping(struct pool *pool)
741 {
742 	if (pool->next_mapping)
743 		return 0;
744 
745 	pool->next_mapping = mempool_alloc(pool->mapping_pool, GFP_ATOMIC);
746 
747 	return pool->next_mapping ? 0 : -ENOMEM;
748 }
749 
750 static struct dm_thin_new_mapping *get_next_mapping(struct pool *pool)
751 {
752 	struct dm_thin_new_mapping *r = pool->next_mapping;
753 
754 	BUG_ON(!pool->next_mapping);
755 
756 	pool->next_mapping = NULL;
757 
758 	return r;
759 }
760 
761 static void schedule_copy(struct thin_c *tc, dm_block_t virt_block,
762 			  struct dm_dev *origin, dm_block_t data_origin,
763 			  dm_block_t data_dest,
764 			  struct dm_bio_prison_cell *cell, struct bio *bio)
765 {
766 	int r;
767 	struct pool *pool = tc->pool;
768 	struct dm_thin_new_mapping *m = get_next_mapping(pool);
769 
770 	INIT_LIST_HEAD(&m->list);
771 	m->quiesced = 0;
772 	m->prepared = 0;
773 	m->tc = tc;
774 	m->virt_block = virt_block;
775 	m->data_block = data_dest;
776 	m->cell = cell;
777 	m->err = 0;
778 	m->bio = NULL;
779 
780 	if (!dm_deferred_set_add_work(pool->shared_read_ds, &m->list))
781 		m->quiesced = 1;
782 
783 	/*
784 	 * IO to pool_dev remaps to the pool target's data_dev.
785 	 *
786 	 * If the whole block of data is being overwritten, we can issue the
787 	 * bio immediately. Otherwise we use kcopyd to clone the data first.
788 	 */
789 	if (io_overwrites_block(pool, bio)) {
790 		struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
791 
792 		h->overwrite_mapping = m;
793 		m->bio = bio;
794 		save_and_set_endio(bio, &m->saved_bi_end_io, overwrite_endio);
795 		inc_all_io_entry(pool, bio);
796 		remap_and_issue(tc, bio, data_dest);
797 	} else {
798 		struct dm_io_region from, to;
799 
800 		from.bdev = origin->bdev;
801 		from.sector = data_origin * pool->sectors_per_block;
802 		from.count = pool->sectors_per_block;
803 
804 		to.bdev = tc->pool_dev->bdev;
805 		to.sector = data_dest * pool->sectors_per_block;
806 		to.count = pool->sectors_per_block;
807 
808 		r = dm_kcopyd_copy(pool->copier, &from, 1, &to,
809 				   0, copy_complete, m);
810 		if (r < 0) {
811 			mempool_free(m, pool->mapping_pool);
812 			DMERR_LIMIT("dm_kcopyd_copy() failed");
813 			cell_error(pool, cell);
814 		}
815 	}
816 }
817 
818 static void schedule_internal_copy(struct thin_c *tc, dm_block_t virt_block,
819 				   dm_block_t data_origin, dm_block_t data_dest,
820 				   struct dm_bio_prison_cell *cell, struct bio *bio)
821 {
822 	schedule_copy(tc, virt_block, tc->pool_dev,
823 		      data_origin, data_dest, cell, bio);
824 }
825 
826 static void schedule_external_copy(struct thin_c *tc, dm_block_t virt_block,
827 				   dm_block_t data_dest,
828 				   struct dm_bio_prison_cell *cell, struct bio *bio)
829 {
830 	schedule_copy(tc, virt_block, tc->origin_dev,
831 		      virt_block, data_dest, cell, bio);
832 }
833 
834 static void schedule_zero(struct thin_c *tc, dm_block_t virt_block,
835 			  dm_block_t data_block, struct dm_bio_prison_cell *cell,
836 			  struct bio *bio)
837 {
838 	struct pool *pool = tc->pool;
839 	struct dm_thin_new_mapping *m = get_next_mapping(pool);
840 
841 	INIT_LIST_HEAD(&m->list);
842 	m->quiesced = 1;
843 	m->prepared = 0;
844 	m->tc = tc;
845 	m->virt_block = virt_block;
846 	m->data_block = data_block;
847 	m->cell = cell;
848 	m->err = 0;
849 	m->bio = NULL;
850 
851 	/*
852 	 * If the whole block of data is being overwritten or we are not
853 	 * zeroing pre-existing data, we can issue the bio immediately.
854 	 * Otherwise we use kcopyd to zero the data first.
855 	 */
856 	if (!pool->pf.zero_new_blocks)
857 		process_prepared_mapping(m);
858 
859 	else if (io_overwrites_block(pool, bio)) {
860 		struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
861 
862 		h->overwrite_mapping = m;
863 		m->bio = bio;
864 		save_and_set_endio(bio, &m->saved_bi_end_io, overwrite_endio);
865 		inc_all_io_entry(pool, bio);
866 		remap_and_issue(tc, bio, data_block);
867 	} else {
868 		int r;
869 		struct dm_io_region to;
870 
871 		to.bdev = tc->pool_dev->bdev;
872 		to.sector = data_block * pool->sectors_per_block;
873 		to.count = pool->sectors_per_block;
874 
875 		r = dm_kcopyd_zero(pool->copier, 1, &to, 0, copy_complete, m);
876 		if (r < 0) {
877 			mempool_free(m, pool->mapping_pool);
878 			DMERR_LIMIT("dm_kcopyd_zero() failed");
879 			cell_error(pool, cell);
880 		}
881 	}
882 }
883 
884 static int commit(struct pool *pool)
885 {
886 	int r;
887 
888 	r = dm_pool_commit_metadata(pool->pmd);
889 	if (r)
890 		DMERR_LIMIT("commit failed: error = %d", r);
891 
892 	return r;
893 }
894 
895 /*
896  * A non-zero return indicates read_only or fail_io mode.
897  * Many callers don't care about the return value.
898  */
899 static int commit_or_fallback(struct pool *pool)
900 {
901 	int r;
902 
903 	if (get_pool_mode(pool) != PM_WRITE)
904 		return -EINVAL;
905 
906 	r = commit(pool);
907 	if (r)
908 		set_pool_mode(pool, PM_READ_ONLY);
909 
910 	return r;
911 }
912 
913 static int alloc_data_block(struct thin_c *tc, dm_block_t *result)
914 {
915 	int r;
916 	dm_block_t free_blocks;
917 	unsigned long flags;
918 	struct pool *pool = tc->pool;
919 
920 	r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
921 	if (r)
922 		return r;
923 
924 	if (free_blocks <= pool->low_water_blocks && !pool->low_water_triggered) {
925 		DMWARN("%s: reached low water mark, sending event.",
926 		       dm_device_name(pool->pool_md));
927 		spin_lock_irqsave(&pool->lock, flags);
928 		pool->low_water_triggered = 1;
929 		spin_unlock_irqrestore(&pool->lock, flags);
930 		dm_table_event(pool->ti->table);
931 	}
932 
933 	if (!free_blocks) {
934 		if (pool->no_free_space)
935 			return -ENOSPC;
936 		else {
937 			/*
938 			 * Try to commit to see if that will free up some
939 			 * more space.
940 			 */
941 			(void) commit_or_fallback(pool);
942 
943 			r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
944 			if (r)
945 				return r;
946 
947 			/*
948 			 * If we still have no space we set a flag to avoid
949 			 * doing all this checking and return -ENOSPC.
950 			 */
951 			if (!free_blocks) {
952 				DMWARN("%s: no free space available.",
953 				       dm_device_name(pool->pool_md));
954 				spin_lock_irqsave(&pool->lock, flags);
955 				pool->no_free_space = 1;
956 				spin_unlock_irqrestore(&pool->lock, flags);
957 				return -ENOSPC;
958 			}
959 		}
960 	}
961 
962 	r = dm_pool_alloc_data_block(pool->pmd, result);
963 	if (r)
964 		return r;
965 
966 	return 0;
967 }
968 
969 /*
970  * If we have run out of space, queue bios until the device is
971  * resumed, presumably after having been reloaded with more space.
972  */
973 static void retry_on_resume(struct bio *bio)
974 {
975 	struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
976 	struct thin_c *tc = h->tc;
977 	struct pool *pool = tc->pool;
978 	unsigned long flags;
979 
980 	spin_lock_irqsave(&pool->lock, flags);
981 	bio_list_add(&pool->retry_on_resume_list, bio);
982 	spin_unlock_irqrestore(&pool->lock, flags);
983 }
984 
985 static void no_space(struct pool *pool, struct dm_bio_prison_cell *cell)
986 {
987 	struct bio *bio;
988 	struct bio_list bios;
989 
990 	bio_list_init(&bios);
991 	cell_release(pool, cell, &bios);
992 
993 	while ((bio = bio_list_pop(&bios)))
994 		retry_on_resume(bio);
995 }
996 
997 static void process_discard(struct thin_c *tc, struct bio *bio)
998 {
999 	int r;
1000 	unsigned long flags;
1001 	struct pool *pool = tc->pool;
1002 	struct dm_bio_prison_cell *cell, *cell2;
1003 	struct dm_cell_key key, key2;
1004 	dm_block_t block = get_bio_block(tc, bio);
1005 	struct dm_thin_lookup_result lookup_result;
1006 	struct dm_thin_new_mapping *m;
1007 
1008 	build_virtual_key(tc->td, block, &key);
1009 	if (bio_detain(tc->pool, &key, bio, &cell))
1010 		return;
1011 
1012 	r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1013 	switch (r) {
1014 	case 0:
1015 		/*
1016 		 * Check nobody is fiddling with this pool block.  This can
1017 		 * happen if someone's in the process of breaking sharing
1018 		 * on this block.
1019 		 */
1020 		build_data_key(tc->td, lookup_result.block, &key2);
1021 		if (bio_detain(tc->pool, &key2, bio, &cell2)) {
1022 			cell_defer_no_holder(tc, cell);
1023 			break;
1024 		}
1025 
1026 		if (io_overlaps_block(pool, bio)) {
1027 			/*
1028 			 * IO may still be going to the destination block.  We must
1029 			 * quiesce before we can do the removal.
