1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 2011-2012 Red Hat UK. 4 * 5 * This file is released under the GPL. 6 */ 7 8 #include "dm-thin-metadata.h" 9 #include "dm-bio-prison-v1.h" 10 #include "dm.h" 11 12 #include <linux/device-mapper.h> 13 #include <linux/dm-io.h> 14 #include <linux/dm-kcopyd.h> 15 #include <linux/jiffies.h> 16 #include <linux/log2.h> 17 #include <linux/list.h> 18 #include <linux/rculist.h> 19 #include <linux/init.h> 20 #include <linux/module.h> 21 #include <linux/slab.h> 22 #include <linux/vmalloc.h> 23 #include <linux/sort.h> 24 #include <linux/rbtree.h> 25 26 #define DM_MSG_PREFIX "thin" 27 28 /* 29 * Tunable constants 30 */ 31 #define ENDIO_HOOK_POOL_SIZE 1024 32 #define MAPPING_POOL_SIZE 1024 33 #define COMMIT_PERIOD HZ 34 #define NO_SPACE_TIMEOUT_SECS 60 35 36 static unsigned int no_space_timeout_secs = NO_SPACE_TIMEOUT_SECS; 37 38 DECLARE_DM_KCOPYD_THROTTLE_WITH_MODULE_PARM(snapshot_copy_throttle, 39 "A percentage of time allocated for copy on write"); 40 41 /* 42 * The block size of the device holding pool data must be 43 * between 64KB and 1GB. 44 */ 45 #define DATA_DEV_BLOCK_SIZE_MIN_SECTORS (64 * 1024 >> SECTOR_SHIFT) 46 #define DATA_DEV_BLOCK_SIZE_MAX_SECTORS (1024 * 1024 * 1024 >> SECTOR_SHIFT) 47 48 /* 49 * Device id is restricted to 24 bits. 50 */ 51 #define MAX_DEV_ID ((1 << 24) - 1) 52 53 /* 54 * How do we handle breaking sharing of data blocks? 55 * ================================================= 56 * 57 * We use a standard copy-on-write btree to store the mappings for the 58 * devices (note I'm talking about copy-on-write of the metadata here, not 59 * the data). When you take an internal snapshot you clone the root node 60 * of the origin btree. After this there is no concept of an origin or a 61 * snapshot. They are just two device trees that happen to point to the 62 * same data blocks. 63 * 64 * When we get a write in we decide if it's to a shared data block using 65 * some timestamp magic. If it is, we have to break sharing. 66 * 67 * Let's say we write to a shared block in what was the origin. The 68 * steps are: 69 * 70 * i) plug io further to this physical block. (see bio_prison code). 71 * 72 * ii) quiesce any read io to that shared data block. Obviously 73 * including all devices that share this block. (see dm_deferred_set code) 74 * 75 * iii) copy the data block to a newly allocate block. This step can be 76 * missed out if the io covers the block. (schedule_copy). 77 * 78 * iv) insert the new mapping into the origin's btree 79 * (process_prepared_mapping). This act of inserting breaks some 80 * sharing of btree nodes between the two devices. Breaking sharing only 81 * effects the btree of that specific device. Btrees for the other 82 * devices that share the block never change. The btree for the origin 83 * device as it was after the last commit is untouched, ie. we're using 84 * persistent data structures in the functional programming sense. 85 * 86 * v) unplug io to this physical block, including the io that triggered 87 * the breaking of sharing. 88 * 89 * Steps (ii) and (iii) occur in parallel. 90 * 91 * The metadata _doesn't_ need to be committed before the io continues. We 92 * get away with this because the io is always written to a _new_ block. 93 * If there's a crash, then: 94 * 95 * - The origin mapping will point to the old origin block (the shared 96 * one). This will contain the data as it was before the io that triggered 97 * the breaking of sharing came in. 98 * 99 * - The snap mapping still points to the old block. As it would after 100 * the commit. 101 * 102 * The downside of this scheme is the timestamp magic isn't perfect, and 103 * will continue to think that data block in the snapshot device is shared 104 * even after the write to the origin has broken sharing. I suspect data 105 * blocks will typically be shared by many different devices, so we're 106 * breaking sharing n + 1 times, rather than n, where n is the number of 107 * devices that reference this data block. At the moment I think the 108 * benefits far, far outweigh the disadvantages. 109 */ 110 111 /*----------------------------------------------------------------*/ 112 113 /* 114 * Key building. 115 */ 116 enum lock_space { 117 VIRTUAL, 118 PHYSICAL 119 }; 120 121 static bool build_key(struct dm_thin_device *td, enum lock_space ls, 122 dm_block_t b, dm_block_t e, struct dm_cell_key *key) 123 { 124 key->virtual = (ls == VIRTUAL); 125 key->dev = dm_thin_dev_id(td); 126 key->block_begin = b; 127 key->block_end = e; 128 129 return dm_cell_key_has_valid_range(key); 130 } 131 132 static void build_data_key(struct dm_thin_device *td, dm_block_t b, 133 struct dm_cell_key *key) 134 { 135 (void) build_key(td, PHYSICAL, b, b + 1llu, key); 136 } 137 138 static void build_virtual_key(struct dm_thin_device *td, dm_block_t b, 139 struct dm_cell_key *key) 140 { 141 (void) build_key(td, VIRTUAL, b, b + 1llu, key); 142 } 143 144 /*----------------------------------------------------------------*/ 145 146 #define THROTTLE_THRESHOLD (1 * HZ) 147 148 struct throttle { 149 struct rw_semaphore lock; 150 unsigned long threshold; 151 bool throttle_applied; 152 }; 153 154 static void throttle_init(struct throttle *t) 155 { 156 init_rwsem(&t->lock); 157 t->throttle_applied = false; 158 } 159 160 static void throttle_work_start(struct throttle *t) 161 { 162 t->threshold = jiffies + THROTTLE_THRESHOLD; 163 } 164 165 static void throttle_work_update(struct throttle *t) 166 { 167 if (!t->throttle_applied && time_is_before_jiffies(t->threshold)) { 168 down_write(&t->lock); 169 t->throttle_applied = true; 170 } 171 } 172 173 static void throttle_work_complete(struct throttle *t) 174 { 175 if (t->throttle_applied) { 176 t->throttle_applied = false; 177 up_write(&t->lock); 178 } 179 } 180 181 static void throttle_lock(struct throttle *t) 182 { 183 down_read(&t->lock); 184 } 185 186 static void throttle_unlock(struct throttle *t) 187 { 188 up_read(&t->lock); 189 } 190 191 /*----------------------------------------------------------------*/ 192 193 /* 194 * A pool device ties together a metadata device and a data device. It 195 * also provides the interface for creating and destroying internal 196 * devices. 197 */ 198 struct dm_thin_new_mapping; 199 200 /* 201 * The pool runs in various modes. Ordered in degraded order for comparisons. 202 */ 203 enum pool_mode { 204 PM_WRITE, /* metadata may be changed */ 205 PM_OUT_OF_DATA_SPACE, /* metadata may be changed, though data may not be allocated */ 206 207 /* 208 * Like READ_ONLY, except may switch back to WRITE on metadata resize. Reported as READ_ONLY. 209 */ 210 PM_OUT_OF_METADATA_SPACE, 211 PM_READ_ONLY, /* metadata may not be changed */ 212 213 PM_FAIL, /* all I/O fails */ 214 }; 215 216 struct pool_features { 217 enum pool_mode mode; 218 219 bool zero_new_blocks:1; 220 bool discard_enabled:1; 221 bool discard_passdown:1; 222 bool error_if_no_space:1; 223 }; 224 225 struct thin_c; 226 typedef void (*process_bio_fn)(struct thin_c *tc, struct bio *bio); 227 typedef void (*process_cell_fn)(struct thin_c *tc, struct dm_bio_prison_cell *cell); 228 typedef void (*process_mapping_fn)(struct dm_thin_new_mapping *m); 229 230 #define CELL_SORT_ARRAY_SIZE 8192 231 232 struct pool { 233 struct list_head list; 234 struct dm_target *ti; /* Only set if a pool target is bound */ 235 236 struct mapped_device *pool_md; 237 struct block_device *data_dev; 238 struct block_device *md_dev; 239 struct dm_pool_metadata *pmd; 240 241 dm_block_t low_water_blocks; 242 uint32_t sectors_per_block; 243 int sectors_per_block_shift; 244 245 struct pool_features pf; 246 bool low_water_triggered:1; /* A dm event has been sent */ 247 bool suspended:1; 248 bool out_of_data_space:1; 249 250 struct dm_bio_prison *prison; 251 struct dm_kcopyd_client *copier; 252 253 struct work_struct worker; 254 struct workqueue_struct *wq; 255 struct throttle throttle; 256 struct delayed_work waker; 257 struct delayed_work no_space_timeout; 258 259 unsigned long last_commit_jiffies; 260 unsigned int ref_count; 261 262 spinlock_t lock; 263 struct bio_list deferred_flush_bios; 264 struct bio_list deferred_flush_completions; 265 struct list_head prepared_mappings; 266 struct list_head prepared_discards; 267 struct list_head prepared_discards_pt2; 268 struct list_head active_thins; 269 270 struct dm_deferred_set *shared_read_ds; 271 struct dm_deferred_set *all_io_ds; 272 273 struct dm_thin_new_mapping *next_mapping; 274 275 process_bio_fn process_bio; 276 process_bio_fn process_discard; 277 278 process_cell_fn process_cell; 279 process_cell_fn process_discard_cell; 280 281 process_mapping_fn process_prepared_mapping; 282 process_mapping_fn process_prepared_discard; 283 process_mapping_fn process_prepared_discard_pt2; 284 285 struct dm_bio_prison_cell **cell_sort_array; 286 287 mempool_t mapping_pool; 288 }; 289 290 static void metadata_operation_failed(struct pool *pool, const char *op, int r); 291 292 static enum pool_mode get_pool_mode(struct pool *pool) 293 { 294 return pool->pf.mode; 295 } 296 297 static void notify_of_pool_mode_change(struct pool *pool) 298 { 299 static const char *descs[] = { 300 "write", 301 "out-of-data-space", 302 "read-only", 303 "read-only", 304 "fail" 305 }; 306 const char *extra_desc = NULL; 307 enum pool_mode mode = get_pool_mode(pool); 308 309 if (mode == PM_OUT_OF_DATA_SPACE) { 310 if (!pool->pf.error_if_no_space) 311 extra_desc = " (queue IO)"; 312 else 313 extra_desc = " (error IO)"; 314 } 315 316 dm_table_event(pool->ti->table); 317 DMINFO("%s: switching pool to %s%s mode", 318 dm_device_name(pool->pool_md), 319 descs[(int)mode], extra_desc ? : ""); 320 } 321 322 /* 323 * Target context for a pool. 324 */ 325 struct pool_c { 326 struct dm_target *ti; 327 struct pool *pool; 328 struct dm_dev *data_dev; 329 struct dm_dev *metadata_dev; 330 331 dm_block_t low_water_blocks; 332 struct pool_features requested_pf; /* Features requested during table load */ 333 struct pool_features adjusted_pf; /* Features used after adjusting for constituent devices */ 334 }; 335 336 /* 337 * Target context for a thin. 338 */ 339 struct thin_c { 340 struct list_head list; 341 struct dm_dev *pool_dev; 342 struct dm_dev *origin_dev; 343 sector_t origin_size; 344 dm_thin_id dev_id; 345 346 struct pool *pool; 347 struct dm_thin_device *td; 348 struct mapped_device *thin_md; 349 350 bool requeue_mode:1; 351 spinlock_t lock; 352 struct list_head deferred_cells; 353 struct bio_list deferred_bio_list; 354 struct bio_list retry_on_resume_list; 355 struct rb_root sort_bio_list; /* sorted list of deferred bios */ 356 357 /* 358 * Ensures the thin is not destroyed until the worker has finished 359 * iterating the active_thins list. 360 */ 361 refcount_t refcount; 362 struct completion can_destroy; 363 }; 364 365 /*----------------------------------------------------------------*/ 366 367 static bool block_size_is_power_of_two(struct pool *pool) 368 { 369 return pool->sectors_per_block_shift >= 0; 370 } 371 372 static sector_t block_to_sectors(struct pool *pool, dm_block_t b) 373 { 374 return block_size_is_power_of_two(pool) ? 375 (b << pool->sectors_per_block_shift) : 376 (b * pool->sectors_per_block); 377 } 378 379 /*----------------------------------------------------------------*/ 380 381 struct discard_op { 382 struct thin_c *tc; 383 struct blk_plug plug; 384 struct bio *parent_bio; 385 struct bio *bio; 386 }; 387 388 static void begin_discard(struct discard_op *op, struct thin_c *tc, struct bio *parent) 389 { 390 BUG_ON(!parent); 391 392 op->tc = tc; 393 blk_start_plug(&op->plug); 394 op->parent_bio = parent; 395 op->bio = NULL; 396 } 397 398 static int issue_discard(struct discard_op *op, dm_block_t data_b, dm_block_t data_e) 399 { 400 struct thin_c *tc = op->tc; 401 sector_t s = block_to_sectors(tc->pool, data_b); 402 sector_t len = block_to_sectors(tc->pool, data_e - data_b); 403 404 return __blkdev_issue_discard(tc->pool_dev->bdev, s, len, GFP_NOIO, &op->bio); 405 } 406 407 static void end_discard(struct discard_op *op, int r) 408 { 409 if (op->bio) { 410 /* 411 * Even if one of the calls to issue_discard failed, we 412 * need to wait for the chain to complete. 413 */ 414 bio_chain(op->bio, op->parent_bio); 415 op->bio->bi_opf = REQ_OP_DISCARD; 416 submit_bio(op->bio); 417 } 418 419 blk_finish_plug(&op->plug); 420 421 /* 422 * Even if r is set, there could be sub discards in flight that we 423 * need to wait for. 424 */ 425 if (r && !op->parent_bio->bi_status) 426 op->parent_bio->bi_status = errno_to_blk_status(r); 427 bio_endio(op->parent_bio); 428 } 429 430 /*----------------------------------------------------------------*/ 431 432 /* 433 * wake_worker() is used when new work is queued and when pool_resume is 434 * ready to continue deferred IO processing. 435 */ 436 static void wake_worker(struct pool *pool) 437 { 438 queue_work(pool->wq, &pool->worker); 439 } 440 441 /*----------------------------------------------------------------*/ 442 443 static int bio_detain(struct pool *pool, struct dm_cell_key *key, struct bio *bio, 444 struct dm_bio_prison_cell **cell_result) 445 { 446 int r; 447 struct dm_bio_prison_cell *cell_prealloc; 448 449 /* 450 * Allocate a cell from the prison's mempool. 451 * This might block but it can't fail. 452 */ 453 cell_prealloc = dm_bio_prison_alloc_cell(pool->prison, GFP_NOIO); 454 455 r = dm_bio_detain(pool->prison, key, bio, cell_prealloc, cell_result); 456 if (r) { 457 /* 458 * We reused an old cell; we can get rid of 459 * the new one. 460 */ 461 dm_bio_prison_free_cell(pool->prison, cell_prealloc); 462 } 463 464 return r; 465 } 466 467 static void cell_release(struct pool *pool, 468 struct dm_bio_prison_cell *cell, 469 struct bio_list *bios) 470 { 471 dm_cell_release(pool->prison, cell, bios); 472 dm_bio_prison_free_cell(pool->prison, cell); 473 } 474 475 static void cell_visit_release(struct pool *pool, 476 void (*fn)(void *, struct dm_bio_prison_cell *), 477 void *context, 478 struct dm_bio_prison_cell *cell) 479 { 480 dm_cell_visit_release(pool->prison, fn, context, cell); 481 dm_bio_prison_free_cell(pool->prison, cell); 482 } 483 484 static void cell_release_no_holder(struct pool *pool, 485 struct dm_bio_prison_cell *cell, 486 struct bio_list *bios) 487 { 488 dm_cell_release_no_holder(pool->prison, cell, bios); 489 dm_bio_prison_free_cell(pool->prison, cell); 490 } 491 492 static void cell_error_with_code(struct pool *pool, 493 struct dm_bio_prison_cell *cell, blk_status_t error_code) 494 { 495 dm_cell_error(pool->prison, cell, error_code); 496 dm_bio_prison_free_cell(pool->prison, cell); 497 } 498 499 static blk_status_t get_pool_io_error_code(struct pool *pool) 500 { 501 return pool->out_of_data_space ? BLK_STS_NOSPC : BLK_STS_IOERR; 502 } 503 504 static void cell_error(struct pool *pool, struct dm_bio_prison_cell *cell) 505 { 506 cell_error_with_code(pool, cell, get_pool_io_error_code(pool)); 507 } 508 509 static void cell_success(struct pool *pool, struct dm_bio_prison_cell *cell) 510 { 511 cell_error_with_code(pool, cell, 0); 512 } 513 514 static void cell_requeue(struct pool *pool, struct dm_bio_prison_cell *cell) 515 { 516 cell_error_with_code(pool, cell, BLK_STS_DM_REQUEUE); 517 } 518 519 /*----------------------------------------------------------------*/ 520 521 /* 522 * A global list of pools that uses a struct mapped_device as a key. 523 */ 524 static struct dm_thin_pool_table { 525 struct mutex mutex; 526 struct list_head pools; 527 } dm_thin_pool_table; 528 529 static void pool_table_init(void) 530 { 531 mutex_init(&dm_thin_pool_table.mutex); 532 INIT_LIST_HEAD(&dm_thin_pool_table.pools); 533 } 534 535 static void pool_table_exit(void) 536 { 537 mutex_destroy(&dm_thin_pool_table.mutex); 538 } 539 540 static void __pool_table_insert(struct pool *pool) 541 { 542 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex)); 543 list_add(&pool->list, &dm_thin_pool_table.pools); 544 } 545 546 static void __pool_table_remove(struct pool *pool) 547 { 548 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex)); 549 list_del(&pool->list); 550 } 551 552 static struct pool *__pool_table_lookup(struct mapped_device *md) 553 { 554 struct pool *pool = NULL, *tmp; 555 556 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex)); 557 558 list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) { 