1 /* 2 * Copyright (C) 2011-2012 Red Hat UK. 3 * 4 * This file is released under the GPL. 5 */ 6 7 #include "dm-thin-metadata.h" 8 #include "dm-bio-prison-v1.h" 9 #include "dm.h" 10 11 #include <linux/device-mapper.h> 12 #include <linux/dm-io.h> 13 #include <linux/dm-kcopyd.h> 14 #include <linux/jiffies.h> 15 #include <linux/log2.h> 16 #include <linux/list.h> 17 #include <linux/rculist.h> 18 #include <linux/init.h> 19 #include <linux/module.h> 20 #include <linux/slab.h> 21 #include <linux/vmalloc.h> 22 #include <linux/sort.h> 23 #include <linux/rbtree.h> 24 25 #define DM_MSG_PREFIX "thin" 26 27 /* 28 * Tunable constants 29 */ 30 #define ENDIO_HOOK_POOL_SIZE 1024 31 #define MAPPING_POOL_SIZE 1024 32 #define COMMIT_PERIOD HZ 33 #define NO_SPACE_TIMEOUT_SECS 60 34 35 static unsigned no_space_timeout_secs = NO_SPACE_TIMEOUT_SECS; 36 37 DECLARE_DM_KCOPYD_THROTTLE_WITH_MODULE_PARM(snapshot_copy_throttle, 38 "A percentage of time allocated for copy on write"); 39 40 /* 41 * The block size of the device holding pool data must be 42 * between 64KB and 1GB. 43 */ 44 #define DATA_DEV_BLOCK_SIZE_MIN_SECTORS (64 * 1024 >> SECTOR_SHIFT) 45 #define DATA_DEV_BLOCK_SIZE_MAX_SECTORS (1024 * 1024 * 1024 >> SECTOR_SHIFT) 46 47 /* 48 * Device id is restricted to 24 bits. 49 */ 50 #define MAX_DEV_ID ((1 << 24) - 1) 51 52 /* 53 * How do we handle breaking sharing of data blocks? 54 * ================================================= 55 * 56 * We use a standard copy-on-write btree to store the mappings for the 57 * devices (note I'm talking about copy-on-write of the metadata here, not 58 * the data). When you take an internal snapshot you clone the root node 59 * of the origin btree. After this there is no concept of an origin or a 60 * snapshot. They are just two device trees that happen to point to the 61 * same data blocks. 62 * 63 * When we get a write in we decide if it's to a shared data block using 64 * some timestamp magic. If it is, we have to break sharing. 65 * 66 * Let's say we write to a shared block in what was the origin. The 67 * steps are: 68 * 69 * i) plug io further to this physical block. (see bio_prison code). 70 * 71 * ii) quiesce any read io to that shared data block. Obviously 72 * including all devices that share this block. (see dm_deferred_set code) 73 * 74 * iii) copy the data block to a newly allocate block. This step can be 75 * missed out if the io covers the block. (schedule_copy). 76 * 77 * iv) insert the new mapping into the origin's btree 78 * (process_prepared_mapping). This act of inserting breaks some 79 * sharing of btree nodes between the two devices. Breaking sharing only 80 * effects the btree of that specific device. Btrees for the other 81 * devices that share the block never change. The btree for the origin 82 * device as it was after the last commit is untouched, ie. we're using 83 * persistent data structures in the functional programming sense. 84 * 85 * v) unplug io to this physical block, including the io that triggered 86 * the breaking of sharing. 87 * 88 * Steps (ii) and (iii) occur in parallel. 89 * 90 * The metadata _doesn't_ need to be committed before the io continues. We 91 * get away with this because the io is always written to a _new_ block. 92 * If there's a crash, then: 93 * 94 * - The origin mapping will point to the old origin block (the shared 95 * one). This will contain the data as it was before the io that triggered 96 * the breaking of sharing came in. 97 * 98 * - The snap mapping still points to the old block. As it would after 99 * the commit. 100 * 101 * The downside of this scheme is the timestamp magic isn't perfect, and 102 * will continue to think that data block in the snapshot device is shared 103 * even after the write to the origin has broken sharing. I suspect data 104 * blocks will typically be shared by many different devices, so we're 105 * breaking sharing n + 1 times, rather than n, where n is the number of 106 * devices that reference this data block. At the moment I think the 107 * benefits far, far outweigh the disadvantages. 108 */ 109 110 /*----------------------------------------------------------------*/ 111 112 /* 113 * Key building. 114 */ 115 enum lock_space { 116 VIRTUAL, 117 PHYSICAL 118 }; 119 120 static void build_key(struct dm_thin_device *td, enum lock_space ls, 121 dm_block_t b, dm_block_t e, struct dm_cell_key *key) 122 { 123 key->virtual = (ls == VIRTUAL); 124 key->dev = dm_thin_dev_id(td); 125 key->block_begin = b; 126 key->block_end = e; 127 } 128 129 static void build_data_key(struct dm_thin_device *td, dm_block_t b, 130 struct dm_cell_key *key) 131 { 132 build_key(td, PHYSICAL, b, b + 1llu, key); 133 } 134 135 static void build_virtual_key(struct dm_thin_device *td, dm_block_t b, 136 struct dm_cell_key *key) 137 { 138 build_key(td, VIRTUAL, b, b + 1llu, key); 139 } 140 141 /*----------------------------------------------------------------*/ 142 143 #define THROTTLE_THRESHOLD (1 * HZ) 144 145 struct throttle { 146 struct rw_semaphore lock; 147 unsigned long threshold; 148 bool throttle_applied; 149 }; 150 151 static void throttle_init(struct throttle *t) 152 { 153 init_rwsem(&t->lock); 154 t->throttle_applied = false; 155 } 156 157 static void throttle_work_start(struct throttle *t) 158 { 159 t->threshold = jiffies + THROTTLE_THRESHOLD; 160 } 161 162 static void throttle_work_update(struct throttle *t) 163 { 164 if (!t->throttle_applied && jiffies > t->threshold) { 165 down_write(&t->lock); 166 t->throttle_applied = true; 167 } 168 } 169 170 static void throttle_work_complete(struct throttle *t) 171 { 172 if (t->throttle_applied) { 173 t->throttle_applied = false; 174 up_write(&t->lock); 175 } 176 } 177 178 static void throttle_lock(struct throttle *t) 179 { 180 down_read(&t->lock); 181 } 182 183 static void throttle_unlock(struct throttle *t) 184 { 185 up_read(&t->lock); 186 } 187 188 /*----------------------------------------------------------------*/ 189 190 /* 191 * A pool device ties together a metadata device and a data device. It 192 * also provides the interface for creating and destroying internal 193 * devices. 194 */ 195 struct dm_thin_new_mapping; 196 197 /* 198 * The pool runs in 4 modes. Ordered in degraded order for comparisons. 199 */ 200 enum pool_mode { 201 PM_WRITE, /* metadata may be changed */ 202 PM_OUT_OF_DATA_SPACE, /* metadata may be changed, though data may not be allocated */ 203 204 /* 205 * Like READ_ONLY, except may switch back to WRITE on metadata resize. Reported as READ_ONLY. 206 */ 207 PM_OUT_OF_METADATA_SPACE, 208 PM_READ_ONLY, /* metadata may not be changed */ 209 210 PM_FAIL, /* all I/O fails */ 211 }; 212 213 struct pool_features { 214 enum pool_mode mode; 215 216 bool zero_new_blocks:1; 217 bool discard_enabled:1; 218 bool discard_passdown:1; 219 bool error_if_no_space:1; 220 }; 221 222 struct thin_c; 223 typedef void (*process_bio_fn)(struct thin_c *tc, struct bio *bio); 224 typedef void (*process_cell_fn)(struct thin_c *tc, struct dm_bio_prison_cell *cell); 225 typedef void (*process_mapping_fn)(struct dm_thin_new_mapping *m); 226 227 #define CELL_SORT_ARRAY_SIZE 8192 228 229 struct pool { 230 struct list_head list; 231 struct dm_target *ti; /* Only set if a pool target is bound */ 232 233 struct mapped_device *pool_md; 234 struct block_device *md_dev; 235 struct dm_pool_metadata *pmd; 236 237 dm_block_t low_water_blocks; 238 uint32_t sectors_per_block; 239 int sectors_per_block_shift; 240 241 struct pool_features pf; 242 bool low_water_triggered:1; /* A dm event has been sent */ 243 bool suspended:1; 244 bool out_of_data_space:1; 245 246 struct dm_bio_prison *prison; 247 struct dm_kcopyd_client *copier; 248 249 struct work_struct worker; 250 struct workqueue_struct *wq; 251 struct throttle throttle; 252 struct delayed_work waker; 253 struct delayed_work no_space_timeout; 254 255 unsigned long last_commit_jiffies; 256 unsigned ref_count; 257 258 spinlock_t lock; 259 struct bio_list deferred_flush_bios; 260 struct list_head prepared_mappings; 261 struct list_head prepared_discards; 262 struct list_head prepared_discards_pt2; 263 struct list_head active_thins; 264 265 struct dm_deferred_set *shared_read_ds; 266 struct dm_deferred_set *all_io_ds; 267 268 struct dm_thin_new_mapping *next_mapping; 269 270 process_bio_fn process_bio; 271 process_bio_fn process_discard; 272 273 process_cell_fn process_cell; 274 process_cell_fn process_discard_cell; 275 276 process_mapping_fn process_prepared_mapping; 277 process_mapping_fn process_prepared_discard; 278 process_mapping_fn process_prepared_discard_pt2; 279 280 struct dm_bio_prison_cell **cell_sort_array; 281 282 mempool_t mapping_pool; 283 }; 284 285 static enum pool_mode get_pool_mode(struct pool *pool); 286 static void metadata_operation_failed(struct pool *pool, const char *op, int r); 287 288 /* 289 * Target context for a pool. 290 */ 291 struct pool_c { 292 struct dm_target *ti; 293 struct pool *pool; 294 struct dm_dev *data_dev; 295 struct dm_dev *metadata_dev; 296 struct dm_target_callbacks callbacks; 297 298 dm_block_t low_water_blocks; 299 struct pool_features requested_pf; /* Features requested during table load */ 300 struct pool_features adjusted_pf; /* Features used after adjusting for constituent devices */ 301 }; 302 303 /* 304 * Target context for a thin. 305 */ 306 struct thin_c { 307 struct list_head list; 308 struct dm_dev *pool_dev; 309 struct dm_dev *origin_dev; 310 sector_t origin_size; 311 dm_thin_id dev_id; 312 313 struct pool *pool; 314 struct dm_thin_device *td; 315 struct mapped_device *thin_md; 316 317 bool requeue_mode:1; 318 spinlock_t lock; 319 struct list_head deferred_cells; 320 struct bio_list deferred_bio_list; 321 struct bio_list retry_on_resume_list; 322 struct rb_root sort_bio_list; /* sorted list of deferred bios */ 323 324 /* 325 * Ensures the thin is not destroyed until the worker has finished 326 * iterating the active_thins list. 327 */ 328 atomic_t refcount; 329 struct completion can_destroy; 330 }; 331 332 /*----------------------------------------------------------------*/ 333 334 static bool block_size_is_power_of_two(struct pool *pool) 335 { 336 return pool->sectors_per_block_shift >= 0; 337 } 338 339 static sector_t block_to_sectors(struct pool *pool, dm_block_t b) 340 { 341 return block_size_is_power_of_two(pool) ? 342 (b << pool->sectors_per_block_shift) : 343 (b * pool->sectors_per_block); 344 } 345 346 /*----------------------------------------------------------------*/ 347 348 struct discard_op { 349 struct thin_c *tc; 350 struct blk_plug plug; 351 struct bio *parent_bio; 352 struct bio *bio; 353 }; 354 355 static void begin_discard(struct discard_op *op, struct thin_c *tc, struct bio *parent) 356 { 357 BUG_ON(!parent); 358 359 op->tc = tc; 360 blk_start_plug(&op->plug); 361 op->parent_bio = parent; 362 op->bio = NULL; 363 } 364 365 static int issue_discard(struct discard_op *op, dm_block_t data_b, dm_block_t data_e) 366 { 367 struct thin_c *tc = op->tc; 368 sector_t s = block_to_sectors(tc->pool, data_b); 369 sector_t len = block_to_sectors(tc->pool, data_e - data_b); 370 371 return __blkdev_issue_discard(tc->pool_dev->bdev, s, len, 372 GFP_NOWAIT, 0, &op->bio); 373 } 374 375 static void end_discard(struct discard_op *op, int r) 376 { 377 if (op->bio) { 378 /* 379 * Even if one of the calls to issue_discard failed, we 380 * need to wait for the chain to complete. 381 */ 382 bio_chain(op->bio, op->parent_bio); 383 bio_set_op_attrs(op->bio, REQ_OP_DISCARD, 0); 384 submit_bio(op->bio); 385 } 386 387 blk_finish_plug(&op->plug); 388 389 /* 390 * Even if r is set, there could be sub discards in flight that we 391 * need to wait for. 392 */ 393 if (r && !op->parent_bio->bi_status) 394 op->parent_bio->bi_status = errno_to_blk_status(r); 395 bio_endio(op->parent_bio); 396 } 397 398 /*----------------------------------------------------------------*/ 399 400 /* 401 * wake_worker() is used when new work is queued and when pool_resume is 402 * ready to continue deferred IO processing. 403 */ 404 static void wake_worker(struct pool *pool) 405 { 406 queue_work(pool->wq, &pool->worker); 407 } 408 409 /*----------------------------------------------------------------*/ 410 411 static int bio_detain(struct pool *pool, struct dm_cell_key *key, struct bio *bio, 412 struct dm_bio_prison_cell **cell_result) 413 { 414 int r; 415 struct dm_bio_prison_cell *cell_prealloc; 416 417 /* 418 * Allocate a cell from the prison's mempool. 419 * This might block but it can't fail. 420 */ 421 cell_prealloc = dm_bio_prison_alloc_cell(pool->prison, GFP_NOIO); 422 423 r = dm_bio_detain(pool->prison, key, bio, cell_prealloc, cell_result); 424 if (r) 425 /* 426 * We reused an old cell; we can get rid of 427 * the new one. 428 */ 429 dm_bio_prison_free_cell(pool->prison, cell_prealloc); 430 431 return r; 432 } 433 434 static void cell_release(struct pool *pool, 435 struct dm_bio_prison_cell *cell, 436 struct bio_list *bios) 437 { 438 dm_cell_release(pool->prison, cell, bios); 439 dm_bio_prison_free_cell(pool->prison, cell); 440 } 441 442 static void cell_visit_release(struct pool *pool, 443 void (*fn)(void *, struct dm_bio_prison_cell *), 444 void *context, 445 struct dm_bio_prison_cell *cell) 446 { 447 dm_cell_visit_release(pool->prison, fn, context, cell); 448 dm_bio_prison_free_cell(pool->prison, cell); 449 } 450 451 static void cell_release_no_holder(struct pool *pool, 452 struct dm_bio_prison_cell *cell, 453 struct bio_list *bios) 454 { 455 dm_cell_release_no_holder(pool->prison, cell, bios); 456 dm_bio_prison_free_cell(pool->prison, cell); 457 } 458 459 static void cell_error_with_code(struct pool *pool, 460 struct dm_bio_prison_cell *cell, blk_status_t error_code) 461 { 462 dm_cell_error(pool->prison, cell, error_code); 463 dm_bio_prison_free_cell(pool->prison, cell); 464 } 465 466 static blk_status_t get_pool_io_error_code(struct pool *pool) 467 { 468 return pool->out_of_data_space ? BLK_STS_NOSPC : BLK_STS_IOERR; 469 } 470 471 static void cell_error(struct pool *pool, struct dm_bio_prison_cell *cell) 472 { 473 cell_error_with_code(pool, cell, get_pool_io_error_code(pool)); 474 } 475 476 static void cell_success(struct pool *pool, struct dm_bio_prison_cell *cell) 477 { 478 cell_error_with_code(pool, cell, 0); 479 } 480 481 static void cell_requeue(struct pool *pool, struct dm_bio_prison_cell *cell) 482 { 483 cell_error_with_code(pool, cell, BLK_STS_DM_REQUEUE); 484 } 485 486 /*----------------------------------------------------------------*/ 487 488 /* 489 * A global list of pools that uses a struct mapped_device as a key. 490 */ 491 static struct dm_thin_pool_table { 492 struct mutex mutex; 493 struct list_head pools; 494 } dm_thin_pool_table; 495 496 static void pool_table_init(void) 497 { 498 mutex_init(&dm_thin_pool_table.mutex); 499 INIT_LIST_HEAD(&dm_thin_pool_table.pools); 500 } 501 502 static void pool_table_exit(void) 503 { 504 mutex_destroy(&dm_thin_pool_table.mutex); 505 } 506 507 static void __pool_table_insert(struct pool *pool) 508 { 509 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex)); 510 list_add(&pool->list, &dm_thin_pool_table.pools); 511 } 512 513 static void __pool_table_remove(struct pool *pool) 514 { 515 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex)); 516 list_del(&pool->list); 517 } 518 519 static struct pool *__pool_table_lookup(struct mapped_device *md) 520 { 521 struct pool *pool = NULL, *tmp; 522 523 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex)); 524 525 list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) { 526 if (tmp->pool_md == md) { 527 pool = tmp; 528 break; 529 } 530 } 531 532 return pool; 533 } 534 535 static struct pool *__pool_table_lookup_metadata_dev(struct block_device *md_dev) 536 { 537 struct pool *pool = NULL, *tmp; 538 539 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex)); 540 541 list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) { 542 if (tmp->md_dev == md_dev) { 543 pool = tmp; 544 break; 545 } 546 } 547 548 return pool; 549 } 550 551 /*----------------------------------------------------------------*/ 552 553 struct dm_thin_endio_hook { 554 struct thin_c *tc; 555 struct dm_deferred_entry *shared_read_entry; 556 struct dm_deferred_entry *all_io_entry; 557 struct dm_thin_new_mapping *overwrite_mapping; 558 struct rb_node rb_node; 559 struct dm_bio_prison_cell *cell; 560 }; 561 562 static void __merge_bio_list(struct bio_list *bios, struct bio_list *master) 563 { 564 bio_list_merge(bios, master); 565 bio_list_init(master); 566 } 567 568 static void error_bio_list(struct bio_list *bios, blk_status_t error) 569 { 570 struct bio *bio; 571 572 while ((bio = bio_list_pop(bios))) { 573 bio->bi_status = error; 574 bio_endio(bio); 575 } 576 } 577 578 static void error_thin_bio_list(struct thin_c *tc, struct bio_list *master, 579 blk_status_t error) 580 { 581 struct bio_list bios; 582 unsigned long flags; 583 584 bio_list_init(&bios); 585 586 spin_lock_irqsave(&tc->lock, flags); 587 __merge_bio_list(&bios, master); 588 spin_unlock_irqrestore(&tc->lock, flags); 589 590 error_bio_list(&bios, error); 591 } 592 593 static void requeue_deferred_cells(struct thin_c *tc) 594 { 595 struct pool *pool = tc->pool; 596 unsigned long flags; 597 struct list_head cells; 598 struct dm_bio_prison_cell *cell, *tmp; 599 600 INIT_LIST_HEAD(&cells); 601 602 spin_lock_irqsave(&tc->lock, flags); 603 list_splice_init(&tc->deferred_cells, &cells); 604 spin_unlock_irqrestore(&tc->lock, flags); 605 606 list_for_each_entry_safe(cell, tmp, &cells, user_list) 607 cell_requeue(pool, cell); 608 } 609 610 static void requeue_io(struct thin_c *tc) 611 { 612 struct bio_list bios; 613 unsigned long flags; 614 615 bio_list_init(&bios); 616 617 spin_lock_irqsave(&tc->lock, flags); 618 __merge_bio_list(&bios, &tc->deferred_bio_list); 619 __merge_bio_list(&bios, &tc->retry_on_resume_list); 620 spin_unlock_irqrestore(&tc->lock, flags); 621 622 error_bio_list(&bios, BLK_STS_DM_REQUEUE); 623 requeue_deferred_cells(tc); 624 } 625 626 static void error_retry_list_with_code(struct pool *pool, blk_status_t error) 627 { 628 struct thin_c *tc; 629 630 rcu_read_lock(); 631 list_for_each_entry_rcu(tc, &pool->active_thins, list) 632 error_thin_bio_list(tc, &tc->retry_on_resume_list, error); 633 rcu_read_unlock(); 634 } 635 636 static void error_retry_list(struct pool *pool) 637 { 638 error_retry_list_with_code(pool, get_pool_io_error_code(pool)); 639 } 640 641 /* 642 * This section of code contains the logic for processing a thin device's IO. 643 * Much of the code depends on pool object resources (lists, workqueues, etc) 644 * but most is exclusively called from the thin target rather than the thin-pool 645 * target. 646 */ 647 648 static dm_block_t get_bio_block(struct thin_c *tc, struct bio *bio) 649 { 650 struct pool *pool = tc->pool; 651 sector_t block_nr = bio->bi_iter.bi_sector; 652 653 if (block_size_is_power_of_two(pool)) 654 block_nr >>= pool->sectors_per_block_shift; 655 else 656 (void) sector_div(block_nr, pool->sectors_per_block); 657 658 return block_nr; 659 } 660 661 /* 662 * Returns the _complete_ blocks that this bio covers. 663 */ 664 static void get_bio_block_range(struct thin_c *tc, struct bio *bio, 665 dm_block_t *begin, dm_block_t *end) 666 { 667 struct pool *pool = tc->pool; 668 sector_t b = bio->bi_iter.bi_sector; 669 sector_t e = b + (bio->bi_iter.bi_size >> SECTOR_SHIFT); 670 671 b += pool->sectors_per_block - 1ull; /* so we round up */ 672 673 if (block_size_is_power_of_two(pool)) { 674 b >>= pool->sectors_per_block_shift; 675 e >>= pool->sectors_per_block_shift; 676 } else { 677 (void) sector_div(b, pool->sectors_per_block); 678 (void) sector_div(e, pool->sectors_per_block); 679 } 680 681 if (e < b) 682 /* Can happen if the bio is within a single block. */ 683 e = b; 684 685 *begin = b; 686 *end = e; 687 } 688 689 static void remap(struct thin_c *tc, struct bio *bio, dm_block_t block) 690 { 691 struct pool *pool = tc->pool; 692 sector_t bi_sector = bio->bi_iter.bi_sector; 693 694 bio_set_dev(bio, tc->pool_dev->bdev); 695 if (block_size_is_power_of_two(pool)) 696 bio->bi_iter.bi_sector = 697 (block << pool->sectors_per_block_shift) | 698 (bi_sector & (pool->sectors_per_block - 1)); 699 else 700 bio->bi_iter.bi_sector = (block * pool->sectors_per_block) + 701 sector_div(bi_sector, pool->sectors_per_block); 702 } 703 704 static void remap_to_origin(struct thin_c *tc, struct bio *bio) 705 { 706 bio_set_dev(bio, tc->origin_dev->bdev); 707 } 708 709 static int bio_triggers_commit(struct thin_c *tc, struct bio *bio) 710 { 711 return op_is_flush(bio->bi_opf) && 712 dm_thin_changed_this_transaction(tc->td); 713 } 714 715 static void inc_all_io_entry(struct pool *pool, struct bio *bio) 716 { 717 struct dm_thin_endio_hook *h; 718 719 if (bio_op(bio) == REQ_OP_DISCARD) 720 return; 721 722 h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook)); 723 h->all_io_entry = dm_deferred_entry_inc(pool->all_io_ds); 724 } 725 726 static void issue(struct thin_c *tc, struct bio *bio) 727 { 728 struct pool *pool = tc->pool; 729 unsigned long flags; 730 731 if (!bio_triggers_commit(tc, bio)) { 732 generic_make_request(bio); 733 return; 734 } 735 736 /* 737 * Complete bio with an error if earlier I/O caused changes to 738 * the metadata that can't be committed e.g, due to I/O errors 739 * on the metadata device. 740 */ 741 if (dm_thin_aborted_changes(tc->td)) { 742 bio_io_error(bio); 743 return; 744 } 745 746 /* 747 * Batch together any bios that trigger commits and then issue a 748 * single commit for them in process_deferred_bios(). 749 */ 750 spin_lock_irqsave(&pool->lock, flags); 751 bio_list_add(&pool->deferred_flush_bios, bio); 752 spin_unlock_irqrestore(&pool->lock, flags); 753 } 754 755 static void remap_to_origin_and_issue(struct thin_c *tc, struct bio *bio) 756 { 757 remap_to_origin(tc, bio); 758 issue(tc, bio); 759 } 760 761 static void remap_and_issue(struct thin_c *tc, struct bio *bio, 762 dm_block_t block) 763 { 764 remap(tc, bio, block); 765 issue(tc, bio); 766 } 767 768 /*----------------------------------------------------------------*/ 769 770 /* 771 * Bio endio functions. 772 */ 773 struct dm_thin_new_mapping { 774 struct list_head list; 775 776 bool pass_discard:1; 777 bool maybe_shared:1; 778 779 /* 780 * Track quiescing, copying and zeroing preparation actions. When this 781 * counter hits zero the block is prepared and can be inserted into the 782 * btree. 783 */ 784 atomic_t prepare_actions; 785 786 blk_status_t status; 787 struct thin_c *tc; 788 dm_block_t virt_begin, virt_end; 789 dm_block_t data_block; 790 struct dm_bio_prison_cell *cell; 791 792 /* 793 * If the bio covers the whole area of a block then we can avoid 794 * zeroing or copying. Instead this bio is hooked. The bio will 795 * still be in the cell, so care has to be taken to avoid issuing 796 * the bio twice. 797 */ 798 struct bio *bio; 799 bio_end_io_t *saved_bi_end_io; 800 }; 801 802 static void __complete_mapping_preparation(struct dm_thin_new_mapping *m) 803 { 804 struct pool *pool = m->tc->pool; 805 806 if (atomic_dec_and_test(&m->prepare_actions)) { 807 list_add_tail(&m->list, &pool->prepared_mappings); 808 wake_worker(pool); 809 } 810 } 811 812 static void complete_mapping_preparation(struct dm_thin_new_mapping *m) 813 { 814 unsigned long flags; 815 struct pool *pool = m->tc->pool; 816 817 spin_lock_irqsave(&pool->lock, flags); 818 __complete_mapping_preparation(m); 819 spin_unlock_irqrestore(&pool->lock, flags); 820 } 821 822 static void copy_complete(int read_err, unsigned long write_err, void *context) 823 { 824 struct dm_thin_new_mapping *m = context; 825 826 m->status = read_err || write_err ? BLK_STS_IOERR : 0; 827 complete_mapping_preparation(m); 828 } 829 830 static void overwrite_endio(struct bio *bio) 831 { 832 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook)); 833 struct dm_thin_new_mapping *m = h->overwrite_mapping; 834 835 bio->bi_end_io = m->saved_bi_end_io; 836 837 m->status = bio->bi_status; 838 complete_mapping_preparation(m); 839 } 840 841 /*----------------------------------------------------------------*/ 842 843 /* 844 * Workqueue. 845 */ 846 847 /* 848 * Prepared mapping jobs. 849 */ 850 851 /* 852 * This sends the bios in the cell, except the original holder, back 853 * to the deferred_bios list. 854 */ 855 static void cell_defer_no_holder(struct thin_c *tc, struct dm_bio_prison_cell *cell) 856 { 857 struct pool *pool = tc->pool; 858 unsigned long flags; 859 860 spin_lock_irqsave(&tc->lock, flags); 861 cell_release_no_holder(pool, cell, &tc->deferred_bio_list); 862 spin_unlock_irqrestore(&tc->lock, flags); 863 864 wake_worker(pool); 865 } 866 867 static void thin_defer_bio(struct thin_c *tc, struct bio *bio); 868 869 struct remap_info { 870 struct thin_c *tc; 871 struct bio_list defer_bios; 872 struct bio_list issue_bios; 873 }; 874 875 static void __inc_remap_and_issue_cell(void *context, 876 struct dm_bio_prison_cell *cell) 877 { 878 struct remap_info *info = context; 879 struct bio *bio; 880 881 while ((bio = bio_list_pop(&cell->bios))) { 882 if (op_is_flush(bio->bi_opf) || bio_op(bio) == REQ_OP_DISCARD) 883 bio_list_add(&info->defer_bios, bio); 884 else { 885 inc_all_io_entry(info->tc->pool, bio); 886 887 /* 888 * We can't issue the bios with the bio prison lock 889 * held, so we add them to a list to issue on 890 * return from this function. 891 */ 892 bio_list_add(&info->issue_bios, bio); 893 } 894 } 895 } 896 897 static void inc_remap_and_issue_cell(struct thin_c *tc, 898 struct dm_bio_prison_cell *cell, 899 dm_block_t block) 900 { 901 struct bio *bio; 902 struct remap_info info; 903 904 info.tc = tc; 905 bio_list_init(&info.defer_bios); 906 bio_list_init(&info.issue_bios); 907 908 /* 909 * We have to be careful to inc any bios we're about to issue 910 * before the cell is released, and avoid a race with new bios 911 * being added to the cell. 912 */ 913 cell_visit_release(tc->pool, __inc_remap_and_issue_cell, 914 &info, cell); 915 916 while ((bio = bio_list_pop(&info.defer_bios))) 917 thin_defer_bio(tc, bio); 918 919 while ((bio = bio_list_pop(&info.issue_bios))) 920 remap_and_issue(info.tc, bio, block); 921 } 922 923 static void process_prepared_mapping_fail(struct dm_thin_new_mapping *m) 924 { 925 cell_error(m->tc->pool, m->cell); 926 list_del(&m->list); 927 mempool_free(m, &m->tc->pool->mapping_pool); 928 } 929 930 static void process_prepared_mapping(struct dm_thin_new_mapping *m) 931 { 932 struct thin_c *tc = m->tc; 933 struct pool *pool = tc->pool; 934 struct bio *bio = m->bio; 935 int r; 936 937 if (m->status) { 938 cell_error(pool, m->cell); 939 goto out; 940 } 941 942 /* 943 * Commit the prepared block into the mapping btree. 944 * Any I/O for this block arriving after this point will get 945 * remapped to it directly. 946 */ 947 r = dm_thin_insert_block(tc->td, m->virt_begin, m->data_block); 948 if (r) { 949 metadata_operation_failed(pool, "dm_thin_insert_block", r); 950 cell_error(pool, m->cell); 951 goto out; 952 } 953 954 /* 955 * Release any bios held while the block was being provisioned. 956 * If we are processing a write bio that completely covers the block, 957 * we already processed it so can ignore it now when processing 958 * the bios in the cell. 959 */ 960 if (bio) { 961 inc_remap_and_issue_cell(tc, m->cell, m->data_block); 962 bio_endio(bio); 963 } else { 964 inc_all_io_entry(tc->pool, m->cell->holder); 965 remap_and_issue(tc, m->cell->holder, m->data_block); 966 inc_remap_and_issue_cell(tc, m->cell, m->data_block); 967 } 968 969 out: 970 list_del(&m->list); 971 mempool_free(m, &pool->mapping_pool); 972 } 973 974 /*----------------------------------------------------------------*/ 975 976 static void free_discard_mapping(struct dm_thin_new_mapping *m) 977 { 978 struct thin_c *tc = m->tc; 979 if (m->cell) 980 cell_defer_no_holder(tc, m->cell); 981 mempool_free(m, &tc->pool->mapping_pool); 982 } 983 984 static void process_prepared_discard_fail(struct dm_thin_new_mapping *m) 985 { 986 bio_io_error(m->bio); 987 free_discard_mapping(m); 988 } 989 990 static void process_prepared_discard_success(struct dm_thin_new_mapping *m) 991 { 992 bio_endio(m->bio); 993 free_discard_mapping(m); 994 } 995 996 static void process_prepared_discard_no_passdown(struct dm_thin_new_mapping *m) 997 { 998 int r; 999 struct thin_c *tc = m->tc; 1000 1001 r = dm_thin_remove_range(tc->td, m->cell->key.block_begin, m->cell->key.block_end); 1002 if (r) { 1003 metadata_operation_failed(tc->pool, "dm_thin_remove_range", r); 1004 bio_io_error(m->bio); 1005 } else 1006 bio_endio(m->bio); 1007 1008 cell_defer_no_holder(tc, m->cell); 1009 mempool_free(m, &tc->pool->mapping_pool); 1010 } 1011 1012 /*----------------------------------------------------------------*/ 1013 1014 static void passdown_double_checking_shared_status(struct dm_thin_new_mapping *m, 1015 struct bio *discard_parent) 1016 { 1017 /* 1018 * We've already unmapped this range of blocks, but before we 1019 * passdown we have to check that these blocks are now unused. 1020 */ 1021 int r = 0; 1022 bool used = true; 1023 struct thin_c *tc = m->tc; 1024 struct pool *pool = tc->pool; 1025 dm_block_t b = m->data_block, e, end = m->data_block + m->virt_end - m->virt_begin; 1026 struct discard_op op; 1027 1028 begin_discard(&op, tc, discard_parent); 1029 while (b != end) { 1030 /* find start of unmapped run */ 1031 for (; b < end; b++) { 1032 r = dm_pool_block_is_used(pool->pmd, b, &used); 1033 if (r) 1034 goto out; 1035 1036 if (!used) 1037 break; 1038 } 1039 1040 if (b == end) 1041 break; 1042 1043 /* find end of run */ 1044 for (e = b + 1; e != end; e++) { 1045 r = dm_pool_block_is_used(pool->pmd, e, &used); 1046 if (r) 1047 goto out; 1048 1049 if (used) 1050 break; 1051 } 1052 1053 r = issue_discard(&op, b, e); 1054 if (r) 1055 goto out; 1056 1057 b = e; 1058 } 1059 out: 1060 end_discard(&op, r); 1061 } 1062 1063 static void queue_passdown_pt2(struct dm_thin_new_mapping *m) 1064 { 1065 unsigned long flags; 1066 struct pool *pool = m->tc->pool; 1067 1068 spin_lock_irqsave(&pool->lock, flags); 1069 list_add_tail(&m->list, &pool->prepared_discards_pt2); 1070 spin_unlock_irqrestore(&pool->lock, flags); 1071 wake_worker(pool); 1072 } 1073 1074 static void passdown_endio(struct bio *bio) 1075 { 1076 /* 1077 * It doesn't matter if the passdown discard failed, we still want 1078 * to unmap (we ignore err). 1079 */ 1080 queue_passdown_pt2(bio->bi_private); 1081 bio_put(bio); 1082 } 1083 1084 static void process_prepared_discard_passdown_pt1(struct dm_thin_new_mapping *m) 1085 { 1086 int r; 1087 struct thin_c *tc = m->tc; 1088 struct pool *pool = tc->pool; 1089 struct bio *discard_parent; 1090 dm_block_t data_end = m->data_block + (m->virt_end - m->virt_begin); 1091 1092 /* 1093 * Only this thread allocates blocks, so we can be sure that the 1094 * newly unmapped blocks will not be allocated before the end of 1095 * the function. 1096 */ 1097 r = dm_thin_remove_range(tc->td, m->virt_begin, m->virt_end); 1098 if (r) { 1099 metadata_operation_failed(pool, "dm_thin_remove_range", r); 1100 bio_io_error(m->bio); 1101 cell_defer_no_holder(tc, m->cell); 1102 mempool_free(m, &pool->mapping_pool); 1103 return; 1104 } 1105 1106 /* 1107 * Increment the unmapped blocks. This prevents a race between the 1108 * passdown io and reallocation of freed blocks. 1109 */ 1110 r = dm_pool_inc_data_range(pool->pmd, m->data_block, data_end); 1111 if (r) { 1112 metadata_operation_failed(pool, "dm_pool_inc_data_range", r); 1113 bio_io_error(m->bio); 1114 cell_defer_no_holder(tc, m->cell); 1115 mempool_free(m, &pool->mapping_pool); 1116 return; 1117 } 1118 1119 discard_parent = bio_alloc(GFP_NOIO, 1); 1120 if (!discard_parent) { 1121 DMWARN("%s: unable to allocate top level discard bio for passdown. Skipping passdown.", 1122 dm_device_name(tc->pool->pool_md)); 1123 queue_passdown_pt2(m); 1124 1125 } else { 1126 discard_parent->bi_end_io = passdown_endio; 1127 discard_parent->bi_private = m; 1128 1129 if (m->maybe_shared) 1130 passdown_double_checking_shared_status(m, discard_parent); 1131 else { 1132 struct discard_op op; 1133 1134 begin_discard(&op, tc, discard_parent); 1135 r = issue_discard(&op, m->data_block, data_end); 1136 end_discard(&op, r); 1137 } 1138 } 1139 } 1140 1141 static void process_prepared_discard_passdown_pt2(struct dm_thin_new_mapping *m) 1142 { 1143 int r; 1144 struct thin_c *tc = m->tc; 1145 struct pool *pool = tc->pool; 1146 1147 /* 1148 * The passdown has completed, so now we can decrement all those 1149 * unmapped blocks. 