xref: /linux/drivers/md/dm-thin.c (revision 7c94fe4a012e6d0858b9a80cbc18b7ee788f572d)
1 /*
2  * Copyright (C) 2011-2012 Red Hat UK.
3  *
4  * This file is released under the GPL.
5  */
6 
7 #include "dm-thin-metadata.h"
8 #include "dm.h"
9 
10 #include <linux/device-mapper.h>
11 #include <linux/dm-io.h>
12 #include <linux/dm-kcopyd.h>
13 #include <linux/list.h>
14 #include <linux/init.h>
15 #include <linux/module.h>
16 #include <linux/slab.h>
17 
18 #define	DM_MSG_PREFIX	"thin"
19 
20 /*
21  * Tunable constants
22  */
23 #define ENDIO_HOOK_POOL_SIZE 1024
24 #define DEFERRED_SET_SIZE 64
25 #define MAPPING_POOL_SIZE 1024
26 #define PRISON_CELLS 1024
27 #define COMMIT_PERIOD HZ
28 
29 /*
30  * The block size of the device holding pool data must be
31  * between 64KB and 1GB.
32  */
33 #define DATA_DEV_BLOCK_SIZE_MIN_SECTORS (64 * 1024 >> SECTOR_SHIFT)
34 #define DATA_DEV_BLOCK_SIZE_MAX_SECTORS (1024 * 1024 * 1024 >> SECTOR_SHIFT)
35 
36 /*
37  * Device id is restricted to 24 bits.
38  */
39 #define MAX_DEV_ID ((1 << 24) - 1)
40 
41 /*
42  * How do we handle breaking sharing of data blocks?
43  * =================================================
44  *
45  * We use a standard copy-on-write btree to store the mappings for the
46  * devices (note I'm talking about copy-on-write of the metadata here, not
47  * the data).  When you take an internal snapshot you clone the root node
48  * of the origin btree.  After this there is no concept of an origin or a
49  * snapshot.  They are just two device trees that happen to point to the
50  * same data blocks.
51  *
52  * When we get a write in we decide if it's to a shared data block using
53  * some timestamp magic.  If it is, we have to break sharing.
54  *
55  * Let's say we write to a shared block in what was the origin.  The
56  * steps are:
57  *
58  * i) plug io further to this physical block. (see bio_prison code).
59  *
60  * ii) quiesce any read io to that shared data block.  Obviously
61  * including all devices that share this block.  (see deferred_set code)
62  *
63  * iii) copy the data block to a newly allocate block.  This step can be
64  * missed out if the io covers the block. (schedule_copy).
65  *
66  * iv) insert the new mapping into the origin's btree
67  * (process_prepared_mapping).  This act of inserting breaks some
68  * sharing of btree nodes between the two devices.  Breaking sharing only
69  * effects the btree of that specific device.  Btrees for the other
70  * devices that share the block never change.  The btree for the origin
71  * device as it was after the last commit is untouched, ie. we're using
72  * persistent data structures in the functional programming sense.
73  *
74  * v) unplug io to this physical block, including the io that triggered
75  * the breaking of sharing.
76  *
77  * Steps (ii) and (iii) occur in parallel.
78  *
79  * The metadata _doesn't_ need to be committed before the io continues.  We
80  * get away with this because the io is always written to a _new_ block.
81  * If there's a crash, then:
82  *
83  * - The origin mapping will point to the old origin block (the shared
84  * one).  This will contain the data as it was before the io that triggered
85  * the breaking of sharing came in.
86  *
87  * - The snap mapping still points to the old block.  As it would after
88  * the commit.
89  *
90  * The downside of this scheme is the timestamp magic isn't perfect, and
91  * will continue to think that data block in the snapshot device is shared
92  * even after the write to the origin has broken sharing.  I suspect data
93  * blocks will typically be shared by many different devices, so we're
94  * breaking sharing n + 1 times, rather than n, where n is the number of
95  * devices that reference this data block.  At the moment I think the
96  * benefits far, far outweigh the disadvantages.
