xref: /linux/drivers/md/dm-thin.c (revision 8795a739e5c72abeec51caf36b6df2b37e5720c5)
1 /*
2  * Copyright (C) 2011-2012 Red Hat UK.
3  *
4  * This file is released under the GPL.
5  */
6 
7 #include "dm-thin-metadata.h"
8 #include "dm-bio-prison-v1.h"
9 #include "dm.h"
10 
11 #include <linux/device-mapper.h>
12 #include <linux/dm-io.h>
13 #include <linux/dm-kcopyd.h>
14 #include <linux/jiffies.h>
15 #include <linux/log2.h>
16 #include <linux/list.h>
17 #include <linux/rculist.h>
18 #include <linux/init.h>
19 #include <linux/module.h>
20 #include <linux/slab.h>
21 #include <linux/vmalloc.h>
22 #include <linux/sort.h>
23 #include <linux/rbtree.h>
24 
25 #define	DM_MSG_PREFIX	"thin"
26 
27 /*
28  * Tunable constants
29  */
30 #define ENDIO_HOOK_POOL_SIZE 1024
31 #define MAPPING_POOL_SIZE 1024
32 #define COMMIT_PERIOD HZ
33 #define NO_SPACE_TIMEOUT_SECS 60
34 
35 static unsigned no_space_timeout_secs = NO_SPACE_TIMEOUT_SECS;
36 
37 DECLARE_DM_KCOPYD_THROTTLE_WITH_MODULE_PARM(snapshot_copy_throttle,
38 		"A percentage of time allocated for copy on write");
39 
40 /*
41  * The block size of the device holding pool data must be
42  * between 64KB and 1GB.
43  */
44 #define DATA_DEV_BLOCK_SIZE_MIN_SECTORS (64 * 1024 >> SECTOR_SHIFT)
45 #define DATA_DEV_BLOCK_SIZE_MAX_SECTORS (1024 * 1024 * 1024 >> SECTOR_SHIFT)
46 
47 /*
48  * Device id is restricted to 24 bits.
49  */
50 #define MAX_DEV_ID ((1 << 24) - 1)
51 
52 /*
53  * How do we handle breaking sharing of data blocks?
54  * =================================================
55  *
56  * We use a standard copy-on-write btree to store the mappings for the
57  * devices (note I'm talking about copy-on-write of the metadata here, not
58  * the data).  When you take an internal snapshot you clone the root node
59  * of the origin btree.  After this there is no concept of an origin or a
60  * snapshot.  They are just two device trees that happen to point to the
61  * same data blocks.
62  *
63  * When we get a write in we decide if it's to a shared data block using
64  * some timestamp magic.  If it is, we have to break sharing.
65  *
66  * Let's say we write to a shared block in what was the origin.  The
67  * steps are:
68  *
69  * i) plug io further to this physical block. (see bio_prison code).
70  *
71  * ii) quiesce any read io to that shared data block.  Obviously
72  * including all devices that share this block.  (see dm_deferred_set code)
73  *
74  * iii) copy the data block to a newly allocate block.  This step can be
75  * missed out if the io covers the block. (schedule_copy).
76  *
77  * iv) insert the new mapping into the origin's btree
78  * (process_prepared_mapping).  This act of inserting breaks some
79  * sharing of btree nodes between the two devices.  Breaking sharing only
80  * effects the btree of that specific device.  Btrees for the other
81  * devices that share the block never change.  The btree for the origin
82  * device as it was after the last commit is untouched, ie. we're using
83  * persistent data structures in the functional programming sense.
84  *
85  * v) unplug io to this physical block, including the io that triggered
86  * the breaking of sharing.
87  *
88  * Steps (ii) and (iii) occur in parallel.
89  *
90  * The metadata _doesn't_ need to be committed before the io continues.  We
91  * get away with this because the io is always written to a _new_ block.
92  * If there's a crash, then:
93  *
94  * - The origin mapping will point to the old origin block (the shared
95  * one).  This will contain the data as it was before the io that triggered
96  * the breaking of sharing came in.
97  *
98  * - The snap mapping still points to the old block.  As it would after
99  * the commit.
100  *
101  * The downside of this scheme is the timestamp magic isn't perfect, and
102  * will continue to think that data block in the snapshot device is shared
103  * even after the write to the origin has broken sharing.  I suspect data
104  * blocks will typically be shared by many different devices, so we're
105  * breaking sharing n + 1 times, rather than n, where n is the number of
106  * devices that reference this data block.  At the moment I think the
107  * benefits far, far outweigh the disadvantages.
108  */
109 
110 /*----------------------------------------------------------------*/
111 
112 /*
113  * Key building.
114  */
115 enum lock_space {
116 	VIRTUAL,
117 	PHYSICAL
118 };
119 
120 static void build_key(struct dm_thin_device *td, enum lock_space ls,
121 		      dm_block_t b, dm_block_t e, struct dm_cell_key *key)
122 {
123 	key->virtual = (ls == VIRTUAL);
124 	key->dev = dm_thin_dev_id(td);
125 	key->block_begin = b;
126 	key->block_end = e;
127 }
128 
129 static void build_data_key(struct dm_thin_device *td, dm_block_t b,
130 			   struct dm_cell_key *key)
131 {
132 	build_key(td, PHYSICAL, b, b + 1llu, key);
133 }
134 
135 static void build_virtual_key(struct dm_thin_device *td, dm_block_t b,
136 			      struct dm_cell_key *key)
137 {
138 	build_key(td, VIRTUAL, b, b + 1llu, key);
139 }
140 
141 /*----------------------------------------------------------------*/
142 
143 #define THROTTLE_THRESHOLD (1 * HZ)
144 
145 struct throttle {
146 	struct rw_semaphore lock;
147 	unsigned long threshold;
148 	bool throttle_applied;
149 };
150 
151 static void throttle_init(struct throttle *t)
152 {
153 	init_rwsem(&t->lock);
154 	t->throttle_applied = false;
155 }
156 
157 static void throttle_work_start(struct throttle *t)
158 {
159 	t->threshold = jiffies + THROTTLE_THRESHOLD;
160 }
161 
162 static void throttle_work_update(struct throttle *t)
163 {
164 	if (!t->throttle_applied && jiffies > t->threshold) {
165 		down_write(&t->lock);
166 		t->throttle_applied = true;
167 	}
168 }
169 
170 static void throttle_work_complete(struct throttle *t)
171 {
172 	if (t->throttle_applied) {
173 		t->throttle_applied = false;
174 		up_write(&t->lock);
175 	}
176 }
177 
178 static void throttle_lock(struct throttle *t)
179 {
180 	down_read(&t->lock);
181 }
182 
183 static void throttle_unlock(struct throttle *t)
184 {
185 	up_read(&t->lock);
186 }
187 
188 /*----------------------------------------------------------------*/
189 
190 /*
191  * A pool device ties together a metadata device and a data device.  It
192  * also provides the interface for creating and destroying internal
193  * devices.
194  */
195 struct dm_thin_new_mapping;
196 
197 /*
198  * The pool runs in various modes.  Ordered in degraded order for comparisons.
199  */
200 enum pool_mode {
201 	PM_WRITE,		/* metadata may be changed */
202 	PM_OUT_OF_DATA_SPACE,	/* metadata may be changed, though data may not be allocated */
203 
204 	/*
205 	 * Like READ_ONLY, except may switch back to WRITE on metadata resize. Reported as READ_ONLY.
206 	 */
207 	PM_OUT_OF_METADATA_SPACE,
208 	PM_READ_ONLY,		/* metadata may not be changed */
209 
210 	PM_FAIL,		/* all I/O fails */
211 };
212 
213 struct pool_features {
214 	enum pool_mode mode;
215 
216 	bool zero_new_blocks:1;
217 	bool discard_enabled:1;
218 	bool discard_passdown:1;
219 	bool error_if_no_space:1;
220 };
221 
222 struct thin_c;
223 typedef void (*process_bio_fn)(struct thin_c *tc, struct bio *bio);
224 typedef void (*process_cell_fn)(struct thin_c *tc, struct dm_bio_prison_cell *cell);
225 typedef void (*process_mapping_fn)(struct dm_thin_new_mapping *m);
226 
227 #define CELL_SORT_ARRAY_SIZE 8192
228 
229 struct pool {
230 	struct list_head list;
231 	struct dm_target *ti;	/* Only set if a pool target is bound */
232 
233 	struct mapped_device *pool_md;
234 	struct block_device *md_dev;
235 	struct dm_pool_metadata *pmd;
236 
237 	dm_block_t low_water_blocks;
238 	uint32_t sectors_per_block;
239 	int sectors_per_block_shift;
240 
241 	struct pool_features pf;
242 	bool low_water_triggered:1;	/* A dm event has been sent */
243 	bool suspended:1;
244 	bool out_of_data_space:1;
245 
246 	struct dm_bio_prison *prison;
247 	struct dm_kcopyd_client *copier;
248 
249 	struct work_struct worker;
250 	struct workqueue_struct *wq;
251 	struct throttle throttle;
252 	struct delayed_work waker;
253 	struct delayed_work no_space_timeout;
254 
255 	unsigned long last_commit_jiffies;
256 	unsigned ref_count;
257 
258 	spinlock_t lock;
259 	struct bio_list deferred_flush_bios;
260 	struct bio_list deferred_flush_completions;
261 	struct list_head prepared_mappings;
262 	struct list_head prepared_discards;
263 	struct list_head prepared_discards_pt2;
264 	struct list_head active_thins;
265 
266 	struct dm_deferred_set *shared_read_ds;
267 	struct dm_deferred_set *all_io_ds;
268 
269 	struct dm_thin_new_mapping *next_mapping;
270 
271 	process_bio_fn process_bio;
272 	process_bio_fn process_discard;
273 
274 	process_cell_fn process_cell;
275 	process_cell_fn process_discard_cell;
276 
277 	process_mapping_fn process_prepared_mapping;
278 	process_mapping_fn process_prepared_discard;
279 	process_mapping_fn process_prepared_discard_pt2;
280 
281 	struct dm_bio_prison_cell **cell_sort_array;
282 
283 	mempool_t mapping_pool;
284 };
285 
286 static void metadata_operation_failed(struct pool *pool, const char *op, int r);
287 
288 static enum pool_mode get_pool_mode(struct pool *pool)
289 {
290 	return pool->pf.mode;
291 }
292 
293 static void notify_of_pool_mode_change(struct pool *pool)
294 {
295 	const char *descs[] = {
296 		"write",
297 		"out-of-data-space",
298 		"read-only",
299 		"read-only",
300 		"fail"
301 	};
302 	const char *extra_desc = NULL;
303 	enum pool_mode mode = get_pool_mode(pool);
304 
305 	if (mode == PM_OUT_OF_DATA_SPACE) {
306 		if (!pool->pf.error_if_no_space)
307 			extra_desc = " (queue IO)";
308 		else
309 			extra_desc = " (error IO)";
310 	}
311 
312 	dm_table_event(pool->ti->table);
313 	DMINFO("%s: switching pool to %s%s mode",
314 	       dm_device_name(pool->pool_md),
315 	       descs[(int)mode], extra_desc ? : "");
316 }
317 
318 /*
319  * Target context for a pool.
320  */
321 struct pool_c {
322 	struct dm_target *ti;
323 	struct pool *pool;
324 	struct dm_dev *data_dev;
325 	struct dm_dev *metadata_dev;
326 	struct dm_target_callbacks callbacks;
327 
328 	dm_block_t low_water_blocks;
329 	struct pool_features requested_pf; /* Features requested during table load */
330 	struct pool_features adjusted_pf;  /* Features used after adjusting for constituent devices */
331 };
332 
333 /*
334  * Target context for a thin.
335  */
336 struct thin_c {
337 	struct list_head list;
338 	struct dm_dev *pool_dev;
339 	struct dm_dev *origin_dev;
340 	sector_t origin_size;
341 	dm_thin_id dev_id;
342 
343 	struct pool *pool;
344 	struct dm_thin_device *td;
345 	struct mapped_device *thin_md;
346 
347 	bool requeue_mode:1;
348 	spinlock_t lock;
349 	struct list_head deferred_cells;
350 	struct bio_list deferred_bio_list;
351 	struct bio_list retry_on_resume_list;
352 	struct rb_root sort_bio_list; /* sorted list of deferred bios */
353 
354 	/*
355 	 * Ensures the thin is not destroyed until the worker has finished
356 	 * iterating the active_thins list.
357 	 */
358 	refcount_t refcount;
359 	struct completion can_destroy;
360 };
361 
362 /*----------------------------------------------------------------*/
363 
364 static bool block_size_is_power_of_two(struct pool *pool)
365 {
366 	return pool->sectors_per_block_shift >= 0;
367 }
368 
369 static sector_t block_to_sectors(struct pool *pool, dm_block_t b)
370 {
371 	return block_size_is_power_of_two(pool) ?
372 		(b << pool->sectors_per_block_shift) :
373 		(b * pool->sectors_per_block);
374 }
375 
376 /*----------------------------------------------------------------*/
377 
378 struct discard_op {
379 	struct thin_c *tc;
380 	struct blk_plug plug;
381 	struct bio *parent_bio;
382 	struct bio *bio;
383 };
384 
385 static void begin_discard(struct discard_op *op, struct thin_c *tc, struct bio *parent)
386 {
387 	BUG_ON(!parent);
388 
389 	op->tc = tc;
390 	blk_start_plug(&op->plug);
391 	op->parent_bio = parent;
392 	op->bio = NULL;
393 }
394 
395 static int issue_discard(struct discard_op *op, dm_block_t data_b, dm_block_t data_e)
396 {
397 	struct thin_c *tc = op->tc;
398 	sector_t s = block_to_sectors(tc->pool, data_b);
399 	sector_t len = block_to_sectors(tc->pool, data_e - data_b);
400 
401 	return __blkdev_issue_discard(tc->pool_dev->bdev, s, len,
402 				      GFP_NOWAIT, 0, &op->bio);
403 }
404 
405 static void end_discard(struct discard_op *op, int r)
406 {
407 	if (op->bio) {
408 		/*
409 		 * Even if one of the calls to issue_discard failed, we
410 		 * need to wait for the chain to complete.
411 		 */
412 		bio_chain(op->bio, op->parent_bio);
413 		bio_set_op_attrs(op->bio, REQ_OP_DISCARD, 0);
414 		submit_bio(op->bio);
415 	}
416 
417 	blk_finish_plug(&op->plug);
418 
419 	/*
420 	 * Even if r is set, there could be sub discards in flight that we
421 	 * need to wait for.
422 	 */
423 	if (r && !op->parent_bio->bi_status)
424 		op->parent_bio->bi_status = errno_to_blk_status(r);
425 	bio_endio(op->parent_bio);
426 }
427 
428 /*----------------------------------------------------------------*/
429 
430 /*
431  * wake_worker() is used when new work is queued and when pool_resume is
432  * ready to continue deferred IO processing.
433  */
434 static void wake_worker(struct pool *pool)
435 {
436 	queue_work(pool->wq, &pool->worker);
437 }
438 
439 /*----------------------------------------------------------------*/
440 
441 static int bio_detain(struct pool *pool, struct dm_cell_key *key, struct bio *bio,
442 		      struct dm_bio_prison_cell **cell_result)
443 {
444 	int r;
445 	struct dm_bio_prison_cell *cell_prealloc;
446 
447 	/*
448 	 * Allocate a cell from the prison's mempool.
449 	 * This might block but it can't fail.
450 	 */
451 	cell_prealloc = dm_bio_prison_alloc_cell(pool->prison, GFP_NOIO);
452 
453 	r = dm_bio_detain(pool->prison, key, bio, cell_prealloc, cell_result);
454 	if (r)
455 		/*
456 		 * We reused an old cell; we can get rid of
457 		 * the new one.
458 		 */
459 		dm_bio_prison_free_cell(pool->prison, cell_prealloc);
460 
461 	return r;
462 }
463 
464 static void cell_release(struct pool *pool,
465 			 struct dm_bio_prison_cell *cell,
466 			 struct bio_list *bios)
467 {
468 	dm_cell_release(pool->prison, cell, bios);
469 	dm_bio_prison_free_cell(pool->prison, cell);
470 }
471 
472 static void cell_visit_release(struct pool *pool,
473 			       void (*fn)(void *, struct dm_bio_prison_cell *),
474 			       void *context,
475 			       struct dm_bio_prison_cell *cell)
476 {
477 	dm_cell_visit_release(pool->prison, fn, context, cell);
478 	dm_bio_prison_free_cell(pool->prison, cell);
479 }
480 
481 static void cell_release_no_holder(struct pool *pool,
482 				   struct dm_bio_prison_cell *cell,
483 				   struct bio_list *bios)
484 {
485 	dm_cell_release_no_holder(pool->prison, cell, bios);
486 	dm_bio_prison_free_cell(pool->prison, cell);
487 }
488 
489 static void cell_error_with_code(struct pool *pool,
490 		struct dm_bio_prison_cell *cell, blk_status_t error_code)
491 {
492 	dm_cell_error(pool->prison, cell, error_code);
493 	dm_bio_prison_free_cell(pool->prison, cell);
494 }
495 
496 static blk_status_t get_pool_io_error_code(struct pool *pool)
497 {
498 	return pool->out_of_data_space ? BLK_STS_NOSPC : BLK_STS_IOERR;
499 }
500 
501 static void cell_error(struct pool *pool, struct dm_bio_prison_cell *cell)
502 {
503 	cell_error_with_code(pool, cell, get_pool_io_error_code(pool));
504 }
505 
506 static void cell_success(struct pool *pool, struct dm_bio_prison_cell *cell)
507 {
508 	cell_error_with_code(pool, cell, 0);
509 }
510 
511 static void cell_requeue(struct pool *pool, struct dm_bio_prison_cell *cell)
512 {
513 	cell_error_with_code(pool, cell, BLK_STS_DM_REQUEUE);
514 }
515 
516 /*----------------------------------------------------------------*/
517 
518 /*
519  * A global list of pools that uses a struct mapped_device as a key.
520  */
521 static struct dm_thin_pool_table {
522 	struct mutex mutex;
523 	struct list_head pools;
524 } dm_thin_pool_table;
525 
526 static void pool_table_init(void)
527 {
528 	mutex_init(&dm_thin_pool_table.mutex);
529 	INIT_LIST_HEAD(&dm_thin_pool_table.pools);
530 }
531 
532 static void pool_table_exit(void)
533 {
534 	mutex_destroy(&dm_thin_pool_table.mutex);
535 }
536 
537 static void __pool_table_insert(struct pool *pool)
538 {
539 	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
540 	list_add(&pool->list, &dm_thin_pool_table.pools);
541 }
542 
543 static void __pool_table_remove(struct pool *pool)
544 {
545 	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
546 	list_del(&pool->list);
547 }
548 
549 static struct pool *__pool_table_lookup(struct mapped_device *md)
550 {
551 	struct pool *pool = NULL, *tmp;
552 
553 	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
554 
555 	list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
556 		if (tmp->pool_md == md) {
557 			pool = tmp;
558 			break;
559 		}
560 	}
561 
562 	return pool;
563 }
564 
565 static struct pool *__pool_table_lookup_metadata_dev(struct block_device *md_dev)
566 {
567 	struct pool *pool = NULL, *tmp;
568 
569 	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
570 
571 	list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
572 		if (tmp->md_dev == md_dev) {
573 			pool = tmp;
574 			break;
575 		}
576 	}
577 
578 	return pool;
579 }
580 
581 /*----------------------------------------------------------------*/
582 
583 struct dm_thin_endio_hook {
584 	struct thin_c *tc;
585 	struct dm_deferred_entry *shared_read_entry;
586 	struct dm_deferred_entry *all_io_entry;
587 	struct dm_thin_new_mapping *overwrite_mapping;
588 	struct rb_node rb_node;
589 	struct dm_bio_prison_cell *cell;
590 };
591 
592 static void __merge_bio_list(struct bio_list *bios, struct bio_list *master)
593 {
594 	bio_list_merge(bios, master);
595 	bio_list_init(master);
596 }
597 
598 static void error_bio_list(struct bio_list *bios, blk_status_t error)
599 {
600 	struct bio *bio;
601 
602 	while ((bio = bio_list_pop(bios))) {
603 		bio->bi_status = error;
604 		bio_endio(bio);
605 	}
606 }
607 
608 static void error_thin_bio_list(struct thin_c *tc, struct bio_list *master,
609 		blk_status_t error)
610 {
611 	struct bio_list bios;
612 	unsigned long flags;
613 
614 	bio_list_init(&bios);
615 
616 	spin_lock_irqsave(&tc->lock, flags);
617 	__merge_bio_list(&bios, master);
618 	spin_unlock_irqrestore(&tc->lock, flags);
619 
620 	error_bio_list(&bios, error);
621 }
622 
623 static void requeue_deferred_cells(struct thin_c *tc)
624 {
625 	struct pool *pool = tc->pool;
626 	unsigned long flags;
627 	struct list_head cells;
628 	struct dm_bio_prison_cell *cell, *tmp;
629 
630 	INIT_LIST_HEAD(&cells);
631 
632 	spin_lock_irqsave(&tc->lock, flags);
633 	list_splice_init(&tc->deferred_cells, &cells);
634 	spin_unlock_irqrestore(&tc->lock, flags);
635 
636 	list_for_each_entry_safe(cell, tmp, &cells, user_list)
637 		cell_requeue(pool, cell);
638 }
639 
640 static void requeue_io(struct thin_c *tc)
641 {
642 	struct bio_list bios;
643 	unsigned long flags;
644 
645 	bio_list_init(&bios);
646 
647 	spin_lock_irqsave(&tc->lock, flags);
648 	__merge_bio_list(&bios, &tc->deferred_bio_list);
649 	__merge_bio_list(&bios, &tc->retry_on_resume_list);
650 	spin_unlock_irqrestore(&tc->lock, flags);
651 
652 	error_bio_list(&bios, BLK_STS_DM_REQUEUE);
653 	requeue_deferred_cells(tc);
654 }
655 
656 static void error_retry_list_with_code(struct pool *pool, blk_status_t error)
657 {
658 	struct thin_c *tc;
659 
660 	rcu_read_lock();
661 	list_for_each_entry_rcu(tc, &pool->active_thins, list)
662 		error_thin_bio_list(tc, &tc->retry_on_resume_list, error);
663 	rcu_read_unlock();
664 }
665 
666 static void error_retry_list(struct pool *pool)
667 {
668 	error_retry_list_with_code(pool, get_pool_io_error_code(pool));
669 }
670 
671 /*
672  * This section of code contains the logic for processing a thin device's IO.