559 if (tmp->pool_md == md) { 560 pool = tmp; 561 break; 562 } 563 } 564 565 return pool; 566 } 567 568 static struct pool *__pool_table_lookup_metadata_dev(struct block_device *md_dev) 569 { 570 struct pool *pool = NULL, *tmp; 571 572 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex)); 573 574 list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) { 575 if (tmp->md_dev == md_dev) { 576 pool = tmp; 577 break; 578 } 579 } 580 581 return pool; 582 } 583 584 /*----------------------------------------------------------------*/ 585 586 struct dm_thin_endio_hook { 587 struct thin_c *tc; 588 struct dm_deferred_entry *shared_read_entry; 589 struct dm_deferred_entry *all_io_entry; 590 struct dm_thin_new_mapping *overwrite_mapping; 591 struct rb_node rb_node; 592 struct dm_bio_prison_cell *cell; 593 }; 594 595 static void __merge_bio_list(struct bio_list *bios, struct bio_list *master) 596 { 597 bio_list_merge(bios, master); 598 bio_list_init(master); 599 } 600 601 static void error_bio_list(struct bio_list *bios, blk_status_t error) 602 { 603 struct bio *bio; 604 605 while ((bio = bio_list_pop(bios))) { 606 bio->bi_status = error; 607 bio_endio(bio); 608 } 609 } 610 611 static void error_thin_bio_list(struct thin_c *tc, struct bio_list *master, 612 blk_status_t error) 613 { 614 struct bio_list bios; 615 616 bio_list_init(&bios); 617 618 spin_lock_irq(&tc->lock); 619 __merge_bio_list(&bios, master); 620 spin_unlock_irq(&tc->lock); 621 622 error_bio_list(&bios, error); 623 } 624 625 static void requeue_deferred_cells(struct thin_c *tc) 626 { 627 struct pool *pool = tc->pool; 628 struct list_head cells; 629 struct dm_bio_prison_cell *cell, *tmp; 630 631 INIT_LIST_HEAD(&cells); 632 633 spin_lock_irq(&tc->lock); 634 list_splice_init(&tc->deferred_cells, &cells); 635 spin_unlock_irq(&tc->lock); 636 637 list_for_each_entry_safe(cell, tmp, &cells, user_list) 638 cell_requeue(pool, cell); 639 } 640 641 static void requeue_io(struct thin_c *tc) 642 { 643 struct bio_list bios; 644 645 bio_list_init(&bios); 646 647 spin_lock_irq(&tc->lock); 648 __merge_bio_list(&bios, &tc->deferred_bio_list); 649 __merge_bio_list(&bios, &tc->retry_on_resume_list); 650 spin_unlock_irq(&tc->lock); 651 652 error_bio_list(&bios, BLK_STS_DM_REQUEUE); 653 requeue_deferred_cells(tc); 654 } 655 656 static void error_retry_list_with_code(struct pool *pool, blk_status_t error) 657 { 658 struct thin_c *tc; 659 660 rcu_read_lock(); 661 list_for_each_entry_rcu(tc, &pool->active_thins, list) 662 error_thin_bio_list(tc, &tc->retry_on_resume_list, error); 663 rcu_read_unlock(); 664 } 665 666 static void error_retry_list(struct pool *pool) 667 { 668 error_retry_list_with_code(pool, get_pool_io_error_code(pool)); 669 } 670 671 /* 672 * This section of code contains the logic for processing a thin device's IO. 673 * Much of the code depends on pool object resources (lists, workqueues, etc) 674 * but most is exclusively called from the thin target rather than the thin-pool 675 * target. 676 */ 677 678 static dm_block_t get_bio_block(struct thin_c *tc, struct bio *bio) 679 { 680 struct pool *pool = tc->pool; 681 sector_t block_nr = bio->bi_iter.bi_sector; 682 683 if (block_size_is_power_of_two(pool)) 684 block_nr >>= pool->sectors_per_block_shift; 685 else 686 (void) sector_div(block_nr, pool->sectors_per_block); 687 688 return block_nr; 689 } 690 691 /* 692 * Returns the _complete_ blocks that this bio covers. 693 */ 694 static void get_bio_block_range(struct thin_c *tc, struct bio *bio, 695 dm_block_t *begin, dm_block_t *end) 696 { 697 struct pool *pool = tc->pool; 698 sector_t b = bio->bi_iter.bi_sector; 699 sector_t e = b + (bio->bi_iter.bi_size >> SECTOR_SHIFT); 700 701 b += pool->sectors_per_block - 1ull; /* so we round up */ 702 703 if (block_size_is_power_of_two(pool)) { 704 b >>= pool->sectors_per_block_shift; 705 e >>= pool->sectors_per_block_shift; 706 } else { 707 (void) sector_div(b, pool->sectors_per_block); 708 (void) sector_div(e, pool->sectors_per_block); 709 } 710 711 if (e < b) { 712 /* Can happen if the bio is within a single block. */ 713 e = b; 714 } 715 716 *begin = b; 717 *end = e; 718 } 719 720 static void remap(struct thin_c *tc, struct bio *bio, dm_block_t block) 721 { 722 struct pool *pool = tc->pool; 723 sector_t bi_sector = bio->bi_iter.bi_sector; 724 725 bio_set_dev(bio, tc->pool_dev->bdev); 726 if (block_size_is_power_of_two(pool)) { 727 bio->bi_iter.bi_sector = 728 (block << pool->sectors_per_block_shift) | 729 (bi_sector & (pool->sectors_per_block - 1)); 730 } else { 731 bio->bi_iter.bi_sector = (block * pool->sectors_per_block) + 732 sector_div(bi_sector, pool->sectors_per_block); 733 } 734 } 735 736 static void remap_to_origin(struct thin_c *tc, struct bio *bio) 737 { 738 bio_set_dev(bio, tc->origin_dev->bdev); 739 } 740 741 static int bio_triggers_commit(struct thin_c *tc, struct bio *bio) 742 { 743 return op_is_flush(bio->bi_opf) && 744 dm_thin_changed_this_transaction(tc->td); 745 } 746 747 static void inc_all_io_entry(struct pool *pool, struct bio *bio) 748 { 749 struct dm_thin_endio_hook *h; 750 751 if (bio_op(bio) == REQ_OP_DISCARD) 752 return; 753 754 h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook)); 755 h->all_io_entry = dm_deferred_entry_inc(pool->all_io_ds); 756 } 757 758 static void issue(struct thin_c *tc, struct bio *bio) 759 { 760 struct pool *pool = tc->pool; 761 762 if (!bio_triggers_commit(tc, bio)) { 763 dm_submit_bio_remap(bio, NULL); 764 return; 765 } 766 767 /* 768 * Complete bio with an error if earlier I/O caused changes to 769 * the metadata that can't be committed e.g, due to I/O errors 770 * on the metadata device. 771 */ 772 if (dm_thin_aborted_changes(tc->td)) { 773 bio_io_error(bio); 774 return; 775 } 776 777 /* 778 * Batch together any bios that trigger commits and then issue a 779 * single commit for them in process_deferred_bios(). 780 */ 781 spin_lock_irq(&pool->lock); 782 bio_list_add(&pool->deferred_flush_bios, bio); 783 spin_unlock_irq(&pool->lock); 784 } 785 786 static void remap_to_origin_and_issue(struct thin_c *tc, struct bio *bio) 787 { 788 remap_to_origin(tc, bio); 789 issue(tc, bio); 790 } 791 792 static void remap_and_issue(struct thin_c *tc, struct bio *bio, 793 dm_block_t block) 794 { 795 remap(tc, bio, block); 796 issue(tc, bio); 797 } 798 799 /*----------------------------------------------------------------*/ 800 801 /* 802 * Bio endio functions. 803 */ 804 struct dm_thin_new_mapping { 805 struct list_head list; 806 807 bool pass_discard:1; 808 bool maybe_shared:1; 809 810 /* 811 * Track quiescing, copying and zeroing preparation actions. When this 812 * counter hits zero the block is prepared and can be inserted into the 813 * btree. 814 */ 815 atomic_t prepare_actions; 816 817 blk_status_t status; 818 struct thin_c *tc; 819 dm_block_t virt_begin, virt_end; 820 dm_block_t data_block; 821 struct dm_bio_prison_cell *cell; 822 823 /* 824 * If the bio covers the whole area of a block then we can avoid 825 * zeroing or copying. Instead this bio is hooked. The bio will 826 * still be in the cell, so care has to be taken to avoid issuing 827 * the bio twice. 828 */ 829 struct bio *bio; 830 bio_end_io_t *saved_bi_end_io; 831 }; 832 833 static void __complete_mapping_preparation(struct dm_thin_new_mapping *m) 834 { 835 struct pool *pool = m->tc->pool; 836 837 if (atomic_dec_and_test(&m->prepare_actions)) { 838 list_add_tail(&m->list, &pool->prepared_mappings); 839 wake_worker(pool); 840 } 841 } 842 843 static void complete_mapping_preparation(struct dm_thin_new_mapping *m) 844 { 845 unsigned long flags; 846 struct pool *pool = m->tc->pool; 847 848 spin_lock_irqsave(&pool->lock, flags); 849 __complete_mapping_preparation(m); 850 spin_unlock_irqrestore(&pool->lock, flags); 851 } 852 853 static void copy_complete(int read_err, unsigned long write_err, void *context) 854 { 855 struct dm_thin_new_mapping *m = context; 856 857 m->status = read_err || write_err ? BLK_STS_IOERR : 0; 858 complete_mapping_preparation(m); 859 } 860 861 static void overwrite_endio(struct bio *bio) 862 { 863 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook)); 864 struct dm_thin_new_mapping *m = h->overwrite_mapping; 865 866 bio->bi_end_io = m->saved_bi_end_io; 867 868 m->status = bio->bi_status; 869 complete_mapping_preparation(m); 870 } 871 872 /*----------------------------------------------------------------*/ 873 874 /* 875 * Workqueue. 876 */ 877 878 /* 879 * Prepared mapping jobs. 880 */ 881 882 /* 883 * This sends the bios in the cell, except the original holder, back 884 * to the deferred_bios list. 885 */ 886 static void cell_defer_no_holder(struct thin_c *tc, struct dm_bio_prison_cell *cell) 887 { 888 struct pool *pool = tc->pool; 889 unsigned long flags; 890 struct bio_list bios; 891 892 bio_list_init(&bios); 893 cell_release_no_holder(pool, cell, &bios); 894 895 if (!bio_list_empty(&bios)) { 896 spin_lock_irqsave(&tc->lock, flags); 897 bio_list_merge(&tc->deferred_bio_list, &bios); 898 spin_unlock_irqrestore(&tc->lock, flags); 899 wake_worker(pool); 900 } 901 } 902 903 static void thin_defer_bio(struct thin_c *tc, struct bio *bio); 904 905 struct remap_info { 906 struct thin_c *tc; 907 struct bio_list defer_bios; 908 struct bio_list issue_bios; 909 }; 910 911 static void __inc_remap_and_issue_cell(void *context, 912 struct dm_bio_prison_cell *cell) 913 { 914 struct remap_info *info = context; 915 struct bio *bio; 916 917 while ((bio = bio_list_pop(&cell->bios))) { 918 if (op_is_flush(bio->bi_opf) || bio_op(bio) == REQ_OP_DISCARD) 919 bio_list_add(&info->defer_bios, bio); 920 else { 921 inc_all_io_entry(info->tc->pool, bio); 922 923 /* 924 * We can't issue the bios with the bio prison lock 925 * held, so we add them to a list to issue on 926 * return from this function. 927 */ 928 bio_list_add(&info->issue_bios, bio); 929 } 930 } 931 } 932 933 static void inc_remap_and_issue_cell(struct thin_c *tc, 934 struct dm_bio_prison_cell *cell, 935 dm_block_t block) 936 { 937 struct bio *bio; 938 struct remap_info info; 939 940 info.tc = tc; 941 bio_list_init(&info.defer_bios); 942 bio_list_init(&info.issue_bios); 943 944 /* 945 * We have to be careful to inc any bios we're about to issue 946 * before the cell is released, and avoid a race with new bios 947 * being added to the cell. 948 */ 949 cell_visit_release(tc->pool, __inc_remap_and_issue_cell, 950 &info, cell); 951 952 while ((bio = bio_list_pop(&info.defer_bios))) 953 thin_defer_bio(tc, bio); 954 955 while ((bio = bio_list_pop(&info.issue_bios))) 956 remap_and_issue(info.tc, bio, block); 957 } 958 959 static void process_prepared_mapping_fail(struct dm_thin_new_mapping *m) 960 { 961 cell_error(m->tc->pool, m->cell); 962 list_del(&m->list); 963 mempool_free(m, &m->tc->pool->mapping_pool); 964 } 965 966 static void complete_overwrite_bio(struct thin_c *tc, struct bio *bio) 967 { 968 struct pool *pool = tc->pool; 969 970 /* 971 * If the bio has the REQ_FUA flag set we must commit the metadata 972 * before signaling its completion. 973 */ 974 if (!bio_triggers_commit(tc, bio)) { 975 bio_endio(bio); 976 return; 977 } 978 979 /* 980 * Complete bio with an error if earlier I/O caused changes to the 981 * metadata that can't be committed, e.g, due to I/O errors on the 982 * metadata device. 983 */ 984 if (dm_thin_aborted_changes(tc->td)) { 985 bio_io_error(bio); 986 return; 987 } 988 989 /* 990 * Batch together any bios that trigger commits and then issue a 991 * single commit for them in process_deferred_bios(). 992 */ 993 spin_lock_irq(&pool->lock); 994 bio_list_add(&pool->deferred_flush_completions, bio); 995 spin_unlock_irq(&pool->lock); 996 } 997 998 static void process_prepared_mapping(struct dm_thin_new_mapping *m) 999 { 1000 struct thin_c *tc = m->tc; 1001 struct pool *pool = tc->pool; 1002 struct bio *bio = m->bio; 1003 int r; 1004 1005 if (m->status) { 1006 cell_error(pool, m->cell); 1007 goto out; 1008 } 1009 1010 /* 1011 * Commit the prepared block into the mapping btree. 1012 * Any I/O for this block arriving after this point will get 1013 * remapped to it directly. 1014 */ 1015 r = dm_thin_insert_block(tc->td, m->virt_begin, m->data_block); 1016 if (r) { 1017 metadata_operation_failed(pool, "dm_thin_insert_block", r); 1018 cell_error(pool, m->cell); 1019 goto out; 1020 } 1021 1022 /* 1023 * Release any bios held while the block was being provisioned. 1024 * If we are processing a write bio that completely covers the block, 1025 * we already processed it so can ignore it now when processing 1026 * the bios in the cell. 1027 */ 1028 if (bio) { 1029 inc_remap_and_issue_cell(tc, m->cell, m->data_block); 1030 complete_overwrite_bio(tc, bio); 1031 } else { 1032 inc_all_io_entry(tc->pool, m->cell->holder); 1033 remap_and_issue(tc, m->cell->holder, m->data_block); 1034 inc_remap_and_issue_cell(tc, m->cell, m->data_block); 1035 } 1036 1037 out: 1038 list_del(&m->list); 1039 mempool_free(m, &pool->mapping_pool); 1040 } 1041 1042 /*----------------------------------------------------------------*/ 1043 1044 static void free_discard_mapping(struct dm_thin_new_mapping *m) 1045 { 1046 struct thin_c *tc = m->tc; 1047 1048 if (m->cell) 1049 cell_defer_no_holder(tc, m->cell); 1050 mempool_free(m, &tc->pool->mapping_pool); 1051 } 1052 1053 static void process_prepared_discard_fail(struct dm_thin_new_mapping *m) 1054 { 1055 bio_io_error(m->bio); 1056 free_discard_mapping(m); 1057 } 1058 1059 static void process_prepared_discard_success(struct dm_thin_new_mapping *m) 1060 { 1061 bio_endio(m->bio); 1062 free_discard_mapping(m); 1063 } 1064 1065 static void process_prepared_discard_no_passdown(struct dm_thin_new_mapping *m) 1066 { 1067 int r; 1068 struct thin_c *tc = m->tc; 1069 1070 r = dm_thin_remove_range(tc->td, m->cell->key.block_begin, m->cell->key.block_end); 1071 if (r) { 1072 metadata_operation_failed(tc->pool, "dm_thin_remove_range", r); 1073 bio_io_error(m->bio); 1074 } else 1075 bio_endio(m->bio); 1076 1077 cell_defer_no_holder(tc, m->cell); 1078 mempool_free(m, &tc->pool->mapping_pool); 1079 } 1080 1081 /*----------------------------------------------------------------*/ 1082 1083 static void passdown_double_checking_shared_status(struct dm_thin_new_mapping *m, 1084 struct bio *discard_parent) 1085 { 1086 /* 1087 * We've already unmapped this range of blocks, but before we 1088 * passdown we have to check that these blocks are now unused. 1089 */ 1090 int r = 0; 1091 bool shared = true; 1092 struct thin_c *tc = m->tc; 1093 struct pool *pool = tc->pool; 1094 dm_block_t b = m->data_block, e, end = m->data_block + m->virt_end - m->virt_begin; 1095 struct discard_op op; 1096 1097 begin_discard(&op, tc, discard_parent); 1098 while (b != end) { 1099 /* find start of unmapped run */ 1100 for (; b < end; b++) { 1101 r = dm_pool_block_is_shared(pool->pmd, b, &shared); 1102 if (r) 1103 goto out; 1104 1105 if (!shared) 1106 break; 1107 } 1108 1109 if (b == end) 1110 break; 1111 1112 /* find end of run */ 1113 for (e = b + 1; e != end; e++) { 1114 r = dm_pool_block_is_shared(pool->pmd, e, &shared); 1115 if (r) 1116 goto out; 1117 1118 if (shared) 1119 break; 1120 } 1121 1122 r = issue_discard(&op, b, e); 1123 if (r) 1124 goto out; 1125 1126 b = e; 1127 } 1128 out: 1129 end_discard(&op, r); 1130 } 1131 1132 static void queue_passdown_pt2(struct dm_thin_new_mapping *m) 1133 { 1134 unsigned long flags; 1135 struct pool *pool = m->tc->pool; 1136 1137 spin_lock_irqsave(&pool->lock, flags); 1138 list_add_tail(&m->list, &pool->prepared_discards_pt2); 1139 spin_unlock_irqrestore(&pool->lock, flags); 1140 wake_worker(pool); 1141 } 1142 1143 static void passdown_endio(struct bio *bio) 1144 { 1145 /* 1146 * It doesn't matter if the passdown discard failed, we still want 1147 * to unmap (we ignore err). 1148 */ 1149 queue_passdown_pt2(bio->bi_private); 1150 bio_put(bio); 1151 } 1152 1153 static void process_prepared_discard_passdown_pt1(struct dm_thin_new_mapping *m) 1154 { 1155 int r; 1156 struct thin_c *tc = m->tc; 1157 struct pool *pool = tc->pool; 1158 struct bio *discard_parent; 1159 dm_block_t data_end = m->data_block + (m->virt_end - m->virt_begin); 1160 1161 /* 1162 * Only this thread allocates blocks, so we can be sure that the 1163 * newly unmapped blocks will not be allocated before the end of 1164 * the function. 