1150 */ 1151 r = dm_pool_dec_data_range(pool->pmd, m->data_block, 1152 m->data_block + (m->virt_end - m->virt_begin)); 1153 if (r) { 1154 metadata_operation_failed(pool, "dm_pool_dec_data_range", r); 1155 bio_io_error(m->bio); 1156 } else 1157 bio_endio(m->bio); 1158 1159 cell_defer_no_holder(tc, m->cell); 1160 mempool_free(m, &pool->mapping_pool); 1161 } 1162 1163 static void process_prepared(struct pool *pool, struct list_head *head, 1164 process_mapping_fn *fn) 1165 { 1166 unsigned long flags; 1167 struct list_head maps; 1168 struct dm_thin_new_mapping *m, *tmp; 1169 1170 INIT_LIST_HEAD(&maps); 1171 spin_lock_irqsave(&pool->lock, flags); 1172 list_splice_init(head, &maps); 1173 spin_unlock_irqrestore(&pool->lock, flags); 1174 1175 list_for_each_entry_safe(m, tmp, &maps, list) 1176 (*fn)(m); 1177 } 1178 1179 /* 1180 * Deferred bio jobs. 1181 */ 1182 static int io_overlaps_block(struct pool *pool, struct bio *bio) 1183 { 1184 return bio->bi_iter.bi_size == 1185 (pool->sectors_per_block << SECTOR_SHIFT); 1186 } 1187 1188 static int io_overwrites_block(struct pool *pool, struct bio *bio) 1189 { 1190 return (bio_data_dir(bio) == WRITE) && 1191 io_overlaps_block(pool, bio); 1192 } 1193 1194 static void save_and_set_endio(struct bio *bio, bio_end_io_t **save, 1195 bio_end_io_t *fn) 1196 { 1197 *save = bio->bi_end_io; 1198 bio->bi_end_io = fn; 1199 } 1200 1201 static int ensure_next_mapping(struct pool *pool) 1202 { 1203 if (pool->next_mapping) 1204 return 0; 1205 1206 pool->next_mapping = mempool_alloc(&pool->mapping_pool, GFP_ATOMIC); 1207 1208 return pool->next_mapping ? 0 : -ENOMEM; 1209 } 1210 1211 static struct dm_thin_new_mapping *get_next_mapping(struct pool *pool) 1212 { 1213 struct dm_thin_new_mapping *m = pool->next_mapping; 1214 1215 BUG_ON(!pool->next_mapping); 1216 1217 memset(m, 0, sizeof(struct dm_thin_new_mapping)); 1218 INIT_LIST_HEAD(&m->list); 1219 m->bio = NULL; 1220 1221 pool->next_mapping = NULL; 1222 1223 return m; 1224 } 1225 1226 static void ll_zero(struct thin_c *tc, struct dm_thin_new_mapping *m, 1227 sector_t begin, sector_t end) 1228 { 1229 struct dm_io_region to; 1230 1231 to.bdev = tc->pool_dev->bdev; 1232 to.sector = begin; 1233 to.count = end - begin; 1234 1235 dm_kcopyd_zero(tc->pool->copier, 1, &to, 0, copy_complete, m); 1236 } 1237 1238 static void remap_and_issue_overwrite(struct thin_c *tc, struct bio *bio, 1239 dm_block_t data_begin, 1240 struct dm_thin_new_mapping *m) 1241 { 1242 struct pool *pool = tc->pool; 1243 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook)); 1244 1245 h->overwrite_mapping = m; 1246 m->bio = bio; 1247 save_and_set_endio(bio, &m->saved_bi_end_io, overwrite_endio); 1248 inc_all_io_entry(pool, bio); 1249 remap_and_issue(tc, bio, data_begin); 1250 } 1251 1252 /* 1253 * A partial copy also needs to zero the uncopied region. 1254 */ 1255 static void schedule_copy(struct thin_c *tc, dm_block_t virt_block, 1256 struct dm_dev *origin, dm_block_t data_origin, 1257 dm_block_t data_dest, 1258 struct dm_bio_prison_cell *cell, struct bio *bio, 1259 sector_t len) 1260 { 1261 struct pool *pool = tc->pool; 1262 struct dm_thin_new_mapping *m = get_next_mapping(pool); 1263 1264 m->tc = tc; 1265 m->virt_begin = virt_block; 1266 m->virt_end = virt_block + 1u; 1267 m->data_block = data_dest; 1268 m->cell = cell; 1269 1270 /* 1271 * quiesce action + copy action + an extra reference held for the 1272 * duration of this function (we may need to inc later for a 1273 * partial zero). 1274 */ 1275 atomic_set(&m->prepare_actions, 3); 1276 1277 if (!dm_deferred_set_add_work(pool->shared_read_ds, &m->list)) 1278 complete_mapping_preparation(m); /* already quiesced */ 1279 1280 /* 1281 * IO to pool_dev remaps to the pool target's data_dev. 1282 * 1283 * If the whole block of data is being overwritten, we can issue the 1284 * bio immediately. Otherwise we use kcopyd to clone the data first. 1285 */ 1286 if (io_overwrites_block(pool, bio)) 1287 remap_and_issue_overwrite(tc, bio, data_dest, m); 1288 else { 1289 struct dm_io_region from, to; 1290 1291 from.bdev = origin->bdev; 1292 from.sector = data_origin * pool->sectors_per_block; 1293 from.count = len; 1294 1295 to.bdev = tc->pool_dev->bdev; 1296 to.sector = data_dest * pool->sectors_per_block; 1297 to.count = len; 1298 1299 dm_kcopyd_copy(pool->copier, &from, 1, &to, 1300 0, copy_complete, m); 1301 1302 /* 1303 * Do we need to zero a tail region? 1304 */ 1305 if (len < pool->sectors_per_block && pool->pf.zero_new_blocks) { 1306 atomic_inc(&m->prepare_actions); 1307 ll_zero(tc, m, 1308 data_dest * pool->sectors_per_block + len, 1309 (data_dest + 1) * pool->sectors_per_block); 1310 } 1311 } 1312 1313 complete_mapping_preparation(m); /* drop our ref */ 1314 } 1315 1316 static void schedule_internal_copy(struct thin_c *tc, dm_block_t virt_block, 1317 dm_block_t data_origin, dm_block_t data_dest, 1318 struct dm_bio_prison_cell *cell, struct bio *bio) 1319 { 1320 schedule_copy(tc, virt_block, tc->pool_dev, 1321 data_origin, data_dest, cell, bio, 1322 tc->pool->sectors_per_block); 1323 } 1324 1325 static void schedule_zero(struct thin_c *tc, dm_block_t virt_block, 1326 dm_block_t data_block, struct dm_bio_prison_cell *cell, 1327 struct bio *bio) 1328 { 1329 struct pool *pool = tc->pool; 1330 struct dm_thin_new_mapping *m = get_next_mapping(pool); 1331 1332 atomic_set(&m->prepare_actions, 1); /* no need to quiesce */ 1333 m->tc = tc; 1334 m->virt_begin = virt_block; 1335 m->virt_end = virt_block + 1u; 1336 m->data_block = data_block; 1337 m->cell = cell; 1338 1339 /* 1340 * If the whole block of data is being overwritten or we are not 1341 * zeroing pre-existing data, we can issue the bio immediately. 1342 * Otherwise we use kcopyd to zero the data first. 1343 */ 1344 if (pool->pf.zero_new_blocks) { 1345 if (io_overwrites_block(pool, bio)) 1346 remap_and_issue_overwrite(tc, bio, data_block, m); 1347 else 1348 ll_zero(tc, m, data_block * pool->sectors_per_block, 1349 (data_block + 1) * pool->sectors_per_block); 1350 } else 1351 process_prepared_mapping(m); 1352 } 1353 1354 static void schedule_external_copy(struct thin_c *tc, dm_block_t virt_block, 1355 dm_block_t data_dest, 1356 struct dm_bio_prison_cell *cell, struct bio *bio) 1357 { 1358 struct pool *pool = tc->pool; 1359 sector_t virt_block_begin = virt_block * pool->sectors_per_block; 1360 sector_t virt_block_end = (virt_block + 1) * pool->sectors_per_block; 1361 1362 if (virt_block_end <= tc->origin_size) 1363 schedule_copy(tc, virt_block, tc->origin_dev, 1364 virt_block, data_dest, cell, bio, 1365 pool->sectors_per_block); 1366 1367 else if (virt_block_begin < tc->origin_size) 1368 schedule_copy(tc, virt_block, tc->origin_dev, 1369 virt_block, data_dest, cell, bio, 1370 tc->origin_size - virt_block_begin); 1371 1372 else 1373 schedule_zero(tc, virt_block, data_dest, cell, bio); 1374 } 1375 1376 static void set_pool_mode(struct pool *pool, enum pool_mode new_mode); 1377 1378 static void requeue_bios(struct pool *pool); 1379 1380 static bool is_read_only_pool_mode(enum pool_mode mode) 1381 { 1382 return (mode == PM_OUT_OF_METADATA_SPACE || mode == PM_READ_ONLY); 1383 } 1384 1385 static bool is_read_only(struct pool *pool) 1386 { 1387 return is_read_only_pool_mode(get_pool_mode(pool)); 1388 } 1389 1390 static void check_for_metadata_space(struct pool *pool) 1391 { 1392 int r; 1393 const char *ooms_reason = NULL; 1394 dm_block_t nr_free; 1395 1396 r = dm_pool_get_free_metadata_block_count(pool->pmd, &nr_free); 1397 if (r) 1398 ooms_reason = "Could not get free metadata blocks"; 1399 else if (!nr_free) 1400 ooms_reason = "No free metadata blocks"; 1401 1402 if (ooms_reason && !is_read_only(pool)) { 1403 DMERR("%s", ooms_reason); 1404 set_pool_mode(pool, PM_OUT_OF_METADATA_SPACE); 1405 } 1406 } 1407 1408 static void check_for_data_space(struct pool *pool) 1409 { 1410 int r; 1411 dm_block_t nr_free; 1412 1413 if (get_pool_mode(pool) != PM_OUT_OF_DATA_SPACE) 1414 return; 1415 1416 r = dm_pool_get_free_block_count(pool->pmd, &nr_free); 1417 if (r) 1418 return; 1419 1420 if (nr_free) { 1421 set_pool_mode(pool, PM_WRITE); 1422 requeue_bios(pool); 1423 } 1424 } 1425 1426 /* 1427 * A non-zero return indicates read_only or fail_io mode. 1428 * Many callers don't care about the return value. 1429 */ 1430 static int commit(struct pool *pool) 1431 { 1432 int r; 1433 1434 if (get_pool_mode(pool) >= PM_OUT_OF_METADATA_SPACE) 1435 return -EINVAL; 1436 1437 r = dm_pool_commit_metadata(pool->pmd); 1438 if (r) 1439 metadata_operation_failed(pool, "dm_pool_commit_metadata", r); 1440 else { 1441 check_for_metadata_space(pool); 1442 check_for_data_space(pool); 1443 } 1444 1445 return r; 1446 } 1447 1448 static void check_low_water_mark(struct pool *pool, dm_block_t free_blocks) 1449 { 1450 unsigned long flags; 1451 1452 if (free_blocks <= pool->low_water_blocks && !pool->low_water_triggered) { 1453 DMWARN("%s: reached low water mark for data device: sending event.", 1454 dm_device_name(pool->pool_md)); 1455 spin_lock_irqsave(&pool->lock, flags); 1456 pool->low_water_triggered = true; 1457 spin_unlock_irqrestore(&pool->lock, flags); 1458 dm_table_event(pool->ti->table); 1459 } 1460 } 1461 1462 static int alloc_data_block(struct thin_c *tc, dm_block_t *result) 1463 { 1464 int r; 1465 dm_block_t free_blocks; 1466 struct pool *pool = tc->pool; 1467 1468 if (WARN_ON(get_pool_mode(pool) != PM_WRITE)) 1469 return -EINVAL; 1470 1471 r = dm_pool_get_free_block_count(pool->pmd, &free_blocks); 1472 if (r) { 1473 metadata_operation_failed(pool, "dm_pool_get_free_block_count", r); 1474 return r; 1475 } 1476 1477 check_low_water_mark(pool, free_blocks); 1478 1479 if (!free_blocks) { 1480 /* 1481 * Try to commit to see if that will free up some 1482 * more space. 1483 */ 1484 r = commit(pool); 1485 if (r) 1486 return r; 1487 1488 r = dm_pool_get_free_block_count(pool->pmd, &free_blocks); 1489 if (r) { 1490 metadata_operation_failed(pool, "dm_pool_get_free_block_count", r); 1491 return r; 1492 } 1493 1494 if (!free_blocks) { 1495 set_pool_mode(pool, PM_OUT_OF_DATA_SPACE); 1496 return -ENOSPC; 1497 } 1498 } 1499 1500 r = dm_pool_alloc_data_block(pool->pmd, result); 1501 if (r) { 1502 if (r == -ENOSPC) 1503 set_pool_mode(pool, PM_OUT_OF_DATA_SPACE); 1504 else 1505 metadata_operation_failed(pool, "dm_pool_alloc_data_block", r); 1506 return r; 1507 } 1508 1509 r = dm_pool_get_free_metadata_block_count(pool->pmd, &free_blocks); 1510 if (r) { 1511 metadata_operation_failed(pool, "dm_pool_get_free_metadata_block_count", r); 1512 return r; 1513 } 1514 1515 if (!free_blocks) { 1516 /* Let's commit before we use up the metadata reserve. */ 1517 r = commit(pool); 1518 if (r) 1519 return r; 1520 } 1521 1522 return 0; 1523 } 1524 1525 /* 1526 * If we have run out of space, queue bios until the device is 1527 * resumed, presumably after having been reloaded with more space. 1528 */ 1529 static void retry_on_resume(struct bio *bio) 1530 { 1531 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook)); 1532 struct thin_c *tc = h->tc; 1533 unsigned long flags; 1534 1535 spin_lock_irqsave(&tc->lock, flags); 1536 bio_list_add(&tc->retry_on_resume_list, bio); 1537 spin_unlock_irqrestore(&tc->lock, flags); 1538 } 1539 1540 static blk_status_t should_error_unserviceable_bio(struct pool *pool) 1541 { 1542 enum pool_mode m = get_pool_mode(pool); 1543 1544 switch (m) { 1545 case PM_WRITE: 1546 /* Shouldn't get here */ 1547 DMERR_LIMIT("bio unserviceable, yet pool is in PM_WRITE mode"); 1548 return BLK_STS_IOERR; 1549 1550 case PM_OUT_OF_DATA_SPACE: 1551 return pool->pf.error_if_no_space ? BLK_STS_NOSPC : 0; 1552 1553 case PM_OUT_OF_METADATA_SPACE: 1554 case PM_READ_ONLY: 1555 case PM_FAIL: 1556 return BLK_STS_IOERR; 1557 default: 1558 /* Shouldn't get here */ 1559 DMERR_LIMIT("bio unserviceable, yet pool has an unknown mode"); 1560 return BLK_STS_IOERR; 1561 } 1562 } 1563 1564 static void handle_unserviceable_bio(struct pool *pool, struct bio *bio) 1565 { 1566 blk_status_t error = should_error_unserviceable_bio(pool); 1567 1568 if (error) { 1569 bio->bi_status = error; 1570 bio_endio(bio); 1571 } else 1572 retry_on_resume(bio); 1573 } 1574 1575 static void retry_bios_on_resume(struct pool *pool, struct dm_bio_prison_cell *cell) 1576 { 1577 struct bio *bio; 1578 struct bio_list bios; 1579 blk_status_t error; 1580 1581 error = should_error_unserviceable_bio(pool); 1582 if (error) { 1583 cell_error_with_code(pool, cell, error); 1584 return; 1585 } 1586 1587 bio_list_init(&bios); 1588 cell_release(pool, cell, &bios); 1589 1590 while ((bio = bio_list_pop(&bios))) 1591 retry_on_resume(bio); 1592 } 1593 1594 static void process_discard_cell_no_passdown(struct thin_c *tc, 1595 struct dm_bio_prison_cell *virt_cell) 1596 { 1597 struct pool *pool = tc->pool; 1598 struct dm_thin_new_mapping *m = get_next_mapping(pool); 1599 1600 /* 1601 * We don't need to lock the data blocks, since there's no 1602 * passdown. We only lock data blocks for allocation and breaking sharing. 1603 */ 1604 m->tc = tc; 1605 m->virt_begin = virt_cell->key.block_begin; 1606 m->virt_end = virt_cell->key.block_end; 1607 m->cell = virt_cell; 1608 m->bio = virt_cell->holder; 1609 1610 if (!dm_deferred_set_add_work(pool->all_io_ds, &m->list)) 1611 pool->process_prepared_discard(m); 1612 } 1613 1614 static void break_up_discard_bio(struct thin_c *tc, dm_block_t begin, dm_block_t end, 1615 struct bio *bio) 1616 { 1617 struct pool *pool = tc->pool; 1618 1619 int r; 1620 bool maybe_shared; 1621 struct dm_cell_key data_key; 1622 struct dm_bio_prison_cell *data_cell; 1623 struct dm_thin_new_mapping *m; 1624 dm_block_t virt_begin, virt_end, data_begin; 1625 1626 while (begin != end) { 1627 r = ensure_next_mapping(pool); 1628 if (r) 1629 /* we did our best */ 1630 return; 1631 1632 r = dm_thin_find_mapped_range(tc->td, begin, end, &virt_begin, &virt_end, 1633 &data_begin, &maybe_shared); 1634 if (r) 1635 /* 1636 * Silently fail, letting any mappings we've 1637 * created complete. 1638 */ 1639 break; 1640 1641 build_key(tc->td, PHYSICAL, data_begin, data_begin + (virt_end - virt_begin), &data_key); 1642 if (bio_detain(tc->pool, &data_key, NULL, &data_cell)) { 1643 /* contention, we'll give up with this range */ 1644 begin = virt_end; 1645 continue; 1646 } 1647 1648 /* 1649 * IO may still be going to the destination block. We must 1650 * quiesce before we can do the removal. 1651 */ 1652 m = get_next_mapping(pool); 1653 m->tc = tc; 1654 m->maybe_shared = maybe_shared; 1655 m->virt_begin = virt_begin; 1656 m->virt_end = virt_end; 1657 m->data_block = data_begin; 1658 m->cell = data_cell; 1659 m->bio = bio; 1660 1661 /* 1662 * The parent bio must not complete before sub discard bios are 1663 * chained to it (see end_discard's bio_chain)! 1664 * 1665 * This per-mapping bi_remaining increment is paired with 1666 * the implicit decrement that occurs via bio_endio() in 1667 * end_discard(). 1668 */ 1669 bio_inc_remaining(bio); 1670 if (!dm_deferred_set_add_work(pool->all_io_ds, &m->list)) 1671 pool->process_prepared_discard(m); 1672 1673 begin = virt_end; 1674 } 1675 } 1676 1677 static void process_discard_cell_passdown(struct thin_c *tc, struct dm_bio_prison_cell *virt_cell) 1678 { 1679 struct bio *bio = virt_cell->holder; 1680 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook)); 1681 1682 /* 1683 * The virt_cell will only get freed once the origin bio completes. 1684 * This means it will remain locked while all the individual 1685 * passdown bios are in flight. 1686 */ 1687 h->cell = virt_cell; 1688 break_up_discard_bio(tc, virt_cell->key.block_begin, virt_cell->key.block_end, bio); 1689 1690 /* 1691 * We complete the bio now, knowing that the bi_remaining field 1692 * will prevent completion until the sub range discards have 1693 * completed. 