673  * Much of the code depends on pool object resources (lists, workqueues, etc)
674  * but most is exclusively called from the thin target rather than the thin-pool
675  * target.
676  */
677 
678 static dm_block_t get_bio_block(struct thin_c *tc, struct bio *bio)
679 {
680 	struct pool *pool = tc->pool;
681 	sector_t block_nr = bio->bi_iter.bi_sector;
682 
683 	if (block_size_is_power_of_two(pool))
684 		block_nr >>= pool->sectors_per_block_shift;
685 	else
686 		(void) sector_div(block_nr, pool->sectors_per_block);
687 
688 	return block_nr;
689 }
690 
691 /*
692  * Returns the _complete_ blocks that this bio covers.
693  */
694 static void get_bio_block_range(struct thin_c *tc, struct bio *bio,
695 				dm_block_t *begin, dm_block_t *end)
696 {
697 	struct pool *pool = tc->pool;
698 	sector_t b = bio->bi_iter.bi_sector;
699 	sector_t e = b + (bio->bi_iter.bi_size >> SECTOR_SHIFT);
700 
701 	b += pool->sectors_per_block - 1ull; /* so we round up */
702 
703 	if (block_size_is_power_of_two(pool)) {
704 		b >>= pool->sectors_per_block_shift;
705 		e >>= pool->sectors_per_block_shift;
706 	} else {
707 		(void) sector_div(b, pool->sectors_per_block);
708 		(void) sector_div(e, pool->sectors_per_block);
709 	}
710 
711 	if (e < b)
712 		/* Can happen if the bio is within a single block. */
713 		e = b;
714 
715 	*begin = b;
716 	*end = e;
717 }
718 
719 static void remap(struct thin_c *tc, struct bio *bio, dm_block_t block)
720 {
721 	struct pool *pool = tc->pool;
722 	sector_t bi_sector = bio->bi_iter.bi_sector;
723 
724 	bio_set_dev(bio, tc->pool_dev->bdev);
725 	if (block_size_is_power_of_two(pool))
726 		bio->bi_iter.bi_sector =
727 			(block << pool->sectors_per_block_shift) |
728 			(bi_sector & (pool->sectors_per_block - 1));
729 	else
730 		bio->bi_iter.bi_sector = (block * pool->sectors_per_block) +
731 				 sector_div(bi_sector, pool->sectors_per_block);
732 }
733 
734 static void remap_to_origin(struct thin_c *tc, struct bio *bio)
735 {
736 	bio_set_dev(bio, tc->origin_dev->bdev);
737 }
738 
739 static int bio_triggers_commit(struct thin_c *tc, struct bio *bio)
740 {
741 	return op_is_flush(bio->bi_opf) &&
742 		dm_thin_changed_this_transaction(tc->td);
743 }
744 
745 static void inc_all_io_entry(struct pool *pool, struct bio *bio)
746 {
747 	struct dm_thin_endio_hook *h;
748 
749 	if (bio_op(bio) == REQ_OP_DISCARD)
750 		return;
751 
752 	h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
753 	h->all_io_entry = dm_deferred_entry_inc(pool->all_io_ds);
754 }
755 
756 static void issue(struct thin_c *tc, struct bio *bio)
757 {
758 	struct pool *pool = tc->pool;
759 	unsigned long flags;
760 
761 	if (!bio_triggers_commit(tc, bio)) {
762 		generic_make_request(bio);
763 		return;
764 	}
765 
766 	/*
767 	 * Complete bio with an error if earlier I/O caused changes to
768 	 * the metadata that can't be committed e.g, due to I/O errors
769 	 * on the metadata device.
770 	 */
771 	if (dm_thin_aborted_changes(tc->td)) {
772 		bio_io_error(bio);
773 		return;
774 	}
775 
776 	/*
777 	 * Batch together any bios that trigger commits and then issue a
778 	 * single commit for them in process_deferred_bios().
779 	 */
780 	spin_lock_irqsave(&pool->lock, flags);
781 	bio_list_add(&pool->deferred_flush_bios, bio);
782 	spin_unlock_irqrestore(&pool->lock, flags);
783 }
784 
785 static void remap_to_origin_and_issue(struct thin_c *tc, struct bio *bio)
786 {
787 	remap_to_origin(tc, bio);
788 	issue(tc, bio);
789 }
790 
791 static void remap_and_issue(struct thin_c *tc, struct bio *bio,
792 			    dm_block_t block)
793 {
794 	remap(tc, bio, block);
795 	issue(tc, bio);
796 }
797 
798 /*----------------------------------------------------------------*/
799 
800 /*
801  * Bio endio functions.
802  */
803 struct dm_thin_new_mapping {
804 	struct list_head list;
805 
806 	bool pass_discard:1;
807 	bool maybe_shared:1;
808 
809 	/*
810 	 * Track quiescing, copying and zeroing preparation actions.  When this
811 	 * counter hits zero the block is prepared and can be inserted into the
812 	 * btree.
813 	 */
814 	atomic_t prepare_actions;
815 
816 	blk_status_t status;
817 	struct thin_c *tc;
818 	dm_block_t virt_begin, virt_end;
819 	dm_block_t data_block;
820 	struct dm_bio_prison_cell *cell;
821 
822 	/*
823 	 * If the bio covers the whole area of a block then we can avoid
824 	 * zeroing or copying.  Instead this bio is hooked.  The bio will
825 	 * still be in the cell, so care has to be taken to avoid issuing
826 	 * the bio twice.
827 	 */
828 	struct bio *bio;
829 	bio_end_io_t *saved_bi_end_io;
830 };
831 
832 static void __complete_mapping_preparation(struct dm_thin_new_mapping *m)
833 {
834 	struct pool *pool = m->tc->pool;
835 
836 	if (atomic_dec_and_test(&m->prepare_actions)) {
837 		list_add_tail(&m->list, &pool->prepared_mappings);
838 		wake_worker(pool);
839 	}
840 }
841 
842 static void complete_mapping_preparation(struct dm_thin_new_mapping *m)
843 {
844 	unsigned long flags;
845 	struct pool *pool = m->tc->pool;
846 
847 	spin_lock_irqsave(&pool->lock, flags);
848 	__complete_mapping_preparation(m);
849 	spin_unlock_irqrestore(&pool->lock, flags);
850 }
851 
852 static void copy_complete(int read_err, unsigned long write_err, void *context)
853 {
854 	struct dm_thin_new_mapping *m = context;
855 
856 	m->status = read_err || write_err ? BLK_STS_IOERR : 0;
857 	complete_mapping_preparation(m);
858 }
859 
860 static void overwrite_endio(struct bio *bio)
861 {
862 	struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
863 	struct dm_thin_new_mapping *m = h->overwrite_mapping;
864 
865 	bio->bi_end_io = m->saved_bi_end_io;
866 
867 	m->status = bio->bi_status;
868 	complete_mapping_preparation(m);
869 }
870 
871 /*----------------------------------------------------------------*/
872 
873 /*
874  * Workqueue.
875  */
876 
877 /*
878  * Prepared mapping jobs.
879  */
880 
881 /*
882  * This sends the bios in the cell, except the original holder, back
883  * to the deferred_bios list.
884  */
885 static void cell_defer_no_holder(struct thin_c *tc, struct dm_bio_prison_cell *cell)
886 {
887 	struct pool *pool = tc->pool;
888 	unsigned long flags;
889 
890 	spin_lock_irqsave(&tc->lock, flags);
891 	cell_release_no_holder(pool, cell, &tc->deferred_bio_list);
892 	spin_unlock_irqrestore(&tc->lock, flags);
893 
894 	wake_worker(pool);
895 }
896 
897 static void thin_defer_bio(struct thin_c *tc, struct bio *bio);
898 
899 struct remap_info {
900 	struct thin_c *tc;
901 	struct bio_list defer_bios;
902 	struct bio_list issue_bios;
903 };
904 
905 static void __inc_remap_and_issue_cell(void *context,
906 				       struct dm_bio_prison_cell *cell)
907 {
908 	struct remap_info *info = context;
909 	struct bio *bio;
910 
911 	while ((bio = bio_list_pop(&cell->bios))) {
912 		if (op_is_flush(bio->bi_opf) || bio_op(bio) == REQ_OP_DISCARD)
913 			bio_list_add(&info->defer_bios, bio);
914 		else {
915 			inc_all_io_entry(info->tc->pool, bio);
916 
917 			/*
918 			 * We can't issue the bios with the bio prison lock
919 			 * held, so we add them to a list to issue on
920 			 * return from this function.
921 			 */
922 			bio_list_add(&info->issue_bios, bio);
923 		}
924 	}
925 }
926 
927 static void inc_remap_and_issue_cell(struct thin_c *tc,
928 				     struct dm_bio_prison_cell *cell,
929 				     dm_block_t block)
930 {
931 	struct bio *bio;
932 	struct remap_info info;
933 
934 	info.tc = tc;
935 	bio_list_init(&info.defer_bios);
936 	bio_list_init(&info.issue_bios);
937 
938 	/*
939 	 * We have to be careful to inc any bios we're about to issue
940 	 * before the cell is released, and avoid a race with new bios
941 	 * being added to the cell.
942 	 */
943 	cell_visit_release(tc->pool, __inc_remap_and_issue_cell,
944 			   &info, cell);
945 
946 	while ((bio = bio_list_pop(&info.defer_bios)))
947 		thin_defer_bio(tc, bio);
948 
949 	while ((bio = bio_list_pop(&info.issue_bios)))
950 		remap_and_issue(info.tc, bio, block);
951 }
952 
953 static void process_prepared_mapping_fail(struct dm_thin_new_mapping *m)
954 {
955 	cell_error(m->tc->pool, m->cell);
956 	list_del(&m->list);
957 	mempool_free(m, &m->tc->pool->mapping_pool);
958 }
959 
960 static void complete_overwrite_bio(struct thin_c *tc, struct bio *bio)
961 {
962 	struct pool *pool = tc->pool;
963 	unsigned long flags;
964 
965 	/*
966 	 * If the bio has the REQ_FUA flag set we must commit the metadata
967 	 * before signaling its completion.
968 	 */
969 	if (!bio_triggers_commit(tc, bio)) {
970 		bio_endio(bio);
971 		return;
972 	}
973 
974 	/*
975 	 * Complete bio with an error if earlier I/O caused changes to the
976 	 * metadata that can't be committed, e.g, due to I/O errors on the
977 	 * metadata device.
978 	 */
979 	if (dm_thin_aborted_changes(tc->td)) {
980 		bio_io_error(bio);
981 		return;
982 	}
983 
984 	/*
985 	 * Batch together any bios that trigger commits and then issue a
986 	 * single commit for them in process_deferred_bios().
987 	 */
988 	spin_lock_irqsave(&pool->lock, flags);
989 	bio_list_add(&pool->deferred_flush_completions, bio);
990 	spin_unlock_irqrestore(&pool->lock, flags);
991 }
992 
993 static void process_prepared_mapping(struct dm_thin_new_mapping *m)
994 {
995 	struct thin_c *tc = m->tc;
996 	struct pool *pool = tc->pool;
997 	struct bio *bio = m->bio;
998 	int r;
999 
1000 	if (m->status) {
1001 		cell_error(pool, m->cell);
1002 		goto out;
1003 	}
1004 
1005 	/*
1006 	 * Commit the prepared block into the mapping btree.
1007 	 * Any I/O for this block arriving after this point will get
1008 	 * remapped to it directly.
1009 	 */
1010 	r = dm_thin_insert_block(tc->td, m->virt_begin, m->data_block);
1011 	if (r) {
1012 		metadata_operation_failed(pool, "dm_thin_insert_block", r);
1013 		cell_error(pool, m->cell);
1014 		goto out;
1015 	}
1016 
1017 	/*
1018 	 * Release any bios held while the block was being provisioned.
1019 	 * If we are processing a write bio that completely covers the block,
1020 	 * we already processed it so can ignore it now when processing
1021 	 * the bios in the cell.
1022 	 */
1023 	if (bio) {
1024 		inc_remap_and_issue_cell(tc, m->cell, m->data_block);
1025 		complete_overwrite_bio(tc, bio);
1026 	} else {
1027 		inc_all_io_entry(tc->pool, m->cell->holder);
1028 		remap_and_issue(tc, m->cell->holder, m->data_block);
1029 		inc_remap_and_issue_cell(tc, m->cell, m->data_block);
1030 	}
1031 
1032 out:
1033 	list_del(&m->list);
1034 	mempool_free(m, &pool->mapping_pool);
1035 }
1036 
1037 /*----------------------------------------------------------------*/
1038 
1039 static void free_discard_mapping(struct dm_thin_new_mapping *m)
1040 {
1041 	struct thin_c *tc = m->tc;
1042 	if (m->cell)
1043 		cell_defer_no_holder(tc, m->cell);
1044 	mempool_free(m, &tc->pool->mapping_pool);
1045 }
1046 
1047 static void process_prepared_discard_fail(struct dm_thin_new_mapping *m)
1048 {
1049 	bio_io_error(m->bio);
1050 	free_discard_mapping(m);
1051 }
1052 
1053 static void process_prepared_discard_success(struct dm_thin_new_mapping *m)
1054 {
1055 	bio_endio(m->bio);
1056 	free_discard_mapping(m);
1057 }
1058 
1059 static void process_prepared_discard_no_passdown(struct dm_thin_new_mapping *m)
1060 {
1061 	int r;
1062 	struct thin_c *tc = m->tc;
1063 
1064 	r = dm_thin_remove_range(tc->td, m->cell->key.block_begin, m->cell->key.block_end);
1065 	if (r) {
1066 		metadata_operation_failed(tc->pool, "dm_thin_remove_range", r);
1067 		bio_io_error(m->bio);
1068 	} else
1069 		bio_endio(m->bio);
1070 
1071 	cell_defer_no_holder(tc, m->cell);
1072 	mempool_free(m, &tc->pool->mapping_pool);
1073 }
1074 
1075 /*----------------------------------------------------------------*/
1076 
1077 static void passdown_double_checking_shared_status(struct dm_thin_new_mapping *m,
1078 						   struct bio *discard_parent)
1079 {
1080 	/*
1081 	 * We've already unmapped this range of blocks, but before we
1082 	 * passdown we have to check that these blocks are now unused.
1083 	 */
1084 	int r = 0;
1085 	bool shared = true;
1086 	struct thin_c *tc = m->tc;
1087 	struct pool *pool = tc->pool;
1088 	dm_block_t b = m->data_block, e, end = m->data_block + m->virt_end - m->virt_begin;
1089 	struct discard_op op;
1090 
1091 	begin_discard(&op, tc, discard_parent);
1092 	while (b != end) {
1093 		/* find start of unmapped run */
1094 		for (; b < end; b++) {
1095 			r = dm_pool_block_is_shared(pool->pmd, b, &shared);
1096 			if (r)
1097 				goto out;
1098 
1099 			if (!shared)
1100 				break;
1101 		}
1102 
1103 		if (b == end)
1104 			break;
1105 
1106 		/* find end of run */
1107 		for (e = b + 1; e != end; e++) {
1108 			r = dm_pool_block_is_shared(pool->pmd, e, &shared);
1109 			if (r)
1110 				goto out;
1111 
1112 			if (shared)
1113 				break;
1114 		}
1115 
1116 		r = issue_discard(&op, b, e);
1117 		if (r)
1118 			goto out;
1119 
1120 		b = e;
1121 	}
1122 out:
1123 	end_discard(&op, r);
1124 }
1125 
1126 static void queue_passdown_pt2(struct dm_thin_new_mapping *m)
1127 {
1128 	unsigned long flags;
1129 	struct pool *pool = m->tc->pool;
1130 
1131 	spin_lock_irqsave(&pool->lock, flags);
1132 	list_add_tail(&m->list, &pool->prepared_discards_pt2);
1133 	spin_unlock_irqrestore(&pool->lock, flags);
1134 	wake_worker(pool);
1135 }
1136 
1137 static void passdown_endio(struct bio *bio)
1138 {
1139 	/*
1140 	 * It doesn't matter if the passdown discard failed, we still want
1141 	 * to unmap (we ignore err).
1142 	 */
1143 	queue_passdown_pt2(bio->bi_private);
1144 	bio_put(bio);
1145 }
1146 
1147 static void process_prepared_discard_passdown_pt1(struct dm_thin_new_mapping *m)
1148 {
1149 	int r;
1150 	struct thin_c *tc = m->tc;
1151 	struct pool *pool = tc->pool;
1152 	struct bio *discard_parent;
1153 	dm_block_t data_end = m->data_block + (m->virt_end - m->virt_begin);
1154 
1155 	/*
1156 	 * Only this thread allocates blocks, so we can be sure that the
1157 	 * newly unmapped blocks will not be allocated before the end of
1158 	 * the function.
1159 	 */
1160 	r = dm_thin_remove_range(tc->td, m->virt_begin, m->virt_end);
1161 	if (r) {
1162 		metadata_operation_failed(pool, "dm_thin_remove_range", r);
1163 		bio_io_error(m->bio);
1164 		cell_defer_no_holder(tc, m->cell);
1165 		mempool_free(m, &pool->mapping_pool);
1166 		return;
1167 	}
1168 
1169 	/*
1170 	 * Increment the unmapped blocks.  This prevents a race between the
1171 	 * passdown io and reallocation of freed blocks.
1172 	 */
1173 	r = dm_pool_inc_data_range(pool->pmd, m->data_block, data_end);
1174 	if (r) {
1175 		metadata_operation_failed(pool, "dm_pool_inc_data_range", r);
1176 		bio_io_error(m->bio);
1177 		cell_defer_no_holder(tc, m->cell);
1178 		mempool_free(m, &pool->mapping_pool);
1179 		return;
1180 	}
1181 
1182 	discard_parent = bio_alloc(GFP_NOIO, 1);
1183 	if (!discard_parent) {
1184 		DMWARN("%s: unable to allocate top level discard bio for passdown. Skipping passdown.",
1185 		       dm_device_name(tc->pool->pool_md));
1186 		queue_passdown_pt2(m);
1187 
1188 	} else {
1189 		discard_parent->bi_end_io = passdown_endio;
1190 		discard_parent->bi_private = m;
1191 
1192 		if (m->maybe_shared)
1193 			passdown_double_checking_shared_status(m, discard_parent);
1194 		else {
1195 			struct discard_op op;
1196 
1197 			begin_discard(&op, tc, discard_parent);
1198 			r = issue_discard(&op, m->data_block, data_end);
1199 			end_discard(&op, r);
1200 		}
1201 	}
1202 }
1203 
1204 static void process_prepared_discard_passdown_pt2(struct dm_thin_new_mapping *m)
1205 {
1206 	int r;
1207 	struct thin_c *tc = m->tc;
1208 	struct pool *pool = tc->pool;
1209 
1210 	/*
1211 	 * The passdown has completed, so now we can decrement all those
1212 	 * unmapped blocks.