1165 */ 1166 r = dm_thin_remove_range(tc->td, m->virt_begin, m->virt_end); 1167 if (r) { 1168 metadata_operation_failed(pool, "dm_thin_remove_range", r); 1169 bio_io_error(m->bio); 1170 cell_defer_no_holder(tc, m->cell); 1171 mempool_free(m, &pool->mapping_pool); 1172 return; 1173 } 1174 1175 /* 1176 * Increment the unmapped blocks. This prevents a race between the 1177 * passdown io and reallocation of freed blocks. 1178 */ 1179 r = dm_pool_inc_data_range(pool->pmd, m->data_block, data_end); 1180 if (r) { 1181 metadata_operation_failed(pool, "dm_pool_inc_data_range", r); 1182 bio_io_error(m->bio); 1183 cell_defer_no_holder(tc, m->cell); 1184 mempool_free(m, &pool->mapping_pool); 1185 return; 1186 } 1187 1188 discard_parent = bio_alloc(NULL, 1, 0, GFP_NOIO); 1189 discard_parent->bi_end_io = passdown_endio; 1190 discard_parent->bi_private = m; 1191 if (m->maybe_shared) 1192 passdown_double_checking_shared_status(m, discard_parent); 1193 else { 1194 struct discard_op op; 1195 1196 begin_discard(&op, tc, discard_parent); 1197 r = issue_discard(&op, m->data_block, data_end); 1198 end_discard(&op, r); 1199 } 1200 } 1201 1202 static void process_prepared_discard_passdown_pt2(struct dm_thin_new_mapping *m) 1203 { 1204 int r; 1205 struct thin_c *tc = m->tc; 1206 struct pool *pool = tc->pool; 1207 1208 /* 1209 * The passdown has completed, so now we can decrement all those 1210 * unmapped blocks. 1211 */ 1212 r = dm_pool_dec_data_range(pool->pmd, m->data_block, 1213 m->data_block + (m->virt_end - m->virt_begin)); 1214 if (r) { 1215 metadata_operation_failed(pool, "dm_pool_dec_data_range", r); 1216 bio_io_error(m->bio); 1217 } else 1218 bio_endio(m->bio); 1219 1220 cell_defer_no_holder(tc, m->cell); 1221 mempool_free(m, &pool->mapping_pool); 1222 } 1223 1224 static void process_prepared(struct pool *pool, struct list_head *head, 1225 process_mapping_fn *fn) 1226 { 1227 struct list_head maps; 1228 struct dm_thin_new_mapping *m, *tmp; 1229 1230 INIT_LIST_HEAD(&maps); 1231 spin_lock_irq(&pool->lock); 1232 list_splice_init(head, &maps); 1233 spin_unlock_irq(&pool->lock); 1234 1235 list_for_each_entry_safe(m, tmp, &maps, list) 1236 (*fn)(m); 1237 } 1238 1239 /* 1240 * Deferred bio jobs. 1241 */ 1242 static int io_overlaps_block(struct pool *pool, struct bio *bio) 1243 { 1244 return bio->bi_iter.bi_size == 1245 (pool->sectors_per_block << SECTOR_SHIFT); 1246 } 1247 1248 static int io_overwrites_block(struct pool *pool, struct bio *bio) 1249 { 1250 return (bio_data_dir(bio) == WRITE) && 1251 io_overlaps_block(pool, bio); 1252 } 1253 1254 static void save_and_set_endio(struct bio *bio, bio_end_io_t **save, 1255 bio_end_io_t *fn) 1256 { 1257 *save = bio->bi_end_io; 1258 bio->bi_end_io = fn; 1259 } 1260 1261 static int ensure_next_mapping(struct pool *pool) 1262 { 1263 if (pool->next_mapping) 1264 return 0; 1265 1266 pool->next_mapping = mempool_alloc(&pool->mapping_pool, GFP_ATOMIC); 1267 1268 return pool->next_mapping ? 0 : -ENOMEM; 1269 } 1270 1271 static struct dm_thin_new_mapping *get_next_mapping(struct pool *pool) 1272 { 1273 struct dm_thin_new_mapping *m = pool->next_mapping; 1274 1275 BUG_ON(!pool->next_mapping); 1276 1277 memset(m, 0, sizeof(struct dm_thin_new_mapping)); 1278 INIT_LIST_HEAD(&m->list); 1279 m->bio = NULL; 1280 1281 pool->next_mapping = NULL; 1282 1283 return m; 1284 } 1285 1286 static void ll_zero(struct thin_c *tc, struct dm_thin_new_mapping *m, 1287 sector_t begin, sector_t end) 1288 { 1289 struct dm_io_region to; 1290 1291 to.bdev = tc->pool_dev->bdev; 1292 to.sector = begin; 1293 to.count = end - begin; 1294 1295 dm_kcopyd_zero(tc->pool->copier, 1, &to, 0, copy_complete, m); 1296 } 1297 1298 static void remap_and_issue_overwrite(struct thin_c *tc, struct bio *bio, 1299 dm_block_t data_begin, 1300 struct dm_thin_new_mapping *m) 1301 { 1302 struct pool *pool = tc->pool; 1303 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook)); 1304 1305 h->overwrite_mapping = m; 1306 m->bio = bio; 1307 save_and_set_endio(bio, &m->saved_bi_end_io, overwrite_endio); 1308 inc_all_io_entry(pool, bio); 1309 remap_and_issue(tc, bio, data_begin); 1310 } 1311 1312 /* 1313 * A partial copy also needs to zero the uncopied region. 1314 */ 1315 static void schedule_copy(struct thin_c *tc, dm_block_t virt_block, 1316 struct dm_dev *origin, dm_block_t data_origin, 1317 dm_block_t data_dest, 1318 struct dm_bio_prison_cell *cell, struct bio *bio, 1319 sector_t len) 1320 { 1321 struct pool *pool = tc->pool; 1322 struct dm_thin_new_mapping *m = get_next_mapping(pool); 1323 1324 m->tc = tc; 1325 m->virt_begin = virt_block; 1326 m->virt_end = virt_block + 1u; 1327 m->data_block = data_dest; 1328 m->cell = cell; 1329 1330 /* 1331 * quiesce action + copy action + an extra reference held for the 1332 * duration of this function (we may need to inc later for a 1333 * partial zero). 1334 */ 1335 atomic_set(&m->prepare_actions, 3); 1336 1337 if (!dm_deferred_set_add_work(pool->shared_read_ds, &m->list)) 1338 complete_mapping_preparation(m); /* already quiesced */ 1339 1340 /* 1341 * IO to pool_dev remaps to the pool target's data_dev. 1342 * 1343 * If the whole block of data is being overwritten, we can issue the 1344 * bio immediately. Otherwise we use kcopyd to clone the data first. 1345 */ 1346 if (io_overwrites_block(pool, bio)) 1347 remap_and_issue_overwrite(tc, bio, data_dest, m); 1348 else { 1349 struct dm_io_region from, to; 1350 1351 from.bdev = origin->bdev; 1352 from.sector = data_origin * pool->sectors_per_block; 1353 from.count = len; 1354 1355 to.bdev = tc->pool_dev->bdev; 1356 to.sector = data_dest * pool->sectors_per_block; 1357 to.count = len; 1358 1359 dm_kcopyd_copy(pool->copier, &from, 1, &to, 1360 0, copy_complete, m); 1361 1362 /* 1363 * Do we need to zero a tail region? 1364 */ 1365 if (len < pool->sectors_per_block && pool->pf.zero_new_blocks) { 1366 atomic_inc(&m->prepare_actions); 1367 ll_zero(tc, m, 1368 data_dest * pool->sectors_per_block + len, 1369 (data_dest + 1) * pool->sectors_per_block); 1370 } 1371 } 1372 1373 complete_mapping_preparation(m); /* drop our ref */ 1374 } 1375 1376 static void schedule_internal_copy(struct thin_c *tc, dm_block_t virt_block, 1377 dm_block_t data_origin, dm_block_t data_dest, 1378 struct dm_bio_prison_cell *cell, struct bio *bio) 1379 { 1380 schedule_copy(tc, virt_block, tc->pool_dev, 1381 data_origin, data_dest, cell, bio, 1382 tc->pool->sectors_per_block); 1383 } 1384 1385 static void schedule_zero(struct thin_c *tc, dm_block_t virt_block, 1386 dm_block_t data_block, struct dm_bio_prison_cell *cell, 1387 struct bio *bio) 1388 { 1389 struct pool *pool = tc->pool; 1390 struct dm_thin_new_mapping *m = get_next_mapping(pool); 1391 1392 atomic_set(&m->prepare_actions, 1); /* no need to quiesce */ 1393 m->tc = tc; 1394 m->virt_begin = virt_block; 1395 m->virt_end = virt_block + 1u; 1396 m->data_block = data_block; 1397 m->cell = cell; 1398 1399 /* 1400 * If the whole block of data is being overwritten or we are not 1401 * zeroing pre-existing data, we can issue the bio immediately. 1402 * Otherwise we use kcopyd to zero the data first. 1403 */ 1404 if (pool->pf.zero_new_blocks) { 1405 if (io_overwrites_block(pool, bio)) 1406 remap_and_issue_overwrite(tc, bio, data_block, m); 1407 else { 1408 ll_zero(tc, m, data_block * pool->sectors_per_block, 1409 (data_block + 1) * pool->sectors_per_block); 1410 } 1411 } else 1412 process_prepared_mapping(m); 1413 } 1414 1415 static void schedule_external_copy(struct thin_c *tc, dm_block_t virt_block, 1416 dm_block_t data_dest, 1417 struct dm_bio_prison_cell *cell, struct bio *bio) 1418 { 1419 struct pool *pool = tc->pool; 1420 sector_t virt_block_begin = virt_block * pool->sectors_per_block; 1421 sector_t virt_block_end = (virt_block + 1) * pool->sectors_per_block; 1422 1423 if (virt_block_end <= tc->origin_size) { 1424 schedule_copy(tc, virt_block, tc->origin_dev, 1425 virt_block, data_dest, cell, bio, 1426 pool->sectors_per_block); 1427 1428 } else if (virt_block_begin < tc->origin_size) { 1429 schedule_copy(tc, virt_block, tc->origin_dev, 1430 virt_block, data_dest, cell, bio, 1431 tc->origin_size - virt_block_begin); 1432 1433 } else 1434 schedule_zero(tc, virt_block, data_dest, cell, bio); 1435 } 1436 1437 static void set_pool_mode(struct pool *pool, enum pool_mode new_mode); 1438 1439 static void requeue_bios(struct pool *pool); 1440 1441 static bool is_read_only_pool_mode(enum pool_mode mode) 1442 { 1443 return (mode == PM_OUT_OF_METADATA_SPACE || mode == PM_READ_ONLY); 1444 } 1445 1446 static bool is_read_only(struct pool *pool) 1447 { 1448 return is_read_only_pool_mode(get_pool_mode(pool)); 1449 } 1450 1451 static void check_for_metadata_space(struct pool *pool) 1452 { 1453 int r; 1454 const char *ooms_reason = NULL; 1455 dm_block_t nr_free; 1456 1457 r = dm_pool_get_free_metadata_block_count(pool->pmd, &nr_free); 1458 if (r) 1459 ooms_reason = "Could not get free metadata blocks"; 1460 else if (!nr_free) 1461 ooms_reason = "No free metadata blocks"; 1462 1463 if (ooms_reason && !is_read_only(pool)) { 1464 DMERR("%s", ooms_reason); 1465 set_pool_mode(pool, PM_OUT_OF_METADATA_SPACE); 1466 } 1467 } 1468 1469 static void check_for_data_space(struct pool *pool) 1470 { 1471 int r; 1472 dm_block_t nr_free; 1473 1474 if (get_pool_mode(pool) != PM_OUT_OF_DATA_SPACE) 1475 return; 1476 1477 r = dm_pool_get_free_block_count(pool->pmd, &nr_free); 1478 if (r) 1479 return; 1480 1481 if (nr_free) { 1482 set_pool_mode(pool, PM_WRITE); 1483 requeue_bios(pool); 1484 } 1485 } 1486 1487 /* 1488 * A non-zero return indicates read_only or fail_io mode. 1489 * Many callers don't care about the return value. 1490 */ 1491 static int commit(struct pool *pool) 1492 { 1493 int r; 1494 1495 if (get_pool_mode(pool) >= PM_OUT_OF_METADATA_SPACE) 1496 return -EINVAL; 1497 1498 r = dm_pool_commit_metadata(pool->pmd); 1499 if (r) 1500 metadata_operation_failed(pool, "dm_pool_commit_metadata", r); 1501 else { 1502 check_for_metadata_space(pool); 1503 check_for_data_space(pool); 1504 } 1505 1506 return r; 1507 } 1508 1509 static void check_low_water_mark(struct pool *pool, dm_block_t free_blocks) 1510 { 1511 if (free_blocks <= pool->low_water_blocks && !pool->low_water_triggered) { 1512 DMWARN("%s: reached low water mark for data device: sending event.", 1513 dm_device_name(pool->pool_md)); 1514 spin_lock_irq(&pool->lock); 1515 pool->low_water_triggered = true; 1516 spin_unlock_irq(&pool->lock); 1517 dm_table_event(pool->ti->table); 1518 } 1519 } 1520 1521 static int alloc_data_block(struct thin_c *tc, dm_block_t *result) 1522 { 1523 int r; 1524 dm_block_t free_blocks; 1525 struct pool *pool = tc->pool; 1526 1527 if (WARN_ON(get_pool_mode(pool) != PM_WRITE)) 1528 return -EINVAL; 1529 1530 r = dm_pool_get_free_block_count(pool->pmd, &free_blocks); 1531 if (r) { 1532 metadata_operation_failed(pool, "dm_pool_get_free_block_count", r); 1533 return r; 1534 } 1535 1536 check_low_water_mark(pool, free_blocks); 1537 1538 if (!free_blocks) { 1539 /* 1540 * Try to commit to see if that will free up some 1541 * more space. 1542 */ 1543 r = commit(pool); 1544 if (r) 1545 return r; 1546 1547 r = dm_pool_get_free_block_count(pool->pmd, &free_blocks); 1548 if (r) { 1549 metadata_operation_failed(pool, "dm_pool_get_free_block_count", r); 1550 return r; 1551 } 1552 1553 if (!free_blocks) { 1554 set_pool_mode(pool, PM_OUT_OF_DATA_SPACE); 1555 return -ENOSPC; 1556 } 1557 } 1558 1559 r = dm_pool_alloc_data_block(pool->pmd, result); 1560 if (r) { 1561 if (r == -ENOSPC) 1562 set_pool_mode(pool, PM_OUT_OF_DATA_SPACE); 1563 else 1564 metadata_operation_failed(pool, "dm_pool_alloc_data_block", r); 1565 return r; 1566 } 1567 1568 r = dm_pool_get_free_metadata_block_count(pool->pmd, &free_blocks); 1569 if (r) { 1570 metadata_operation_failed(pool, "dm_pool_get_free_metadata_block_count", r); 1571 return r; 1572 } 1573 1574 if (!free_blocks) { 1575 /* Let's commit before we use up the metadata reserve. */ 1576 r = commit(pool); 1577 if (r) 1578 return r; 1579 } 1580 1581 return 0; 1582 } 1583 1584 /* 1585 * If we have run out of space, queue bios until the device is 1586 * resumed, presumably after having been reloaded with more space. 1587 */ 1588 static void retry_on_resume(struct bio *bio) 1589 { 1590 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook)); 1591 struct thin_c *tc = h->tc; 1592 1593 spin_lock_irq(&tc->lock); 1594 bio_list_add(&tc->retry_on_resume_list, bio); 1595 spin_unlock_irq(&tc->lock); 1596 } 1597 1598 static blk_status_t should_error_unserviceable_bio(struct pool *pool) 1599 { 1600 enum pool_mode m = get_pool_mode(pool); 1601 1602 switch (m) { 1603 case PM_WRITE: 1604 /* Shouldn't get here */ 1605 DMERR_LIMIT("bio unserviceable, yet pool is in PM_WRITE mode"); 1606 return BLK_STS_IOERR; 1607 1608 case PM_OUT_OF_DATA_SPACE: 1609 return pool->pf.error_if_no_space ? BLK_STS_NOSPC : 0; 1610 1611 case PM_OUT_OF_METADATA_SPACE: 1612 case PM_READ_ONLY: 1613 case PM_FAIL: 1614 return BLK_STS_IOERR; 1615 default: 1616 /* Shouldn't get here */ 1617 DMERR_LIMIT("bio unserviceable, yet pool has an unknown mode"); 1618 return BLK_STS_IOERR; 1619 } 1620 } 1621 1622 static void handle_unserviceable_bio(struct pool *pool, struct bio *bio) 1623 { 1624 blk_status_t error = should_error_unserviceable_bio(pool); 1625 1626 if (error) { 1627 bio->bi_status = error; 1628 bio_endio(bio); 1629 } else 1630 retry_on_resume(bio); 1631 } 1632 1633 static void retry_bios_on_resume(struct pool *pool, struct dm_bio_prison_cell *cell) 1634 { 1635 struct bio *bio; 1636 struct bio_list bios; 1637 blk_status_t error; 1638 1639 error = should_error_unserviceable_bio(pool); 1640 if (error) { 1641 cell_error_with_code(pool, cell, error); 1642 return; 1643 } 1644 1645 bio_list_init(&bios); 1646 cell_release(pool, cell, &bios); 1647 1648 while ((bio = bio_list_pop(&bios))) 1649 retry_on_resume(bio); 1650 } 1651 1652 static void process_discard_cell_no_passdown(struct thin_c *tc, 1653 struct dm_bio_prison_cell *virt_cell) 1654 { 1655 struct pool *pool = tc->pool; 1656 struct dm_thin_new_mapping *m = get_next_mapping(pool); 1657 1658 /* 1659 * We don't need to lock the data blocks, since there's no 1660 * passdown. We only lock data blocks for allocation and breaking sharing. 1661 */ 1662 m->tc = tc; 1663 m->virt_begin = virt_cell->key.block_begin; 1664 m->virt_end = virt_cell->key.block_end; 1665 m->cell = virt_cell; 1666 m->bio = virt_cell->holder; 1667 1668 if (!dm_deferred_set_add_work(pool->all_io_ds, &m->list)) 1669 pool->process_prepared_discard(m); 1670 } 1671 1672 static void break_up_discard_bio(struct thin_c *tc, dm_block_t begin, dm_block_t end, 1673 struct bio *bio) 1674 { 1675 struct pool *pool = tc->pool; 1676 1677 int r; 1678 bool maybe_shared; 1679 struct dm_cell_key data_key; 1680 struct dm_bio_prison_cell *data_cell; 1681 struct dm_thin_new_mapping *m; 1682 dm_block_t virt_begin, virt_end, data_begin, data_end; 1683 dm_block_t len, next_boundary; 1684 1685 while (begin != end) { 1686 r = dm_thin_find_mapped_range(tc->td, begin, end, &virt_begin, &virt_end, 1687 &data_begin, &maybe_shared); 1688 if (r) { 1689 /* 1690 * Silently fail, letting any mappings we've 1691 * created complete. 1692 */ 1693 break; 1694 } 1695 1696 data_end = data_begin + (virt_end - virt_begin); 1697 1698 /* 1699 * Make sure the data region obeys the bio prison restrictions. 1700 */ 1701 while (data_begin < data_end) { 1702 r = ensure_next_mapping(pool); 1703 if (r) 1704 return; /* we did our best */ 1705 1706 next_boundary = ((data_begin >> BIO_PRISON_MAX_RANGE_SHIFT) + 1) 1707 << BIO_PRISON_MAX_RANGE_SHIFT; 1708 len = min_t(sector_t, data_end - data_begin, next_boundary - data_begin); 1709 1710 /* This key is certainly within range given the above splitting */ 1711 (void) build_key(tc->td, PHYSICAL, data_begin, data_begin + len, &data_key); 1712 if (bio_detain(tc->pool, &data_key, NULL, &data_cell)) { 1713 /* contention, we'll give up with this range */ 1714 data_begin += len; 1715 continue; 1716 } 1717 1718 /* 1719 * IO may still be going to the destination block. We must 1720 * quiesce before we can do the removal. 1721 */ 1722 m = get_next_mapping(pool); 1723 m->tc = tc; 1724 m->maybe_shared = maybe_shared; 1725 m->virt_begin = virt_begin; 1726 m->virt_end = virt_begin + len; 1727 m->data_block = data_begin; 1728 m->cell = data_cell; 1729 m->bio = bio; 1730 1731 /* 1732 * The parent bio must not complete before sub discard bios are 1733 * chained to it (see end_discard's bio_chain)! 