xref: /linux/drivers/md/dm-thin.c (revision b68fc09be48edbc47de1a0f3d42ef8adf6c0ac55)
1 /*
2  * Copyright (C) 2011-2012 Red Hat UK.
3  *
4  * This file is released under the GPL.
5  */
6 
7 #include "dm-thin-metadata.h"
8 #include "dm-bio-prison-v1.h"
9 #include "dm.h"
10 
11 #include <linux/device-mapper.h>
12 #include <linux/dm-io.h>
13 #include <linux/dm-kcopyd.h>
14 #include <linux/jiffies.h>
15 #include <linux/log2.h>
16 #include <linux/list.h>
17 #include <linux/rculist.h>
18 #include <linux/init.h>
19 #include <linux/module.h>
20 #include <linux/slab.h>
21 #include <linux/vmalloc.h>
22 #include <linux/sort.h>
23 #include <linux/rbtree.h>
24 
25 #define	DM_MSG_PREFIX	"thin"
26 
27 /*
28  * Tunable constants
29  */
30 #define ENDIO_HOOK_POOL_SIZE 1024
31 #define MAPPING_POOL_SIZE 1024
32 #define COMMIT_PERIOD HZ
33 #define NO_SPACE_TIMEOUT_SECS 60
34 
35 static unsigned no_space_timeout_secs = NO_SPACE_TIMEOUT_SECS;
36 
37 DECLARE_DM_KCOPYD_THROTTLE_WITH_MODULE_PARM(snapshot_copy_throttle,
38 		"A percentage of time allocated for copy on write");
39 
40 /*
41  * The block size of the device holding pool data must be
42  * between 64KB and 1GB.
43  */
44 #define DATA_DEV_BLOCK_SIZE_MIN_SECTORS (64 * 1024 >> SECTOR_SHIFT)
45 #define DATA_DEV_BLOCK_SIZE_MAX_SECTORS (1024 * 1024 * 1024 >> SECTOR_SHIFT)
46 
47 /*
48  * Device id is restricted to 24 bits.
49  */
50 #define MAX_DEV_ID ((1 << 24) - 1)
51 
52 /*
53  * How do we handle breaking sharing of data blocks?
54  * =================================================
55  *
56  * We use a standard copy-on-write btree to store the mappings for the
57  * devices (note I'm talking about copy-on-write of the metadata here, not
58  * the data).  When you take an internal snapshot you clone the root node
59  * of the origin btree.  After this there is no concept of an origin or a
60  * snapshot.  They are just two device trees that happen to point to the
61  * same data blocks.
62  *
63  * When we get a write in we decide if it's to a shared data block using
64  * some timestamp magic.  If it is, we have to break sharing.
65  *
66  * Let's say we write to a shared block in what was the origin.  The
67  * steps are:
68  *
69  * i) plug io further to this physical block. (see bio_prison code).
70  *
71  * ii) quiesce any read io to that shared data block.  Obviously
72  * including all devices that share this block.  (see dm_deferred_set code)
73  *
74  * iii) copy the data block to a newly allocate block.  This step can be
75  * missed out if the io covers the block. (schedule_copy).
76  *
77  * iv) insert the new mapping into the origin's btree
78  * (process_prepared_mapping).  This act of inserting breaks some
79  * sharing of btree nodes between the two devices.  Breaking sharing only
80  * effects the btree of that specific device.  Btrees for the other
81  * devices that share the block never change.  The btree for the origin
82  * device as it was after the last commit is untouched, ie. we're using
83  * persistent data structures in the functional programming sense.
84  *
85  * v) unplug io to this physical block, including the io that triggered
86  * the breaking of sharing.
87  *
88  * Steps (ii) and (iii) occur in parallel.
89  *
90  * The metadata _doesn't_ need to be committed before the io continues.  We
91  * get away with this because the io is always written to a _new_ block.
92  * If there's a crash, then:
93  *
94  * - The origin mapping will point to the old origin block (the shared
95  * one).  This will contain the data as it was before the io that triggered
96  * the breaking of sharing came in.
97  *
98  * - The snap mapping still points to the old block.  As it would after
99  * the commit.
100  *
101  * The downside of this scheme is the timestamp magic isn't perfect, and
102  * will continue to think that data block in the snapshot device is shared
103  * even after the write to the origin has broken sharing.  I suspect data
104  * blocks will typically be shared by many different devices, so we're
105  * breaking sharing n + 1 times, rather than n, where n is the number of
106  * devices that reference this data block.  At the moment I think the
107  * benefits far, far outweigh the disadvantages.
108  */
109 
110 /*----------------------------------------------------------------*/
111 
112 /*
113  * Key building.
114  */
115 enum lock_space {
116 	VIRTUAL,
117 	PHYSICAL
118 };
119 
120 static void build_key(struct dm_thin_device *td, enum lock_space ls,
121 		      dm_block_t b, dm_block_t e, struct dm_cell_key *key)
122 {
123 	key->virtual = (ls == VIRTUAL);
124 	key->dev = dm_thin_dev_id(td);
125 	key->block_begin = b;
126 	key->block_end = e;
127 }
128 
129 static void build_data_key(struct dm_thin_device *td, dm_block_t b,
130 			   struct dm_cell_key *key)
131 {
132 	build_key(td, PHYSICAL, b, b + 1llu, key);
133 }
134 
135 static void build_virtual_key(struct dm_thin_device *td, dm_block_t b,
136 			      struct dm_cell_key *key)
137 {
138 	build_key(td, VIRTUAL, b, b + 1llu, key);
139 }
140 
141 /*----------------------------------------------------------------*/
142 
143 #define THROTTLE_THRESHOLD (1 * HZ)
144 
145 struct throttle {
146 	struct rw_semaphore lock;
147 	unsigned long threshold;
148 	bool throttle_applied;
149 };
150 
151 static void throttle_init(struct throttle *t)
152 {
153 	init_rwsem(&t->lock);
154 	t->throttle_applied = false;
155 }
156 
157 static void throttle_work_start(struct throttle *t)
158 {
159 	t->threshold = jiffies + THROTTLE_THRESHOLD;
160 }
161 
162 static void throttle_work_update(struct throttle *t)
163 {
164 	if (!t->throttle_applied && jiffies > t->threshold) {
165 		down_write(&t->lock);
166 		t->throttle_applied = true;
167 	}
168 }
169 
170 static void throttle_work_complete(struct throttle *t)
171 {
172 	if (t->throttle_applied) {
173 		t->throttle_applied = false;
174 		up_write(&t->lock);
175 	}
176 }
177 
178 static void throttle_lock(struct throttle *t)
179 {
180 	down_read(&t->lock);
181 }
182 
183 static void throttle_unlock(struct throttle *t)
184 {
185 	up_read(&t->lock);
186 }
187 
188 /*----------------------------------------------------------------*/
189 
190 /*
191  * A pool device ties together a metadata device and a data device.  It
192  * also provides the interface for creating and destroying internal
193  * devices.
194  */
195 struct dm_thin_new_mapping;
196 
197 /*
198  * The pool runs in 4 modes.  Ordered in degraded order for comparisons.
199  */
200 enum pool_mode {
201 	PM_WRITE,		/* metadata may be changed */
202 	PM_OUT_OF_DATA_SPACE,	/* metadata may be changed, though data may not be allocated */
203 
204 	/*
205 	 * Like READ_ONLY, except may switch back to WRITE on metadata resize. Reported as READ_ONLY.
206 	 */
207 	PM_OUT_OF_METADATA_SPACE,
208 	PM_READ_ONLY,		/* metadata may not be changed */
209 
210 	PM_FAIL,		/* all I/O fails */
211 };
212 
213 struct pool_features {
214 	enum pool_mode mode;
215 
216 	bool zero_new_blocks:1;
217 	bool discard_enabled:1;
218 	bool discard_passdown:1;
219 	bool error_if_no_space:1;
220 };
221 
222 struct thin_c;
223 typedef void (*process_bio_fn)(struct thin_c *tc, struct bio *bio);
224 typedef void (*process_cell_fn)(struct thin_c *tc, struct dm_bio_prison_cell *cell);
225 typedef void (*process_mapping_fn)(struct dm_thin_new_mapping *m);
226 
227 #define CELL_SORT_ARRAY_SIZE 8192
228 
229 struct pool {
230 	struct list_head list;
231 	struct dm_target *ti;	/* Only set if a pool target is bound */
232 
233 	struct mapped_device *pool_md;
234 	struct block_device *md_dev;
235 	struct dm_pool_metadata *pmd;
236 
237 	dm_block_t low_water_blocks;
238 	uint32_t sectors_per_block;
239 	int sectors_per_block_shift;
240 
241 	struct pool_features pf;
242 	bool low_water_triggered:1;	/* A dm event has been sent */
243 	bool suspended:1;
244 	bool out_of_data_space:1;
245 
246 	struct dm_bio_prison *prison;
247 	struct dm_kcopyd_client *copier;
248 
249 	struct work_struct worker;
250 	struct workqueue_struct *wq;
251 	struct throttle throttle;
252 	struct delayed_work waker;
253 	struct delayed_work no_space_timeout;
254 
255 	unsigned long last_commit_jiffies;
256 	unsigned ref_count;
257 
258 	spinlock_t lock;
259 	struct bio_list deferred_flush_bios;
260 	struct list_head prepared_mappings;
261 	struct list_head prepared_discards;
262 	struct list_head prepared_discards_pt2;
263 	struct list_head active_thins;
264 
265 	struct dm_deferred_set *shared_read_ds;
266 	struct dm_deferred_set *all_io_ds;
267 
268 	struct dm_thin_new_mapping *next_mapping;
269 
270 	process_bio_fn process_bio;
271 	process_bio_fn process_discard;
272 
273 	process_cell_fn process_cell;
274 	process_cell_fn process_discard_cell;
275 
276 	process_mapping_fn process_prepared_mapping;
277 	process_mapping_fn process_prepared_discard;
278 	process_mapping_fn process_prepared_discard_pt2;
279 
280 	struct dm_bio_prison_cell **cell_sort_array;
281 
282 	mempool_t mapping_pool;
283 };
284 
285 static enum pool_mode get_pool_mode(struct pool *pool);
286 static void metadata_operation_failed(struct pool *pool, const char *op, int r);
287 
288 /*
289  * Target context for a pool.
290  */
291 struct pool_c {
292 	struct dm_target *ti;
293 	struct pool *pool;
294 	struct dm_dev *data_dev;
295 	struct dm_dev *metadata_dev;
296 	struct dm_target_callbacks callbacks;
297 
298 	dm_block_t low_water_blocks;
299 	struct pool_features requested_pf; /* Features requested during table load */
300 	struct pool_features adjusted_pf;  /* Features used after adjusting for constituent devices */
301 };
302 
303 /*
304  * Target context for a thin.
305  */
306 struct thin_c {
307 	struct list_head list;
308 	struct dm_dev *pool_dev;
309 	struct dm_dev *origin_dev;
310 	sector_t origin_size;
311 	dm_thin_id dev_id;
312 
313 	struct pool *pool;
314 	struct dm_thin_device *td;
315 	struct mapped_device *thin_md;
316 
317 	bool requeue_mode:1;
318 	spinlock_t lock;
319 	struct list_head deferred_cells;
320 	struct bio_list deferred_bio_list;
321 	struct bio_list retry_on_resume_list;
322 	struct rb_root sort_bio_list; /* sorted list of deferred bios */
323 
324 	/*
325 	 * Ensures the thin is not destroyed until the worker has finished
326 	 * iterating the active_thins list.
327 	 */
328 	atomic_t refcount;
329 	struct completion can_destroy;
330 };
331 
332 /*----------------------------------------------------------------*/
333 
334 static bool block_size_is_power_of_two(struct pool *pool)
335 {
336 	return pool->sectors_per_block_shift >= 0;
337 }
338 
339 static sector_t block_to_sectors(struct pool *pool, dm_block_t b)
340 {
341 	return block_size_is_power_of_two(pool) ?
342 		(b << pool->sectors_per_block_shift) :
343 		(b * pool->sectors_per_block);
344 }
345 
346 /*----------------------------------------------------------------*/
347 
348 struct discard_op {
349 	struct thin_c *tc;
350 	struct blk_plug plug;
351 	struct bio *parent_bio;
352 	struct bio *bio;
353 };
354 
355 static void begin_discard(struct discard_op *op, struct thin_c *tc, struct bio *parent)
356 {
357 	BUG_ON(!parent);
358 
359 	op->tc = tc;
360 	blk_start_plug(&op->plug);
361 	op->parent_bio = parent;
362 	op->bio = NULL;
363 }
364 
365 static int issue_discard(struct discard_op *op, dm_block_t data_b, dm_block_t data_e)
366 {
367 	struct thin_c *tc = op->tc;
368 	sector_t s = block_to_sectors(tc->pool, data_b);
369 	sector_t len = block_to_sectors(tc->pool, data_e - data_b);
370 
371 	return __blkdev_issue_discard(tc->pool_dev->bdev, s, len,
372 				      GFP_NOWAIT, 0, &op->bio);
373 }
374 
375 static void end_discard(struct discard_op *op, int r)
376 {
377 	if (op->bio) {
378 		/*
379 		 * Even if one of the calls to issue_discard failed, we
380 		 * need to wait for the chain to complete.
381 		 */
382 		bio_chain(op->bio, op->parent_bio);
383 		bio_set_op_attrs(op->bio, REQ_OP_DISCARD, 0);
384 		submit_bio(op->bio);
385 	}
386 
387 	blk_finish_plug(&op->plug);
388 
389 	/*
390 	 * Even if r is set, there could be sub discards in flight that we
391 	 * need to wait for.
392 	 */
393 	if (r && !op->parent_bio->bi_status)
394 		op->parent_bio->bi_status = errno_to_blk_status(r);
395 	bio_endio(op->parent_bio);
396 }
397 
398 /*----------------------------------------------------------------*/
399 
400 /*
401  * wake_worker() is used when new work is queued and when pool_resume is
402  * ready to continue deferred IO processing.
403  */
404 static void wake_worker(struct pool *pool)
405 {
406 	queue_work(pool->wq, &pool->worker);
407 }
408 
409 /*----------------------------------------------------------------*/
410 
411 static int bio_detain(struct pool *pool, struct dm_cell_key *key, struct bio *bio,
412 		      struct dm_bio_prison_cell **cell_result)
413 {
414 	int r;
415 	struct dm_bio_prison_cell *cell_prealloc;
416 
417 	/*
418 	 * Allocate a cell from the prison's mempool.
419 	 * This might block but it can't fail.
420 	 */
421 	cell_prealloc = dm_bio_prison_alloc_cell(pool->prison, GFP_NOIO);
422 
423 	r = dm_bio_detain(pool->prison, key, bio, cell_prealloc, cell_result);
424 	if (r)
425 		/*
426 		 * We reused an old cell; we can get rid of
427 		 * the new one.
428 		 */
429 		dm_bio_prison_free_cell(pool->prison, cell_prealloc);
430 
431 	return r;
432 }
433 
434 static void cell_release(struct pool *pool,
435 			 struct dm_bio_prison_cell *cell,
436 			 struct bio_list *bios)
437 {
438 	dm_cell_release(pool->prison, cell, bios);
439 	dm_bio_prison_free_cell(pool->prison, cell);
440 }
441 
442 static void cell_visit_release(struct pool *pool,
443 			       void (*fn)(void *, struct dm_bio_prison_cell *),
444 			       void *context,
445 			       struct dm_bio_prison_cell *cell)
446 {
447 	dm_cell_visit_release(pool->prison, fn, context, cell);
448 	dm_bio_prison_free_cell(pool->prison, cell);
449 }
450 
451 static void cell_release_no_holder(struct pool *pool,
452 				   struct dm_bio_prison_cell *cell,
453 				   struct bio_list *bios)
454 {
455 	dm_cell_release_no_holder(pool->prison, cell, bios);
456 	dm_bio_prison_free_cell(pool->prison, cell);
457 }
458 
459 static void cell_error_with_code(struct pool *pool,
460 		struct dm_bio_prison_cell *cell, blk_status_t error_code)
461 {
462 	dm_cell_error(pool->prison, cell, error_code);
463 	dm_bio_prison_free_cell(pool->prison, cell);
464 }
465 
466 static blk_status_t get_pool_io_error_code(struct pool *pool)
467 {
468 	return pool->out_of_data_space ? BLK_STS_NOSPC : BLK_STS_IOERR;
469 }
470 
471 static void cell_error(struct pool *pool, struct dm_bio_prison_cell *cell)
472 {
473 	cell_error_with_code(pool, cell, get_pool_io_error_code(pool));
474 }
475 
476 static void cell_success(struct pool *pool, struct dm_bio_prison_cell *cell)
477 {
478 	cell_error_with_code(pool, cell, 0);
479 }
480 
481 static void cell_requeue(struct pool *pool, struct dm_bio_prison_cell *cell)
482 {
483 	cell_error_with_code(pool, cell, BLK_STS_DM_REQUEUE);
484 }
485 
486 /*----------------------------------------------------------------*/
487 
488 /*
489  * A global list of pools that uses a struct mapped_device as a key.
490  */
491 static struct dm_thin_pool_table {
492 	struct mutex mutex;
493 	struct list_head pools;
494 } dm_thin_pool_table;
495 
496 static void pool_table_init(void)
497 {
498 	mutex_init(&dm_thin_pool_table.mutex);
499 	INIT_LIST_HEAD(&dm_thin_pool_table.pools);
500 }
501 
502 static void pool_table_exit(void)
503 {
504 	mutex_destroy(&dm_thin_pool_table.mutex);
505 }
506 
507 static void __pool_table_insert(struct pool *pool)
508 {
509 	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
510 	list_add(&pool->list, &dm_thin_pool_table.pools);
511 }
512 
513 static void __pool_table_remove(struct pool *pool)
514 {
515 	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
516 	list_del(&pool->list);
517 }
518 
519 static struct pool *__pool_table_lookup(struct mapped_device *md)
520 {
521 	struct pool *pool = NULL, *tmp;
522 
523 	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
524 
525 	list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
526 		if (tmp->pool_md == md) {
527 			pool = tmp;
528 			break;
529 		}
530 	}
531 
532 	return pool;
533 }
534 
535 static struct pool *__pool_table_lookup_metadata_dev(struct block_device *md_dev)
536 {
537 	struct pool *pool = NULL, *tmp;
538 
539 	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
540 
541 	list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
542 		if (tmp->md_dev == md_dev) {
543 			pool = tmp;
544 			break;
545 		}
546 	}
547 
548 	return pool;
549 }
550 
551 /*----------------------------------------------------------------*/
552 
553 struct dm_thin_endio_hook {
554 	struct thin_c *tc;
555 	struct dm_deferred_entry *shared_read_entry;
556 	struct dm_deferred_entry *all_io_entry;
557 	struct dm_thin_new_mapping *overwrite_mapping;
558 	struct rb_node rb_node;
559 	struct dm_bio_prison_cell *cell;
560 };
561 
562 static void __merge_bio_list(struct bio_list *bios, struct bio_list *master)
563 {
564 	bio_list_merge(bios, master);
565 	bio_list_init(master);
566 }
567 
568 static void error_bio_list(struct bio_list *bios, blk_status_t error)
569 {
570 	struct bio *bio;
571 
572 	while ((bio = bio_list_pop(bios))) {
573 		bio->bi_status = error;
574 		bio_endio(bio);
575 	}
576 }
577 
578 static void error_thin_bio_list(struct thin_c *tc, struct bio_list *master,
579 		blk_status_t error)
580 {
581 	struct bio_list bios;
582 	unsigned long flags;
583 
584 	bio_list_init(&bios);
585 
586 	spin_lock_irqsave(&tc->lock, flags);
587 	__merge_bio_list(&bios, master);
588 	spin_unlock_irqrestore(&tc->lock, flags);
589 
590 	error_bio_list(&bios, error);
591 }
592 
593 static void requeue_deferred_cells(struct thin_c *tc)
594 {
595 	struct pool *pool = tc->pool;
596 	unsigned long flags;
597 	struct list_head cells;
598 	struct dm_bio_prison_cell *cell, *tmp;
599 
600 	INIT_LIST_HEAD(&cells);
601 
602 	spin_lock_irqsave(&tc->lock, flags);
603 	list_splice_init(&tc->deferred_cells, &cells);
604 	spin_unlock_irqrestore(&tc->lock, flags);
605 
606 	list_for_each_entry_safe(cell, tmp, &cells, user_list)
607 		cell_requeue(pool, cell);
608 }
609 
610 static void requeue_io(struct thin_c *tc)
611 {
612 	struct bio_list bios;
613 	unsigned long flags;
614 
615 	bio_list_init(&bios);
616 
617 	spin_lock_irqsave(&tc->lock, flags);
618 	__merge_bio_list(&bios, &tc->deferred_bio_list);
619 	__merge_bio_list(&bios, &tc->retry_on_resume_list);
620 	spin_unlock_irqrestore(&tc->lock, flags);
621 
622 	error_bio_list(&bios, BLK_STS_DM_REQUEUE);
623 	requeue_deferred_cells(tc);
624 }
625 
626 static void error_retry_list_with_code(struct pool *pool, blk_status_t error)
627 {
628 	struct thin_c *tc;
629 
630 	rcu_read_lock();
631 	list_for_each_entry_rcu(tc, &pool->active_thins, list)
632 		error_thin_bio_list(tc, &tc->retry_on_resume_list, error);
633 	rcu_read_unlock();
634 }
635 
636 static void error_retry_list(struct pool *pool)
637 {
638 	error_retry_list_with_code(pool, get_pool_io_error_code(pool));
639 }
640 
641 /*
642  * This section of code contains the logic for processing a thin device's IO.