1213 	 */
1214 	r = dm_pool_dec_data_range(pool->pmd, m->data_block,
1215 				   m->data_block + (m->virt_end - m->virt_begin));
1216 	if (r) {
1217 		metadata_operation_failed(pool, "dm_pool_dec_data_range", r);
1218 		bio_io_error(m->bio);
1219 	} else
1220 		bio_endio(m->bio);
1221 
1222 	cell_defer_no_holder(tc, m->cell);
1223 	mempool_free(m, &pool->mapping_pool);
1224 }
1225 
1226 static void process_prepared(struct pool *pool, struct list_head *head,
1227 			     process_mapping_fn *fn)
1228 {
1229 	unsigned long flags;
1230 	struct list_head maps;
1231 	struct dm_thin_new_mapping *m, *tmp;
1232 
1233 	INIT_LIST_HEAD(&maps);
1234 	spin_lock_irqsave(&pool->lock, flags);
1235 	list_splice_init(head, &maps);
1236 	spin_unlock_irqrestore(&pool->lock, flags);
1237 
1238 	list_for_each_entry_safe(m, tmp, &maps, list)
1239 		(*fn)(m);
1240 }
1241 
1242 /*
1243  * Deferred bio jobs.
1244  */
1245 static int io_overlaps_block(struct pool *pool, struct bio *bio)
1246 {
1247 	return bio->bi_iter.bi_size ==
1248 		(pool->sectors_per_block << SECTOR_SHIFT);
1249 }
1250 
1251 static int io_overwrites_block(struct pool *pool, struct bio *bio)
1252 {
1253 	return (bio_data_dir(bio) == WRITE) &&
1254 		io_overlaps_block(pool, bio);
1255 }
1256 
1257 static void save_and_set_endio(struct bio *bio, bio_end_io_t **save,
1258 			       bio_end_io_t *fn)
1259 {
1260 	*save = bio->bi_end_io;
1261 	bio->bi_end_io = fn;
1262 }
1263 
1264 static int ensure_next_mapping(struct pool *pool)
1265 {
1266 	if (pool->next_mapping)
1267 		return 0;
1268 
1269 	pool->next_mapping = mempool_alloc(&pool->mapping_pool, GFP_ATOMIC);
1270 
1271 	return pool->next_mapping ? 0 : -ENOMEM;
1272 }
1273 
1274 static struct dm_thin_new_mapping *get_next_mapping(struct pool *pool)
1275 {
1276 	struct dm_thin_new_mapping *m = pool->next_mapping;
1277 
1278 	BUG_ON(!pool->next_mapping);
1279 
1280 	memset(m, 0, sizeof(struct dm_thin_new_mapping));
1281 	INIT_LIST_HEAD(&m->list);
1282 	m->bio = NULL;
1283 
1284 	pool->next_mapping = NULL;
1285 
1286 	return m;
1287 }
1288 
1289 static void ll_zero(struct thin_c *tc, struct dm_thin_new_mapping *m,
1290 		    sector_t begin, sector_t end)
1291 {
1292 	struct dm_io_region to;
1293 
1294 	to.bdev = tc->pool_dev->bdev;
1295 	to.sector = begin;
1296 	to.count = end - begin;
1297 
1298 	dm_kcopyd_zero(tc->pool->copier, 1, &to, 0, copy_complete, m);
1299 }
1300 
1301 static void remap_and_issue_overwrite(struct thin_c *tc, struct bio *bio,
1302 				      dm_block_t data_begin,
1303 				      struct dm_thin_new_mapping *m)
1304 {
1305 	struct pool *pool = tc->pool;
1306 	struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1307 
1308 	h->overwrite_mapping = m;
1309 	m->bio = bio;
1310 	save_and_set_endio(bio, &m->saved_bi_end_io, overwrite_endio);
1311 	inc_all_io_entry(pool, bio);
1312 	remap_and_issue(tc, bio, data_begin);
1313 }
1314 
1315 /*
1316  * A partial copy also needs to zero the uncopied region.
1317  */
1318 static void schedule_copy(struct thin_c *tc, dm_block_t virt_block,
1319 			  struct dm_dev *origin, dm_block_t data_origin,
1320 			  dm_block_t data_dest,
1321 			  struct dm_bio_prison_cell *cell, struct bio *bio,
1322 			  sector_t len)
1323 {
1324 	struct pool *pool = tc->pool;
1325 	struct dm_thin_new_mapping *m = get_next_mapping(pool);
1326 
1327 	m->tc = tc;
1328 	m->virt_begin = virt_block;
1329 	m->virt_end = virt_block + 1u;
1330 	m->data_block = data_dest;
1331 	m->cell = cell;
1332 
1333 	/*
1334 	 * quiesce action + copy action + an extra reference held for the
1335 	 * duration of this function (we may need to inc later for a
1336 	 * partial zero).
1337 	 */
1338 	atomic_set(&m->prepare_actions, 3);
1339 
1340 	if (!dm_deferred_set_add_work(pool->shared_read_ds, &m->list))
1341 		complete_mapping_preparation(m); /* already quiesced */
1342 
1343 	/*
1344 	 * IO to pool_dev remaps to the pool target's data_dev.
1345 	 *
1346 	 * If the whole block of data is being overwritten, we can issue the
1347 	 * bio immediately. Otherwise we use kcopyd to clone the data first.
1348 	 */
1349 	if (io_overwrites_block(pool, bio))
1350 		remap_and_issue_overwrite(tc, bio, data_dest, m);
1351 	else {
1352 		struct dm_io_region from, to;
1353 
1354 		from.bdev = origin->bdev;
1355 		from.sector = data_origin * pool->sectors_per_block;
1356 		from.count = len;
1357 
1358 		to.bdev = tc->pool_dev->bdev;
1359 		to.sector = data_dest * pool->sectors_per_block;
1360 		to.count = len;
1361 
1362 		dm_kcopyd_copy(pool->copier, &from, 1, &to,
1363 			       0, copy_complete, m);
1364 
1365 		/*
1366 		 * Do we need to zero a tail region?
1367 		 */
1368 		if (len < pool->sectors_per_block && pool->pf.zero_new_blocks) {
1369 			atomic_inc(&m->prepare_actions);
1370 			ll_zero(tc, m,
1371 				data_dest * pool->sectors_per_block + len,
1372 				(data_dest + 1) * pool->sectors_per_block);
1373 		}
1374 	}
1375 
1376 	complete_mapping_preparation(m); /* drop our ref */
1377 }
1378 
1379 static void schedule_internal_copy(struct thin_c *tc, dm_block_t virt_block,
1380 				   dm_block_t data_origin, dm_block_t data_dest,
1381 				   struct dm_bio_prison_cell *cell, struct bio *bio)
1382 {
1383 	schedule_copy(tc, virt_block, tc->pool_dev,
1384 		      data_origin, data_dest, cell, bio,
1385 		      tc->pool->sectors_per_block);
1386 }
1387 
1388 static void schedule_zero(struct thin_c *tc, dm_block_t virt_block,
1389 			  dm_block_t data_block, struct dm_bio_prison_cell *cell,
1390 			  struct bio *bio)
1391 {
1392 	struct pool *pool = tc->pool;
1393 	struct dm_thin_new_mapping *m = get_next_mapping(pool);
1394 
1395 	atomic_set(&m->prepare_actions, 1); /* no need to quiesce */
1396 	m->tc = tc;
1397 	m->virt_begin = virt_block;
1398 	m->virt_end = virt_block + 1u;
1399 	m->data_block = data_block;
1400 	m->cell = cell;
1401 
1402 	/*
1403 	 * If the whole block of data is being overwritten or we are not
1404 	 * zeroing pre-existing data, we can issue the bio immediately.
1405 	 * Otherwise we use kcopyd to zero the data first.
1406 	 */
1407 	if (pool->pf.zero_new_blocks) {
1408 		if (io_overwrites_block(pool, bio))
1409 			remap_and_issue_overwrite(tc, bio, data_block, m);
1410 		else
1411 			ll_zero(tc, m, data_block * pool->sectors_per_block,
1412 				(data_block + 1) * pool->sectors_per_block);
1413 	} else
1414 		process_prepared_mapping(m);
1415 }
1416 
1417 static void schedule_external_copy(struct thin_c *tc, dm_block_t virt_block,
1418 				   dm_block_t data_dest,
1419 				   struct dm_bio_prison_cell *cell, struct bio *bio)
1420 {
1421 	struct pool *pool = tc->pool;
1422 	sector_t virt_block_begin = virt_block * pool->sectors_per_block;
1423 	sector_t virt_block_end = (virt_block + 1) * pool->sectors_per_block;
1424 
1425 	if (virt_block_end <= tc->origin_size)
1426 		schedule_copy(tc, virt_block, tc->origin_dev,
1427 			      virt_block, data_dest, cell, bio,
1428 			      pool->sectors_per_block);
1429 
1430 	else if (virt_block_begin < tc->origin_size)
1431 		schedule_copy(tc, virt_block, tc->origin_dev,
1432 			      virt_block, data_dest, cell, bio,
1433 			      tc->origin_size - virt_block_begin);
1434 
1435 	else
1436 		schedule_zero(tc, virt_block, data_dest, cell, bio);
1437 }
1438 
1439 static void set_pool_mode(struct pool *pool, enum pool_mode new_mode);
1440 
1441 static void requeue_bios(struct pool *pool);
1442 
1443 static bool is_read_only_pool_mode(enum pool_mode mode)
1444 {
1445 	return (mode == PM_OUT_OF_METADATA_SPACE || mode == PM_READ_ONLY);
1446 }
1447 
1448 static bool is_read_only(struct pool *pool)
1449 {
1450 	return is_read_only_pool_mode(get_pool_mode(pool));
1451 }
1452 
1453 static void check_for_metadata_space(struct pool *pool)
1454 {
1455 	int r;
1456 	const char *ooms_reason = NULL;
1457 	dm_block_t nr_free;
1458 
1459 	r = dm_pool_get_free_metadata_block_count(pool->pmd, &nr_free);
1460 	if (r)
1461 		ooms_reason = "Could not get free metadata blocks";
1462 	else if (!nr_free)
1463 		ooms_reason = "No free metadata blocks";
1464 
1465 	if (ooms_reason && !is_read_only(pool)) {
1466 		DMERR("%s", ooms_reason);
1467 		set_pool_mode(pool, PM_OUT_OF_METADATA_SPACE);
1468 	}
1469 }
1470 
1471 static void check_for_data_space(struct pool *pool)
1472 {
1473 	int r;
1474 	dm_block_t nr_free;
1475 
1476 	if (get_pool_mode(pool) != PM_OUT_OF_DATA_SPACE)
1477 		return;
1478 
1479 	r = dm_pool_get_free_block_count(pool->pmd, &nr_free);
1480 	if (r)
1481 		return;
1482 
1483 	if (nr_free) {
1484 		set_pool_mode(pool, PM_WRITE);
1485 		requeue_bios(pool);
1486 	}
1487 }
1488 
1489 /*
1490  * A non-zero return indicates read_only or fail_io mode.
1491  * Many callers don't care about the return value.
1492  */
1493 static int commit(struct pool *pool)
1494 {
1495 	int r;
1496 
1497 	if (get_pool_mode(pool) >= PM_OUT_OF_METADATA_SPACE)
1498 		return -EINVAL;
1499 
1500 	r = dm_pool_commit_metadata(pool->pmd);
1501 	if (r)
1502 		metadata_operation_failed(pool, "dm_pool_commit_metadata", r);
1503 	else {
1504 		check_for_metadata_space(pool);
1505 		check_for_data_space(pool);
1506 	}
1507 
1508 	return r;
1509 }
1510 
1511 static void check_low_water_mark(struct pool *pool, dm_block_t free_blocks)
1512 {
1513 	unsigned long flags;
1514 
1515 	if (free_blocks <= pool->low_water_blocks && !pool->low_water_triggered) {
1516 		DMWARN("%s: reached low water mark for data device: sending event.",
1517 		       dm_device_name(pool->pool_md));
1518 		spin_lock_irqsave(&pool->lock, flags);
1519 		pool->low_water_triggered = true;
1520 		spin_unlock_irqrestore(&pool->lock, flags);
1521 		dm_table_event(pool->ti->table);
1522 	}
1523 }
1524 
1525 static int alloc_data_block(struct thin_c *tc, dm_block_t *result)
1526 {
1527 	int r;
1528 	dm_block_t free_blocks;
1529 	struct pool *pool = tc->pool;
1530 
1531 	if (WARN_ON(get_pool_mode(pool) != PM_WRITE))
1532 		return -EINVAL;
1533 
1534 	r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
1535 	if (r) {
1536 		metadata_operation_failed(pool, "dm_pool_get_free_block_count", r);
1537 		return r;
1538 	}
1539 
1540 	check_low_water_mark(pool, free_blocks);
1541 
1542 	if (!free_blocks) {
1543 		/*
1544 		 * Try to commit to see if that will free up some
1545 		 * more space.
1546 		 */
1547 		r = commit(pool);
1548 		if (r)
1549 			return r;
1550 
1551 		r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
1552 		if (r) {
1553 			metadata_operation_failed(pool, "dm_pool_get_free_block_count", r);
1554 			return r;
1555 		}
1556 
1557 		if (!free_blocks) {
1558 			set_pool_mode(pool, PM_OUT_OF_DATA_SPACE);
1559 			return -ENOSPC;
1560 		}
1561 	}
1562 
1563 	r = dm_pool_alloc_data_block(pool->pmd, result);
1564 	if (r) {
1565 		if (r == -ENOSPC)
1566 			set_pool_mode(pool, PM_OUT_OF_DATA_SPACE);
1567 		else
1568 			metadata_operation_failed(pool, "dm_pool_alloc_data_block", r);
1569 		return r;
1570 	}
1571 
1572 	r = dm_pool_get_free_metadata_block_count(pool->pmd, &free_blocks);
1573 	if (r) {
1574 		metadata_operation_failed(pool, "dm_pool_get_free_metadata_block_count", r);
1575 		return r;
1576 	}
1577 
1578 	if (!free_blocks) {
1579 		/* Let's commit before we use up the metadata reserve. */
1580 		r = commit(pool);
1581 		if (r)
1582 			return r;
1583 	}
1584 
1585 	return 0;
1586 }
1587 
1588 /*
1589  * If we have run out of space, queue bios until the device is
1590  * resumed, presumably after having been reloaded with more space.
1591  */
1592 static void retry_on_resume(struct bio *bio)
1593 {
1594 	struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1595 	struct thin_c *tc = h->tc;
1596 	unsigned long flags;
1597 
1598 	spin_lock_irqsave(&tc->lock, flags);
1599 	bio_list_add(&tc->retry_on_resume_list, bio);
1600 	spin_unlock_irqrestore(&tc->lock, flags);
1601 }
1602 
1603 static blk_status_t should_error_unserviceable_bio(struct pool *pool)
1604 {
1605 	enum pool_mode m = get_pool_mode(pool);
1606 
1607 	switch (m) {
1608 	case PM_WRITE:
1609 		/* Shouldn't get here */
1610 		DMERR_LIMIT("bio unserviceable, yet pool is in PM_WRITE mode");
1611 		return BLK_STS_IOERR;
1612 
1613 	case PM_OUT_OF_DATA_SPACE:
1614 		return pool->pf.error_if_no_space ? BLK_STS_NOSPC : 0;
1615 
1616 	case PM_OUT_OF_METADATA_SPACE:
1617 	case PM_READ_ONLY:
1618 	case PM_FAIL:
1619 		return BLK_STS_IOERR;
1620 	default:
1621 		/* Shouldn't get here */
1622 		DMERR_LIMIT("bio unserviceable, yet pool has an unknown mode");
1623 		return BLK_STS_IOERR;
1624 	}
1625 }
1626 
1627 static void handle_unserviceable_bio(struct pool *pool, struct bio *bio)
1628 {
1629 	blk_status_t error = should_error_unserviceable_bio(pool);
1630 
1631 	if (error) {
1632 		bio->bi_status = error;
1633 		bio_endio(bio);
1634 	} else
1635 		retry_on_resume(bio);
1636 }
1637 
1638 static void retry_bios_on_resume(struct pool *pool, struct dm_bio_prison_cell *cell)
1639 {
1640 	struct bio *bio;
1641 	struct bio_list bios;
1642 	blk_status_t error;
1643 
1644 	error = should_error_unserviceable_bio(pool);
1645 	if (error) {
1646 		cell_error_with_code(pool, cell, error);
1647 		return;
1648 	}
1649 
1650 	bio_list_init(&bios);
1651 	cell_release(pool, cell, &bios);
1652 
1653 	while ((bio = bio_list_pop(&bios)))
1654 		retry_on_resume(bio);
1655 }
1656 
1657 static void process_discard_cell_no_passdown(struct thin_c *tc,
1658 					     struct dm_bio_prison_cell *virt_cell)
1659 {
1660 	struct pool *pool = tc->pool;
1661 	struct dm_thin_new_mapping *m = get_next_mapping(pool);
1662 
1663 	/*
1664 	 * We don't need to lock the data blocks, since there's no
1665 	 * passdown.  We only lock data blocks for allocation and breaking sharing.
1666 	 */
1667 	m->tc = tc;
1668 	m->virt_begin = virt_cell->key.block_begin;
1669 	m->virt_end = virt_cell->key.block_end;
1670 	m->cell = virt_cell;
1671 	m->bio = virt_cell->holder;
1672 
1673 	if (!dm_deferred_set_add_work(pool->all_io_ds, &m->list))
1674 		pool->process_prepared_discard(m);
1675 }
1676 
1677 static void break_up_discard_bio(struct thin_c *tc, dm_block_t begin, dm_block_t end,
1678 				 struct bio *bio)
1679 {
1680 	struct pool *pool = tc->pool;
1681 
1682 	int r;
1683 	bool maybe_shared;
1684 	struct dm_cell_key data_key;
1685 	struct dm_bio_prison_cell *data_cell;
1686 	struct dm_thin_new_mapping *m;
1687 	dm_block_t virt_begin, virt_end, data_begin;
1688 
1689 	while (begin != end) {
1690 		r = ensure_next_mapping(pool);
1691 		if (r)
1692 			/* we did our best */
1693 			return;
1694 
1695 		r = dm_thin_find_mapped_range(tc->td, begin, end, &virt_begin, &virt_end,
1696 					      &data_begin, &maybe_shared);
1697 		if (r)
1698 			/*
1699 			 * Silently fail, letting any mappings we've
1700 			 * created complete.
1701 			 */
1702 			break;
1703 
1704 		build_key(tc->td, PHYSICAL, data_begin, data_begin + (virt_end - virt_begin), &data_key);
1705 		if (bio_detain(tc->pool, &data_key, NULL, &data_cell)) {
1706 			/* contention, we'll give up with this range */
1707 			begin = virt_end;
1708 			continue;
1709 		}
1710 
1711 		/*
1712 		 * IO may still be going to the destination block.  We must
1713 		 * quiesce before we can do the removal.
1714 		 */
1715 		m = get_next_mapping(pool);
1716 		m->tc = tc;
1717 		m->maybe_shared = maybe_shared;
1718 		m->virt_begin = virt_begin;
1719 		m->virt_end = virt_end;
1720 		m->data_block = data_begin;
1721 		m->cell = data_cell;
1722 		m->bio = bio;
1723 
1724 		/*
1725 		 * The parent bio must not complete before sub discard bios are
1726 		 * chained to it (see end_discard's bio_chain)!
1727 		 *
1728 		 * This per-mapping bi_remaining increment is paired with
1729 		 * the implicit decrement that occurs via bio_endio() in
1730 		 * end_discard().
1731 		 */
1732 		bio_inc_remaining(bio);
1733 		if (!dm_deferred_set_add_work(pool->all_io_ds, &m->list))
1734 			pool->process_prepared_discard(m);
1735 
1736 		begin = virt_end;
1737 	}
1738 }
1739 
1740 static void process_discard_cell_passdown(struct thin_c *tc, struct dm_bio_prison_cell *virt_cell)
1741 {
1742 	struct bio *bio = virt_cell->holder;
1743 	struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1744 
1745 	/*
1746 	 * The virt_cell will only get freed once the origin bio completes.
1747 	 * This means it will remain locked while all the individual
1748 	 * passdown bios are in flight.
1749 	 */
1750 	h->cell = virt_cell;
1751 	break_up_discard_bio(tc, virt_cell->key.block_begin, virt_cell->key.block_end, bio);
1752 
1753 	/*
1754 	 * We complete the bio now, knowing that the bi_remaining field
1755 	 * will prevent completion until the sub range discards have
1756 	 * completed.
1757 	 */
1758 	bio_endio(bio);
1759 }
1760 
1761 static void process_discard_bio(struct thin_c *tc, struct bio *bio)
1762 {
1763 	dm_block_t begin, end;
1764 	struct dm_cell_key virt_key;
1765 	struct dm_bio_prison_cell *virt_cell;
1766 
1767 	get_bio_block_range(tc, bio, &begin, &end);
1768 	if (begin == end) {
1769 		/*
1770 		 * The discard covers less than a block.
1771 		 */
1772 		bio_endio(bio);
1773 		return;
1774 	}
1775 
1776 	build_key(tc->td, VIRTUAL, begin, end, &virt_key);
1777 	if (bio_detain(tc->pool, &virt_key, bio, &virt_cell))
1778 		/*
1779 		 * Potential starvation issue: We're relying on the
1780 		 * fs/application being well behaved, and not trying to
1781 		 * send IO to a region at the same time as discarding it.