1030 			 */
1031 			m = get_next_mapping(pool);
1032 			m->tc = tc;
1033 			m->pass_discard = (!lookup_result.shared) && pool->pf.discard_passdown;
1034 			m->virt_block = block;
1035 			m->data_block = lookup_result.block;
1036 			m->cell = cell;
1037 			m->cell2 = cell2;
1038 			m->err = 0;
1039 			m->bio = bio;
1040 
1041 			if (!dm_deferred_set_add_work(pool->all_io_ds, &m->list)) {
1042 				spin_lock_irqsave(&pool->lock, flags);
1043 				list_add(&m->list, &pool->prepared_discards);
1044 				spin_unlock_irqrestore(&pool->lock, flags);
1045 				wake_worker(pool);
1046 			}
1047 		} else {
1048 			inc_all_io_entry(pool, bio);
1049 			cell_defer_no_holder(tc, cell);
1050 			cell_defer_no_holder(tc, cell2);
1051 
1052 			/*
1053 			 * The DM core makes sure that the discard doesn't span
1054 			 * a block boundary.  So we submit the discard of a
1055 			 * partial block appropriately.
1056 			 */
1057 			if ((!lookup_result.shared) && pool->pf.discard_passdown)
1058 				remap_and_issue(tc, bio, lookup_result.block);
1059 			else
1060 				bio_endio(bio, 0);
1061 		}
1062 		break;
1063 
1064 	case -ENODATA:
1065 		/*
1066 		 * It isn't provisioned, just forget it.
1067 		 */
1068 		cell_defer_no_holder(tc, cell);
1069 		bio_endio(bio, 0);
1070 		break;
1071 
1072 	default:
1073 		DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
1074 			    __func__, r);
1075 		cell_defer_no_holder(tc, cell);
1076 		bio_io_error(bio);
1077 		break;
1078 	}
1079 }
1080 
1081 static void break_sharing(struct thin_c *tc, struct bio *bio, dm_block_t block,
1082 			  struct dm_cell_key *key,
1083 			  struct dm_thin_lookup_result *lookup_result,
1084 			  struct dm_bio_prison_cell *cell)
1085 {
1086 	int r;
1087 	dm_block_t data_block;
1088 
1089 	r = alloc_data_block(tc, &data_block);
1090 	switch (r) {
1091 	case 0:
1092 		schedule_internal_copy(tc, block, lookup_result->block,
1093 				       data_block, cell, bio);
1094 		break;
1095 
1096 	case -ENOSPC:
1097 		no_space(tc->pool, cell);
1098 		break;
1099 
1100 	default:
1101 		DMERR_LIMIT("%s: alloc_data_block() failed: error = %d",
1102 			    __func__, r);
1103 		cell_error(tc->pool, cell);
1104 		break;
1105 	}
1106 }
1107 
1108 static void process_shared_bio(struct thin_c *tc, struct bio *bio,
1109 			       dm_block_t block,
1110 			       struct dm_thin_lookup_result *lookup_result)
1111 {
1112 	struct dm_bio_prison_cell *cell;
1113 	struct pool *pool = tc->pool;
1114 	struct dm_cell_key key;
1115 
1116 	/*
1117 	 * If cell is already occupied, then sharing is already in the process
1118 	 * of being broken so we have nothing further to do here.
1119 	 */
1120 	build_data_key(tc->td, lookup_result->block, &key);
1121 	if (bio_detain(pool, &key, bio, &cell))
1122 		return;
1123 
1124 	if (bio_data_dir(bio) == WRITE && bio->bi_size)
1125 		break_sharing(tc, bio, block, &key, lookup_result, cell);
1126 	else {
1127 		struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1128 
1129 		h->shared_read_entry = dm_deferred_entry_inc(pool->shared_read_ds);
1130 		inc_all_io_entry(pool, bio);
1131 		cell_defer_no_holder(tc, cell);
1132 
1133 		remap_and_issue(tc, bio, lookup_result->block);
1134 	}
1135 }
1136 
1137 static void provision_block(struct thin_c *tc, struct bio *bio, dm_block_t block,
1138 			    struct dm_bio_prison_cell *cell)
1139 {
1140 	int r;
1141 	dm_block_t data_block;
1142 	struct pool *pool = tc->pool;
1143 
1144 	/*
1145 	 * Remap empty bios (flushes) immediately, without provisioning.
1146 	 */
1147 	if (!bio->bi_size) {
1148 		inc_all_io_entry(pool, bio);
1149 		cell_defer_no_holder(tc, cell);
1150 
1151 		remap_and_issue(tc, bio, 0);
1152 		return;
1153 	}
1154 
1155 	/*
1156 	 * Fill read bios with zeroes and complete them immediately.
1157 	 */
1158 	if (bio_data_dir(bio) == READ) {
1159 		zero_fill_bio(bio);
1160 		cell_defer_no_holder(tc, cell);
1161 		bio_endio(bio, 0);
1162 		return;
1163 	}
1164 
1165 	r = alloc_data_block(tc, &data_block);
1166 	switch (r) {
1167 	case 0:
1168 		if (tc->origin_dev)
1169 			schedule_external_copy(tc, block, data_block, cell, bio);
1170 		else
1171 			schedule_zero(tc, block, data_block, cell, bio);
1172 		break;
1173 
1174 	case -ENOSPC:
1175 		no_space(pool, cell);
1176 		break;
1177 
1178 	default:
1179 		DMERR_LIMIT("%s: alloc_data_block() failed: error = %d",
1180 			    __func__, r);
1181 		set_pool_mode(pool, PM_READ_ONLY);
1182 		cell_error(pool, cell);
1183 		break;
1184 	}
1185 }
1186 
1187 static void process_bio(struct thin_c *tc, struct bio *bio)
1188 {
1189 	int r;
1190 	struct pool *pool = tc->pool;
1191 	dm_block_t block = get_bio_block(tc, bio);
1192 	struct dm_bio_prison_cell *cell;
1193 	struct dm_cell_key key;
1194 	struct dm_thin_lookup_result lookup_result;
1195 
1196 	/*
1197 	 * If cell is already occupied, then the block is already
1198 	 * being provisioned so we have nothing further to do here.
1199 	 */
1200 	build_virtual_key(tc->td, block, &key);
1201 	if (bio_detain(pool, &key, bio, &cell))
1202 		return;
1203 
1204 	r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1205 	switch (r) {
1206 	case 0:
1207 		if (lookup_result.shared) {
1208 			process_shared_bio(tc, bio, block, &lookup_result);
1209 			cell_defer_no_holder(tc, cell); /* FIXME: pass this cell into process_shared? */
1210 		} else {
1211 			inc_all_io_entry(pool, bio);
1212 			cell_defer_no_holder(tc, cell);
1213 
1214 			remap_and_issue(tc, bio, lookup_result.block);
1215 		}
1216 		break;
1217 
1218 	case -ENODATA:
1219 		if (bio_data_dir(bio) == READ && tc->origin_dev) {
1220 			inc_all_io_entry(pool, bio);
1221 			cell_defer_no_holder(tc, cell);
1222 
1223 			remap_to_origin_and_issue(tc, bio);
1224 		} else
1225 			provision_block(tc, bio, block, cell);
1226 		break;
1227 
1228 	default:
1229 		DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
1230 			    __func__, r);
1231 		cell_defer_no_holder(tc, cell);
1232 		bio_io_error(bio);
1233 		break;
1234 	}
1235 }
1236 
1237 static void process_bio_read_only(struct thin_c *tc, struct bio *bio)
1238 {
1239 	int r;
1240 	int rw = bio_data_dir(bio);
1241 	dm_block_t block = get_bio_block(tc, bio);
1242 	struct dm_thin_lookup_result lookup_result;
1243 
1244 	r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1245 	switch (r) {
1246 	case 0:
1247 		if (lookup_result.shared && (rw == WRITE) && bio->bi_size)
1248 			bio_io_error(bio);
1249 		else {
1250 			inc_all_io_entry(tc->pool, bio);
1251 			remap_and_issue(tc, bio, lookup_result.block);
1252 		}
1253 		break;
1254 
1255 	case -ENODATA:
1256 		if (rw != READ) {
1257 			bio_io_error(bio);
1258 			break;
1259 		}
1260 
1261 		if (tc->origin_dev) {
1262 			inc_all_io_entry(tc->pool, bio);
1263 			remap_to_origin_and_issue(tc, bio);
1264 			break;
1265 		}
1266 
1267 		zero_fill_bio(bio);
1268 		bio_endio(bio, 0);
1269 		break;
1270 
1271 	default:
1272 		DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
1273 			    __func__, r);
1274 		bio_io_error(bio);
1275 		break;
1276 	}
1277 }
1278 
1279 static void process_bio_fail(struct thin_c *tc, struct bio *bio)
1280 {
1281 	bio_io_error(bio);
1282 }
1283 
1284 static int need_commit_due_to_time(struct pool *pool)
1285 {
1286 	return jiffies < pool->last_commit_jiffies ||
1287 	       jiffies > pool->last_commit_jiffies + COMMIT_PERIOD;
1288 }
1289 
1290 static void process_deferred_bios(struct pool *pool)
1291 {
1292 	unsigned long flags;
1293 	struct bio *bio;
1294 	struct bio_list bios;
1295 
1296 	bio_list_init(&bios);
1297 
1298 	spin_lock_irqsave(&pool->lock, flags);
1299 	bio_list_merge(&bios, &pool->deferred_bios);
1300 	bio_list_init(&pool->deferred_bios);
1301 	spin_unlock_irqrestore(&pool->lock, flags);
1302 
1303 	while ((bio = bio_list_pop(&bios))) {
1304 		struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1305 		struct thin_c *tc = h->tc;
1306 
1307 		/*
1308 		 * If we've got no free new_mapping structs, and processing
1309 		 * this bio might require one, we pause until there are some
1310 		 * prepared mappings to process.