1734 * 1735 * This per-mapping bi_remaining increment is paired with 1736 * the implicit decrement that occurs via bio_endio() in 1737 * end_discard(). 1738 */ 1739 bio_inc_remaining(bio); 1740 if (!dm_deferred_set_add_work(pool->all_io_ds, &m->list)) 1741 pool->process_prepared_discard(m); 1742 1743 virt_begin += len; 1744 data_begin += len; 1745 } 1746 1747 begin = virt_end; 1748 } 1749 } 1750 1751 static void process_discard_cell_passdown(struct thin_c *tc, struct dm_bio_prison_cell *virt_cell) 1752 { 1753 struct bio *bio = virt_cell->holder; 1754 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook)); 1755 1756 /* 1757 * The virt_cell will only get freed once the origin bio completes. 1758 * This means it will remain locked while all the individual 1759 * passdown bios are in flight. 1760 */ 1761 h->cell = virt_cell; 1762 break_up_discard_bio(tc, virt_cell->key.block_begin, virt_cell->key.block_end, bio); 1763 1764 /* 1765 * We complete the bio now, knowing that the bi_remaining field 1766 * will prevent completion until the sub range discards have 1767 * completed. 1768 */ 1769 bio_endio(bio); 1770 } 1771 1772 static void process_discard_bio(struct thin_c *tc, struct bio *bio) 1773 { 1774 dm_block_t begin, end; 1775 struct dm_cell_key virt_key; 1776 struct dm_bio_prison_cell *virt_cell; 1777 1778 get_bio_block_range(tc, bio, &begin, &end); 1779 if (begin == end) { 1780 /* 1781 * The discard covers less than a block. 1782 */ 1783 bio_endio(bio); 1784 return; 1785 } 1786 1787 if (unlikely(!build_key(tc->td, VIRTUAL, begin, end, &virt_key))) { 1788 DMERR_LIMIT("Discard doesn't respect bio prison limits"); 1789 bio_endio(bio); 1790 return; 1791 } 1792 1793 if (bio_detain(tc->pool, &virt_key, bio, &virt_cell)) { 1794 /* 1795 * Potential starvation issue: We're relying on the 1796 * fs/application being well behaved, and not trying to 1797 * send IO to a region at the same time as discarding it. 1798 * If they do this persistently then it's possible this 1799 * cell will never be granted. 1800 */ 1801 return; 1802 } 1803 1804 tc->pool->process_discard_cell(tc, virt_cell); 1805 } 1806 1807 static void break_sharing(struct thin_c *tc, struct bio *bio, dm_block_t block, 1808 struct dm_cell_key *key, 1809 struct dm_thin_lookup_result *lookup_result, 1810 struct dm_bio_prison_cell *cell) 1811 { 1812 int r; 1813 dm_block_t data_block; 1814 struct pool *pool = tc->pool; 1815 1816 r = alloc_data_block(tc, &data_block); 1817 switch (r) { 1818 case 0: 1819 schedule_internal_copy(tc, block, lookup_result->block, 1820 data_block, cell, bio); 1821 break; 1822 1823 case -ENOSPC: 1824 retry_bios_on_resume(pool, cell); 1825 break; 1826 1827 default: 1828 DMERR_LIMIT("%s: alloc_data_block() failed: error = %d", 1829 __func__, r); 1830 cell_error(pool, cell); 1831 break; 1832 } 1833 } 1834 1835 static void __remap_and_issue_shared_cell(void *context, 1836 struct dm_bio_prison_cell *cell) 1837 { 1838 struct remap_info *info = context; 1839 struct bio *bio; 1840 1841 while ((bio = bio_list_pop(&cell->bios))) { 1842 if (bio_data_dir(bio) == WRITE || op_is_flush(bio->bi_opf) || 1843 bio_op(bio) == REQ_OP_DISCARD) 1844 bio_list_add(&info->defer_bios, bio); 1845 else { 1846 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook)); 1847 1848 h->shared_read_entry = dm_deferred_entry_inc(info->tc->pool->shared_read_ds); 1849 inc_all_io_entry(info->tc->pool, bio); 1850 bio_list_add(&info->issue_bios, bio); 1851 } 1852 } 1853 } 1854 1855 static void remap_and_issue_shared_cell(struct thin_c *tc, 1856 struct dm_bio_prison_cell *cell, 1857 dm_block_t block) 1858 { 1859 struct bio *bio; 1860 struct remap_info info; 1861 1862 info.tc = tc; 1863 bio_list_init(&info.defer_bios); 1864 bio_list_init(&info.issue_bios); 1865 1866 cell_visit_release(tc->pool, __remap_and_issue_shared_cell, 1867 &info, cell); 1868 1869 while ((bio = bio_list_pop(&info.defer_bios))) 1870 thin_defer_bio(tc, bio); 1871 1872 while ((bio = bio_list_pop(&info.issue_bios))) 1873 remap_and_issue(tc, bio, block); 1874 } 1875 1876 static void process_shared_bio(struct thin_c *tc, struct bio *bio, 1877 dm_block_t block, 1878 struct dm_thin_lookup_result *lookup_result, 1879 struct dm_bio_prison_cell *virt_cell) 1880 { 1881 struct dm_bio_prison_cell *data_cell; 1882 struct pool *pool = tc->pool; 1883 struct dm_cell_key key; 1884 1885 /* 1886 * If cell is already occupied, then sharing is already in the process 1887 * of being broken so we have nothing further to do here. 1888 */ 1889 build_data_key(tc->td, lookup_result->block, &key); 1890 if (bio_detain(pool, &key, bio, &data_cell)) { 1891 cell_defer_no_holder(tc, virt_cell); 1892 return; 1893 } 1894 1895 if (bio_data_dir(bio) == WRITE && bio->bi_iter.bi_size) { 1896 break_sharing(tc, bio, block, &key, lookup_result, data_cell); 1897 cell_defer_no_holder(tc, virt_cell); 1898 } else { 1899 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook)); 1900 1901 h->shared_read_entry = dm_deferred_entry_inc(pool->shared_read_ds); 1902 inc_all_io_entry(pool, bio); 1903 remap_and_issue(tc, bio, lookup_result->block); 1904 1905 remap_and_issue_shared_cell(tc, data_cell, lookup_result->block); 1906 remap_and_issue_shared_cell(tc, virt_cell, lookup_result->block); 1907 } 1908 } 1909 1910 static void provision_block(struct thin_c *tc, struct bio *bio, dm_block_t block, 1911 struct dm_bio_prison_cell *cell) 1912 { 1913 int r; 1914 dm_block_t data_block; 1915 struct pool *pool = tc->pool; 1916 1917 /* 1918 * Remap empty bios (flushes) immediately, without provisioning. 1919 */ 1920 if (!bio->bi_iter.bi_size) { 1921 inc_all_io_entry(pool, bio); 1922 cell_defer_no_holder(tc, cell); 1923 1924 remap_and_issue(tc, bio, 0); 1925 return; 1926 } 1927 1928 /* 1929 * Fill read bios with zeroes and complete them immediately. 1930 */ 1931 if (bio_data_dir(bio) == READ) { 1932 zero_fill_bio(bio); 1933 cell_defer_no_holder(tc, cell); 1934 bio_endio(bio); 1935 return; 1936 } 1937 1938 r = alloc_data_block(tc, &data_block); 1939 switch (r) { 1940 case 0: 1941 if (tc->origin_dev) 1942 schedule_external_copy(tc, block, data_block, cell, bio); 1943 else 1944 schedule_zero(tc, block, data_block, cell, bio); 1945 break; 1946 1947 case -ENOSPC: 1948 retry_bios_on_resume(pool, cell); 1949 break; 1950 1951 default: 1952 DMERR_LIMIT("%s: alloc_data_block() failed: error = %d", 1953 __func__, r); 1954 cell_error(pool, cell); 1955 break; 1956 } 1957 } 1958 1959 static void process_cell(struct thin_c *tc, struct dm_bio_prison_cell *cell) 1960 { 1961 int r; 1962 struct pool *pool = tc->pool; 1963 struct bio *bio = cell->holder; 1964 dm_block_t block = get_bio_block(tc, bio); 1965 struct dm_thin_lookup_result lookup_result; 1966 1967 if (tc->requeue_mode) { 1968 cell_requeue(pool, cell); 1969 return; 1970 } 1971 1972 r = dm_thin_find_block(tc->td, block, 1, &lookup_result); 1973 switch (r) { 1974 case 0: 1975 if (lookup_result.shared) 1976 process_shared_bio(tc, bio, block, &lookup_result, cell); 1977 else { 1978 inc_all_io_entry(pool, bio); 1979 remap_and_issue(tc, bio, lookup_result.block); 1980 inc_remap_and_issue_cell(tc, cell, lookup_result.block); 1981 } 1982 break; 1983 1984 case -ENODATA: 1985 if (bio_data_dir(bio) == READ && tc->origin_dev) { 1986 inc_all_io_entry(pool, bio); 1987 cell_defer_no_holder(tc, cell); 1988 1989 if (bio_end_sector(bio) <= tc->origin_size) 1990 remap_to_origin_and_issue(tc, bio); 1991 1992 else if (bio->bi_iter.bi_sector < tc->origin_size) { 1993 zero_fill_bio(bio); 1994 bio->bi_iter.bi_size = (tc->origin_size - bio->bi_iter.bi_sector) << SECTOR_SHIFT; 1995 remap_to_origin_and_issue(tc, bio); 1996 1997 } else { 1998 zero_fill_bio(bio); 1999 bio_endio(bio); 2000 } 2001 } else 2002 provision_block(tc, bio, block, cell); 2003 break; 2004 2005 default: 2006 DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d", 2007 __func__, r); 2008 cell_defer_no_holder(tc, cell); 2009 bio_io_error(bio); 2010 break; 2011 } 2012 } 2013 2014 static void process_bio(struct thin_c *tc, struct bio *bio) 2015 { 2016 struct pool *pool = tc->pool; 2017 dm_block_t block = get_bio_block(tc, bio); 2018 struct dm_bio_prison_cell *cell; 2019 struct dm_cell_key key; 2020 2021 /* 2022 * If cell is already occupied, then the block is already 2023 * being provisioned so we have nothing further to do here. 2024 */ 2025 build_virtual_key(tc->td, block, &key); 2026 if (bio_detain(pool, &key, bio, &cell)) 2027 return; 2028 2029 process_cell(tc, cell); 2030 } 2031 2032 static void __process_bio_read_only(struct thin_c *tc, struct bio *bio, 2033 struct dm_bio_prison_cell *cell) 2034 { 2035 int r; 2036 int rw = bio_data_dir(bio); 2037 dm_block_t block = get_bio_block(tc, bio); 2038 struct dm_thin_lookup_result lookup_result; 2039 2040 r = dm_thin_find_block(tc->td, block, 1, &lookup_result); 2041 switch (r) { 2042 case 0: 2043 if (lookup_result.shared && (rw == WRITE) && bio->bi_iter.bi_size) { 2044 handle_unserviceable_bio(tc->pool, bio); 2045 if (cell) 2046 cell_defer_no_holder(tc, cell); 2047 } else { 2048 inc_all_io_entry(tc->pool, bio); 2049 remap_and_issue(tc, bio, lookup_result.block); 2050 if (cell) 2051 inc_remap_and_issue_cell(tc, cell, lookup_result.block); 2052 } 2053 break; 2054 2055 case -ENODATA: 2056 if (cell) 2057 cell_defer_no_holder(tc, cell); 2058 if (rw != READ) { 2059 handle_unserviceable_bio(tc->pool, bio); 2060 break; 2061 } 2062 2063 if (tc->origin_dev) { 2064 inc_all_io_entry(tc->pool, bio); 2065 remap_to_origin_and_issue(tc, bio); 2066 break; 2067 } 2068 2069 zero_fill_bio(bio); 2070 bio_endio(bio); 2071 break; 2072 2073 default: 2074 DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d", 2075 __func__, r); 2076 if (cell) 2077 cell_defer_no_holder(tc, cell); 2078 bio_io_error(bio); 2079 break; 2080 } 2081 } 2082 2083 static void process_bio_read_only(struct thin_c *tc, struct bio *bio) 2084 { 2085 __process_bio_read_only(tc, bio, NULL); 2086 } 2087 2088 static void process_cell_read_only(struct thin_c *tc, struct dm_bio_prison_cell *cell) 2089 { 2090 __process_bio_read_only(tc, cell->holder, cell); 2091 } 2092 2093 static void process_bio_success(struct thin_c *tc, struct bio *bio) 2094 { 2095 bio_endio(bio); 2096 } 2097 2098 static void process_bio_fail(struct thin_c *tc, struct bio *bio) 2099 { 2100 bio_io_error(bio); 2101 } 2102 2103 static void process_cell_success(struct thin_c *tc, struct dm_bio_prison_cell *cell) 2104 { 2105 cell_success(tc->pool, cell); 2106 } 2107 2108 static void process_cell_fail(struct thin_c *tc, struct dm_bio_prison_cell *cell) 2109 { 2110 cell_error(tc->pool, cell); 2111 } 2112 2113 /* 2114 * FIXME: should we also commit due to size of transaction, measured in 2115 * metadata blocks? 2116 */ 2117 static int need_commit_due_to_time(struct pool *pool) 2118 { 2119 return !time_in_range(jiffies, pool->last_commit_jiffies, 2120 pool->last_commit_jiffies + COMMIT_PERIOD); 2121 } 2122 2123 #define thin_pbd(node) rb_entry((node), struct dm_thin_endio_hook, rb_node) 2124 #define thin_bio(pbd) dm_bio_from_per_bio_data((pbd), sizeof(struct dm_thin_endio_hook)) 2125 2126 static void __thin_bio_rb_add(struct thin_c *tc, struct bio *bio) 2127 { 2128 struct rb_node **rbp, *parent; 2129 struct dm_thin_endio_hook *pbd; 2130 sector_t bi_sector = bio->bi_iter.bi_sector; 2131 2132 rbp = &tc->sort_bio_list.rb_node; 2133 parent = NULL; 2134 while (*rbp) { 2135 parent = *rbp; 2136 pbd = thin_pbd(parent); 2137 2138 if (bi_sector < thin_bio(pbd)->bi_iter.bi_sector) 2139 rbp = &(*rbp)->rb_left; 2140 else 2141 rbp = &(*rbp)->rb_right; 2142 } 2143 2144 pbd = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook)); 2145 rb_link_node(&pbd->rb_node, parent, rbp); 2146 rb_insert_color(&pbd->rb_node, &tc->sort_bio_list); 2147 } 2148 2149 static void __extract_sorted_bios(struct thin_c *tc) 2150 { 2151 struct rb_node *node; 2152 struct dm_thin_endio_hook *pbd; 2153 struct bio *bio; 2154 2155 for (node = rb_first(&tc->sort_bio_list); node; node = rb_next(node)) { 2156 pbd = thin_pbd(node); 2157 bio = thin_bio(pbd); 2158 2159 bio_list_add(&tc->deferred_bio_list, bio); 2160 rb_erase(&pbd->rb_node, &tc->sort_bio_list); 2161 } 2162 2163 WARN_ON(!RB_EMPTY_ROOT(&tc->sort_bio_list)); 2164 } 2165 2166 static void __sort_thin_deferred_bios(struct thin_c *tc) 2167 { 2168 struct bio *bio; 2169 struct bio_list bios; 2170 2171 bio_list_init(&bios); 2172 bio_list_merge(&bios, &tc->deferred_bio_list); 2173 bio_list_init(&tc->deferred_bio_list); 2174 2175 /* Sort deferred_bio_list using rb-tree */ 2176 while ((bio = bio_list_pop(&bios))) 2177 __thin_bio_rb_add(tc, bio); 2178 2179 /* 2180 * Transfer the sorted bios in sort_bio_list back to 2181 * deferred_bio_list to allow lockless submission of 2182 * all bios. 2183 */ 2184 __extract_sorted_bios(tc); 2185 } 2186 2187 static void process_thin_deferred_bios(struct thin_c *tc) 2188 { 2189 struct pool *pool = tc->pool; 2190 struct bio *bio; 2191 struct bio_list bios; 2192 struct blk_plug plug; 2193 unsigned int count = 0; 2194 2195 if (tc->requeue_mode) { 2196 error_thin_bio_list(tc, &tc->deferred_bio_list, 2197 BLK_STS_DM_REQUEUE); 2198 return; 2199 } 2200 2201 bio_list_init(&bios); 2202 2203 spin_lock_irq(&tc->lock); 2204 2205 if (bio_list_empty(&tc->deferred_bio_list)) { 2206 spin_unlock_irq(&tc->lock); 2207 return; 2208 } 2209 2210 __sort_thin_deferred_bios(tc); 2211 2212 bio_list_merge(&bios, &tc->deferred_bio_list); 2213 bio_list_init(&tc->deferred_bio_list); 2214 2215 spin_unlock_irq(&tc->lock); 2216 2217 blk_start_plug(&plug); 2218 while ((bio = bio_list_pop(&bios))) { 2219 /* 2220 * If we've got no free new_mapping structs, and processing 2221 * this bio might require one, we pause until there are some 2222 * prepared mappings to process. 2223 */ 2224 if (ensure_next_mapping(pool)) { 2225 spin_lock_irq(&tc->lock); 2226 bio_list_add(&tc->deferred_bio_list, bio); 2227 bio_list_merge(&tc->deferred_bio_list, &bios); 2228 spin_unlock_irq(&tc->lock); 2229 break; 2230 } 2231 2232 if (bio_op(bio) == REQ_OP_DISCARD) 2233 pool->process_discard(tc, bio); 2234 else 2235 pool->process_bio(tc, bio); 2236 2237 if ((count++ & 127) == 0) { 2238 throttle_work_update(&pool->throttle); 2239 dm_pool_issue_prefetches(pool->pmd); 2240 } 2241 cond_resched(); 2242 } 2243 blk_finish_plug(&plug); 2244 } 2245 2246 static int cmp_cells(const void *lhs, const void *rhs) 2247 { 2248 struct dm_bio_prison_cell *lhs_cell = *((struct dm_bio_prison_cell **) lhs); 2249 struct dm_bio_prison_cell *rhs_cell = *((struct dm_bio_prison_cell **) rhs); 2250 2251 BUG_ON(!lhs_cell->holder); 2252 BUG_ON(!rhs_cell->holder); 2253 2254 if (lhs_cell->holder->bi_iter.bi_sector < rhs_cell->holder->bi_iter.bi_sector) 2255 return -1; 2256 2257 if (lhs_cell->holder->bi_iter.bi_sector > rhs_cell->holder->bi_iter.bi_sector) 2258 return 1; 2259 2260 return 0; 2261 } 2262 2263 static unsigned int sort_cells(struct pool *pool, struct list_head *cells) 2264 { 2265 unsigned int count = 0; 2266 struct dm_bio_prison_cell *cell, *tmp; 2267 2268 list_for_each_entry_safe(cell, tmp, cells, user_list) { 2269 if (count >= CELL_SORT_ARRAY_SIZE) 2270 break; 2271 2272 pool->cell_sort_array[count++] = cell; 2273 list_del(&cell->user_list); 2274 } 2275 2276 sort(pool->cell_sort_array, count, sizeof(cell), cmp_cells, NULL); 2277 2278 return count; 2279 } 2280 2281 static void process_thin_deferred_cells(struct thin_c *tc) 2282 { 2283 struct pool *pool = tc->pool; 2284 struct list_head cells; 2285 struct dm_bio_prison_cell *cell; 2286 unsigned int i, j, count; 2287 2288 INIT_LIST_HEAD(&cells); 2289 2290 spin_lock_irq(&tc->lock); 2291 list_splice_init(&tc->deferred_cells, &cells); 2292 spin_unlock_irq(&tc->lock); 2293 2294 if (list_empty(&cells)) 2295 return; 2296 2297 do { 2298 count = sort_cells(tc->pool, &cells); 2299 2300 for (i = 0; i < count; i++) { 2301 cell = pool->cell_sort_array[i]; 2302 BUG_ON(!cell->holder); 2303 2304 /* 2305 * If we've got no free new_mapping structs, and processing 2306 * this bio might require one, we pause until there are some 2307 * prepared mappings to process. 