1694 */ 1695 bio_endio(bio); 1696 } 1697 1698 static void process_discard_bio(struct thin_c *tc, struct bio *bio) 1699 { 1700 dm_block_t begin, end; 1701 struct dm_cell_key virt_key; 1702 struct dm_bio_prison_cell *virt_cell; 1703 1704 get_bio_block_range(tc, bio, &begin, &end); 1705 if (begin == end) { 1706 /* 1707 * The discard covers less than a block. 1708 */ 1709 bio_endio(bio); 1710 return; 1711 } 1712 1713 build_key(tc->td, VIRTUAL, begin, end, &virt_key); 1714 if (bio_detain(tc->pool, &virt_key, bio, &virt_cell)) 1715 /* 1716 * Potential starvation issue: We're relying on the 1717 * fs/application being well behaved, and not trying to 1718 * send IO to a region at the same time as discarding it. 1719 * If they do this persistently then it's possible this 1720 * cell will never be granted. 1721 */ 1722 return; 1723 1724 tc->pool->process_discard_cell(tc, virt_cell); 1725 } 1726 1727 static void break_sharing(struct thin_c *tc, struct bio *bio, dm_block_t block, 1728 struct dm_cell_key *key, 1729 struct dm_thin_lookup_result *lookup_result, 1730 struct dm_bio_prison_cell *cell) 1731 { 1732 int r; 1733 dm_block_t data_block; 1734 struct pool *pool = tc->pool; 1735 1736 r = alloc_data_block(tc, &data_block); 1737 switch (r) { 1738 case 0: 1739 schedule_internal_copy(tc, block, lookup_result->block, 1740 data_block, cell, bio); 1741 break; 1742 1743 case -ENOSPC: 1744 retry_bios_on_resume(pool, cell); 1745 break; 1746 1747 default: 1748 DMERR_LIMIT("%s: alloc_data_block() failed: error = %d", 1749 __func__, r); 1750 cell_error(pool, cell); 1751 break; 1752 } 1753 } 1754 1755 static void __remap_and_issue_shared_cell(void *context, 1756 struct dm_bio_prison_cell *cell) 1757 { 1758 struct remap_info *info = context; 1759 struct bio *bio; 1760 1761 while ((bio = bio_list_pop(&cell->bios))) { 1762 if (bio_data_dir(bio) == WRITE || op_is_flush(bio->bi_opf) || 1763 bio_op(bio) == REQ_OP_DISCARD) 1764 bio_list_add(&info->defer_bios, bio); 1765 else { 1766 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook)); 1767 1768 h->shared_read_entry = dm_deferred_entry_inc(info->tc->pool->shared_read_ds); 1769 inc_all_io_entry(info->tc->pool, bio); 1770 bio_list_add(&info->issue_bios, bio); 1771 } 1772 } 1773 } 1774 1775 static void remap_and_issue_shared_cell(struct thin_c *tc, 1776 struct dm_bio_prison_cell *cell, 1777 dm_block_t block) 1778 { 1779 struct bio *bio; 1780 struct remap_info info; 1781 1782 info.tc = tc; 1783 bio_list_init(&info.defer_bios); 1784 bio_list_init(&info.issue_bios); 1785 1786 cell_visit_release(tc->pool, __remap_and_issue_shared_cell, 1787 &info, cell); 1788 1789 while ((bio = bio_list_pop(&info.defer_bios))) 1790 thin_defer_bio(tc, bio); 1791 1792 while ((bio = bio_list_pop(&info.issue_bios))) 1793 remap_and_issue(tc, bio, block); 1794 } 1795 1796 static void process_shared_bio(struct thin_c *tc, struct bio *bio, 1797 dm_block_t block, 1798 struct dm_thin_lookup_result *lookup_result, 1799 struct dm_bio_prison_cell *virt_cell) 1800 { 1801 struct dm_bio_prison_cell *data_cell; 1802 struct pool *pool = tc->pool; 1803 struct dm_cell_key key; 1804 1805 /* 1806 * If cell is already occupied, then sharing is already in the process 1807 * of being broken so we have nothing further to do here. 1808 */ 1809 build_data_key(tc->td, lookup_result->block, &key); 1810 if (bio_detain(pool, &key, bio, &data_cell)) { 1811 cell_defer_no_holder(tc, virt_cell); 1812 return; 1813 } 1814 1815 if (bio_data_dir(bio) == WRITE && bio->bi_iter.bi_size) { 1816 break_sharing(tc, bio, block, &key, lookup_result, data_cell); 1817 cell_defer_no_holder(tc, virt_cell); 1818 } else { 1819 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook)); 1820 1821 h->shared_read_entry = dm_deferred_entry_inc(pool->shared_read_ds); 1822 inc_all_io_entry(pool, bio); 1823 remap_and_issue(tc, bio, lookup_result->block); 1824 1825 remap_and_issue_shared_cell(tc, data_cell, lookup_result->block); 1826 remap_and_issue_shared_cell(tc, virt_cell, lookup_result->block); 1827 } 1828 } 1829 1830 static void provision_block(struct thin_c *tc, struct bio *bio, dm_block_t block, 1831 struct dm_bio_prison_cell *cell) 1832 { 1833 int r; 1834 dm_block_t data_block; 1835 struct pool *pool = tc->pool; 1836 1837 /* 1838 * Remap empty bios (flushes) immediately, without provisioning. 1839 */ 1840 if (!bio->bi_iter.bi_size) { 1841 inc_all_io_entry(pool, bio); 1842 cell_defer_no_holder(tc, cell); 1843 1844 remap_and_issue(tc, bio, 0); 1845 return; 1846 } 1847 1848 /* 1849 * Fill read bios with zeroes and complete them immediately. 1850 */ 1851 if (bio_data_dir(bio) == READ) { 1852 zero_fill_bio(bio); 1853 cell_defer_no_holder(tc, cell); 1854 bio_endio(bio); 1855 return; 1856 } 1857 1858 r = alloc_data_block(tc, &data_block); 1859 switch (r) { 1860 case 0: 1861 if (tc->origin_dev) 1862 schedule_external_copy(tc, block, data_block, cell, bio); 1863 else 1864 schedule_zero(tc, block, data_block, cell, bio); 1865 break; 1866 1867 case -ENOSPC: 1868 retry_bios_on_resume(pool, cell); 1869 break; 1870 1871 default: 1872 DMERR_LIMIT("%s: alloc_data_block() failed: error = %d", 1873 __func__, r); 1874 cell_error(pool, cell); 1875 break; 1876 } 1877 } 1878 1879 static void process_cell(struct thin_c *tc, struct dm_bio_prison_cell *cell) 1880 { 1881 int r; 1882 struct pool *pool = tc->pool; 1883 struct bio *bio = cell->holder; 1884 dm_block_t block = get_bio_block(tc, bio); 1885 struct dm_thin_lookup_result lookup_result; 1886 1887 if (tc->requeue_mode) { 1888 cell_requeue(pool, cell); 1889 return; 1890 } 1891 1892 r = dm_thin_find_block(tc->td, block, 1, &lookup_result); 1893 switch (r) { 1894 case 0: 1895 if (lookup_result.shared) 1896 process_shared_bio(tc, bio, block, &lookup_result, cell); 1897 else { 1898 inc_all_io_entry(pool, bio); 1899 remap_and_issue(tc, bio, lookup_result.block); 1900 inc_remap_and_issue_cell(tc, cell, lookup_result.block); 1901 } 1902 break; 1903 1904 case -ENODATA: 1905 if (bio_data_dir(bio) == READ && tc->origin_dev) { 1906 inc_all_io_entry(pool, bio); 1907 cell_defer_no_holder(tc, cell); 1908 1909 if (bio_end_sector(bio) <= tc->origin_size) 1910 remap_to_origin_and_issue(tc, bio); 1911 1912 else if (bio->bi_iter.bi_sector < tc->origin_size) { 1913 zero_fill_bio(bio); 1914 bio->bi_iter.bi_size = (tc->origin_size - bio->bi_iter.bi_sector) << SECTOR_SHIFT; 1915 remap_to_origin_and_issue(tc, bio); 1916 1917 } else { 1918 zero_fill_bio(bio); 1919 bio_endio(bio); 1920 } 1921 } else 1922 provision_block(tc, bio, block, cell); 1923 break; 1924 1925 default: 1926 DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d", 1927 __func__, r); 1928 cell_defer_no_holder(tc, cell); 1929 bio_io_error(bio); 1930 break; 1931 } 1932 } 1933 1934 static void process_bio(struct thin_c *tc, struct bio *bio) 1935 { 1936 struct pool *pool = tc->pool; 1937 dm_block_t block = get_bio_block(tc, bio); 1938 struct dm_bio_prison_cell *cell; 1939 struct dm_cell_key key; 1940 1941 /* 1942 * If cell is already occupied, then the block is already 1943 * being provisioned so we have nothing further to do here. 1944 */ 1945 build_virtual_key(tc->td, block, &key); 1946 if (bio_detain(pool, &key, bio, &cell)) 1947 return; 1948 1949 process_cell(tc, cell); 1950 } 1951 1952 static void __process_bio_read_only(struct thin_c *tc, struct bio *bio, 1953 struct dm_bio_prison_cell *cell) 1954 { 1955 int r; 1956 int rw = bio_data_dir(bio); 1957 dm_block_t block = get_bio_block(tc, bio); 1958 struct dm_thin_lookup_result lookup_result; 1959 1960 r = dm_thin_find_block(tc->td, block, 1, &lookup_result); 1961 switch (r) { 1962 case 0: 1963 if (lookup_result.shared && (rw == WRITE) && bio->bi_iter.bi_size) { 1964 handle_unserviceable_bio(tc->pool, bio); 1965 if (cell) 1966 cell_defer_no_holder(tc, cell); 1967 } else { 1968 inc_all_io_entry(tc->pool, bio); 1969 remap_and_issue(tc, bio, lookup_result.block); 1970 if (cell) 1971 inc_remap_and_issue_cell(tc, cell, lookup_result.block); 1972 } 1973 break; 1974 1975 case -ENODATA: 1976 if (cell) 1977 cell_defer_no_holder(tc, cell); 1978 if (rw != READ) { 1979 handle_unserviceable_bio(tc->pool, bio); 1980 break; 1981 } 1982 1983 if (tc->origin_dev) { 1984 inc_all_io_entry(tc->pool, bio); 1985 remap_to_origin_and_issue(tc, bio); 1986 break; 1987 } 1988 1989 zero_fill_bio(bio); 1990 bio_endio(bio); 1991 break; 1992 1993 default: 1994 DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d", 1995 __func__, r); 1996 if (cell) 1997 cell_defer_no_holder(tc, cell); 1998 bio_io_error(bio); 1999 break; 2000 } 2001 } 2002 2003 static void process_bio_read_only(struct thin_c *tc, struct bio *bio) 2004 { 2005 __process_bio_read_only(tc, bio, NULL); 2006 } 2007 2008 static void process_cell_read_only(struct thin_c *tc, struct dm_bio_prison_cell *cell) 2009 { 2010 __process_bio_read_only(tc, cell->holder, cell); 2011 } 2012 2013 static void process_bio_success(struct thin_c *tc, struct bio *bio) 2014 { 2015 bio_endio(bio); 2016 } 2017 2018 static void process_bio_fail(struct thin_c *tc, struct bio *bio) 2019 { 2020 bio_io_error(bio); 2021 } 2022 2023 static void process_cell_success(struct thin_c *tc, struct dm_bio_prison_cell *cell) 2024 { 2025 cell_success(tc->pool, cell); 2026 } 2027 2028 static void process_cell_fail(struct thin_c *tc, struct dm_bio_prison_cell *cell) 2029 { 2030 cell_error(tc->pool, cell); 2031 } 2032 2033 /* 2034 * FIXME: should we also commit due to size of transaction, measured in 2035 * metadata blocks? 2036 */ 2037 static int need_commit_due_to_time(struct pool *pool) 2038 { 2039 return !time_in_range(jiffies, pool->last_commit_jiffies, 2040 pool->last_commit_jiffies + COMMIT_PERIOD); 2041 } 2042 2043 #define thin_pbd(node) rb_entry((node), struct dm_thin_endio_hook, rb_node) 2044 #define thin_bio(pbd) dm_bio_from_per_bio_data((pbd), sizeof(struct dm_thin_endio_hook)) 2045 2046 static void __thin_bio_rb_add(struct thin_c *tc, struct bio *bio) 2047 { 2048 struct rb_node **rbp, *parent; 2049 struct dm_thin_endio_hook *pbd; 2050 sector_t bi_sector = bio->bi_iter.bi_sector; 2051 2052 rbp = &tc->sort_bio_list.rb_node; 2053 parent = NULL; 2054 while (*rbp) { 2055 parent = *rbp; 2056 pbd = thin_pbd(parent); 2057 2058 if (bi_sector < thin_bio(pbd)->bi_iter.bi_sector) 2059 rbp = &(*rbp)->rb_left; 2060 else 2061 rbp = &(*rbp)->rb_right; 2062 } 2063 2064 pbd = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook)); 2065 rb_link_node(&pbd->rb_node, parent, rbp); 2066 rb_insert_color(&pbd->rb_node, &tc->sort_bio_list); 2067 } 2068 2069 static void __extract_sorted_bios(struct thin_c *tc) 2070 { 2071 struct rb_node *node; 2072 struct dm_thin_endio_hook *pbd; 2073 struct bio *bio; 2074 2075 for (node = rb_first(&tc->sort_bio_list); node; node = rb_next(node)) { 2076 pbd = thin_pbd(node); 2077 bio = thin_bio(pbd); 2078 2079 bio_list_add(&tc->deferred_bio_list, bio); 2080 rb_erase(&pbd->rb_node, &tc->sort_bio_list); 2081 } 2082 2083 WARN_ON(!RB_EMPTY_ROOT(&tc->sort_bio_list)); 2084 } 2085 2086 static void __sort_thin_deferred_bios(struct thin_c *tc) 2087 { 2088 struct bio *bio; 2089 struct bio_list bios; 2090 2091 bio_list_init(&bios); 2092 bio_list_merge(&bios, &tc->deferred_bio_list); 2093 bio_list_init(&tc->deferred_bio_list); 2094 2095 /* Sort deferred_bio_list using rb-tree */ 2096 while ((bio = bio_list_pop(&bios))) 2097 __thin_bio_rb_add(tc, bio); 2098 2099 /* 2100 * Transfer the sorted bios in sort_bio_list back to 2101 * deferred_bio_list to allow lockless submission of 2102 * all bios. 2103 */ 2104 __extract_sorted_bios(tc); 2105 } 2106 2107 static void process_thin_deferred_bios(struct thin_c *tc) 2108 { 2109 struct pool *pool = tc->pool; 2110 unsigned long flags; 2111 struct bio *bio; 2112 struct bio_list bios; 2113 struct blk_plug plug; 2114 unsigned count = 0; 2115 2116 if (tc->requeue_mode) { 2117 error_thin_bio_list(tc, &tc->deferred_bio_list, 2118 BLK_STS_DM_REQUEUE); 2119 return; 2120 } 2121 2122 bio_list_init(&bios); 2123 2124 spin_lock_irqsave(&tc->lock, flags); 2125 2126 if (bio_list_empty(&tc->deferred_bio_list)) { 2127 spin_unlock_irqrestore(&tc->lock, flags); 2128 return; 2129 } 2130 2131 __sort_thin_deferred_bios(tc); 2132 2133 bio_list_merge(&bios, &tc->deferred_bio_list); 2134 bio_list_init(&tc->deferred_bio_list); 2135 2136 spin_unlock_irqrestore(&tc->lock, flags); 2137 2138 blk_start_plug(&plug); 2139 while ((bio = bio_list_pop(&bios))) { 2140 /* 2141 * If we've got no free new_mapping structs, and processing 2142 * this bio might require one, we pause until there are some 2143 * prepared mappings to process. 2144 */ 2145 if (ensure_next_mapping(pool)) { 2146 spin_lock_irqsave(&tc->lock, flags); 2147 bio_list_add(&tc->deferred_bio_list, bio); 2148 bio_list_merge(&tc->deferred_bio_list, &bios); 2149 spin_unlock_irqrestore(&tc->lock, flags); 2150 break; 2151 } 2152 2153 if (bio_op(bio) == REQ_OP_DISCARD) 2154 pool->process_discard(tc, bio); 2155 else 2156 pool->process_bio(tc, bio); 2157 2158 if ((count++ & 127) == 0) { 2159 throttle_work_update(&pool->throttle); 2160 dm_pool_issue_prefetches(pool->pmd); 2161 } 2162 } 2163 blk_finish_plug(&plug); 2164 } 2165 2166 static int cmp_cells(const void *lhs, const void *rhs) 2167 { 2168 struct dm_bio_prison_cell *lhs_cell = *((struct dm_bio_prison_cell **) lhs); 2169 struct dm_bio_prison_cell *rhs_cell = *((struct dm_bio_prison_cell **) rhs); 2170 2171 BUG_ON(!lhs_cell->holder); 2172 BUG_ON(!rhs_cell->holder); 2173 2174 if (lhs_cell->holder->bi_iter.bi_sector < rhs_cell->holder->bi_iter.bi_sector) 2175 return -1; 2176 2177 if (lhs_cell->holder->bi_iter.bi_sector > rhs_cell->holder->bi_iter.bi_sector) 2178 return 1; 2179 2180 return 0; 2181 } 2182 2183 static unsigned sort_cells(struct pool *pool, struct list_head *cells) 2184 { 2185 unsigned count = 0; 2186 struct dm_bio_prison_cell *cell, *tmp; 2187 2188 list_for_each_entry_safe(cell, tmp, cells, user_list) { 2189 if (count >= CELL_SORT_ARRAY_SIZE) 2190 break; 2191 2192 pool->cell_sort_array[count++] = cell; 2193 list_del(&cell->user_list); 2194 } 2195 2196 sort(pool->cell_sort_array, count, sizeof(cell), cmp_cells, NULL); 2197 2198 return count; 2199 } 2200 2201 static void process_thin_deferred_cells(struct thin_c *tc) 2202 { 2203 struct pool *pool = tc->pool; 2204 unsigned long flags; 2205 struct list_head cells; 2206 struct dm_bio_prison_cell *cell; 2207 unsigned i, j, count; 2208 2209 INIT_LIST_HEAD(&cells); 2210 2211 spin_lock_irqsave(&tc->lock, flags); 2212 list_splice_init(&tc->deferred_cells, &cells); 2213 spin_unlock_irqrestore(&tc->lock, flags); 2214 2215 if (list_empty(&cells)) 2216 return; 2217 2218 do { 2219 count = sort_cells(tc->pool, &cells); 2220 2221 for (i = 0; i < count; i++) { 2222 cell = pool->cell_sort_array[i]; 2223 BUG_ON(!cell->holder); 2224 2225 /* 2226 * If we've got no free new_mapping structs, and processing 2227 * this bio might require one, we pause until there are some 2228 * prepared mappings to process. 