1311 		 */
1312 		if (ensure_next_mapping(pool)) {
1313 			spin_lock_irqsave(&pool->lock, flags);
1314 			bio_list_merge(&pool->deferred_bios, &bios);
1315 			spin_unlock_irqrestore(&pool->lock, flags);
1316 
1317 			break;
1318 		}
1319 
1320 		if (bio->bi_rw & REQ_DISCARD)
1321 			pool->process_discard(tc, bio);
1322 		else
1323 			pool->process_bio(tc, bio);
1324 	}
1325 
1326 	/*
1327 	 * If there are any deferred flush bios, we must commit
1328 	 * the metadata before issuing them.
1329 	 */
1330 	bio_list_init(&bios);
1331 	spin_lock_irqsave(&pool->lock, flags);
1332 	bio_list_merge(&bios, &pool->deferred_flush_bios);
1333 	bio_list_init(&pool->deferred_flush_bios);
1334 	spin_unlock_irqrestore(&pool->lock, flags);
1335 
1336 	if (bio_list_empty(&bios) && !need_commit_due_to_time(pool))
1337 		return;
1338 
1339 	if (commit_or_fallback(pool)) {
1340 		while ((bio = bio_list_pop(&bios)))
1341 			bio_io_error(bio);
1342 		return;
1343 	}
1344 	pool->last_commit_jiffies = jiffies;
1345 
1346 	while ((bio = bio_list_pop(&bios)))
1347 		generic_make_request(bio);
1348 }
1349 
1350 static void do_worker(struct work_struct *ws)
1351 {
1352 	struct pool *pool = container_of(ws, struct pool, worker);
1353 
1354 	process_prepared(pool, &pool->prepared_mappings, &pool->process_prepared_mapping);
1355 	process_prepared(pool, &pool->prepared_discards, &pool->process_prepared_discard);
1356 	process_deferred_bios(pool);
1357 }
1358 
1359 /*
1360  * We want to commit periodically so that not too much
1361  * unwritten data builds up.
1362  */
1363 static void do_waker(struct work_struct *ws)
1364 {
1365 	struct pool *pool = container_of(to_delayed_work(ws), struct pool, waker);
1366 	wake_worker(pool);
1367 	queue_delayed_work(pool->wq, &pool->waker, COMMIT_PERIOD);
1368 }
1369 
1370 /*----------------------------------------------------------------*/
1371 
1372 static enum pool_mode get_pool_mode(struct pool *pool)
1373 {
1374 	return pool->pf.mode;
1375 }
1376 
1377 static void set_pool_mode(struct pool *pool, enum pool_mode mode)
1378 {
1379 	int r;
1380 
1381 	pool->pf.mode = mode;
1382 
1383 	switch (mode) {
1384 	case PM_FAIL:
1385 		DMERR("switching pool to failure mode");
1386 		pool->process_bio = process_bio_fail;
1387 		pool->process_discard = process_bio_fail;
1388 		pool->process_prepared_mapping = process_prepared_mapping_fail;
1389 		pool->process_prepared_discard = process_prepared_discard_fail;
1390 		break;
1391 
1392 	case PM_READ_ONLY:
1393 		DMERR("switching pool to read-only mode");
1394 		r = dm_pool_abort_metadata(pool->pmd);
1395 		if (r) {
1396 			DMERR("aborting transaction failed");
1397 			set_pool_mode(pool, PM_FAIL);
1398 		} else {
1399 			dm_pool_metadata_read_only(pool->pmd);
1400 			pool->process_bio = process_bio_read_only;
1401 			pool->process_discard = process_discard;
1402 			pool->process_prepared_mapping = process_prepared_mapping_fail;
1403 			pool->process_prepared_discard = process_prepared_discard_passdown;
1404 		}
1405 		break;
1406 
1407 	case PM_WRITE:
1408 		pool->process_bio = process_bio;
1409 		pool->process_discard = process_discard;
1410 		pool->process_prepared_mapping = process_prepared_mapping;
1411 		pool->process_prepared_discard = process_prepared_discard;
1412 		break;
1413 	}
1414 }
1415 
1416 /*----------------------------------------------------------------*/
1417 
1418 /*
1419  * Mapping functions.
1420  */
1421 
1422 /*
1423  * Called only while mapping a thin bio to hand it over to the workqueue.
1424  */
1425 static void thin_defer_bio(struct thin_c *tc, struct bio *bio)
1426 {
1427 	unsigned long flags;
1428 	struct pool *pool = tc->pool;
1429 
1430 	spin_lock_irqsave(&pool->lock, flags);
1431 	bio_list_add(&pool->deferred_bios, bio);
1432 	spin_unlock_irqrestore(&pool->lock, flags);
1433 
1434 	wake_worker(pool);
1435 }
1436 
1437 static void thin_hook_bio(struct thin_c *tc, struct bio *bio)
1438 {
1439 	struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1440 
1441 	h->tc = tc;
1442 	h->shared_read_entry = NULL;
1443 	h->all_io_entry = NULL;
1444 	h->overwrite_mapping = NULL;
1445 }
1446 
1447 /*
1448  * Non-blocking function called from the thin target's map function.
1449  */
1450 static int thin_bio_map(struct dm_target *ti, struct bio *bio)
1451 {
1452 	int r;
1453 	struct thin_c *tc = ti->private;
1454 	dm_block_t block = get_bio_block(tc, bio);
1455 	struct dm_thin_device *td = tc->td;
1456 	struct dm_thin_lookup_result result;
1457 	struct dm_bio_prison_cell cell1, cell2;
1458 	struct dm_bio_prison_cell *cell_result;
1459 	struct dm_cell_key key;
1460 
1461 	thin_hook_bio(tc, bio);
1462 
1463 	if (get_pool_mode(tc->pool) == PM_FAIL) {
1464 		bio_io_error(bio);
1465 		return DM_MAPIO_SUBMITTED;
1466 	}
1467 
1468 	if (bio->bi_rw & (REQ_DISCARD | REQ_FLUSH | REQ_FUA)) {
1469 		thin_defer_bio(tc, bio);
1470 		return DM_MAPIO_SUBMITTED;
1471 	}
1472 
1473 	r = dm_thin_find_block(td, block, 0, &result);
1474 
1475 	/*
1476 	 * Note that we defer readahead too.
1477 	 */
1478 	switch (r) {
1479 	case 0:
1480 		if (unlikely(result.shared)) {
1481 			/*
1482 			 * We have a race condition here between the
1483 			 * result.shared value returned by the lookup and
1484 			 * snapshot creation, which may cause new
1485 			 * sharing.
1486 			 *
1487 			 * To avoid this always quiesce the origin before
1488 			 * taking the snap.  You want to do this anyway to
1489 			 * ensure a consistent application view
1490 			 * (i.e. lockfs).
1491 			 *
1492 			 * More distant ancestors are irrelevant. The
1493 			 * shared flag will be set in their case.
1494 			 */
1495 			thin_defer_bio(tc, bio);
1496 			return DM_MAPIO_SUBMITTED;
1497 		}
1498 
1499 		build_virtual_key(tc->td, block, &key);
1500 		if (dm_bio_detain(tc->pool->prison, &key, bio, &cell1, &cell_result))
1501 			return DM_MAPIO_SUBMITTED;
1502 
1503 		build_data_key(tc->td, result.block, &key);
1504 		if (dm_bio_detain(tc->pool->prison, &key, bio, &cell2, &cell_result)) {
1505 			cell_defer_no_holder_no_free(tc, &cell1);
1506 			return DM_MAPIO_SUBMITTED;
1507 		}
1508 
1509 		inc_all_io_entry(tc->pool, bio);
1510 		cell_defer_no_holder_no_free(tc, &cell2);
1511 		cell_defer_no_holder_no_free(tc, &cell1);
1512 
1513 		remap(tc, bio, result.block);
1514 		return DM_MAPIO_REMAPPED;
1515 
1516 	case -ENODATA:
1517 		if (get_pool_mode(tc->pool) == PM_READ_ONLY) {
1518 			/*
1519 			 * This block isn't provisioned, and we have no way
1520 			 * of doing so.  Just error it.
1521 			 */
1522 			bio_io_error(bio);
1523 			return DM_MAPIO_SUBMITTED;
1524 		}
1525 		/* fall through */
1526 
1527 	case -EWOULDBLOCK:
1528 		/*
1529 		 * In future, the failed dm_thin_find_block above could
1530 		 * provide the hint to load the metadata into cache.
1531 		 */
1532 		thin_defer_bio(tc, bio);
1533 		return DM_MAPIO_SUBMITTED;
1534 
1535 	default:
1536 		/*
1537 		 * Must always call bio_io_error on failure.
1538 		 * dm_thin_find_block can fail with -EINVAL if the
1539 		 * pool is switched to fail-io mode.
1540 		 */
1541 		bio_io_error(bio);
1542 		return DM_MAPIO_SUBMITTED;
1543 	}
1544 }
1545 
1546 static int pool_is_congested(struct dm_target_callbacks *cb, int bdi_bits)
1547 {
1548 	int r;
1549 	unsigned long flags;
1550 	struct pool_c *pt = container_of(cb, struct pool_c, callbacks);
1551 
1552 	spin_lock_irqsave(&pt->pool->lock, flags);
1553 	r = !bio_list_empty(&pt->pool->retry_on_resume_list);
1554 	spin_unlock_irqrestore(&pt->pool->lock, flags);
1555 
1556 	if (!r) {
1557 		struct request_queue *q = bdev_get_queue(pt->data_dev->bdev);
1558 		r = bdi_congested(&q->backing_dev_info, bdi_bits);
1559 	}
1560 
1561 	return r;
1562 }
1563 
1564 static void __requeue_bios(struct pool *pool)
1565 {
1566 	bio_list_merge(&pool->deferred_bios, &pool->retry_on_resume_list);
1567 	bio_list_init(&pool->retry_on_resume_list);
1568 }
1569 
1570 /*----------------------------------------------------------------
1571  * Binding of control targets to a pool object
1572  *--------------------------------------------------------------*/
1573 static bool data_dev_supports_discard(struct pool_c *pt)
1574 {
1575 	struct request_queue *q = bdev_get_queue(pt->data_dev->bdev);
1576 
1577 	return q && blk_queue_discard(q);
1578 }
1579 
1580 static bool is_factor(sector_t block_size, uint32_t n)
1581 {
1582 	return !sector_div(block_size, n);
1583 }
1584 
1585 /*
1586  * If discard_passdown was enabled verify that the data device
1587  * supports discards.  Disable discard_passdown if not.