2308 */ 2309 if (ensure_next_mapping(pool)) { 2310 for (j = i; j < count; j++) 2311 list_add(&pool->cell_sort_array[j]->user_list, &cells); 2312 2313 spin_lock_irq(&tc->lock); 2314 list_splice(&cells, &tc->deferred_cells); 2315 spin_unlock_irq(&tc->lock); 2316 return; 2317 } 2318 2319 if (bio_op(cell->holder) == REQ_OP_DISCARD) 2320 pool->process_discard_cell(tc, cell); 2321 else 2322 pool->process_cell(tc, cell); 2323 } 2324 cond_resched(); 2325 } while (!list_empty(&cells)); 2326 } 2327 2328 static void thin_get(struct thin_c *tc); 2329 static void thin_put(struct thin_c *tc); 2330 2331 /* 2332 * We can't hold rcu_read_lock() around code that can block. So we 2333 * find a thin with the rcu lock held; bump a refcount; then drop 2334 * the lock. 2335 */ 2336 static struct thin_c *get_first_thin(struct pool *pool) 2337 { 2338 struct thin_c *tc = NULL; 2339 2340 rcu_read_lock(); 2341 if (!list_empty(&pool->active_thins)) { 2342 tc = list_entry_rcu(pool->active_thins.next, struct thin_c, list); 2343 thin_get(tc); 2344 } 2345 rcu_read_unlock(); 2346 2347 return tc; 2348 } 2349 2350 static struct thin_c *get_next_thin(struct pool *pool, struct thin_c *tc) 2351 { 2352 struct thin_c *old_tc = tc; 2353 2354 rcu_read_lock(); 2355 list_for_each_entry_continue_rcu(tc, &pool->active_thins, list) { 2356 thin_get(tc); 2357 thin_put(old_tc); 2358 rcu_read_unlock(); 2359 return tc; 2360 } 2361 thin_put(old_tc); 2362 rcu_read_unlock(); 2363 2364 return NULL; 2365 } 2366 2367 static void process_deferred_bios(struct pool *pool) 2368 { 2369 struct bio *bio; 2370 struct bio_list bios, bio_completions; 2371 struct thin_c *tc; 2372 2373 tc = get_first_thin(pool); 2374 while (tc) { 2375 process_thin_deferred_cells(tc); 2376 process_thin_deferred_bios(tc); 2377 tc = get_next_thin(pool, tc); 2378 } 2379 2380 /* 2381 * If there are any deferred flush bios, we must commit the metadata 2382 * before issuing them or signaling their completion. 2383 */ 2384 bio_list_init(&bios); 2385 bio_list_init(&bio_completions); 2386 2387 spin_lock_irq(&pool->lock); 2388 bio_list_merge(&bios, &pool->deferred_flush_bios); 2389 bio_list_init(&pool->deferred_flush_bios); 2390 2391 bio_list_merge(&bio_completions, &pool->deferred_flush_completions); 2392 bio_list_init(&pool->deferred_flush_completions); 2393 spin_unlock_irq(&pool->lock); 2394 2395 if (bio_list_empty(&bios) && bio_list_empty(&bio_completions) && 2396 !(dm_pool_changed_this_transaction(pool->pmd) && need_commit_due_to_time(pool))) 2397 return; 2398 2399 if (commit(pool)) { 2400 bio_list_merge(&bios, &bio_completions); 2401 2402 while ((bio = bio_list_pop(&bios))) 2403 bio_io_error(bio); 2404 return; 2405 } 2406 pool->last_commit_jiffies = jiffies; 2407 2408 while ((bio = bio_list_pop(&bio_completions))) 2409 bio_endio(bio); 2410 2411 while ((bio = bio_list_pop(&bios))) { 2412 /* 2413 * The data device was flushed as part of metadata commit, 2414 * so complete redundant flushes immediately. 2415 */ 2416 if (bio->bi_opf & REQ_PREFLUSH) 2417 bio_endio(bio); 2418 else 2419 dm_submit_bio_remap(bio, NULL); 2420 } 2421 } 2422 2423 static void do_worker(struct work_struct *ws) 2424 { 2425 struct pool *pool = container_of(ws, struct pool, worker); 2426 2427 throttle_work_start(&pool->throttle); 2428 dm_pool_issue_prefetches(pool->pmd); 2429 throttle_work_update(&pool->throttle); 2430 process_prepared(pool, &pool->prepared_mappings, &pool->process_prepared_mapping); 2431 throttle_work_update(&pool->throttle); 2432 process_prepared(pool, &pool->prepared_discards, &pool->process_prepared_discard); 2433 throttle_work_update(&pool->throttle); 2434 process_prepared(pool, &pool->prepared_discards_pt2, &pool->process_prepared_discard_pt2); 2435 throttle_work_update(&pool->throttle); 2436 process_deferred_bios(pool); 2437 throttle_work_complete(&pool->throttle); 2438 } 2439 2440 /* 2441 * We want to commit periodically so that not too much 2442 * unwritten data builds up. 2443 */ 2444 static void do_waker(struct work_struct *ws) 2445 { 2446 struct pool *pool = container_of(to_delayed_work(ws), struct pool, waker); 2447 2448 wake_worker(pool); 2449 queue_delayed_work(pool->wq, &pool->waker, COMMIT_PERIOD); 2450 } 2451 2452 /* 2453 * We're holding onto IO to allow userland time to react. After the 2454 * timeout either the pool will have been resized (and thus back in 2455 * PM_WRITE mode), or we degrade to PM_OUT_OF_DATA_SPACE w/ error_if_no_space. 2456 */ 2457 static void do_no_space_timeout(struct work_struct *ws) 2458 { 2459 struct pool *pool = container_of(to_delayed_work(ws), struct pool, 2460 no_space_timeout); 2461 2462 if (get_pool_mode(pool) == PM_OUT_OF_DATA_SPACE && !pool->pf.error_if_no_space) { 2463 pool->pf.error_if_no_space = true; 2464 notify_of_pool_mode_change(pool); 2465 error_retry_list_with_code(pool, BLK_STS_NOSPC); 2466 } 2467 } 2468 2469 /*----------------------------------------------------------------*/ 2470 2471 struct pool_work { 2472 struct work_struct worker; 2473 struct completion complete; 2474 }; 2475 2476 static struct pool_work *to_pool_work(struct work_struct *ws) 2477 { 2478 return container_of(ws, struct pool_work, worker); 2479 } 2480 2481 static void pool_work_complete(struct pool_work *pw) 2482 { 2483 complete(&pw->complete); 2484 } 2485 2486 static void pool_work_wait(struct pool_work *pw, struct pool *pool, 2487 void (*fn)(struct work_struct *)) 2488 { 2489 INIT_WORK_ONSTACK(&pw->worker, fn); 2490 init_completion(&pw->complete); 2491 queue_work(pool->wq, &pw->worker); 2492 wait_for_completion(&pw->complete); 2493 } 2494 2495 /*----------------------------------------------------------------*/ 2496 2497 struct noflush_work { 2498 struct pool_work pw; 2499 struct thin_c *tc; 2500 }; 2501 2502 static struct noflush_work *to_noflush(struct work_struct *ws) 2503 { 2504 return container_of(to_pool_work(ws), struct noflush_work, pw); 2505 } 2506 2507 static void do_noflush_start(struct work_struct *ws) 2508 { 2509 struct noflush_work *w = to_noflush(ws); 2510 2511 w->tc->requeue_mode = true; 2512 requeue_io(w->tc); 2513 pool_work_complete(&w->pw); 2514 } 2515 2516 static void do_noflush_stop(struct work_struct *ws) 2517 { 2518 struct noflush_work *w = to_noflush(ws); 2519 2520 w->tc->requeue_mode = false; 2521 pool_work_complete(&w->pw); 2522 } 2523 2524 static void noflush_work(struct thin_c *tc, void (*fn)(struct work_struct *)) 2525 { 2526 struct noflush_work w; 2527 2528 w.tc = tc; 2529 pool_work_wait(&w.pw, tc->pool, fn); 2530 } 2531 2532 /*----------------------------------------------------------------*/ 2533 2534 static void set_discard_callbacks(struct pool *pool) 2535 { 2536 struct pool_c *pt = pool->ti->private; 2537 2538 if (pt->adjusted_pf.discard_passdown) { 2539 pool->process_discard_cell = process_discard_cell_passdown; 2540 pool->process_prepared_discard = process_prepared_discard_passdown_pt1; 2541 pool->process_prepared_discard_pt2 = process_prepared_discard_passdown_pt2; 2542 } else { 2543 pool->process_discard_cell = process_discard_cell_no_passdown; 2544 pool->process_prepared_discard = process_prepared_discard_no_passdown; 2545 } 2546 } 2547 2548 static void set_pool_mode(struct pool *pool, enum pool_mode new_mode) 2549 { 2550 struct pool_c *pt = pool->ti->private; 2551 bool needs_check = dm_pool_metadata_needs_check(pool->pmd); 2552 enum pool_mode old_mode = get_pool_mode(pool); 2553 unsigned long no_space_timeout = READ_ONCE(no_space_timeout_secs) * HZ; 2554 2555 /* 2556 * Never allow the pool to transition to PM_WRITE mode if user 2557 * intervention is required to verify metadata and data consistency. 2558 */ 2559 if (new_mode == PM_WRITE && needs_check) { 2560 DMERR("%s: unable to switch pool to write mode until repaired.", 2561 dm_device_name(pool->pool_md)); 2562 if (old_mode != new_mode) 2563 new_mode = old_mode; 2564 else 2565 new_mode = PM_READ_ONLY; 2566 } 2567 /* 2568 * If we were in PM_FAIL mode, rollback of metadata failed. We're 2569 * not going to recover without a thin_repair. So we never let the 2570 * pool move out of the old mode. 2571 */ 2572 if (old_mode == PM_FAIL) 2573 new_mode = old_mode; 2574 2575 switch (new_mode) { 2576 case PM_FAIL: 2577 dm_pool_metadata_read_only(pool->pmd); 2578 pool->process_bio = process_bio_fail; 2579 pool->process_discard = process_bio_fail; 2580 pool->process_cell = process_cell_fail; 2581 pool->process_discard_cell = process_cell_fail; 2582 pool->process_prepared_mapping = process_prepared_mapping_fail; 2583 pool->process_prepared_discard = process_prepared_discard_fail; 2584 2585 error_retry_list(pool); 2586 break; 2587 2588 case PM_OUT_OF_METADATA_SPACE: 2589 case PM_READ_ONLY: 2590 dm_pool_metadata_read_only(pool->pmd); 2591 pool->process_bio = process_bio_read_only; 2592 pool->process_discard = process_bio_success; 2593 pool->process_cell = process_cell_read_only; 2594 pool->process_discard_cell = process_cell_success; 2595 pool->process_prepared_mapping = process_prepared_mapping_fail; 2596 pool->process_prepared_discard = process_prepared_discard_success; 2597 2598 error_retry_list(pool); 2599 break; 2600 2601 case PM_OUT_OF_DATA_SPACE: 2602 /* 2603 * Ideally we'd never hit this state; the low water mark 2604 * would trigger userland to extend the pool before we 2605 * completely run out of data space. However, many small 2606 * IOs to unprovisioned space can consume data space at an 2607 * alarming rate. Adjust your low water mark if you're 2608 * frequently seeing this mode. 2609 */ 2610 pool->out_of_data_space = true; 2611 pool->process_bio = process_bio_read_only; 2612 pool->process_discard = process_discard_bio; 2613 pool->process_cell = process_cell_read_only; 2614 pool->process_prepared_mapping = process_prepared_mapping; 2615 set_discard_callbacks(pool); 2616 2617 if (!pool->pf.error_if_no_space && no_space_timeout) 2618 queue_delayed_work(pool->wq, &pool->no_space_timeout, no_space_timeout); 2619 break; 2620 2621 case PM_WRITE: 2622 if (old_mode == PM_OUT_OF_DATA_SPACE) 2623 cancel_delayed_work_sync(&pool->no_space_timeout); 2624 pool->out_of_data_space = false; 2625 pool->pf.error_if_no_space = pt->requested_pf.error_if_no_space; 2626 dm_pool_metadata_read_write(pool->pmd); 2627 pool->process_bio = process_bio; 2628 pool->process_discard = process_discard_bio; 2629 pool->process_cell = process_cell; 2630 pool->process_prepared_mapping = process_prepared_mapping; 2631 set_discard_callbacks(pool); 2632 break; 2633 } 2634 2635 pool->pf.mode = new_mode; 2636 /* 2637 * The pool mode may have changed, sync it so bind_control_target() 2638 * doesn't cause an unexpected mode transition on resume. 2639 */ 2640 pt->adjusted_pf.mode = new_mode; 2641 2642 if (old_mode != new_mode) 2643 notify_of_pool_mode_change(pool); 2644 } 2645 2646 static void abort_transaction(struct pool *pool) 2647 { 2648 const char *dev_name = dm_device_name(pool->pool_md); 2649 2650 DMERR_LIMIT("%s: aborting current metadata transaction", dev_name); 2651 if (dm_pool_abort_metadata(pool->pmd)) { 2652 DMERR("%s: failed to abort metadata transaction", dev_name); 2653 set_pool_mode(pool, PM_FAIL); 2654 } 2655 2656 if (dm_pool_metadata_set_needs_check(pool->pmd)) { 2657 DMERR("%s: failed to set 'needs_check' flag in metadata", dev_name); 2658 set_pool_mode(pool, PM_FAIL); 2659 } 2660 } 2661 2662 static void metadata_operation_failed(struct pool *pool, const char *op, int r) 2663 { 2664 DMERR_LIMIT("%s: metadata operation '%s' failed: error = %d", 2665 dm_device_name(pool->pool_md), op, r); 2666 2667 abort_transaction(pool); 2668 set_pool_mode(pool, PM_READ_ONLY); 2669 } 2670 2671 /*----------------------------------------------------------------*/ 2672 2673 /* 2674 * Mapping functions. 2675 */ 2676 2677 /* 2678 * Called only while mapping a thin bio to hand it over to the workqueue. 2679 */ 2680 static void thin_defer_bio(struct thin_c *tc, struct bio *bio) 2681 { 2682 struct pool *pool = tc->pool; 2683 2684 spin_lock_irq(&tc->lock); 2685 bio_list_add(&tc->deferred_bio_list, bio); 2686 spin_unlock_irq(&tc->lock); 2687 2688 wake_worker(pool); 2689 } 2690 2691 static void thin_defer_bio_with_throttle(struct thin_c *tc, struct bio *bio) 2692 { 2693 struct pool *pool = tc->pool; 2694 2695 throttle_lock(&pool->throttle); 2696 thin_defer_bio(tc, bio); 2697 throttle_unlock(&pool->throttle); 2698 } 2699 2700 static void thin_defer_cell(struct thin_c *tc, struct dm_bio_prison_cell *cell) 2701 { 2702 struct pool *pool = tc->pool; 2703 2704 throttle_lock(&pool->throttle); 2705 spin_lock_irq(&tc->lock); 2706 list_add_tail(&cell->user_list, &tc->deferred_cells); 2707 spin_unlock_irq(&tc->lock); 2708 throttle_unlock(&pool->throttle); 2709 2710 wake_worker(pool); 2711 } 2712 2713 static void thin_hook_bio(struct thin_c *tc, struct bio *bio) 2714 { 2715 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook)); 2716 2717 h->tc = tc; 2718 h->shared_read_entry = NULL; 2719 h->all_io_entry = NULL; 2720 h->overwrite_mapping = NULL; 2721 h->cell = NULL; 2722 } 2723 2724 /* 2725 * Non-blocking function called from the thin target's map function. 2726 */ 2727 static int thin_bio_map(struct dm_target *ti, struct bio *bio) 2728 { 2729 int r; 2730 struct thin_c *tc = ti->private; 2731 dm_block_t block = get_bio_block(tc, bio); 2732 struct dm_thin_device *td = tc->td; 2733 struct dm_thin_lookup_result result; 2734 struct dm_bio_prison_cell *virt_cell, *data_cell; 2735 struct dm_cell_key key; 2736 2737 thin_hook_bio(tc, bio); 2738 2739 if (tc->requeue_mode) { 2740 bio->bi_status = BLK_STS_DM_REQUEUE; 2741 bio_endio(bio); 2742 return DM_MAPIO_SUBMITTED; 2743 } 2744 2745 if (get_pool_mode(tc->pool) == PM_FAIL) { 2746 bio_io_error(bio); 2747 return DM_MAPIO_SUBMITTED; 2748 } 2749 2750 if (op_is_flush(bio->bi_opf) || bio_op(bio) == REQ_OP_DISCARD) { 2751 thin_defer_bio_with_throttle(tc, bio); 2752 return DM_MAPIO_SUBMITTED; 2753 } 2754 2755 /* 2756 * We must hold the virtual cell before doing the lookup, otherwise 2757 * there's a race with discard. 2758 */ 2759 build_virtual_key(tc->td, block, &key); 2760 if (bio_detain(tc->pool, &key, bio, &virt_cell)) 2761 return DM_MAPIO_SUBMITTED; 2762 2763 r = dm_thin_find_block(td, block, 0, &result); 2764 2765 /* 2766 * Note that we defer readahead too. 2767 */ 2768 switch (r) { 2769 case 0: 2770 if (unlikely(result.shared)) { 2771 /* 2772 * We have a race condition here between the 2773 * result.shared value returned by the lookup and 2774 * snapshot creation, which may cause new 2775 * sharing. 2776 * 2777 * To avoid this always quiesce the origin before 2778 * taking the snap. You want to do this anyway to 2779 * ensure a consistent application view 2780 * (i.e. lockfs). 2781 * 2782 * More distant ancestors are irrelevant. The 2783 * shared flag will be set in their case. 2784 */ 2785 thin_defer_cell(tc, virt_cell); 2786 return DM_MAPIO_SUBMITTED; 2787 } 2788 2789 build_data_key(tc->td, result.block, &key); 2790 if (bio_detain(tc->pool, &key, bio, &data_cell)) { 2791 cell_defer_no_holder(tc, virt_cell); 2792 return DM_MAPIO_SUBMITTED; 2793 } 2794 2795 inc_all_io_entry(tc->pool, bio); 2796 cell_defer_no_holder(tc, data_cell); 2797 cell_defer_no_holder(tc, virt_cell); 2798 2799 remap(tc, bio, result.block); 2800 return DM_MAPIO_REMAPPED; 2801 2802 case -ENODATA: 2803 case -EWOULDBLOCK: 2804 thin_defer_cell(tc, virt_cell); 2805 return DM_MAPIO_SUBMITTED; 2806 2807 default: 2808 /* 2809 * Must always call bio_io_error on failure. 2810 * dm_thin_find_block can fail with -EINVAL if the 2811 * pool is switched to fail-io mode. 2812 */ 2813 bio_io_error(bio); 2814 cell_defer_no_holder(tc, virt_cell); 2815 return DM_MAPIO_SUBMITTED; 2816 } 2817 } 2818 2819 static void requeue_bios(struct pool *pool) 2820 { 2821 struct thin_c *tc; 2822 2823 rcu_read_lock(); 2824 list_for_each_entry_rcu(tc, &pool->active_thins, list) { 2825 spin_lock_irq(&tc->lock); 2826 bio_list_merge(&tc->deferred_bio_list, &tc->retry_on_resume_list); 2827 bio_list_init(&tc->retry_on_resume_list); 2828 spin_unlock_irq(&tc->lock); 2829 } 2830 rcu_read_unlock(); 2831 } 2832 2833 /* 2834 *-------------------------------------------------------------- 2835 * Binding of control targets to a pool object 2836 *-------------------------------------------------------------- 2837 */ 2838 static bool is_factor(sector_t block_size, uint32_t n) 2839 { 2840 return !sector_div(block_size, n); 2841 } 2842 2843 /* 2844 * If discard_passdown was enabled verify that the data device 2845 * supports discards. Disable discard_passdown if not. 2846 */ 2847 static void disable_discard_passdown_if_not_supported(struct pool_c *pt) 2848 { 2849 struct pool *pool = pt->pool; 2850 struct block_device *data_bdev = pt->data_dev->bdev; 2851 struct queue_limits *data_limits = &bdev_get_queue(data_bdev)->limits; 2852 const char *reason = NULL; 2853 2854 if (!pt->adjusted_pf.discard_passdown) 2855 return; 2856 2857 if (!bdev_max_discard_sectors(pt->data_dev->bdev)) 2858 reason = "discard unsupported"; 2859 2860 else if (data_limits->max_discard_sectors < pool->sectors_per_block) 2861 reason = "max discard sectors smaller than a block"; 2862 2863 if (reason) { 2864 DMWARN("Data device (%pg) %s: Disabling discard passdown.", data_bdev, reason); 2865 pt->adjusted_pf.discard_passdown = false; 2866 } 2867 } 2868 2869 static int bind_control_target(struct pool *pool, struct dm_target *ti) 2870 { 2871 struct pool_c *pt = ti->private; 2872 2873 /* 2874 * We want to make sure that a pool in PM_FAIL mode is never upgraded. 