1782 		 * If they do this persistently then it's possible this
1783 		 * cell will never be granted.
1784 		 */
1785 		return;
1786 
1787 	tc->pool->process_discard_cell(tc, virt_cell);
1788 }
1789 
1790 static void break_sharing(struct thin_c *tc, struct bio *bio, dm_block_t block,
1791 			  struct dm_cell_key *key,
1792 			  struct dm_thin_lookup_result *lookup_result,
1793 			  struct dm_bio_prison_cell *cell)
1794 {
1795 	int r;
1796 	dm_block_t data_block;
1797 	struct pool *pool = tc->pool;
1798 
1799 	r = alloc_data_block(tc, &data_block);
1800 	switch (r) {
1801 	case 0:
1802 		schedule_internal_copy(tc, block, lookup_result->block,
1803 				       data_block, cell, bio);
1804 		break;
1805 
1806 	case -ENOSPC:
1807 		retry_bios_on_resume(pool, cell);
1808 		break;
1809 
1810 	default:
1811 		DMERR_LIMIT("%s: alloc_data_block() failed: error = %d",
1812 			    __func__, r);
1813 		cell_error(pool, cell);
1814 		break;
1815 	}
1816 }
1817 
1818 static void __remap_and_issue_shared_cell(void *context,
1819 					  struct dm_bio_prison_cell *cell)
1820 {
1821 	struct remap_info *info = context;
1822 	struct bio *bio;
1823 
1824 	while ((bio = bio_list_pop(&cell->bios))) {
1825 		if (bio_data_dir(bio) == WRITE || op_is_flush(bio->bi_opf) ||
1826 		    bio_op(bio) == REQ_OP_DISCARD)
1827 			bio_list_add(&info->defer_bios, bio);
1828 		else {
1829 			struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1830 
1831 			h->shared_read_entry = dm_deferred_entry_inc(info->tc->pool->shared_read_ds);
1832 			inc_all_io_entry(info->tc->pool, bio);
1833 			bio_list_add(&info->issue_bios, bio);
1834 		}
1835 	}
1836 }
1837 
1838 static void remap_and_issue_shared_cell(struct thin_c *tc,
1839 					struct dm_bio_prison_cell *cell,
1840 					dm_block_t block)
1841 {
1842 	struct bio *bio;
1843 	struct remap_info info;
1844 
1845 	info.tc = tc;
1846 	bio_list_init(&info.defer_bios);
1847 	bio_list_init(&info.issue_bios);
1848 
1849 	cell_visit_release(tc->pool, __remap_and_issue_shared_cell,
1850 			   &info, cell);
1851 
1852 	while ((bio = bio_list_pop(&info.defer_bios)))
1853 		thin_defer_bio(tc, bio);
1854 
1855 	while ((bio = bio_list_pop(&info.issue_bios)))
1856 		remap_and_issue(tc, bio, block);
1857 }
1858 
1859 static void process_shared_bio(struct thin_c *tc, struct bio *bio,
1860 			       dm_block_t block,
1861 			       struct dm_thin_lookup_result *lookup_result,
1862 			       struct dm_bio_prison_cell *virt_cell)
1863 {
1864 	struct dm_bio_prison_cell *data_cell;
1865 	struct pool *pool = tc->pool;
1866 	struct dm_cell_key key;
1867 
1868 	/*
1869 	 * If cell is already occupied, then sharing is already in the process
1870 	 * of being broken so we have nothing further to do here.
1871 	 */
1872 	build_data_key(tc->td, lookup_result->block, &key);
1873 	if (bio_detain(pool, &key, bio, &data_cell)) {
1874 		cell_defer_no_holder(tc, virt_cell);
1875 		return;
1876 	}
1877 
1878 	if (bio_data_dir(bio) == WRITE && bio->bi_iter.bi_size) {
1879 		break_sharing(tc, bio, block, &key, lookup_result, data_cell);
1880 		cell_defer_no_holder(tc, virt_cell);
1881 	} else {
1882 		struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1883 
1884 		h->shared_read_entry = dm_deferred_entry_inc(pool->shared_read_ds);
1885 		inc_all_io_entry(pool, bio);
1886 		remap_and_issue(tc, bio, lookup_result->block);
1887 
1888 		remap_and_issue_shared_cell(tc, data_cell, lookup_result->block);
1889 		remap_and_issue_shared_cell(tc, virt_cell, lookup_result->block);
1890 	}
1891 }
1892 
1893 static void provision_block(struct thin_c *tc, struct bio *bio, dm_block_t block,
1894 			    struct dm_bio_prison_cell *cell)
1895 {
1896 	int r;
1897 	dm_block_t data_block;
1898 	struct pool *pool = tc->pool;
1899 
1900 	/*
1901 	 * Remap empty bios (flushes) immediately, without provisioning.
1902 	 */
1903 	if (!bio->bi_iter.bi_size) {
1904 		inc_all_io_entry(pool, bio);
1905 		cell_defer_no_holder(tc, cell);
1906 
1907 		remap_and_issue(tc, bio, 0);
1908 		return;
1909 	}
1910 
1911 	/*
1912 	 * Fill read bios with zeroes and complete them immediately.
1913 	 */
1914 	if (bio_data_dir(bio) == READ) {
1915 		zero_fill_bio(bio);
1916 		cell_defer_no_holder(tc, cell);
1917 		bio_endio(bio);
1918 		return;
1919 	}
1920 
1921 	r = alloc_data_block(tc, &data_block);
1922 	switch (r) {
1923 	case 0:
1924 		if (tc->origin_dev)
1925 			schedule_external_copy(tc, block, data_block, cell, bio);
1926 		else
1927 			schedule_zero(tc, block, data_block, cell, bio);
1928 		break;
1929 
1930 	case -ENOSPC:
1931 		retry_bios_on_resume(pool, cell);
1932 		break;
1933 
1934 	default:
1935 		DMERR_LIMIT("%s: alloc_data_block() failed: error = %d",
1936 			    __func__, r);
1937 		cell_error(pool, cell);
1938 		break;
1939 	}
1940 }
1941 
1942 static void process_cell(struct thin_c *tc, struct dm_bio_prison_cell *cell)
1943 {
1944 	int r;
1945 	struct pool *pool = tc->pool;
1946 	struct bio *bio = cell->holder;
1947 	dm_block_t block = get_bio_block(tc, bio);
1948 	struct dm_thin_lookup_result lookup_result;
1949 
1950 	if (tc->requeue_mode) {
1951 		cell_requeue(pool, cell);
1952 		return;
1953 	}
1954 
1955 	r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1956 	switch (r) {
1957 	case 0:
1958 		if (lookup_result.shared)
1959 			process_shared_bio(tc, bio, block, &lookup_result, cell);
1960 		else {
1961 			inc_all_io_entry(pool, bio);
1962 			remap_and_issue(tc, bio, lookup_result.block);
1963 			inc_remap_and_issue_cell(tc, cell, lookup_result.block);
1964 		}
1965 		break;
1966 
1967 	case -ENODATA:
1968 		if (bio_data_dir(bio) == READ && tc->origin_dev) {
1969 			inc_all_io_entry(pool, bio);
1970 			cell_defer_no_holder(tc, cell);
1971 
1972 			if (bio_end_sector(bio) <= tc->origin_size)
1973 				remap_to_origin_and_issue(tc, bio);
1974 
1975 			else if (bio->bi_iter.bi_sector < tc->origin_size) {
1976 				zero_fill_bio(bio);
1977 				bio->bi_iter.bi_size = (tc->origin_size - bio->bi_iter.bi_sector) << SECTOR_SHIFT;
1978 				remap_to_origin_and_issue(tc, bio);
1979 
1980 			} else {
1981 				zero_fill_bio(bio);
1982 				bio_endio(bio);
1983 			}
1984 		} else
1985 			provision_block(tc, bio, block, cell);
1986 		break;
1987 
1988 	default:
1989 		DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
1990 			    __func__, r);
1991 		cell_defer_no_holder(tc, cell);
1992 		bio_io_error(bio);
1993 		break;
1994 	}
1995 }
1996 
1997 static void process_bio(struct thin_c *tc, struct bio *bio)
1998 {
1999 	struct pool *pool = tc->pool;
2000 	dm_block_t block = get_bio_block(tc, bio);
2001 	struct dm_bio_prison_cell *cell;
2002 	struct dm_cell_key key;
2003 
2004 	/*
2005 	 * If cell is already occupied, then the block is already
2006 	 * being provisioned so we have nothing further to do here.
2007 	 */
2008 	build_virtual_key(tc->td, block, &key);
2009 	if (bio_detain(pool, &key, bio, &cell))
2010 		return;
2011 
2012 	process_cell(tc, cell);
2013 }
2014 
2015 static void __process_bio_read_only(struct thin_c *tc, struct bio *bio,
2016 				    struct dm_bio_prison_cell *cell)
2017 {
2018 	int r;
2019 	int rw = bio_data_dir(bio);
2020 	dm_block_t block = get_bio_block(tc, bio);
2021 	struct dm_thin_lookup_result lookup_result;
2022 
2023 	r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
2024 	switch (r) {
2025 	case 0:
2026 		if (lookup_result.shared && (rw == WRITE) && bio->bi_iter.bi_size) {
2027 			handle_unserviceable_bio(tc->pool, bio);
2028 			if (cell)
2029 				cell_defer_no_holder(tc, cell);
2030 		} else {
2031 			inc_all_io_entry(tc->pool, bio);
2032 			remap_and_issue(tc, bio, lookup_result.block);
2033 			if (cell)
2034 				inc_remap_and_issue_cell(tc, cell, lookup_result.block);
2035 		}
2036 		break;
2037 
2038 	case -ENODATA:
2039 		if (cell)
2040 			cell_defer_no_holder(tc, cell);
2041 		if (rw != READ) {
2042 			handle_unserviceable_bio(tc->pool, bio);
2043 			break;
2044 		}
2045 
2046 		if (tc->origin_dev) {
2047 			inc_all_io_entry(tc->pool, bio);
2048 			remap_to_origin_and_issue(tc, bio);
2049 			break;
2050 		}
2051 
2052 		zero_fill_bio(bio);
2053 		bio_endio(bio);
2054 		break;
2055 
2056 	default:
2057 		DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
2058 			    __func__, r);
2059 		if (cell)
2060 			cell_defer_no_holder(tc, cell);
2061 		bio_io_error(bio);
2062 		break;
2063 	}
2064 }
2065 
2066 static void process_bio_read_only(struct thin_c *tc, struct bio *bio)
2067 {
2068 	__process_bio_read_only(tc, bio, NULL);
2069 }
2070 
2071 static void process_cell_read_only(struct thin_c *tc, struct dm_bio_prison_cell *cell)
2072 {
2073 	__process_bio_read_only(tc, cell->holder, cell);
2074 }
2075 
2076 static void process_bio_success(struct thin_c *tc, struct bio *bio)
2077 {
2078 	bio_endio(bio);
2079 }
2080 
2081 static void process_bio_fail(struct thin_c *tc, struct bio *bio)
2082 {
2083 	bio_io_error(bio);
2084 }
2085 
2086 static void process_cell_success(struct thin_c *tc, struct dm_bio_prison_cell *cell)
2087 {
2088 	cell_success(tc->pool, cell);
2089 }
2090 
2091 static void process_cell_fail(struct thin_c *tc, struct dm_bio_prison_cell *cell)
2092 {
2093 	cell_error(tc->pool, cell);
2094 }
2095 
2096 /*
2097  * FIXME: should we also commit due to size of transaction, measured in
2098  * metadata blocks?
2099  */
2100 static int need_commit_due_to_time(struct pool *pool)
2101 {
2102 	return !time_in_range(jiffies, pool->last_commit_jiffies,
2103 			      pool->last_commit_jiffies + COMMIT_PERIOD);
2104 }
2105 
2106 #define thin_pbd(node) rb_entry((node), struct dm_thin_endio_hook, rb_node)
2107 #define thin_bio(pbd) dm_bio_from_per_bio_data((pbd), sizeof(struct dm_thin_endio_hook))
2108 
2109 static void __thin_bio_rb_add(struct thin_c *tc, struct bio *bio)
2110 {
2111 	struct rb_node **rbp, *parent;
2112 	struct dm_thin_endio_hook *pbd;
2113 	sector_t bi_sector = bio->bi_iter.bi_sector;
2114 
2115 	rbp = &tc->sort_bio_list.rb_node;
2116 	parent = NULL;
2117 	while (*rbp) {
2118 		parent = *rbp;
2119 		pbd = thin_pbd(parent);
2120 
2121 		if (bi_sector < thin_bio(pbd)->bi_iter.bi_sector)
2122 			rbp = &(*rbp)->rb_left;
2123 		else
2124 			rbp = &(*rbp)->rb_right;
2125 	}
2126 
2127 	pbd = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
2128 	rb_link_node(&pbd->rb_node, parent, rbp);
2129 	rb_insert_color(&pbd->rb_node, &tc->sort_bio_list);
2130 }
2131 
2132 static void __extract_sorted_bios(struct thin_c *tc)
2133 {
2134 	struct rb_node *node;
2135 	struct dm_thin_endio_hook *pbd;
2136 	struct bio *bio;
2137 
2138 	for (node = rb_first(&tc->sort_bio_list); node; node = rb_next(node)) {
2139 		pbd = thin_pbd(node);
2140 		bio = thin_bio(pbd);
2141 
2142 		bio_list_add(&tc->deferred_bio_list, bio);
2143 		rb_erase(&pbd->rb_node, &tc->sort_bio_list);
2144 	}
2145 
2146 	WARN_ON(!RB_EMPTY_ROOT(&tc->sort_bio_list));
2147 }
2148 
2149 static void __sort_thin_deferred_bios(struct thin_c *tc)
2150 {
2151 	struct bio *bio;
2152 	struct bio_list bios;
2153 
2154 	bio_list_init(&bios);
2155 	bio_list_merge(&bios, &tc->deferred_bio_list);
2156 	bio_list_init(&tc->deferred_bio_list);
2157 
2158 	/* Sort deferred_bio_list using rb-tree */
2159 	while ((bio = bio_list_pop(&bios)))
2160 		__thin_bio_rb_add(tc, bio);
2161 
2162 	/*
2163 	 * Transfer the sorted bios in sort_bio_list back to
2164 	 * deferred_bio_list to allow lockless submission of
2165 	 * all bios.
2166 	 */
2167 	__extract_sorted_bios(tc);
2168 }
2169 
2170 static void process_thin_deferred_bios(struct thin_c *tc)
2171 {
2172 	struct pool *pool = tc->pool;
2173 	unsigned long flags;
2174 	struct bio *bio;
2175 	struct bio_list bios;
2176 	struct blk_plug plug;
2177 	unsigned count = 0;
2178 
2179 	if (tc->requeue_mode) {
2180 		error_thin_bio_list(tc, &tc->deferred_bio_list,
2181 				BLK_STS_DM_REQUEUE);
2182 		return;
2183 	}
2184 
2185 	bio_list_init(&bios);
2186 
2187 	spin_lock_irqsave(&tc->lock, flags);
2188 
2189 	if (bio_list_empty(&tc->deferred_bio_list)) {
2190 		spin_unlock_irqrestore(&tc->lock, flags);
2191 		return;
2192 	}
2193 
2194 	__sort_thin_deferred_bios(tc);
2195 
2196 	bio_list_merge(&bios, &tc->deferred_bio_list);
2197 	bio_list_init(&tc->deferred_bio_list);
2198 
2199 	spin_unlock_irqrestore(&tc->lock, flags);
2200 
2201 	blk_start_plug(&plug);
2202 	while ((bio = bio_list_pop(&bios))) {
2203 		/*
2204 		 * If we've got no free new_mapping structs, and processing
2205 		 * this bio might require one, we pause until there are some
2206 		 * prepared mappings to process.
2207 		 */
2208 		if (ensure_next_mapping(pool)) {
2209 			spin_lock_irqsave(&tc->lock, flags);
2210 			bio_list_add(&tc->deferred_bio_list, bio);
2211 			bio_list_merge(&tc->deferred_bio_list, &bios);
2212 			spin_unlock_irqrestore(&tc->lock, flags);
2213 			break;
2214 		}
2215 
2216 		if (bio_op(bio) == REQ_OP_DISCARD)
2217 			pool->process_discard(tc, bio);
2218 		else
2219 			pool->process_bio(tc, bio);
2220 
2221 		if ((count++ & 127) == 0) {
2222 			throttle_work_update(&pool->throttle);
2223 			dm_pool_issue_prefetches(pool->pmd);
2224 		}
2225 	}
2226 	blk_finish_plug(&plug);
2227 }
2228 
2229 static int cmp_cells(const void *lhs, const void *rhs)
2230 {
2231 	struct dm_bio_prison_cell *lhs_cell = *((struct dm_bio_prison_cell **) lhs);
2232 	struct dm_bio_prison_cell *rhs_cell = *((struct dm_bio_prison_cell **) rhs);
2233 
2234 	BUG_ON(!lhs_cell->holder);
2235 	BUG_ON(!rhs_cell->holder);
2236 
2237 	if (lhs_cell->holder->bi_iter.bi_sector < rhs_cell->holder->bi_iter.bi_sector)
2238 		return -1;
2239 
2240 	if (lhs_cell->holder->bi_iter.bi_sector > rhs_cell->holder->bi_iter.bi_sector)
2241 		return 1;
2242 
2243 	return 0;
2244 }
2245 
2246 static unsigned sort_cells(struct pool *pool, struct list_head *cells)
2247 {
2248 	unsigned count = 0;
2249 	struct dm_bio_prison_cell *cell, *tmp;
2250 
2251 	list_for_each_entry_safe(cell, tmp, cells, user_list) {
2252 		if (count >= CELL_SORT_ARRAY_SIZE)
2253 			break;
2254 
2255 		pool->cell_sort_array[count++] = cell;
2256 		list_del(&cell->user_list);
2257 	}
2258 
2259 	sort(pool->cell_sort_array, count, sizeof(cell), cmp_cells, NULL);
2260 
2261 	return count;
2262 }
2263 
2264 static void process_thin_deferred_cells(struct thin_c *tc)
2265 {
2266 	struct pool *pool = tc->pool;
2267 	unsigned long flags;
2268 	struct list_head cells;
2269 	struct dm_bio_prison_cell *cell;
2270 	unsigned i, j, count;
2271 
2272 	INIT_LIST_HEAD(&cells);
2273 
2274 	spin_lock_irqsave(&tc->lock, flags);
2275 	list_splice_init(&tc->deferred_cells, &cells);
2276 	spin_unlock_irqrestore(&tc->lock, flags);
2277 
2278 	if (list_empty(&cells))
2279 		return;
2280 
2281 	do {
2282 		count = sort_cells(tc->pool, &cells);
2283 
2284 		for (i = 0; i < count; i++) {
2285 			cell = pool->cell_sort_array[i];
2286 			BUG_ON(!cell->holder);
2287 
2288 			/*
2289 			 * If we've got no free new_mapping structs, and processing
2290 			 * this bio might require one, we pause until there are some
2291 			 * prepared mappings to process.
2292 			 */
2293 			if (ensure_next_mapping(pool)) {
2294 				for (j = i; j < count; j++)
2295 					list_add(&pool->cell_sort_array[j]->user_list, &cells);
2296 
2297 				spin_lock_irqsave(&tc->lock, flags);
2298 				list_splice(&cells, &tc->deferred_cells);
2299 				spin_unlock_irqrestore(&tc->lock, flags);
2300 				return;
2301 			}
2302 
2303 			if (bio_op(cell->holder) == REQ_OP_DISCARD)
2304 				pool->process_discard_cell(tc, cell);
2305 			else
2306 				pool->process_cell(tc, cell);
2307 		}
2308 	} while (!list_empty(&cells));
2309 }
2310 
2311 static void thin_get(struct thin_c *tc);
2312 static void thin_put(struct thin_c *tc);
2313 
2314 /*
2315  * We can't hold rcu_read_lock() around code that can block.  So we
2316  * find a thin with the rcu lock held; bump a refcount; then drop
2317  * the lock.