643  * Much of the code depends on pool object resources (lists, workqueues, etc)
644  * but most is exclusively called from the thin target rather than the thin-pool
645  * target.
646  */
647 
648 static dm_block_t get_bio_block(struct thin_c *tc, struct bio *bio)
649 {
650 	struct pool *pool = tc->pool;
651 	sector_t block_nr = bio->bi_iter.bi_sector;
652 
653 	if (block_size_is_power_of_two(pool))
654 		block_nr >>= pool->sectors_per_block_shift;
655 	else
656 		(void) sector_div(block_nr, pool->sectors_per_block);
657 
658 	return block_nr;
659 }
660 
661 /*
662  * Returns the _complete_ blocks that this bio covers.
663  */
664 static void get_bio_block_range(struct thin_c *tc, struct bio *bio,
665 				dm_block_t *begin, dm_block_t *end)
666 {
667 	struct pool *pool = tc->pool;
668 	sector_t b = bio->bi_iter.bi_sector;
669 	sector_t e = b + (bio->bi_iter.bi_size >> SECTOR_SHIFT);
670 
671 	b += pool->sectors_per_block - 1ull; /* so we round up */
672 
673 	if (block_size_is_power_of_two(pool)) {
674 		b >>= pool->sectors_per_block_shift;
675 		e >>= pool->sectors_per_block_shift;
676 	} else {
677 		(void) sector_div(b, pool->sectors_per_block);
678 		(void) sector_div(e, pool->sectors_per_block);
679 	}
680 
681 	if (e < b)
682 		/* Can happen if the bio is within a single block. */
683 		e = b;
684 
685 	*begin = b;
686 	*end = e;
687 }
688 
689 static void remap(struct thin_c *tc, struct bio *bio, dm_block_t block)
690 {
691 	struct pool *pool = tc->pool;
692 	sector_t bi_sector = bio->bi_iter.bi_sector;
693 
694 	bio_set_dev(bio, tc->pool_dev->bdev);
695 	if (block_size_is_power_of_two(pool))
696 		bio->bi_iter.bi_sector =
697 			(block << pool->sectors_per_block_shift) |
698 			(bi_sector & (pool->sectors_per_block - 1));
699 	else
700 		bio->bi_iter.bi_sector = (block * pool->sectors_per_block) +
701 				 sector_div(bi_sector, pool->sectors_per_block);
702 }
703 
704 static void remap_to_origin(struct thin_c *tc, struct bio *bio)
705 {
706 	bio_set_dev(bio, tc->origin_dev->bdev);
707 }
708 
709 static int bio_triggers_commit(struct thin_c *tc, struct bio *bio)
710 {
711 	return op_is_flush(bio->bi_opf) &&
712 		dm_thin_changed_this_transaction(tc->td);
713 }
714 
715 static void inc_all_io_entry(struct pool *pool, struct bio *bio)
716 {
717 	struct dm_thin_endio_hook *h;
718 
719 	if (bio_op(bio) == REQ_OP_DISCARD)
720 		return;
721 
722 	h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
723 	h->all_io_entry = dm_deferred_entry_inc(pool->all_io_ds);
724 }
725 
726 static void issue(struct thin_c *tc, struct bio *bio)
727 {
728 	struct pool *pool = tc->pool;
729 	unsigned long flags;
730 
731 	if (!bio_triggers_commit(tc, bio)) {
732 		generic_make_request(bio);
733 		return;
734 	}
735 
736 	/*
737 	 * Complete bio with an error if earlier I/O caused changes to
738 	 * the metadata that can't be committed e.g, due to I/O errors
739 	 * on the metadata device.
740 	 */
741 	if (dm_thin_aborted_changes(tc->td)) {
742 		bio_io_error(bio);
743 		return;
744 	}
745 
746 	/*
747 	 * Batch together any bios that trigger commits and then issue a
748 	 * single commit for them in process_deferred_bios().
749 	 */
750 	spin_lock_irqsave(&pool->lock, flags);
751 	bio_list_add(&pool->deferred_flush_bios, bio);
752 	spin_unlock_irqrestore(&pool->lock, flags);
753 }
754 
755 static void remap_to_origin_and_issue(struct thin_c *tc, struct bio *bio)
756 {
757 	remap_to_origin(tc, bio);
758 	issue(tc, bio);
759 }
760 
761 static void remap_and_issue(struct thin_c *tc, struct bio *bio,
762 			    dm_block_t block)
763 {
764 	remap(tc, bio, block);
765 	issue(tc, bio);
766 }
767 
768 /*----------------------------------------------------------------*/
769 
770 /*
771  * Bio endio functions.
772  */
773 struct dm_thin_new_mapping {
774 	struct list_head list;
775 
776 	bool pass_discard:1;
777 	bool maybe_shared:1;
778 
779 	/*
780 	 * Track quiescing, copying and zeroing preparation actions.  When this
781 	 * counter hits zero the block is prepared and can be inserted into the
782 	 * btree.
783 	 */
784 	atomic_t prepare_actions;
785 
786 	blk_status_t status;
787 	struct thin_c *tc;
788 	dm_block_t virt_begin, virt_end;
789 	dm_block_t data_block;
790 	struct dm_bio_prison_cell *cell;
791 
792 	/*
793 	 * If the bio covers the whole area of a block then we can avoid
794 	 * zeroing or copying.  Instead this bio is hooked.  The bio will
795 	 * still be in the cell, so care has to be taken to avoid issuing
796 	 * the bio twice.
797 	 */
798 	struct bio *bio;
799 	bio_end_io_t *saved_bi_end_io;
800 };
801 
802 static void __complete_mapping_preparation(struct dm_thin_new_mapping *m)
803 {
804 	struct pool *pool = m->tc->pool;
805 
806 	if (atomic_dec_and_test(&m->prepare_actions)) {
807 		list_add_tail(&m->list, &pool->prepared_mappings);
808 		wake_worker(pool);
809 	}
810 }
811 
812 static void complete_mapping_preparation(struct dm_thin_new_mapping *m)
813 {
814 	unsigned long flags;
815 	struct pool *pool = m->tc->pool;
816 
817 	spin_lock_irqsave(&pool->lock, flags);
818 	__complete_mapping_preparation(m);
819 	spin_unlock_irqrestore(&pool->lock, flags);
820 }
821 
822 static void copy_complete(int read_err, unsigned long write_err, void *context)
823 {
824 	struct dm_thin_new_mapping *m = context;
825 
826 	m->status = read_err || write_err ? BLK_STS_IOERR : 0;
827 	complete_mapping_preparation(m);
828 }
829 
830 static void overwrite_endio(struct bio *bio)
831 {
832 	struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
833 	struct dm_thin_new_mapping *m = h->overwrite_mapping;
834 
835 	bio->bi_end_io = m->saved_bi_end_io;
836 
837 	m->status = bio->bi_status;
838 	complete_mapping_preparation(m);
839 }
840 
841 /*----------------------------------------------------------------*/
842 
843 /*
844  * Workqueue.
845  */
846 
847 /*
848  * Prepared mapping jobs.
849  */
850 
851 /*
852  * This sends the bios in the cell, except the original holder, back
853  * to the deferred_bios list.
854  */
855 static void cell_defer_no_holder(struct thin_c *tc, struct dm_bio_prison_cell *cell)
856 {
857 	struct pool *pool = tc->pool;
858 	unsigned long flags;
859 
860 	spin_lock_irqsave(&tc->lock, flags);
861 	cell_release_no_holder(pool, cell, &tc->deferred_bio_list);
862 	spin_unlock_irqrestore(&tc->lock, flags);
863 
864 	wake_worker(pool);
865 }
866 
867 static void thin_defer_bio(struct thin_c *tc, struct bio *bio);
868 
869 struct remap_info {
870 	struct thin_c *tc;
871 	struct bio_list defer_bios;
872 	struct bio_list issue_bios;
873 };
874 
875 static void __inc_remap_and_issue_cell(void *context,
876 				       struct dm_bio_prison_cell *cell)
877 {
878 	struct remap_info *info = context;
879 	struct bio *bio;
880 
881 	while ((bio = bio_list_pop(&cell->bios))) {
882 		if (op_is_flush(bio->bi_opf) || bio_op(bio) == REQ_OP_DISCARD)
883 			bio_list_add(&info->defer_bios, bio);
884 		else {
885 			inc_all_io_entry(info->tc->pool, bio);
886 
887 			/*
888 			 * We can't issue the bios with the bio prison lock
889 			 * held, so we add them to a list to issue on
890 			 * return from this function.
891 			 */
892 			bio_list_add(&info->issue_bios, bio);
893 		}
894 	}
895 }
896 
897 static void inc_remap_and_issue_cell(struct thin_c *tc,
898 				     struct dm_bio_prison_cell *cell,
899 				     dm_block_t block)
900 {
901 	struct bio *bio;
902 	struct remap_info info;
903 
904 	info.tc = tc;
905 	bio_list_init(&info.defer_bios);
906 	bio_list_init(&info.issue_bios);
907 
908 	/*
909 	 * We have to be careful to inc any bios we're about to issue
910 	 * before the cell is released, and avoid a race with new bios
911 	 * being added to the cell.
912 	 */
913 	cell_visit_release(tc->pool, __inc_remap_and_issue_cell,
914 			   &info, cell);
915 
916 	while ((bio = bio_list_pop(&info.defer_bios)))
917 		thin_defer_bio(tc, bio);
918 
919 	while ((bio = bio_list_pop(&info.issue_bios)))
920 		remap_and_issue(info.tc, bio, block);
921 }
922 
923 static void process_prepared_mapping_fail(struct dm_thin_new_mapping *m)
924 {
925 	cell_error(m->tc->pool, m->cell);
926 	list_del(&m->list);
927 	mempool_free(m, &m->tc->pool->mapping_pool);
928 }
929 
930 static void process_prepared_mapping(struct dm_thin_new_mapping *m)
931 {
932 	struct thin_c *tc = m->tc;
933 	struct pool *pool = tc->pool;
934 	struct bio *bio = m->bio;
935 	int r;
936 
937 	if (m->status) {
938 		cell_error(pool, m->cell);
939 		goto out;
940 	}
941 
942 	/*
943 	 * Commit the prepared block into the mapping btree.
944 	 * Any I/O for this block arriving after this point will get
945 	 * remapped to it directly.
946 	 */
947 	r = dm_thin_insert_block(tc->td, m->virt_begin, m->data_block);
948 	if (r) {
949 		metadata_operation_failed(pool, "dm_thin_insert_block", r);
950 		cell_error(pool, m->cell);
951 		goto out;
952 	}
953 
954 	/*
955 	 * Release any bios held while the block was being provisioned.
956 	 * If we are processing a write bio that completely covers the block,
957 	 * we already processed it so can ignore it now when processing
958 	 * the bios in the cell.
959 	 */
960 	if (bio) {
961 		inc_remap_and_issue_cell(tc, m->cell, m->data_block);
962 		bio_endio(bio);
963 	} else {
964 		inc_all_io_entry(tc->pool, m->cell->holder);
965 		remap_and_issue(tc, m->cell->holder, m->data_block);
966 		inc_remap_and_issue_cell(tc, m->cell, m->data_block);
967 	}
968 
969 out:
970 	list_del(&m->list);
971 	mempool_free(m, &pool->mapping_pool);
972 }
973 
974 /*----------------------------------------------------------------*/
975 
976 static void free_discard_mapping(struct dm_thin_new_mapping *m)
977 {
978 	struct thin_c *tc = m->tc;
979 	if (m->cell)
980 		cell_defer_no_holder(tc, m->cell);
981 	mempool_free(m, &tc->pool->mapping_pool);
982 }
983 
984 static void process_prepared_discard_fail(struct dm_thin_new_mapping *m)
985 {
986 	bio_io_error(m->bio);
987 	free_discard_mapping(m);
988 }
989 
990 static void process_prepared_discard_success(struct dm_thin_new_mapping *m)
991 {
992 	bio_endio(m->bio);
993 	free_discard_mapping(m);
994 }
995 
996 static void process_prepared_discard_no_passdown(struct dm_thin_new_mapping *m)
997 {
998 	int r;
999 	struct thin_c *tc = m->tc;
1000 
1001 	r = dm_thin_remove_range(tc->td, m->cell->key.block_begin, m->cell->key.block_end);
1002 	if (r) {
1003 		metadata_operation_failed(tc->pool, "dm_thin_remove_range", r);
1004 		bio_io_error(m->bio);
1005 	} else
1006 		bio_endio(m->bio);
1007 
1008 	cell_defer_no_holder(tc, m->cell);
1009 	mempool_free(m, &tc->pool->mapping_pool);
1010 }
1011 
1012 /*----------------------------------------------------------------*/
1013 
1014 static void passdown_double_checking_shared_status(struct dm_thin_new_mapping *m,
1015 						   struct bio *discard_parent)
1016 {
1017 	/*
1018 	 * We've already unmapped this range of blocks, but before we
1019 	 * passdown we have to check that these blocks are now unused.
1020 	 */
1021 	int r = 0;
1022 	bool used = true;
1023 	struct thin_c *tc = m->tc;
1024 	struct pool *pool = tc->pool;
1025 	dm_block_t b = m->data_block, e, end = m->data_block + m->virt_end - m->virt_begin;
1026 	struct discard_op op;
1027 
1028 	begin_discard(&op, tc, discard_parent);
1029 	while (b != end) {
1030 		/* find start of unmapped run */
1031 		for (; b < end; b++) {
1032 			r = dm_pool_block_is_used(pool->pmd, b, &used);
1033 			if (r)
1034 				goto out;
1035 
1036 			if (!used)
1037 				break;
1038 		}
1039 
1040 		if (b == end)
1041 			break;
1042 
1043 		/* find end of run */
1044 		for (e = b + 1; e != end; e++) {
1045 			r = dm_pool_block_is_used(pool->pmd, e, &used);
1046 			if (r)
1047 				goto out;
1048 
1049 			if (used)
1050 				break;
1051 		}
1052 
1053 		r = issue_discard(&op, b, e);
1054 		if (r)
1055 			goto out;
1056 
1057 		b = e;
1058 	}
1059 out:
1060 	end_discard(&op, r);
1061 }
1062 
1063 static void queue_passdown_pt2(struct dm_thin_new_mapping *m)
1064 {
1065 	unsigned long flags;
1066 	struct pool *pool = m->tc->pool;
1067 
1068 	spin_lock_irqsave(&pool->lock, flags);
1069 	list_add_tail(&m->list, &pool->prepared_discards_pt2);
1070 	spin_unlock_irqrestore(&pool->lock, flags);
1071 	wake_worker(pool);
1072 }
1073 
1074 static void passdown_endio(struct bio *bio)
1075 {
1076 	/*
1077 	 * It doesn't matter if the passdown discard failed, we still want
1078 	 * to unmap (we ignore err).
1079 	 */
1080 	queue_passdown_pt2(bio->bi_private);
1081 	bio_put(bio);
1082 }
1083 
1084 static void process_prepared_discard_passdown_pt1(struct dm_thin_new_mapping *m)
1085 {
1086 	int r;
1087 	struct thin_c *tc = m->tc;
1088 	struct pool *pool = tc->pool;
1089 	struct bio *discard_parent;
1090 	dm_block_t data_end = m->data_block + (m->virt_end - m->virt_begin);
1091 
1092 	/*
1093 	 * Only this thread allocates blocks, so we can be sure that the
1094 	 * newly unmapped blocks will not be allocated before the end of
1095 	 * the function.
1096 	 */
1097 	r = dm_thin_remove_range(tc->td, m->virt_begin, m->virt_end);
1098 	if (r) {
1099 		metadata_operation_failed(pool, "dm_thin_remove_range", r);
1100 		bio_io_error(m->bio);
1101 		cell_defer_no_holder(tc, m->cell);
1102 		mempool_free(m, &pool->mapping_pool);
1103 		return;
1104 	}
1105 
1106 	/*
1107 	 * Increment the unmapped blocks.  This prevents a race between the
1108 	 * passdown io and reallocation of freed blocks.
1109 	 */
1110 	r = dm_pool_inc_data_range(pool->pmd, m->data_block, data_end);
1111 	if (r) {
1112 		metadata_operation_failed(pool, "dm_pool_inc_data_range", r);
1113 		bio_io_error(m->bio);
1114 		cell_defer_no_holder(tc, m->cell);
1115 		mempool_free(m, &pool->mapping_pool);
1116 		return;
1117 	}
1118 
1119 	discard_parent = bio_alloc(GFP_NOIO, 1);
1120 	if (!discard_parent) {
1121 		DMWARN("%s: unable to allocate top level discard bio for passdown. Skipping passdown.",
1122 		       dm_device_name(tc->pool->pool_md));
1123 		queue_passdown_pt2(m);
1124 
1125 	} else {
1126 		discard_parent->bi_end_io = passdown_endio;
1127 		discard_parent->bi_private = m;
1128 
1129 		if (m->maybe_shared)
1130 			passdown_double_checking_shared_status(m, discard_parent);
1131 		else {
1132 			struct discard_op op;
1133 
1134 			begin_discard(&op, tc, discard_parent);
1135 			r = issue_discard(&op, m->data_block, data_end);
1136 			end_discard(&op, r);
1137 		}
1138 	}
1139 }
1140 
1141 static void process_prepared_discard_passdown_pt2(struct dm_thin_new_mapping *m)
1142 {
1143 	int r;
1144 	struct thin_c *tc = m->tc;
1145 	struct pool *pool = tc->pool;
1146 
1147 	/*
1148 	 * The passdown has completed, so now we can decrement all those
1149 	 * unmapped blocks.
1150 	 */
1151 	r = dm_pool_dec_data_range(pool->pmd, m->data_block,
1152 				   m->data_block + (m->virt_end - m->virt_begin));
1153 	if (r) {
1154 		metadata_operation_failed(pool, "dm_pool_dec_data_range", r);
1155 		bio_io_error(m->bio);
1156 	} else
1157 		bio_endio(m->bio);
1158 
1159 	cell_defer_no_holder(tc, m->cell);
1160 	mempool_free(m, &pool->mapping_pool);
1161 }
1162 
1163 static void process_prepared(struct pool *pool, struct list_head *head,
1164 			     process_mapping_fn *fn)
1165 {
1166 	unsigned long flags;
1167 	struct list_head maps;
1168 	struct dm_thin_new_mapping *m, *tmp;
1169 
1170 	INIT_LIST_HEAD(&maps);
1171 	spin_lock_irqsave(&pool->lock, flags);
1172 	list_splice_init(head, &maps);
1173 	spin_unlock_irqrestore(&pool->lock, flags);
1174 
1175 	list_for_each_entry_safe(m, tmp, &maps, list)
1176 		(*fn)(m);
1177 }
1178 
1179 /*
1180  * Deferred bio jobs.