2875 */ 2876 enum pool_mode old_mode = get_pool_mode(pool); 2877 enum pool_mode new_mode = pt->adjusted_pf.mode; 2878 2879 /* 2880 * Don't change the pool's mode until set_pool_mode() below. 2881 * Otherwise the pool's process_* function pointers may 2882 * not match the desired pool mode. 2883 */ 2884 pt->adjusted_pf.mode = old_mode; 2885 2886 pool->ti = ti; 2887 pool->pf = pt->adjusted_pf; 2888 pool->low_water_blocks = pt->low_water_blocks; 2889 2890 set_pool_mode(pool, new_mode); 2891 2892 return 0; 2893 } 2894 2895 static void unbind_control_target(struct pool *pool, struct dm_target *ti) 2896 { 2897 if (pool->ti == ti) 2898 pool->ti = NULL; 2899 } 2900 2901 /* 2902 *-------------------------------------------------------------- 2903 * Pool creation 2904 *-------------------------------------------------------------- 2905 */ 2906 /* Initialize pool features. */ 2907 static void pool_features_init(struct pool_features *pf) 2908 { 2909 pf->mode = PM_WRITE; 2910 pf->zero_new_blocks = true; 2911 pf->discard_enabled = true; 2912 pf->discard_passdown = true; 2913 pf->error_if_no_space = false; 2914 } 2915 2916 static void __pool_destroy(struct pool *pool) 2917 { 2918 __pool_table_remove(pool); 2919 2920 vfree(pool->cell_sort_array); 2921 if (dm_pool_metadata_close(pool->pmd) < 0) 2922 DMWARN("%s: dm_pool_metadata_close() failed.", __func__); 2923 2924 dm_bio_prison_destroy(pool->prison); 2925 dm_kcopyd_client_destroy(pool->copier); 2926 2927 cancel_delayed_work_sync(&pool->waker); 2928 cancel_delayed_work_sync(&pool->no_space_timeout); 2929 if (pool->wq) 2930 destroy_workqueue(pool->wq); 2931 2932 if (pool->next_mapping) 2933 mempool_free(pool->next_mapping, &pool->mapping_pool); 2934 mempool_exit(&pool->mapping_pool); 2935 dm_deferred_set_destroy(pool->shared_read_ds); 2936 dm_deferred_set_destroy(pool->all_io_ds); 2937 kfree(pool); 2938 } 2939 2940 static struct kmem_cache *_new_mapping_cache; 2941 2942 static struct pool *pool_create(struct mapped_device *pool_md, 2943 struct block_device *metadata_dev, 2944 struct block_device *data_dev, 2945 unsigned long block_size, 2946 int read_only, char **error) 2947 { 2948 int r; 2949 void *err_p; 2950 struct pool *pool; 2951 struct dm_pool_metadata *pmd; 2952 bool format_device = read_only ? false : true; 2953 2954 pmd = dm_pool_metadata_open(metadata_dev, block_size, format_device); 2955 if (IS_ERR(pmd)) { 2956 *error = "Error creating metadata object"; 2957 return (struct pool *)pmd; 2958 } 2959 2960 pool = kzalloc(sizeof(*pool), GFP_KERNEL); 2961 if (!pool) { 2962 *error = "Error allocating memory for pool"; 2963 err_p = ERR_PTR(-ENOMEM); 2964 goto bad_pool; 2965 } 2966 2967 pool->pmd = pmd; 2968 pool->sectors_per_block = block_size; 2969 if (block_size & (block_size - 1)) 2970 pool->sectors_per_block_shift = -1; 2971 else 2972 pool->sectors_per_block_shift = __ffs(block_size); 2973 pool->low_water_blocks = 0; 2974 pool_features_init(&pool->pf); 2975 pool->prison = dm_bio_prison_create(); 2976 if (!pool->prison) { 2977 *error = "Error creating pool's bio prison"; 2978 err_p = ERR_PTR(-ENOMEM); 2979 goto bad_prison; 2980 } 2981 2982 pool->copier = dm_kcopyd_client_create(&dm_kcopyd_throttle); 2983 if (IS_ERR(pool->copier)) { 2984 r = PTR_ERR(pool->copier); 2985 *error = "Error creating pool's kcopyd client"; 2986 err_p = ERR_PTR(r); 2987 goto bad_kcopyd_client; 2988 } 2989 2990 /* 2991 * Create singlethreaded workqueue that will service all devices 2992 * that use this metadata. 2993 */ 2994 pool->wq = alloc_ordered_workqueue("dm-" DM_MSG_PREFIX, WQ_MEM_RECLAIM); 2995 if (!pool->wq) { 2996 *error = "Error creating pool's workqueue"; 2997 err_p = ERR_PTR(-ENOMEM); 2998 goto bad_wq; 2999 } 3000 3001 throttle_init(&pool->throttle); 3002 INIT_WORK(&pool->worker, do_worker); 3003 INIT_DELAYED_WORK(&pool->waker, do_waker); 3004 INIT_DELAYED_WORK(&pool->no_space_timeout, do_no_space_timeout); 3005 spin_lock_init(&pool->lock); 3006 bio_list_init(&pool->deferred_flush_bios); 3007 bio_list_init(&pool->deferred_flush_completions); 3008 INIT_LIST_HEAD(&pool->prepared_mappings); 3009 INIT_LIST_HEAD(&pool->prepared_discards); 3010 INIT_LIST_HEAD(&pool->prepared_discards_pt2); 3011 INIT_LIST_HEAD(&pool->active_thins); 3012 pool->low_water_triggered = false; 3013 pool->suspended = true; 3014 pool->out_of_data_space = false; 3015 3016 pool->shared_read_ds = dm_deferred_set_create(); 3017 if (!pool->shared_read_ds) { 3018 *error = "Error creating pool's shared read deferred set"; 3019 err_p = ERR_PTR(-ENOMEM); 3020 goto bad_shared_read_ds; 3021 } 3022 3023 pool->all_io_ds = dm_deferred_set_create(); 3024 if (!pool->all_io_ds) { 3025 *error = "Error creating pool's all io deferred set"; 3026 err_p = ERR_PTR(-ENOMEM); 3027 goto bad_all_io_ds; 3028 } 3029 3030 pool->next_mapping = NULL; 3031 r = mempool_init_slab_pool(&pool->mapping_pool, MAPPING_POOL_SIZE, 3032 _new_mapping_cache); 3033 if (r) { 3034 *error = "Error creating pool's mapping mempool"; 3035 err_p = ERR_PTR(r); 3036 goto bad_mapping_pool; 3037 } 3038 3039 pool->cell_sort_array = 3040 vmalloc(array_size(CELL_SORT_ARRAY_SIZE, 3041 sizeof(*pool->cell_sort_array))); 3042 if (!pool->cell_sort_array) { 3043 *error = "Error allocating cell sort array"; 3044 err_p = ERR_PTR(-ENOMEM); 3045 goto bad_sort_array; 3046 } 3047 3048 pool->ref_count = 1; 3049 pool->last_commit_jiffies = jiffies; 3050 pool->pool_md = pool_md; 3051 pool->md_dev = metadata_dev; 3052 pool->data_dev = data_dev; 3053 __pool_table_insert(pool); 3054 3055 return pool; 3056 3057 bad_sort_array: 3058 mempool_exit(&pool->mapping_pool); 3059 bad_mapping_pool: 3060 dm_deferred_set_destroy(pool->all_io_ds); 3061 bad_all_io_ds: 3062 dm_deferred_set_destroy(pool->shared_read_ds); 3063 bad_shared_read_ds: 3064 destroy_workqueue(pool->wq); 3065 bad_wq: 3066 dm_kcopyd_client_destroy(pool->copier); 3067 bad_kcopyd_client: 3068 dm_bio_prison_destroy(pool->prison); 3069 bad_prison: 3070 kfree(pool); 3071 bad_pool: 3072 if (dm_pool_metadata_close(pmd)) 3073 DMWARN("%s: dm_pool_metadata_close() failed.", __func__); 3074 3075 return err_p; 3076 } 3077 3078 static void __pool_inc(struct pool *pool) 3079 { 3080 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex)); 3081 pool->ref_count++; 3082 } 3083 3084 static void __pool_dec(struct pool *pool) 3085 { 3086 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex)); 3087 BUG_ON(!pool->ref_count); 3088 if (!--pool->ref_count) 3089 __pool_destroy(pool); 3090 } 3091 3092 static struct pool *__pool_find(struct mapped_device *pool_md, 3093 struct block_device *metadata_dev, 3094 struct block_device *data_dev, 3095 unsigned long block_size, int read_only, 3096 char **error, int *created) 3097 { 3098 struct pool *pool = __pool_table_lookup_metadata_dev(metadata_dev); 3099 3100 if (pool) { 3101 if (pool->pool_md != pool_md) { 3102 *error = "metadata device already in use by a pool"; 3103 return ERR_PTR(-EBUSY); 3104 } 3105 if (pool->data_dev != data_dev) { 3106 *error = "data device already in use by a pool"; 3107 return ERR_PTR(-EBUSY); 3108 } 3109 __pool_inc(pool); 3110 3111 } else { 3112 pool = __pool_table_lookup(pool_md); 3113 if (pool) { 3114 if (pool->md_dev != metadata_dev || pool->data_dev != data_dev) { 3115 *error = "different pool cannot replace a pool"; 3116 return ERR_PTR(-EINVAL); 3117 } 3118 __pool_inc(pool); 3119 3120 } else { 3121 pool = pool_create(pool_md, metadata_dev, data_dev, block_size, read_only, error); 3122 *created = 1; 3123 } 3124 } 3125 3126 return pool; 3127 } 3128 3129 /* 3130 *-------------------------------------------------------------- 3131 * Pool target methods 3132 *-------------------------------------------------------------- 3133 */ 3134 static void pool_dtr(struct dm_target *ti) 3135 { 3136 struct pool_c *pt = ti->private; 3137 3138 mutex_lock(&dm_thin_pool_table.mutex); 3139 3140 unbind_control_target(pt->pool, ti); 3141 __pool_dec(pt->pool); 3142 dm_put_device(ti, pt->metadata_dev); 3143 dm_put_device(ti, pt->data_dev); 3144 kfree(pt); 3145 3146 mutex_unlock(&dm_thin_pool_table.mutex); 3147 } 3148 3149 static int parse_pool_features(struct dm_arg_set *as, struct pool_features *pf, 3150 struct dm_target *ti) 3151 { 3152 int r; 3153 unsigned int argc; 3154 const char *arg_name; 3155 3156 static const struct dm_arg _args[] = { 3157 {0, 4, "Invalid number of pool feature arguments"}, 3158 }; 3159 3160 /* 3161 * No feature arguments supplied. 3162 */ 3163 if (!as->argc) 3164 return 0; 3165 3166 r = dm_read_arg_group(_args, as, &argc, &ti->error); 3167 if (r) 3168 return -EINVAL; 3169 3170 while (argc && !r) { 3171 arg_name = dm_shift_arg(as); 3172 argc--; 3173 3174 if (!strcasecmp(arg_name, "skip_block_zeroing")) 3175 pf->zero_new_blocks = false; 3176 3177 else if (!strcasecmp(arg_name, "ignore_discard")) 3178 pf->discard_enabled = false; 3179 3180 else if (!strcasecmp(arg_name, "no_discard_passdown")) 3181 pf->discard_passdown = false; 3182 3183 else if (!strcasecmp(arg_name, "read_only")) 3184 pf->mode = PM_READ_ONLY; 3185 3186 else if (!strcasecmp(arg_name, "error_if_no_space")) 3187 pf->error_if_no_space = true; 3188 3189 else { 3190 ti->error = "Unrecognised pool feature requested"; 3191 r = -EINVAL; 3192 break; 3193 } 3194 } 3195 3196 return r; 3197 } 3198 3199 static void metadata_low_callback(void *context) 3200 { 3201 struct pool *pool = context; 3202 3203 DMWARN("%s: reached low water mark for metadata device: sending event.", 3204 dm_device_name(pool->pool_md)); 3205 3206 dm_table_event(pool->ti->table); 3207 } 3208 3209 /* 3210 * We need to flush the data device **before** committing the metadata. 3211 * 3212 * This ensures that the data blocks of any newly inserted mappings are 3213 * properly written to non-volatile storage and won't be lost in case of a 3214 * crash. 3215 * 3216 * Failure to do so can result in data corruption in the case of internal or 3217 * external snapshots and in the case of newly provisioned blocks, when block 3218 * zeroing is enabled. 3219 */ 3220 static int metadata_pre_commit_callback(void *context) 3221 { 3222 struct pool *pool = context; 3223 3224 return blkdev_issue_flush(pool->data_dev); 3225 } 3226 3227 static sector_t get_dev_size(struct block_device *bdev) 3228 { 3229 return bdev_nr_sectors(bdev); 3230 } 3231 3232 static void warn_if_metadata_device_too_big(struct block_device *bdev) 3233 { 3234 sector_t metadata_dev_size = get_dev_size(bdev); 3235 3236 if (metadata_dev_size > THIN_METADATA_MAX_SECTORS_WARNING) 3237 DMWARN("Metadata device %pg is larger than %u sectors: excess space will not be used.", 3238 bdev, THIN_METADATA_MAX_SECTORS); 3239 } 3240 3241 static sector_t get_metadata_dev_size(struct block_device *bdev) 3242 { 3243 sector_t metadata_dev_size = get_dev_size(bdev); 3244 3245 if (metadata_dev_size > THIN_METADATA_MAX_SECTORS) 3246 metadata_dev_size = THIN_METADATA_MAX_SECTORS; 3247 3248 return metadata_dev_size; 3249 } 3250 3251 static dm_block_t get_metadata_dev_size_in_blocks(struct block_device *bdev) 3252 { 3253 sector_t metadata_dev_size = get_metadata_dev_size(bdev); 3254 3255 sector_div(metadata_dev_size, THIN_METADATA_BLOCK_SIZE); 3256 3257 return metadata_dev_size; 3258 } 3259 3260 /* 3261 * When a metadata threshold is crossed a dm event is triggered, and 3262 * userland should respond by growing the metadata device. We could let 3263 * userland set the threshold, like we do with the data threshold, but I'm 3264 * not sure they know enough to do this well. 3265 */ 3266 static dm_block_t calc_metadata_threshold(struct pool_c *pt) 3267 { 3268 /* 3269 * 4M is ample for all ops with the possible exception of thin 3270 * device deletion which is harmless if it fails (just retry the 3271 * delete after you've grown the device). 3272 */ 3273 dm_block_t quarter = get_metadata_dev_size_in_blocks(pt->metadata_dev->bdev) / 4; 3274 3275 return min((dm_block_t)1024ULL /* 4M */, quarter); 3276 } 3277 3278 /* 3279 * thin-pool <metadata dev> <data dev> 3280 * <data block size (sectors)> 3281 * <low water mark (blocks)> 3282 * [<#feature args> [<arg>]*] 3283 * 3284 * Optional feature arguments are: 3285 * skip_block_zeroing: skips the zeroing of newly-provisioned blocks. 3286 * ignore_discard: disable discard 3287 * no_discard_passdown: don't pass discards down to the data device 3288 * read_only: Don't allow any changes to be made to the pool metadata. 3289 * error_if_no_space: error IOs, instead of queueing, if no space. 3290 */ 3291 static int pool_ctr(struct dm_target *ti, unsigned int argc, char **argv) 3292 { 3293 int r, pool_created = 0; 3294 struct pool_c *pt; 3295 struct pool *pool; 3296 struct pool_features pf; 3297 struct dm_arg_set as; 3298 struct dm_dev *data_dev; 3299 unsigned long block_size; 3300 dm_block_t low_water_blocks; 3301 struct dm_dev *metadata_dev; 3302 blk_mode_t metadata_mode; 3303 3304 /* 3305 * FIXME Remove validation from scope of lock. 3306 */ 3307 mutex_lock(&dm_thin_pool_table.mutex); 3308 3309 if (argc < 4) { 3310 ti->error = "Invalid argument count"; 3311 r = -EINVAL; 3312 goto out_unlock; 3313 } 3314 3315 as.argc = argc; 3316 as.argv = argv; 3317 3318 /* make sure metadata and data are different devices */ 3319 if (!strcmp(argv[0], argv[1])) { 3320 ti->error = "Error setting metadata or data device"; 3321 r = -EINVAL; 3322 goto out_unlock; 3323 } 3324 3325 /* 3326 * Set default pool features. 3327 */ 3328 pool_features_init(&pf); 3329 3330 dm_consume_args(&as, 4); 3331 r = parse_pool_features(&as, &pf, ti); 3332 if (r) 3333 goto out_unlock; 3334 3335 metadata_mode = BLK_OPEN_READ | 3336 ((pf.mode == PM_READ_ONLY) ? 0 : BLK_OPEN_WRITE); 3337 r = dm_get_device(ti, argv[0], metadata_mode, &metadata_dev); 3338 if (r) { 3339 ti->error = "Error opening metadata block device"; 3340 goto out_unlock; 3341 } 3342 warn_if_metadata_device_too_big(metadata_dev->bdev); 3343 3344 r = dm_get_device(ti, argv[1], BLK_OPEN_READ | BLK_OPEN_WRITE, &data_dev); 3345 if (r) { 3346 ti->error = "Error getting data device"; 3347 goto out_metadata; 3348 } 3349 3350 if (kstrtoul(argv[2], 10, &block_size) || !block_size || 3351 block_size < DATA_DEV_BLOCK_SIZE_MIN_SECTORS || 3352 block_size > DATA_DEV_BLOCK_SIZE_MAX_SECTORS || 3353 block_size & (DATA_DEV_BLOCK_SIZE_MIN_SECTORS - 1)) { 3354 ti->error = "Invalid block size"; 3355 r = -EINVAL; 3356 goto out; 3357 } 3358 3359 if (kstrtoull(argv[3], 10, (unsigned long long *)&low_water_blocks)) { 3360 ti->error = "Invalid low water mark"; 3361 r = -EINVAL; 3362 goto out; 3363 } 3364 3365 pt = kzalloc(sizeof(*pt), GFP_KERNEL); 3366 if (!pt) { 3367 r = -ENOMEM; 3368 goto out; 3369 } 3370 3371 pool = __pool_find(dm_table_get_md(ti->table), metadata_dev->bdev, data_dev->bdev, 3372 block_size, pf.mode == PM_READ_ONLY, &ti->error, &pool_created); 3373 if (IS_ERR(pool)) { 3374 r = PTR_ERR(pool); 3375 goto out_free_pt; 3376 } 3377 3378 /* 3379 * 'pool_created' reflects whether this is the first table load. 3380 * Top level discard support is not allowed to be changed after 3381 * initial load. This would require a pool reload to trigger thin 3382 * device changes. 3383 */ 3384 if (!pool_created && pf.discard_enabled != pool->pf.discard_enabled) { 3385 ti->error = "Discard support cannot be disabled once enabled"; 3386 r = -EINVAL; 3387 goto out_flags_changed; 3388 } 3389 3390 pt->pool = pool; 3391 pt->ti = ti; 3392 pt->metadata_dev = metadata_dev; 3393 pt->data_dev = data_dev; 3394 pt->low_water_blocks = low_water_blocks; 3395 pt->adjusted_pf = pt->requested_pf = pf; 3396 ti->num_flush_bios = 1; 3397 ti->limit_swap_bios = true; 3398 3399 /* 3400 * Only need to enable discards if the pool should pass 3401 * them down to the data device. The thin device's discard 3402 * processing will cause mappings to be removed from the btree. 