2318  */
2319 static struct thin_c *get_first_thin(struct pool *pool)
2320 {
2321 	struct thin_c *tc = NULL;
2322 
2323 	rcu_read_lock();
2324 	if (!list_empty(&pool->active_thins)) {
2325 		tc = list_entry_rcu(pool->active_thins.next, struct thin_c, list);
2326 		thin_get(tc);
2327 	}
2328 	rcu_read_unlock();
2329 
2330 	return tc;
2331 }
2332 
2333 static struct thin_c *get_next_thin(struct pool *pool, struct thin_c *tc)
2334 {
2335 	struct thin_c *old_tc = tc;
2336 
2337 	rcu_read_lock();
2338 	list_for_each_entry_continue_rcu(tc, &pool->active_thins, list) {
2339 		thin_get(tc);
2340 		thin_put(old_tc);
2341 		rcu_read_unlock();
2342 		return tc;
2343 	}
2344 	thin_put(old_tc);
2345 	rcu_read_unlock();
2346 
2347 	return NULL;
2348 }
2349 
2350 static void process_deferred_bios(struct pool *pool)
2351 {
2352 	unsigned long flags;
2353 	struct bio *bio;
2354 	struct bio_list bios, bio_completions;
2355 	struct thin_c *tc;
2356 
2357 	tc = get_first_thin(pool);
2358 	while (tc) {
2359 		process_thin_deferred_cells(tc);
2360 		process_thin_deferred_bios(tc);
2361 		tc = get_next_thin(pool, tc);
2362 	}
2363 
2364 	/*
2365 	 * If there are any deferred flush bios, we must commit the metadata
2366 	 * before issuing them or signaling their completion.
2367 	 */
2368 	bio_list_init(&bios);
2369 	bio_list_init(&bio_completions);
2370 
2371 	spin_lock_irqsave(&pool->lock, flags);
2372 	bio_list_merge(&bios, &pool->deferred_flush_bios);
2373 	bio_list_init(&pool->deferred_flush_bios);
2374 
2375 	bio_list_merge(&bio_completions, &pool->deferred_flush_completions);
2376 	bio_list_init(&pool->deferred_flush_completions);
2377 	spin_unlock_irqrestore(&pool->lock, flags);
2378 
2379 	if (bio_list_empty(&bios) && bio_list_empty(&bio_completions) &&
2380 	    !(dm_pool_changed_this_transaction(pool->pmd) && need_commit_due_to_time(pool)))
2381 		return;
2382 
2383 	if (commit(pool)) {
2384 		bio_list_merge(&bios, &bio_completions);
2385 
2386 		while ((bio = bio_list_pop(&bios)))
2387 			bio_io_error(bio);
2388 		return;
2389 	}
2390 	pool->last_commit_jiffies = jiffies;
2391 
2392 	while ((bio = bio_list_pop(&bio_completions)))
2393 		bio_endio(bio);
2394 
2395 	while ((bio = bio_list_pop(&bios)))
2396 		generic_make_request(bio);
2397 }
2398 
2399 static void do_worker(struct work_struct *ws)
2400 {
2401 	struct pool *pool = container_of(ws, struct pool, worker);
2402 
2403 	throttle_work_start(&pool->throttle);
2404 	dm_pool_issue_prefetches(pool->pmd);
2405 	throttle_work_update(&pool->throttle);
2406 	process_prepared(pool, &pool->prepared_mappings, &pool->process_prepared_mapping);
2407 	throttle_work_update(&pool->throttle);
2408 	process_prepared(pool, &pool->prepared_discards, &pool->process_prepared_discard);
2409 	throttle_work_update(&pool->throttle);
2410 	process_prepared(pool, &pool->prepared_discards_pt2, &pool->process_prepared_discard_pt2);
2411 	throttle_work_update(&pool->throttle);
2412 	process_deferred_bios(pool);
2413 	throttle_work_complete(&pool->throttle);
2414 }
2415 
2416 /*
2417  * We want to commit periodically so that not too much
2418  * unwritten data builds up.
2419  */
2420 static void do_waker(struct work_struct *ws)
2421 {
2422 	struct pool *pool = container_of(to_delayed_work(ws), struct pool, waker);
2423 	wake_worker(pool);
2424 	queue_delayed_work(pool->wq, &pool->waker, COMMIT_PERIOD);
2425 }
2426 
2427 /*
2428  * We're holding onto IO to allow userland time to react.  After the
2429  * timeout either the pool will have been resized (and thus back in
2430  * PM_WRITE mode), or we degrade to PM_OUT_OF_DATA_SPACE w/ error_if_no_space.
2431  */
2432 static void do_no_space_timeout(struct work_struct *ws)
2433 {
2434 	struct pool *pool = container_of(to_delayed_work(ws), struct pool,
2435 					 no_space_timeout);
2436 
2437 	if (get_pool_mode(pool) == PM_OUT_OF_DATA_SPACE && !pool->pf.error_if_no_space) {
2438 		pool->pf.error_if_no_space = true;
2439 		notify_of_pool_mode_change(pool);
2440 		error_retry_list_with_code(pool, BLK_STS_NOSPC);
2441 	}
2442 }
2443 
2444 /*----------------------------------------------------------------*/
2445 
2446 struct pool_work {
2447 	struct work_struct worker;
2448 	struct completion complete;
2449 };
2450 
2451 static struct pool_work *to_pool_work(struct work_struct *ws)
2452 {
2453 	return container_of(ws, struct pool_work, worker);
2454 }
2455 
2456 static void pool_work_complete(struct pool_work *pw)
2457 {
2458 	complete(&pw->complete);
2459 }
2460 
2461 static void pool_work_wait(struct pool_work *pw, struct pool *pool,
2462 			   void (*fn)(struct work_struct *))
2463 {
2464 	INIT_WORK_ONSTACK(&pw->worker, fn);
2465 	init_completion(&pw->complete);
2466 	queue_work(pool->wq, &pw->worker);
2467 	wait_for_completion(&pw->complete);
2468 }
2469 
2470 /*----------------------------------------------------------------*/
2471 
2472 struct noflush_work {
2473 	struct pool_work pw;
2474 	struct thin_c *tc;
2475 };
2476 
2477 static struct noflush_work *to_noflush(struct work_struct *ws)
2478 {
2479 	return container_of(to_pool_work(ws), struct noflush_work, pw);
2480 }
2481 
2482 static void do_noflush_start(struct work_struct *ws)
2483 {
2484 	struct noflush_work *w = to_noflush(ws);
2485 	w->tc->requeue_mode = true;
2486 	requeue_io(w->tc);
2487 	pool_work_complete(&w->pw);
2488 }
2489 
2490 static void do_noflush_stop(struct work_struct *ws)
2491 {
2492 	struct noflush_work *w = to_noflush(ws);
2493 	w->tc->requeue_mode = false;
2494 	pool_work_complete(&w->pw);
2495 }
2496 
2497 static void noflush_work(struct thin_c *tc, void (*fn)(struct work_struct *))
2498 {
2499 	struct noflush_work w;
2500 
2501 	w.tc = tc;
2502 	pool_work_wait(&w.pw, tc->pool, fn);
2503 }
2504 
2505 /*----------------------------------------------------------------*/
2506 
2507 static bool passdown_enabled(struct pool_c *pt)
2508 {
2509 	return pt->adjusted_pf.discard_passdown;
2510 }
2511 
2512 static void set_discard_callbacks(struct pool *pool)
2513 {
2514 	struct pool_c *pt = pool->ti->private;
2515 
2516 	if (passdown_enabled(pt)) {
2517 		pool->process_discard_cell = process_discard_cell_passdown;
2518 		pool->process_prepared_discard = process_prepared_discard_passdown_pt1;
2519 		pool->process_prepared_discard_pt2 = process_prepared_discard_passdown_pt2;
2520 	} else {
2521 		pool->process_discard_cell = process_discard_cell_no_passdown;
2522 		pool->process_prepared_discard = process_prepared_discard_no_passdown;
2523 	}
2524 }
2525 
2526 static void set_pool_mode(struct pool *pool, enum pool_mode new_mode)
2527 {
2528 	struct pool_c *pt = pool->ti->private;
2529 	bool needs_check = dm_pool_metadata_needs_check(pool->pmd);
2530 	enum pool_mode old_mode = get_pool_mode(pool);
2531 	unsigned long no_space_timeout = READ_ONCE(no_space_timeout_secs) * HZ;
2532 
2533 	/*
2534 	 * Never allow the pool to transition to PM_WRITE mode if user
2535 	 * intervention is required to verify metadata and data consistency.
2536 	 */
2537 	if (new_mode == PM_WRITE && needs_check) {
2538 		DMERR("%s: unable to switch pool to write mode until repaired.",
2539 		      dm_device_name(pool->pool_md));
2540 		if (old_mode != new_mode)
2541 			new_mode = old_mode;
2542 		else
2543 			new_mode = PM_READ_ONLY;
2544 	}
2545 	/*
2546 	 * If we were in PM_FAIL mode, rollback of metadata failed.  We're
2547 	 * not going to recover without a thin_repair.	So we never let the
2548 	 * pool move out of the old mode.
2549 	 */
2550 	if (old_mode == PM_FAIL)
2551 		new_mode = old_mode;
2552 
2553 	switch (new_mode) {
2554 	case PM_FAIL:
2555 		dm_pool_metadata_read_only(pool->pmd);
2556 		pool->process_bio = process_bio_fail;
2557 		pool->process_discard = process_bio_fail;
2558 		pool->process_cell = process_cell_fail;
2559 		pool->process_discard_cell = process_cell_fail;
2560 		pool->process_prepared_mapping = process_prepared_mapping_fail;
2561 		pool->process_prepared_discard = process_prepared_discard_fail;
2562 
2563 		error_retry_list(pool);
2564 		break;
2565 
2566 	case PM_OUT_OF_METADATA_SPACE:
2567 	case PM_READ_ONLY:
2568 		dm_pool_metadata_read_only(pool->pmd);
2569 		pool->process_bio = process_bio_read_only;
2570 		pool->process_discard = process_bio_success;
2571 		pool->process_cell = process_cell_read_only;
2572 		pool->process_discard_cell = process_cell_success;
2573 		pool->process_prepared_mapping = process_prepared_mapping_fail;
2574 		pool->process_prepared_discard = process_prepared_discard_success;
2575 
2576 		error_retry_list(pool);
2577 		break;
2578 
2579 	case PM_OUT_OF_DATA_SPACE:
2580 		/*
2581 		 * Ideally we'd never hit this state; the low water mark
2582 		 * would trigger userland to extend the pool before we
2583 		 * completely run out of data space.  However, many small
2584 		 * IOs to unprovisioned space can consume data space at an
2585 		 * alarming rate.  Adjust your low water mark if you're
2586 		 * frequently seeing this mode.
2587 		 */
2588 		pool->out_of_data_space = true;
2589 		pool->process_bio = process_bio_read_only;
2590 		pool->process_discard = process_discard_bio;
2591 		pool->process_cell = process_cell_read_only;
2592 		pool->process_prepared_mapping = process_prepared_mapping;
2593 		set_discard_callbacks(pool);
2594 
2595 		if (!pool->pf.error_if_no_space && no_space_timeout)
2596 			queue_delayed_work(pool->wq, &pool->no_space_timeout, no_space_timeout);
2597 		break;
2598 
2599 	case PM_WRITE:
2600 		if (old_mode == PM_OUT_OF_DATA_SPACE)
2601 			cancel_delayed_work_sync(&pool->no_space_timeout);
2602 		pool->out_of_data_space = false;
2603 		pool->pf.error_if_no_space = pt->requested_pf.error_if_no_space;
2604 		dm_pool_metadata_read_write(pool->pmd);
2605 		pool->process_bio = process_bio;
2606 		pool->process_discard = process_discard_bio;
2607 		pool->process_cell = process_cell;
2608 		pool->process_prepared_mapping = process_prepared_mapping;
2609 		set_discard_callbacks(pool);
2610 		break;
2611 	}
2612 
2613 	pool->pf.mode = new_mode;
2614 	/*
2615 	 * The pool mode may have changed, sync it so bind_control_target()
2616 	 * doesn't cause an unexpected mode transition on resume.
2617 	 */
2618 	pt->adjusted_pf.mode = new_mode;
2619 
2620 	if (old_mode != new_mode)
2621 		notify_of_pool_mode_change(pool);
2622 }
2623 
2624 static void abort_transaction(struct pool *pool)
2625 {
2626 	const char *dev_name = dm_device_name(pool->pool_md);
2627 
2628 	DMERR_LIMIT("%s: aborting current metadata transaction", dev_name);
2629 	if (dm_pool_abort_metadata(pool->pmd)) {
2630 		DMERR("%s: failed to abort metadata transaction", dev_name);
2631 		set_pool_mode(pool, PM_FAIL);
2632 	}
2633 
2634 	if (dm_pool_metadata_set_needs_check(pool->pmd)) {
2635 		DMERR("%s: failed to set 'needs_check' flag in metadata", dev_name);
2636 		set_pool_mode(pool, PM_FAIL);
2637 	}
2638 }
2639 
2640 static void metadata_operation_failed(struct pool *pool, const char *op, int r)
2641 {
2642 	DMERR_LIMIT("%s: metadata operation '%s' failed: error = %d",
2643 		    dm_device_name(pool->pool_md), op, r);
2644 
2645 	abort_transaction(pool);
2646 	set_pool_mode(pool, PM_READ_ONLY);
2647 }
2648 
2649 /*----------------------------------------------------------------*/
2650 
2651 /*
2652  * Mapping functions.
2653  */
2654 
2655 /*
2656  * Called only while mapping a thin bio to hand it over to the workqueue.
2657  */
2658 static void thin_defer_bio(struct thin_c *tc, struct bio *bio)
2659 {
2660 	unsigned long flags;
2661 	struct pool *pool = tc->pool;
2662 
2663 	spin_lock_irqsave(&tc->lock, flags);
2664 	bio_list_add(&tc->deferred_bio_list, bio);
2665 	spin_unlock_irqrestore(&tc->lock, flags);
2666 
2667 	wake_worker(pool);
2668 }
2669 
2670 static void thin_defer_bio_with_throttle(struct thin_c *tc, struct bio *bio)
2671 {
2672 	struct pool *pool = tc->pool;
2673 
2674 	throttle_lock(&pool->throttle);
2675 	thin_defer_bio(tc, bio);
2676 	throttle_unlock(&pool->throttle);
2677 }
2678 
2679 static void thin_defer_cell(struct thin_c *tc, struct dm_bio_prison_cell *cell)
2680 {
2681 	unsigned long flags;
2682 	struct pool *pool = tc->pool;
2683 
2684 	throttle_lock(&pool->throttle);
2685 	spin_lock_irqsave(&tc->lock, flags);
2686 	list_add_tail(&cell->user_list, &tc->deferred_cells);
2687 	spin_unlock_irqrestore(&tc->lock, flags);
2688 	throttle_unlock(&pool->throttle);
2689 
2690 	wake_worker(pool);
2691 }
2692 
2693 static void thin_hook_bio(struct thin_c *tc, struct bio *bio)
2694 {
2695 	struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
2696 
2697 	h->tc = tc;
2698 	h->shared_read_entry = NULL;
2699 	h->all_io_entry = NULL;
2700 	h->overwrite_mapping = NULL;
2701 	h->cell = NULL;
2702 }
2703 
2704 /*
2705  * Non-blocking function called from the thin target's map function.
2706  */
2707 static int thin_bio_map(struct dm_target *ti, struct bio *bio)
2708 {
2709 	int r;
2710 	struct thin_c *tc = ti->private;
2711 	dm_block_t block = get_bio_block(tc, bio);
2712 	struct dm_thin_device *td = tc->td;
2713 	struct dm_thin_lookup_result result;
2714 	struct dm_bio_prison_cell *virt_cell, *data_cell;
2715 	struct dm_cell_key key;
2716 
2717 	thin_hook_bio(tc, bio);
2718 
2719 	if (tc->requeue_mode) {
2720 		bio->bi_status = BLK_STS_DM_REQUEUE;
2721 		bio_endio(bio);
2722 		return DM_MAPIO_SUBMITTED;
2723 	}
2724 
2725 	if (get_pool_mode(tc->pool) == PM_FAIL) {
2726 		bio_io_error(bio);
2727 		return DM_MAPIO_SUBMITTED;
2728 	}
2729 
2730 	if (op_is_flush(bio->bi_opf) || bio_op(bio) == REQ_OP_DISCARD) {
2731 		thin_defer_bio_with_throttle(tc, bio);
2732 		return DM_MAPIO_SUBMITTED;
2733 	}
2734 
2735 	/*
2736 	 * We must hold the virtual cell before doing the lookup, otherwise
2737 	 * there's a race with discard.
2738 	 */
2739 	build_virtual_key(tc->td, block, &key);
2740 	if (bio_detain(tc->pool, &key, bio, &virt_cell))
2741 		return DM_MAPIO_SUBMITTED;
2742 
2743 	r = dm_thin_find_block(td, block, 0, &result);
2744 
2745 	/*
2746 	 * Note that we defer readahead too.
2747 	 */
2748 	switch (r) {
2749 	case 0:
2750 		if (unlikely(result.shared)) {
2751 			/*
2752 			 * We have a race condition here between the
2753 			 * result.shared value returned by the lookup and
2754 			 * snapshot creation, which may cause new
2755 			 * sharing.
2756 			 *
2757 			 * To avoid this always quiesce the origin before
2758 			 * taking the snap.  You want to do this anyway to
2759 			 * ensure a consistent application view
2760 			 * (i.e. lockfs).
2761 			 *
2762 			 * More distant ancestors are irrelevant. The
2763 			 * shared flag will be set in their case.
2764 			 */
2765 			thin_defer_cell(tc, virt_cell);
2766 			return DM_MAPIO_SUBMITTED;
2767 		}
2768 
2769 		build_data_key(tc->td, result.block, &key);
2770 		if (bio_detain(tc->pool, &key, bio, &data_cell)) {
2771 			cell_defer_no_holder(tc, virt_cell);
2772 			return DM_MAPIO_SUBMITTED;
2773 		}
2774 
2775 		inc_all_io_entry(tc->pool, bio);
2776 		cell_defer_no_holder(tc, data_cell);
2777 		cell_defer_no_holder(tc, virt_cell);
2778 
2779 		remap(tc, bio, result.block);
2780 		return DM_MAPIO_REMAPPED;
2781 
2782 	case -ENODATA:
2783 	case -EWOULDBLOCK:
2784 		thin_defer_cell(tc, virt_cell);
2785 		return DM_MAPIO_SUBMITTED;
2786 
2787 	default:
2788 		/*
2789 		 * Must always call bio_io_error on failure.
2790 		 * dm_thin_find_block can fail with -EINVAL if the
2791 		 * pool is switched to fail-io mode.
2792 		 */
2793 		bio_io_error(bio);
2794 		cell_defer_no_holder(tc, virt_cell);
2795 		return DM_MAPIO_SUBMITTED;
2796 	}
2797 }
2798 
2799 static int pool_is_congested(struct dm_target_callbacks *cb, int bdi_bits)
2800 {
2801 	struct pool_c *pt = container_of(cb, struct pool_c, callbacks);
2802 	struct request_queue *q;
2803 
2804 	if (get_pool_mode(pt->pool) == PM_OUT_OF_DATA_SPACE)
2805 		return 1;
2806 
2807 	q = bdev_get_queue(pt->data_dev->bdev);
2808 	return bdi_congested(q->backing_dev_info, bdi_bits);
2809 }
2810 
2811 static void requeue_bios(struct pool *pool)
2812 {
2813 	unsigned long flags;
2814 	struct thin_c *tc;
2815 
2816 	rcu_read_lock();
2817 	list_for_each_entry_rcu(tc, &pool->active_thins, list) {
2818 		spin_lock_irqsave(&tc->lock, flags);
2819 		bio_list_merge(&tc->deferred_bio_list, &tc->retry_on_resume_list);
2820 		bio_list_init(&tc->retry_on_resume_list);
2821 		spin_unlock_irqrestore(&tc->lock, flags);
2822 	}
2823 	rcu_read_unlock();
2824 }
2825 
2826 /*----------------------------------------------------------------
2827  * Binding of control targets to a pool object
2828  *--------------------------------------------------------------*/
2829 static bool data_dev_supports_discard(struct pool_c *pt)
2830 {
2831 	struct request_queue *q = bdev_get_queue(pt->data_dev->bdev);
2832 
2833 	return q && blk_queue_discard(q);
2834 }
2835 
2836 static bool is_factor(sector_t block_size, uint32_t n)
2837 {
2838 	return !sector_div(block_size, n);
2839 }
2840 
2841 /*
2842  * If discard_passdown was enabled verify that the data device
2843  * supports discards.  Disable discard_passdown if not.
2844  */
2845 static void disable_passdown_if_not_supported(struct pool_c *pt)
2846 {
2847 	struct pool *pool = pt->pool;
2848 	struct block_device *data_bdev = pt->data_dev->bdev;
2849 	struct queue_limits *data_limits = &bdev_get_queue(data_bdev)->limits;
2850 	const char *reason = NULL;
2851 	char buf[BDEVNAME_SIZE];
2852 
2853 	if (!pt->adjusted_pf.discard_passdown)
2854 		return;
2855 
2856 	if (!data_dev_supports_discard(pt))
2857 		reason = "discard unsupported";
2858 
2859 	else if (data_limits->max_discard_sectors < pool->sectors_per_block)
2860 		reason = "max discard sectors smaller than a block";
2861 
2862 	if (reason) {
2863 		DMWARN("Data device (%s) %s: Disabling discard passdown.", bdevname(data_bdev, buf), reason);
2864 		pt->adjusted_pf.discard_passdown = false;
2865 	}
2866 }
2867 
2868 static int bind_control_target(struct pool *pool, struct dm_target *ti)
2869 {
2870 	struct pool_c *pt = ti->private;
2871 
2872 	/*
2873 	 * We want to make sure that a pool in PM_FAIL mode is never upgraded.