1181  */
1182 static int io_overlaps_block(struct pool *pool, struct bio *bio)
1183 {
1184 	return bio->bi_iter.bi_size ==
1185 		(pool->sectors_per_block << SECTOR_SHIFT);
1186 }
1187 
1188 static int io_overwrites_block(struct pool *pool, struct bio *bio)
1189 {
1190 	return (bio_data_dir(bio) == WRITE) &&
1191 		io_overlaps_block(pool, bio);
1192 }
1193 
1194 static void save_and_set_endio(struct bio *bio, bio_end_io_t **save,
1195 			       bio_end_io_t *fn)
1196 {
1197 	*save = bio->bi_end_io;
1198 	bio->bi_end_io = fn;
1199 }
1200 
1201 static int ensure_next_mapping(struct pool *pool)
1202 {
1203 	if (pool->next_mapping)
1204 		return 0;
1205 
1206 	pool->next_mapping = mempool_alloc(&pool->mapping_pool, GFP_ATOMIC);
1207 
1208 	return pool->next_mapping ? 0 : -ENOMEM;
1209 }
1210 
1211 static struct dm_thin_new_mapping *get_next_mapping(struct pool *pool)
1212 {
1213 	struct dm_thin_new_mapping *m = pool->next_mapping;
1214 
1215 	BUG_ON(!pool->next_mapping);
1216 
1217 	memset(m, 0, sizeof(struct dm_thin_new_mapping));
1218 	INIT_LIST_HEAD(&m->list);
1219 	m->bio = NULL;
1220 
1221 	pool->next_mapping = NULL;
1222 
1223 	return m;
1224 }
1225 
1226 static void ll_zero(struct thin_c *tc, struct dm_thin_new_mapping *m,
1227 		    sector_t begin, sector_t end)
1228 {
1229 	struct dm_io_region to;
1230 
1231 	to.bdev = tc->pool_dev->bdev;
1232 	to.sector = begin;
1233 	to.count = end - begin;
1234 
1235 	dm_kcopyd_zero(tc->pool->copier, 1, &to, 0, copy_complete, m);
1236 }
1237 
1238 static void remap_and_issue_overwrite(struct thin_c *tc, struct bio *bio,
1239 				      dm_block_t data_begin,
1240 				      struct dm_thin_new_mapping *m)
1241 {
1242 	struct pool *pool = tc->pool;
1243 	struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1244 
1245 	h->overwrite_mapping = m;
1246 	m->bio = bio;
1247 	save_and_set_endio(bio, &m->saved_bi_end_io, overwrite_endio);
1248 	inc_all_io_entry(pool, bio);
1249 	remap_and_issue(tc, bio, data_begin);
1250 }
1251 
1252 /*
1253  * A partial copy also needs to zero the uncopied region.
1254  */
1255 static void schedule_copy(struct thin_c *tc, dm_block_t virt_block,
1256 			  struct dm_dev *origin, dm_block_t data_origin,
1257 			  dm_block_t data_dest,
1258 			  struct dm_bio_prison_cell *cell, struct bio *bio,
1259 			  sector_t len)
1260 {
1261 	struct pool *pool = tc->pool;
1262 	struct dm_thin_new_mapping *m = get_next_mapping(pool);
1263 
1264 	m->tc = tc;
1265 	m->virt_begin = virt_block;
1266 	m->virt_end = virt_block + 1u;
1267 	m->data_block = data_dest;
1268 	m->cell = cell;
1269 
1270 	/*
1271 	 * quiesce action + copy action + an extra reference held for the
1272 	 * duration of this function (we may need to inc later for a
1273 	 * partial zero).
1274 	 */
1275 	atomic_set(&m->prepare_actions, 3);
1276 
1277 	if (!dm_deferred_set_add_work(pool->shared_read_ds, &m->list))
1278 		complete_mapping_preparation(m); /* already quiesced */
1279 
1280 	/*
1281 	 * IO to pool_dev remaps to the pool target's data_dev.
1282 	 *
1283 	 * If the whole block of data is being overwritten, we can issue the
1284 	 * bio immediately. Otherwise we use kcopyd to clone the data first.
1285 	 */
1286 	if (io_overwrites_block(pool, bio))
1287 		remap_and_issue_overwrite(tc, bio, data_dest, m);
1288 	else {
1289 		struct dm_io_region from, to;
1290 
1291 		from.bdev = origin->bdev;
1292 		from.sector = data_origin * pool->sectors_per_block;
1293 		from.count = len;
1294 
1295 		to.bdev = tc->pool_dev->bdev;
1296 		to.sector = data_dest * pool->sectors_per_block;
1297 		to.count = len;
1298 
1299 		dm_kcopyd_copy(pool->copier, &from, 1, &to,
1300 			       0, copy_complete, m);
1301 
1302 		/*
1303 		 * Do we need to zero a tail region?
1304 		 */
1305 		if (len < pool->sectors_per_block && pool->pf.zero_new_blocks) {
1306 			atomic_inc(&m->prepare_actions);
1307 			ll_zero(tc, m,
1308 				data_dest * pool->sectors_per_block + len,
1309 				(data_dest + 1) * pool->sectors_per_block);
1310 		}
1311 	}
1312 
1313 	complete_mapping_preparation(m); /* drop our ref */
1314 }
1315 
1316 static void schedule_internal_copy(struct thin_c *tc, dm_block_t virt_block,
1317 				   dm_block_t data_origin, dm_block_t data_dest,
1318 				   struct dm_bio_prison_cell *cell, struct bio *bio)
1319 {
1320 	schedule_copy(tc, virt_block, tc->pool_dev,
1321 		      data_origin, data_dest, cell, bio,
1322 		      tc->pool->sectors_per_block);
1323 }
1324 
1325 static void schedule_zero(struct thin_c *tc, dm_block_t virt_block,
1326 			  dm_block_t data_block, struct dm_bio_prison_cell *cell,
1327 			  struct bio *bio)
1328 {
1329 	struct pool *pool = tc->pool;
1330 	struct dm_thin_new_mapping *m = get_next_mapping(pool);
1331 
1332 	atomic_set(&m->prepare_actions, 1); /* no need to quiesce */
1333 	m->tc = tc;
1334 	m->virt_begin = virt_block;
1335 	m->virt_end = virt_block + 1u;
1336 	m->data_block = data_block;
1337 	m->cell = cell;
1338 
1339 	/*
1340 	 * If the whole block of data is being overwritten or we are not
1341 	 * zeroing pre-existing data, we can issue the bio immediately.
1342 	 * Otherwise we use kcopyd to zero the data first.
1343 	 */
1344 	if (pool->pf.zero_new_blocks) {
1345 		if (io_overwrites_block(pool, bio))
1346 			remap_and_issue_overwrite(tc, bio, data_block, m);
1347 		else
1348 			ll_zero(tc, m, data_block * pool->sectors_per_block,
1349 				(data_block + 1) * pool->sectors_per_block);
1350 	} else
1351 		process_prepared_mapping(m);
1352 }
1353 
1354 static void schedule_external_copy(struct thin_c *tc, dm_block_t virt_block,
1355 				   dm_block_t data_dest,
1356 				   struct dm_bio_prison_cell *cell, struct bio *bio)
1357 {
1358 	struct pool *pool = tc->pool;
1359 	sector_t virt_block_begin = virt_block * pool->sectors_per_block;
1360 	sector_t virt_block_end = (virt_block + 1) * pool->sectors_per_block;
1361 
1362 	if (virt_block_end <= tc->origin_size)
1363 		schedule_copy(tc, virt_block, tc->origin_dev,
1364 			      virt_block, data_dest, cell, bio,
1365 			      pool->sectors_per_block);
1366 
1367 	else if (virt_block_begin < tc->origin_size)
1368 		schedule_copy(tc, virt_block, tc->origin_dev,
1369 			      virt_block, data_dest, cell, bio,
1370 			      tc->origin_size - virt_block_begin);
1371 
1372 	else
1373 		schedule_zero(tc, virt_block, data_dest, cell, bio);
1374 }
1375 
1376 static void set_pool_mode(struct pool *pool, enum pool_mode new_mode);
1377 
1378 static void requeue_bios(struct pool *pool);
1379 
1380 static bool is_read_only_pool_mode(enum pool_mode mode)
1381 {
1382 	return (mode == PM_OUT_OF_METADATA_SPACE || mode == PM_READ_ONLY);
1383 }
1384 
1385 static bool is_read_only(struct pool *pool)
1386 {
1387 	return is_read_only_pool_mode(get_pool_mode(pool));
1388 }
1389 
1390 static void check_for_metadata_space(struct pool *pool)
1391 {
1392 	int r;
1393 	const char *ooms_reason = NULL;
1394 	dm_block_t nr_free;
1395 
1396 	r = dm_pool_get_free_metadata_block_count(pool->pmd, &nr_free);
1397 	if (r)
1398 		ooms_reason = "Could not get free metadata blocks";
1399 	else if (!nr_free)
1400 		ooms_reason = "No free metadata blocks";
1401 
1402 	if (ooms_reason && !is_read_only(pool)) {
1403 		DMERR("%s", ooms_reason);
1404 		set_pool_mode(pool, PM_OUT_OF_METADATA_SPACE);
1405 	}
1406 }
1407 
1408 static void check_for_data_space(struct pool *pool)
1409 {
1410 	int r;
1411 	dm_block_t nr_free;
1412 
1413 	if (get_pool_mode(pool) != PM_OUT_OF_DATA_SPACE)
1414 		return;
1415 
1416 	r = dm_pool_get_free_block_count(pool->pmd, &nr_free);
1417 	if (r)
1418 		return;
1419 
1420 	if (nr_free) {
1421 		set_pool_mode(pool, PM_WRITE);
1422 		requeue_bios(pool);
1423 	}
1424 }
1425 
1426 /*
1427  * A non-zero return indicates read_only or fail_io mode.
1428  * Many callers don't care about the return value.
1429  */
1430 static int commit(struct pool *pool)
1431 {
1432 	int r;
1433 
1434 	if (get_pool_mode(pool) >= PM_OUT_OF_METADATA_SPACE)
1435 		return -EINVAL;
1436 
1437 	r = dm_pool_commit_metadata(pool->pmd);
1438 	if (r)
1439 		metadata_operation_failed(pool, "dm_pool_commit_metadata", r);
1440 	else {
1441 		check_for_metadata_space(pool);
1442 		check_for_data_space(pool);
1443 	}
1444 
1445 	return r;
1446 }
1447 
1448 static void check_low_water_mark(struct pool *pool, dm_block_t free_blocks)
1449 {
1450 	unsigned long flags;
1451 
1452 	if (free_blocks <= pool->low_water_blocks && !pool->low_water_triggered) {
1453 		DMWARN("%s: reached low water mark for data device: sending event.",
1454 		       dm_device_name(pool->pool_md));
1455 		spin_lock_irqsave(&pool->lock, flags);
1456 		pool->low_water_triggered = true;
1457 		spin_unlock_irqrestore(&pool->lock, flags);
1458 		dm_table_event(pool->ti->table);
1459 	}
1460 }
1461 
1462 static int alloc_data_block(struct thin_c *tc, dm_block_t *result)
1463 {
1464 	int r;
1465 	dm_block_t free_blocks;
1466 	struct pool *pool = tc->pool;
1467 
1468 	if (WARN_ON(get_pool_mode(pool) != PM_WRITE))
1469 		return -EINVAL;
1470 
1471 	r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
1472 	if (r) {
1473 		metadata_operation_failed(pool, "dm_pool_get_free_block_count", r);
1474 		return r;
1475 	}
1476 
1477 	check_low_water_mark(pool, free_blocks);
1478 
1479 	if (!free_blocks) {
1480 		/*
1481 		 * Try to commit to see if that will free up some
1482 		 * more space.
1483 		 */
1484 		r = commit(pool);
1485 		if (r)
1486 			return r;
1487 
1488 		r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
1489 		if (r) {
1490 			metadata_operation_failed(pool, "dm_pool_get_free_block_count", r);
1491 			return r;
1492 		}
1493 
1494 		if (!free_blocks) {
1495 			set_pool_mode(pool, PM_OUT_OF_DATA_SPACE);
1496 			return -ENOSPC;
1497 		}
1498 	}
1499 
1500 	r = dm_pool_alloc_data_block(pool->pmd, result);
1501 	if (r) {
1502 		if (r == -ENOSPC)
1503 			set_pool_mode(pool, PM_OUT_OF_DATA_SPACE);
1504 		else
1505 			metadata_operation_failed(pool, "dm_pool_alloc_data_block", r);
1506 		return r;
1507 	}
1508 
1509 	r = dm_pool_get_free_metadata_block_count(pool->pmd, &free_blocks);
1510 	if (r) {
1511 		metadata_operation_failed(pool, "dm_pool_get_free_metadata_block_count", r);
1512 		return r;
1513 	}
1514 
1515 	if (!free_blocks) {
1516 		/* Let's commit before we use up the metadata reserve. */
1517 		r = commit(pool);
1518 		if (r)
1519 			return r;
1520 	}
1521 
1522 	return 0;
1523 }
1524 
1525 /*
1526  * If we have run out of space, queue bios until the device is
1527  * resumed, presumably after having been reloaded with more space.
1528  */
1529 static void retry_on_resume(struct bio *bio)
1530 {
1531 	struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1532 	struct thin_c *tc = h->tc;
1533 	unsigned long flags;
1534 
1535 	spin_lock_irqsave(&tc->lock, flags);
1536 	bio_list_add(&tc->retry_on_resume_list, bio);
1537 	spin_unlock_irqrestore(&tc->lock, flags);
1538 }
1539 
1540 static blk_status_t should_error_unserviceable_bio(struct pool *pool)
1541 {
1542 	enum pool_mode m = get_pool_mode(pool);
1543 
1544 	switch (m) {
1545 	case PM_WRITE:
1546 		/* Shouldn't get here */
1547 		DMERR_LIMIT("bio unserviceable, yet pool is in PM_WRITE mode");
1548 		return BLK_STS_IOERR;
1549 
1550 	case PM_OUT_OF_DATA_SPACE:
1551 		return pool->pf.error_if_no_space ? BLK_STS_NOSPC : 0;
1552 
1553 	case PM_OUT_OF_METADATA_SPACE:
1554 	case PM_READ_ONLY:
1555 	case PM_FAIL:
1556 		return BLK_STS_IOERR;
1557 	default:
1558 		/* Shouldn't get here */
1559 		DMERR_LIMIT("bio unserviceable, yet pool has an unknown mode");
1560 		return BLK_STS_IOERR;
1561 	}
1562 }
1563 
1564 static void handle_unserviceable_bio(struct pool *pool, struct bio *bio)
1565 {
1566 	blk_status_t error = should_error_unserviceable_bio(pool);
1567 
1568 	if (error) {
1569 		bio->bi_status = error;
1570 		bio_endio(bio);
1571 	} else
1572 		retry_on_resume(bio);
1573 }
1574 
1575 static void retry_bios_on_resume(struct pool *pool, struct dm_bio_prison_cell *cell)
1576 {
1577 	struct bio *bio;
1578 	struct bio_list bios;
1579 	blk_status_t error;
1580 
1581 	error = should_error_unserviceable_bio(pool);
1582 	if (error) {
1583 		cell_error_with_code(pool, cell, error);
1584 		return;
1585 	}
1586 
1587 	bio_list_init(&bios);
1588 	cell_release(pool, cell, &bios);
1589 
1590 	while ((bio = bio_list_pop(&bios)))
1591 		retry_on_resume(bio);
1592 }
1593 
1594 static void process_discard_cell_no_passdown(struct thin_c *tc,
1595 					     struct dm_bio_prison_cell *virt_cell)
1596 {
1597 	struct pool *pool = tc->pool;
1598 	struct dm_thin_new_mapping *m = get_next_mapping(pool);
1599 
1600 	/*
1601 	 * We don't need to lock the data blocks, since there's no
1602 	 * passdown.  We only lock data blocks for allocation and breaking sharing.
1603 	 */
1604 	m->tc = tc;
1605 	m->virt_begin = virt_cell->key.block_begin;
1606 	m->virt_end = virt_cell->key.block_end;
1607 	m->cell = virt_cell;
1608 	m->bio = virt_cell->holder;
1609 
1610 	if (!dm_deferred_set_add_work(pool->all_io_ds, &m->list))
1611 		pool->process_prepared_discard(m);
1612 }
1613 
1614 static void break_up_discard_bio(struct thin_c *tc, dm_block_t begin, dm_block_t end,
1615 				 struct bio *bio)
1616 {
1617 	struct pool *pool = tc->pool;
1618 
1619 	int r;
1620 	bool maybe_shared;
1621 	struct dm_cell_key data_key;
1622 	struct dm_bio_prison_cell *data_cell;
1623 	struct dm_thin_new_mapping *m;
1624 	dm_block_t virt_begin, virt_end, data_begin;
1625 
1626 	while (begin != end) {
1627 		r = ensure_next_mapping(pool);
1628 		if (r)
1629 			/* we did our best */
1630 			return;
1631 
1632 		r = dm_thin_find_mapped_range(tc->td, begin, end, &virt_begin, &virt_end,
1633 					      &data_begin, &maybe_shared);
1634 		if (r)
1635 			/*
1636 			 * Silently fail, letting any mappings we've
1637 			 * created complete.
1638 			 */
1639 			break;
1640 
1641 		build_key(tc->td, PHYSICAL, data_begin, data_begin + (virt_end - virt_begin), &data_key);
1642 		if (bio_detain(tc->pool, &data_key, NULL, &data_cell)) {
1643 			/* contention, we'll give up with this range */
1644 			begin = virt_end;
1645 			continue;
1646 		}
1647 
1648 		/*
1649 		 * IO may still be going to the destination block.  We must
1650 		 * quiesce before we can do the removal.
1651 		 */
1652 		m = get_next_mapping(pool);
1653 		m->tc = tc;
1654 		m->maybe_shared = maybe_shared;
1655 		m->virt_begin = virt_begin;
1656 		m->virt_end = virt_end;
1657 		m->data_block = data_begin;
1658 		m->cell = data_cell;
1659 		m->bio = bio;
1660 
1661 		/*
1662 		 * The parent bio must not complete before sub discard bios are
1663 		 * chained to it (see end_discard's bio_chain)!
1664 		 *
1665 		 * This per-mapping bi_remaining increment is paired with
1666 		 * the implicit decrement that occurs via bio_endio() in
1667 		 * end_discard().
1668 		 */
1669 		bio_inc_remaining(bio);
1670 		if (!dm_deferred_set_add_work(pool->all_io_ds, &m->list))
1671 			pool->process_prepared_discard(m);
1672 
1673 		begin = virt_end;
1674 	}
1675 }
1676 
1677 static void process_discard_cell_passdown(struct thin_c *tc, struct dm_bio_prison_cell *virt_cell)
1678 {
1679 	struct bio *bio = virt_cell->holder;
1680 	struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1681 
1682 	/*
1683 	 * The virt_cell will only get freed once the origin bio completes.
1684 	 * This means it will remain locked while all the individual
1685 	 * passdown bios are in flight.
1686 	 */
1687 	h->cell = virt_cell;
1688 	break_up_discard_bio(tc, virt_cell->key.block_begin, virt_cell->key.block_end, bio);
1689 
1690 	/*
1691 	 * We complete the bio now, knowing that the bi_remaining field
1692 	 * will prevent completion until the sub range discards have
1693 	 * completed.
1694 	 */
1695 	bio_endio(bio);
1696 }
1697 
1698 static void process_discard_bio(struct thin_c *tc, struct bio *bio)
1699 {
1700 	dm_block_t begin, end;
1701 	struct dm_cell_key virt_key;
1702 	struct dm_bio_prison_cell *virt_cell;
1703 
1704 	get_bio_block_range(tc, bio, &begin, &end);
1705 	if (begin == end) {
1706 		/*
1707 		 * The discard covers less than a block.
1708 		 */
1709 		bio_endio(bio);
1710 		return;
1711 	}
1712 
1713 	build_key(tc->td, VIRTUAL, begin, end, &virt_key);
1714 	if (bio_detain(tc->pool, &virt_key, bio, &virt_cell))
1715 		/*
1716 		 * Potential starvation issue: We're relying on the
1717 		 * fs/application being well behaved, and not trying to
1718 		 * send IO to a region at the same time as discarding it.
1719 		 * If they do this persistently then it's possible this
1720 		 * cell will never be granted.