97  */
98 
99 /*----------------------------------------------------------------*/
100 
101 /*
102  * Sometimes we can't deal with a bio straight away.  We put them in prison
103  * where they can't cause any mischief.  Bios are put in a cell identified
104  * by a key, multiple bios can be in the same cell.  When the cell is
105  * subsequently unlocked the bios become available.
106  */
107 struct bio_prison;
108 
109 struct cell_key {
110 	int virtual;
111 	dm_thin_id dev;
112 	dm_block_t block;
113 };
114 
115 struct dm_bio_prison_cell {
116 	struct hlist_node list;
117 	struct bio_prison *prison;
118 	struct cell_key key;
119 	struct bio *holder;
120 	struct bio_list bios;
121 };
122 
123 struct bio_prison {
124 	spinlock_t lock;
125 	mempool_t *cell_pool;
126 
127 	unsigned nr_buckets;
128 	unsigned hash_mask;
129 	struct hlist_head *cells;
130 };
131 
132 static uint32_t calc_nr_buckets(unsigned nr_cells)
133 {
134 	uint32_t n = 128;
135 
136 	nr_cells /= 4;
137 	nr_cells = min(nr_cells, 8192u);
138 
139 	while (n < nr_cells)
140 		n <<= 1;
141 
142 	return n;
143 }
144 
145 static struct kmem_cache *_cell_cache;
146 
147 /*
148  * @nr_cells should be the number of cells you want in use _concurrently_.
149  * Don't confuse it with the number of distinct keys.
150  */
151 static struct bio_prison *prison_create(unsigned nr_cells)
152 {
153 	unsigned i;
154 	uint32_t nr_buckets = calc_nr_buckets(nr_cells);
155 	size_t len = sizeof(struct bio_prison) +
156 		(sizeof(struct hlist_head) * nr_buckets);
157 	struct bio_prison *prison = kmalloc(len, GFP_KERNEL);
158 
159 	if (!prison)
160 		return NULL;
161 
162 	spin_lock_init(&prison->lock);
163 	prison->cell_pool = mempool_create_slab_pool(nr_cells, _cell_cache);
164 	if (!prison->cell_pool) {
165 		kfree(prison);
166 		return NULL;
167 	}
168 
169 	prison->nr_buckets = nr_buckets;
170 	prison->hash_mask = nr_buckets - 1;
171 	prison->cells = (struct hlist_head *) (prison + 1);
172 	for (i = 0; i < nr_buckets; i++)
173 		INIT_HLIST_HEAD(prison->cells + i);
174 
175 	return prison;
176 }
177 
178 static void prison_destroy(struct bio_prison *prison)
179 {
180 	mempool_destroy(prison->cell_pool);
181 	kfree(prison);
182 }
183 
184 static uint32_t hash_key(struct bio_prison *prison, struct cell_key *key)
185 {
186 	const unsigned long BIG_PRIME = 4294967291UL;
187 	uint64_t hash = key->block * BIG_PRIME;
188 
189 	return (uint32_t) (hash & prison->hash_mask);
190 }
191 
192 static int keys_equal(struct cell_key *lhs, struct cell_key *rhs)
193 {
194 	       return (lhs->virtual == rhs->virtual) &&
195 		       (lhs->dev == rhs->dev) &&
196 		       (lhs->block == rhs->block);
197 }
198 
199 static struct dm_bio_prison_cell *__search_bucket(struct hlist_head *bucket,
200 						  struct cell_key *key)
201 {
202 	struct dm_bio_prison_cell *cell;
203 	struct hlist_node *tmp;
204 
205 	hlist_for_each_entry(cell, tmp, bucket, list)
206 		if (keys_equal(&cell->key, key))
207 			return cell;
208 
209 	return NULL;
210 }
211 
212 /*
213  * This may block if a new cell needs allocating.  You must ensure that
214  * cells will be unlocked even if the calling thread is blocked.
215  *
216  * Returns 1 if the cell was already held, 0 if @inmate is the new holder.