1588  */
1589 static void disable_passdown_if_not_supported(struct pool_c *pt)
1590 {
1591 	struct pool *pool = pt->pool;
1592 	struct block_device *data_bdev = pt->data_dev->bdev;
1593 	struct queue_limits *data_limits = &bdev_get_queue(data_bdev)->limits;
1594 	sector_t block_size = pool->sectors_per_block << SECTOR_SHIFT;
1595 	const char *reason = NULL;
1596 	char buf[BDEVNAME_SIZE];
1597 
1598 	if (!pt->adjusted_pf.discard_passdown)
1599 		return;
1600 
1601 	if (!data_dev_supports_discard(pt))
1602 		reason = "discard unsupported";
1603 
1604 	else if (data_limits->max_discard_sectors < pool->sectors_per_block)
1605 		reason = "max discard sectors smaller than a block";
1606 
1607 	else if (data_limits->discard_granularity > block_size)
1608 		reason = "discard granularity larger than a block";
1609 
1610 	else if (!is_factor(block_size, data_limits->discard_granularity))
1611 		reason = "discard granularity not a factor of block size";
1612 
1613 	if (reason) {
1614 		DMWARN("Data device (%s) %s: Disabling discard passdown.", bdevname(data_bdev, buf), reason);
1615 		pt->adjusted_pf.discard_passdown = false;
1616 	}
1617 }
1618 
1619 static int bind_control_target(struct pool *pool, struct dm_target *ti)
1620 {
1621 	struct pool_c *pt = ti->private;
1622 
1623 	/*
1624 	 * We want to make sure that degraded pools are never upgraded.
1625 	 */
1626 	enum pool_mode old_mode = pool->pf.mode;
1627 	enum pool_mode new_mode = pt->adjusted_pf.mode;
1628 
1629 	if (old_mode > new_mode)
1630 		new_mode = old_mode;
1631 
1632 	pool->ti = ti;
1633 	pool->low_water_blocks = pt->low_water_blocks;
1634 	pool->pf = pt->adjusted_pf;
1635 
1636 	set_pool_mode(pool, new_mode);
1637 
1638 	return 0;
1639 }
1640 
1641 static void unbind_control_target(struct pool *pool, struct dm_target *ti)
1642 {
1643 	if (pool->ti == ti)
1644 		pool->ti = NULL;
1645 }
1646 
1647 /*----------------------------------------------------------------
1648  * Pool creation
1649  *--------------------------------------------------------------*/
1650 /* Initialize pool features. */
1651 static void pool_features_init(struct pool_features *pf)
1652 {
1653 	pf->mode = PM_WRITE;
1654 	pf->zero_new_blocks = true;
1655 	pf->discard_enabled = true;
1656 	pf->discard_passdown = true;
1657 }
1658 
1659 static void __pool_destroy(struct pool *pool)
1660 {
1661 	__pool_table_remove(pool);
1662 
1663 	if (dm_pool_metadata_close(pool->pmd) < 0)
1664 		DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
1665 
1666 	dm_bio_prison_destroy(pool->prison);
1667 	dm_kcopyd_client_destroy(pool->copier);
1668 
1669 	if (pool->wq)
1670 		destroy_workqueue(pool->wq);
1671 
1672 	if (pool->next_mapping)
1673 		mempool_free(pool->next_mapping, pool->mapping_pool);
1674 	mempool_destroy(pool->mapping_pool);
1675 	dm_deferred_set_destroy(pool->shared_read_ds);
1676 	dm_deferred_set_destroy(pool->all_io_ds);
1677 	kfree(pool);
1678 }
1679 
1680 static struct kmem_cache *_new_mapping_cache;
1681 
1682 static struct pool *pool_create(struct mapped_device *pool_md,
1683 				struct block_device *metadata_dev,
1684 				unsigned long block_size,
1685 				int read_only, char **error)
1686 {
1687 	int r;
1688 	void *err_p;
1689 	struct pool *pool;
1690 	struct dm_pool_metadata *pmd;
1691 	bool format_device = read_only ? false : true;
1692 
1693 	pmd = dm_pool_metadata_open(metadata_dev, block_size, format_device);
1694 	if (IS_ERR(pmd)) {
1695 		*error = "Error creating metadata object";
1696 		return (struct pool *)pmd;
1697 	}
1698 
1699 	pool = kmalloc(sizeof(*pool), GFP_KERNEL);
1700 	if (!pool) {
1701 		*error = "Error allocating memory for pool";
1702 		err_p = ERR_PTR(-ENOMEM);
1703 		goto bad_pool;
1704 	}
1705 
1706 	pool->pmd = pmd;
1707 	pool->sectors_per_block = block_size;
1708 	if (block_size & (block_size - 1))
1709 		pool->sectors_per_block_shift = -1;
1710 	else
1711 		pool->sectors_per_block_shift = __ffs(block_size);
1712 	pool->low_water_blocks = 0;
1713 	pool_features_init(&pool->pf);
1714 	pool->prison = dm_bio_prison_create(PRISON_CELLS);
1715 	if (!pool->prison) {
1716 		*error = "Error creating pool's bio prison";
1717 		err_p = ERR_PTR(-ENOMEM);
1718 		goto bad_prison;
1719 	}
1720 
1721 	pool->copier = dm_kcopyd_client_create(&dm_kcopyd_throttle);
1722 	if (IS_ERR(pool->copier)) {
1723 		r = PTR_ERR(pool->copier);
1724 		*error = "Error creating pool's kcopyd client";
1725 		err_p = ERR_PTR(r);
1726 		goto bad_kcopyd_client;
1727 	}
1728 
1729 	/*
1730 	 * Create singlethreaded workqueue that will service all devices
1731 	 * that use this metadata.
1732 	 */
1733 	pool->wq = alloc_ordered_workqueue("dm-" DM_MSG_PREFIX, WQ_MEM_RECLAIM);
1734 	if (!pool->wq) {
1735 		*error = "Error creating pool's workqueue";
1736 		err_p = ERR_PTR(-ENOMEM);
1737 		goto bad_wq;
1738 	}
1739 
1740 	INIT_WORK(&pool->worker, do_worker);
1741 	INIT_DELAYED_WORK(&pool->waker, do_waker);
1742 	spin_lock_init(&pool->lock);
1743 	bio_list_init(&pool->deferred_bios);
1744 	bio_list_init(&pool->deferred_flush_bios);
1745 	INIT_LIST_HEAD(&pool->prepared_mappings);
1746 	INIT_LIST_HEAD(&pool->prepared_discards);
1747 	pool->low_water_triggered = 0;
1748 	pool->no_free_space = 0;
1749 	bio_list_init(&pool->retry_on_resume_list);
1750 
1751 	pool->shared_read_ds = dm_deferred_set_create();
1752 	if (!pool->shared_read_ds) {
1753 		*error = "Error creating pool's shared read deferred set";
1754 		err_p = ERR_PTR(-ENOMEM);
1755 		goto bad_shared_read_ds;
1756 	}
1757 
1758 	pool->all_io_ds = dm_deferred_set_create();
1759 	if (!pool->all_io_ds) {
1760 		*error = "Error creating pool's all io deferred set";
1761 		err_p = ERR_PTR(-ENOMEM);
1762 		goto bad_all_io_ds;
1763 	}
1764 
1765 	pool->next_mapping = NULL;
1766 	pool->mapping_pool = mempool_create_slab_pool(MAPPING_POOL_SIZE,
1767 						      _new_mapping_cache);
1768 	if (!pool->mapping_pool) {
1769 		*error = "Error creating pool's mapping mempool";
1770 		err_p = ERR_PTR(-ENOMEM);
1771 		goto bad_mapping_pool;
1772 	}
1773 
1774 	pool->ref_count = 1;
1775 	pool->last_commit_jiffies = jiffies;
1776 	pool->pool_md = pool_md;
1777 	pool->md_dev = metadata_dev;
1778 	__pool_table_insert(pool);
1779 
1780 	return pool;
1781 
1782 bad_mapping_pool:
1783 	dm_deferred_set_destroy(pool->all_io_ds);
1784 bad_all_io_ds:
1785 	dm_deferred_set_destroy(pool->shared_read_ds);
1786 bad_shared_read_ds:
1787 	destroy_workqueue(pool->wq);
1788 bad_wq:
1789 	dm_kcopyd_client_destroy(pool->copier);
1790 bad_kcopyd_client:
1791 	dm_bio_prison_destroy(pool->prison);
1792 bad_prison:
1793 	kfree(pool);
1794 bad_pool:
1795 	if (dm_pool_metadata_close(pmd))
1796 		DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
1797 
1798 	return err_p;
1799 }
1800 
1801 static void __pool_inc(struct pool *pool)
1802 {
1803 	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
1804 	pool->ref_count++;
1805 }
1806 
1807 static void __pool_dec(struct pool *pool)
1808 {
1809 	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
1810 	BUG_ON(!pool->ref_count);
1811 	if (!--pool->ref_count)
1812 		__pool_destroy(pool);
1813 }
1814 
1815 static struct pool *__pool_find(struct mapped_device *pool_md,
1816 				struct block_device *metadata_dev,
1817 				unsigned long block_size, int read_only,
1818 				char **error, int *created)
1819 {
1820 	struct pool *pool = __pool_table_lookup_metadata_dev(metadata_dev);
1821 
1822 	if (pool) {
1823 		if (pool->pool_md != pool_md) {
1824 			*error = "metadata device already in use by a pool";
1825 			return ERR_PTR(-EBUSY);
1826 		}
1827 		__pool_inc(pool);
1828 
1829 	} else {
1830 		pool = __pool_table_lookup(pool_md);
1831 		if (pool) {
1832 			if (pool->md_dev != metadata_dev) {
1833 				*error = "different pool cannot replace a pool";
1834 				return ERR_PTR(-EINVAL);
1835 			}
1836 			__pool_inc(pool);
1837 
1838 		} else {
1839 			pool = pool_create(pool_md, metadata_dev, block_size, read_only, error);
1840 			*created = 1;
1841 		}
1842 	}
1843 
1844 	return pool;
1845 }
1846 
1847 /*----------------------------------------------------------------
1848  * Pool target methods
1849  *--------------------------------------------------------------*/
1850 static void pool_dtr(struct dm_target *ti)
1851 {
1852 	struct pool_c *pt = ti->private;
1853 
1854 	mutex_lock(&dm_thin_pool_table.mutex);
1855 
1856 	unbind_control_target(pt->pool, ti);
1857 	__pool_dec(pt->pool);
1858 	dm_put_device(ti, pt->metadata_dev);
1859 	dm_put_device(ti, pt->data_dev);
1860 	kfree(pt);
1861 
1862 	mutex_unlock(&dm_thin_pool_table.mutex);
1863 }
1864 
1865 static int parse_pool_features(struct dm_arg_set *as, struct pool_features *pf,
1866 			       struct dm_target *ti)
1867 {
1868 	int r;
1869 	unsigned argc;
1870 	const char *arg_name;
1871 
1872 	static struct dm_arg _args[] = {
1873 		{0, 3, "Invalid number of pool feature arguments"},
1874 	};
1875 
1876 	/*
1877 	 * No feature arguments supplied.