2229 */ 2230 if (ensure_next_mapping(pool)) { 2231 for (j = i; j < count; j++) 2232 list_add(&pool->cell_sort_array[j]->user_list, &cells); 2233 2234 spin_lock_irqsave(&tc->lock, flags); 2235 list_splice(&cells, &tc->deferred_cells); 2236 spin_unlock_irqrestore(&tc->lock, flags); 2237 return; 2238 } 2239 2240 if (bio_op(cell->holder) == REQ_OP_DISCARD) 2241 pool->process_discard_cell(tc, cell); 2242 else 2243 pool->process_cell(tc, cell); 2244 } 2245 } while (!list_empty(&cells)); 2246 } 2247 2248 static void thin_get(struct thin_c *tc); 2249 static void thin_put(struct thin_c *tc); 2250 2251 /* 2252 * We can't hold rcu_read_lock() around code that can block. So we 2253 * find a thin with the rcu lock held; bump a refcount; then drop 2254 * the lock. 2255 */ 2256 static struct thin_c *get_first_thin(struct pool *pool) 2257 { 2258 struct thin_c *tc = NULL; 2259 2260 rcu_read_lock(); 2261 if (!list_empty(&pool->active_thins)) { 2262 tc = list_entry_rcu(pool->active_thins.next, struct thin_c, list); 2263 thin_get(tc); 2264 } 2265 rcu_read_unlock(); 2266 2267 return tc; 2268 } 2269 2270 static struct thin_c *get_next_thin(struct pool *pool, struct thin_c *tc) 2271 { 2272 struct thin_c *old_tc = tc; 2273 2274 rcu_read_lock(); 2275 list_for_each_entry_continue_rcu(tc, &pool->active_thins, list) { 2276 thin_get(tc); 2277 thin_put(old_tc); 2278 rcu_read_unlock(); 2279 return tc; 2280 } 2281 thin_put(old_tc); 2282 rcu_read_unlock(); 2283 2284 return NULL; 2285 } 2286 2287 static void process_deferred_bios(struct pool *pool) 2288 { 2289 unsigned long flags; 2290 struct bio *bio; 2291 struct bio_list bios; 2292 struct thin_c *tc; 2293 2294 tc = get_first_thin(pool); 2295 while (tc) { 2296 process_thin_deferred_cells(tc); 2297 process_thin_deferred_bios(tc); 2298 tc = get_next_thin(pool, tc); 2299 } 2300 2301 /* 2302 * If there are any deferred flush bios, we must commit 2303 * the metadata before issuing them. 2304 */ 2305 bio_list_init(&bios); 2306 spin_lock_irqsave(&pool->lock, flags); 2307 bio_list_merge(&bios, &pool->deferred_flush_bios); 2308 bio_list_init(&pool->deferred_flush_bios); 2309 spin_unlock_irqrestore(&pool->lock, flags); 2310 2311 if (bio_list_empty(&bios) && 2312 !(dm_pool_changed_this_transaction(pool->pmd) && need_commit_due_to_time(pool))) 2313 return; 2314 2315 if (commit(pool)) { 2316 while ((bio = bio_list_pop(&bios))) 2317 bio_io_error(bio); 2318 return; 2319 } 2320 pool->last_commit_jiffies = jiffies; 2321 2322 while ((bio = bio_list_pop(&bios))) 2323 generic_make_request(bio); 2324 } 2325 2326 static void do_worker(struct work_struct *ws) 2327 { 2328 struct pool *pool = container_of(ws, struct pool, worker); 2329 2330 throttle_work_start(&pool->throttle); 2331 dm_pool_issue_prefetches(pool->pmd); 2332 throttle_work_update(&pool->throttle); 2333 process_prepared(pool, &pool->prepared_mappings, &pool->process_prepared_mapping); 2334 throttle_work_update(&pool->throttle); 2335 process_prepared(pool, &pool->prepared_discards, &pool->process_prepared_discard); 2336 throttle_work_update(&pool->throttle); 2337 process_prepared(pool, &pool->prepared_discards_pt2, &pool->process_prepared_discard_pt2); 2338 throttle_work_update(&pool->throttle); 2339 process_deferred_bios(pool); 2340 throttle_work_complete(&pool->throttle); 2341 } 2342 2343 /* 2344 * We want to commit periodically so that not too much 2345 * unwritten data builds up. 2346 */ 2347 static void do_waker(struct work_struct *ws) 2348 { 2349 struct pool *pool = container_of(to_delayed_work(ws), struct pool, waker); 2350 wake_worker(pool); 2351 queue_delayed_work(pool->wq, &pool->waker, COMMIT_PERIOD); 2352 } 2353 2354 static void notify_of_pool_mode_change_to_oods(struct pool *pool); 2355 2356 /* 2357 * We're holding onto IO to allow userland time to react. After the 2358 * timeout either the pool will have been resized (and thus back in 2359 * PM_WRITE mode), or we degrade to PM_OUT_OF_DATA_SPACE w/ error_if_no_space. 2360 */ 2361 static void do_no_space_timeout(struct work_struct *ws) 2362 { 2363 struct pool *pool = container_of(to_delayed_work(ws), struct pool, 2364 no_space_timeout); 2365 2366 if (get_pool_mode(pool) == PM_OUT_OF_DATA_SPACE && !pool->pf.error_if_no_space) { 2367 pool->pf.error_if_no_space = true; 2368 notify_of_pool_mode_change_to_oods(pool); 2369 error_retry_list_with_code(pool, BLK_STS_NOSPC); 2370 } 2371 } 2372 2373 /*----------------------------------------------------------------*/ 2374 2375 struct pool_work { 2376 struct work_struct worker; 2377 struct completion complete; 2378 }; 2379 2380 static struct pool_work *to_pool_work(struct work_struct *ws) 2381 { 2382 return container_of(ws, struct pool_work, worker); 2383 } 2384 2385 static void pool_work_complete(struct pool_work *pw) 2386 { 2387 complete(&pw->complete); 2388 } 2389 2390 static void pool_work_wait(struct pool_work *pw, struct pool *pool, 2391 void (*fn)(struct work_struct *)) 2392 { 2393 INIT_WORK_ONSTACK(&pw->worker, fn); 2394 init_completion(&pw->complete); 2395 queue_work(pool->wq, &pw->worker); 2396 wait_for_completion(&pw->complete); 2397 } 2398 2399 /*----------------------------------------------------------------*/ 2400 2401 struct noflush_work { 2402 struct pool_work pw; 2403 struct thin_c *tc; 2404 }; 2405 2406 static struct noflush_work *to_noflush(struct work_struct *ws) 2407 { 2408 return container_of(to_pool_work(ws), struct noflush_work, pw); 2409 } 2410 2411 static void do_noflush_start(struct work_struct *ws) 2412 { 2413 struct noflush_work *w = to_noflush(ws); 2414 w->tc->requeue_mode = true; 2415 requeue_io(w->tc); 2416 pool_work_complete(&w->pw); 2417 } 2418 2419 static void do_noflush_stop(struct work_struct *ws) 2420 { 2421 struct noflush_work *w = to_noflush(ws); 2422 w->tc->requeue_mode = false; 2423 pool_work_complete(&w->pw); 2424 } 2425 2426 static void noflush_work(struct thin_c *tc, void (*fn)(struct work_struct *)) 2427 { 2428 struct noflush_work w; 2429 2430 w.tc = tc; 2431 pool_work_wait(&w.pw, tc->pool, fn); 2432 } 2433 2434 /*----------------------------------------------------------------*/ 2435 2436 static enum pool_mode get_pool_mode(struct pool *pool) 2437 { 2438 return pool->pf.mode; 2439 } 2440 2441 static void notify_of_pool_mode_change(struct pool *pool, const char *new_mode) 2442 { 2443 dm_table_event(pool->ti->table); 2444 DMINFO("%s: switching pool to %s mode", 2445 dm_device_name(pool->pool_md), new_mode); 2446 } 2447 2448 static void notify_of_pool_mode_change_to_oods(struct pool *pool) 2449 { 2450 if (!pool->pf.error_if_no_space) 2451 notify_of_pool_mode_change(pool, "out-of-data-space (queue IO)"); 2452 else 2453 notify_of_pool_mode_change(pool, "out-of-data-space (error IO)"); 2454 } 2455 2456 static bool passdown_enabled(struct pool_c *pt) 2457 { 2458 return pt->adjusted_pf.discard_passdown; 2459 } 2460 2461 static void set_discard_callbacks(struct pool *pool) 2462 { 2463 struct pool_c *pt = pool->ti->private; 2464 2465 if (passdown_enabled(pt)) { 2466 pool->process_discard_cell = process_discard_cell_passdown; 2467 pool->process_prepared_discard = process_prepared_discard_passdown_pt1; 2468 pool->process_prepared_discard_pt2 = process_prepared_discard_passdown_pt2; 2469 } else { 2470 pool->process_discard_cell = process_discard_cell_no_passdown; 2471 pool->process_prepared_discard = process_prepared_discard_no_passdown; 2472 } 2473 } 2474 2475 static void set_pool_mode(struct pool *pool, enum pool_mode new_mode) 2476 { 2477 struct pool_c *pt = pool->ti->private; 2478 bool needs_check = dm_pool_metadata_needs_check(pool->pmd); 2479 enum pool_mode old_mode = get_pool_mode(pool); 2480 unsigned long no_space_timeout = READ_ONCE(no_space_timeout_secs) * HZ; 2481 2482 /* 2483 * Never allow the pool to transition to PM_WRITE mode if user 2484 * intervention is required to verify metadata and data consistency. 2485 */ 2486 if (new_mode == PM_WRITE && needs_check) { 2487 DMERR("%s: unable to switch pool to write mode until repaired.", 2488 dm_device_name(pool->pool_md)); 2489 if (old_mode != new_mode) 2490 new_mode = old_mode; 2491 else 2492 new_mode = PM_READ_ONLY; 2493 } 2494 /* 2495 * If we were in PM_FAIL mode, rollback of metadata failed. We're 2496 * not going to recover without a thin_repair. So we never let the 2497 * pool move out of the old mode. 2498 */ 2499 if (old_mode == PM_FAIL) 2500 new_mode = old_mode; 2501 2502 switch (new_mode) { 2503 case PM_FAIL: 2504 if (old_mode != new_mode) 2505 notify_of_pool_mode_change(pool, "failure"); 2506 dm_pool_metadata_read_only(pool->pmd); 2507 pool->process_bio = process_bio_fail; 2508 pool->process_discard = process_bio_fail; 2509 pool->process_cell = process_cell_fail; 2510 pool->process_discard_cell = process_cell_fail; 2511 pool->process_prepared_mapping = process_prepared_mapping_fail; 2512 pool->process_prepared_discard = process_prepared_discard_fail; 2513 2514 error_retry_list(pool); 2515 break; 2516 2517 case PM_OUT_OF_METADATA_SPACE: 2518 case PM_READ_ONLY: 2519 if (!is_read_only_pool_mode(old_mode)) 2520 notify_of_pool_mode_change(pool, "read-only"); 2521 dm_pool_metadata_read_only(pool->pmd); 2522 pool->process_bio = process_bio_read_only; 2523 pool->process_discard = process_bio_success; 2524 pool->process_cell = process_cell_read_only; 2525 pool->process_discard_cell = process_cell_success; 2526 pool->process_prepared_mapping = process_prepared_mapping_fail; 2527 pool->process_prepared_discard = process_prepared_discard_success; 2528 2529 error_retry_list(pool); 2530 break; 2531 2532 case PM_OUT_OF_DATA_SPACE: 2533 /* 2534 * Ideally we'd never hit this state; the low water mark 2535 * would trigger userland to extend the pool before we 2536 * completely run out of data space. However, many small 2537 * IOs to unprovisioned space can consume data space at an 2538 * alarming rate. Adjust your low water mark if you're 2539 * frequently seeing this mode. 2540 */ 2541 if (old_mode != new_mode) 2542 notify_of_pool_mode_change_to_oods(pool); 2543 pool->out_of_data_space = true; 2544 pool->process_bio = process_bio_read_only; 2545 pool->process_discard = process_discard_bio; 2546 pool->process_cell = process_cell_read_only; 2547 pool->process_prepared_mapping = process_prepared_mapping; 2548 set_discard_callbacks(pool); 2549 2550 if (!pool->pf.error_if_no_space && no_space_timeout) 2551 queue_delayed_work(pool->wq, &pool->no_space_timeout, no_space_timeout); 2552 break; 2553 2554 case PM_WRITE: 2555 if (old_mode != new_mode) 2556 notify_of_pool_mode_change(pool, "write"); 2557 if (old_mode == PM_OUT_OF_DATA_SPACE) 2558 cancel_delayed_work_sync(&pool->no_space_timeout); 2559 pool->out_of_data_space = false; 2560 pool->pf.error_if_no_space = pt->requested_pf.error_if_no_space; 2561 dm_pool_metadata_read_write(pool->pmd); 2562 pool->process_bio = process_bio; 2563 pool->process_discard = process_discard_bio; 2564 pool->process_cell = process_cell; 2565 pool->process_prepared_mapping = process_prepared_mapping; 2566 set_discard_callbacks(pool); 2567 break; 2568 } 2569 2570 pool->pf.mode = new_mode; 2571 /* 2572 * The pool mode may have changed, sync it so bind_control_target() 2573 * doesn't cause an unexpected mode transition on resume. 2574 */ 2575 pt->adjusted_pf.mode = new_mode; 2576 } 2577 2578 static void abort_transaction(struct pool *pool) 2579 { 2580 const char *dev_name = dm_device_name(pool->pool_md); 2581 2582 DMERR_LIMIT("%s: aborting current metadata transaction", dev_name); 2583 if (dm_pool_abort_metadata(pool->pmd)) { 2584 DMERR("%s: failed to abort metadata transaction", dev_name); 2585 set_pool_mode(pool, PM_FAIL); 2586 } 2587 2588 if (dm_pool_metadata_set_needs_check(pool->pmd)) { 2589 DMERR("%s: failed to set 'needs_check' flag in metadata", dev_name); 2590 set_pool_mode(pool, PM_FAIL); 2591 } 2592 } 2593 2594 static void metadata_operation_failed(struct pool *pool, const char *op, int r) 2595 { 2596 DMERR_LIMIT("%s: metadata operation '%s' failed: error = %d", 2597 dm_device_name(pool->pool_md), op, r); 2598 2599 abort_transaction(pool); 2600 set_pool_mode(pool, PM_READ_ONLY); 2601 } 2602 2603 /*----------------------------------------------------------------*/ 2604 2605 /* 2606 * Mapping functions. 2607 */ 2608 2609 /* 2610 * Called only while mapping a thin bio to hand it over to the workqueue. 2611 */ 2612 static void thin_defer_bio(struct thin_c *tc, struct bio *bio) 2613 { 2614 unsigned long flags; 2615 struct pool *pool = tc->pool; 2616 2617 spin_lock_irqsave(&tc->lock, flags); 2618 bio_list_add(&tc->deferred_bio_list, bio); 2619 spin_unlock_irqrestore(&tc->lock, flags); 2620 2621 wake_worker(pool); 2622 } 2623 2624 static void thin_defer_bio_with_throttle(struct thin_c *tc, struct bio *bio) 2625 { 2626 struct pool *pool = tc->pool; 2627 2628 throttle_lock(&pool->throttle); 2629 thin_defer_bio(tc, bio); 2630 throttle_unlock(&pool->throttle); 2631 } 2632 2633 static void thin_defer_cell(struct thin_c *tc, struct dm_bio_prison_cell *cell) 2634 { 2635 unsigned long flags; 2636 struct pool *pool = tc->pool; 2637 2638 throttle_lock(&pool->throttle); 2639 spin_lock_irqsave(&tc->lock, flags); 2640 list_add_tail(&cell->user_list, &tc->deferred_cells); 2641 spin_unlock_irqrestore(&tc->lock, flags); 2642 throttle_unlock(&pool->throttle); 2643 2644 wake_worker(pool); 2645 } 2646 2647 static void thin_hook_bio(struct thin_c *tc, struct bio *bio) 2648 { 2649 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook)); 2650 2651 h->tc = tc; 2652 h->shared_read_entry = NULL; 2653 h->all_io_entry = NULL; 2654 h->overwrite_mapping = NULL; 2655 h->cell = NULL; 2656 } 2657 2658 /* 2659 * Non-blocking function called from the thin target's map function. 2660 */ 2661 static int thin_bio_map(struct dm_target *ti, struct bio *bio) 2662 { 2663 int r; 2664 struct thin_c *tc = ti->private; 2665 dm_block_t block = get_bio_block(tc, bio); 2666 struct dm_thin_device *td = tc->td; 2667 struct dm_thin_lookup_result result; 2668 struct dm_bio_prison_cell *virt_cell, *data_cell; 2669 struct dm_cell_key key; 2670 2671 thin_hook_bio(tc, bio); 2672 2673 if (tc->requeue_mode) { 2674 bio->bi_status = BLK_STS_DM_REQUEUE; 2675 bio_endio(bio); 2676 return DM_MAPIO_SUBMITTED; 2677 } 2678 2679 if (get_pool_mode(tc->pool) == PM_FAIL) { 2680 bio_io_error(bio); 2681 return DM_MAPIO_SUBMITTED; 2682 } 2683 2684 if (op_is_flush(bio->bi_opf) || bio_op(bio) == REQ_OP_DISCARD) { 2685 thin_defer_bio_with_throttle(tc, bio); 2686 return DM_MAPIO_SUBMITTED; 2687 } 2688 2689 /* 2690 * We must hold the virtual cell before doing the lookup, otherwise 2691 * there's a race with discard. 2692 */ 2693 build_virtual_key(tc->td, block, &key); 2694 if (bio_detain(tc->pool, &key, bio, &virt_cell)) 2695 return DM_MAPIO_SUBMITTED; 2696 2697 r = dm_thin_find_block(td, block, 0, &result); 2698 2699 /* 2700 * Note that we defer readahead too. 2701 */ 2702 switch (r) { 2703 case 0: 2704 if (unlikely(result.shared)) { 2705 /* 2706 * We have a race condition here between the 2707 * result.shared value returned by the lookup and 2708 * snapshot creation, which may cause new 2709 * sharing. 2710 * 2711 * To avoid this always quiesce the origin before 2712 * taking the snap. You want to do this anyway to 2713 * ensure a consistent application view 2714 * (i.e. lockfs). 2715 * 2716 * More distant ancestors are irrelevant. The 2717 * shared flag will be set in their case. 2718 */ 2719 thin_defer_cell(tc, virt_cell); 2720 return DM_MAPIO_SUBMITTED; 2721 } 2722 2723 build_data_key(tc->td, result.block, &key); 2724 if (bio_detain(tc->pool, &key, bio, &data_cell)) { 2725 cell_defer_no_holder(tc, virt_cell); 2726 return DM_MAPIO_SUBMITTED; 2727 } 2728 2729 inc_all_io_entry(tc->pool, bio); 2730 cell_defer_no_holder(tc, data_cell); 2731 cell_defer_no_holder(tc, virt_cell); 2732 2733 remap(tc, bio, result.block); 2734 return DM_MAPIO_REMAPPED; 2735 2736 case -ENODATA: 2737 case -EWOULDBLOCK: 2738 thin_defer_cell(tc, virt_cell); 2739 return DM_MAPIO_SUBMITTED; 2740 2741 default: 2742 /* 2743 * Must always call bio_io_error on failure. 