1721 		 */
1722 		return;
1723 
1724 	tc->pool->process_discard_cell(tc, virt_cell);
1725 }
1726 
1727 static void break_sharing(struct thin_c *tc, struct bio *bio, dm_block_t block,
1728 			  struct dm_cell_key *key,
1729 			  struct dm_thin_lookup_result *lookup_result,
1730 			  struct dm_bio_prison_cell *cell)
1731 {
1732 	int r;
1733 	dm_block_t data_block;
1734 	struct pool *pool = tc->pool;
1735 
1736 	r = alloc_data_block(tc, &data_block);
1737 	switch (r) {
1738 	case 0:
1739 		schedule_internal_copy(tc, block, lookup_result->block,
1740 				       data_block, cell, bio);
1741 		break;
1742 
1743 	case -ENOSPC:
1744 		retry_bios_on_resume(pool, cell);
1745 		break;
1746 
1747 	default:
1748 		DMERR_LIMIT("%s: alloc_data_block() failed: error = %d",
1749 			    __func__, r);
1750 		cell_error(pool, cell);
1751 		break;
1752 	}
1753 }
1754 
1755 static void __remap_and_issue_shared_cell(void *context,
1756 					  struct dm_bio_prison_cell *cell)
1757 {
1758 	struct remap_info *info = context;
1759 	struct bio *bio;
1760 
1761 	while ((bio = bio_list_pop(&cell->bios))) {
1762 		if (bio_data_dir(bio) == WRITE || op_is_flush(bio->bi_opf) ||
1763 		    bio_op(bio) == REQ_OP_DISCARD)
1764 			bio_list_add(&info->defer_bios, bio);
1765 		else {
1766 			struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1767 
1768 			h->shared_read_entry = dm_deferred_entry_inc(info->tc->pool->shared_read_ds);
1769 			inc_all_io_entry(info->tc->pool, bio);
1770 			bio_list_add(&info->issue_bios, bio);
1771 		}
1772 	}
1773 }
1774 
1775 static void remap_and_issue_shared_cell(struct thin_c *tc,
1776 					struct dm_bio_prison_cell *cell,
1777 					dm_block_t block)
1778 {
1779 	struct bio *bio;
1780 	struct remap_info info;
1781 
1782 	info.tc = tc;
1783 	bio_list_init(&info.defer_bios);
1784 	bio_list_init(&info.issue_bios);
1785 
1786 	cell_visit_release(tc->pool, __remap_and_issue_shared_cell,
1787 			   &info, cell);
1788 
1789 	while ((bio = bio_list_pop(&info.defer_bios)))
1790 		thin_defer_bio(tc, bio);
1791 
1792 	while ((bio = bio_list_pop(&info.issue_bios)))
1793 		remap_and_issue(tc, bio, block);
1794 }
1795 
1796 static void process_shared_bio(struct thin_c *tc, struct bio *bio,
1797 			       dm_block_t block,
1798 			       struct dm_thin_lookup_result *lookup_result,
1799 			       struct dm_bio_prison_cell *virt_cell)
1800 {
1801 	struct dm_bio_prison_cell *data_cell;
1802 	struct pool *pool = tc->pool;
1803 	struct dm_cell_key key;
1804 
1805 	/*
1806 	 * If cell is already occupied, then sharing is already in the process
1807 	 * of being broken so we have nothing further to do here.
1808 	 */
1809 	build_data_key(tc->td, lookup_result->block, &key);
1810 	if (bio_detain(pool, &key, bio, &data_cell)) {
1811 		cell_defer_no_holder(tc, virt_cell);
1812 		return;
1813 	}
1814 
1815 	if (bio_data_dir(bio) == WRITE && bio->bi_iter.bi_size) {
1816 		break_sharing(tc, bio, block, &key, lookup_result, data_cell);
1817 		cell_defer_no_holder(tc, virt_cell);
1818 	} else {
1819 		struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1820 
1821 		h->shared_read_entry = dm_deferred_entry_inc(pool->shared_read_ds);
1822 		inc_all_io_entry(pool, bio);
1823 		remap_and_issue(tc, bio, lookup_result->block);
1824 
1825 		remap_and_issue_shared_cell(tc, data_cell, lookup_result->block);
1826 		remap_and_issue_shared_cell(tc, virt_cell, lookup_result->block);
1827 	}
1828 }
1829 
1830 static void provision_block(struct thin_c *tc, struct bio *bio, dm_block_t block,
1831 			    struct dm_bio_prison_cell *cell)
1832 {
1833 	int r;
1834 	dm_block_t data_block;
1835 	struct pool *pool = tc->pool;
1836 
1837 	/*
1838 	 * Remap empty bios (flushes) immediately, without provisioning.
1839 	 */
1840 	if (!bio->bi_iter.bi_size) {
1841 		inc_all_io_entry(pool, bio);
1842 		cell_defer_no_holder(tc, cell);
1843 
1844 		remap_and_issue(tc, bio, 0);
1845 		return;
1846 	}
1847 
1848 	/*
1849 	 * Fill read bios with zeroes and complete them immediately.
1850 	 */
1851 	if (bio_data_dir(bio) == READ) {
1852 		zero_fill_bio(bio);
1853 		cell_defer_no_holder(tc, cell);
1854 		bio_endio(bio);
1855 		return;
1856 	}
1857 
1858 	r = alloc_data_block(tc, &data_block);
1859 	switch (r) {
1860 	case 0:
1861 		if (tc->origin_dev)
1862 			schedule_external_copy(tc, block, data_block, cell, bio);
1863 		else
1864 			schedule_zero(tc, block, data_block, cell, bio);
1865 		break;
1866 
1867 	case -ENOSPC:
1868 		retry_bios_on_resume(pool, cell);
1869 		break;
1870 
1871 	default:
1872 		DMERR_LIMIT("%s: alloc_data_block() failed: error = %d",
1873 			    __func__, r);
1874 		cell_error(pool, cell);
1875 		break;
1876 	}
1877 }
1878 
1879 static void process_cell(struct thin_c *tc, struct dm_bio_prison_cell *cell)
1880 {
1881 	int r;
1882 	struct pool *pool = tc->pool;
1883 	struct bio *bio = cell->holder;
1884 	dm_block_t block = get_bio_block(tc, bio);
1885 	struct dm_thin_lookup_result lookup_result;
1886 
1887 	if (tc->requeue_mode) {
1888 		cell_requeue(pool, cell);
1889 		return;
1890 	}
1891 
1892 	r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1893 	switch (r) {
1894 	case 0:
1895 		if (lookup_result.shared)
1896 			process_shared_bio(tc, bio, block, &lookup_result, cell);
1897 		else {
1898 			inc_all_io_entry(pool, bio);
1899 			remap_and_issue(tc, bio, lookup_result.block);
1900 			inc_remap_and_issue_cell(tc, cell, lookup_result.block);
1901 		}
1902 		break;
1903 
1904 	case -ENODATA:
1905 		if (bio_data_dir(bio) == READ && tc->origin_dev) {
1906 			inc_all_io_entry(pool, bio);
1907 			cell_defer_no_holder(tc, cell);
1908 
1909 			if (bio_end_sector(bio) <= tc->origin_size)
1910 				remap_to_origin_and_issue(tc, bio);
1911 
1912 			else if (bio->bi_iter.bi_sector < tc->origin_size) {
1913 				zero_fill_bio(bio);
1914 				bio->bi_iter.bi_size = (tc->origin_size - bio->bi_iter.bi_sector) << SECTOR_SHIFT;
1915 				remap_to_origin_and_issue(tc, bio);
1916 
1917 			} else {
1918 				zero_fill_bio(bio);
1919 				bio_endio(bio);
1920 			}
1921 		} else
1922 			provision_block(tc, bio, block, cell);
1923 		break;
1924 
1925 	default:
1926 		DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
1927 			    __func__, r);
1928 		cell_defer_no_holder(tc, cell);
1929 		bio_io_error(bio);
1930 		break;
1931 	}
1932 }
1933 
1934 static void process_bio(struct thin_c *tc, struct bio *bio)
1935 {
1936 	struct pool *pool = tc->pool;
1937 	dm_block_t block = get_bio_block(tc, bio);
1938 	struct dm_bio_prison_cell *cell;
1939 	struct dm_cell_key key;
1940 
1941 	/*
1942 	 * If cell is already occupied, then the block is already
1943 	 * being provisioned so we have nothing further to do here.
1944 	 */
1945 	build_virtual_key(tc->td, block, &key);
1946 	if (bio_detain(pool, &key, bio, &cell))
1947 		return;
1948 
1949 	process_cell(tc, cell);
1950 }
1951 
1952 static void __process_bio_read_only(struct thin_c *tc, struct bio *bio,
1953 				    struct dm_bio_prison_cell *cell)
1954 {
1955 	int r;
1956 	int rw = bio_data_dir(bio);
1957 	dm_block_t block = get_bio_block(tc, bio);
1958 	struct dm_thin_lookup_result lookup_result;
1959 
1960 	r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1961 	switch (r) {
1962 	case 0:
1963 		if (lookup_result.shared && (rw == WRITE) && bio->bi_iter.bi_size) {
1964 			handle_unserviceable_bio(tc->pool, bio);
1965 			if (cell)
1966 				cell_defer_no_holder(tc, cell);
1967 		} else {
1968 			inc_all_io_entry(tc->pool, bio);
1969 			remap_and_issue(tc, bio, lookup_result.block);
1970 			if (cell)
1971 				inc_remap_and_issue_cell(tc, cell, lookup_result.block);
1972 		}
1973 		break;
1974 
1975 	case -ENODATA:
1976 		if (cell)
1977 			cell_defer_no_holder(tc, cell);
1978 		if (rw != READ) {
1979 			handle_unserviceable_bio(tc->pool, bio);
1980 			break;
1981 		}
1982 
1983 		if (tc->origin_dev) {
1984 			inc_all_io_entry(tc->pool, bio);
1985 			remap_to_origin_and_issue(tc, bio);
1986 			break;
1987 		}
1988 
1989 		zero_fill_bio(bio);
1990 		bio_endio(bio);
1991 		break;
1992 
1993 	default:
1994 		DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
1995 			    __func__, r);
1996 		if (cell)
1997 			cell_defer_no_holder(tc, cell);
1998 		bio_io_error(bio);
1999 		break;
2000 	}
2001 }
2002 
2003 static void process_bio_read_only(struct thin_c *tc, struct bio *bio)
2004 {
2005 	__process_bio_read_only(tc, bio, NULL);
2006 }
2007 
2008 static void process_cell_read_only(struct thin_c *tc, struct dm_bio_prison_cell *cell)
2009 {
2010 	__process_bio_read_only(tc, cell->holder, cell);
2011 }
2012 
2013 static void process_bio_success(struct thin_c *tc, struct bio *bio)
2014 {
2015 	bio_endio(bio);
2016 }
2017 
2018 static void process_bio_fail(struct thin_c *tc, struct bio *bio)
2019 {
2020 	bio_io_error(bio);
2021 }
2022 
2023 static void process_cell_success(struct thin_c *tc, struct dm_bio_prison_cell *cell)
2024 {
2025 	cell_success(tc->pool, cell);
2026 }
2027 
2028 static void process_cell_fail(struct thin_c *tc, struct dm_bio_prison_cell *cell)
2029 {
2030 	cell_error(tc->pool, cell);
2031 }
2032 
2033 /*
2034  * FIXME: should we also commit due to size of transaction, measured in
2035  * metadata blocks?
2036  */
2037 static int need_commit_due_to_time(struct pool *pool)
2038 {
2039 	return !time_in_range(jiffies, pool->last_commit_jiffies,
2040 			      pool->last_commit_jiffies + COMMIT_PERIOD);
2041 }
2042 
2043 #define thin_pbd(node) rb_entry((node), struct dm_thin_endio_hook, rb_node)
2044 #define thin_bio(pbd) dm_bio_from_per_bio_data((pbd), sizeof(struct dm_thin_endio_hook))
2045 
2046 static void __thin_bio_rb_add(struct thin_c *tc, struct bio *bio)
2047 {
2048 	struct rb_node **rbp, *parent;
2049 	struct dm_thin_endio_hook *pbd;
2050 	sector_t bi_sector = bio->bi_iter.bi_sector;
2051 
2052 	rbp = &tc->sort_bio_list.rb_node;
2053 	parent = NULL;
2054 	while (*rbp) {
2055 		parent = *rbp;
2056 		pbd = thin_pbd(parent);
2057 
2058 		if (bi_sector < thin_bio(pbd)->bi_iter.bi_sector)
2059 			rbp = &(*rbp)->rb_left;
2060 		else
2061 			rbp = &(*rbp)->rb_right;
2062 	}
2063 
2064 	pbd = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
2065 	rb_link_node(&pbd->rb_node, parent, rbp);
2066 	rb_insert_color(&pbd->rb_node, &tc->sort_bio_list);
2067 }
2068 
2069 static void __extract_sorted_bios(struct thin_c *tc)
2070 {
2071 	struct rb_node *node;
2072 	struct dm_thin_endio_hook *pbd;
2073 	struct bio *bio;
2074 
2075 	for (node = rb_first(&tc->sort_bio_list); node; node = rb_next(node)) {
2076 		pbd = thin_pbd(node);
2077 		bio = thin_bio(pbd);
2078 
2079 		bio_list_add(&tc->deferred_bio_list, bio);
2080 		rb_erase(&pbd->rb_node, &tc->sort_bio_list);
2081 	}
2082 
2083 	WARN_ON(!RB_EMPTY_ROOT(&tc->sort_bio_list));
2084 }
2085 
2086 static void __sort_thin_deferred_bios(struct thin_c *tc)
2087 {
2088 	struct bio *bio;
2089 	struct bio_list bios;
2090 
2091 	bio_list_init(&bios);
2092 	bio_list_merge(&bios, &tc->deferred_bio_list);
2093 	bio_list_init(&tc->deferred_bio_list);
2094 
2095 	/* Sort deferred_bio_list using rb-tree */
2096 	while ((bio = bio_list_pop(&bios)))
2097 		__thin_bio_rb_add(tc, bio);
2098 
2099 	/*
2100 	 * Transfer the sorted bios in sort_bio_list back to
2101 	 * deferred_bio_list to allow lockless submission of
2102 	 * all bios.
2103 	 */
2104 	__extract_sorted_bios(tc);
2105 }
2106 
2107 static void process_thin_deferred_bios(struct thin_c *tc)
2108 {
2109 	struct pool *pool = tc->pool;
2110 	unsigned long flags;
2111 	struct bio *bio;
2112 	struct bio_list bios;
2113 	struct blk_plug plug;
2114 	unsigned count = 0;
2115 
2116 	if (tc->requeue_mode) {
2117 		error_thin_bio_list(tc, &tc->deferred_bio_list,
2118 				BLK_STS_DM_REQUEUE);
2119 		return;
2120 	}
2121 
2122 	bio_list_init(&bios);
2123 
2124 	spin_lock_irqsave(&tc->lock, flags);
2125 
2126 	if (bio_list_empty(&tc->deferred_bio_list)) {
2127 		spin_unlock_irqrestore(&tc->lock, flags);
2128 		return;
2129 	}
2130 
2131 	__sort_thin_deferred_bios(tc);
2132 
2133 	bio_list_merge(&bios, &tc->deferred_bio_list);
2134 	bio_list_init(&tc->deferred_bio_list);
2135 
2136 	spin_unlock_irqrestore(&tc->lock, flags);
2137 
2138 	blk_start_plug(&plug);
2139 	while ((bio = bio_list_pop(&bios))) {
2140 		/*
2141 		 * If we've got no free new_mapping structs, and processing
2142 		 * this bio might require one, we pause until there are some
2143 		 * prepared mappings to process.
2144 		 */
2145 		if (ensure_next_mapping(pool)) {
2146 			spin_lock_irqsave(&tc->lock, flags);
2147 			bio_list_add(&tc->deferred_bio_list, bio);
2148 			bio_list_merge(&tc->deferred_bio_list, &bios);
2149 			spin_unlock_irqrestore(&tc->lock, flags);
2150 			break;
2151 		}
2152 
2153 		if (bio_op(bio) == REQ_OP_DISCARD)
2154 			pool->process_discard(tc, bio);
2155 		else
2156 			pool->process_bio(tc, bio);
2157 
2158 		if ((count++ & 127) == 0) {
2159 			throttle_work_update(&pool->throttle);
2160 			dm_pool_issue_prefetches(pool->pmd);
2161 		}
2162 	}
2163 	blk_finish_plug(&plug);
2164 }
2165 
2166 static int cmp_cells(const void *lhs, const void *rhs)
2167 {
2168 	struct dm_bio_prison_cell *lhs_cell = *((struct dm_bio_prison_cell **) lhs);
2169 	struct dm_bio_prison_cell *rhs_cell = *((struct dm_bio_prison_cell **) rhs);
2170 
2171 	BUG_ON(!lhs_cell->holder);
2172 	BUG_ON(!rhs_cell->holder);
2173 
2174 	if (lhs_cell->holder->bi_iter.bi_sector < rhs_cell->holder->bi_iter.bi_sector)
2175 		return -1;
2176 
2177 	if (lhs_cell->holder->bi_iter.bi_sector > rhs_cell->holder->bi_iter.bi_sector)
2178 		return 1;
2179 
2180 	return 0;
2181 }
2182 
2183 static unsigned sort_cells(struct pool *pool, struct list_head *cells)
2184 {
2185 	unsigned count = 0;
2186 	struct dm_bio_prison_cell *cell, *tmp;
2187 
2188 	list_for_each_entry_safe(cell, tmp, cells, user_list) {
2189 		if (count >= CELL_SORT_ARRAY_SIZE)
2190 			break;
2191 
2192 		pool->cell_sort_array[count++] = cell;
2193 		list_del(&cell->user_list);
2194 	}
2195 
2196 	sort(pool->cell_sort_array, count, sizeof(cell), cmp_cells, NULL);
2197 
2198 	return count;
2199 }
2200 
2201 static void process_thin_deferred_cells(struct thin_c *tc)
2202 {
2203 	struct pool *pool = tc->pool;
2204 	unsigned long flags;
2205 	struct list_head cells;
2206 	struct dm_bio_prison_cell *cell;
2207 	unsigned i, j, count;
2208 
2209 	INIT_LIST_HEAD(&cells);
2210 
2211 	spin_lock_irqsave(&tc->lock, flags);
2212 	list_splice_init(&tc->deferred_cells, &cells);
2213 	spin_unlock_irqrestore(&tc->lock, flags);
2214 
2215 	if (list_empty(&cells))
2216 		return;
2217 
2218 	do {
2219 		count = sort_cells(tc->pool, &cells);
2220 
2221 		for (i = 0; i < count; i++) {
2222 			cell = pool->cell_sort_array[i];
2223 			BUG_ON(!cell->holder);
2224 
2225 			/*
2226 			 * If we've got no free new_mapping structs, and processing
2227 			 * this bio might require one, we pause until there are some
2228 			 * prepared mappings to process.
2229 			 */
2230 			if (ensure_next_mapping(pool)) {
2231 				for (j = i; j < count; j++)
2232 					list_add(&pool->cell_sort_array[j]->user_list, &cells);
2233 
2234 				spin_lock_irqsave(&tc->lock, flags);
2235 				list_splice(&cells, &tc->deferred_cells);
2236 				spin_unlock_irqrestore(&tc->lock, flags);
2237 				return;
2238 			}
2239 
2240 			if (bio_op(cell->holder) == REQ_OP_DISCARD)
2241 				pool->process_discard_cell(tc, cell);
2242 			else
2243 				pool->process_cell(tc, cell);
2244 		}
2245 	} while (!list_empty(&cells));
2246 }
2247 
2248 static void thin_get(struct thin_c *tc);
2249 static void thin_put(struct thin_c *tc);
2250 
2251 /*
2252  * We can't hold rcu_read_lock() around code that can block.  So we
2253  * find a thin with the rcu lock held; bump a refcount; then drop
2254  * the lock.
2255  */
2256 static struct thin_c *get_first_thin(struct pool *pool)
2257 {
2258 	struct thin_c *tc = NULL;
2259 
2260 	rcu_read_lock();
2261 	if (!list_empty(&pool->active_thins)) {
2262 		tc = list_entry_rcu(pool->active_thins.next, struct thin_c, list);
2263 		thin_get(tc);
2264 	}
2265 	rcu_read_unlock();
2266 
2267 	return tc;
2268 }
2269 
2270 static struct thin_c *get_next_thin(struct pool *pool, struct thin_c *tc)
2271 {
2272 	struct thin_c *old_tc = tc;
2273 
2274 	rcu_read_lock();
2275 	list_for_each_entry_continue_rcu(tc, &pool->active_thins, list) {
2276 		thin_get(tc);
2277 		thin_put(old_tc);
2278 		rcu_read_unlock();
2279 		return tc;
2280 	}
2281 	thin_put(old_tc);
2282 	rcu_read_unlock();
2283 
2284 	return NULL;
2285 }
2286 
2287 static void process_deferred_bios(struct pool *pool)
2288 {
2289 	unsigned long flags;
2290 	struct bio *bio;
2291 	struct bio_list bios;
2292 	struct thin_c *tc;
2293 
2294 	tc = get_first_thin(pool);
2295 	while (tc) {
2296 		process_thin_deferred_cells(tc);
2297 		process_thin_deferred_bios(tc);
2298 		tc = get_next_thin(pool, tc);
2299 	}
2300 
2301 	/*
2302 	 * If there are any deferred flush bios, we must commit
2303 	 * the metadata before issuing them.