2874 	 */
2875 	enum pool_mode old_mode = get_pool_mode(pool);
2876 	enum pool_mode new_mode = pt->adjusted_pf.mode;
2877 
2878 	/*
2879 	 * Don't change the pool's mode until set_pool_mode() below.
2880 	 * Otherwise the pool's process_* function pointers may
2881 	 * not match the desired pool mode.
2882 	 */
2883 	pt->adjusted_pf.mode = old_mode;
2884 
2885 	pool->ti = ti;
2886 	pool->pf = pt->adjusted_pf;
2887 	pool->low_water_blocks = pt->low_water_blocks;
2888 
2889 	set_pool_mode(pool, new_mode);
2890 
2891 	return 0;
2892 }
2893 
2894 static void unbind_control_target(struct pool *pool, struct dm_target *ti)
2895 {
2896 	if (pool->ti == ti)
2897 		pool->ti = NULL;
2898 }
2899 
2900 /*----------------------------------------------------------------
2901  * Pool creation
2902  *--------------------------------------------------------------*/
2903 /* Initialize pool features. */
2904 static void pool_features_init(struct pool_features *pf)
2905 {
2906 	pf->mode = PM_WRITE;
2907 	pf->zero_new_blocks = true;
2908 	pf->discard_enabled = true;
2909 	pf->discard_passdown = true;
2910 	pf->error_if_no_space = false;
2911 }
2912 
2913 static void __pool_destroy(struct pool *pool)
2914 {
2915 	__pool_table_remove(pool);
2916 
2917 	vfree(pool->cell_sort_array);
2918 	if (dm_pool_metadata_close(pool->pmd) < 0)
2919 		DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
2920 
2921 	dm_bio_prison_destroy(pool->prison);
2922 	dm_kcopyd_client_destroy(pool->copier);
2923 
2924 	if (pool->wq)
2925 		destroy_workqueue(pool->wq);
2926 
2927 	if (pool->next_mapping)
2928 		mempool_free(pool->next_mapping, &pool->mapping_pool);
2929 	mempool_exit(&pool->mapping_pool);
2930 	dm_deferred_set_destroy(pool->shared_read_ds);
2931 	dm_deferred_set_destroy(pool->all_io_ds);
2932 	kfree(pool);
2933 }
2934 
2935 static struct kmem_cache *_new_mapping_cache;
2936 
2937 static struct pool *pool_create(struct mapped_device *pool_md,
2938 				struct block_device *metadata_dev,
2939 				unsigned long block_size,
2940 				int read_only, char **error)
2941 {
2942 	int r;
2943 	void *err_p;
2944 	struct pool *pool;
2945 	struct dm_pool_metadata *pmd;
2946 	bool format_device = read_only ? false : true;
2947 
2948 	pmd = dm_pool_metadata_open(metadata_dev, block_size, format_device);
2949 	if (IS_ERR(pmd)) {
2950 		*error = "Error creating metadata object";
2951 		return (struct pool *)pmd;
2952 	}
2953 
2954 	pool = kzalloc(sizeof(*pool), GFP_KERNEL);
2955 	if (!pool) {
2956 		*error = "Error allocating memory for pool";
2957 		err_p = ERR_PTR(-ENOMEM);
2958 		goto bad_pool;
2959 	}
2960 
2961 	pool->pmd = pmd;
2962 	pool->sectors_per_block = block_size;
2963 	if (block_size & (block_size - 1))
2964 		pool->sectors_per_block_shift = -1;
2965 	else
2966 		pool->sectors_per_block_shift = __ffs(block_size);
2967 	pool->low_water_blocks = 0;
2968 	pool_features_init(&pool->pf);
2969 	pool->prison = dm_bio_prison_create();
2970 	if (!pool->prison) {
2971 		*error = "Error creating pool's bio prison";
2972 		err_p = ERR_PTR(-ENOMEM);
2973 		goto bad_prison;
2974 	}
2975 
2976 	pool->copier = dm_kcopyd_client_create(&dm_kcopyd_throttle);
2977 	if (IS_ERR(pool->copier)) {
2978 		r = PTR_ERR(pool->copier);
2979 		*error = "Error creating pool's kcopyd client";
2980 		err_p = ERR_PTR(r);
2981 		goto bad_kcopyd_client;
2982 	}
2983 
2984 	/*
2985 	 * Create singlethreaded workqueue that will service all devices
2986 	 * that use this metadata.
2987 	 */
2988 	pool->wq = alloc_ordered_workqueue("dm-" DM_MSG_PREFIX, WQ_MEM_RECLAIM);
2989 	if (!pool->wq) {
2990 		*error = "Error creating pool's workqueue";
2991 		err_p = ERR_PTR(-ENOMEM);
2992 		goto bad_wq;
2993 	}
2994 
2995 	throttle_init(&pool->throttle);
2996 	INIT_WORK(&pool->worker, do_worker);
2997 	INIT_DELAYED_WORK(&pool->waker, do_waker);
2998 	INIT_DELAYED_WORK(&pool->no_space_timeout, do_no_space_timeout);
2999 	spin_lock_init(&pool->lock);
3000 	bio_list_init(&pool->deferred_flush_bios);
3001 	bio_list_init(&pool->deferred_flush_completions);
3002 	INIT_LIST_HEAD(&pool->prepared_mappings);
3003 	INIT_LIST_HEAD(&pool->prepared_discards);
3004 	INIT_LIST_HEAD(&pool->prepared_discards_pt2);
3005 	INIT_LIST_HEAD(&pool->active_thins);
3006 	pool->low_water_triggered = false;
3007 	pool->suspended = true;
3008 	pool->out_of_data_space = false;
3009 
3010 	pool->shared_read_ds = dm_deferred_set_create();
3011 	if (!pool->shared_read_ds) {
3012 		*error = "Error creating pool's shared read deferred set";
3013 		err_p = ERR_PTR(-ENOMEM);
3014 		goto bad_shared_read_ds;
3015 	}
3016 
3017 	pool->all_io_ds = dm_deferred_set_create();
3018 	if (!pool->all_io_ds) {
3019 		*error = "Error creating pool's all io deferred set";
3020 		err_p = ERR_PTR(-ENOMEM);
3021 		goto bad_all_io_ds;
3022 	}
3023 
3024 	pool->next_mapping = NULL;
3025 	r = mempool_init_slab_pool(&pool->mapping_pool, MAPPING_POOL_SIZE,
3026 				   _new_mapping_cache);
3027 	if (r) {
3028 		*error = "Error creating pool's mapping mempool";
3029 		err_p = ERR_PTR(r);
3030 		goto bad_mapping_pool;
3031 	}
3032 
3033 	pool->cell_sort_array =
3034 		vmalloc(array_size(CELL_SORT_ARRAY_SIZE,
3035 				   sizeof(*pool->cell_sort_array)));
3036 	if (!pool->cell_sort_array) {
3037 		*error = "Error allocating cell sort array";
3038 		err_p = ERR_PTR(-ENOMEM);
3039 		goto bad_sort_array;
3040 	}
3041 
3042 	pool->ref_count = 1;
3043 	pool->last_commit_jiffies = jiffies;
3044 	pool->pool_md = pool_md;
3045 	pool->md_dev = metadata_dev;
3046 	__pool_table_insert(pool);
3047 
3048 	return pool;
3049 
3050 bad_sort_array:
3051 	mempool_exit(&pool->mapping_pool);
3052 bad_mapping_pool:
3053 	dm_deferred_set_destroy(pool->all_io_ds);
3054 bad_all_io_ds:
3055 	dm_deferred_set_destroy(pool->shared_read_ds);
3056 bad_shared_read_ds:
3057 	destroy_workqueue(pool->wq);
3058 bad_wq:
3059 	dm_kcopyd_client_destroy(pool->copier);
3060 bad_kcopyd_client:
3061 	dm_bio_prison_destroy(pool->prison);
3062 bad_prison:
3063 	kfree(pool);
3064 bad_pool:
3065 	if (dm_pool_metadata_close(pmd))
3066 		DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
3067 
3068 	return err_p;
3069 }
3070 
3071 static void __pool_inc(struct pool *pool)
3072 {
3073 	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
3074 	pool->ref_count++;
3075 }
3076 
3077 static void __pool_dec(struct pool *pool)
3078 {
3079 	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
3080 	BUG_ON(!pool->ref_count);
3081 	if (!--pool->ref_count)
3082 		__pool_destroy(pool);
3083 }
3084 
3085 static struct pool *__pool_find(struct mapped_device *pool_md,
3086 				struct block_device *metadata_dev,
3087 				unsigned long block_size, int read_only,
3088 				char **error, int *created)
3089 {
3090 	struct pool *pool = __pool_table_lookup_metadata_dev(metadata_dev);
3091 
3092 	if (pool) {
3093 		if (pool->pool_md != pool_md) {
3094 			*error = "metadata device already in use by a pool";
3095 			return ERR_PTR(-EBUSY);
3096 		}
3097 		__pool_inc(pool);
3098 
3099 	} else {
3100 		pool = __pool_table_lookup(pool_md);
3101 		if (pool) {
3102 			if (pool->md_dev != metadata_dev) {
3103 				*error = "different pool cannot replace a pool";
3104 				return ERR_PTR(-EINVAL);
3105 			}
3106 			__pool_inc(pool);
3107 
3108 		} else {
3109 			pool = pool_create(pool_md, metadata_dev, block_size, read_only, error);
3110 			*created = 1;
3111 		}
3112 	}
3113 
3114 	return pool;
3115 }
3116 
3117 /*----------------------------------------------------------------
3118  * Pool target methods
3119  *--------------------------------------------------------------*/
3120 static void pool_dtr(struct dm_target *ti)
3121 {
3122 	struct pool_c *pt = ti->private;
3123 
3124 	mutex_lock(&dm_thin_pool_table.mutex);
3125 
3126 	unbind_control_target(pt->pool, ti);
3127 	__pool_dec(pt->pool);
3128 	dm_put_device(ti, pt->metadata_dev);
3129 	dm_put_device(ti, pt->data_dev);
3130 	kfree(pt);
3131 
3132 	mutex_unlock(&dm_thin_pool_table.mutex);
3133 }
3134 
3135 static int parse_pool_features(struct dm_arg_set *as, struct pool_features *pf,
3136 			       struct dm_target *ti)
3137 {
3138 	int r;
3139 	unsigned argc;
3140 	const char *arg_name;
3141 
3142 	static const struct dm_arg _args[] = {
3143 		{0, 4, "Invalid number of pool feature arguments"},
3144 	};
3145 
3146 	/*
3147 	 * No feature arguments supplied.
3148 	 */
3149 	if (!as->argc)
3150 		return 0;
3151 
3152 	r = dm_read_arg_group(_args, as, &argc, &ti->error);
3153 	if (r)
3154 		return -EINVAL;
3155 
3156 	while (argc && !r) {
3157 		arg_name = dm_shift_arg(as);
3158 		argc--;
3159 
3160 		if (!strcasecmp(arg_name, "skip_block_zeroing"))
3161 			pf->zero_new_blocks = false;
3162 
3163 		else if (!strcasecmp(arg_name, "ignore_discard"))
3164 			pf->discard_enabled = false;
3165 
3166 		else if (!strcasecmp(arg_name, "no_discard_passdown"))
3167 			pf->discard_passdown = false;
3168 
3169 		else if (!strcasecmp(arg_name, "read_only"))
3170 			pf->mode = PM_READ_ONLY;
3171 
3172 		else if (!strcasecmp(arg_name, "error_if_no_space"))
3173 			pf->error_if_no_space = true;
3174 
3175 		else {
3176 			ti->error = "Unrecognised pool feature requested";
3177 			r = -EINVAL;
3178 			break;
3179 		}
3180 	}
3181 
3182 	return r;
3183 }
3184 
3185 static void metadata_low_callback(void *context)
3186 {
3187 	struct pool *pool = context;
3188 
3189 	DMWARN("%s: reached low water mark for metadata device: sending event.",
3190 	       dm_device_name(pool->pool_md));
3191 
3192 	dm_table_event(pool->ti->table);
3193 }
3194 
3195 static sector_t get_dev_size(struct block_device *bdev)
3196 {
3197 	return i_size_read(bdev->bd_inode) >> SECTOR_SHIFT;
3198 }
3199 
3200 static void warn_if_metadata_device_too_big(struct block_device *bdev)
3201 {
3202 	sector_t metadata_dev_size = get_dev_size(bdev);
3203 	char buffer[BDEVNAME_SIZE];
3204 
3205 	if (metadata_dev_size > THIN_METADATA_MAX_SECTORS_WARNING)
3206 		DMWARN("Metadata device %s is larger than %u sectors: excess space will not be used.",
3207 		       bdevname(bdev, buffer), THIN_METADATA_MAX_SECTORS);
3208 }
3209 
3210 static sector_t get_metadata_dev_size(struct block_device *bdev)
3211 {
3212 	sector_t metadata_dev_size = get_dev_size(bdev);
3213 
3214 	if (metadata_dev_size > THIN_METADATA_MAX_SECTORS)
3215 		metadata_dev_size = THIN_METADATA_MAX_SECTORS;
3216 
3217 	return metadata_dev_size;
3218 }
3219 
3220 static dm_block_t get_metadata_dev_size_in_blocks(struct block_device *bdev)
3221 {
3222 	sector_t metadata_dev_size = get_metadata_dev_size(bdev);
3223 
3224 	sector_div(metadata_dev_size, THIN_METADATA_BLOCK_SIZE);
3225 
3226 	return metadata_dev_size;
3227 }
3228 
3229 /*
3230  * When a metadata threshold is crossed a dm event is triggered, and
3231  * userland should respond by growing the metadata device.  We could let
3232  * userland set the threshold, like we do with the data threshold, but I'm
3233  * not sure they know enough to do this well.
3234  */
3235 static dm_block_t calc_metadata_threshold(struct pool_c *pt)
3236 {
3237 	/*
3238 	 * 4M is ample for all ops with the possible exception of thin
3239 	 * device deletion which is harmless if it fails (just retry the
3240 	 * delete after you've grown the device).
3241 	 */
3242 	dm_block_t quarter = get_metadata_dev_size_in_blocks(pt->metadata_dev->bdev) / 4;
3243 	return min((dm_block_t)1024ULL /* 4M */, quarter);
3244 }
3245 
3246 /*
3247  * thin-pool <metadata dev> <data dev>
3248  *	     <data block size (sectors)>
3249  *	     <low water mark (blocks)>
3250  *	     [<#feature args> [<arg>]*]
3251  *
3252  * Optional feature arguments are:
3253  *	     skip_block_zeroing: skips the zeroing of newly-provisioned blocks.
3254  *	     ignore_discard: disable discard
3255  *	     no_discard_passdown: don't pass discards down to the data device
3256  *	     read_only: Don't allow any changes to be made to the pool metadata.
3257  *	     error_if_no_space: error IOs, instead of queueing, if no space.
3258  */
3259 static int pool_ctr(struct dm_target *ti, unsigned argc, char **argv)
3260 {
3261 	int r, pool_created = 0;
3262 	struct pool_c *pt;
3263 	struct pool *pool;
3264 	struct pool_features pf;
3265 	struct dm_arg_set as;
3266 	struct dm_dev *data_dev;
3267 	unsigned long block_size;
3268 	dm_block_t low_water_blocks;
3269 	struct dm_dev *metadata_dev;
3270 	fmode_t metadata_mode;
3271 
3272 	/*
3273 	 * FIXME Remove validation from scope of lock.
3274 	 */
3275 	mutex_lock(&dm_thin_pool_table.mutex);
3276 
3277 	if (argc < 4) {
3278 		ti->error = "Invalid argument count";
3279 		r = -EINVAL;
3280 		goto out_unlock;
3281 	}
3282 
3283 	as.argc = argc;
3284 	as.argv = argv;
3285 
3286 	/* make sure metadata and data are different devices */
3287 	if (!strcmp(argv[0], argv[1])) {
3288 		ti->error = "Error setting metadata or data device";
3289 		r = -EINVAL;
3290 		goto out_unlock;
3291 	}
3292 
3293 	/*
3294 	 * Set default pool features.
3295 	 */
3296 	pool_features_init(&pf);
3297 
3298 	dm_consume_args(&as, 4);
3299 	r = parse_pool_features(&as, &pf, ti);
3300 	if (r)
3301 		goto out_unlock;
3302 
3303 	metadata_mode = FMODE_READ | ((pf.mode == PM_READ_ONLY) ? 0 : FMODE_WRITE);
3304 	r = dm_get_device(ti, argv[0], metadata_mode, &metadata_dev);
3305 	if (r) {
3306 		ti->error = "Error opening metadata block device";
3307 		goto out_unlock;
3308 	}
3309 	warn_if_metadata_device_too_big(metadata_dev->bdev);
3310 
3311 	r = dm_get_device(ti, argv[1], FMODE_READ | FMODE_WRITE, &data_dev);
3312 	if (r) {
3313 		ti->error = "Error getting data device";
3314 		goto out_metadata;
3315 	}
3316 
3317 	if (kstrtoul(argv[2], 10, &block_size) || !block_size ||
3318 	    block_size < DATA_DEV_BLOCK_SIZE_MIN_SECTORS ||
3319 	    block_size > DATA_DEV_BLOCK_SIZE_MAX_SECTORS ||
3320 	    block_size & (DATA_DEV_BLOCK_SIZE_MIN_SECTORS - 1)) {
3321 		ti->error = "Invalid block size";
3322 		r = -EINVAL;
3323 		goto out;
3324 	}
3325 
3326 	if (kstrtoull(argv[3], 10, (unsigned long long *)&low_water_blocks)) {
3327 		ti->error = "Invalid low water mark";
3328 		r = -EINVAL;
3329 		goto out;
3330 	}
3331 
3332 	pt = kzalloc(sizeof(*pt), GFP_KERNEL);
3333 	if (!pt) {
3334 		r = -ENOMEM;
3335 		goto out;
3336 	}
3337 
3338 	pool = __pool_find(dm_table_get_md(ti->table), metadata_dev->bdev,
3339 			   block_size, pf.mode == PM_READ_ONLY, &ti->error, &pool_created);
3340 	if (IS_ERR(pool)) {
3341 		r = PTR_ERR(pool);
3342 		goto out_free_pt;
3343 	}
3344 
3345 	/*
3346 	 * 'pool_created' reflects whether this is the first table load.
3347 	 * Top level discard support is not allowed to be changed after
3348 	 * initial load.  This would require a pool reload to trigger thin
3349 	 * device changes.
3350 	 */
3351 	if (!pool_created && pf.discard_enabled != pool->pf.discard_enabled) {
3352 		ti->error = "Discard support cannot be disabled once enabled";
3353 		r = -EINVAL;
3354 		goto out_flags_changed;
3355 	}
3356 
3357 	pt->pool = pool;
3358 	pt->ti = ti;
3359 	pt->metadata_dev = metadata_dev;
3360 	pt->data_dev = data_dev;
3361 	pt->low_water_blocks = low_water_blocks;
3362 	pt->adjusted_pf = pt->requested_pf = pf;
3363 	ti->num_flush_bios = 1;
3364 
3365 	/*
3366 	 * Only need to enable discards if the pool should pass
3367 	 * them down to the data device.  The thin device's discard
3368 	 * processing will cause mappings to be removed from the btree.
3369 	 */
3370 	if (pf.discard_enabled && pf.discard_passdown) {
3371 		ti->num_discard_bios = 1;
3372 
3373 		/*
3374 		 * Setting 'discards_supported' circumvents the normal
3375 		 * stacking of discard limits (this keeps the pool and
3376 		 * thin devices' discard limits consistent).
3377 		 */
3378 		ti->discards_supported = true;
3379 	}
3380 	ti->private = pt;
3381 
3382 	r = dm_pool_register_metadata_threshold(pt->pool->pmd,
3383 						calc_metadata_threshold(pt),
3384 						metadata_low_callback,
3385 						pool);
3386 	if (r)
3387 		goto out_flags_changed;
3388 
3389 	pt->callbacks.congested_fn = pool_is_congested;
3390 	dm_table_add_target_callbacks(ti->table, &pt->callbacks);
3391 
3392 	mutex_unlock(&dm_thin_pool_table.mutex);
3393 
3394 	return 0;
3395 
3396 out_flags_changed:
3397 	__pool_dec(pool);
3398 out_free_pt:
3399 	kfree(pt);
3400 out:
3401 	dm_put_device(ti, data_dev);
3402 out_metadata:
3403 	dm_put_device(ti, metadata_dev);
3404 out_unlock:
3405 	mutex_unlock(&dm_thin_pool_table.mutex);
3406 
3407 	return r;
3408 }
3409 
3410 static int pool_map(struct dm_target *ti, struct bio *bio)
3411 {
3412 	int r;
3413 	struct pool_c *pt = ti->private;
3414 	struct pool *pool = pt->pool;
3415 	unsigned long flags;
3416 
3417 	/*
3418 	 * As this is a singleton target, ti->begin is always zero.