2744 * dm_thin_find_block can fail with -EINVAL if the 2745 * pool is switched to fail-io mode. 2746 */ 2747 bio_io_error(bio); 2748 cell_defer_no_holder(tc, virt_cell); 2749 return DM_MAPIO_SUBMITTED; 2750 } 2751 } 2752 2753 static int pool_is_congested(struct dm_target_callbacks *cb, int bdi_bits) 2754 { 2755 struct pool_c *pt = container_of(cb, struct pool_c, callbacks); 2756 struct request_queue *q; 2757 2758 if (get_pool_mode(pt->pool) == PM_OUT_OF_DATA_SPACE) 2759 return 1; 2760 2761 q = bdev_get_queue(pt->data_dev->bdev); 2762 return bdi_congested(q->backing_dev_info, bdi_bits); 2763 } 2764 2765 static void requeue_bios(struct pool *pool) 2766 { 2767 unsigned long flags; 2768 struct thin_c *tc; 2769 2770 rcu_read_lock(); 2771 list_for_each_entry_rcu(tc, &pool->active_thins, list) { 2772 spin_lock_irqsave(&tc->lock, flags); 2773 bio_list_merge(&tc->deferred_bio_list, &tc->retry_on_resume_list); 2774 bio_list_init(&tc->retry_on_resume_list); 2775 spin_unlock_irqrestore(&tc->lock, flags); 2776 } 2777 rcu_read_unlock(); 2778 } 2779 2780 /*---------------------------------------------------------------- 2781 * Binding of control targets to a pool object 2782 *--------------------------------------------------------------*/ 2783 static bool data_dev_supports_discard(struct pool_c *pt) 2784 { 2785 struct request_queue *q = bdev_get_queue(pt->data_dev->bdev); 2786 2787 return q && blk_queue_discard(q); 2788 } 2789 2790 static bool is_factor(sector_t block_size, uint32_t n) 2791 { 2792 return !sector_div(block_size, n); 2793 } 2794 2795 /* 2796 * If discard_passdown was enabled verify that the data device 2797 * supports discards. Disable discard_passdown if not. 2798 */ 2799 static void disable_passdown_if_not_supported(struct pool_c *pt) 2800 { 2801 struct pool *pool = pt->pool; 2802 struct block_device *data_bdev = pt->data_dev->bdev; 2803 struct queue_limits *data_limits = &bdev_get_queue(data_bdev)->limits; 2804 const char *reason = NULL; 2805 char buf[BDEVNAME_SIZE]; 2806 2807 if (!pt->adjusted_pf.discard_passdown) 2808 return; 2809 2810 if (!data_dev_supports_discard(pt)) 2811 reason = "discard unsupported"; 2812 2813 else if (data_limits->max_discard_sectors < pool->sectors_per_block) 2814 reason = "max discard sectors smaller than a block"; 2815 2816 if (reason) { 2817 DMWARN("Data device (%s) %s: Disabling discard passdown.", bdevname(data_bdev, buf), reason); 2818 pt->adjusted_pf.discard_passdown = false; 2819 } 2820 } 2821 2822 static int bind_control_target(struct pool *pool, struct dm_target *ti) 2823 { 2824 struct pool_c *pt = ti->private; 2825 2826 /* 2827 * We want to make sure that a pool in PM_FAIL mode is never upgraded. 2828 */ 2829 enum pool_mode old_mode = get_pool_mode(pool); 2830 enum pool_mode new_mode = pt->adjusted_pf.mode; 2831 2832 /* 2833 * Don't change the pool's mode until set_pool_mode() below. 2834 * Otherwise the pool's process_* function pointers may 2835 * not match the desired pool mode. 2836 */ 2837 pt->adjusted_pf.mode = old_mode; 2838 2839 pool->ti = ti; 2840 pool->pf = pt->adjusted_pf; 2841 pool->low_water_blocks = pt->low_water_blocks; 2842 2843 set_pool_mode(pool, new_mode); 2844 2845 return 0; 2846 } 2847 2848 static void unbind_control_target(struct pool *pool, struct dm_target *ti) 2849 { 2850 if (pool->ti == ti) 2851 pool->ti = NULL; 2852 } 2853 2854 /*---------------------------------------------------------------- 2855 * Pool creation 2856 *--------------------------------------------------------------*/ 2857 /* Initialize pool features. */ 2858 static void pool_features_init(struct pool_features *pf) 2859 { 2860 pf->mode = PM_WRITE; 2861 pf->zero_new_blocks = true; 2862 pf->discard_enabled = true; 2863 pf->discard_passdown = true; 2864 pf->error_if_no_space = false; 2865 } 2866 2867 static void __pool_destroy(struct pool *pool) 2868 { 2869 __pool_table_remove(pool); 2870 2871 vfree(pool->cell_sort_array); 2872 if (dm_pool_metadata_close(pool->pmd) < 0) 2873 DMWARN("%s: dm_pool_metadata_close() failed.", __func__); 2874 2875 dm_bio_prison_destroy(pool->prison); 2876 dm_kcopyd_client_destroy(pool->copier); 2877 2878 if (pool->wq) 2879 destroy_workqueue(pool->wq); 2880 2881 if (pool->next_mapping) 2882 mempool_free(pool->next_mapping, &pool->mapping_pool); 2883 mempool_exit(&pool->mapping_pool); 2884 dm_deferred_set_destroy(pool->shared_read_ds); 2885 dm_deferred_set_destroy(pool->all_io_ds); 2886 kfree(pool); 2887 } 2888 2889 static struct kmem_cache *_new_mapping_cache; 2890 2891 static struct pool *pool_create(struct mapped_device *pool_md, 2892 struct block_device *metadata_dev, 2893 unsigned long block_size, 2894 int read_only, char **error) 2895 { 2896 int r; 2897 void *err_p; 2898 struct pool *pool; 2899 struct dm_pool_metadata *pmd; 2900 bool format_device = read_only ? false : true; 2901 2902 pmd = dm_pool_metadata_open(metadata_dev, block_size, format_device); 2903 if (IS_ERR(pmd)) { 2904 *error = "Error creating metadata object"; 2905 return (struct pool *)pmd; 2906 } 2907 2908 pool = kzalloc(sizeof(*pool), GFP_KERNEL); 2909 if (!pool) { 2910 *error = "Error allocating memory for pool"; 2911 err_p = ERR_PTR(-ENOMEM); 2912 goto bad_pool; 2913 } 2914 2915 pool->pmd = pmd; 2916 pool->sectors_per_block = block_size; 2917 if (block_size & (block_size - 1)) 2918 pool->sectors_per_block_shift = -1; 2919 else 2920 pool->sectors_per_block_shift = __ffs(block_size); 2921 pool->low_water_blocks = 0; 2922 pool_features_init(&pool->pf); 2923 pool->prison = dm_bio_prison_create(); 2924 if (!pool->prison) { 2925 *error = "Error creating pool's bio prison"; 2926 err_p = ERR_PTR(-ENOMEM); 2927 goto bad_prison; 2928 } 2929 2930 pool->copier = dm_kcopyd_client_create(&dm_kcopyd_throttle); 2931 if (IS_ERR(pool->copier)) { 2932 r = PTR_ERR(pool->copier); 2933 *error = "Error creating pool's kcopyd client"; 2934 err_p = ERR_PTR(r); 2935 goto bad_kcopyd_client; 2936 } 2937 2938 /* 2939 * Create singlethreaded workqueue that will service all devices 2940 * that use this metadata. 2941 */ 2942 pool->wq = alloc_ordered_workqueue("dm-" DM_MSG_PREFIX, WQ_MEM_RECLAIM); 2943 if (!pool->wq) { 2944 *error = "Error creating pool's workqueue"; 2945 err_p = ERR_PTR(-ENOMEM); 2946 goto bad_wq; 2947 } 2948 2949 throttle_init(&pool->throttle); 2950 INIT_WORK(&pool->worker, do_worker); 2951 INIT_DELAYED_WORK(&pool->waker, do_waker); 2952 INIT_DELAYED_WORK(&pool->no_space_timeout, do_no_space_timeout); 2953 spin_lock_init(&pool->lock); 2954 bio_list_init(&pool->deferred_flush_bios); 2955 INIT_LIST_HEAD(&pool->prepared_mappings); 2956 INIT_LIST_HEAD(&pool->prepared_discards); 2957 INIT_LIST_HEAD(&pool->prepared_discards_pt2); 2958 INIT_LIST_HEAD(&pool->active_thins); 2959 pool->low_water_triggered = false; 2960 pool->suspended = true; 2961 pool->out_of_data_space = false; 2962 2963 pool->shared_read_ds = dm_deferred_set_create(); 2964 if (!pool->shared_read_ds) { 2965 *error = "Error creating pool's shared read deferred set"; 2966 err_p = ERR_PTR(-ENOMEM); 2967 goto bad_shared_read_ds; 2968 } 2969 2970 pool->all_io_ds = dm_deferred_set_create(); 2971 if (!pool->all_io_ds) { 2972 *error = "Error creating pool's all io deferred set"; 2973 err_p = ERR_PTR(-ENOMEM); 2974 goto bad_all_io_ds; 2975 } 2976 2977 pool->next_mapping = NULL; 2978 r = mempool_init_slab_pool(&pool->mapping_pool, MAPPING_POOL_SIZE, 2979 _new_mapping_cache); 2980 if (r) { 2981 *error = "Error creating pool's mapping mempool"; 2982 err_p = ERR_PTR(r); 2983 goto bad_mapping_pool; 2984 } 2985 2986 pool->cell_sort_array = 2987 vmalloc(array_size(CELL_SORT_ARRAY_SIZE, 2988 sizeof(*pool->cell_sort_array))); 2989 if (!pool->cell_sort_array) { 2990 *error = "Error allocating cell sort array"; 2991 err_p = ERR_PTR(-ENOMEM); 2992 goto bad_sort_array; 2993 } 2994 2995 pool->ref_count = 1; 2996 pool->last_commit_jiffies = jiffies; 2997 pool->pool_md = pool_md; 2998 pool->md_dev = metadata_dev; 2999 __pool_table_insert(pool); 3000 3001 return pool; 3002 3003 bad_sort_array: 3004 mempool_exit(&pool->mapping_pool); 3005 bad_mapping_pool: 3006 dm_deferred_set_destroy(pool->all_io_ds); 3007 bad_all_io_ds: 3008 dm_deferred_set_destroy(pool->shared_read_ds); 3009 bad_shared_read_ds: 3010 destroy_workqueue(pool->wq); 3011 bad_wq: 3012 dm_kcopyd_client_destroy(pool->copier); 3013 bad_kcopyd_client: 3014 dm_bio_prison_destroy(pool->prison); 3015 bad_prison: 3016 kfree(pool); 3017 bad_pool: 3018 if (dm_pool_metadata_close(pmd)) 3019 DMWARN("%s: dm_pool_metadata_close() failed.", __func__); 3020 3021 return err_p; 3022 } 3023 3024 static void __pool_inc(struct pool *pool) 3025 { 3026 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex)); 3027 pool->ref_count++; 3028 } 3029 3030 static void __pool_dec(struct pool *pool) 3031 { 3032 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex)); 3033 BUG_ON(!pool->ref_count); 3034 if (!--pool->ref_count) 3035 __pool_destroy(pool); 3036 } 3037 3038 static struct pool *__pool_find(struct mapped_device *pool_md, 3039 struct block_device *metadata_dev, 3040 unsigned long block_size, int read_only, 3041 char **error, int *created) 3042 { 3043 struct pool *pool = __pool_table_lookup_metadata_dev(metadata_dev); 3044 3045 if (pool) { 3046 if (pool->pool_md != pool_md) { 3047 *error = "metadata device already in use by a pool"; 3048 return ERR_PTR(-EBUSY); 3049 } 3050 __pool_inc(pool); 3051 3052 } else { 3053 pool = __pool_table_lookup(pool_md); 3054 if (pool) { 3055 if (pool->md_dev != metadata_dev) { 3056 *error = "different pool cannot replace a pool"; 3057 return ERR_PTR(-EINVAL); 3058 } 3059 __pool_inc(pool); 3060 3061 } else { 3062 pool = pool_create(pool_md, metadata_dev, block_size, read_only, error); 3063 *created = 1; 3064 } 3065 } 3066 3067 return pool; 3068 } 3069 3070 /*---------------------------------------------------------------- 3071 * Pool target methods 3072 *--------------------------------------------------------------*/ 3073 static void pool_dtr(struct dm_target *ti) 3074 { 3075 struct pool_c *pt = ti->private; 3076 3077 mutex_lock(&dm_thin_pool_table.mutex); 3078 3079 unbind_control_target(pt->pool, ti); 3080 __pool_dec(pt->pool); 3081 dm_put_device(ti, pt->metadata_dev); 3082 dm_put_device(ti, pt->data_dev); 3083 kfree(pt); 3084 3085 mutex_unlock(&dm_thin_pool_table.mutex); 3086 } 3087 3088 static int parse_pool_features(struct dm_arg_set *as, struct pool_features *pf, 3089 struct dm_target *ti) 3090 { 3091 int r; 3092 unsigned argc; 3093 const char *arg_name; 3094 3095 static const struct dm_arg _args[] = { 3096 {0, 4, "Invalid number of pool feature arguments"}, 3097 }; 3098 3099 /* 3100 * No feature arguments supplied. 3101 */ 3102 if (!as->argc) 3103 return 0; 3104 3105 r = dm_read_arg_group(_args, as, &argc, &ti->error); 3106 if (r) 3107 return -EINVAL; 3108 3109 while (argc && !r) { 3110 arg_name = dm_shift_arg(as); 3111 argc--; 3112 3113 if (!strcasecmp(arg_name, "skip_block_zeroing")) 3114 pf->zero_new_blocks = false; 3115 3116 else if (!strcasecmp(arg_name, "ignore_discard")) 3117 pf->discard_enabled = false; 3118 3119 else if (!strcasecmp(arg_name, "no_discard_passdown")) 3120 pf->discard_passdown = false; 3121 3122 else if (!strcasecmp(arg_name, "read_only")) 3123 pf->mode = PM_READ_ONLY; 3124 3125 else if (!strcasecmp(arg_name, "error_if_no_space")) 3126 pf->error_if_no_space = true; 3127 3128 else { 3129 ti->error = "Unrecognised pool feature requested"; 3130 r = -EINVAL; 3131 break; 3132 } 3133 } 3134 3135 return r; 3136 } 3137 3138 static void metadata_low_callback(void *context) 3139 { 3140 struct pool *pool = context; 3141 3142 DMWARN("%s: reached low water mark for metadata device: sending event.", 3143 dm_device_name(pool->pool_md)); 3144 3145 dm_table_event(pool->ti->table); 3146 } 3147 3148 static sector_t get_dev_size(struct block_device *bdev) 3149 { 3150 return i_size_read(bdev->bd_inode) >> SECTOR_SHIFT; 3151 } 3152 3153 static void warn_if_metadata_device_too_big(struct block_device *bdev) 3154 { 3155 sector_t metadata_dev_size = get_dev_size(bdev); 3156 char buffer[BDEVNAME_SIZE]; 3157 3158 if (metadata_dev_size > THIN_METADATA_MAX_SECTORS_WARNING) 3159 DMWARN("Metadata device %s is larger than %u sectors: excess space will not be used.", 3160 bdevname(bdev, buffer), THIN_METADATA_MAX_SECTORS); 3161 } 3162 3163 static sector_t get_metadata_dev_size(struct block_device *bdev) 3164 { 3165 sector_t metadata_dev_size = get_dev_size(bdev); 3166 3167 if (metadata_dev_size > THIN_METADATA_MAX_SECTORS) 3168 metadata_dev_size = THIN_METADATA_MAX_SECTORS; 3169 3170 return metadata_dev_size; 3171 } 3172 3173 static dm_block_t get_metadata_dev_size_in_blocks(struct block_device *bdev) 3174 { 3175 sector_t metadata_dev_size = get_metadata_dev_size(bdev); 3176 3177 sector_div(metadata_dev_size, THIN_METADATA_BLOCK_SIZE); 3178 3179 return metadata_dev_size; 3180 } 3181 3182 /* 3183 * When a metadata threshold is crossed a dm event is triggered, and 3184 * userland should respond by growing the metadata device. We could let 3185 * userland set the threshold, like we do with the data threshold, but I'm 3186 * not sure they know enough to do this well. 3187 */ 3188 static dm_block_t calc_metadata_threshold(struct pool_c *pt) 3189 { 3190 /* 3191 * 4M is ample for all ops with the possible exception of thin 3192 * device deletion which is harmless if it fails (just retry the 3193 * delete after you've grown the device). 3194 */ 3195 dm_block_t quarter = get_metadata_dev_size_in_blocks(pt->metadata_dev->bdev) / 4; 3196 return min((dm_block_t)1024ULL /* 4M */, quarter); 3197 } 3198 3199 /* 3200 * thin-pool <metadata dev> <data dev> 3201 * <data block size (sectors)> 3202 * <low water mark (blocks)> 3203 * [<#feature args> [<arg>]*] 3204 * 3205 * Optional feature arguments are: 3206 * skip_block_zeroing: skips the zeroing of newly-provisioned blocks. 3207 * ignore_discard: disable discard 3208 * no_discard_passdown: don't pass discards down to the data device 3209 * read_only: Don't allow any changes to be made to the pool metadata. 3210 * error_if_no_space: error IOs, instead of queueing, if no space. 3211 */ 3212 static int pool_ctr(struct dm_target *ti, unsigned argc, char **argv) 3213 { 3214 int r, pool_created = 0; 3215 struct pool_c *pt; 3216 struct pool *pool; 3217 struct pool_features pf; 3218 struct dm_arg_set as; 3219 struct dm_dev *data_dev; 3220 unsigned long block_size; 3221 dm_block_t low_water_blocks; 3222 struct dm_dev *metadata_dev; 3223 fmode_t metadata_mode; 3224 3225 /* 3226 * FIXME Remove validation from scope of lock. 3227 */ 3228 mutex_lock(&dm_thin_pool_table.mutex); 3229 3230 if (argc < 4) { 3231 ti->error = "Invalid argument count"; 3232 r = -EINVAL; 3233 goto out_unlock; 3234 } 3235 3236 as.argc = argc; 3237 as.argv = argv; 3238 3239 /* 3240 * Set default pool features. 3241 */ 3242 pool_features_init(&pf); 3243 3244 dm_consume_args(&as, 4); 3245 r = parse_pool_features(&as, &pf, ti); 3246 if (r) 3247 goto out_unlock; 3248 3249 metadata_mode = FMODE_READ | ((pf.mode == PM_READ_ONLY) ? 0 : FMODE_WRITE); 3250 r = dm_get_device(ti, argv[0], metadata_mode, &metadata_dev); 3251 if (r) { 3252 ti->error = "Error opening metadata block device"; 3253 goto out_unlock; 3254 } 3255 warn_if_metadata_device_too_big(metadata_dev->bdev); 3256 3257 r = dm_get_device(ti, argv[1], FMODE_READ | FMODE_WRITE, &data_dev); 3258 if (r) { 3259 ti->error = "Error getting data device"; 3260 goto out_metadata; 3261 } 3262 3263 if (kstrtoul(argv[2], 10, &block_size) || !block_size || 3264 block_size < DATA_DEV_BLOCK_SIZE_MIN_SECTORS || 3265 block_size > DATA_DEV_BLOCK_SIZE_MAX_SECTORS || 3266 block_size & (DATA_DEV_BLOCK_SIZE_MIN_SECTORS - 1)) { 3267 ti->error = "Invalid block size"; 3268 r = -EINVAL; 3269 goto out; 3270 } 3271 3272 if (kstrtoull(argv[3], 10, (unsigned long long *)&low_water_blocks)) { 3273 ti->error = "Invalid low water mark"; 3274 r = -EINVAL; 3275 goto out; 3276 } 3277 3278 pt = kzalloc(sizeof(*pt), GFP_KERNEL); 3279 if (!pt) { 3280 r = -ENOMEM; 3281 goto out; 3282 } 3283 3284 pool = __pool_find(dm_table_get_md(ti->table), metadata_dev->bdev, 3285 block_size, pf.mode == PM_READ_ONLY, &ti->error, &pool_created); 3286 if (IS_ERR(pool)) { 3287 r = PTR_ERR(pool); 3288 goto out_free_pt; 3289 } 3290 3291 /* 3292 * 'pool_created' reflects whether this is the first table load. 3293 * Top level discard support is not allowed to be changed after 3294 * initial load. This would require a pool reload to trigger thin 3295 * device changes. 3296 */ 3297 if (!pool_created && pf.discard_enabled != pool->pf.discard_enabled) { 3298 ti->error = "Discard support cannot be disabled once enabled"; 3299 r = -EINVAL; 3300 goto out_flags_changed; 3301 } 3302 3303 pt->pool = pool; 3304 pt->ti = ti; 3305 pt->metadata_dev = metadata_dev; 3306 pt->data_dev = data_dev; 3307 pt->low_water_blocks = low_water_blocks; 3308 pt->adjusted_pf = pt->requested_pf = pf; 3309 ti->num_flush_bios = 1; 3310 3311 /* 3312 * Only need to enable discards if the pool should pass 3313 * them down to the data device. The thin device's discard 3314 * processing will cause mappings to be removed from the btree. 