1878 	 */
1879 	if (!as->argc)
1880 		return 0;
1881 
1882 	r = dm_read_arg_group(_args, as, &argc, &ti->error);
1883 	if (r)
1884 		return -EINVAL;
1885 
1886 	while (argc && !r) {
1887 		arg_name = dm_shift_arg(as);
1888 		argc--;
1889 
1890 		if (!strcasecmp(arg_name, "skip_block_zeroing"))
1891 			pf->zero_new_blocks = false;
1892 
1893 		else if (!strcasecmp(arg_name, "ignore_discard"))
1894 			pf->discard_enabled = false;
1895 
1896 		else if (!strcasecmp(arg_name, "no_discard_passdown"))
1897 			pf->discard_passdown = false;
1898 
1899 		else if (!strcasecmp(arg_name, "read_only"))
1900 			pf->mode = PM_READ_ONLY;
1901 
1902 		else {
1903 			ti->error = "Unrecognised pool feature requested";
1904 			r = -EINVAL;
1905 			break;
1906 		}
1907 	}
1908 
1909 	return r;
1910 }
1911 
1912 /*
1913  * thin-pool <metadata dev> <data dev>
1914  *	     <data block size (sectors)>
1915  *	     <low water mark (blocks)>
1916  *	     [<#feature args> [<arg>]*]
1917  *
1918  * Optional feature arguments are:
1919  *	     skip_block_zeroing: skips the zeroing of newly-provisioned blocks.
1920  *	     ignore_discard: disable discard
1921  *	     no_discard_passdown: don't pass discards down to the data device
1922  */
1923 static int pool_ctr(struct dm_target *ti, unsigned argc, char **argv)
1924 {
1925 	int r, pool_created = 0;
1926 	struct pool_c *pt;
1927 	struct pool *pool;
1928 	struct pool_features pf;
1929 	struct dm_arg_set as;
1930 	struct dm_dev *data_dev;
1931 	unsigned long block_size;
1932 	dm_block_t low_water_blocks;
1933 	struct dm_dev *metadata_dev;
1934 	sector_t metadata_dev_size;
1935 	char b[BDEVNAME_SIZE];
1936 
1937 	/*
1938 	 * FIXME Remove validation from scope of lock.
1939 	 */
1940 	mutex_lock(&dm_thin_pool_table.mutex);
1941 
1942 	if (argc < 4) {
1943 		ti->error = "Invalid argument count";
1944 		r = -EINVAL;
1945 		goto out_unlock;
1946 	}
1947 	as.argc = argc;
1948 	as.argv = argv;
1949 
1950 	r = dm_get_device(ti, argv[0], FMODE_READ | FMODE_WRITE, &metadata_dev);
1951 	if (r) {
1952 		ti->error = "Error opening metadata block device";
1953 		goto out_unlock;
1954 	}
1955 
1956 	metadata_dev_size = i_size_read(metadata_dev->bdev->bd_inode) >> SECTOR_SHIFT;
1957 	if (metadata_dev_size > THIN_METADATA_MAX_SECTORS_WARNING)
1958 		DMWARN("Metadata device %s is larger than %u sectors: excess space will not be used.",
1959 		       bdevname(metadata_dev->bdev, b), THIN_METADATA_MAX_SECTORS);
1960 
1961 	r = dm_get_device(ti, argv[1], FMODE_READ | FMODE_WRITE, &data_dev);
1962 	if (r) {
1963 		ti->error = "Error getting data device";
1964 		goto out_metadata;
1965 	}
1966 
1967 	if (kstrtoul(argv[2], 10, &block_size) || !block_size ||
1968 	    block_size < DATA_DEV_BLOCK_SIZE_MIN_SECTORS ||
1969 	    block_size > DATA_DEV_BLOCK_SIZE_MAX_SECTORS ||
1970 	    block_size & (DATA_DEV_BLOCK_SIZE_MIN_SECTORS - 1)) {
1971 		ti->error = "Invalid block size";
1972 		r = -EINVAL;
1973 		goto out;
1974 	}
1975 
1976 	if (kstrtoull(argv[3], 10, (unsigned long long *)&low_water_blocks)) {
1977 		ti->error = "Invalid low water mark";
1978 		r = -EINVAL;
1979 		goto out;
1980 	}
1981 
1982 	/*
1983 	 * Set default pool features.
1984 	 */
1985 	pool_features_init(&pf);
1986 
1987 	dm_consume_args(&as, 4);
1988 	r = parse_pool_features(&as, &pf, ti);
1989 	if (r)
1990 		goto out;
1991 
1992 	pt = kzalloc(sizeof(*pt), GFP_KERNEL);
1993 	if (!pt) {
1994 		r = -ENOMEM;
1995 		goto out;
1996 	}
1997 
1998 	pool = __pool_find(dm_table_get_md(ti->table), metadata_dev->bdev,
1999 			   block_size, pf.mode == PM_READ_ONLY, &ti->error, &pool_created);
2000 	if (IS_ERR(pool)) {
2001 		r = PTR_ERR(pool);
2002 		goto out_free_pt;
2003 	}
2004 
2005 	/*
2006 	 * 'pool_created' reflects whether this is the first table load.
2007 	 * Top level discard support is not allowed to be changed after
2008 	 * initial load.  This would require a pool reload to trigger thin
2009 	 * device changes.
2010 	 */
2011 	if (!pool_created && pf.discard_enabled != pool->pf.discard_enabled) {
2012 		ti->error = "Discard support cannot be disabled once enabled";
2013 		r = -EINVAL;
2014 		goto out_flags_changed;
2015 	}
2016 
2017 	pt->pool = pool;
2018 	pt->ti = ti;
2019 	pt->metadata_dev = metadata_dev;
2020 	pt->data_dev = data_dev;
2021 	pt->low_water_blocks = low_water_blocks;
2022 	pt->adjusted_pf = pt->requested_pf = pf;
2023 	ti->num_flush_bios = 1;
2024 
2025 	/*
2026 	 * Only need to enable discards if the pool should pass
2027 	 * them down to the data device.  The thin device's discard
2028 	 * processing will cause mappings to be removed from the btree.
2029 	 */
2030 	if (pf.discard_enabled && pf.discard_passdown) {
2031 		ti->num_discard_bios = 1;
2032 
2033 		/*
2034 		 * Setting 'discards_supported' circumvents the normal
2035 		 * stacking of discard limits (this keeps the pool and
2036 		 * thin devices' discard limits consistent).
2037 		 */
2038 		ti->discards_supported = true;
2039 		ti->discard_zeroes_data_unsupported = true;
2040 	}
2041 	ti->private = pt;
2042 
2043 	pt->callbacks.congested_fn = pool_is_congested;
2044 	dm_table_add_target_callbacks(ti->table, &pt->callbacks);
2045 
2046 	mutex_unlock(&dm_thin_pool_table.mutex);
2047 
2048 	return 0;
2049 
2050 out_flags_changed:
2051 	__pool_dec(pool);
2052 out_free_pt:
2053 	kfree(pt);
2054 out:
2055 	dm_put_device(ti, data_dev);
2056 out_metadata:
2057 	dm_put_device(ti, metadata_dev);
2058 out_unlock:
2059 	mutex_unlock(&dm_thin_pool_table.mutex);
2060 
2061 	return r;
2062 }
2063 
2064 static int pool_map(struct dm_target *ti, struct bio *bio)
2065 {
2066 	int r;
2067 	struct pool_c *pt = ti->private;
2068 	struct pool *pool = pt->pool;
2069 	unsigned long flags;
2070 
2071 	/*
2072 	 * As this is a singleton target, ti->begin is always zero.
2073 	 */
2074 	spin_lock_irqsave(&pool->lock, flags);
2075 	bio->bi_bdev = pt->data_dev->bdev;
2076 	r = DM_MAPIO_REMAPPED;
2077 	spin_unlock_irqrestore(&pool->lock, flags);
2078 
2079 	return r;
2080 }
2081 
2082 /*
2083  * Retrieves the number of blocks of the data device from
2084  * the superblock and compares it to the actual device size,
2085  * thus resizing the data device in case it has grown.