2304 	 */
2305 	bio_list_init(&bios);
2306 	spin_lock_irqsave(&pool->lock, flags);
2307 	bio_list_merge(&bios, &pool->deferred_flush_bios);
2308 	bio_list_init(&pool->deferred_flush_bios);
2309 	spin_unlock_irqrestore(&pool->lock, flags);
2310 
2311 	if (bio_list_empty(&bios) &&
2312 	    !(dm_pool_changed_this_transaction(pool->pmd) && need_commit_due_to_time(pool)))
2313 		return;
2314 
2315 	if (commit(pool)) {
2316 		while ((bio = bio_list_pop(&bios)))
2317 			bio_io_error(bio);
2318 		return;
2319 	}
2320 	pool->last_commit_jiffies = jiffies;
2321 
2322 	while ((bio = bio_list_pop(&bios)))
2323 		generic_make_request(bio);
2324 }
2325 
2326 static void do_worker(struct work_struct *ws)
2327 {
2328 	struct pool *pool = container_of(ws, struct pool, worker);
2329 
2330 	throttle_work_start(&pool->throttle);
2331 	dm_pool_issue_prefetches(pool->pmd);
2332 	throttle_work_update(&pool->throttle);
2333 	process_prepared(pool, &pool->prepared_mappings, &pool->process_prepared_mapping);
2334 	throttle_work_update(&pool->throttle);
2335 	process_prepared(pool, &pool->prepared_discards, &pool->process_prepared_discard);
2336 	throttle_work_update(&pool->throttle);
2337 	process_prepared(pool, &pool->prepared_discards_pt2, &pool->process_prepared_discard_pt2);
2338 	throttle_work_update(&pool->throttle);
2339 	process_deferred_bios(pool);
2340 	throttle_work_complete(&pool->throttle);
2341 }
2342 
2343 /*
2344  * We want to commit periodically so that not too much
2345  * unwritten data builds up.
2346  */
2347 static void do_waker(struct work_struct *ws)
2348 {
2349 	struct pool *pool = container_of(to_delayed_work(ws), struct pool, waker);
2350 	wake_worker(pool);
2351 	queue_delayed_work(pool->wq, &pool->waker, COMMIT_PERIOD);
2352 }
2353 
2354 static void notify_of_pool_mode_change_to_oods(struct pool *pool);
2355 
2356 /*
2357  * We're holding onto IO to allow userland time to react.  After the
2358  * timeout either the pool will have been resized (and thus back in
2359  * PM_WRITE mode), or we degrade to PM_OUT_OF_DATA_SPACE w/ error_if_no_space.
2360  */
2361 static void do_no_space_timeout(struct work_struct *ws)
2362 {
2363 	struct pool *pool = container_of(to_delayed_work(ws), struct pool,
2364 					 no_space_timeout);
2365 
2366 	if (get_pool_mode(pool) == PM_OUT_OF_DATA_SPACE && !pool->pf.error_if_no_space) {
2367 		pool->pf.error_if_no_space = true;
2368 		notify_of_pool_mode_change_to_oods(pool);
2369 		error_retry_list_with_code(pool, BLK_STS_NOSPC);
2370 	}
2371 }
2372 
2373 /*----------------------------------------------------------------*/
2374 
2375 struct pool_work {
2376 	struct work_struct worker;
2377 	struct completion complete;
2378 };
2379 
2380 static struct pool_work *to_pool_work(struct work_struct *ws)
2381 {
2382 	return container_of(ws, struct pool_work, worker);
2383 }
2384 
2385 static void pool_work_complete(struct pool_work *pw)
2386 {
2387 	complete(&pw->complete);
2388 }
2389 
2390 static void pool_work_wait(struct pool_work *pw, struct pool *pool,
2391 			   void (*fn)(struct work_struct *))
2392 {
2393 	INIT_WORK_ONSTACK(&pw->worker, fn);
2394 	init_completion(&pw->complete);
2395 	queue_work(pool->wq, &pw->worker);
2396 	wait_for_completion(&pw->complete);
2397 }
2398 
2399 /*----------------------------------------------------------------*/
2400 
2401 struct noflush_work {
2402 	struct pool_work pw;
2403 	struct thin_c *tc;
2404 };
2405 
2406 static struct noflush_work *to_noflush(struct work_struct *ws)
2407 {
2408 	return container_of(to_pool_work(ws), struct noflush_work, pw);
2409 }
2410 
2411 static void do_noflush_start(struct work_struct *ws)
2412 {
2413 	struct noflush_work *w = to_noflush(ws);
2414 	w->tc->requeue_mode = true;
2415 	requeue_io(w->tc);
2416 	pool_work_complete(&w->pw);
2417 }
2418 
2419 static void do_noflush_stop(struct work_struct *ws)
2420 {
2421 	struct noflush_work *w = to_noflush(ws);
2422 	w->tc->requeue_mode = false;
2423 	pool_work_complete(&w->pw);
2424 }
2425 
2426 static void noflush_work(struct thin_c *tc, void (*fn)(struct work_struct *))
2427 {
2428 	struct noflush_work w;
2429 
2430 	w.tc = tc;
2431 	pool_work_wait(&w.pw, tc->pool, fn);
2432 }
2433 
2434 /*----------------------------------------------------------------*/
2435 
2436 static enum pool_mode get_pool_mode(struct pool *pool)
2437 {
2438 	return pool->pf.mode;
2439 }
2440 
2441 static void notify_of_pool_mode_change(struct pool *pool, const char *new_mode)
2442 {
2443 	dm_table_event(pool->ti->table);
2444 	DMINFO("%s: switching pool to %s mode",
2445 	       dm_device_name(pool->pool_md), new_mode);
2446 }
2447 
2448 static void notify_of_pool_mode_change_to_oods(struct pool *pool)
2449 {
2450 	if (!pool->pf.error_if_no_space)
2451 		notify_of_pool_mode_change(pool, "out-of-data-space (queue IO)");
2452 	else
2453 		notify_of_pool_mode_change(pool, "out-of-data-space (error IO)");
2454 }
2455 
2456 static bool passdown_enabled(struct pool_c *pt)
2457 {
2458 	return pt->adjusted_pf.discard_passdown;
2459 }
2460 
2461 static void set_discard_callbacks(struct pool *pool)
2462 {
2463 	struct pool_c *pt = pool->ti->private;
2464 
2465 	if (passdown_enabled(pt)) {
2466 		pool->process_discard_cell = process_discard_cell_passdown;
2467 		pool->process_prepared_discard = process_prepared_discard_passdown_pt1;
2468 		pool->process_prepared_discard_pt2 = process_prepared_discard_passdown_pt2;
2469 	} else {
2470 		pool->process_discard_cell = process_discard_cell_no_passdown;
2471 		pool->process_prepared_discard = process_prepared_discard_no_passdown;
2472 	}
2473 }
2474 
2475 static void set_pool_mode(struct pool *pool, enum pool_mode new_mode)
2476 {
2477 	struct pool_c *pt = pool->ti->private;
2478 	bool needs_check = dm_pool_metadata_needs_check(pool->pmd);
2479 	enum pool_mode old_mode = get_pool_mode(pool);
2480 	unsigned long no_space_timeout = READ_ONCE(no_space_timeout_secs) * HZ;
2481 
2482 	/*
2483 	 * Never allow the pool to transition to PM_WRITE mode if user
2484 	 * intervention is required to verify metadata and data consistency.
2485 	 */
2486 	if (new_mode == PM_WRITE && needs_check) {
2487 		DMERR("%s: unable to switch pool to write mode until repaired.",
2488 		      dm_device_name(pool->pool_md));
2489 		if (old_mode != new_mode)
2490 			new_mode = old_mode;
2491 		else
2492 			new_mode = PM_READ_ONLY;
2493 	}
2494 	/*
2495 	 * If we were in PM_FAIL mode, rollback of metadata failed.  We're
2496 	 * not going to recover without a thin_repair.	So we never let the
2497 	 * pool move out of the old mode.
2498 	 */
2499 	if (old_mode == PM_FAIL)
2500 		new_mode = old_mode;
2501 
2502 	switch (new_mode) {
2503 	case PM_FAIL:
2504 		if (old_mode != new_mode)
2505 			notify_of_pool_mode_change(pool, "failure");
2506 		dm_pool_metadata_read_only(pool->pmd);
2507 		pool->process_bio = process_bio_fail;
2508 		pool->process_discard = process_bio_fail;
2509 		pool->process_cell = process_cell_fail;
2510 		pool->process_discard_cell = process_cell_fail;
2511 		pool->process_prepared_mapping = process_prepared_mapping_fail;
2512 		pool->process_prepared_discard = process_prepared_discard_fail;
2513 
2514 		error_retry_list(pool);
2515 		break;
2516 
2517 	case PM_OUT_OF_METADATA_SPACE:
2518 	case PM_READ_ONLY:
2519 		if (!is_read_only_pool_mode(old_mode))
2520 			notify_of_pool_mode_change(pool, "read-only");
2521 		dm_pool_metadata_read_only(pool->pmd);
2522 		pool->process_bio = process_bio_read_only;
2523 		pool->process_discard = process_bio_success;
2524 		pool->process_cell = process_cell_read_only;
2525 		pool->process_discard_cell = process_cell_success;
2526 		pool->process_prepared_mapping = process_prepared_mapping_fail;
2527 		pool->process_prepared_discard = process_prepared_discard_success;
2528 
2529 		error_retry_list(pool);
2530 		break;
2531 
2532 	case PM_OUT_OF_DATA_SPACE:
2533 		/*
2534 		 * Ideally we'd never hit this state; the low water mark
2535 		 * would trigger userland to extend the pool before we
2536 		 * completely run out of data space.  However, many small
2537 		 * IOs to unprovisioned space can consume data space at an
2538 		 * alarming rate.  Adjust your low water mark if you're
2539 		 * frequently seeing this mode.
2540 		 */
2541 		if (old_mode != new_mode)
2542 			notify_of_pool_mode_change_to_oods(pool);
2543 		pool->out_of_data_space = true;
2544 		pool->process_bio = process_bio_read_only;
2545 		pool->process_discard = process_discard_bio;
2546 		pool->process_cell = process_cell_read_only;
2547 		pool->process_prepared_mapping = process_prepared_mapping;
2548 		set_discard_callbacks(pool);
2549 
2550 		if (!pool->pf.error_if_no_space && no_space_timeout)
2551 			queue_delayed_work(pool->wq, &pool->no_space_timeout, no_space_timeout);
2552 		break;
2553 
2554 	case PM_WRITE:
2555 		if (old_mode != new_mode)
2556 			notify_of_pool_mode_change(pool, "write");
2557 		if (old_mode == PM_OUT_OF_DATA_SPACE)
2558 			cancel_delayed_work_sync(&pool->no_space_timeout);
2559 		pool->out_of_data_space = false;
2560 		pool->pf.error_if_no_space = pt->requested_pf.error_if_no_space;
2561 		dm_pool_metadata_read_write(pool->pmd);
2562 		pool->process_bio = process_bio;
2563 		pool->process_discard = process_discard_bio;
2564 		pool->process_cell = process_cell;
2565 		pool->process_prepared_mapping = process_prepared_mapping;
2566 		set_discard_callbacks(pool);
2567 		break;
2568 	}
2569 
2570 	pool->pf.mode = new_mode;
2571 	/*
2572 	 * The pool mode may have changed, sync it so bind_control_target()
2573 	 * doesn't cause an unexpected mode transition on resume.
2574 	 */
2575 	pt->adjusted_pf.mode = new_mode;
2576 }
2577 
2578 static void abort_transaction(struct pool *pool)
2579 {
2580 	const char *dev_name = dm_device_name(pool->pool_md);
2581 
2582 	DMERR_LIMIT("%s: aborting current metadata transaction", dev_name);
2583 	if (dm_pool_abort_metadata(pool->pmd)) {
2584 		DMERR("%s: failed to abort metadata transaction", dev_name);
2585 		set_pool_mode(pool, PM_FAIL);
2586 	}
2587 
2588 	if (dm_pool_metadata_set_needs_check(pool->pmd)) {
2589 		DMERR("%s: failed to set 'needs_check' flag in metadata", dev_name);
2590 		set_pool_mode(pool, PM_FAIL);
2591 	}
2592 }
2593 
2594 static void metadata_operation_failed(struct pool *pool, const char *op, int r)
2595 {
2596 	DMERR_LIMIT("%s: metadata operation '%s' failed: error = %d",
2597 		    dm_device_name(pool->pool_md), op, r);
2598 
2599 	abort_transaction(pool);
2600 	set_pool_mode(pool, PM_READ_ONLY);
2601 }
2602 
2603 /*----------------------------------------------------------------*/
2604 
2605 /*
2606  * Mapping functions.
2607  */
2608 
2609 /*
2610  * Called only while mapping a thin bio to hand it over to the workqueue.
2611  */
2612 static void thin_defer_bio(struct thin_c *tc, struct bio *bio)
2613 {
2614 	unsigned long flags;
2615 	struct pool *pool = tc->pool;
2616 
2617 	spin_lock_irqsave(&tc->lock, flags);
2618 	bio_list_add(&tc->deferred_bio_list, bio);
2619 	spin_unlock_irqrestore(&tc->lock, flags);
2620 
2621 	wake_worker(pool);
2622 }
2623 
2624 static void thin_defer_bio_with_throttle(struct thin_c *tc, struct bio *bio)
2625 {
2626 	struct pool *pool = tc->pool;
2627 
2628 	throttle_lock(&pool->throttle);
2629 	thin_defer_bio(tc, bio);
2630 	throttle_unlock(&pool->throttle);
2631 }
2632 
2633 static void thin_defer_cell(struct thin_c *tc, struct dm_bio_prison_cell *cell)
2634 {
2635 	unsigned long flags;
2636 	struct pool *pool = tc->pool;
2637 
2638 	throttle_lock(&pool->throttle);
2639 	spin_lock_irqsave(&tc->lock, flags);
2640 	list_add_tail(&cell->user_list, &tc->deferred_cells);
2641 	spin_unlock_irqrestore(&tc->lock, flags);
2642 	throttle_unlock(&pool->throttle);
2643 
2644 	wake_worker(pool);
2645 }
2646 
2647 static void thin_hook_bio(struct thin_c *tc, struct bio *bio)
2648 {
2649 	struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
2650 
2651 	h->tc = tc;
2652 	h->shared_read_entry = NULL;
2653 	h->all_io_entry = NULL;
2654 	h->overwrite_mapping = NULL;
2655 	h->cell = NULL;
2656 }
2657 
2658 /*
2659  * Non-blocking function called from the thin target's map function.
2660  */
2661 static int thin_bio_map(struct dm_target *ti, struct bio *bio)
2662 {
2663 	int r;
2664 	struct thin_c *tc = ti->private;
2665 	dm_block_t block = get_bio_block(tc, bio);
2666 	struct dm_thin_device *td = tc->td;
2667 	struct dm_thin_lookup_result result;
2668 	struct dm_bio_prison_cell *virt_cell, *data_cell;
2669 	struct dm_cell_key key;
2670 
2671 	thin_hook_bio(tc, bio);
2672 
2673 	if (tc->requeue_mode) {
2674 		bio->bi_status = BLK_STS_DM_REQUEUE;
2675 		bio_endio(bio);
2676 		return DM_MAPIO_SUBMITTED;
2677 	}
2678 
2679 	if (get_pool_mode(tc->pool) == PM_FAIL) {
2680 		bio_io_error(bio);
2681 		return DM_MAPIO_SUBMITTED;
2682 	}
2683 
2684 	if (op_is_flush(bio->bi_opf) || bio_op(bio) == REQ_OP_DISCARD) {
2685 		thin_defer_bio_with_throttle(tc, bio);
2686 		return DM_MAPIO_SUBMITTED;
2687 	}
2688 
2689 	/*
2690 	 * We must hold the virtual cell before doing the lookup, otherwise
2691 	 * there's a race with discard.
2692 	 */
2693 	build_virtual_key(tc->td, block, &key);
2694 	if (bio_detain(tc->pool, &key, bio, &virt_cell))
2695 		return DM_MAPIO_SUBMITTED;
2696 
2697 	r = dm_thin_find_block(td, block, 0, &result);
2698 
2699 	/*
2700 	 * Note that we defer readahead too.
2701 	 */
2702 	switch (r) {
2703 	case 0:
2704 		if (unlikely(result.shared)) {
2705 			/*
2706 			 * We have a race condition here between the
2707 			 * result.shared value returned by the lookup and
2708 			 * snapshot creation, which may cause new
2709 			 * sharing.
2710 			 *
2711 			 * To avoid this always quiesce the origin before
2712 			 * taking the snap.  You want to do this anyway to
2713 			 * ensure a consistent application view
2714 			 * (i.e. lockfs).
2715 			 *
2716 			 * More distant ancestors are irrelevant. The
2717 			 * shared flag will be set in their case.
2718 			 */
2719 			thin_defer_cell(tc, virt_cell);
2720 			return DM_MAPIO_SUBMITTED;
2721 		}
2722 
2723 		build_data_key(tc->td, result.block, &key);
2724 		if (bio_detain(tc->pool, &key, bio, &data_cell)) {
2725 			cell_defer_no_holder(tc, virt_cell);
2726 			return DM_MAPIO_SUBMITTED;
2727 		}
2728 
2729 		inc_all_io_entry(tc->pool, bio);
2730 		cell_defer_no_holder(tc, data_cell);
2731 		cell_defer_no_holder(tc, virt_cell);
2732 
2733 		remap(tc, bio, result.block);
2734 		return DM_MAPIO_REMAPPED;
2735 
2736 	case -ENODATA:
2737 	case -EWOULDBLOCK:
2738 		thin_defer_cell(tc, virt_cell);
2739 		return DM_MAPIO_SUBMITTED;
2740 
2741 	default:
2742 		/*
2743 		 * Must always call bio_io_error on failure.
2744 		 * dm_thin_find_block can fail with -EINVAL if the
2745 		 * pool is switched to fail-io mode.
2746 		 */
2747 		bio_io_error(bio);
2748 		cell_defer_no_holder(tc, virt_cell);
2749 		return DM_MAPIO_SUBMITTED;
2750 	}
2751 }
2752 
2753 static int pool_is_congested(struct dm_target_callbacks *cb, int bdi_bits)
2754 {
2755 	struct pool_c *pt = container_of(cb, struct pool_c, callbacks);
2756 	struct request_queue *q;
2757 
2758 	if (get_pool_mode(pt->pool) == PM_OUT_OF_DATA_SPACE)
2759 		return 1;
2760 
2761 	q = bdev_get_queue(pt->data_dev->bdev);
2762 	return bdi_congested(q->backing_dev_info, bdi_bits);
2763 }
2764 
2765 static void requeue_bios(struct pool *pool)
2766 {
2767 	unsigned long flags;
2768 	struct thin_c *tc;
2769 
2770 	rcu_read_lock();
2771 	list_for_each_entry_rcu(tc, &pool->active_thins, list) {
2772 		spin_lock_irqsave(&tc->lock, flags);
2773 		bio_list_merge(&tc->deferred_bio_list, &tc->retry_on_resume_list);
2774 		bio_list_init(&tc->retry_on_resume_list);
2775 		spin_unlock_irqrestore(&tc->lock, flags);
2776 	}
2777 	rcu_read_unlock();
2778 }
2779 
2780 /*----------------------------------------------------------------
2781  * Binding of control targets to a pool object
2782  *--------------------------------------------------------------*/
2783 static bool data_dev_supports_discard(struct pool_c *pt)
2784 {
2785 	struct request_queue *q = bdev_get_queue(pt->data_dev->bdev);
2786 
2787 	return q && blk_queue_discard(q);
2788 }
2789 
2790 static bool is_factor(sector_t block_size, uint32_t n)
2791 {
2792 	return !sector_div(block_size, n);
2793 }
2794 
2795 /*
2796  * If discard_passdown was enabled verify that the data device
2797  * supports discards.  Disable discard_passdown if not.
2798  */
2799 static void disable_passdown_if_not_supported(struct pool_c *pt)
2800 {
2801 	struct pool *pool = pt->pool;
2802 	struct block_device *data_bdev = pt->data_dev->bdev;
2803 	struct queue_limits *data_limits = &bdev_get_queue(data_bdev)->limits;
2804 	const char *reason = NULL;
2805 	char buf[BDEVNAME_SIZE];
2806 
2807 	if (!pt->adjusted_pf.discard_passdown)
2808 		return;
2809 
2810 	if (!data_dev_supports_discard(pt))
2811 		reason = "discard unsupported";
2812 
2813 	else if (data_limits->max_discard_sectors < pool->sectors_per_block)
2814 		reason = "max discard sectors smaller than a block";
2815 
2816 	if (reason) {
2817 		DMWARN("Data device (%s) %s: Disabling discard passdown.", bdevname(data_bdev, buf), reason);
2818 		pt->adjusted_pf.discard_passdown = false;
2819 	}
2820 }
2821 
2822 static int bind_control_target(struct pool *pool, struct dm_target *ti)
2823 {
2824 	struct pool_c *pt = ti->private;
2825 
2826 	/*
2827 	 * We want to make sure that a pool in PM_FAIL mode is never upgraded.