3315 */ 3316 if (pf.discard_enabled && pf.discard_passdown) { 3317 ti->num_discard_bios = 1; 3318 3319 /* 3320 * Setting 'discards_supported' circumvents the normal 3321 * stacking of discard limits (this keeps the pool and 3322 * thin devices' discard limits consistent). 3323 */ 3324 ti->discards_supported = true; 3325 } 3326 ti->private = pt; 3327 3328 r = dm_pool_register_metadata_threshold(pt->pool->pmd, 3329 calc_metadata_threshold(pt), 3330 metadata_low_callback, 3331 pool); 3332 if (r) 3333 goto out_flags_changed; 3334 3335 pt->callbacks.congested_fn = pool_is_congested; 3336 dm_table_add_target_callbacks(ti->table, &pt->callbacks); 3337 3338 mutex_unlock(&dm_thin_pool_table.mutex); 3339 3340 return 0; 3341 3342 out_flags_changed: 3343 __pool_dec(pool); 3344 out_free_pt: 3345 kfree(pt); 3346 out: 3347 dm_put_device(ti, data_dev); 3348 out_metadata: 3349 dm_put_device(ti, metadata_dev); 3350 out_unlock: 3351 mutex_unlock(&dm_thin_pool_table.mutex); 3352 3353 return r; 3354 } 3355 3356 static int pool_map(struct dm_target *ti, struct bio *bio) 3357 { 3358 int r; 3359 struct pool_c *pt = ti->private; 3360 struct pool *pool = pt->pool; 3361 unsigned long flags; 3362 3363 /* 3364 * As this is a singleton target, ti->begin is always zero. 3365 */ 3366 spin_lock_irqsave(&pool->lock, flags); 3367 bio_set_dev(bio, pt->data_dev->bdev); 3368 r = DM_MAPIO_REMAPPED; 3369 spin_unlock_irqrestore(&pool->lock, flags); 3370 3371 return r; 3372 } 3373 3374 static int maybe_resize_data_dev(struct dm_target *ti, bool *need_commit) 3375 { 3376 int r; 3377 struct pool_c *pt = ti->private; 3378 struct pool *pool = pt->pool; 3379 sector_t data_size = ti->len; 3380 dm_block_t sb_data_size; 3381 3382 *need_commit = false; 3383 3384 (void) sector_div(data_size, pool->sectors_per_block); 3385 3386 r = dm_pool_get_data_dev_size(pool->pmd, &sb_data_size); 3387 if (r) { 3388 DMERR("%s: failed to retrieve data device size", 3389 dm_device_name(pool->pool_md)); 3390 return r; 3391 } 3392 3393 if (data_size < sb_data_size) { 3394 DMERR("%s: pool target (%llu blocks) too small: expected %llu", 3395 dm_device_name(pool->pool_md), 3396 (unsigned long long)data_size, sb_data_size); 3397 return -EINVAL; 3398 3399 } else if (data_size > sb_data_size) { 3400 if (dm_pool_metadata_needs_check(pool->pmd)) { 3401 DMERR("%s: unable to grow the data device until repaired.", 3402 dm_device_name(pool->pool_md)); 3403 return 0; 3404 } 3405 3406 if (sb_data_size) 3407 DMINFO("%s: growing the data device from %llu to %llu blocks", 3408 dm_device_name(pool->pool_md), 3409 sb_data_size, (unsigned long long)data_size); 3410 r = dm_pool_resize_data_dev(pool->pmd, data_size); 3411 if (r) { 3412 metadata_operation_failed(pool, "dm_pool_resize_data_dev", r); 3413 return r; 3414 } 3415 3416 *need_commit = true; 3417 } 3418 3419 return 0; 3420 } 3421 3422 static int maybe_resize_metadata_dev(struct dm_target *ti, bool *need_commit) 3423 { 3424 int r; 3425 struct pool_c *pt = ti->private; 3426 struct pool *pool = pt->pool; 3427 dm_block_t metadata_dev_size, sb_metadata_dev_size; 3428 3429 *need_commit = false; 3430 3431 metadata_dev_size = get_metadata_dev_size_in_blocks(pool->md_dev); 3432 3433 r = dm_pool_get_metadata_dev_size(pool->pmd, &sb_metadata_dev_size); 3434 if (r) { 3435 DMERR("%s: failed to retrieve metadata device size", 3436 dm_device_name(pool->pool_md)); 3437 return r; 3438 } 3439 3440 if (metadata_dev_size < sb_metadata_dev_size) { 3441 DMERR("%s: metadata device (%llu blocks) too small: expected %llu", 3442 dm_device_name(pool->pool_md), 3443 metadata_dev_size, sb_metadata_dev_size); 3444 return -EINVAL; 3445 3446 } else if (metadata_dev_size > sb_metadata_dev_size) { 3447 if (dm_pool_metadata_needs_check(pool->pmd)) { 3448 DMERR("%s: unable to grow the metadata device until repaired.", 3449 dm_device_name(pool->pool_md)); 3450 return 0; 3451 } 3452 3453 warn_if_metadata_device_too_big(pool->md_dev); 3454 DMINFO("%s: growing the metadata device from %llu to %llu blocks", 3455 dm_device_name(pool->pool_md), 3456 sb_metadata_dev_size, metadata_dev_size); 3457 3458 if (get_pool_mode(pool) == PM_OUT_OF_METADATA_SPACE) 3459 set_pool_mode(pool, PM_WRITE); 3460 3461 r = dm_pool_resize_metadata_dev(pool->pmd, metadata_dev_size); 3462 if (r) { 3463 metadata_operation_failed(pool, "dm_pool_resize_metadata_dev", r); 3464 return r; 3465 } 3466 3467 *need_commit = true; 3468 } 3469 3470 return 0; 3471 } 3472 3473 /* 3474 * Retrieves the number of blocks of the data device from 3475 * the superblock and compares it to the actual device size, 3476 * thus resizing the data device in case it has grown. 3477 * 3478 * This both copes with opening preallocated data devices in the ctr 3479 * being followed by a resume 3480 * -and- 3481 * calling the resume method individually after userspace has 3482 * grown the data device in reaction to a table event. 3483 */ 3484 static int pool_preresume(struct dm_target *ti) 3485 { 3486 int r; 3487 bool need_commit1, need_commit2; 3488 struct pool_c *pt = ti->private; 3489 struct pool *pool = pt->pool; 3490 3491 /* 3492 * Take control of the pool object. 3493 */ 3494 r = bind_control_target(pool, ti); 3495 if (r) 3496 return r; 3497 3498 r = maybe_resize_data_dev(ti, &need_commit1); 3499 if (r) 3500 return r; 3501 3502 r = maybe_resize_metadata_dev(ti, &need_commit2); 3503 if (r) 3504 return r; 3505 3506 if (need_commit1 || need_commit2) 3507 (void) commit(pool); 3508 3509 return 0; 3510 } 3511 3512 static void pool_suspend_active_thins(struct pool *pool) 3513 { 3514 struct thin_c *tc; 3515 3516 /* Suspend all active thin devices */ 3517 tc = get_first_thin(pool); 3518 while (tc) { 3519 dm_internal_suspend_noflush(tc->thin_md); 3520 tc = get_next_thin(pool, tc); 3521 } 3522 } 3523 3524 static void pool_resume_active_thins(struct pool *pool) 3525 { 3526 struct thin_c *tc; 3527 3528 /* Resume all active thin devices */ 3529 tc = get_first_thin(pool); 3530 while (tc) { 3531 dm_internal_resume(tc->thin_md); 3532 tc = get_next_thin(pool, tc); 3533 } 3534 } 3535 3536 static void pool_resume(struct dm_target *ti) 3537 { 3538 struct pool_c *pt = ti->private; 3539 struct pool *pool = pt->pool; 3540 unsigned long flags; 3541 3542 /* 3543 * Must requeue active_thins' bios and then resume 3544 * active_thins _before_ clearing 'suspend' flag. 3545 */ 3546 requeue_bios(pool); 3547 pool_resume_active_thins(pool); 3548 3549 spin_lock_irqsave(&pool->lock, flags); 3550 pool->low_water_triggered = false; 3551 pool->suspended = false; 3552 spin_unlock_irqrestore(&pool->lock, flags); 3553 3554 do_waker(&pool->waker.work); 3555 } 3556 3557 static void pool_presuspend(struct dm_target *ti) 3558 { 3559 struct pool_c *pt = ti->private; 3560 struct pool *pool = pt->pool; 3561 unsigned long flags; 3562 3563 spin_lock_irqsave(&pool->lock, flags); 3564 pool->suspended = true; 3565 spin_unlock_irqrestore(&pool->lock, flags); 3566 3567 pool_suspend_active_thins(pool); 3568 } 3569 3570 static void pool_presuspend_undo(struct dm_target *ti) 3571 { 3572 struct pool_c *pt = ti->private; 3573 struct pool *pool = pt->pool; 3574 unsigned long flags; 3575 3576 pool_resume_active_thins(pool); 3577 3578 spin_lock_irqsave(&pool->lock, flags); 3579 pool->suspended = false; 3580 spin_unlock_irqrestore(&pool->lock, flags); 3581 } 3582 3583 static void pool_postsuspend(struct dm_target *ti) 3584 { 3585 struct pool_c *pt = ti->private; 3586 struct pool *pool = pt->pool; 3587 3588 cancel_delayed_work_sync(&pool->waker); 3589 cancel_delayed_work_sync(&pool->no_space_timeout); 3590 flush_workqueue(pool->wq); 3591 (void) commit(pool); 3592 } 3593 3594 static int check_arg_count(unsigned argc, unsigned args_required) 3595 { 3596 if (argc != args_required) { 3597 DMWARN("Message received with %u arguments instead of %u.", 3598 argc, args_required); 3599 return -EINVAL; 3600 } 3601 3602 return 0; 3603 } 3604 3605 static int read_dev_id(char *arg, dm_thin_id *dev_id, int warning) 3606 { 3607 if (!kstrtoull(arg, 10, (unsigned long long *)dev_id) && 3608 *dev_id <= MAX_DEV_ID) 3609 return 0; 3610 3611 if (warning) 3612 DMWARN("Message received with invalid device id: %s", arg); 3613 3614 return -EINVAL; 3615 } 3616 3617 static int process_create_thin_mesg(unsigned argc, char **argv, struct pool *pool) 3618 { 3619 dm_thin_id dev_id; 3620 int r; 3621 3622 r = check_arg_count(argc, 2); 3623 if (r) 3624 return r; 3625 3626 r = read_dev_id(argv[1], &dev_id, 1); 3627 if (r) 3628 return r; 3629 3630 r = dm_pool_create_thin(pool->pmd, dev_id); 3631 if (r) { 3632 DMWARN("Creation of new thinly-provisioned device with id %s failed.", 3633 argv[1]); 3634 return r; 3635 } 3636 3637 return 0; 3638 } 3639 3640 static int process_create_snap_mesg(unsigned argc, char **argv, struct pool *pool) 3641 { 3642 dm_thin_id dev_id; 3643 dm_thin_id origin_dev_id; 3644 int r; 3645 3646 r = check_arg_count(argc, 3); 3647 if (r) 3648 return r; 3649 3650 r = read_dev_id(argv[1], &dev_id, 1); 3651 if (r) 3652 return r; 3653 3654 r = read_dev_id(argv[2], &origin_dev_id, 1); 3655 if (r) 3656 return r; 3657 3658 r = dm_pool_create_snap(pool->pmd, dev_id, origin_dev_id); 3659 if (r) { 3660 DMWARN("Creation of new snapshot %s of device %s failed.", 3661 argv[1], argv[2]); 3662 return r; 3663 } 3664 3665 return 0; 3666 } 3667 3668 static int process_delete_mesg(unsigned argc, char **argv, struct pool *pool) 3669 { 3670 dm_thin_id dev_id; 3671 int r; 3672 3673 r = check_arg_count(argc, 2); 3674 if (r) 3675 return r; 3676 3677 r = read_dev_id(argv[1], &dev_id, 1); 3678 if (r) 3679 return r; 3680 3681 r = dm_pool_delete_thin_device(pool->pmd, dev_id); 3682 if (r) 3683 DMWARN("Deletion of thin device %s failed.", argv[1]); 3684 3685 return r; 3686 } 3687 3688 static int process_set_transaction_id_mesg(unsigned argc, char **argv, struct pool *pool) 3689 { 3690 dm_thin_id old_id, new_id; 3691 int r; 3692 3693 r = check_arg_count(argc, 3); 3694 if (r) 3695 return r; 3696 3697 if (kstrtoull(argv[1], 10, (unsigned long long *)&old_id)) { 3698 DMWARN("set_transaction_id message: Unrecognised id %s.", argv[1]); 3699 return -EINVAL; 3700 } 3701 3702 if (kstrtoull(argv[2], 10, (unsigned long long *)&new_id)) { 3703 DMWARN("set_transaction_id message: Unrecognised new id %s.", argv[2]); 3704 return -EINVAL; 3705 } 3706 3707 r = dm_pool_set_metadata_transaction_id(pool->pmd, old_id, new_id); 3708 if (r) { 3709 DMWARN("Failed to change transaction id from %s to %s.", 3710 argv[1], argv[2]); 3711 return r; 3712 } 3713 3714 return 0; 3715 } 3716 3717 static int process_reserve_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool) 3718 { 3719 int r; 3720 3721 r = check_arg_count(argc, 1); 3722 if (r) 3723 return r; 3724 3725 (void) commit(pool); 3726 3727 r = dm_pool_reserve_metadata_snap(pool->pmd); 3728 if (r) 3729 DMWARN("reserve_metadata_snap message failed."); 3730 3731 return r; 3732 } 3733 3734 static int process_release_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool) 3735 { 3736 int r; 3737 3738 r = check_arg_count(argc, 1); 3739 if (r) 3740 return r; 3741 3742 r = dm_pool_release_metadata_snap(pool->pmd); 3743 if (r) 3744 DMWARN("release_metadata_snap message failed."); 3745 3746 return r; 3747 } 3748 3749 /* 3750 * Messages supported: 3751 * create_thin <dev_id> 3752 * create_snap <dev_id> <origin_id> 3753 * delete <dev_id> 3754 * set_transaction_id <current_trans_id> <new_trans_id> 3755 * reserve_metadata_snap 3756 * release_metadata_snap 3757 */ 3758 static int pool_message(struct dm_target *ti, unsigned argc, char **argv, 3759 char *result, unsigned maxlen) 3760 { 3761 int r = -EINVAL; 3762 struct pool_c *pt = ti->private; 3763 struct pool *pool = pt->pool; 3764 3765 if (get_pool_mode(pool) >= PM_OUT_OF_METADATA_SPACE) { 3766 DMERR("%s: unable to service pool target messages in READ_ONLY or FAIL mode", 3767 dm_device_name(pool->pool_md)); 3768 return -EOPNOTSUPP; 3769 } 3770 3771 if (!strcasecmp(argv[0], "create_thin")) 3772 r = process_create_thin_mesg(argc, argv, pool); 3773 3774 else if (!strcasecmp(argv[0], "create_snap")) 3775 r = process_create_snap_mesg(argc, argv, pool); 3776 3777 else if (!strcasecmp(argv[0], "delete")) 3778 r = process_delete_mesg(argc, argv, pool); 3779 3780 else if (!strcasecmp(argv[0], "set_transaction_id")) 3781 r = process_set_transaction_id_mesg(argc, argv, pool); 3782 3783 else if (!strcasecmp(argv[0], "reserve_metadata_snap")) 3784 r = process_reserve_metadata_snap_mesg(argc, argv, pool); 3785 3786 else if (!strcasecmp(argv[0], "release_metadata_snap")) 3787 r = process_release_metadata_snap_mesg(argc, argv, pool); 3788 3789 else 3790 DMWARN("Unrecognised thin pool target message received: %s", argv[0]); 3791 3792 if (!r) 3793 (void) commit(pool); 3794 3795 return r; 3796 } 3797 3798 static void emit_flags(struct pool_features *pf, char *result, 3799 unsigned sz, unsigned maxlen) 3800 { 3801 unsigned count = !pf->zero_new_blocks + !pf->discard_enabled + 3802 !pf->discard_passdown + (pf->mode == PM_READ_ONLY) + 3803 pf->error_if_no_space; 3804 DMEMIT("%u ", count); 3805 3806 if (!pf->zero_new_blocks) 3807 DMEMIT("skip_block_zeroing "); 3808 3809 if (!pf->discard_enabled) 3810 DMEMIT("ignore_discard "); 3811 3812 if (!pf->discard_passdown) 3813 DMEMIT("no_discard_passdown "); 3814 3815 if (pf->mode == PM_READ_ONLY) 3816 DMEMIT("read_only "); 3817 3818 if (pf->error_if_no_space) 3819 DMEMIT("error_if_no_space "); 3820 } 3821 3822 /* 3823 * Status line is: 3824 * <transaction id> <used metadata sectors>/<total metadata sectors> 3825 * <used data sectors>/<total data sectors> <held metadata root> 3826 * <pool mode> <discard config> <no space config> <needs_check> 3827 */ 3828 static void pool_status(struct dm_target *ti, status_type_t type, 3829 unsigned status_flags, char *result, unsigned maxlen) 3830 { 3831 int r; 3832 unsigned sz = 0; 3833 uint64_t transaction_id; 3834 dm_block_t nr_free_blocks_data; 3835 dm_block_t nr_free_blocks_metadata; 3836 dm_block_t nr_blocks_data; 3837 dm_block_t nr_blocks_metadata; 3838 dm_block_t held_root; 3839 enum pool_mode mode; 3840 char buf[BDEVNAME_SIZE]; 3841 char buf2[BDEVNAME_SIZE]; 3842 struct pool_c *pt = ti->private; 3843 struct pool *pool = pt->pool; 3844 3845 switch (type) { 3846 case STATUSTYPE_INFO: 3847 if (get_pool_mode(pool) == PM_FAIL) { 3848 DMEMIT("Fail"); 3849 break; 3850 } 3851 3852 /* Commit to ensure statistics aren't out-of-date */ 3853 if (!