3403 */ 3404 if (pf.discard_enabled && pf.discard_passdown) { 3405 ti->num_discard_bios = 1; 3406 /* 3407 * Setting 'discards_supported' circumvents the normal 3408 * stacking of discard limits (this keeps the pool and 3409 * thin devices' discard limits consistent). 3410 */ 3411 ti->discards_supported = true; 3412 ti->max_discard_granularity = true; 3413 } 3414 ti->private = pt; 3415 3416 r = dm_pool_register_metadata_threshold(pt->pool->pmd, 3417 calc_metadata_threshold(pt), 3418 metadata_low_callback, 3419 pool); 3420 if (r) { 3421 ti->error = "Error registering metadata threshold"; 3422 goto out_flags_changed; 3423 } 3424 3425 dm_pool_register_pre_commit_callback(pool->pmd, 3426 metadata_pre_commit_callback, pool); 3427 3428 mutex_unlock(&dm_thin_pool_table.mutex); 3429 3430 return 0; 3431 3432 out_flags_changed: 3433 __pool_dec(pool); 3434 out_free_pt: 3435 kfree(pt); 3436 out: 3437 dm_put_device(ti, data_dev); 3438 out_metadata: 3439 dm_put_device(ti, metadata_dev); 3440 out_unlock: 3441 mutex_unlock(&dm_thin_pool_table.mutex); 3442 3443 return r; 3444 } 3445 3446 static int pool_map(struct dm_target *ti, struct bio *bio) 3447 { 3448 struct pool_c *pt = ti->private; 3449 struct pool *pool = pt->pool; 3450 3451 /* 3452 * As this is a singleton target, ti->begin is always zero. 3453 */ 3454 spin_lock_irq(&pool->lock); 3455 bio_set_dev(bio, pt->data_dev->bdev); 3456 spin_unlock_irq(&pool->lock); 3457 3458 return DM_MAPIO_REMAPPED; 3459 } 3460 3461 static int maybe_resize_data_dev(struct dm_target *ti, bool *need_commit) 3462 { 3463 int r; 3464 struct pool_c *pt = ti->private; 3465 struct pool *pool = pt->pool; 3466 sector_t data_size = ti->len; 3467 dm_block_t sb_data_size; 3468 3469 *need_commit = false; 3470 3471 (void) sector_div(data_size, pool->sectors_per_block); 3472 3473 r = dm_pool_get_data_dev_size(pool->pmd, &sb_data_size); 3474 if (r) { 3475 DMERR("%s: failed to retrieve data device size", 3476 dm_device_name(pool->pool_md)); 3477 return r; 3478 } 3479 3480 if (data_size < sb_data_size) { 3481 DMERR("%s: pool target (%llu blocks) too small: expected %llu", 3482 dm_device_name(pool->pool_md), 3483 (unsigned long long)data_size, sb_data_size); 3484 return -EINVAL; 3485 3486 } else if (data_size > sb_data_size) { 3487 if (dm_pool_metadata_needs_check(pool->pmd)) { 3488 DMERR("%s: unable to grow the data device until repaired.", 3489 dm_device_name(pool->pool_md)); 3490 return 0; 3491 } 3492 3493 if (sb_data_size) 3494 DMINFO("%s: growing the data device from %llu to %llu blocks", 3495 dm_device_name(pool->pool_md), 3496 sb_data_size, (unsigned long long)data_size); 3497 r = dm_pool_resize_data_dev(pool->pmd, data_size); 3498 if (r) { 3499 metadata_operation_failed(pool, "dm_pool_resize_data_dev", r); 3500 return r; 3501 } 3502 3503 *need_commit = true; 3504 } 3505 3506 return 0; 3507 } 3508 3509 static int maybe_resize_metadata_dev(struct dm_target *ti, bool *need_commit) 3510 { 3511 int r; 3512 struct pool_c *pt = ti->private; 3513 struct pool *pool = pt->pool; 3514 dm_block_t metadata_dev_size, sb_metadata_dev_size; 3515 3516 *need_commit = false; 3517 3518 metadata_dev_size = get_metadata_dev_size_in_blocks(pool->md_dev); 3519 3520 r = dm_pool_get_metadata_dev_size(pool->pmd, &sb_metadata_dev_size); 3521 if (r) { 3522 DMERR("%s: failed to retrieve metadata device size", 3523 dm_device_name(pool->pool_md)); 3524 return r; 3525 } 3526 3527 if (metadata_dev_size < sb_metadata_dev_size) { 3528 DMERR("%s: metadata device (%llu blocks) too small: expected %llu", 3529 dm_device_name(pool->pool_md), 3530 metadata_dev_size, sb_metadata_dev_size); 3531 return -EINVAL; 3532 3533 } else if (metadata_dev_size > sb_metadata_dev_size) { 3534 if (dm_pool_metadata_needs_check(pool->pmd)) { 3535 DMERR("%s: unable to grow the metadata device until repaired.", 3536 dm_device_name(pool->pool_md)); 3537 return 0; 3538 } 3539 3540 warn_if_metadata_device_too_big(pool->md_dev); 3541 DMINFO("%s: growing the metadata device from %llu to %llu blocks", 3542 dm_device_name(pool->pool_md), 3543 sb_metadata_dev_size, metadata_dev_size); 3544 3545 if (get_pool_mode(pool) == PM_OUT_OF_METADATA_SPACE) 3546 set_pool_mode(pool, PM_WRITE); 3547 3548 r = dm_pool_resize_metadata_dev(pool->pmd, metadata_dev_size); 3549 if (r) { 3550 metadata_operation_failed(pool, "dm_pool_resize_metadata_dev", r); 3551 return r; 3552 } 3553 3554 *need_commit = true; 3555 } 3556 3557 return 0; 3558 } 3559 3560 /* 3561 * Retrieves the number of blocks of the data device from 3562 * the superblock and compares it to the actual device size, 3563 * thus resizing the data device in case it has grown. 3564 * 3565 * This both copes with opening preallocated data devices in the ctr 3566 * being followed by a resume 3567 * -and- 3568 * calling the resume method individually after userspace has 3569 * grown the data device in reaction to a table event. 3570 */ 3571 static int pool_preresume(struct dm_target *ti) 3572 { 3573 int r; 3574 bool need_commit1, need_commit2; 3575 struct pool_c *pt = ti->private; 3576 struct pool *pool = pt->pool; 3577 3578 /* 3579 * Take control of the pool object. 3580 */ 3581 r = bind_control_target(pool, ti); 3582 if (r) 3583 goto out; 3584 3585 r = maybe_resize_data_dev(ti, &need_commit1); 3586 if (r) 3587 goto out; 3588 3589 r = maybe_resize_metadata_dev(ti, &need_commit2); 3590 if (r) 3591 goto out; 3592 3593 if (need_commit1 || need_commit2) 3594 (void) commit(pool); 3595 out: 3596 /* 3597 * When a thin-pool is PM_FAIL, it cannot be rebuilt if 3598 * bio is in deferred list. Therefore need to return 0 3599 * to allow pool_resume() to flush IO. 3600 */ 3601 if (r && get_pool_mode(pool) == PM_FAIL) 3602 r = 0; 3603 3604 return r; 3605 } 3606 3607 static void pool_suspend_active_thins(struct pool *pool) 3608 { 3609 struct thin_c *tc; 3610 3611 /* Suspend all active thin devices */ 3612 tc = get_first_thin(pool); 3613 while (tc) { 3614 dm_internal_suspend_noflush(tc->thin_md); 3615 tc = get_next_thin(pool, tc); 3616 } 3617 } 3618 3619 static void pool_resume_active_thins(struct pool *pool) 3620 { 3621 struct thin_c *tc; 3622 3623 /* Resume all active thin devices */ 3624 tc = get_first_thin(pool); 3625 while (tc) { 3626 dm_internal_resume(tc->thin_md); 3627 tc = get_next_thin(pool, tc); 3628 } 3629 } 3630 3631 static void pool_resume(struct dm_target *ti) 3632 { 3633 struct pool_c *pt = ti->private; 3634 struct pool *pool = pt->pool; 3635 3636 /* 3637 * Must requeue active_thins' bios and then resume 3638 * active_thins _before_ clearing 'suspend' flag. 3639 */ 3640 requeue_bios(pool); 3641 pool_resume_active_thins(pool); 3642 3643 spin_lock_irq(&pool->lock); 3644 pool->low_water_triggered = false; 3645 pool->suspended = false; 3646 spin_unlock_irq(&pool->lock); 3647 3648 do_waker(&pool->waker.work); 3649 } 3650 3651 static void pool_presuspend(struct dm_target *ti) 3652 { 3653 struct pool_c *pt = ti->private; 3654 struct pool *pool = pt->pool; 3655 3656 spin_lock_irq(&pool->lock); 3657 pool->suspended = true; 3658 spin_unlock_irq(&pool->lock); 3659 3660 pool_suspend_active_thins(pool); 3661 } 3662 3663 static void pool_presuspend_undo(struct dm_target *ti) 3664 { 3665 struct pool_c *pt = ti->private; 3666 struct pool *pool = pt->pool; 3667 3668 pool_resume_active_thins(pool); 3669 3670 spin_lock_irq(&pool->lock); 3671 pool->suspended = false; 3672 spin_unlock_irq(&pool->lock); 3673 } 3674 3675 static void pool_postsuspend(struct dm_target *ti) 3676 { 3677 struct pool_c *pt = ti->private; 3678 struct pool *pool = pt->pool; 3679 3680 cancel_delayed_work_sync(&pool->waker); 3681 cancel_delayed_work_sync(&pool->no_space_timeout); 3682 flush_workqueue(pool->wq); 3683 (void) commit(pool); 3684 } 3685 3686 static int check_arg_count(unsigned int argc, unsigned int args_required) 3687 { 3688 if (argc != args_required) { 3689 DMWARN("Message received with %u arguments instead of %u.", 3690 argc, args_required); 3691 return -EINVAL; 3692 } 3693 3694 return 0; 3695 } 3696 3697 static int read_dev_id(char *arg, dm_thin_id *dev_id, int warning) 3698 { 3699 if (!kstrtoull(arg, 10, (unsigned long long *)dev_id) && 3700 *dev_id <= MAX_DEV_ID) 3701 return 0; 3702 3703 if (warning) 3704 DMWARN("Message received with invalid device id: %s", arg); 3705 3706 return -EINVAL; 3707 } 3708 3709 static int process_create_thin_mesg(unsigned int argc, char **argv, struct pool *pool) 3710 { 3711 dm_thin_id dev_id; 3712 int r; 3713 3714 r = check_arg_count(argc, 2); 3715 if (r) 3716 return r; 3717 3718 r = read_dev_id(argv[1], &dev_id, 1); 3719 if (r) 3720 return r; 3721 3722 r = dm_pool_create_thin(pool->pmd, dev_id); 3723 if (r) { 3724 DMWARN("Creation of new thinly-provisioned device with id %s failed.", 3725 argv[1]); 3726 return r; 3727 } 3728 3729 return 0; 3730 } 3731 3732 static int process_create_snap_mesg(unsigned int argc, char **argv, struct pool *pool) 3733 { 3734 dm_thin_id dev_id; 3735 dm_thin_id origin_dev_id; 3736 int r; 3737 3738 r = check_arg_count(argc, 3); 3739 if (r) 3740 return r; 3741 3742 r = read_dev_id(argv[1], &dev_id, 1); 3743 if (r) 3744 return r; 3745 3746 r = read_dev_id(argv[2], &origin_dev_id, 1); 3747 if (r) 3748 return r; 3749 3750 r = dm_pool_create_snap(pool->pmd, dev_id, origin_dev_id); 3751 if (r) { 3752 DMWARN("Creation of new snapshot %s of device %s failed.", 3753 argv[1], argv[2]); 3754 return r; 3755 } 3756 3757 return 0; 3758 } 3759 3760 static int process_delete_mesg(unsigned int argc, char **argv, struct pool *pool) 3761 { 3762 dm_thin_id dev_id; 3763 int r; 3764 3765 r = check_arg_count(argc, 2); 3766 if (r) 3767 return r; 3768 3769 r = read_dev_id(argv[1], &dev_id, 1); 3770 if (r) 3771 return r; 3772 3773 r = dm_pool_delete_thin_device(pool->pmd, dev_id); 3774 if (r) 3775 DMWARN("Deletion of thin device %s failed.", argv[1]); 3776 3777 return r; 3778 } 3779 3780 static int process_set_transaction_id_mesg(unsigned int argc, char **argv, struct pool *pool) 3781 { 3782 dm_thin_id old_id, new_id; 3783 int r; 3784 3785 r = check_arg_count(argc, 3); 3786 if (r) 3787 return r; 3788 3789 if (kstrtoull(argv[1], 10, (unsigned long long *)&old_id)) { 3790 DMWARN("set_transaction_id message: Unrecognised id %s.", argv[1]); 3791 return -EINVAL; 3792 } 3793 3794 if (kstrtoull(argv[2], 10, (unsigned long long *)&new_id)) { 3795 DMWARN("set_transaction_id message: Unrecognised new id %s.", argv[2]); 3796 return -EINVAL; 3797 } 3798 3799 r = dm_pool_set_metadata_transaction_id(pool->pmd, old_id, new_id); 3800 if (r) { 3801 DMWARN("Failed to change transaction id from %s to %s.", 3802 argv[1], argv[2]); 3803 return r; 3804 } 3805 3806 return 0; 3807 } 3808 3809 static int process_reserve_metadata_snap_mesg(unsigned int argc, char **argv, struct pool *pool) 3810 { 3811 int r; 3812 3813 r = check_arg_count(argc, 1); 3814 if (r) 3815 return r; 3816 3817 (void) commit(pool); 3818 3819 r = dm_pool_reserve_metadata_snap(pool->pmd); 3820 if (r) 3821 DMWARN("reserve_metadata_snap message failed."); 3822 3823 return r; 3824 } 3825 3826 static int process_release_metadata_snap_mesg(unsigned int argc, char **argv, struct pool *pool) 3827 { 3828 int r; 3829 3830 r = check_arg_count(argc, 1); 3831 if (r) 3832 return r; 3833 3834 r = dm_pool_release_metadata_snap(pool->pmd); 3835 if (r) 3836 DMWARN("release_metadata_snap message failed."); 3837 3838 return r; 3839 } 3840 3841 /* 3842 * Messages supported: 3843 * create_thin <dev_id> 3844 * create_snap <dev_id> <origin_id> 3845 * delete <dev_id> 3846 * set_transaction_id <current_trans_id> <new_trans_id> 3847 * reserve_metadata_snap 3848 * release_metadata_snap 3849 */ 3850 static int pool_message(struct dm_target *ti, unsigned int argc, char **argv, 3851 char *result, unsigned int maxlen) 3852 { 3853 int r = -EINVAL; 3854 struct pool_c *pt = ti->private; 3855 struct pool *pool = pt->pool; 3856 3857 if (get_pool_mode(pool) >= PM_OUT_OF_METADATA_SPACE) { 3858 DMERR("%s: unable to service pool target messages in READ_ONLY or FAIL mode", 3859 dm_device_name(pool->pool_md)); 3860 return -EOPNOTSUPP; 3861 } 3862 3863 if (!strcasecmp(argv[0], "create_thin")) 3864 r = process_create_thin_mesg(argc, argv, pool); 3865 3866 else if (!strcasecmp(argv[0], "create_snap")) 3867 r = process_create_snap_mesg(argc, argv, pool); 3868 3869 else if (!strcasecmp(argv[0], "delete")) 3870 r = process_delete_mesg(argc, argv, pool); 3871 3872 else if (!strcasecmp(argv[0], "set_transaction_id")) 3873 r = process_set_transaction_id_mesg(argc, argv, pool); 3874 3875 else if (!strcasecmp(argv[0], "reserve_metadata_snap")) 3876 r = process_reserve_metadata_snap_mesg(argc, argv, pool); 3877 3878 else if (!strcasecmp(argv[0], "release_metadata_snap")) 3879 r = process_release_metadata_snap_mesg(argc, argv, pool); 3880 3881 else 3882 DMWARN("Unrecognised thin pool target message received: %s", argv[0]); 3883 3884 if (!r) 3885 (void) commit(pool); 3886 3887 return r; 3888 } 3889 3890 static void emit_flags(struct pool_features *pf, char *result, 3891 unsigned int sz, unsigned int maxlen) 3892 { 3893 unsigned int count = !pf->zero_new_blocks + !pf->discard_enabled + 3894 !pf->discard_passdown + (pf->mode == PM_READ_ONLY) + 3895 pf->error_if_no_space; 3896 DMEMIT("%u ", count); 3897 3898 if (!pf->zero_new_blocks) 3899 DMEMIT("skip_block_zeroing "); 3900 3901 if (!pf->discard_enabled) 3902 DMEMIT("ignore_discard "); 3903 3904 if (!pf->discard_passdown) 3905 DMEMIT("no_discard_passdown "); 3906 3907 if (pf->mode == PM_READ_ONLY) 3908 DMEMIT("read_only "); 3909 3910 if (pf->error_if_no_space) 3911 DMEMIT("error_if_no_space "); 3912 } 3913 3914 /* 3915 * Status line is: 3916 * <transaction id> <used metadata sectors>/<total metadata sectors> 3917 * <used data sectors>/<total data sectors> <held metadata root> 3918 * <pool mode> <discard config> <no space config> <needs_check> 3919 */ 3920 static void pool_status(struct dm_target *ti, status_type_t type, 3921 unsigned int status_flags, char *result, unsigned int maxlen) 3922 { 3923 int r; 3924 unsigned int sz = 0; 3925 uint64_t transaction_id; 3926 dm_block_t nr_free_blocks_data; 3927 dm_block_t nr_free_blocks_metadata; 3928 dm_block_t nr_blocks_data; 3929 dm_block_t nr_blocks_metadata; 3930 dm_block_t held_root; 3931 enum pool_mode mode; 3932 char buf[BDEVNAME_SIZE]; 3933 char buf2[BDEVNAME_SIZE]; 3934 struct pool_c *pt = ti->private; 3935 struct pool *pool = pt->pool; 3936 3937 switch (type) { 3938 case STATUSTYPE_INFO: 3939 if (get_pool_mode(pool) == PM_FAIL) { 3940 DMEMIT("Fail"); 3941 break; 3942 } 3943 3944 /* Commit to ensure statistics aren't out-of-date */ 3945 if (!