2086  *
2087  * This both copes with opening preallocated data devices in the ctr
2088  * being followed by a resume
2089  * -and-
2090  * calling the resume method individually after userspace has
2091  * grown the data device in reaction to a table event.
2092  */
2093 static int pool_preresume(struct dm_target *ti)
2094 {
2095 	int r;
2096 	struct pool_c *pt = ti->private;
2097 	struct pool *pool = pt->pool;
2098 	sector_t data_size = ti->len;
2099 	dm_block_t sb_data_size;
2100 
2101 	/*
2102 	 * Take control of the pool object.
2103 	 */
2104 	r = bind_control_target(pool, ti);
2105 	if (r)
2106 		return r;
2107 
2108 	(void) sector_div(data_size, pool->sectors_per_block);
2109 
2110 	r = dm_pool_get_data_dev_size(pool->pmd, &sb_data_size);
2111 	if (r) {
2112 		DMERR("failed to retrieve data device size");
2113 		return r;
2114 	}
2115 
2116 	if (data_size < sb_data_size) {
2117 		DMERR("pool target too small, is %llu blocks (expected %llu)",
2118 		      (unsigned long long)data_size, sb_data_size);
2119 		return -EINVAL;
2120 
2121 	} else if (data_size > sb_data_size) {
2122 		r = dm_pool_resize_data_dev(pool->pmd, data_size);
2123 		if (r) {
2124 			DMERR("failed to resize data device");
2125 			/* FIXME Stricter than necessary: Rollback transaction instead here */
2126 			set_pool_mode(pool, PM_READ_ONLY);
2127 			return r;
2128 		}
2129 
2130 		(void) commit_or_fallback(pool);
2131 	}
2132 
2133 	return 0;
2134 }
2135 
2136 static void pool_resume(struct dm_target *ti)
2137 {
2138 	struct pool_c *pt = ti->private;
2139 	struct pool *pool = pt->pool;
2140 	unsigned long flags;
2141 
2142 	spin_lock_irqsave(&pool->lock, flags);
2143 	pool->low_water_triggered = 0;
2144 	pool->no_free_space = 0;
2145 	__requeue_bios(pool);
2146 	spin_unlock_irqrestore(&pool->lock, flags);
2147 
2148 	do_waker(&pool->waker.work);
2149 }
2150 
2151 static void pool_postsuspend(struct dm_target *ti)
2152 {
2153 	struct pool_c *pt = ti->private;
2154 	struct pool *pool = pt->pool;
2155 
2156 	cancel_delayed_work(&pool->waker);
2157 	flush_workqueue(pool->wq);
2158 	(void) commit_or_fallback(pool);
2159 }
2160 
2161 static int check_arg_count(unsigned argc, unsigned args_required)
2162 {
2163 	if (argc != args_required) {
2164 		DMWARN("Message received with %u arguments instead of %u.",
2165 		       argc, args_required);
2166 		return -EINVAL;
2167 	}
2168 
2169 	return 0;
2170 }
2171 
2172 static int read_dev_id(char *arg, dm_thin_id *dev_id, int warning)
2173 {
2174 	if (!kstrtoull(arg, 10, (unsigned long long *)dev_id) &&
2175 	    *dev_id <= MAX_DEV_ID)
2176 		return 0;
2177 
2178 	if (warning)
2179 		DMWARN("Message received with invalid device id: %s", arg);
2180 
2181 	return -EINVAL;
2182 }
2183 
2184 static int process_create_thin_mesg(unsigned argc, char **argv, struct pool *pool)
2185 {
2186 	dm_thin_id dev_id;
2187 	int r;
2188 
2189 	r = check_arg_count(argc, 2);
2190 	if (r)
2191 		return r;
2192 
2193 	r = read_dev_id(argv[1], &dev_id, 1);
2194 	if (r)
2195 		return r;
2196 
2197 	r = dm_pool_create_thin(pool->pmd, dev_id);
2198 	if (r) {
2199 		DMWARN("Creation of new thinly-provisioned device with id %s failed.",
2200 		       argv[1]);
2201 		return r;
2202 	}
2203 
2204 	return 0;
2205 }
2206 
2207 static int process_create_snap_mesg(unsigned argc, char **argv, struct pool *pool)
2208 {
2209 	dm_thin_id dev_id;
2210 	dm_thin_id origin_dev_id;
2211 	int r;
2212 
2213 	r = check_arg_count(argc, 3);
2214 	if (r)
2215 		return r;
2216 
2217 	r = read_dev_id(argv[1], &dev_id, 1);
2218 	if (r)
2219 		return r;
2220 
2221 	r = read_dev_id(argv[2], &origin_dev_id, 1);
2222 	if (r)
2223 		return r;
2224 
2225 	r = dm_pool_create_snap(pool->pmd, dev_id, origin_dev_id);
2226 	if (r) {
2227 		DMWARN("Creation of new snapshot %s of device %s failed.",
2228 		       argv[1], argv[2]);
2229 		return r;
2230 	}
2231 
2232 	return 0;
2233 }
2234 
2235 static int process_delete_mesg(unsigned argc, char **argv, struct pool *pool)
2236 {
2237 	dm_thin_id dev_id;
2238 	int r;
2239 
2240 	r = check_arg_count(argc, 2);
2241 	if (r)
2242 		return r;
2243 
2244 	r = read_dev_id(argv[1], &dev_id, 1);
2245 	if (r)
2246 		return r;
2247 
2248 	r = dm_pool_delete_thin_device(pool->pmd, dev_id);
2249 	if (r)
2250 		DMWARN("Deletion of thin device %s failed.", argv[1]);
2251 
2252 	return r;
2253 }
2254 
2255 static int process_set_transaction_id_mesg(unsigned argc, char **argv, struct pool *pool)
2256 {
2257 	dm_thin_id old_id, new_id;
2258 	int r;
2259 
2260 	r = check_arg_count(argc, 3);
2261 	if (r)
2262 		return r;
2263 
2264 	if (kstrtoull(argv[1], 10, (unsigned long long *)&old_id)) {
2265 		DMWARN("set_transaction_id message: Unrecognised id %s.", argv[1]);
2266 		return -EINVAL;
2267 	}
2268 
2269 	if (kstrtoull(argv[2], 10, (unsigned long long *)&new_id)) {
2270 		DMWARN("set_transaction_id message: Unrecognised new id %s.", argv[2]);
2271 		return -EINVAL;
2272 	}
2273 
2274 	r = dm_pool_set_metadata_transaction_id(pool->pmd, old_id, new_id);
2275 	if (r) {
2276 		DMWARN("Failed to change transaction id from %s to %s.",
2277 		       argv[1], argv[2]);
2278 		return r;
2279 	}
2280 
2281 	return 0;
2282 }
2283 
2284 static int process_reserve_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool)
2285 {
2286 	int r;
2287 
2288 	r = check_arg_count(argc, 1);
2289 	if (r)
2290 		return r;
2291 
2292 	(void) commit_or_fallback(pool);
2293 
2294 	r = dm_pool_reserve_metadata_snap(pool->pmd);
2295 	if (r)
2296 		DMWARN("reserve_metadata_snap message failed.");
2297 
2298 	return r;
2299 }
2300 
2301 static int process_release_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool)
2302 {
2303 	int r;
2304 
2305 	r = check_arg_count(argc, 1);
2306 	if (r)
2307 		return r;
2308 
2309 	r = dm_pool_release_metadata_snap(pool->pmd);
2310 	if (r)
2311 		DMWARN("release_metadata_snap message failed.");
2312 
2313 	return r;
2314 }
2315 
2316 /*
2317  * Messages supported:
2318  *   create_thin	<dev_id>
2319  *   create_snap	<dev_id> <origin_id>
2320  *   delete		<dev_id>
2321  *   trim		<dev_id> <new_size_in_sectors>
2322  *   set_transaction_id <current_trans_id> <new_trans_id>
2323  *   reserve_metadata_snap
2324  *   release_metadata_snap
2325  */
2326 static int pool_message(struct dm_target *ti, unsigned argc, char **argv)
2327 {
2328 	int r = -EINVAL;
2329 	struct pool_c *pt = ti->private;
2330 	struct pool *pool = pt->pool;
2331 
2332 	if (!strcasecmp(argv[0], "create_thin"))
2333 		r = process_create_thin_mesg(argc, argv, pool);
2334 
2335 	else if (!strcasecmp(argv[0], "create_snap"))
2336 		r = process_create_snap_mesg(argc, argv, pool);
2337 
2338 	else if (!strcasecmp(argv[0], "delete"))
2339 		r = process_delete_mesg(argc, argv, pool);
2340 
2341 	else if (!strcasecmp(argv[0], "set_transaction_id"))
2342 		r = process_set_transaction_id_mesg(argc, argv, pool);
2343 
2344 	else if (!strcasecmp(argv[0], "reserve_metadata_snap"))
2345 		r = process_reserve_metadata_snap_mesg(argc, argv, pool);
2346 
2347 	else if (!strcasecmp(argv[0], "release_metadata_snap"))
2348 		r = process_release_metadata_snap_mesg(argc, argv, pool);
2349 
2350 	else
2351 		DMWARN("Unrecognised thin pool target message received: %s", argv[0]);
2352 
2353 	if (!r)
2354 		(void) commit_or_fallback(pool);
2355 
2356 	return r;
2357 }
2358 
2359 static void emit_flags(struct pool_features *pf, char *result,