217  */
218 static int bio_detain(struct bio_prison *prison, struct cell_key *key,
219 		      struct bio *inmate, struct dm_bio_prison_cell **ref)
220 {
221 	int r = 1;
222 	unsigned long flags;
223 	uint32_t hash = hash_key(prison, key);
224 	struct dm_bio_prison_cell *cell, *cell2;
225 
226 	BUG_ON(hash > prison->nr_buckets);
227 
228 	spin_lock_irqsave(&prison->lock, flags);
229 
230 	cell = __search_bucket(prison->cells + hash, key);
231 	if (cell) {
232 		bio_list_add(&cell->bios, inmate);
233 		goto out;
234 	}
235 
236 	/*
237 	 * Allocate a new cell
238 	 */
239 	spin_unlock_irqrestore(&prison->lock, flags);
240 	cell2 = mempool_alloc(prison->cell_pool, GFP_NOIO);
241 	spin_lock_irqsave(&prison->lock, flags);
242 
243 	/*
244 	 * We've been unlocked, so we have to double check that
245 	 * nobody else has inserted this cell in the meantime.
246 	 */
247 	cell = __search_bucket(prison->cells + hash, key);
248 	if (cell) {
249 		mempool_free(cell2, prison->cell_pool);
250 		bio_list_add(&cell->bios, inmate);
251 		goto out;
252 	}
253 
254 	/*
255 	 * Use new cell.
256 	 */
257 	cell = cell2;
258 
259 	cell->prison = prison;
260 	memcpy(&cell->key, key, sizeof(cell->key));
261 	cell->holder = inmate;
262 	bio_list_init(&cell->bios);
263 	hlist_add_head(&cell->list, prison->cells + hash);
264 
265 	r = 0;
266 
267 out:
268 	spin_unlock_irqrestore(&prison->lock, flags);
269 
270 	*ref = cell;
271 
272 	return r;
273 }
274 
275 /*
276  * @inmates must have been initialised prior to this call
277  */
278 static void __cell_release(struct dm_bio_prison_cell *cell, struct bio_list *inmates)
279 {
280 	struct bio_prison *prison = cell->prison;
281 
282 	hlist_del(&cell->list);
283 
284 	if (inmates) {
285 		bio_list_add(inmates, cell->holder);
286 		bio_list_merge(inmates, &cell->bios);
287 	}
288 
289 	mempool_free(cell, prison->cell_pool);
290 }
291 
292 static void cell_release(struct dm_bio_prison_cell *cell, struct bio_list *bios)
293 {
294 	unsigned long flags;
295 	struct bio_prison *prison = cell->prison;
296 
297 	spin_lock_irqsave(&prison->lock, flags);
298 	__cell_release(cell, bios);
299 	spin_unlock_irqrestore(&prison->lock, flags);
300 }
301 
302 /*
303  * There are a couple of places where we put a bio into a cell briefly
304  * before taking it out again.  In these situations we know that no other
305  * bio may be in the cell.  This function releases the cell, and also does
306  * a sanity check.
307  */
308 static void __cell_release_singleton(struct dm_bio_prison_cell *cell, struct bio *bio)
309 {
310 	BUG_ON(cell->holder != bio);
311 	BUG_ON(!bio_list_empty(&cell->bios));
312 
313 	__cell_release(cell, NULL);
314 }
315 
316 static void cell_release_singleton(struct dm_bio_prison_cell *cell, struct bio *bio)
317 {
318 	unsigned long flags;
319 	struct bio_prison *prison = cell->prison;
320 
321 	spin_lock_irqsave(&prison->lock, flags);
322 	__cell_release_singleton(cell, bio);
323 	spin_unlock_irqrestore(&prison->lock, flags);
324 }
325 
326 /*
327  * Sometimes we don't want the holder, just the additional bios.