(status_flags & DM_STATUS_NOFLUSH_FLAG) && !dm_suspended(ti)) 3946 (void) commit(pool); 3947 3948 r = dm_pool_get_metadata_transaction_id(pool->pmd, &transaction_id); 3949 if (r) { 3950 DMERR("%s: dm_pool_get_metadata_transaction_id returned %d", 3951 dm_device_name(pool->pool_md), r); 3952 goto err; 3953 } 3954 3955 r = dm_pool_get_free_metadata_block_count(pool->pmd, &nr_free_blocks_metadata); 3956 if (r) { 3957 DMERR("%s: dm_pool_get_free_metadata_block_count returned %d", 3958 dm_device_name(pool->pool_md), r); 3959 goto err; 3960 } 3961 3962 r = dm_pool_get_metadata_dev_size(pool->pmd, &nr_blocks_metadata); 3963 if (r) { 3964 DMERR("%s: dm_pool_get_metadata_dev_size returned %d", 3965 dm_device_name(pool->pool_md), r); 3966 goto err; 3967 } 3968 3969 r = dm_pool_get_free_block_count(pool->pmd, &nr_free_blocks_data); 3970 if (r) { 3971 DMERR("%s: dm_pool_get_free_block_count returned %d", 3972 dm_device_name(pool->pool_md), r); 3973 goto err; 3974 } 3975 3976 r = dm_pool_get_data_dev_size(pool->pmd, &nr_blocks_data); 3977 if (r) { 3978 DMERR("%s: dm_pool_get_data_dev_size returned %d", 3979 dm_device_name(pool->pool_md), r); 3980 goto err; 3981 } 3982 3983 r = dm_pool_get_metadata_snap(pool->pmd, &held_root); 3984 if (r) { 3985 DMERR("%s: dm_pool_get_metadata_snap returned %d", 3986 dm_device_name(pool->pool_md), r); 3987 goto err; 3988 } 3989 3990 DMEMIT("%llu %llu/%llu %llu/%llu ", 3991 (unsigned long long)transaction_id, 3992 (unsigned long long)(nr_blocks_metadata - nr_free_blocks_metadata), 3993 (unsigned long long)nr_blocks_metadata, 3994 (unsigned long long)(nr_blocks_data - nr_free_blocks_data), 3995 (unsigned long long)nr_blocks_data); 3996 3997 if (held_root) 3998 DMEMIT("%llu ", held_root); 3999 else 4000 DMEMIT("- "); 4001 4002 mode = get_pool_mode(pool); 4003 if (mode == PM_OUT_OF_DATA_SPACE) 4004 DMEMIT("out_of_data_space "); 4005 else if (is_read_only_pool_mode(mode)) 4006 DMEMIT("ro "); 4007 else 4008 DMEMIT("rw "); 4009 4010 if (!pool->pf.discard_enabled) 4011 DMEMIT("ignore_discard "); 4012 else if (pool->pf.discard_passdown) 4013 DMEMIT("discard_passdown "); 4014 else 4015 DMEMIT("no_discard_passdown "); 4016 4017 if (pool->pf.error_if_no_space) 4018 DMEMIT("error_if_no_space "); 4019 else 4020 DMEMIT("queue_if_no_space "); 4021 4022 if (dm_pool_metadata_needs_check(pool->pmd)) 4023 DMEMIT("needs_check "); 4024 else 4025 DMEMIT("- "); 4026 4027 DMEMIT("%llu ", (unsigned long long)calc_metadata_threshold(pt)); 4028 4029 break; 4030 4031 case STATUSTYPE_TABLE: 4032 DMEMIT("%s %s %lu %llu ", 4033 format_dev_t(buf, pt->metadata_dev->bdev->bd_dev), 4034 format_dev_t(buf2, pt->data_dev->bdev->bd_dev), 4035 (unsigned long)pool->sectors_per_block, 4036 (unsigned long long)pt->low_water_blocks); 4037 emit_flags(&pt->requested_pf, result, sz, maxlen); 4038 break; 4039 4040 case STATUSTYPE_IMA: 4041 *result = '\0'; 4042 break; 4043 } 4044 return; 4045 4046 err: 4047 DMEMIT("Error"); 4048 } 4049 4050 static int pool_iterate_devices(struct dm_target *ti, 4051 iterate_devices_callout_fn fn, void *data) 4052 { 4053 struct pool_c *pt = ti->private; 4054 4055 return fn(ti, pt->data_dev, 0, ti->len, data); 4056 } 4057 4058 static void pool_io_hints(struct dm_target *ti, struct queue_limits *limits) 4059 { 4060 struct pool_c *pt = ti->private; 4061 struct pool *pool = pt->pool; 4062 sector_t io_opt_sectors = limits->io_opt >> SECTOR_SHIFT; 4063 4064 /* 4065 * If max_sectors is smaller than pool->sectors_per_block adjust it 4066 * to the highest possible power-of-2 factor of pool->sectors_per_block. 4067 * This is especially beneficial when the pool's data device is a RAID 4068 * device that has a full stripe width that matches pool->sectors_per_block 4069 * -- because even though partial RAID stripe-sized IOs will be issued to a 4070 * single RAID stripe; when aggregated they will end on a full RAID stripe 4071 * boundary.. which avoids additional partial RAID stripe writes cascading 4072 */ 4073 if (limits->max_sectors < pool->sectors_per_block) { 4074 while (!is_factor(pool->sectors_per_block, limits->max_sectors)) { 4075 if ((limits->max_sectors & (limits->max_sectors - 1)) == 0) 4076 limits->max_sectors--; 4077 limits->max_sectors = rounddown_pow_of_two(limits->max_sectors); 4078 } 4079 } 4080 4081 /* 4082 * If the system-determined stacked limits are compatible with the 4083 * pool's blocksize (io_opt is a factor) do not override them. 4084 */ 4085 if (io_opt_sectors < pool->sectors_per_block || 4086 !is_factor(io_opt_sectors, pool->sectors_per_block)) { 4087 if (is_factor(pool->sectors_per_block, limits->max_sectors)) 4088 blk_limits_io_min(limits, limits->max_sectors << SECTOR_SHIFT); 4089 else 4090 blk_limits_io_min(limits, pool->sectors_per_block << SECTOR_SHIFT); 4091 blk_limits_io_opt(limits, pool->sectors_per_block << SECTOR_SHIFT); 4092 } 4093 4094 /* 4095 * pt->adjusted_pf is a staging area for the actual features to use. 4096 * They get transferred to the live pool in bind_control_target() 4097 * called from pool_preresume(). 4098 */ 4099 4100 if (pt->adjusted_pf.discard_enabled) { 4101 disable_discard_passdown_if_not_supported(pt); 4102 if (!pt->adjusted_pf.discard_passdown) 4103 limits->max_discard_sectors = 0; 4104 /* 4105 * The pool uses the same discard limits as the underlying data 4106 * device. DM core has already set this up. 4107 */ 4108 } else { 4109 /* 4110 * Must explicitly disallow stacking discard limits otherwise the 4111 * block layer will stack them if pool's data device has support. 4112 */ 4113 limits->discard_granularity = 0; 4114 } 4115 } 4116 4117 static struct target_type pool_target = { 4118 .name = "thin-pool", 4119 .features = DM_TARGET_SINGLETON | DM_TARGET_ALWAYS_WRITEABLE | 4120 DM_TARGET_IMMUTABLE, 4121 .version = {1, 23, 0}, 4122 .module = THIS_MODULE, 4123 .ctr = pool_ctr, 4124 .dtr = pool_dtr, 4125 .map = pool_map, 4126 .presuspend = pool_presuspend, 4127 .presuspend_undo = pool_presuspend_undo, 4128 .postsuspend = pool_postsuspend, 4129 .preresume = pool_preresume, 4130 .resume = pool_resume, 4131 .message = pool_message, 4132 .status = pool_status, 4133 .iterate_devices = pool_iterate_devices, 4134 .io_hints = pool_io_hints, 4135 }; 4136 4137 /* 4138 *-------------------------------------------------------------- 4139 * Thin target methods 4140 *-------------------------------------------------------------- 4141 */ 4142 static void thin_get(struct thin_c *tc) 4143 { 4144 refcount_inc(&tc->refcount); 4145 } 4146 4147 static void thin_put(struct thin_c *tc) 4148 { 4149 if (refcount_dec_and_test(&tc->refcount)) 4150 complete(&tc->can_destroy); 4151 } 4152 4153 static void thin_dtr(struct dm_target *ti) 4154 { 4155 struct thin_c *tc = ti->private; 4156 4157 spin_lock_irq(&tc->pool->lock); 4158 list_del_rcu(&tc->list); 4159 spin_unlock_irq(&tc->pool->lock); 4160 synchronize_rcu(); 4161 4162 thin_put(tc); 4163 wait_for_completion(&tc->can_destroy); 4164 4165 mutex_lock(&dm_thin_pool_table.mutex); 4166 4167 __pool_dec(tc->pool); 4168 dm_pool_close_thin_device(tc->td); 4169 dm_put_device(ti, tc->pool_dev); 4170 if (tc->origin_dev) 4171 dm_put_device(ti, tc->origin_dev); 4172 kfree(tc); 4173 4174 mutex_unlock(&dm_thin_pool_table.mutex); 4175 } 4176 4177 /* 4178 * Thin target parameters: 4179 * 4180 * <pool_dev> <dev_id> [origin_dev] 4181 * 4182 * pool_dev: the path to the pool (eg, /dev/mapper/my_pool) 4183 * dev_id: the internal device identifier 4184 * origin_dev: a device external to the pool that should act as the origin 4185 * 4186 * If the pool device has discards disabled, they get disabled for the thin 4187 * device as well. 4188 */ 4189 static int thin_ctr(struct dm_target *ti, unsigned int argc, char **argv) 4190 { 4191 int r; 4192 struct thin_c *tc; 4193 struct dm_dev *pool_dev, *origin_dev; 4194 struct mapped_device *pool_md; 4195 4196 mutex_lock(&dm_thin_pool_table.mutex); 4197 4198 if (argc != 2 && argc != 3) { 4199 ti->error = "Invalid argument count"; 4200 r = -EINVAL; 4201 goto out_unlock; 4202 } 4203 4204 tc = ti->private = kzalloc(sizeof(*tc), GFP_KERNEL); 4205 if (!tc) { 4206 ti->error = "Out of memory"; 4207 r = -ENOMEM; 4208 goto out_unlock; 4209 } 4210 tc->thin_md = dm_table_get_md(ti->table); 4211 spin_lock_init(&tc->lock); 4212 INIT_LIST_HEAD(&tc->deferred_cells); 4213 bio_list_init(&tc->deferred_bio_list); 4214 bio_list_init(&tc->retry_on_resume_list); 4215 tc->sort_bio_list = RB_ROOT; 4216 4217 if (argc == 3) { 4218 if (!strcmp(argv[0], argv[2])) { 4219 ti->error = "Error setting origin device"; 4220 r = -EINVAL; 4221 goto bad_origin_dev; 4222 } 4223 4224 r = dm_get_device(ti, argv[2], BLK_OPEN_READ, &origin_dev); 4225 if (r) { 4226 ti->error = "Error opening origin device"; 4227 goto bad_origin_dev; 4228 } 4229 tc->origin_dev = origin_dev; 4230 } 4231 4232 r = dm_get_device(ti, argv[0], dm_table_get_mode(ti->table), &pool_dev); 4233 if (r) { 4234 ti->error = "Error opening pool device"; 4235 goto bad_pool_dev; 4236 } 4237 tc->pool_dev = pool_dev; 4238 4239 if (read_dev_id(argv[1], (unsigned long long *)&tc->dev_id, 0)) { 4240 ti->error = "Invalid device id"; 4241 r = -EINVAL; 4242 goto bad_common; 4243 } 4244 4245 pool_md = dm_get_md(tc->pool_dev->bdev->bd_dev); 4246 if (!pool_md) { 4247 ti->error = "Couldn't get pool mapped device"; 4248 r = -EINVAL; 4249 goto bad_common; 4250 } 4251 4252 tc->pool = __pool_table_lookup(pool_md); 4253 if (!tc->pool) { 4254 ti->error = "Couldn't find pool object"; 4255 r = -EINVAL; 4256 goto bad_pool_lookup; 4257 } 4258 __pool_inc(tc->pool); 4259 4260 if (get_pool_mode(tc->pool) == PM_FAIL) { 4261 ti->error = "Couldn't open thin device, Pool is in fail mode"; 4262 r = -EINVAL; 4263 goto bad_pool; 4264 } 4265 4266 r = dm_pool_open_thin_device(tc->pool->pmd, tc->dev_id, &tc->td); 4267 if (r) { 4268 ti->error = "Couldn't open thin internal device"; 4269 goto bad_pool; 4270 } 4271 4272 r = dm_set_target_max_io_len(ti, tc->pool->sectors_per_block); 4273 if (r) 4274 goto bad; 4275 4276 ti->num_flush_bios = 1; 4277 ti->limit_swap_bios = true; 4278 ti->flush_supported = true; 4279 ti->accounts_remapped_io = true; 4280 ti->per_io_data_size = sizeof(struct dm_thin_endio_hook); 4281 4282 /* In case the pool supports discards, pass them on. */ 4283 if (tc->pool->pf.discard_enabled) { 4284 ti->discards_supported = true; 4285 ti->num_discard_bios = 1; 4286 ti->max_discard_granularity = true; 4287 } 4288 4289 mutex_unlock(&dm_thin_pool_table.mutex); 4290 4291 spin_lock_irq(&tc->pool->lock); 4292 if (tc->pool->suspended) { 4293 spin_unlock_irq(&tc->pool->lock); 4294 mutex_lock(&dm_thin_pool_table.mutex); /* reacquire for __pool_dec */ 4295 ti->error = "Unable to activate thin device while pool is suspended"; 4296 r = -EINVAL; 4297 goto bad; 4298 } 4299 refcount_set(&tc->refcount, 1); 4300 init_completion(&tc->can_destroy); 4301 list_add_tail_rcu(&tc->list, &tc->pool->active_thins); 4302 spin_unlock_irq(&tc->pool->lock); 4303 /* 4304 * This synchronize_rcu() call is needed here otherwise we risk a 4305 * wake_worker() call finding no bios to process (because the newly 4306 * added tc isn't yet visible). So this reduces latency since we 4307 * aren't then dependent on the periodic commit to wake_worker(). 4308 */ 4309 synchronize_rcu(); 4310 4311 dm_put(pool_md); 4312 4313 return 0; 4314 4315 bad: 4316 dm_pool_close_thin_device(tc->td); 4317 bad_pool: 4318 __pool_dec(tc->pool); 4319 bad_pool_lookup: 4320 dm_put(pool_md); 4321 bad_common: 4322 dm_put_device(ti, tc->pool_dev); 4323 bad_pool_dev: 4324 if (tc->origin_dev) 4325 dm_put_device(ti, tc->origin_dev); 4326 bad_origin_dev: 4327 kfree(tc); 4328 out_unlock: 4329 mutex_unlock(&dm_thin_pool_table.mutex); 4330 4331 return r; 4332 } 4333 4334 static int thin_map(struct dm_target *ti, struct bio *bio) 4335 { 4336 bio->bi_iter.bi_sector = dm_target_offset(ti, bio->bi_iter.bi_sector); 4337 4338 return thin_bio_map(ti, bio); 4339 } 4340 4341 static int thin_endio(struct dm_target *ti, struct bio *bio, 4342 blk_status_t *err) 4343 { 4344 unsigned long flags; 4345 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook)); 4346 struct list_head work; 4347 struct dm_thin_new_mapping *m, *tmp; 4348 struct pool *pool = h->tc->pool; 4349 4350 if (h->shared_read_entry) { 4351 INIT_LIST_HEAD(&work); 4352 dm_deferred_entry_dec(h->shared_read_entry, &work); 4353 4354 spin_lock_irqsave(&pool->lock, flags); 4355 list_for_each_entry_safe(m, tmp, &work, list) { 4356 list_del(&m->list); 4357 __complete_mapping_preparation(m); 4358 } 4359 spin_unlock_irqrestore(&pool->lock, flags); 4360 } 4361 4362 if (h->all_io_entry) { 4363 INIT_LIST_HEAD(&work); 4364 dm_deferred_entry_dec(h->all_io_entry, &work); 4365 if (!list_empty(&work)) { 4366 spin_lock_irqsave(&pool->lock, flags); 4367 list_for_each_entry_safe(m, tmp, &work, list) 4368 list_add_tail(&m->list, &pool->prepared_discards); 4369 spin_unlock_irqrestore(&pool->lock, flags); 4370 wake_worker(pool); 4371 } 4372 } 4373 4374 if (h->cell) 4375 cell_defer_no_holder(h->tc, h->cell); 4376 4377 return DM_ENDIO_DONE; 4378 } 4379 4380 static void thin_presuspend(struct dm_target *ti) 4381 { 4382 struct thin_c *tc = ti->private; 4383 4384 if (dm_noflush_suspending(ti)) 4385 noflush_work(tc, do_noflush_start); 4386 } 4387 4388 static void thin_postsuspend(struct dm_target *ti) 4389 { 4390 struct thin_c *tc = ti->private; 4391 4392 /* 4393 * The dm_noflush_suspending flag has been cleared by now, so 4394 * unfortunately we must always run this. 4395 */ 4396 noflush_work(tc, do_noflush_stop); 4397 } 4398 4399 static int thin_preresume(struct dm_target *ti) 4400 { 4401 struct thin_c *tc = ti->private; 4402 4403 if (tc->origin_dev) 4404 tc->origin_size = get_dev_size(tc->origin_dev->bdev); 4405 4406 return 0; 4407 } 4408 4409 /* 4410 * <nr mapped sectors> <highest mapped sector> 4411 */ 4412 static void thin_status(struct dm_target *ti, status_type_t type, 4413 unsigned int status_flags, char *result, unsigned int maxlen) 4414 { 4415 int r; 4416 ssize_t sz = 0; 4417 dm_block_t mapped, highest; 4418 char buf[BDEVNAME_SIZE]; 4419 struct thin_c *tc = ti->private; 4420 4421 if (get_pool_mode(tc->pool) == PM_FAIL) { 4422 DMEMIT("Fail"); 4423 return; 4424 } 4425 4426 if (!tc->td) 4427 DMEMIT("-"); 4428 else { 4429 switch (type) { 4430 case STATUSTYPE_INFO: 4431 r = dm_thin_get_mapped_count(tc->td, &mapped); 4432 if (r) { 4433 DMERR("dm_thin_get_mapped_count returned %d", r); 4434 goto err; 4435 } 4436 4437 r = dm_thin_get_highest_mapped_block(tc->td, &highest); 4438 if (r < 0) { 4439 DMERR("dm_thin_get_highest_mapped_block returned %d", r); 4440 goto err; 4441 } 4442 4443 DMEMIT("%llu ", mapped * tc->pool->sectors_per_block); 4444 if (r) 4445 DMEMIT("%llu", ((highest + 1) * 4446 tc->pool->sectors_per_block) - 1); 4447 else 4448 DMEMIT("-"); 4449 break; 4450 4451 case STATUSTYPE_TABLE: 4452 DMEMIT("%s %lu", 4453 format_dev_t(buf, tc->pool_dev->bdev->bd_dev), 4454 (unsigned long) tc->dev_id); 4455 if (tc->origin_dev) 4456 DMEMIT(" %s", format_dev_t(buf, tc->origin_dev->bdev->bd_dev)); 4457 break; 4458 4459 case STATUSTYPE_IMA: 4460 *result = '\0'; 4461 break; 4462 } 4463 } 4464 4465 return; 4466 4467 err: 4468 DMEMIT("Error"); 4469 } 4470 4471 static int thin_iterate_devices(struct dm_target *ti, 4472 iterate_devices_callout_fn fn, void *data) 4473 { 4474 sector_t blocks; 4475 struct thin_c *tc = ti->private; 4476 struct pool *pool = tc->pool; 4477 4478 /* 4479 * We can't call dm_pool_get_data_dev_size() since that blocks. So 4480 * we follow a more convoluted path through to the pool's target. 4481 */ 4482 if (!pool->ti) 4483 return 0; /* nothing is bound */ 4484 4485 blocks = pool->ti->len; 4486 (void) sector_div(blocks, pool->sectors_per_block); 4487 if (blocks) 4488 return fn(ti, tc->pool_dev, 0, pool->sectors_per_block * blocks, data); 4489 4490 return 0; 4491 } 4492 4493 static void thin_io_hints(struct dm_target *ti, struct queue_limits *limits) 4494 { 4495 struct thin_c *tc = ti->private; 4496 struct pool *pool = tc->pool; 4497 4498 if (pool->pf.discard_enabled) { 4499 limits->discard_granularity = pool->sectors_per_block << SECTOR_SHIFT; 4500 limits->max_discard_sectors = pool->sectors_per_block * BIO_PRISON_MAX_RANGE; 4501 } 4502 } 4503 4504 static struct target_type thin_target = { 4505 .name = "thin", 4506 .version = {1, 23, 0}, 4507 .module = THIS_MODULE, 4508 .ctr = thin_ctr, 4509 .dtr = thin_dtr, 4510 .map = thin_map, 4511 .end_io = thin_endio, 4512 .preresume = thin_preresume, 4513 .presuspend = thin_presuspend, 4514 .postsuspend = thin_postsuspend, 4515 .status = thin_status, 4516 .iterate_devices = thin_iterate_devices, 4517 .io_hints = thin_io_hints, 4518 }; 4519 4520 /*----------------------------------------------------------------*/ 4521 4522 static int __init dm_thin_init(void) 4523 { 4524 int r = -ENOMEM; 4525 4526 pool_table_init(); 4527 4528 _new_mapping_cache = KMEM_CACHE(dm_thin_new_mapping, 0); 4529 if (!_new_mapping_cache) 4530 return r; 4531 4532 r = dm_register_target(&thin_target); 4533 if (r) 4534 goto bad_new_mapping_cache; 4535 4536 r = dm_register_target(&pool_target); 4537 if (r) 4538 goto bad_thin_target; 4539 4540 return 0; 4541 4542 bad_thin_target: 4543 dm_unregister_target(&thin_target); 4544 bad_new_mapping_cache: 4545 kmem_cache_destroy(_new_mapping_cache); 4546 4547 return r; 4548 } 4549 4550 static void dm_thin_exit(void) 4551 { 4552 dm_unregister_target(&thin_target); 4553 dm_unregister_target(&pool_target); 4554 4555 kmem_cache_destroy(_new_mapping_cache); 4556 4557 pool_table_exit(); 4558 } 4559 4560 module_init(dm_thin_init); 4561 module_exit(dm_thin_exit); 4562 4563 module_param_named(no_space_timeout, no_space_timeout_secs, uint, 0644); 4564 MODULE_PARM_DESC(no_space_timeout, "Out of data space queue IO timeout in seconds"); 4565 4566 MODULE_DESCRIPTION(DM_NAME " thin provisioning target"); 4567 MODULE_AUTHOR("Joe Thornber <dm-devel@lists.linux.dev>"); 4568 MODULE_LICENSE("GPL"); 4569