3419 	 */
3420 	spin_lock_irqsave(&pool->lock, flags);
3421 	bio_set_dev(bio, pt->data_dev->bdev);
3422 	r = DM_MAPIO_REMAPPED;
3423 	spin_unlock_irqrestore(&pool->lock, flags);
3424 
3425 	return r;
3426 }
3427 
3428 static int maybe_resize_data_dev(struct dm_target *ti, bool *need_commit)
3429 {
3430 	int r;
3431 	struct pool_c *pt = ti->private;
3432 	struct pool *pool = pt->pool;
3433 	sector_t data_size = ti->len;
3434 	dm_block_t sb_data_size;
3435 
3436 	*need_commit = false;
3437 
3438 	(void) sector_div(data_size, pool->sectors_per_block);
3439 
3440 	r = dm_pool_get_data_dev_size(pool->pmd, &sb_data_size);
3441 	if (r) {
3442 		DMERR("%s: failed to retrieve data device size",
3443 		      dm_device_name(pool->pool_md));
3444 		return r;
3445 	}
3446 
3447 	if (data_size < sb_data_size) {
3448 		DMERR("%s: pool target (%llu blocks) too small: expected %llu",
3449 		      dm_device_name(pool->pool_md),
3450 		      (unsigned long long)data_size, sb_data_size);
3451 		return -EINVAL;
3452 
3453 	} else if (data_size > sb_data_size) {
3454 		if (dm_pool_metadata_needs_check(pool->pmd)) {
3455 			DMERR("%s: unable to grow the data device until repaired.",
3456 			      dm_device_name(pool->pool_md));
3457 			return 0;
3458 		}
3459 
3460 		if (sb_data_size)
3461 			DMINFO("%s: growing the data device from %llu to %llu blocks",
3462 			       dm_device_name(pool->pool_md),
3463 			       sb_data_size, (unsigned long long)data_size);
3464 		r = dm_pool_resize_data_dev(pool->pmd, data_size);
3465 		if (r) {
3466 			metadata_operation_failed(pool, "dm_pool_resize_data_dev", r);
3467 			return r;
3468 		}
3469 
3470 		*need_commit = true;
3471 	}
3472 
3473 	return 0;
3474 }
3475 
3476 static int maybe_resize_metadata_dev(struct dm_target *ti, bool *need_commit)
3477 {
3478 	int r;
3479 	struct pool_c *pt = ti->private;
3480 	struct pool *pool = pt->pool;
3481 	dm_block_t metadata_dev_size, sb_metadata_dev_size;
3482 
3483 	*need_commit = false;
3484 
3485 	metadata_dev_size = get_metadata_dev_size_in_blocks(pool->md_dev);
3486 
3487 	r = dm_pool_get_metadata_dev_size(pool->pmd, &sb_metadata_dev_size);
3488 	if (r) {
3489 		DMERR("%s: failed to retrieve metadata device size",
3490 		      dm_device_name(pool->pool_md));
3491 		return r;
3492 	}
3493 
3494 	if (metadata_dev_size < sb_metadata_dev_size) {
3495 		DMERR("%s: metadata device (%llu blocks) too small: expected %llu",
3496 		      dm_device_name(pool->pool_md),
3497 		      metadata_dev_size, sb_metadata_dev_size);
3498 		return -EINVAL;
3499 
3500 	} else if (metadata_dev_size > sb_metadata_dev_size) {
3501 		if (dm_pool_metadata_needs_check(pool->pmd)) {
3502 			DMERR("%s: unable to grow the metadata device until repaired.",
3503 			      dm_device_name(pool->pool_md));
3504 			return 0;
3505 		}
3506 
3507 		warn_if_metadata_device_too_big(pool->md_dev);
3508 		DMINFO("%s: growing the metadata device from %llu to %llu blocks",
3509 		       dm_device_name(pool->pool_md),
3510 		       sb_metadata_dev_size, metadata_dev_size);
3511 
3512 		if (get_pool_mode(pool) == PM_OUT_OF_METADATA_SPACE)
3513 			set_pool_mode(pool, PM_WRITE);
3514 
3515 		r = dm_pool_resize_metadata_dev(pool->pmd, metadata_dev_size);
3516 		if (r) {
3517 			metadata_operation_failed(pool, "dm_pool_resize_metadata_dev", r);
3518 			return r;
3519 		}
3520 
3521 		*need_commit = true;
3522 	}
3523 
3524 	return 0;
3525 }
3526 
3527 /*
3528  * Retrieves the number of blocks of the data device from
3529  * the superblock and compares it to the actual device size,
3530  * thus resizing the data device in case it has grown.
3531  *
3532  * This both copes with opening preallocated data devices in the ctr
3533  * being followed by a resume
3534  * -and-
3535  * calling the resume method individually after userspace has
3536  * grown the data device in reaction to a table event.
3537  */
3538 static int pool_preresume(struct dm_target *ti)
3539 {
3540 	int r;
3541 	bool need_commit1, need_commit2;
3542 	struct pool_c *pt = ti->private;
3543 	struct pool *pool = pt->pool;
3544 
3545 	/*
3546 	 * Take control of the pool object.
3547 	 */
3548 	r = bind_control_target(pool, ti);
3549 	if (r)
3550 		return r;
3551 
3552 	r = maybe_resize_data_dev(ti, &need_commit1);
3553 	if (r)
3554 		return r;
3555 
3556 	r = maybe_resize_metadata_dev(ti, &need_commit2);
3557 	if (r)
3558 		return r;
3559 
3560 	if (need_commit1 || need_commit2)
3561 		(void) commit(pool);
3562 
3563 	return 0;
3564 }
3565 
3566 static void pool_suspend_active_thins(struct pool *pool)
3567 {
3568 	struct thin_c *tc;
3569 
3570 	/* Suspend all active thin devices */
3571 	tc = get_first_thin(pool);
3572 	while (tc) {
3573 		dm_internal_suspend_noflush(tc->thin_md);
3574 		tc = get_next_thin(pool, tc);
3575 	}
3576 }
3577 
3578 static void pool_resume_active_thins(struct pool *pool)
3579 {
3580 	struct thin_c *tc;
3581 
3582 	/* Resume all active thin devices */
3583 	tc = get_first_thin(pool);
3584 	while (tc) {
3585 		dm_internal_resume(tc->thin_md);
3586 		tc = get_next_thin(pool, tc);
3587 	}
3588 }
3589 
3590 static void pool_resume(struct dm_target *ti)
3591 {
3592 	struct pool_c *pt = ti->private;
3593 	struct pool *pool = pt->pool;
3594 	unsigned long flags;
3595 
3596 	/*
3597 	 * Must requeue active_thins' bios and then resume
3598 	 * active_thins _before_ clearing 'suspend' flag.
3599 	 */
3600 	requeue_bios(pool);
3601 	pool_resume_active_thins(pool);
3602 
3603 	spin_lock_irqsave(&pool->lock, flags);
3604 	pool->low_water_triggered = false;
3605 	pool->suspended = false;
3606 	spin_unlock_irqrestore(&pool->lock, flags);
3607 
3608 	do_waker(&pool->waker.work);
3609 }
3610 
3611 static void pool_presuspend(struct dm_target *ti)
3612 {
3613 	struct pool_c *pt = ti->private;
3614 	struct pool *pool = pt->pool;
3615 	unsigned long flags;
3616 
3617 	spin_lock_irqsave(&pool->lock, flags);
3618 	pool->suspended = true;
3619 	spin_unlock_irqrestore(&pool->lock, flags);
3620 
3621 	pool_suspend_active_thins(pool);
3622 }
3623 
3624 static void pool_presuspend_undo(struct dm_target *ti)
3625 {
3626 	struct pool_c *pt = ti->private;
3627 	struct pool *pool = pt->pool;
3628 	unsigned long flags;
3629 
3630 	pool_resume_active_thins(pool);
3631 
3632 	spin_lock_irqsave(&pool->lock, flags);
3633 	pool->suspended = false;
3634 	spin_unlock_irqrestore(&pool->lock, flags);
3635 }
3636 
3637 static void pool_postsuspend(struct dm_target *ti)
3638 {
3639 	struct pool_c *pt = ti->private;
3640 	struct pool *pool = pt->pool;
3641 
3642 	cancel_delayed_work_sync(&pool->waker);
3643 	cancel_delayed_work_sync(&pool->no_space_timeout);
3644 	flush_workqueue(pool->wq);
3645 	(void) commit(pool);
3646 }
3647 
3648 static int check_arg_count(unsigned argc, unsigned args_required)
3649 {
3650 	if (argc != args_required) {
3651 		DMWARN("Message received with %u arguments instead of %u.",
3652 		       argc, args_required);
3653 		return -EINVAL;
3654 	}
3655 
3656 	return 0;
3657 }
3658 
3659 static int read_dev_id(char *arg, dm_thin_id *dev_id, int warning)
3660 {
3661 	if (!kstrtoull(arg, 10, (unsigned long long *)dev_id) &&
3662 	    *dev_id <= MAX_DEV_ID)
3663 		return 0;
3664 
3665 	if (warning)
3666 		DMWARN("Message received with invalid device id: %s", arg);
3667 
3668 	return -EINVAL;
3669 }
3670 
3671 static int process_create_thin_mesg(unsigned argc, char **argv, struct pool *pool)
3672 {
3673 	dm_thin_id dev_id;
3674 	int r;
3675 
3676 	r = check_arg_count(argc, 2);
3677 	if (r)
3678 		return r;
3679 
3680 	r = read_dev_id(argv[1], &dev_id, 1);
3681 	if (r)
3682 		return r;
3683 
3684 	r = dm_pool_create_thin(pool->pmd, dev_id);
3685 	if (r) {
3686 		DMWARN("Creation of new thinly-provisioned device with id %s failed.",
3687 		       argv[1]);
3688 		return r;
3689 	}
3690 
3691 	return 0;
3692 }
3693 
3694 static int process_create_snap_mesg(unsigned argc, char **argv, struct pool *pool)
3695 {
3696 	dm_thin_id dev_id;
3697 	dm_thin_id origin_dev_id;
3698 	int r;
3699 
3700 	r = check_arg_count(argc, 3);
3701 	if (r)
3702 		return r;
3703 
3704 	r = read_dev_id(argv[1], &dev_id, 1);
3705 	if (r)
3706 		return r;
3707 
3708 	r = read_dev_id(argv[2], &origin_dev_id, 1);
3709 	if (r)
3710 		return r;
3711 
3712 	r = dm_pool_create_snap(pool->pmd, dev_id, origin_dev_id);
3713 	if (r) {
3714 		DMWARN("Creation of new snapshot %s of device %s failed.",
3715 		       argv[1], argv[2]);
3716 		return r;
3717 	}
3718 
3719 	return 0;
3720 }
3721 
3722 static int process_delete_mesg(unsigned argc, char **argv, struct pool *pool)
3723 {
3724 	dm_thin_id dev_id;
3725 	int r;
3726 
3727 	r = check_arg_count(argc, 2);
3728 	if (r)
3729 		return r;
3730 
3731 	r = read_dev_id(argv[1], &dev_id, 1);
3732 	if (r)
3733 		return r;
3734 
3735 	r = dm_pool_delete_thin_device(pool->pmd, dev_id);
3736 	if (r)
3737 		DMWARN("Deletion of thin device %s failed.", argv[1]);
3738 
3739 	return r;
3740 }
3741 
3742 static int process_set_transaction_id_mesg(unsigned argc, char **argv, struct pool *pool)
3743 {
3744 	dm_thin_id old_id, new_id;
3745 	int r;
3746 
3747 	r = check_arg_count(argc, 3);
3748 	if (r)
3749 		return r;
3750 
3751 	if (kstrtoull(argv[1], 10, (unsigned long long *)&old_id)) {
3752 		DMWARN("set_transaction_id message: Unrecognised id %s.", argv[1]);
3753 		return -EINVAL;
3754 	}
3755 
3756 	if (kstrtoull(argv[2], 10, (unsigned long long *)&new_id)) {
3757 		DMWARN("set_transaction_id message: Unrecognised new id %s.", argv[2]);
3758 		return -EINVAL;
3759 	}
3760 
3761 	r = dm_pool_set_metadata_transaction_id(pool->pmd, old_id, new_id);
3762 	if (r) {
3763 		DMWARN("Failed to change transaction id from %s to %s.",
3764 		       argv[1], argv[2]);
3765 		return r;
3766 	}
3767 
3768 	return 0;
3769 }
3770 
3771 static int process_reserve_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool)
3772 {
3773 	int r;
3774 
3775 	r = check_arg_count(argc, 1);
3776 	if (r)
3777 		return r;
3778 
3779 	(void) commit(pool);
3780 
3781 	r = dm_pool_reserve_metadata_snap(pool->pmd);
3782 	if (r)
3783 		DMWARN("reserve_metadata_snap message failed.");
3784 
3785 	return r;
3786 }
3787 
3788 static int process_release_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool)
3789 {
3790 	int r;
3791 
3792 	r = check_arg_count(argc, 1);
3793 	if (r)
3794 		return r;
3795 
3796 	r = dm_pool_release_metadata_snap(pool->pmd);
3797 	if (r)
3798 		DMWARN("release_metadata_snap message failed.");
3799 
3800 	return r;
3801 }
3802 
3803 /*
3804  * Messages supported:
3805  *   create_thin	<dev_id>
3806  *   create_snap	<dev_id> <origin_id>
3807  *   delete		<dev_id>
3808  *   set_transaction_id <current_trans_id> <new_trans_id>
3809  *   reserve_metadata_snap
3810  *   release_metadata_snap
3811  */
3812 static int pool_message(struct dm_target *ti, unsigned argc, char **argv,
3813 			char *result, unsigned maxlen)
3814 {
3815 	int r = -EINVAL;
3816 	struct pool_c *pt = ti->private;
3817 	struct pool *pool = pt->pool;
3818 
3819 	if (get_pool_mode(pool) >= PM_OUT_OF_METADATA_SPACE) {
3820 		DMERR("%s: unable to service pool target messages in READ_ONLY or FAIL mode",
3821 		      dm_device_name(pool->pool_md));
3822 		return -EOPNOTSUPP;
3823 	}
3824 
3825 	if (!strcasecmp(argv[0], "create_thin"))
3826 		r = process_create_thin_mesg(argc, argv, pool);
3827 
3828 	else if (!strcasecmp(argv[0], "create_snap"))
3829 		r = process_create_snap_mesg(argc, argv, pool);
3830 
3831 	else if (!strcasecmp(argv[0], "delete"))
3832 		r = process_delete_mesg(argc, argv, pool);
3833 
3834 	else if (!strcasecmp(argv[0], "set_transaction_id"))
3835 		r = process_set_transaction_id_mesg(argc, argv, pool);
3836 
3837 	else if (!strcasecmp(argv[0], "reserve_metadata_snap"))
3838 		r = process_reserve_metadata_snap_mesg(argc, argv, pool);
3839 
3840 	else if (!strcasecmp(argv[0], "release_metadata_snap"))
3841 		r = process_release_metadata_snap_mesg(argc, argv, pool);
3842 
3843 	else
3844 		DMWARN("Unrecognised thin pool target message received: %s", argv[0]);
3845 
3846 	if (!r)
3847 		(void) commit(pool);
3848 
3849 	return r;
3850 }
3851 
3852 static void emit_flags(struct pool_features *pf, char *result,
3853 		       unsigned sz, unsigned maxlen)
3854 {
3855 	unsigned count = !pf->zero_new_blocks + !pf->discard_enabled +
3856 		!pf->discard_passdown + (pf->mode == PM_READ_ONLY) +
3857 		pf->error_if_no_space;
3858 	DMEMIT("%u ", count);
3859 
3860 	if (!pf->zero_new_blocks)
3861 		DMEMIT("skip_block_zeroing ");
3862 
3863 	if (!pf->discard_enabled)
3864 		DMEMIT("ignore_discard ");
3865 
3866 	if (!pf->discard_passdown)
3867 		DMEMIT("no_discard_passdown ");
3868 
3869 	if (pf->mode == PM_READ_ONLY)
3870 		DMEMIT("read_only ");
3871 
3872 	if (pf->error_if_no_space)
3873 		DMEMIT("error_if_no_space ");
3874 }
3875 
3876 /*
3877  * Status line is:
3878  *    <transaction id> <used metadata sectors>/<total metadata sectors>
3879  *    <used data sectors>/<total data sectors> <held metadata root>
3880  *    <pool mode> <discard config> <no space config> <needs_check>
3881  */
3882 static void pool_status(struct dm_target *ti, status_type_t type,
3883 			unsigned status_flags, char *result, unsigned maxlen)
3884 {
3885 	int r;
3886 	unsigned sz = 0;
3887 	uint64_t transaction_id;
3888 	dm_block_t nr_free_blocks_data;
3889 	dm_block_t nr_free_blocks_metadata;
3890 	dm_block_t nr_blocks_data;
3891 	dm_block_t nr_blocks_metadata;
3892 	dm_block_t held_root;
3893 	enum pool_mode mode;
3894 	char buf[BDEVNAME_SIZE];
3895 	char buf2[BDEVNAME_SIZE];
3896 	struct pool_c *pt = ti->private;
3897 	struct pool *pool = pt->pool;
3898 
3899 	switch (type) {
3900 	case STATUSTYPE_INFO:
3901 		if (get_pool_mode(pool) == PM_FAIL) {
3902 			DMEMIT("Fail");
3903 			break;
3904 		}
3905 
3906 		/* Commit to ensure statistics aren't out-of-date */
3907 		if (!(status_flags & DM_STATUS_NOFLUSH_FLAG) && !dm_suspended(ti))
3908 			(void) commit(pool);
3909 
3910 		r = dm_pool_get_metadata_transaction_id(pool->pmd, &transaction_id);
3911 		if (r) {
3912 			DMERR("%s: dm_pool_get_metadata_transaction_id returned %d",
3913 			      dm_device_name(pool->pool_md), r);
3914 			goto err;
3915 		}
3916 
3917 		r = dm_pool_get_free_metadata_block_count(pool->pmd, &nr_free_blocks_metadata);
3918 		if (r) {
3919 			DMERR("%s: dm_pool_get_free_metadata_block_count returned %d",
3920 			      dm_device_name(pool->pool_md), r);
3921 			goto err;
3922 		}
3923 
3924 		r = dm_pool_get_metadata_dev_size(pool->pmd, &nr_blocks_metadata);
3925 		if (r) {
3926 			DMERR("%s: dm_pool_get_metadata_dev_size returned %d",
3927 			      dm_device_name(pool->pool_md), r);
3928 			goto err;
3929 		}
3930 
3931 		r = dm_pool_get_free_block_count(pool->pmd, &nr_free_blocks_data);
3932 		if (r) {
3933 			DMERR("%s: dm_pool_get_free_block_count returned %d",
3934 			      dm_device_name(pool->pool_md), r);
3935 			goto err;
3936 		}
3937 
3938 		r = dm_pool_get_data_dev_size(pool->pmd, &nr_blocks_data);
3939 		if (r) {
3940 			DMERR("%s: dm_pool_get_data_dev_size returned %d",
3941 			      dm_device_name(pool->pool_md), r);
3942 			goto err;
3943 		}
3944 
3945 		r = dm_pool_get_metadata_snap(pool->pmd, &held_root);
3946 		if (r) {
3947 			DMERR("%s: dm_pool_get_metadata_snap returned %d",
3948 			      dm_device_name(pool->pool_md), r);
3949 			goto err;
3950 		}
3951 
3952 		DMEMIT("%llu %llu/%llu %llu/%llu ",
3953 		       (unsigned long long)transaction_id,
3954 		       (unsigned long long)(nr_blocks_metadata - nr_free_blocks_metadata),
3955 		       (unsigned long long)nr_blocks_metadata,
3956 		       (unsigned long long)(nr_blocks_data - nr_free_blocks_data),
3957 		       (unsigned long long)nr_blocks_data);
3958 
3959 		if (held_root)
3960 			DMEMIT("%llu ", held_root);
3961 		else
3962 			DMEMIT("- ");
3963 
3964 		mode = get_pool_mode(pool);
3965 		if (mode == PM_OUT_OF_DATA_SPACE)
3966 			DMEMIT("out_of_data_space ");
3967 		else if (is_read_only_pool_mode(mode))
3968 			DMEMIT("ro ");
3969 		else
3970 			DMEMIT("rw ");
3971 
3972 		if (!pool->pf.discard_enabled)
3973 			DMEMIT("ignore_discard ");
3974 		else if (pool->pf.discard_passdown)
3975 			DMEMIT("discard_passdown ");
3976 		else
3977 			DMEMIT("no_discard_passdown ");
3978 
3979 		if (pool->pf.error_if_no_space)
3980 			DMEMIT("error_if_no_space ");
3981 		else
3982 			DMEMIT("queue_if_no_space ");
3983 
3984 		if (dm_pool_metadata_needs_check(pool->pmd))
3985 			DMEMIT("needs_check ");
3986 		else
3987 			DMEMIT("- ");
3988 
3989 		DMEMIT("%llu ", (unsigned long long)calc_metadata_threshold(pt));
3990 
3991 		break;
3992 
3993 	case STATUSTYPE_TABLE:
3994 		DMEMIT("%s %s %lu %llu ",
3995 		       format_dev_t(buf, pt->metadata_dev->bdev->bd_dev),
3996 		       format_dev_t(buf2, pt->data_dev->bdev->bd_dev),
3997 		       (unsigned long)pool->sectors_per_block,
3998 		       (unsigned long long)pt->low_water_blocks);
3999 		emit_flags(&pt->requested_pf, result, sz, maxlen);
4000 		break;
4001 	}
4002 	return;
4003 
4004 err:
4005 	DMEMIT("Error");
4006 }
4007 
4008 static int pool_iterate_devices(struct dm_target *ti,
4009 				iterate_devices_callout_fn fn, void *data)
4010 {
4011 	struct pool_c *pt = ti->private;
4012 
4013 	return fn(ti, pt->data_dev, 0, ti->len, data);
4014 }
4015 
4016 static void pool_io_hints(struct dm_target *ti, struct queue_limits *limits)
4017 {
4018 	struct pool_c *pt = ti->private;
4019 	struct pool *pool = pt->pool;
4020 	sector_t io_opt_sectors = limits->io_opt >> SECTOR_SHIFT;
4021 
4022 	/*
4023 	 * If max_sectors is smaller than pool->sectors_per_block adjust it
4024 	 * to the highest possible power-of-2 factor of pool->sectors_per_block.