328  */
329 static void __cell_release_no_holder(struct dm_bio_prison_cell *cell,
330 				     struct bio_list *inmates)
331 {
332 	struct bio_prison *prison = cell->prison;
333 
334 	hlist_del(&cell->list);
335 	bio_list_merge(inmates, &cell->bios);
336 
337 	mempool_free(cell, prison->cell_pool);
338 }
339 
340 static void cell_release_no_holder(struct dm_bio_prison_cell *cell,
341 				   struct bio_list *inmates)
342 {
343 	unsigned long flags;
344 	struct bio_prison *prison = cell->prison;
345 
346 	spin_lock_irqsave(&prison->lock, flags);
347 	__cell_release_no_holder(cell, inmates);
348 	spin_unlock_irqrestore(&prison->lock, flags);
349 }
350 
351 static void cell_error(struct dm_bio_prison_cell *cell)
352 {
353 	struct bio_prison *prison = cell->prison;
354 	struct bio_list bios;
355 	struct bio *bio;
356 	unsigned long flags;
357 
358 	bio_list_init(&bios);
359 
360 	spin_lock_irqsave(&prison->lock, flags);
361 	__cell_release(cell, &bios);
362 	spin_unlock_irqrestore(&prison->lock, flags);
363 
364 	while ((bio = bio_list_pop(&bios)))
365 		bio_io_error(bio);
366 }
367 
368 /*----------------------------------------------------------------*/
369 
370 /*
371  * We use the deferred set to keep track of pending reads to shared blocks.
372  * We do this to ensure the new mapping caused by a write isn't performed
373  * until these prior reads have completed.  Otherwise the insertion of the
374  * new mapping could free the old block that the read bios are mapped to.
375  */
376 
377 struct deferred_set;
378 struct deferred_entry {
379 	struct deferred_set *ds;
380 	unsigned count;
381 	struct list_head work_items;
382 };
383 
384 struct deferred_set {
385 	spinlock_t lock;
386 	unsigned current_entry;
387 	unsigned sweeper;
388 	struct deferred_entry entries[DEFERRED_SET_SIZE];
389 };
390 
391 static void ds_init(struct deferred_set *ds)
392 {
393 	int i;
394 
395 	spin_lock_init(&ds->lock);
396 	ds->current_entry = 0;
397 	ds->sweeper = 0;
398 	for (i = 0; i < DEFERRED_SET_SIZE; i++) {
399 		ds->entries[i].ds = ds;
400 		ds->entries[i].count = 0;
401 		INIT_LIST_HEAD(&ds->entries[i].work_items);
402 	}
403 }
404 
405 static struct deferred_entry *ds_inc(struct deferred_set *ds)
406 {
407 	unsigned long flags;
408 	struct deferred_entry *entry;
409 
410 	spin_lock_irqsave(&ds->lock, flags);
411 	entry = ds->entries + ds->current_entry;
412 	entry->count++;
413 	spin_unlock_irqrestore(&ds->lock, flags);
414 
415 	return entry;
416 }
417 
418 static unsigned ds_next(unsigned index)
419 {
420 	return (index + 1) % DEFERRED_SET_SIZE;
421 }
422 
423 static void __sweep(struct deferred_set *ds, struct list_head *head)
424 {
425 	while ((ds->sweeper != ds->current_entry) &&
426 	       !ds->entries[ds->sweeper].count) {
427 		list_splice_init(&ds->entries[ds->sweeper].work_items, head);
428 		ds->sweeper = ds_next(ds->sweeper);
429 	}
430 
431 	if ((ds->sweeper == ds->current_entry) && !ds->entries[ds->sweeper].count)
432 		list_splice_init(&ds->entries[ds->sweeper].work_items, head);
433 }
434 
435 static void ds_dec(struct deferred_entry *entry, struct list_head *head)
436 {
437 	unsigned long flags;
438 
439 	spin_lock_irqsave(&entry->ds->lock, flags);
440 	BUG_ON(!entry->count);
441 	--entry->count;
442 	__sweep(entry->ds, head);
443 	spin_unlock_irqrestore(&entry->ds->lock, flags);
444 }
445 
446 /*
447  * Returns 1 if deferred or 0 if no pending items to delay job.
448  */
449 static int ds_add_work(struct deferred_set *ds, struct list_head *work)
450 {
451 	int r = 1;
452 	unsigned long flags;
453 	unsigned next_entry;
454 
455 	spin_lock_irqsave(&ds->lock, flags);
456 	if ((ds->sweeper == ds->current_entry) &&
457 	    !ds->entries[ds->current_entry].count)
458 		r = 0;
459 	else {
460 		list_add(work, &ds->entries[ds->current_entry].work_items);
461 		next_entry = ds_next(ds->current_entry);
462 		if (!ds->entries[next_entry].count)
463 			ds->current_entry = next_entry;
464 	}
465 	spin_unlock_irqrestore(&ds->lock, flags);
466 
467 	return r;
468 }
469 
470 /*----------------------------------------------------------------*/
471 
472 /*
473  * Key building.