2828 	 */
2829 	enum pool_mode old_mode = get_pool_mode(pool);
2830 	enum pool_mode new_mode = pt->adjusted_pf.mode;
2831 
2832 	/*
2833 	 * Don't change the pool's mode until set_pool_mode() below.
2834 	 * Otherwise the pool's process_* function pointers may
2835 	 * not match the desired pool mode.
2836 	 */
2837 	pt->adjusted_pf.mode = old_mode;
2838 
2839 	pool->ti = ti;
2840 	pool->pf = pt->adjusted_pf;
2841 	pool->low_water_blocks = pt->low_water_blocks;
2842 
2843 	set_pool_mode(pool, new_mode);
2844 
2845 	return 0;
2846 }
2847 
2848 static void unbind_control_target(struct pool *pool, struct dm_target *ti)
2849 {
2850 	if (pool->ti == ti)
2851 		pool->ti = NULL;
2852 }
2853 
2854 /*----------------------------------------------------------------
2855  * Pool creation
2856  *--------------------------------------------------------------*/
2857 /* Initialize pool features. */
2858 static void pool_features_init(struct pool_features *pf)
2859 {
2860 	pf->mode = PM_WRITE;
2861 	pf->zero_new_blocks = true;
2862 	pf->discard_enabled = true;
2863 	pf->discard_passdown = true;
2864 	pf->error_if_no_space = false;
2865 }
2866 
2867 static void __pool_destroy(struct pool *pool)
2868 {
2869 	__pool_table_remove(pool);
2870 
2871 	vfree(pool->cell_sort_array);
2872 	if (dm_pool_metadata_close(pool->pmd) < 0)
2873 		DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
2874 
2875 	dm_bio_prison_destroy(pool->prison);
2876 	dm_kcopyd_client_destroy(pool->copier);
2877 
2878 	if (pool->wq)
2879 		destroy_workqueue(pool->wq);
2880 
2881 	if (pool->next_mapping)
2882 		mempool_free(pool->next_mapping, &pool->mapping_pool);
2883 	mempool_exit(&pool->mapping_pool);
2884 	dm_deferred_set_destroy(pool->shared_read_ds);
2885 	dm_deferred_set_destroy(pool->all_io_ds);
2886 	kfree(pool);
2887 }
2888 
2889 static struct kmem_cache *_new_mapping_cache;
2890 
2891 static struct pool *pool_create(struct mapped_device *pool_md,
2892 				struct block_device *metadata_dev,
2893 				unsigned long block_size,
2894 				int read_only, char **error)
2895 {
2896 	int r;
2897 	void *err_p;
2898 	struct pool *pool;
2899 	struct dm_pool_metadata *pmd;
2900 	bool format_device = read_only ? false : true;
2901 
2902 	pmd = dm_pool_metadata_open(metadata_dev, block_size, format_device);
2903 	if (IS_ERR(pmd)) {
2904 		*error = "Error creating metadata object";
2905 		return (struct pool *)pmd;
2906 	}
2907 
2908 	pool = kzalloc(sizeof(*pool), GFP_KERNEL);
2909 	if (!pool) {
2910 		*error = "Error allocating memory for pool";
2911 		err_p = ERR_PTR(-ENOMEM);
2912 		goto bad_pool;
2913 	}
2914 
2915 	pool->pmd = pmd;
2916 	pool->sectors_per_block = block_size;
2917 	if (block_size & (block_size - 1))
2918 		pool->sectors_per_block_shift = -1;
2919 	else
2920 		pool->sectors_per_block_shift = __ffs(block_size);
2921 	pool->low_water_blocks = 0;
2922 	pool_features_init(&pool->pf);
2923 	pool->prison = dm_bio_prison_create();
2924 	if (!pool->prison) {
2925 		*error = "Error creating pool's bio prison";
2926 		err_p = ERR_PTR(-ENOMEM);
2927 		goto bad_prison;
2928 	}
2929 
2930 	pool->copier = dm_kcopyd_client_create(&dm_kcopyd_throttle);
2931 	if (IS_ERR(pool->copier)) {
2932 		r = PTR_ERR(pool->copier);
2933 		*error = "Error creating pool's kcopyd client";
2934 		err_p = ERR_PTR(r);
2935 		goto bad_kcopyd_client;
2936 	}
2937 
2938 	/*
2939 	 * Create singlethreaded workqueue that will service all devices
2940 	 * that use this metadata.
2941 	 */
2942 	pool->wq = alloc_ordered_workqueue("dm-" DM_MSG_PREFIX, WQ_MEM_RECLAIM);
2943 	if (!pool->wq) {
2944 		*error = "Error creating pool's workqueue";
2945 		err_p = ERR_PTR(-ENOMEM);
2946 		goto bad_wq;
2947 	}
2948 
2949 	throttle_init(&pool->throttle);
2950 	INIT_WORK(&pool->worker, do_worker);
2951 	INIT_DELAYED_WORK(&pool->waker, do_waker);
2952 	INIT_DELAYED_WORK(&pool->no_space_timeout, do_no_space_timeout);
2953 	spin_lock_init(&pool->lock);
2954 	bio_list_init(&pool->deferred_flush_bios);
2955 	INIT_LIST_HEAD(&pool->prepared_mappings);
2956 	INIT_LIST_HEAD(&pool->prepared_discards);
2957 	INIT_LIST_HEAD(&pool->prepared_discards_pt2);
2958 	INIT_LIST_HEAD(&pool->active_thins);
2959 	pool->low_water_triggered = false;
2960 	pool->suspended = true;
2961 	pool->out_of_data_space = false;
2962 
2963 	pool->shared_read_ds = dm_deferred_set_create();
2964 	if (!pool->shared_read_ds) {
2965 		*error = "Error creating pool's shared read deferred set";
2966 		err_p = ERR_PTR(-ENOMEM);
2967 		goto bad_shared_read_ds;
2968 	}
2969 
2970 	pool->all_io_ds = dm_deferred_set_create();
2971 	if (!pool->all_io_ds) {
2972 		*error = "Error creating pool's all io deferred set";
2973 		err_p = ERR_PTR(-ENOMEM);
2974 		goto bad_all_io_ds;
2975 	}
2976 
2977 	pool->next_mapping = NULL;
2978 	r = mempool_init_slab_pool(&pool->mapping_pool, MAPPING_POOL_SIZE,
2979 				   _new_mapping_cache);
2980 	if (r) {
2981 		*error = "Error creating pool's mapping mempool";
2982 		err_p = ERR_PTR(r);
2983 		goto bad_mapping_pool;
2984 	}
2985 
2986 	pool->cell_sort_array =
2987 		vmalloc(array_size(CELL_SORT_ARRAY_SIZE,
2988 				   sizeof(*pool->cell_sort_array)));
2989 	if (!pool->cell_sort_array) {
2990 		*error = "Error allocating cell sort array";
2991 		err_p = ERR_PTR(-ENOMEM);
2992 		goto bad_sort_array;
2993 	}
2994 
2995 	pool->ref_count = 1;
2996 	pool->last_commit_jiffies = jiffies;
2997 	pool->pool_md = pool_md;
2998 	pool->md_dev = metadata_dev;
2999 	__pool_table_insert(pool);
3000 
3001 	return pool;
3002 
3003 bad_sort_array:
3004 	mempool_exit(&pool->mapping_pool);
3005 bad_mapping_pool:
3006 	dm_deferred_set_destroy(pool->all_io_ds);
3007 bad_all_io_ds:
3008 	dm_deferred_set_destroy(pool->shared_read_ds);
3009 bad_shared_read_ds:
3010 	destroy_workqueue(pool->wq);
3011 bad_wq:
3012 	dm_kcopyd_client_destroy(pool->copier);
3013 bad_kcopyd_client:
3014 	dm_bio_prison_destroy(pool->prison);
3015 bad_prison:
3016 	kfree(pool);
3017 bad_pool:
3018 	if (dm_pool_metadata_close(pmd))
3019 		DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
3020 
3021 	return err_p;
3022 }
3023 
3024 static void __pool_inc(struct pool *pool)
3025 {
3026 	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
3027 	pool->ref_count++;
3028 }
3029 
3030 static void __pool_dec(struct pool *pool)
3031 {
3032 	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
3033 	BUG_ON(!pool->ref_count);
3034 	if (!--pool->ref_count)
3035 		__pool_destroy(pool);
3036 }
3037 
3038 static struct pool *__pool_find(struct mapped_device *pool_md,
3039 				struct block_device *metadata_dev,
3040 				unsigned long block_size, int read_only,
3041 				char **error, int *created)
3042 {
3043 	struct pool *pool = __pool_table_lookup_metadata_dev(metadata_dev);
3044 
3045 	if (pool) {
3046 		if (pool->pool_md != pool_md) {
3047 			*error = "metadata device already in use by a pool";
3048 			return ERR_PTR(-EBUSY);
3049 		}
3050 		__pool_inc(pool);
3051 
3052 	} else {
3053 		pool = __pool_table_lookup(pool_md);
3054 		if (pool) {
3055 			if (pool->md_dev != metadata_dev) {
3056 				*error = "different pool cannot replace a pool";
3057 				return ERR_PTR(-EINVAL);
3058 			}
3059 			__pool_inc(pool);
3060 
3061 		} else {
3062 			pool = pool_create(pool_md, metadata_dev, block_size, read_only, error);
3063 			*created = 1;
3064 		}
3065 	}
3066 
3067 	return pool;
3068 }
3069 
3070 /*----------------------------------------------------------------
3071  * Pool target methods
3072  *--------------------------------------------------------------*/
3073 static void pool_dtr(struct dm_target *ti)
3074 {
3075 	struct pool_c *pt = ti->private;
3076 
3077 	mutex_lock(&dm_thin_pool_table.mutex);
3078 
3079 	unbind_control_target(pt->pool, ti);
3080 	__pool_dec(pt->pool);
3081 	dm_put_device(ti, pt->metadata_dev);
3082 	dm_put_device(ti, pt->data_dev);
3083 	kfree(pt);
3084 
3085 	mutex_unlock(&dm_thin_pool_table.mutex);
3086 }
3087 
3088 static int parse_pool_features(struct dm_arg_set *as, struct pool_features *pf,
3089 			       struct dm_target *ti)
3090 {
3091 	int r;
3092 	unsigned argc;
3093 	const char *arg_name;
3094 
3095 	static const struct dm_arg _args[] = {
3096 		{0, 4, "Invalid number of pool feature arguments"},
3097 	};
3098 
3099 	/*
3100 	 * No feature arguments supplied.
3101 	 */
3102 	if (!as->argc)
3103 		return 0;
3104 
3105 	r = dm_read_arg_group(_args, as, &argc, &ti->error);
3106 	if (r)
3107 		return -EINVAL;
3108 
3109 	while (argc && !r) {
3110 		arg_name = dm_shift_arg(as);
3111 		argc--;
3112 
3113 		if (!strcasecmp(arg_name, "skip_block_zeroing"))
3114 			pf->zero_new_blocks = false;
3115 
3116 		else if (!strcasecmp(arg_name, "ignore_discard"))
3117 			pf->discard_enabled = false;
3118 
3119 		else if (!strcasecmp(arg_name, "no_discard_passdown"))
3120 			pf->discard_passdown = false;
3121 
3122 		else if (!strcasecmp(arg_name, "read_only"))
3123 			pf->mode = PM_READ_ONLY;
3124 
3125 		else if (!strcasecmp(arg_name, "error_if_no_space"))
3126 			pf->error_if_no_space = true;
3127 
3128 		else {
3129 			ti->error = "Unrecognised pool feature requested";
3130 			r = -EINVAL;
3131 			break;
3132 		}
3133 	}
3134 
3135 	return r;
3136 }
3137 
3138 static void metadata_low_callback(void *context)
3139 {
3140 	struct pool *pool = context;
3141 
3142 	DMWARN("%s: reached low water mark for metadata device: sending event.",
3143 	       dm_device_name(pool->pool_md));
3144 
3145 	dm_table_event(pool->ti->table);
3146 }
3147 
3148 static sector_t get_dev_size(struct block_device *bdev)
3149 {
3150 	return i_size_read(bdev->bd_inode) >> SECTOR_SHIFT;
3151 }
3152 
3153 static void warn_if_metadata_device_too_big(struct block_device *bdev)
3154 {
3155 	sector_t metadata_dev_size = get_dev_size(bdev);
3156 	char buffer[BDEVNAME_SIZE];
3157 
3158 	if (metadata_dev_size > THIN_METADATA_MAX_SECTORS_WARNING)
3159 		DMWARN("Metadata device %s is larger than %u sectors: excess space will not be used.",
3160 		       bdevname(bdev, buffer), THIN_METADATA_MAX_SECTORS);
3161 }
3162 
3163 static sector_t get_metadata_dev_size(struct block_device *bdev)
3164 {
3165 	sector_t metadata_dev_size = get_dev_size(bdev);
3166 
3167 	if (metadata_dev_size > THIN_METADATA_MAX_SECTORS)
3168 		metadata_dev_size = THIN_METADATA_MAX_SECTORS;
3169 
3170 	return metadata_dev_size;
3171 }
3172 
3173 static dm_block_t get_metadata_dev_size_in_blocks(struct block_device *bdev)
3174 {
3175 	sector_t metadata_dev_size = get_metadata_dev_size(bdev);
3176 
3177 	sector_div(metadata_dev_size, THIN_METADATA_BLOCK_SIZE);
3178 
3179 	return metadata_dev_size;
3180 }
3181 
3182 /*
3183  * When a metadata threshold is crossed a dm event is triggered, and
3184  * userland should respond by growing the metadata device.  We could let
3185  * userland set the threshold, like we do with the data threshold, but I'm
3186  * not sure they know enough to do this well.
3187  */
3188 static dm_block_t calc_metadata_threshold(struct pool_c *pt)
3189 {
3190 	/*
3191 	 * 4M is ample for all ops with the possible exception of thin
3192 	 * device deletion which is harmless if it fails (just retry the
3193 	 * delete after you've grown the device).
3194 	 */
3195 	dm_block_t quarter = get_metadata_dev_size_in_blocks(pt->metadata_dev->bdev) / 4;
3196 	return min((dm_block_t)1024ULL /* 4M */, quarter);
3197 }
3198 
3199 /*
3200  * thin-pool <metadata dev> <data dev>
3201  *	     <data block size (sectors)>
3202  *	     <low water mark (blocks)>
3203  *	     [<#feature args> [<arg>]*]
3204  *
3205  * Optional feature arguments are:
3206  *	     skip_block_zeroing: skips the zeroing of newly-provisioned blocks.
3207  *	     ignore_discard: disable discard
3208  *	     no_discard_passdown: don't pass discards down to the data device
3209  *	     read_only: Don't allow any changes to be made to the pool metadata.
3210  *	     error_if_no_space: error IOs, instead of queueing, if no space.
3211  */
3212 static int pool_ctr(struct dm_target *ti, unsigned argc, char **argv)
3213 {
3214 	int r, pool_created = 0;
3215 	struct pool_c *pt;
3216 	struct pool *pool;
3217 	struct pool_features pf;
3218 	struct dm_arg_set as;
3219 	struct dm_dev *data_dev;
3220 	unsigned long block_size;
3221 	dm_block_t low_water_blocks;
3222 	struct dm_dev *metadata_dev;
3223 	fmode_t metadata_mode;
3224 
3225 	/*
3226 	 * FIXME Remove validation from scope of lock.
3227 	 */
3228 	mutex_lock(&dm_thin_pool_table.mutex);
3229 
3230 	if (argc < 4) {
3231 		ti->error = "Invalid argument count";
3232 		r = -EINVAL;
3233 		goto out_unlock;
3234 	}
3235 
3236 	as.argc = argc;
3237 	as.argv = argv;
3238 
3239 	/*
3240 	 * Set default pool features.
3241 	 */
3242 	pool_features_init(&pf);
3243 
3244 	dm_consume_args(&as, 4);
3245 	r = parse_pool_features(&as, &pf, ti);
3246 	if (r)
3247 		goto out_unlock;
3248 
3249 	metadata_mode = FMODE_READ | ((pf.mode == PM_READ_ONLY) ? 0 : FMODE_WRITE);
3250 	r = dm_get_device(ti, argv[0], metadata_mode, &metadata_dev);
3251 	if (r) {
3252 		ti->error = "Error opening metadata block device";
3253 		goto out_unlock;
3254 	}
3255 	warn_if_metadata_device_too_big(metadata_dev->bdev);
3256 
3257 	r = dm_get_device(ti, argv[1], FMODE_READ | FMODE_WRITE, &data_dev);
3258 	if (r) {
3259 		ti->error = "Error getting data device";
3260 		goto out_metadata;
3261 	}
3262 
3263 	if (kstrtoul(argv[2], 10, &block_size) || !block_size ||
3264 	    block_size < DATA_DEV_BLOCK_SIZE_MIN_SECTORS ||
3265 	    block_size > DATA_DEV_BLOCK_SIZE_MAX_SECTORS ||
3266 	    block_size & (DATA_DEV_BLOCK_SIZE_MIN_SECTORS - 1)) {
3267 		ti->error = "Invalid block size";
3268 		r = -EINVAL;
3269 		goto out;
3270 	}
3271 
3272 	if (kstrtoull(argv[3], 10, (unsigned long long *)&low_water_blocks)) {
3273 		ti->error = "Invalid low water mark";
3274 		r = -EINVAL;
3275 		goto out;
3276 	}
3277 
3278 	pt = kzalloc(sizeof(*pt), GFP_KERNEL);
3279 	if (!pt) {
3280 		r = -ENOMEM;
3281 		goto out;
3282 	}
3283 
3284 	pool = __pool_find(dm_table_get_md(ti->table), metadata_dev->bdev,
3285 			   block_size, pf.mode == PM_READ_ONLY, &ti->error, &pool_created);
3286 	if (IS_ERR(pool)) {
3287 		r = PTR_ERR(pool);
3288 		goto out_free_pt;
3289 	}
3290 
3291 	/*
3292 	 * 'pool_created' reflects whether this is the first table load.
3293 	 * Top level discard support is not allowed to be changed after
3294 	 * initial load.  This would require a pool reload to trigger thin
3295 	 * device changes.
3296 	 */
3297 	if (!pool_created && pf.discard_enabled != pool->pf.discard_enabled) {
3298 		ti->error = "Discard support cannot be disabled once enabled";
3299 		r = -EINVAL;
3300 		goto out_flags_changed;
3301 	}
3302 
3303 	pt->pool = pool;
3304 	pt->ti = ti;
3305 	pt->metadata_dev = metadata_dev;
3306 	pt->data_dev = data_dev;
3307 	pt->low_water_blocks = low_water_blocks;
3308 	pt->adjusted_pf = pt->requested_pf = pf;
3309 	ti->num_flush_bios = 1;
3310 
3311 	/*
3312 	 * Only need to enable discards if the pool should pass
3313 	 * them down to the data device.  The thin device's discard
3314 	 * processing will cause mappings to be removed from the btree.
3315 	 */
3316 	if (pf.discard_enabled && pf.discard_passdown) {
3317 		ti->num_discard_bios = 1;
3318 
3319 		/*
3320 		 * Setting 'discards_supported' circumvents the normal
3321 		 * stacking of discard limits (this keeps the pool and
3322 		 * thin devices' discard limits consistent).
3323 		 */
3324 		ti->discards_supported = true;
3325 	}
3326 	ti->private = pt;
3327 
3328 	r = dm_pool_register_metadata_threshold(pt->pool->pmd,
3329 						calc_metadata_threshold(pt),
3330 						metadata_low_callback,
3331 						pool);
3332 	if (r)
3333 		goto out_flags_changed;
3334 
3335 	pt->callbacks.congested_fn = pool_is_congested;
3336 	dm_table_add_target_callbacks(ti->table, &pt->callbacks);
3337 
3338 	mutex_unlock(&dm_thin_pool_table.mutex);
3339 
3340 	return 0;
3341 
3342 out_flags_changed:
3343 	__pool_dec(pool);
3344 out_free_pt:
3345 	kfree(pt);
3346 out:
3347 	dm_put_device(ti, data_dev);
3348 out_metadata:
3349 	dm_put_device(ti, metadata_dev);
3350 out_unlock:
3351 	mutex_unlock(&dm_thin_pool_table.mutex);
3352 
3353 	return r;
3354 }
3355 
3356 static int pool_map(struct dm_target *ti, struct bio *bio)
3357 {
3358 	int r;
3359 	struct pool_c *pt = ti->private;
3360 	struct pool *pool = pt->pool;
3361 	unsigned long flags;
3362 
3363 	/*
3364 	 * As this is a singleton target, ti->begin is always zero.