2360 		       unsigned sz, unsigned maxlen)
2361 {
2362 	unsigned count = !pf->zero_new_blocks + !pf->discard_enabled +
2363 		!pf->discard_passdown + (pf->mode == PM_READ_ONLY);
2364 	DMEMIT("%u ", count);
2365 
2366 	if (!pf->zero_new_blocks)
2367 		DMEMIT("skip_block_zeroing ");
2368 
2369 	if (!pf->discard_enabled)
2370 		DMEMIT("ignore_discard ");
2371 
2372 	if (!pf->discard_passdown)
2373 		DMEMIT("no_discard_passdown ");
2374 
2375 	if (pf->mode == PM_READ_ONLY)
2376 		DMEMIT("read_only ");
2377 }
2378 
2379 /*
2380  * Status line is:
2381  *    <transaction id> <used metadata sectors>/<total metadata sectors>
2382  *    <used data sectors>/<total data sectors> <held metadata root>
2383  */
2384 static void pool_status(struct dm_target *ti, status_type_t type,
2385 			unsigned status_flags, char *result, unsigned maxlen)
2386 {
2387 	int r;
2388 	unsigned sz = 0;
2389 	uint64_t transaction_id;
2390 	dm_block_t nr_free_blocks_data;
2391 	dm_block_t nr_free_blocks_metadata;
2392 	dm_block_t nr_blocks_data;
2393 	dm_block_t nr_blocks_metadata;
2394 	dm_block_t held_root;
2395 	char buf[BDEVNAME_SIZE];
2396 	char buf2[BDEVNAME_SIZE];
2397 	struct pool_c *pt = ti->private;
2398 	struct pool *pool = pt->pool;
2399 
2400 	switch (type) {
2401 	case STATUSTYPE_INFO:
2402 		if (get_pool_mode(pool) == PM_FAIL) {
2403 			DMEMIT("Fail");
2404 			break;
2405 		}
2406 
2407 		/* Commit to ensure statistics aren't out-of-date */
2408 		if (!(status_flags & DM_STATUS_NOFLUSH_FLAG) && !dm_suspended(ti))
2409 			(void) commit_or_fallback(pool);
2410 
2411 		r = dm_pool_get_metadata_transaction_id(pool->pmd, &transaction_id);
2412 		if (r) {
2413 			DMERR("dm_pool_get_metadata_transaction_id returned %d", r);
2414 			goto err;
2415 		}
2416 
2417 		r = dm_pool_get_free_metadata_block_count(pool->pmd, &nr_free_blocks_metadata);
2418 		if (r) {
2419 			DMERR("dm_pool_get_free_metadata_block_count returned %d", r);
2420 			goto err;
2421 		}
2422 
2423 		r = dm_pool_get_metadata_dev_size(pool->pmd, &nr_blocks_metadata);
2424 		if (r) {
2425 			DMERR("dm_pool_get_metadata_dev_size returned %d", r);
2426 			goto err;
2427 		}
2428 
2429 		r = dm_pool_get_free_block_count(pool->pmd, &nr_free_blocks_data);
2430 		if (r) {
2431 			DMERR("dm_pool_get_free_block_count returned %d", r);
2432 			goto err;
2433 		}
2434 
2435 		r = dm_pool_get_data_dev_size(pool->pmd, &nr_blocks_data);
2436 		if (r) {
2437 			DMERR("dm_pool_get_data_dev_size returned %d", r);
2438 			goto err;
2439 		}
2440 
2441 		r = dm_pool_get_metadata_snap(pool->pmd, &held_root);
2442 		if (r) {
2443 			DMERR("dm_pool_get_metadata_snap returned %d", r);
2444 			goto err;
2445 		}
2446 
2447 		DMEMIT("%llu %llu/%llu %llu/%llu ",
2448 		       (unsigned long long)transaction_id,
2449 		       (unsigned long long)(nr_blocks_metadata - nr_free_blocks_metadata),
2450 		       (unsigned long long)nr_blocks_metadata,
2451 		       (unsigned long long)(nr_blocks_data - nr_free_blocks_data),
2452 		       (unsigned long long)nr_blocks_data);
2453 
2454 		if (held_root)
2455 			DMEMIT("%llu ", held_root);
2456 		else
2457 			DMEMIT("- ");
2458 
2459 		if (pool->pf.mode == PM_READ_ONLY)
2460 			DMEMIT("ro ");
2461 		else
2462 			DMEMIT("rw ");
2463 
2464 		if (!pool->pf.discard_enabled)
2465 			DMEMIT("ignore_discard");
2466 		else if (pool->pf.discard_passdown)
2467 			DMEMIT("discard_passdown");
2468 		else
2469 			DMEMIT("no_discard_passdown");
2470 
2471 		break;
2472 
2473 	case STATUSTYPE_TABLE:
2474 		DMEMIT("%s %s %lu %llu ",
2475 		       format_dev_t(buf, pt->metadata_dev->bdev->bd_dev),
2476 		       format_dev_t(buf2, pt->data_dev->bdev->bd_dev),
2477 		       (unsigned long)pool->sectors_per_block,
2478 		       (unsigned long long)pt->low_water_blocks);
2479 		emit_flags(&pt->requested_pf, result, sz, maxlen);
2480 		break;
2481 	}
2482 	return;
2483 
2484 err:
2485 	DMEMIT("Error");
2486 }
2487 
2488 static int pool_iterate_devices(struct dm_target *ti,
2489 				iterate_devices_callout_fn fn, void *data)
2490 {
2491 	struct pool_c *pt = ti->private;
2492 
2493 	return fn(ti, pt->data_dev, 0, ti->len, data);
2494 }
2495 
2496 static int pool_merge(struct dm_target *ti, struct bvec_merge_data *bvm,
2497 		      struct bio_vec *biovec, int max_size)
2498 {
2499 	struct pool_c *pt = ti->private;
2500 	struct request_queue *q = bdev_get_queue(pt->data_dev->bdev);
2501 
2502 	if (!q->merge_bvec_fn)
2503 		return max_size;
2504 
2505 	bvm->bi_bdev = pt->data_dev->bdev;
2506 
2507 	return min(max_size, q->merge_bvec_fn(q, bvm, biovec));
2508 }
2509 
2510 static void set_discard_limits(struct pool_c *pt, struct queue_limits *limits)
2511 {
2512 	struct pool *pool = pt->pool;
2513 	struct queue_limits *data_limits;
2514 
2515 	limits->max_discard_sectors = pool->sectors_per_block;
2516 
2517 	/*
2518 	 * discard_granularity is just a hint, and not enforced.
2519 	 */
2520 	if (pt->adjusted_pf.discard_passdown) {
2521 		data_limits = &bdev_get_queue(pt->data_dev->bdev)->limits;
2522 		limits->discard_granularity = data_limits->discard_granularity;
2523 	} else
2524 		limits->discard_granularity = pool->sectors_per_block << SECTOR_SHIFT;
2525 }
2526 
2527 static void pool_io_hints(struct dm_target *ti, struct queue_limits *limits)
2528 {
2529 	struct pool_c *pt = ti->private;
2530 	struct pool *pool = pt->pool;
2531 
2532 	blk_limits_io_min(limits, 0);
2533 	blk_limits_io_opt(limits, pool->sectors_per_block << SECTOR_SHIFT);
2534 
2535 	/*
2536 	 * pt->adjusted_pf is a staging area for the actual features to use.
2537 	 * They get transferred to the live pool in bind_control_target()
2538 	 * called from pool_preresume().
2539 	 */
2540 	if (!pt->adjusted_pf.discard_enabled)
2541 		return;
2542 
2543 	disable_passdown_if_not_supported(pt);
2544 
2545 	set_discard_limits(pt, limits);
2546 }
2547 
2548 static struct target_type pool_target = {
2549 	.name = "thin-pool",
2550 	.features = DM_TARGET_SINGLETON | DM_TARGET_ALWAYS_WRITEABLE |
2551 		    DM_TARGET_IMMUTABLE,
2552 	.version = {1, 7, 0},
2553 	.module = THIS_MODULE,
2554 	.ctr = pool_ctr,
2555 	.dtr = pool_dtr,
2556 	.map = pool_map,
2557 	.postsuspend = pool_postsuspend,
2558 	.preresume = pool_preresume,
2559 	.resume = pool_resume,
2560 	.message = pool_message,
2561 	.status = pool_status,
2562 	.merge = pool_merge,
2563 	.iterate_devices = pool_iterate_devices,
2564 	.io_hints = pool_io_hints,
2565 };
2566 
2567 /*----------------------------------------------------------------
2568  * Thin target methods
2569  *--------------------------------------------------------------*/
2570 static void thin_dtr(struct dm_target *ti)
2571 {
2572 	struct thin_c *tc = ti->private;
2573 
2574 	mutex_lock(&dm_thin_pool_table.mutex);
2575 
2576 	__pool_dec(tc->pool);
2577 	dm_pool_close_thin_device(tc->td);
2578 	dm_put_device(ti, tc->pool_dev);
2579 	if (tc->origin_dev)
2580 		dm_put_device(ti, tc->origin_dev);
2581 	kfree(tc);
2582 
2583 	mutex_unlock(&dm_thin_pool_table.mutex);
2584 }
2585 
2586 /*
2587  * Thin target parameters:
2588  *
2589  * <pool_dev> <dev_id> [origin_dev]
2590  *
2591  * pool_dev: the path to the pool (eg, /dev/mapper/my_pool)
2592  * dev_id: the internal device identifier
2593  * origin_dev: a device external to the pool that should act as the origin
2594  *
2595  * If the pool device has discards disabled, they get disabled for the thin
2596  * device as well.