(status_flags & DM_STATUS_NOFLUSH_FLAG) && !dm_suspended(ti)) 3854 (void) commit(pool); 3855 3856 r = dm_pool_get_metadata_transaction_id(pool->pmd, &transaction_id); 3857 if (r) { 3858 DMERR("%s: dm_pool_get_metadata_transaction_id returned %d", 3859 dm_device_name(pool->pool_md), r); 3860 goto err; 3861 } 3862 3863 r = dm_pool_get_free_metadata_block_count(pool->pmd, &nr_free_blocks_metadata); 3864 if (r) { 3865 DMERR("%s: dm_pool_get_free_metadata_block_count returned %d", 3866 dm_device_name(pool->pool_md), r); 3867 goto err; 3868 } 3869 3870 r = dm_pool_get_metadata_dev_size(pool->pmd, &nr_blocks_metadata); 3871 if (r) { 3872 DMERR("%s: dm_pool_get_metadata_dev_size returned %d", 3873 dm_device_name(pool->pool_md), r); 3874 goto err; 3875 } 3876 3877 r = dm_pool_get_free_block_count(pool->pmd, &nr_free_blocks_data); 3878 if (r) { 3879 DMERR("%s: dm_pool_get_free_block_count returned %d", 3880 dm_device_name(pool->pool_md), r); 3881 goto err; 3882 } 3883 3884 r = dm_pool_get_data_dev_size(pool->pmd, &nr_blocks_data); 3885 if (r) { 3886 DMERR("%s: dm_pool_get_data_dev_size returned %d", 3887 dm_device_name(pool->pool_md), r); 3888 goto err; 3889 } 3890 3891 r = dm_pool_get_metadata_snap(pool->pmd, &held_root); 3892 if (r) { 3893 DMERR("%s: dm_pool_get_metadata_snap returned %d", 3894 dm_device_name(pool->pool_md), r); 3895 goto err; 3896 } 3897 3898 DMEMIT("%llu %llu/%llu %llu/%llu ", 3899 (unsigned long long)transaction_id, 3900 (unsigned long long)(nr_blocks_metadata - nr_free_blocks_metadata), 3901 (unsigned long long)nr_blocks_metadata, 3902 (unsigned long long)(nr_blocks_data - nr_free_blocks_data), 3903 (unsigned long long)nr_blocks_data); 3904 3905 if (held_root) 3906 DMEMIT("%llu ", held_root); 3907 else 3908 DMEMIT("- "); 3909 3910 mode = get_pool_mode(pool); 3911 if (mode == PM_OUT_OF_DATA_SPACE) 3912 DMEMIT("out_of_data_space "); 3913 else if (is_read_only_pool_mode(mode)) 3914 DMEMIT("ro "); 3915 else 3916 DMEMIT("rw "); 3917 3918 if (!pool->pf.discard_enabled) 3919 DMEMIT("ignore_discard "); 3920 else if (pool->pf.discard_passdown) 3921 DMEMIT("discard_passdown "); 3922 else 3923 DMEMIT("no_discard_passdown "); 3924 3925 if (pool->pf.error_if_no_space) 3926 DMEMIT("error_if_no_space "); 3927 else 3928 DMEMIT("queue_if_no_space "); 3929 3930 if (dm_pool_metadata_needs_check(pool->pmd)) 3931 DMEMIT("needs_check "); 3932 else 3933 DMEMIT("- "); 3934 3935 DMEMIT("%llu ", (unsigned long long)calc_metadata_threshold(pt)); 3936 3937 break; 3938 3939 case STATUSTYPE_TABLE: 3940 DMEMIT("%s %s %lu %llu ", 3941 format_dev_t(buf, pt->metadata_dev->bdev->bd_dev), 3942 format_dev_t(buf2, pt->data_dev->bdev->bd_dev), 3943 (unsigned long)pool->sectors_per_block, 3944 (unsigned long long)pt->low_water_blocks); 3945 emit_flags(&pt->requested_pf, result, sz, maxlen); 3946 break; 3947 } 3948 return; 3949 3950 err: 3951 DMEMIT("Error"); 3952 } 3953 3954 static int pool_iterate_devices(struct dm_target *ti, 3955 iterate_devices_callout_fn fn, void *data) 3956 { 3957 struct pool_c *pt = ti->private; 3958 3959 return fn(ti, pt->data_dev, 0, ti->len, data); 3960 } 3961 3962 static void pool_io_hints(struct dm_target *ti, struct queue_limits *limits) 3963 { 3964 struct pool_c *pt = ti->private; 3965 struct pool *pool = pt->pool; 3966 sector_t io_opt_sectors = limits->io_opt >> SECTOR_SHIFT; 3967 3968 /* 3969 * If max_sectors is smaller than pool->sectors_per_block adjust it 3970 * to the highest possible power-of-2 factor of pool->sectors_per_block. 3971 * This is especially beneficial when the pool's data device is a RAID 3972 * device that has a full stripe width that matches pool->sectors_per_block 3973 * -- because even though partial RAID stripe-sized IOs will be issued to a 3974 * single RAID stripe; when aggregated they will end on a full RAID stripe 3975 * boundary.. which avoids additional partial RAID stripe writes cascading 3976 */ 3977 if (limits->max_sectors < pool->sectors_per_block) { 3978 while (!is_factor(pool->sectors_per_block, limits->max_sectors)) { 3979 if ((limits->max_sectors & (limits->max_sectors - 1)) == 0) 3980 limits->max_sectors--; 3981 limits->max_sectors = rounddown_pow_of_two(limits->max_sectors); 3982 } 3983 } 3984 3985 /* 3986 * If the system-determined stacked limits are compatible with the 3987 * pool's blocksize (io_opt is a factor) do not override them. 3988 */ 3989 if (io_opt_sectors < pool->sectors_per_block || 3990 !is_factor(io_opt_sectors, pool->sectors_per_block)) { 3991 if (is_factor(pool->sectors_per_block, limits->max_sectors)) 3992 blk_limits_io_min(limits, limits->max_sectors << SECTOR_SHIFT); 3993 else 3994 blk_limits_io_min(limits, pool->sectors_per_block << SECTOR_SHIFT); 3995 blk_limits_io_opt(limits, pool->sectors_per_block << SECTOR_SHIFT); 3996 } 3997 3998 /* 3999 * pt->adjusted_pf is a staging area for the actual features to use. 4000 * They get transferred to the live pool in bind_control_target() 4001 * called from pool_preresume(). 4002 */ 4003 if (!pt->adjusted_pf.discard_enabled) { 4004 /* 4005 * Must explicitly disallow stacking discard limits otherwise the 4006 * block layer will stack them if pool's data device has support. 4007 * QUEUE_FLAG_DISCARD wouldn't be set but there is no way for the 4008 * user to see that, so make sure to set all discard limits to 0. 4009 */ 4010 limits->discard_granularity = 0; 4011 return; 4012 } 4013 4014 disable_passdown_if_not_supported(pt); 4015 4016 /* 4017 * The pool uses the same discard limits as the underlying data 4018 * device. DM core has already set this up. 4019 */ 4020 } 4021 4022 static struct target_type pool_target = { 4023 .name = "thin-pool", 4024 .features = DM_TARGET_SINGLETON | DM_TARGET_ALWAYS_WRITEABLE | 4025 DM_TARGET_IMMUTABLE, 4026 .version = {1, 20, 0}, 4027 .module = THIS_MODULE, 4028 .ctr = pool_ctr, 4029 .dtr = pool_dtr, 4030 .map = pool_map, 4031 .presuspend = pool_presuspend, 4032 .presuspend_undo = pool_presuspend_undo, 4033 .postsuspend = pool_postsuspend, 4034 .preresume = pool_preresume, 4035 .resume = pool_resume, 4036 .message = pool_message, 4037 .status = pool_status, 4038 .iterate_devices = pool_iterate_devices, 4039 .io_hints = pool_io_hints, 4040 }; 4041 4042 /*---------------------------------------------------------------- 4043 * Thin target methods 4044 *--------------------------------------------------------------*/ 4045 static void thin_get(struct thin_c *tc) 4046 { 4047 atomic_inc(&tc->refcount); 4048 } 4049 4050 static void thin_put(struct thin_c *tc) 4051 { 4052 if (atomic_dec_and_test(&tc->refcount)) 4053 complete(&tc->can_destroy); 4054 } 4055 4056 static void thin_dtr(struct dm_target *ti) 4057 { 4058 struct thin_c *tc = ti->private; 4059 unsigned long flags; 4060 4061 spin_lock_irqsave(&tc->pool->lock, flags); 4062 list_del_rcu(&tc->list); 4063 spin_unlock_irqrestore(&tc->pool->lock, flags); 4064 synchronize_rcu(); 4065 4066 thin_put(tc); 4067 wait_for_completion(&tc->can_destroy); 4068 4069 mutex_lock(&dm_thin_pool_table.mutex); 4070 4071 __pool_dec(tc->pool); 4072 dm_pool_close_thin_device(tc->td); 4073 dm_put_device(ti, tc->pool_dev); 4074 if (tc->origin_dev) 4075 dm_put_device(ti, tc->origin_dev); 4076 kfree(tc); 4077 4078 mutex_unlock(&dm_thin_pool_table.mutex); 4079 } 4080 4081 /* 4082 * Thin target parameters: 4083 * 4084 * <pool_dev> <dev_id> [origin_dev] 4085 * 4086 * pool_dev: the path to the pool (eg, /dev/mapper/my_pool) 4087 * dev_id: the internal device identifier 4088 * origin_dev: a device external to the pool that should act as the origin 4089 * 4090 * If the pool device has discards disabled, they get disabled for the thin 4091 * device as well. 4092 */ 4093 static int thin_ctr(struct dm_target *ti, unsigned argc, char **argv) 4094 { 4095 int r; 4096 struct thin_c *tc; 4097 struct dm_dev *pool_dev, *origin_dev; 4098 struct mapped_device *pool_md; 4099 unsigned long flags; 4100 4101 mutex_lock(&dm_thin_pool_table.mutex); 4102 4103 if (argc != 2 && argc != 3) { 4104 ti->error = "Invalid argument count"; 4105 r = -EINVAL; 4106 goto out_unlock; 4107 } 4108 4109 tc = ti->private = kzalloc(sizeof(*tc), GFP_KERNEL); 4110 if (!tc) { 4111 ti->error = "Out of memory"; 4112 r = -ENOMEM; 4113 goto out_unlock; 4114 } 4115 tc->thin_md = dm_table_get_md(ti->table); 4116 spin_lock_init(&tc->lock); 4117 INIT_LIST_HEAD(&tc->deferred_cells); 4118 bio_list_init(&tc->deferred_bio_list); 4119 bio_list_init(&tc->retry_on_resume_list); 4120 tc->sort_bio_list = RB_ROOT; 4121 4122 if (argc == 3) { 4123 r = dm_get_device(ti, argv[2], FMODE_READ, &origin_dev); 4124 if (r) { 4125 ti->error = "Error opening origin device"; 4126 goto bad_origin_dev; 4127 } 4128 tc->origin_dev = origin_dev; 4129 } 4130 4131 r = dm_get_device(ti, argv[0], dm_table_get_mode(ti->table), &pool_dev); 4132 if (r) { 4133 ti->error = "Error opening pool device"; 4134 goto bad_pool_dev; 4135 } 4136 tc->pool_dev = pool_dev; 4137 4138 if (read_dev_id(argv[1], (unsigned long long *)&tc->dev_id, 0)) { 4139 ti->error = "Invalid device id"; 4140 r = -EINVAL; 4141 goto bad_common; 4142 } 4143 4144 pool_md = dm_get_md(tc->pool_dev->bdev->bd_dev); 4145 if (!pool_md) { 4146 ti->error = "Couldn't get pool mapped device"; 4147 r = -EINVAL; 4148 goto bad_common; 4149 } 4150 4151 tc->pool = __pool_table_lookup(pool_md); 4152 if (!tc->pool) { 4153 ti->error = "Couldn't find pool object"; 4154 r = -EINVAL; 4155 goto bad_pool_lookup; 4156 } 4157 __pool_inc(tc->pool); 4158 4159 if (get_pool_mode(tc->pool) == PM_FAIL) { 4160 ti->error = "Couldn't open thin device, Pool is in fail mode"; 4161 r = -EINVAL; 4162 goto bad_pool; 4163 } 4164 4165 r = dm_pool_open_thin_device(tc->pool->pmd, tc->dev_id, &tc->td); 4166 if (r) { 4167 ti->error = "Couldn't open thin internal device"; 4168 goto bad_pool; 4169 } 4170 4171 r = dm_set_target_max_io_len(ti, tc->pool->sectors_per_block); 4172 if (r) 4173 goto bad; 4174 4175 ti->num_flush_bios = 1; 4176 ti->flush_supported = true; 4177 ti->per_io_data_size = sizeof(struct dm_thin_endio_hook); 4178 4179 /* In case the pool supports discards, pass them on. */ 4180 if (tc->pool->pf.discard_enabled) { 4181 ti->discards_supported = true; 4182 ti->num_discard_bios = 1; 4183 ti->split_discard_bios = false; 4184 } 4185 4186 mutex_unlock(&dm_thin_pool_table.mutex); 4187 4188 spin_lock_irqsave(&tc->pool->lock, flags); 4189 if (tc->pool->suspended) { 4190 spin_unlock_irqrestore(&tc->pool->lock, flags); 4191 mutex_lock(&dm_thin_pool_table.mutex); /* reacquire for __pool_dec */ 4192 ti->error = "Unable to activate thin device while pool is suspended"; 4193 r = -EINVAL; 4194 goto bad; 4195 } 4196 atomic_set(&tc->refcount, 1); 4197 init_completion(&tc->can_destroy); 4198 list_add_tail_rcu(&tc->list, &tc->pool->active_thins); 4199 spin_unlock_irqrestore(&tc->pool->lock, flags); 4200 /* 4201 * This synchronize_rcu() call is needed here otherwise we risk a 4202 * wake_worker() call finding no bios to process (because the newly 4203 * added tc isn't yet visible). So this reduces latency since we 4204 * aren't then dependent on the periodic commit to wake_worker(). 4205 */ 4206 synchronize_rcu(); 4207 4208 dm_put(pool_md); 4209 4210 return 0; 4211 4212 bad: 4213 dm_pool_close_thin_device(tc->td); 4214 bad_pool: 4215 __pool_dec(tc->pool); 4216 bad_pool_lookup: 4217 dm_put(pool_md); 4218 bad_common: 4219 dm_put_device(ti, tc->pool_dev); 4220 bad_pool_dev: 4221 if (tc->origin_dev) 4222 dm_put_device(ti, tc->origin_dev); 4223 bad_origin_dev: 4224 kfree(tc); 4225 out_unlock: 4226 mutex_unlock(&dm_thin_pool_table.mutex); 4227 4228 return r; 4229 } 4230 4231 static int thin_map(struct dm_target *ti, struct bio *bio) 4232 { 4233 bio->bi_iter.bi_sector = dm_target_offset(ti, bio->bi_iter.bi_sector); 4234 4235 return thin_bio_map(ti, bio); 4236 } 4237 4238 static int thin_endio(struct dm_target *ti, struct bio *bio, 4239 blk_status_t *err) 4240 { 4241 unsigned long flags; 4242 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook)); 4243 struct list_head work; 4244 struct dm_thin_new_mapping *m, *tmp; 4245 struct pool *pool = h->tc->pool; 4246 4247 if (h->shared_read_entry) { 4248 INIT_LIST_HEAD(&work); 4249 dm_deferred_entry_dec(h->shared_read_entry, &work); 4250 4251 spin_lock_irqsave(&pool->lock, flags); 4252 list_for_each_entry_safe(m, tmp, &work, list) { 4253 list_del(&m->list); 4254 __complete_mapping_preparation(m); 4255 } 4256 spin_unlock_irqrestore(&pool->lock, flags); 4257 } 4258 4259 if (h->all_io_entry) { 4260 INIT_LIST_HEAD(&work); 4261 dm_deferred_entry_dec(h->all_io_entry, &work); 4262 if (!list_empty(&work)) { 4263 spin_lock_irqsave(&pool->lock, flags); 4264 list_for_each_entry_safe(m, tmp, &work, list) 4265 list_add_tail(&m->list, &pool->prepared_discards); 4266 spin_unlock_irqrestore(&pool->lock, flags); 4267 wake_worker(pool); 4268 } 4269 } 4270 4271 if (h->cell) 4272 cell_defer_no_holder(h->tc, h->cell); 4273 4274 return DM_ENDIO_DONE; 4275 } 4276 4277 static void thin_presuspend(struct dm_target *ti) 4278 { 4279 struct thin_c *tc = ti->private; 4280 4281 if (dm_noflush_suspending(ti)) 4282 noflush_work(tc, do_noflush_start); 4283 } 4284 4285 static void thin_postsuspend(struct dm_target *ti) 4286 { 4287 struct thin_c *tc = ti->private; 4288 4289 /* 4290 * The dm_noflush_suspending flag has been cleared by now, so 4291 * unfortunately we must always run this. 4292 */ 4293 noflush_work(tc, do_noflush_stop); 4294 } 4295 4296 static int thin_preresume(struct dm_target *ti) 4297 { 4298 struct thin_c *tc = ti->private; 4299 4300 if (tc->origin_dev) 4301 tc->origin_size = get_dev_size(tc->origin_dev->bdev); 4302 4303 return 0; 4304 } 4305 4306 /* 4307 * <nr mapped sectors> <highest mapped sector> 4308 */ 4309 static void thin_status(struct dm_target *ti, status_type_t type, 4310 unsigned status_flags, char *result, unsigned maxlen) 4311 { 4312 int r; 4313 ssize_t sz = 0; 4314 dm_block_t mapped, highest; 4315 char buf[BDEVNAME_SIZE]; 4316 struct thin_c *tc = ti->private; 4317 4318 if (get_pool_mode(tc->pool) == PM_FAIL) { 4319 DMEMIT("Fail"); 4320 return; 4321 } 4322 4323 if (!tc->td) 4324 DMEMIT("-"); 4325 else { 4326 switch (type) { 4327 case STATUSTYPE_INFO: 4328 r = dm_thin_get_mapped_count(tc->td, &mapped); 4329 if (r) { 4330 DMERR("dm_thin_get_mapped_count returned %d", r); 4331 goto err; 4332 } 4333 4334 r = dm_thin_get_highest_mapped_block(tc->td, &highest); 4335 if (r < 0) { 4336 DMERR("dm_thin_get_highest_mapped_block returned %d", r); 4337 goto err; 4338 } 4339 4340 DMEMIT("%llu ", mapped * tc->pool->sectors_per_block); 4341 if (r) 4342 DMEMIT("%llu", ((highest + 1) * 4343 tc->pool->sectors_per_block) - 1); 4344 else 4345 DMEMIT("-"); 4346 break; 4347 4348 case STATUSTYPE_TABLE: 4349 DMEMIT("%s %lu", 4350 format_dev_t(buf, tc->pool_dev->bdev->bd_dev), 4351 (unsigned long) tc->dev_id); 4352 if (tc->origin_dev) 4353 DMEMIT(" %s", format_dev_t(buf, tc->origin_dev->bdev->bd_dev)); 4354 break; 4355 } 4356 } 4357 4358 return; 4359 4360 err: 4361 DMEMIT("Error"); 4362 } 4363 4364 static int thin_iterate_devices(struct dm_target *ti, 4365 iterate_devices_callout_fn fn, void *data) 4366 { 4367 sector_t blocks; 4368 struct thin_c *tc = ti->private; 4369 struct pool *pool = tc->pool; 4370 4371 /* 4372 * We can't call dm_pool_get_data_dev_size() since that blocks. So 4373 * we follow a more convoluted path through to the pool's target. 4374 */ 4375 if (!pool->ti) 4376 return 0; /* nothing is bound */ 4377 4378 blocks = pool->ti->len; 4379 (void) sector_div(blocks, pool->sectors_per_block); 4380 if (blocks) 4381 return fn(ti, tc->pool_dev, 0, pool->sectors_per_block * blocks, data); 4382 4383 return 0; 4384 } 4385 4386 static void thin_io_hints(struct dm_target *ti, struct queue_limits *limits) 4387 { 4388 struct thin_c *tc = ti->private; 4389 struct pool *pool = tc->pool; 4390 4391 if (!pool->pf.discard_enabled) 4392 return; 4393 4394 limits->discard_granularity = pool->sectors_per_block << SECTOR_SHIFT; 4395 limits->max_discard_sectors = 2048 * 1024 * 16; /* 16G */ 4396 } 4397 4398 static struct target_type thin_target = { 4399 .name = "thin", 4400 .version = {1, 20, 0}, 4401 .module = THIS_MODULE, 4402 .ctr = thin_ctr, 4403 .dtr = thin_dtr, 4404 .map = thin_map, 4405 .end_io = thin_endio, 4406 .preresume = thin_preresume, 4407 .presuspend = thin_presuspend, 4408 .postsuspend = thin_postsuspend, 4409 .status = thin_status, 4410 .iterate_devices = thin_iterate_devices, 4411 .io_hints = thin_io_hints, 4412 }; 4413 4414 /*----------------------------------------------------------------*/ 4415 4416 static int __init dm_thin_init(void) 4417 { 4418 int r = -ENOMEM; 4419 4420 pool_table_init(); 4421 4422 _new_mapping_cache = KMEM_CACHE(dm_thin_new_mapping, 0); 4423 if (!_new_mapping_cache) 4424 return r; 4425 4426 r = dm_register_target(&thin_target); 4427 if (r) 4428 goto bad_new_mapping_cache; 4429 4430 r = dm_register_target(&pool_target); 4431 if (r) 4432 goto bad_thin_target; 4433 4434 return 0; 4435 4436 bad_thin_target: 4437 dm_unregister_target(&thin_target); 4438 bad_new_mapping_cache: 4439 kmem_cache_destroy(_new_mapping_cache); 4440 4441 return r; 4442 } 4443 4444 static void dm_thin_exit(void) 4445 { 4446 dm_unregister_target(&thin_target); 4447 dm_unregister_target(&pool_target); 4448 4449 kmem_cache_destroy(_new_mapping_cache); 4450 4451 pool_table_exit(); 4452 } 4453 4454 module_init(dm_thin_init); 4455 module_exit(dm_thin_exit); 4456 4457 module_param_named(no_space_timeout, no_space_timeout_secs, uint, S_IRUGO | S_IWUSR); 4458 MODULE_PARM_DESC(no_space_timeout, "Out of data space queue IO timeout in seconds"); 4459 4460 MODULE_DESCRIPTION(DM_NAME " thin provisioning target"); 4461 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>"); 4462 MODULE_LICENSE("GPL"); 4463