3365 	 */
3366 	spin_lock_irqsave(&pool->lock, flags);
3367 	bio_set_dev(bio, pt->data_dev->bdev);
3368 	r = DM_MAPIO_REMAPPED;
3369 	spin_unlock_irqrestore(&pool->lock, flags);
3370 
3371 	return r;
3372 }
3373 
3374 static int maybe_resize_data_dev(struct dm_target *ti, bool *need_commit)
3375 {
3376 	int r;
3377 	struct pool_c *pt = ti->private;
3378 	struct pool *pool = pt->pool;
3379 	sector_t data_size = ti->len;
3380 	dm_block_t sb_data_size;
3381 
3382 	*need_commit = false;
3383 
3384 	(void) sector_div(data_size, pool->sectors_per_block);
3385 
3386 	r = dm_pool_get_data_dev_size(pool->pmd, &sb_data_size);
3387 	if (r) {
3388 		DMERR("%s: failed to retrieve data device size",
3389 		      dm_device_name(pool->pool_md));
3390 		return r;
3391 	}
3392 
3393 	if (data_size < sb_data_size) {
3394 		DMERR("%s: pool target (%llu blocks) too small: expected %llu",
3395 		      dm_device_name(pool->pool_md),
3396 		      (unsigned long long)data_size, sb_data_size);
3397 		return -EINVAL;
3398 
3399 	} else if (data_size > sb_data_size) {
3400 		if (dm_pool_metadata_needs_check(pool->pmd)) {
3401 			DMERR("%s: unable to grow the data device until repaired.",
3402 			      dm_device_name(pool->pool_md));
3403 			return 0;
3404 		}
3405 
3406 		if (sb_data_size)
3407 			DMINFO("%s: growing the data device from %llu to %llu blocks",
3408 			       dm_device_name(pool->pool_md),
3409 			       sb_data_size, (unsigned long long)data_size);
3410 		r = dm_pool_resize_data_dev(pool->pmd, data_size);
3411 		if (r) {
3412 			metadata_operation_failed(pool, "dm_pool_resize_data_dev", r);
3413 			return r;
3414 		}
3415 
3416 		*need_commit = true;
3417 	}
3418 
3419 	return 0;
3420 }
3421 
3422 static int maybe_resize_metadata_dev(struct dm_target *ti, bool *need_commit)
3423 {
3424 	int r;
3425 	struct pool_c *pt = ti->private;
3426 	struct pool *pool = pt->pool;
3427 	dm_block_t metadata_dev_size, sb_metadata_dev_size;
3428 
3429 	*need_commit = false;
3430 
3431 	metadata_dev_size = get_metadata_dev_size_in_blocks(pool->md_dev);
3432 
3433 	r = dm_pool_get_metadata_dev_size(pool->pmd, &sb_metadata_dev_size);
3434 	if (r) {
3435 		DMERR("%s: failed to retrieve metadata device size",
3436 		      dm_device_name(pool->pool_md));
3437 		return r;
3438 	}
3439 
3440 	if (metadata_dev_size < sb_metadata_dev_size) {
3441 		DMERR("%s: metadata device (%llu blocks) too small: expected %llu",
3442 		      dm_device_name(pool->pool_md),
3443 		      metadata_dev_size, sb_metadata_dev_size);
3444 		return -EINVAL;
3445 
3446 	} else if (metadata_dev_size > sb_metadata_dev_size) {
3447 		if (dm_pool_metadata_needs_check(pool->pmd)) {
3448 			DMERR("%s: unable to grow the metadata device until repaired.",
3449 			      dm_device_name(pool->pool_md));
3450 			return 0;
3451 		}
3452 
3453 		warn_if_metadata_device_too_big(pool->md_dev);
3454 		DMINFO("%s: growing the metadata device from %llu to %llu blocks",
3455 		       dm_device_name(pool->pool_md),
3456 		       sb_metadata_dev_size, metadata_dev_size);
3457 
3458 		if (get_pool_mode(pool) == PM_OUT_OF_METADATA_SPACE)
3459 			set_pool_mode(pool, PM_WRITE);
3460 
3461 		r = dm_pool_resize_metadata_dev(pool->pmd, metadata_dev_size);
3462 		if (r) {
3463 			metadata_operation_failed(pool, "dm_pool_resize_metadata_dev", r);
3464 			return r;
3465 		}
3466 
3467 		*need_commit = true;
3468 	}
3469 
3470 	return 0;
3471 }
3472 
3473 /*
3474  * Retrieves the number of blocks of the data device from
3475  * the superblock and compares it to the actual device size,
3476  * thus resizing the data device in case it has grown.
3477  *
3478  * This both copes with opening preallocated data devices in the ctr
3479  * being followed by a resume
3480  * -and-
3481  * calling the resume method individually after userspace has
3482  * grown the data device in reaction to a table event.
3483  */
3484 static int pool_preresume(struct dm_target *ti)
3485 {
3486 	int r;
3487 	bool need_commit1, need_commit2;
3488 	struct pool_c *pt = ti->private;
3489 	struct pool *pool = pt->pool;
3490 
3491 	/*
3492 	 * Take control of the pool object.
3493 	 */
3494 	r = bind_control_target(pool, ti);
3495 	if (r)
3496 		return r;
3497 
3498 	r = maybe_resize_data_dev(ti, &need_commit1);
3499 	if (r)
3500 		return r;
3501 
3502 	r = maybe_resize_metadata_dev(ti, &need_commit2);
3503 	if (r)
3504 		return r;
3505 
3506 	if (need_commit1 || need_commit2)
3507 		(void) commit(pool);
3508 
3509 	return 0;
3510 }
3511 
3512 static void pool_suspend_active_thins(struct pool *pool)
3513 {
3514 	struct thin_c *tc;
3515 
3516 	/* Suspend all active thin devices */
3517 	tc = get_first_thin(pool);
3518 	while (tc) {
3519 		dm_internal_suspend_noflush(tc->thin_md);
3520 		tc = get_next_thin(pool, tc);
3521 	}
3522 }
3523 
3524 static void pool_resume_active_thins(struct pool *pool)
3525 {
3526 	struct thin_c *tc;
3527 
3528 	/* Resume all active thin devices */
3529 	tc = get_first_thin(pool);
3530 	while (tc) {
3531 		dm_internal_resume(tc->thin_md);
3532 		tc = get_next_thin(pool, tc);
3533 	}
3534 }
3535 
3536 static void pool_resume(struct dm_target *ti)
3537 {
3538 	struct pool_c *pt = ti->private;
3539 	struct pool *pool = pt->pool;
3540 	unsigned long flags;
3541 
3542 	/*
3543 	 * Must requeue active_thins' bios and then resume
3544 	 * active_thins _before_ clearing 'suspend' flag.
3545 	 */
3546 	requeue_bios(pool);
3547 	pool_resume_active_thins(pool);
3548 
3549 	spin_lock_irqsave(&pool->lock, flags);
3550 	pool->low_water_triggered = false;
3551 	pool->suspended = false;
3552 	spin_unlock_irqrestore(&pool->lock, flags);
3553 
3554 	do_waker(&pool->waker.work);
3555 }
3556 
3557 static void pool_presuspend(struct dm_target *ti)
3558 {
3559 	struct pool_c *pt = ti->private;
3560 	struct pool *pool = pt->pool;
3561 	unsigned long flags;
3562 
3563 	spin_lock_irqsave(&pool->lock, flags);
3564 	pool->suspended = true;
3565 	spin_unlock_irqrestore(&pool->lock, flags);
3566 
3567 	pool_suspend_active_thins(pool);
3568 }
3569 
3570 static void pool_presuspend_undo(struct dm_target *ti)
3571 {
3572 	struct pool_c *pt = ti->private;
3573 	struct pool *pool = pt->pool;
3574 	unsigned long flags;
3575 
3576 	pool_resume_active_thins(pool);
3577 
3578 	spin_lock_irqsave(&pool->lock, flags);
3579 	pool->suspended = false;
3580 	spin_unlock_irqrestore(&pool->lock, flags);
3581 }
3582 
3583 static void pool_postsuspend(struct dm_target *ti)
3584 {
3585 	struct pool_c *pt = ti->private;
3586 	struct pool *pool = pt->pool;
3587 
3588 	cancel_delayed_work_sync(&pool->waker);
3589 	cancel_delayed_work_sync(&pool->no_space_timeout);
3590 	flush_workqueue(pool->wq);
3591 	(void) commit(pool);
3592 }
3593 
3594 static int check_arg_count(unsigned argc, unsigned args_required)
3595 {
3596 	if (argc != args_required) {
3597 		DMWARN("Message received with %u arguments instead of %u.",
3598 		       argc, args_required);
3599 		return -EINVAL;
3600 	}
3601 
3602 	return 0;
3603 }
3604 
3605 static int read_dev_id(char *arg, dm_thin_id *dev_id, int warning)
3606 {
3607 	if (!kstrtoull(arg, 10, (unsigned long long *)dev_id) &&
3608 	    *dev_id <= MAX_DEV_ID)
3609 		return 0;
3610 
3611 	if (warning)
3612 		DMWARN("Message received with invalid device id: %s", arg);
3613 
3614 	return -EINVAL;
3615 }
3616 
3617 static int process_create_thin_mesg(unsigned argc, char **argv, struct pool *pool)
3618 {
3619 	dm_thin_id dev_id;
3620 	int r;
3621 
3622 	r = check_arg_count(argc, 2);
3623 	if (r)
3624 		return r;
3625 
3626 	r = read_dev_id(argv[1], &dev_id, 1);
3627 	if (r)
3628 		return r;
3629 
3630 	r = dm_pool_create_thin(pool->pmd, dev_id);
3631 	if (r) {
3632 		DMWARN("Creation of new thinly-provisioned device with id %s failed.",
3633 		       argv[1]);
3634 		return r;
3635 	}
3636 
3637 	return 0;
3638 }
3639 
3640 static int process_create_snap_mesg(unsigned argc, char **argv, struct pool *pool)
3641 {
3642 	dm_thin_id dev_id;
3643 	dm_thin_id origin_dev_id;
3644 	int r;
3645 
3646 	r = check_arg_count(argc, 3);
3647 	if (r)
3648 		return r;
3649 
3650 	r = read_dev_id(argv[1], &dev_id, 1);
3651 	if (r)
3652 		return r;
3653 
3654 	r = read_dev_id(argv[2], &origin_dev_id, 1);
3655 	if (r)
3656 		return r;
3657 
3658 	r = dm_pool_create_snap(pool->pmd, dev_id, origin_dev_id);
3659 	if (r) {
3660 		DMWARN("Creation of new snapshot %s of device %s failed.",
3661 		       argv[1], argv[2]);
3662 		return r;
3663 	}
3664 
3665 	return 0;
3666 }
3667 
3668 static int process_delete_mesg(unsigned argc, char **argv, struct pool *pool)
3669 {
3670 	dm_thin_id dev_id;
3671 	int r;
3672 
3673 	r = check_arg_count(argc, 2);
3674 	if (r)
3675 		return r;
3676 
3677 	r = read_dev_id(argv[1], &dev_id, 1);
3678 	if (r)
3679 		return r;
3680 
3681 	r = dm_pool_delete_thin_device(pool->pmd, dev_id);
3682 	if (r)
3683 		DMWARN("Deletion of thin device %s failed.", argv[1]);
3684 
3685 	return r;
3686 }
3687 
3688 static int process_set_transaction_id_mesg(unsigned argc, char **argv, struct pool *pool)
3689 {
3690 	dm_thin_id old_id, new_id;
3691 	int r;
3692 
3693 	r = check_arg_count(argc, 3);
3694 	if (r)
3695 		return r;
3696 
3697 	if (kstrtoull(argv[1], 10, (unsigned long long *)&old_id)) {
3698 		DMWARN("set_transaction_id message: Unrecognised id %s.", argv[1]);
3699 		return -EINVAL;
3700 	}
3701 
3702 	if (kstrtoull(argv[2], 10, (unsigned long long *)&new_id)) {
3703 		DMWARN("set_transaction_id message: Unrecognised new id %s.", argv[2]);
3704 		return -EINVAL;
3705 	}
3706 
3707 	r = dm_pool_set_metadata_transaction_id(pool->pmd, old_id, new_id);
3708 	if (r) {
3709 		DMWARN("Failed to change transaction id from %s to %s.",
3710 		       argv[1], argv[2]);
3711 		return r;
3712 	}
3713 
3714 	return 0;
3715 }
3716 
3717 static int process_reserve_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool)
3718 {
3719 	int r;
3720 
3721 	r = check_arg_count(argc, 1);
3722 	if (r)
3723 		return r;
3724 
3725 	(void) commit(pool);
3726 
3727 	r = dm_pool_reserve_metadata_snap(pool->pmd);
3728 	if (r)
3729 		DMWARN("reserve_metadata_snap message failed.");
3730 
3731 	return r;
3732 }
3733 
3734 static int process_release_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool)
3735 {
3736 	int r;
3737 
3738 	r = check_arg_count(argc, 1);
3739 	if (r)
3740 		return r;
3741 
3742 	r = dm_pool_release_metadata_snap(pool->pmd);
3743 	if (r)
3744 		DMWARN("release_metadata_snap message failed.");
3745 
3746 	return r;
3747 }
3748 
3749 /*
3750  * Messages supported:
3751  *   create_thin	<dev_id>
3752  *   create_snap	<dev_id> <origin_id>
3753  *   delete		<dev_id>
3754  *   set_transaction_id <current_trans_id> <new_trans_id>
3755  *   reserve_metadata_snap
3756  *   release_metadata_snap
3757  */
3758 static int pool_message(struct dm_target *ti, unsigned argc, char **argv,
3759 			char *result, unsigned maxlen)
3760 {
3761 	int r = -EINVAL;
3762 	struct pool_c *pt = ti->private;
3763 	struct pool *pool = pt->pool;
3764 
3765 	if (get_pool_mode(pool) >= PM_OUT_OF_METADATA_SPACE) {
3766 		DMERR("%s: unable to service pool target messages in READ_ONLY or FAIL mode",
3767 		      dm_device_name(pool->pool_md));
3768 		return -EOPNOTSUPP;
3769 	}
3770 
3771 	if (!strcasecmp(argv[0], "create_thin"))
3772 		r = process_create_thin_mesg(argc, argv, pool);
3773 
3774 	else if (!strcasecmp(argv[0], "create_snap"))
3775 		r = process_create_snap_mesg(argc, argv, pool);
3776 
3777 	else if (!strcasecmp(argv[0], "delete"))
3778 		r = process_delete_mesg(argc, argv, pool);
3779 
3780 	else if (!strcasecmp(argv[0], "set_transaction_id"))
3781 		r = process_set_transaction_id_mesg(argc, argv, pool);
3782 
3783 	else if (!strcasecmp(argv[0], "reserve_metadata_snap"))
3784 		r = process_reserve_metadata_snap_mesg(argc, argv, pool);
3785 
3786 	else if (!strcasecmp(argv[0], "release_metadata_snap"))
3787 		r = process_release_metadata_snap_mesg(argc, argv, pool);
3788 
3789 	else
3790 		DMWARN("Unrecognised thin pool target message received: %s", argv[0]);
3791 
3792 	if (!r)
3793 		(void) commit(pool);
3794 
3795 	return r;
3796 }
3797 
3798 static void emit_flags(struct pool_features *pf, char *result,
3799 		       unsigned sz, unsigned maxlen)
3800 {
3801 	unsigned count = !pf->zero_new_blocks + !pf->discard_enabled +
3802 		!pf->discard_passdown + (pf->mode == PM_READ_ONLY) +
3803 		pf->error_if_no_space;
3804 	DMEMIT("%u ", count);
3805 
3806 	if (!pf->zero_new_blocks)
3807 		DMEMIT("skip_block_zeroing ");
3808 
3809 	if (!pf->discard_enabled)
3810 		DMEMIT("ignore_discard ");
3811 
3812 	if (!pf->discard_passdown)
3813 		DMEMIT("no_discard_passdown ");
3814 
3815 	if (pf->mode == PM_READ_ONLY)
3816 		DMEMIT("read_only ");
3817 
3818 	if (pf->error_if_no_space)
3819 		DMEMIT("error_if_no_space ");
3820 }
3821 
3822 /*
3823  * Status line is:
3824  *    <transaction id> <used metadata sectors>/<total metadata sectors>
3825  *    <used data sectors>/<total data sectors> <held metadata root>
3826  *    <pool mode> <discard config> <no space config> <needs_check>
3827  */
3828 static void pool_status(struct dm_target *ti, status_type_t type,
3829 			unsigned status_flags, char *result, unsigned maxlen)
3830 {
3831 	int r;
3832 	unsigned sz = 0;
3833 	uint64_t transaction_id;
3834 	dm_block_t nr_free_blocks_data;
3835 	dm_block_t nr_free_blocks_metadata;
3836 	dm_block_t nr_blocks_data;
3837 	dm_block_t nr_blocks_metadata;
3838 	dm_block_t held_root;
3839 	enum pool_mode mode;
3840 	char buf[BDEVNAME_SIZE];
3841 	char buf2[BDEVNAME_SIZE];
3842 	struct pool_c *pt = ti->private;
3843 	struct pool *pool = pt->pool;
3844 
3845 	switch (type) {
3846 	case STATUSTYPE_INFO:
3847 		if (get_pool_mode(pool) == PM_FAIL) {
3848 			DMEMIT("Fail");
3849 			break;
3850 		}
3851 
3852 		/* Commit to ensure statistics aren't out-of-date */
3853 		if (!(status_flags & DM_STATUS_NOFLUSH_FLAG) && !dm_suspended(ti))
3854 			(void) commit(pool);
3855 
3856 		r = dm_pool_get_metadata_transaction_id(pool->pmd, &transaction_id);
3857 		if (r) {
3858 			DMERR("%s: dm_pool_get_metadata_transaction_id returned %d",
3859 			      dm_device_name(pool->pool_md), r);
3860 			goto err;
3861 		}
3862 
3863 		r = dm_pool_get_free_metadata_block_count(pool->pmd, &nr_free_blocks_metadata);
3864 		if (r) {
3865 			DMERR("%s: dm_pool_get_free_metadata_block_count returned %d",
3866 			      dm_device_name(pool->pool_md), r);
3867 			goto err;
3868 		}
3869 
3870 		r = dm_pool_get_metadata_dev_size(pool->pmd, &nr_blocks_metadata);
3871 		if (r) {
3872 			DMERR("%s: dm_pool_get_metadata_dev_size returned %d",
3873 			      dm_device_name(pool->pool_md), r);
3874 			goto err;
3875 		}
3876 
3877 		r = dm_pool_get_free_block_count(pool->pmd, &nr_free_blocks_data);
3878 		if (r) {
3879 			DMERR("%s: dm_pool_get_free_block_count returned %d",
3880 			      dm_device_name(pool->pool_md), r);
3881 			goto err;
3882 		}
3883 
3884 		r = dm_pool_get_data_dev_size(pool->pmd, &nr_blocks_data);
3885 		if (r) {
3886 			DMERR("%s: dm_pool_get_data_dev_size returned %d",
3887 			      dm_device_name(pool->pool_md), r);
3888 			goto err;
3889 		}
3890 
3891 		r = dm_pool_get_metadata_snap(pool->pmd, &held_root);
3892 		if (r) {
3893 			DMERR("%s: dm_pool_get_metadata_snap returned %d",
3894 			      dm_device_name(pool->pool_md), r);
3895 			goto err;
3896 		}
3897 
3898 		DMEMIT("%llu %llu/%llu %llu/%llu ",
3899 		       (unsigned long long)transaction_id,
3900 		       (unsigned long long)(nr_blocks_metadata - nr_free_blocks_metadata),
3901 		       (unsigned long long)nr_blocks_metadata,
3902 		       (unsigned long long)(nr_blocks_data - nr_free_blocks_data),
3903 		       (unsigned long long)nr_blocks_data);
3904 
3905 		if (held_root)
3906 			DMEMIT("%llu ", held_root);
3907 		else
3908 			DMEMIT("- ");
3909 
3910 		mode = get_pool_mode(pool);
3911 		if (mode == PM_OUT_OF_DATA_SPACE)
3912 			DMEMIT("out_of_data_space ");
3913 		else if (is_read_only_pool_mode(mode))
3914 			DMEMIT("ro ");
3915 		else
3916 			DMEMIT("rw ");
3917 
3918 		if (!pool->pf.discard_enabled)
3919 			DMEMIT("ignore_discard ");
3920 		else if (pool->pf.discard_passdown)
3921 			DMEMIT("discard_passdown ");
3922 		else
3923 			DMEMIT("no_discard_passdown ");
3924 
3925 		if (pool->pf.error_if_no_space)
3926 			DMEMIT("error_if_no_space ");
3927 		else
3928 			DMEMIT("queue_if_no_space ");
3929 
3930 		if (dm_pool_metadata_needs_check(pool->pmd))
3931 			DMEMIT("needs_check ");
3932 		else
3933 			DMEMIT("- ");
3934 
3935 		DMEMIT("%llu ", (unsigned long long)calc_metadata_threshold(pt));
3936 
3937 		break;
3938 
3939 	case STATUSTYPE_TABLE:
3940 		DMEMIT("%s %s %lu %llu ",
3941 		       format_dev_t(buf, pt->metadata_dev->bdev->bd_dev),
3942 		       format_dev_t(buf2, pt->data_dev->bdev->bd_dev),
3943 		       (unsigned long)pool->sectors_per_block,
3944 		       (unsigned long long)pt->low_water_blocks);
3945 		emit_flags(&pt->requested_pf, result, sz, maxlen);
3946 		break;
3947 	}
3948 	return;
3949 
3950 err:
3951 	DMEMIT("Error");
3952 }
3953 
3954 static int pool_iterate_devices(struct dm_target *ti,
3955 				iterate_devices_callout_fn fn, void *data)
3956 {
3957 	struct pool_c *pt = ti->private;
3958 
3959 	return fn(ti, pt->data_dev, 0, ti->len, data);
3960 }
3961 
3962 static void pool_io_hints(struct dm_target *ti, struct queue_limits *limits)
3963 {
3964 	struct pool_c *pt = ti->private;
3965 	struct pool *pool = pt->pool;
3966 	sector_t io_opt_sectors = limits->io_opt >> SECTOR_SHIFT;
3967 
3968 	/*
3969 	 * If max_sectors is smaller than pool->sectors_per_block adjust it
3970 	 * to the highest possible power-of-2 factor of pool->sectors_per_block.