4025 	 * This is especially beneficial when the pool's data device is a RAID
4026 	 * device that has a full stripe width that matches pool->sectors_per_block
4027 	 * -- because even though partial RAID stripe-sized IOs will be issued to a
4028 	 *    single RAID stripe; when aggregated they will end on a full RAID stripe
4029 	 *    boundary.. which avoids additional partial RAID stripe writes cascading
4030 	 */
4031 	if (limits->max_sectors < pool->sectors_per_block) {
4032 		while (!is_factor(pool->sectors_per_block, limits->max_sectors)) {
4033 			if ((limits->max_sectors & (limits->max_sectors - 1)) == 0)
4034 				limits->max_sectors--;
4035 			limits->max_sectors = rounddown_pow_of_two(limits->max_sectors);
4036 		}
4037 	}
4038 
4039 	/*
4040 	 * If the system-determined stacked limits are compatible with the
4041 	 * pool's blocksize (io_opt is a factor) do not override them.
4042 	 */
4043 	if (io_opt_sectors < pool->sectors_per_block ||
4044 	    !is_factor(io_opt_sectors, pool->sectors_per_block)) {
4045 		if (is_factor(pool->sectors_per_block, limits->max_sectors))
4046 			blk_limits_io_min(limits, limits->max_sectors << SECTOR_SHIFT);
4047 		else
4048 			blk_limits_io_min(limits, pool->sectors_per_block << SECTOR_SHIFT);
4049 		blk_limits_io_opt(limits, pool->sectors_per_block << SECTOR_SHIFT);
4050 	}
4051 
4052 	/*
4053 	 * pt->adjusted_pf is a staging area for the actual features to use.
4054 	 * They get transferred to the live pool in bind_control_target()
4055 	 * called from pool_preresume().
4056 	 */
4057 	if (!pt->adjusted_pf.discard_enabled) {
4058 		/*
4059 		 * Must explicitly disallow stacking discard limits otherwise the
4060 		 * block layer will stack them if pool's data device has support.
4061 		 * QUEUE_FLAG_DISCARD wouldn't be set but there is no way for the
4062 		 * user to see that, so make sure to set all discard limits to 0.
4063 		 */
4064 		limits->discard_granularity = 0;
4065 		return;
4066 	}
4067 
4068 	disable_passdown_if_not_supported(pt);
4069 
4070 	/*
4071 	 * The pool uses the same discard limits as the underlying data
4072 	 * device.  DM core has already set this up.
4073 	 */
4074 }
4075 
4076 static struct target_type pool_target = {
4077 	.name = "thin-pool",
4078 	.features = DM_TARGET_SINGLETON | DM_TARGET_ALWAYS_WRITEABLE |
4079 		    DM_TARGET_IMMUTABLE,
4080 	.version = {1, 21, 0},
4081 	.module = THIS_MODULE,
4082 	.ctr = pool_ctr,
4083 	.dtr = pool_dtr,
4084 	.map = pool_map,
4085 	.presuspend = pool_presuspend,
4086 	.presuspend_undo = pool_presuspend_undo,
4087 	.postsuspend = pool_postsuspend,
4088 	.preresume = pool_preresume,
4089 	.resume = pool_resume,
4090 	.message = pool_message,
4091 	.status = pool_status,
4092 	.iterate_devices = pool_iterate_devices,
4093 	.io_hints = pool_io_hints,
4094 };
4095 
4096 /*----------------------------------------------------------------
4097  * Thin target methods
4098  *--------------------------------------------------------------*/
4099 static void thin_get(struct thin_c *tc)
4100 {
4101 	refcount_inc(&tc->refcount);
4102 }
4103 
4104 static void thin_put(struct thin_c *tc)
4105 {
4106 	if (refcount_dec_and_test(&tc->refcount))
4107 		complete(&tc->can_destroy);
4108 }
4109 
4110 static void thin_dtr(struct dm_target *ti)
4111 {
4112 	struct thin_c *tc = ti->private;
4113 	unsigned long flags;
4114 
4115 	spin_lock_irqsave(&tc->pool->lock, flags);
4116 	list_del_rcu(&tc->list);
4117 	spin_unlock_irqrestore(&tc->pool->lock, flags);
4118 	synchronize_rcu();
4119 
4120 	thin_put(tc);
4121 	wait_for_completion(&tc->can_destroy);
4122 
4123 	mutex_lock(&dm_thin_pool_table.mutex);
4124 
4125 	__pool_dec(tc->pool);
4126 	dm_pool_close_thin_device(tc->td);
4127 	dm_put_device(ti, tc->pool_dev);
4128 	if (tc->origin_dev)
4129 		dm_put_device(ti, tc->origin_dev);
4130 	kfree(tc);
4131 
4132 	mutex_unlock(&dm_thin_pool_table.mutex);
4133 }
4134 
4135 /*
4136  * Thin target parameters:
4137  *
4138  * <pool_dev> <dev_id> [origin_dev]
4139  *
4140  * pool_dev: the path to the pool (eg, /dev/mapper/my_pool)
4141  * dev_id: the internal device identifier
4142  * origin_dev: a device external to the pool that should act as the origin
4143  *
4144  * If the pool device has discards disabled, they get disabled for the thin
4145  * device as well.
4146  */
4147 static int thin_ctr(struct dm_target *ti, unsigned argc, char **argv)
4148 {
4149 	int r;
4150 	struct thin_c *tc;
4151 	struct dm_dev *pool_dev, *origin_dev;
4152 	struct mapped_device *pool_md;
4153 	unsigned long flags;
4154 
4155 	mutex_lock(&dm_thin_pool_table.mutex);
4156 
4157 	if (argc != 2 && argc != 3) {
4158 		ti->error = "Invalid argument count";
4159 		r = -EINVAL;
4160 		goto out_unlock;
4161 	}
4162 
4163 	tc = ti->private = kzalloc(sizeof(*tc), GFP_KERNEL);
4164 	if (!tc) {
4165 		ti->error = "Out of memory";
4166 		r = -ENOMEM;
4167 		goto out_unlock;
4168 	}
4169 	tc->thin_md = dm_table_get_md(ti->table);
4170 	spin_lock_init(&tc->lock);
4171 	INIT_LIST_HEAD(&tc->deferred_cells);
4172 	bio_list_init(&tc->deferred_bio_list);
4173 	bio_list_init(&tc->retry_on_resume_list);
4174 	tc->sort_bio_list = RB_ROOT;
4175 
4176 	if (argc == 3) {
4177 		if (!strcmp(argv[0], argv[2])) {
4178 			ti->error = "Error setting origin device";
4179 			r = -EINVAL;
4180 			goto bad_origin_dev;
4181 		}
4182 
4183 		r = dm_get_device(ti, argv[2], FMODE_READ, &origin_dev);
4184 		if (r) {
4185 			ti->error = "Error opening origin device";
4186 			goto bad_origin_dev;
4187 		}
4188 		tc->origin_dev = origin_dev;
4189 	}
4190 
4191 	r = dm_get_device(ti, argv[0], dm_table_get_mode(ti->table), &pool_dev);
4192 	if (r) {
4193 		ti->error = "Error opening pool device";
4194 		goto bad_pool_dev;
4195 	}
4196 	tc->pool_dev = pool_dev;
4197 
4198 	if (read_dev_id(argv[1], (unsigned long long *)&tc->dev_id, 0)) {
4199 		ti->error = "Invalid device id";
4200 		r = -EINVAL;
4201 		goto bad_common;
4202 	}
4203 
4204 	pool_md = dm_get_md(tc->pool_dev->bdev->bd_dev);
4205 	if (!pool_md) {
4206 		ti->error = "Couldn't get pool mapped device";
4207 		r = -EINVAL;
4208 		goto bad_common;
4209 	}
4210 
4211 	tc->pool = __pool_table_lookup(pool_md);
4212 	if (!tc->pool) {
4213 		ti->error = "Couldn't find pool object";
4214 		r = -EINVAL;
4215 		goto bad_pool_lookup;
4216 	}
4217 	__pool_inc(tc->pool);
4218 
4219 	if (get_pool_mode(tc->pool) == PM_FAIL) {
4220 		ti->error = "Couldn't open thin device, Pool is in fail mode";
4221 		r = -EINVAL;
4222 		goto bad_pool;
4223 	}
4224 
4225 	r = dm_pool_open_thin_device(tc->pool->pmd, tc->dev_id, &tc->td);
4226 	if (r) {
4227 		ti->error = "Couldn't open thin internal device";
4228 		goto bad_pool;
4229 	}
4230 
4231 	r = dm_set_target_max_io_len(ti, tc->pool->sectors_per_block);
4232 	if (r)
4233 		goto bad;
4234 
4235 	ti->num_flush_bios = 1;
4236 	ti->flush_supported = true;
4237 	ti->per_io_data_size = sizeof(struct dm_thin_endio_hook);
4238 
4239 	/* In case the pool supports discards, pass them on. */
4240 	if (tc->pool->pf.discard_enabled) {
4241 		ti->discards_supported = true;
4242 		ti->num_discard_bios = 1;
4243 	}
4244 
4245 	mutex_unlock(&dm_thin_pool_table.mutex);
4246 
4247 	spin_lock_irqsave(&tc->pool->lock, flags);
4248 	if (tc->pool->suspended) {
4249 		spin_unlock_irqrestore(&tc->pool->lock, flags);
4250 		mutex_lock(&dm_thin_pool_table.mutex); /* reacquire for __pool_dec */
4251 		ti->error = "Unable to activate thin device while pool is suspended";
4252 		r = -EINVAL;
4253 		goto bad;
4254 	}
4255 	refcount_set(&tc->refcount, 1);
4256 	init_completion(&tc->can_destroy);
4257 	list_add_tail_rcu(&tc->list, &tc->pool->active_thins);
4258 	spin_unlock_irqrestore(&tc->pool->lock, flags);
4259 	/*
4260 	 * This synchronize_rcu() call is needed here otherwise we risk a
4261 	 * wake_worker() call finding no bios to process (because the newly
4262 	 * added tc isn't yet visible).  So this reduces latency since we
4263 	 * aren't then dependent on the periodic commit to wake_worker().
4264 	 */
4265 	synchronize_rcu();
4266 
4267 	dm_put(pool_md);
4268 
4269 	return 0;
4270 
4271 bad:
4272 	dm_pool_close_thin_device(tc->td);
4273 bad_pool:
4274 	__pool_dec(tc->pool);
4275 bad_pool_lookup:
4276 	dm_put(pool_md);
4277 bad_common:
4278 	dm_put_device(ti, tc->pool_dev);
4279 bad_pool_dev:
4280 	if (tc->origin_dev)
4281 		dm_put_device(ti, tc->origin_dev);
4282 bad_origin_dev:
4283 	kfree(tc);
4284 out_unlock:
4285 	mutex_unlock(&dm_thin_pool_table.mutex);
4286 
4287 	return r;
4288 }
4289 
4290 static int thin_map(struct dm_target *ti, struct bio *bio)
4291 {
4292 	bio->bi_iter.bi_sector = dm_target_offset(ti, bio->bi_iter.bi_sector);
4293 
4294 	return thin_bio_map(ti, bio);
4295 }
4296 
4297 static int thin_endio(struct dm_target *ti, struct bio *bio,
4298 		blk_status_t *err)
4299 {
4300 	unsigned long flags;
4301 	struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
4302 	struct list_head work;
4303 	struct dm_thin_new_mapping *m, *tmp;
4304 	struct pool *pool = h->tc->pool;
4305 
4306 	if (h->shared_read_entry) {
4307 		INIT_LIST_HEAD(&work);
4308 		dm_deferred_entry_dec(h->shared_read_entry, &work);
4309 
4310 		spin_lock_irqsave(&pool->lock, flags);
4311 		list_for_each_entry_safe(m, tmp, &work, list) {
4312 			list_del(&m->list);
4313 			__complete_mapping_preparation(m);
4314 		}
4315 		spin_unlock_irqrestore(&pool->lock, flags);
4316 	}
4317 
4318 	if (h->all_io_entry) {
4319 		INIT_LIST_HEAD(&work);
4320 		dm_deferred_entry_dec(h->all_io_entry, &work);
4321 		if (!list_empty(&work)) {
4322 			spin_lock_irqsave(&pool->lock, flags);
4323 			list_for_each_entry_safe(m, tmp, &work, list)
4324 				list_add_tail(&m->list, &pool->prepared_discards);
4325 			spin_unlock_irqrestore(&pool->lock, flags);
4326 			wake_worker(pool);
4327 		}
4328 	}
4329 
4330 	if (h->cell)
4331 		cell_defer_no_holder(h->tc, h->cell);
4332 
4333 	return DM_ENDIO_DONE;
4334 }
4335 
4336 static void thin_presuspend(struct dm_target *ti)
4337 {
4338 	struct thin_c *tc = ti->private;
4339 
4340 	if (dm_noflush_suspending(ti))
4341 		noflush_work(tc, do_noflush_start);
4342 }
4343 
4344 static void thin_postsuspend(struct dm_target *ti)
4345 {
4346 	struct thin_c *tc = ti->private;
4347 
4348 	/*
4349 	 * The dm_noflush_suspending flag has been cleared by now, so
4350 	 * unfortunately we must always run this.
4351 	 */
4352 	noflush_work(tc, do_noflush_stop);
4353 }
4354 
4355 static int thin_preresume(struct dm_target *ti)
4356 {
4357 	struct thin_c *tc = ti->private;
4358 
4359 	if (tc->origin_dev)
4360 		tc->origin_size = get_dev_size(tc->origin_dev->bdev);
4361 
4362 	return 0;
4363 }
4364 
4365 /*
4366  * <nr mapped sectors> <highest mapped sector>
4367  */
4368 static void thin_status(struct dm_target *ti, status_type_t type,
4369 			unsigned status_flags, char *result, unsigned maxlen)
4370 {
4371 	int r;
4372 	ssize_t sz = 0;
4373 	dm_block_t mapped, highest;
4374 	char buf[BDEVNAME_SIZE];
4375 	struct thin_c *tc = ti->private;
4376 
4377 	if (get_pool_mode(tc->pool) == PM_FAIL) {
4378 		DMEMIT("Fail");
4379 		return;
4380 	}
4381 
4382 	if (!tc->td)
4383 		DMEMIT("-");
4384 	else {
4385 		switch (type) {
4386 		case STATUSTYPE_INFO:
4387 			r = dm_thin_get_mapped_count(tc->td, &mapped);
4388 			if (r) {
4389 				DMERR("dm_thin_get_mapped_count returned %d", r);
4390 				goto err;
4391 			}
4392 
4393 			r = dm_thin_get_highest_mapped_block(tc->td, &highest);
4394 			if (r < 0) {
4395 				DMERR("dm_thin_get_highest_mapped_block returned %d", r);
4396 				goto err;
4397 			}
4398 
4399 			DMEMIT("%llu ", mapped * tc->pool->sectors_per_block);
4400 			if (r)
4401 				DMEMIT("%llu", ((highest + 1) *
4402 						tc->pool->sectors_per_block) - 1);
4403 			else
4404 				DMEMIT("-");
4405 			break;
4406 
4407 		case STATUSTYPE_TABLE:
4408 			DMEMIT("%s %lu",
4409 			       format_dev_t(buf, tc->pool_dev->bdev->bd_dev),
4410 			       (unsigned long) tc->dev_id);
4411 			if (tc->origin_dev)
4412 				DMEMIT(" %s", format_dev_t(buf, tc->origin_dev->bdev->bd_dev));
4413 			break;
4414 		}
4415 	}
4416 
4417 	return;
4418 
4419 err:
4420 	DMEMIT("Error");
4421 }
4422 
4423 static int thin_iterate_devices(struct dm_target *ti,
4424 				iterate_devices_callout_fn fn, void *data)
4425 {
4426 	sector_t blocks;
4427 	struct thin_c *tc = ti->private;
4428 	struct pool *pool = tc->pool;
4429 
4430 	/*
4431 	 * We can't call dm_pool_get_data_dev_size() since that blocks.  So
4432 	 * we follow a more convoluted path through to the pool's target.
4433 	 */
4434 	if (!pool->ti)
4435 		return 0;	/* nothing is bound */
4436 
4437 	blocks = pool->ti->len;
4438 	(void) sector_div(blocks, pool->sectors_per_block);
4439 	if (blocks)
4440 		return fn(ti, tc->pool_dev, 0, pool->sectors_per_block * blocks, data);
4441 
4442 	return 0;
4443 }
4444 
4445 static void thin_io_hints(struct dm_target *ti, struct queue_limits *limits)
4446 {
4447 	struct thin_c *tc = ti->private;
4448 	struct pool *pool = tc->pool;
4449 
4450 	if (!pool->pf.discard_enabled)
4451 		return;
4452 
4453 	limits->discard_granularity = pool->sectors_per_block << SECTOR_SHIFT;
4454 	limits->max_discard_sectors = 2048 * 1024 * 16; /* 16G */
4455 }
4456 
4457 static struct target_type thin_target = {
4458 	.name = "thin",
4459 	.version = {1, 21, 0},
4460 	.module	= THIS_MODULE,
4461 	.ctr = thin_ctr,
4462 	.dtr = thin_dtr,
4463 	.map = thin_map,
4464 	.end_io = thin_endio,
4465 	.preresume = thin_preresume,
4466 	.presuspend = thin_presuspend,
4467 	.postsuspend = thin_postsuspend,
4468 	.status = thin_status,
4469 	.iterate_devices = thin_iterate_devices,
4470 	.io_hints = thin_io_hints,
4471 };
4472 
4473 /*----------------------------------------------------------------*/
4474 
4475 static int __init dm_thin_init(void)
4476 {
4477 	int r = -ENOMEM;
4478 
4479 	pool_table_init();
4480 
4481 	_new_mapping_cache = KMEM_CACHE(dm_thin_new_mapping, 0);
4482 	if (!_new_mapping_cache)
4483 		return r;
4484 
4485 	r = dm_register_target(&thin_target);
4486 	if (r)
4487 		goto bad_new_mapping_cache;
4488 
4489 	r = dm_register_target(&pool_target);
4490 	if (r)
4491 		goto bad_thin_target;
4492 
4493 	return 0;
4494 
4495 bad_thin_target:
4496 	dm_unregister_target(&thin_target);
4497 bad_new_mapping_cache:
4498 	kmem_cache_destroy(_new_mapping_cache);
4499 
4500 	return r;
4501 }
4502 
4503 static void dm_thin_exit(void)
4504 {
4505 	dm_unregister_target(&thin_target);
4506 	dm_unregister_target(&pool_target);
4507 
4508 	kmem_cache_destroy(_new_mapping_cache);
4509 
4510 	pool_table_exit();
4511 }
4512 
4513 module_init(dm_thin_init);
4514 module_exit(dm_thin_exit);
4515 
4516 module_param_named(no_space_timeout, no_space_timeout_secs, uint, S_IRUGO | S_IWUSR);
4517 MODULE_PARM_DESC(no_space_timeout, "Out of data space queue IO timeout in seconds");
4518 
4519 MODULE_DESCRIPTION(DM_NAME " thin provisioning target");
4520 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
4521 MODULE_LICENSE("GPL");
4522