2597  */
2598 static int thin_ctr(struct dm_target *ti, unsigned argc, char **argv)
2599 {
2600 	int r;
2601 	struct thin_c *tc;
2602 	struct dm_dev *pool_dev, *origin_dev;
2603 	struct mapped_device *pool_md;
2604 
2605 	mutex_lock(&dm_thin_pool_table.mutex);
2606 
2607 	if (argc != 2 && argc != 3) {
2608 		ti->error = "Invalid argument count";
2609 		r = -EINVAL;
2610 		goto out_unlock;
2611 	}
2612 
2613 	tc = ti->private = kzalloc(sizeof(*tc), GFP_KERNEL);
2614 	if (!tc) {
2615 		ti->error = "Out of memory";
2616 		r = -ENOMEM;
2617 		goto out_unlock;
2618 	}
2619 
2620 	if (argc == 3) {
2621 		r = dm_get_device(ti, argv[2], FMODE_READ, &origin_dev);
2622 		if (r) {
2623 			ti->error = "Error opening origin device";
2624 			goto bad_origin_dev;
2625 		}
2626 		tc->origin_dev = origin_dev;
2627 	}
2628 
2629 	r = dm_get_device(ti, argv[0], dm_table_get_mode(ti->table), &pool_dev);
2630 	if (r) {
2631 		ti->error = "Error opening pool device";
2632 		goto bad_pool_dev;
2633 	}
2634 	tc->pool_dev = pool_dev;
2635 
2636 	if (read_dev_id(argv[1], (unsigned long long *)&tc->dev_id, 0)) {
2637 		ti->error = "Invalid device id";
2638 		r = -EINVAL;
2639 		goto bad_common;
2640 	}
2641 
2642 	pool_md = dm_get_md(tc->pool_dev->bdev->bd_dev);
2643 	if (!pool_md) {
2644 		ti->error = "Couldn't get pool mapped device";
2645 		r = -EINVAL;
2646 		goto bad_common;
2647 	}
2648 
2649 	tc->pool = __pool_table_lookup(pool_md);
2650 	if (!tc->pool) {
2651 		ti->error = "Couldn't find pool object";
2652 		r = -EINVAL;
2653 		goto bad_pool_lookup;
2654 	}
2655 	__pool_inc(tc->pool);
2656 
2657 	if (get_pool_mode(tc->pool) == PM_FAIL) {
2658 		ti->error = "Couldn't open thin device, Pool is in fail mode";
2659 		goto bad_thin_open;
2660 	}
2661 
2662 	r = dm_pool_open_thin_device(tc->pool->pmd, tc->dev_id, &tc->td);
2663 	if (r) {
2664 		ti->error = "Couldn't open thin internal device";
2665 		goto bad_thin_open;
2666 	}
2667 
2668 	r = dm_set_target_max_io_len(ti, tc->pool->sectors_per_block);
2669 	if (r)
2670 		goto bad_thin_open;
2671 
2672 	ti->num_flush_bios = 1;
2673 	ti->flush_supported = true;
2674 	ti->per_bio_data_size = sizeof(struct dm_thin_endio_hook);
2675 
2676 	/* In case the pool supports discards, pass them on. */
2677 	if (tc->pool->pf.discard_enabled) {
2678 		ti->discards_supported = true;
2679 		ti->num_discard_bios = 1;
2680 		ti->discard_zeroes_data_unsupported = true;
2681 		/* Discard bios must be split on a block boundary */
2682 		ti->split_discard_bios = true;
2683 	}
2684 
2685 	dm_put(pool_md);
2686 
2687 	mutex_unlock(&dm_thin_pool_table.mutex);
2688 
2689 	return 0;
2690 
2691 bad_thin_open:
2692 	__pool_dec(tc->pool);
2693 bad_pool_lookup:
2694 	dm_put(pool_md);
2695 bad_common:
2696 	dm_put_device(ti, tc->pool_dev);
2697 bad_pool_dev:
2698 	if (tc->origin_dev)
2699 		dm_put_device(ti, tc->origin_dev);
2700 bad_origin_dev:
2701 	kfree(tc);
2702 out_unlock:
2703 	mutex_unlock(&dm_thin_pool_table.mutex);
2704 
2705 	return r;
2706 }
2707 
2708 static int thin_map(struct dm_target *ti, struct bio *bio)
2709 {
2710 	bio->bi_sector = dm_target_offset(ti, bio->bi_sector);
2711 
2712 	return thin_bio_map(ti, bio);
2713 }
2714 
2715 static int thin_endio(struct dm_target *ti, struct bio *bio, int err)
2716 {
2717 	unsigned long flags;
2718 	struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
2719 	struct list_head work;
2720 	struct dm_thin_new_mapping *m, *tmp;
2721 	struct pool *pool = h->tc->pool;
2722 
2723 	if (h->shared_read_entry) {
2724 		INIT_LIST_HEAD(&work);
2725 		dm_deferred_entry_dec(h->shared_read_entry, &work);
2726 
2727 		spin_lock_irqsave(&pool->lock, flags);
2728 		list_for_each_entry_safe(m, tmp, &work, list) {
2729 			list_del(&m->list);
2730 			m->quiesced = 1;
2731 			__maybe_add_mapping(m);
2732 		}
2733 		spin_unlock_irqrestore(&pool->lock, flags);
2734 	}
2735 
2736 	if (h->all_io_entry) {
2737 		INIT_LIST_HEAD(&work);
2738 		dm_deferred_entry_dec(h->all_io_entry, &work);
2739 		if (!list_empty(&work)) {
2740 			spin_lock_irqsave(&pool->lock, flags);
2741 			list_for_each_entry_safe(m, tmp, &work, list)
2742 				list_add(&m->list, &pool->prepared_discards);
2743 			spin_unlock_irqrestore(&pool->lock, flags);
2744 			wake_worker(pool);
2745 		}
2746 	}
2747 
2748 	return 0;
2749 }
2750 
2751 static void thin_postsuspend(struct dm_target *ti)
2752 {
2753 	if (dm_noflush_suspending(ti))
2754 		requeue_io((struct thin_c *)ti->private);
2755 }
2756 
2757 /*
2758  * <nr mapped sectors> <highest mapped sector>
2759  */
2760 static void thin_status(struct dm_target *ti, status_type_t type,
2761 			unsigned status_flags, char *result, unsigned maxlen)
2762 {
2763 	int r;
2764 	ssize_t sz = 0;
2765 	dm_block_t mapped, highest;
2766 	char buf[BDEVNAME_SIZE];
2767 	struct thin_c *tc = ti->private;
2768 
2769 	if (get_pool_mode(tc->pool) == PM_FAIL) {
2770 		DMEMIT("Fail");
2771 		return;
2772 	}
2773 
2774 	if (!tc->td)
2775 		DMEMIT("-");
2776 	else {
2777 		switch (type) {
2778 		case STATUSTYPE_INFO:
2779 			r = dm_thin_get_mapped_count(tc->td, &mapped);
2780 			if (r) {
2781 				DMERR("dm_thin_get_mapped_count returned %d", r);
2782 				goto err;
2783 			}
2784 
2785 			r = dm_thin_get_highest_mapped_block(tc->td, &highest);
2786 			if (r < 0) {
2787 				DMERR("dm_thin_get_highest_mapped_block returned %d", r);
2788 				goto err;
2789 			}
2790 
2791 			DMEMIT("%llu ", mapped * tc->pool->sectors_per_block);
2792 			if (r)
2793 				DMEMIT("%llu", ((highest + 1) *
2794 						tc->pool->sectors_per_block) - 1);
2795 			else
2796 				DMEMIT("-");
2797 			break;
2798 
2799 		case STATUSTYPE_TABLE:
2800 			DMEMIT("%s %lu",
2801 			       format_dev_t(buf, tc->pool_dev->bdev->bd_dev),
2802 			       (unsigned long) tc->dev_id);
2803 			if (tc->origin_dev)
2804 				DMEMIT(" %s", format_dev_t(buf, tc->origin_dev->bdev->bd_dev));
2805 			break;
2806 		}
2807 	}
2808 
2809 	return;
2810 
2811 err:
2812 	DMEMIT("Error");
2813 }
2814 
2815 static int thin_iterate_devices(struct dm_target *ti,
2816 				iterate_devices_callout_fn fn, void *data)
2817 {
2818 	sector_t blocks;
2819 	struct thin_c *tc = ti->private;
2820 	struct pool *pool = tc->pool;
2821 
2822 	/*
2823 	 * We can't call dm_pool_get_data_dev_size() since that blocks.  So
2824 	 * we follow a more convoluted path through to the pool's target.
2825 	 */
2826 	if (!pool->ti)
2827 		return 0;	/* nothing is bound */
2828 
2829 	blocks = pool->ti->len;
2830 	(void) sector_div(blocks, pool->sectors_per_block);
2831 	if (blocks)
2832 		return fn(ti, tc->pool_dev, 0, pool->sectors_per_block * blocks, data);
2833 
2834 	return 0;
2835 }
2836 
2837 static struct target_type thin_target = {
2838 	.name = "thin",
2839 	.version = {1, 8, 0},
2840 	.module	= THIS_MODULE,
2841 	.ctr = thin_ctr,
2842 	.dtr = thin_dtr,
2843 	.map = thin_map,
2844 	.end_io = thin_endio,
2845 	.postsuspend = thin_postsuspend,
2846 	.status = thin_status,
2847 	.iterate_devices = thin_iterate_devices,
2848 };
2849 
2850 /*----------------------------------------------------------------*/
2851 
2852 static int __init dm_thin_init(void)
2853 {
2854 	int r;
2855 
2856 	pool_table_init();
2857 
2858 	r = dm_register_target(&thin_target);
2859 	if (r)
2860 		return r;
2861 
2862 	r = dm_register_target(&pool_target);
2863 	if (r)
2864 		goto bad_pool_target;
2865 
2866 	r = -ENOMEM;
2867 
2868 	_new_mapping_cache = KMEM_CACHE(dm_thin_new_mapping, 0);
2869 	if (!_new_mapping_cache)
2870 		goto bad_new_mapping_cache;
2871 
2872 	return 0;
2873 
2874 bad_new_mapping_cache:
2875 	dm_unregister_target(&pool_target);
2876 bad_pool_target:
2877 	dm_unregister_target(&thin_target);
2878 
2879 	return r;
2880 }
2881 
2882 static void dm_thin_exit(void)
2883 {
2884 	dm_unregister_target(&thin_target);
2885 	dm_unregister_target(&pool_target);
2886 
2887 	kmem_cache_destroy(_new_mapping_cache);
2888 }
2889 
2890 module_init(dm_thin_init);
2891 module_exit(dm_thin_exit);
2892 
2893 MODULE_DESCRIPTION(DM_NAME " thin provisioning target");
2894 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
2895 MODULE_LICENSE("GPL");
2896