3971 	 * This is especially beneficial when the pool's data device is a RAID
3972 	 * device that has a full stripe width that matches pool->sectors_per_block
3973 	 * -- because even though partial RAID stripe-sized IOs will be issued to a
3974 	 *    single RAID stripe; when aggregated they will end on a full RAID stripe
3975 	 *    boundary.. which avoids additional partial RAID stripe writes cascading
3976 	 */
3977 	if (limits->max_sectors < pool->sectors_per_block) {
3978 		while (!is_factor(pool->sectors_per_block, limits->max_sectors)) {
3979 			if ((limits->max_sectors & (limits->max_sectors - 1)) == 0)
3980 				limits->max_sectors--;
3981 			limits->max_sectors = rounddown_pow_of_two(limits->max_sectors);
3982 		}
3983 	}
3984 
3985 	/*
3986 	 * If the system-determined stacked limits are compatible with the
3987 	 * pool's blocksize (io_opt is a factor) do not override them.
3988 	 */
3989 	if (io_opt_sectors < pool->sectors_per_block ||
3990 	    !is_factor(io_opt_sectors, pool->sectors_per_block)) {
3991 		if (is_factor(pool->sectors_per_block, limits->max_sectors))
3992 			blk_limits_io_min(limits, limits->max_sectors << SECTOR_SHIFT);
3993 		else
3994 			blk_limits_io_min(limits, pool->sectors_per_block << SECTOR_SHIFT);
3995 		blk_limits_io_opt(limits, pool->sectors_per_block << SECTOR_SHIFT);
3996 	}
3997 
3998 	/*
3999 	 * pt->adjusted_pf is a staging area for the actual features to use.
4000 	 * They get transferred to the live pool in bind_control_target()
4001 	 * called from pool_preresume().
4002 	 */
4003 	if (!pt->adjusted_pf.discard_enabled) {
4004 		/*
4005 		 * Must explicitly disallow stacking discard limits otherwise the
4006 		 * block layer will stack them if pool's data device has support.
4007 		 * QUEUE_FLAG_DISCARD wouldn't be set but there is no way for the
4008 		 * user to see that, so make sure to set all discard limits to 0.
4009 		 */
4010 		limits->discard_granularity = 0;
4011 		return;
4012 	}
4013 
4014 	disable_passdown_if_not_supported(pt);
4015 
4016 	/*
4017 	 * The pool uses the same discard limits as the underlying data
4018 	 * device.  DM core has already set this up.
4019 	 */
4020 }
4021 
4022 static struct target_type pool_target = {
4023 	.name = "thin-pool",
4024 	.features = DM_TARGET_SINGLETON | DM_TARGET_ALWAYS_WRITEABLE |
4025 		    DM_TARGET_IMMUTABLE,
4026 	.version = {1, 20, 0},
4027 	.module = THIS_MODULE,
4028 	.ctr = pool_ctr,
4029 	.dtr = pool_dtr,
4030 	.map = pool_map,
4031 	.presuspend = pool_presuspend,
4032 	.presuspend_undo = pool_presuspend_undo,
4033 	.postsuspend = pool_postsuspend,
4034 	.preresume = pool_preresume,
4035 	.resume = pool_resume,
4036 	.message = pool_message,
4037 	.status = pool_status,
4038 	.iterate_devices = pool_iterate_devices,
4039 	.io_hints = pool_io_hints,
4040 };
4041 
4042 /*----------------------------------------------------------------
4043  * Thin target methods
4044  *--------------------------------------------------------------*/
4045 static void thin_get(struct thin_c *tc)
4046 {
4047 	atomic_inc(&tc->refcount);
4048 }
4049 
4050 static void thin_put(struct thin_c *tc)
4051 {
4052 	if (atomic_dec_and_test(&tc->refcount))
4053 		complete(&tc->can_destroy);
4054 }
4055 
4056 static void thin_dtr(struct dm_target *ti)
4057 {
4058 	struct thin_c *tc = ti->private;
4059 	unsigned long flags;
4060 
4061 	spin_lock_irqsave(&tc->pool->lock, flags);
4062 	list_del_rcu(&tc->list);
4063 	spin_unlock_irqrestore(&tc->pool->lock, flags);
4064 	synchronize_rcu();
4065 
4066 	thin_put(tc);
4067 	wait_for_completion(&tc->can_destroy);
4068 
4069 	mutex_lock(&dm_thin_pool_table.mutex);
4070 
4071 	__pool_dec(tc->pool);
4072 	dm_pool_close_thin_device(tc->td);
4073 	dm_put_device(ti, tc->pool_dev);
4074 	if (tc->origin_dev)
4075 		dm_put_device(ti, tc->origin_dev);
4076 	kfree(tc);
4077 
4078 	mutex_unlock(&dm_thin_pool_table.mutex);
4079 }
4080 
4081 /*
4082  * Thin target parameters:
4083  *
4084  * <pool_dev> <dev_id> [origin_dev]
4085  *
4086  * pool_dev: the path to the pool (eg, /dev/mapper/my_pool)
4087  * dev_id: the internal device identifier
4088  * origin_dev: a device external to the pool that should act as the origin
4089  *
4090  * If the pool device has discards disabled, they get disabled for the thin
4091  * device as well.
4092  */
4093 static int thin_ctr(struct dm_target *ti, unsigned argc, char **argv)
4094 {
4095 	int r;
4096 	struct thin_c *tc;
4097 	struct dm_dev *pool_dev, *origin_dev;
4098 	struct mapped_device *pool_md;
4099 	unsigned long flags;
4100 
4101 	mutex_lock(&dm_thin_pool_table.mutex);
4102 
4103 	if (argc != 2 && argc != 3) {
4104 		ti->error = "Invalid argument count";
4105 		r = -EINVAL;
4106 		goto out_unlock;
4107 	}
4108 
4109 	tc = ti->private = kzalloc(sizeof(*tc), GFP_KERNEL);
4110 	if (!tc) {
4111 		ti->error = "Out of memory";
4112 		r = -ENOMEM;
4113 		goto out_unlock;
4114 	}
4115 	tc->thin_md = dm_table_get_md(ti->table);
4116 	spin_lock_init(&tc->lock);
4117 	INIT_LIST_HEAD(&tc->deferred_cells);
4118 	bio_list_init(&tc->deferred_bio_list);
4119 	bio_list_init(&tc->retry_on_resume_list);
4120 	tc->sort_bio_list = RB_ROOT;
4121 
4122 	if (argc == 3) {
4123 		r = dm_get_device(ti, argv[2], FMODE_READ, &origin_dev);
4124 		if (r) {
4125 			ti->error = "Error opening origin device";
4126 			goto bad_origin_dev;
4127 		}
4128 		tc->origin_dev = origin_dev;
4129 	}
4130 
4131 	r = dm_get_device(ti, argv[0], dm_table_get_mode(ti->table), &pool_dev);
4132 	if (r) {
4133 		ti->error = "Error opening pool device";
4134 		goto bad_pool_dev;
4135 	}
4136 	tc->pool_dev = pool_dev;
4137 
4138 	if (read_dev_id(argv[1], (unsigned long long *)&tc->dev_id, 0)) {
4139 		ti->error = "Invalid device id";
4140 		r = -EINVAL;
4141 		goto bad_common;
4142 	}
4143 
4144 	pool_md = dm_get_md(tc->pool_dev->bdev->bd_dev);
4145 	if (!pool_md) {
4146 		ti->error = "Couldn't get pool mapped device";
4147 		r = -EINVAL;
4148 		goto bad_common;
4149 	}
4150 
4151 	tc->pool = __pool_table_lookup(pool_md);
4152 	if (!tc->pool) {
4153 		ti->error = "Couldn't find pool object";
4154 		r = -EINVAL;
4155 		goto bad_pool_lookup;
4156 	}
4157 	__pool_inc(tc->pool);
4158 
4159 	if (get_pool_mode(tc->pool) == PM_FAIL) {
4160 		ti->error = "Couldn't open thin device, Pool is in fail mode";
4161 		r = -EINVAL;
4162 		goto bad_pool;
4163 	}
4164 
4165 	r = dm_pool_open_thin_device(tc->pool->pmd, tc->dev_id, &tc->td);
4166 	if (r) {
4167 		ti->error = "Couldn't open thin internal device";
4168 		goto bad_pool;
4169 	}
4170 
4171 	r = dm_set_target_max_io_len(ti, tc->pool->sectors_per_block);
4172 	if (r)
4173 		goto bad;
4174 
4175 	ti->num_flush_bios = 1;
4176 	ti->flush_supported = true;
4177 	ti->per_io_data_size = sizeof(struct dm_thin_endio_hook);
4178 
4179 	/* In case the pool supports discards, pass them on. */
4180 	if (tc->pool->pf.discard_enabled) {
4181 		ti->discards_supported = true;
4182 		ti->num_discard_bios = 1;
4183 		ti->split_discard_bios = false;
4184 	}
4185 
4186 	mutex_unlock(&dm_thin_pool_table.mutex);
4187 
4188 	spin_lock_irqsave(&tc->pool->lock, flags);
4189 	if (tc->pool->suspended) {
4190 		spin_unlock_irqrestore(&tc->pool->lock, flags);
4191 		mutex_lock(&dm_thin_pool_table.mutex); /* reacquire for __pool_dec */
4192 		ti->error = "Unable to activate thin device while pool is suspended";
4193 		r = -EINVAL;
4194 		goto bad;
4195 	}
4196 	atomic_set(&tc->refcount, 1);
4197 	init_completion(&tc->can_destroy);
4198 	list_add_tail_rcu(&tc->list, &tc->pool->active_thins);
4199 	spin_unlock_irqrestore(&tc->pool->lock, flags);
4200 	/*
4201 	 * This synchronize_rcu() call is needed here otherwise we risk a
4202 	 * wake_worker() call finding no bios to process (because the newly
4203 	 * added tc isn't yet visible).  So this reduces latency since we
4204 	 * aren't then dependent on the periodic commit to wake_worker().
4205 	 */
4206 	synchronize_rcu();
4207 
4208 	dm_put(pool_md);
4209 
4210 	return 0;
4211 
4212 bad:
4213 	dm_pool_close_thin_device(tc->td);
4214 bad_pool:
4215 	__pool_dec(tc->pool);
4216 bad_pool_lookup:
4217 	dm_put(pool_md);
4218 bad_common:
4219 	dm_put_device(ti, tc->pool_dev);
4220 bad_pool_dev:
4221 	if (tc->origin_dev)
4222 		dm_put_device(ti, tc->origin_dev);
4223 bad_origin_dev:
4224 	kfree(tc);
4225 out_unlock:
4226 	mutex_unlock(&dm_thin_pool_table.mutex);
4227 
4228 	return r;
4229 }
4230 
4231 static int thin_map(struct dm_target *ti, struct bio *bio)
4232 {
4233 	bio->bi_iter.bi_sector = dm_target_offset(ti, bio->bi_iter.bi_sector);
4234 
4235 	return thin_bio_map(ti, bio);
4236 }
4237 
4238 static int thin_endio(struct dm_target *ti, struct bio *bio,
4239 		blk_status_t *err)
4240 {
4241 	unsigned long flags;
4242 	struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
4243 	struct list_head work;
4244 	struct dm_thin_new_mapping *m, *tmp;
4245 	struct pool *pool = h->tc->pool;
4246 
4247 	if (h->shared_read_entry) {
4248 		INIT_LIST_HEAD(&work);
4249 		dm_deferred_entry_dec(h->shared_read_entry, &work);
4250 
4251 		spin_lock_irqsave(&pool->lock, flags);
4252 		list_for_each_entry_safe(m, tmp, &work, list) {
4253 			list_del(&m->list);
4254 			__complete_mapping_preparation(m);
4255 		}
4256 		spin_unlock_irqrestore(&pool->lock, flags);
4257 	}
4258 
4259 	if (h->all_io_entry) {
4260 		INIT_LIST_HEAD(&work);
4261 		dm_deferred_entry_dec(h->all_io_entry, &work);
4262 		if (!list_empty(&work)) {
4263 			spin_lock_irqsave(&pool->lock, flags);
4264 			list_for_each_entry_safe(m, tmp, &work, list)
4265 				list_add_tail(&m->list, &pool->prepared_discards);
4266 			spin_unlock_irqrestore(&pool->lock, flags);
4267 			wake_worker(pool);
4268 		}
4269 	}
4270 
4271 	if (h->cell)
4272 		cell_defer_no_holder(h->tc, h->cell);
4273 
4274 	return DM_ENDIO_DONE;
4275 }
4276 
4277 static void thin_presuspend(struct dm_target *ti)
4278 {
4279 	struct thin_c *tc = ti->private;
4280 
4281 	if (dm_noflush_suspending(ti))
4282 		noflush_work(tc, do_noflush_start);
4283 }
4284 
4285 static void thin_postsuspend(struct dm_target *ti)
4286 {
4287 	struct thin_c *tc = ti->private;
4288 
4289 	/*
4290 	 * The dm_noflush_suspending flag has been cleared by now, so
4291 	 * unfortunately we must always run this.
4292 	 */
4293 	noflush_work(tc, do_noflush_stop);
4294 }
4295 
4296 static int thin_preresume(struct dm_target *ti)
4297 {
4298 	struct thin_c *tc = ti->private;
4299 
4300 	if (tc->origin_dev)
4301 		tc->origin_size = get_dev_size(tc->origin_dev->bdev);
4302 
4303 	return 0;
4304 }
4305 
4306 /*
4307  * <nr mapped sectors> <highest mapped sector>
4308  */
4309 static void thin_status(struct dm_target *ti, status_type_t type,
4310 			unsigned status_flags, char *result, unsigned maxlen)
4311 {
4312 	int r;
4313 	ssize_t sz = 0;
4314 	dm_block_t mapped, highest;
4315 	char buf[BDEVNAME_SIZE];
4316 	struct thin_c *tc = ti->private;
4317 
4318 	if (get_pool_mode(tc->pool) == PM_FAIL) {
4319 		DMEMIT("Fail");
4320 		return;
4321 	}
4322 
4323 	if (!tc->td)
4324 		DMEMIT("-");
4325 	else {
4326 		switch (type) {
4327 		case STATUSTYPE_INFO:
4328 			r = dm_thin_get_mapped_count(tc->td, &mapped);
4329 			if (r) {
4330 				DMERR("dm_thin_get_mapped_count returned %d", r);
4331 				goto err;
4332 			}
4333 
4334 			r = dm_thin_get_highest_mapped_block(tc->td, &highest);
4335 			if (r < 0) {
4336 				DMERR("dm_thin_get_highest_mapped_block returned %d", r);
4337 				goto err;
4338 			}
4339 
4340 			DMEMIT("%llu ", mapped * tc->pool->sectors_per_block);
4341 			if (r)
4342 				DMEMIT("%llu", ((highest + 1) *
4343 						tc->pool->sectors_per_block) - 1);
4344 			else
4345 				DMEMIT("-");
4346 			break;
4347 
4348 		case STATUSTYPE_TABLE:
4349 			DMEMIT("%s %lu",
4350 			       format_dev_t(buf, tc->pool_dev->bdev->bd_dev),
4351 			       (unsigned long) tc->dev_id);
4352 			if (tc->origin_dev)
4353 				DMEMIT(" %s", format_dev_t(buf, tc->origin_dev->bdev->bd_dev));
4354 			break;
4355 		}
4356 	}
4357 
4358 	return;
4359 
4360 err:
4361 	DMEMIT("Error");
4362 }
4363 
4364 static int thin_iterate_devices(struct dm_target *ti,
4365 				iterate_devices_callout_fn fn, void *data)
4366 {
4367 	sector_t blocks;
4368 	struct thin_c *tc = ti->private;
4369 	struct pool *pool = tc->pool;
4370 
4371 	/*
4372 	 * We can't call dm_pool_get_data_dev_size() since that blocks.  So
4373 	 * we follow a more convoluted path through to the pool's target.
4374 	 */
4375 	if (!pool->ti)
4376 		return 0;	/* nothing is bound */
4377 
4378 	blocks = pool->ti->len;
4379 	(void) sector_div(blocks, pool->sectors_per_block);
4380 	if (blocks)
4381 		return fn(ti, tc->pool_dev, 0, pool->sectors_per_block * blocks, data);
4382 
4383 	return 0;
4384 }
4385 
4386 static void thin_io_hints(struct dm_target *ti, struct queue_limits *limits)
4387 {
4388 	struct thin_c *tc = ti->private;
4389 	struct pool *pool = tc->pool;
4390 
4391 	if (!pool->pf.discard_enabled)
4392 		return;
4393 
4394 	limits->discard_granularity = pool->sectors_per_block << SECTOR_SHIFT;
4395 	limits->max_discard_sectors = 2048 * 1024 * 16; /* 16G */
4396 }
4397 
4398 static struct target_type thin_target = {
4399 	.name = "thin",
4400 	.version = {1, 20, 0},
4401 	.module	= THIS_MODULE,
4402 	.ctr = thin_ctr,
4403 	.dtr = thin_dtr,
4404 	.map = thin_map,
4405 	.end_io = thin_endio,
4406 	.preresume = thin_preresume,
4407 	.presuspend = thin_presuspend,
4408 	.postsuspend = thin_postsuspend,
4409 	.status = thin_status,
4410 	.iterate_devices = thin_iterate_devices,
4411 	.io_hints = thin_io_hints,
4412 };
4413 
4414 /*----------------------------------------------------------------*/
4415 
4416 static int __init dm_thin_init(void)
4417 {
4418 	int r = -ENOMEM;
4419 
4420 	pool_table_init();
4421 
4422 	_new_mapping_cache = KMEM_CACHE(dm_thin_new_mapping, 0);
4423 	if (!_new_mapping_cache)
4424 		return r;
4425 
4426 	r = dm_register_target(&thin_target);
4427 	if (r)
4428 		goto bad_new_mapping_cache;
4429 
4430 	r = dm_register_target(&pool_target);
4431 	if (r)
4432 		goto bad_thin_target;
4433 
4434 	return 0;
4435 
4436 bad_thin_target:
4437 	dm_unregister_target(&thin_target);
4438 bad_new_mapping_cache:
4439 	kmem_cache_destroy(_new_mapping_cache);
4440 
4441 	return r;
4442 }
4443 
4444 static void dm_thin_exit(void)
4445 {
4446 	dm_unregister_target(&thin_target);
4447 	dm_unregister_target(&pool_target);
4448 
4449 	kmem_cache_destroy(_new_mapping_cache);
4450 
4451 	pool_table_exit();
4452 }
4453 
4454 module_init(dm_thin_init);
4455 module_exit(dm_thin_exit);
4456 
4457 module_param_named(no_space_timeout, no_space_timeout_secs, uint, S_IRUGO | S_IWUSR);
4458 MODULE_PARM_DESC(no_space_timeout, "Out of data space queue IO timeout in seconds");
4459 
4460 MODULE_DESCRIPTION(DM_NAME " thin provisioning target");
4461 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
4462 MODULE_LICENSE("GPL");
4463