474  */
475 static void build_data_key(struct dm_thin_device *td,
476 			   dm_block_t b, struct cell_key *key)
477 {
478 	key->virtual = 0;
479 	key->dev = dm_thin_dev_id(td);
480 	key->block = b;
481 }
482 
483 static void build_virtual_key(struct dm_thin_device *td, dm_block_t b,
484 			      struct cell_key *key)
485 {
486 	key->virtual = 1;
487 	key->dev = dm_thin_dev_id(td);
488 	key->block = b;
489 }
490 
491 /*----------------------------------------------------------------*/
492 
493 /*
494  * A pool device ties together a metadata device and a data device.  It
495  * also provides the interface for creating and destroying internal
496  * devices.
497  */
498 struct dm_thin_new_mapping;
499 
500 /*
501  * The pool runs in 3 modes.  Ordered in degraded order for comparisons.
502  */
503 enum pool_mode {
504 	PM_WRITE,		/* metadata may be changed */
505 	PM_READ_ONLY,		/* metadata may not be changed */
506 	PM_FAIL,		/* all I/O fails */
507 };
508 
509 struct pool_features {
510 	enum pool_mode mode;
511 
512 	bool zero_new_blocks:1;
513 	bool discard_enabled:1;
514 	bool discard_passdown:1;
515 };
516 
517 struct thin_c;
518 typedef void (*process_bio_fn)(struct thin_c *tc, struct bio *bio);
519 typedef void (*process_mapping_fn)(struct dm_thin_new_mapping *m);
520 
521 struct pool {
522 	struct list_head list;
523 	struct dm_target *ti;	/* Only set if a pool target is bound */
524 
525 	struct mapped_device *pool_md;
526 	struct block_device *md_dev;
527 	struct dm_pool_metadata *pmd;
528 
529 	dm_block_t low_water_blocks;
530 	uint32_t sectors_per_block;
531 	int sectors_per_block_shift;
532 
533 	struct pool_features pf;
534 	unsigned low_water_triggered:1;	/* A dm event has been sent */
535 	unsigned no_free_space:1;	/* A -ENOSPC warning has been issued */
536 
537 	struct bio_prison *prison;
538 	struct dm_kcopyd_client *copier;
539 
540 	struct workqueue_struct *wq;
541 	struct work_struct worker;
542 	struct delayed_work waker;
543 
544 	unsigned long last_commit_jiffies;
545 	unsigned ref_count;
546 
547 	spinlock_t lock;
548 	struct bio_list deferred_bios;
549 	struct bio_list deferred_flush_bios;
550 	struct list_head prepared_mappings;
551 	struct list_head prepared_discards;
552 
553 	struct bio_list retry_on_resume_list;
554 
555 	struct deferred_set shared_read_ds;
556 	struct deferred_set all_io_ds;
557 
558 	struct dm_thin_new_mapping *next_mapping;
559 	mempool_t *mapping_pool;
560 	mempool_t *endio_hook_pool;
561 
562 	process_bio_fn process_bio;
563 	process_bio_fn process_discard;
564 
565 	process_mapping_fn process_prepared_mapping;
566 	process_mapping_fn process_prepared_discard;
567 };
568 
569 static enum pool_mode get_pool_mode(struct pool *pool);
570 static void set_pool_mode(struct pool *pool, enum pool_mode mode);
571 
572 /*
573  * Target context for a pool.
574  */
575 struct pool_c {
576 	struct dm_target *ti;
577 	struct pool *pool;
578 	struct dm_dev *data_dev;
579 	struct dm_dev *metadata_dev;
580 	struct dm_target_callbacks callbacks;
581 
582 	dm_block_t low_water_blocks;
583 	struct pool_features requested_pf; /* Features requested during table load */
584 	struct pool_features adjusted_pf;  /* Features used after adjusting for constituent devices */
585 };
586 
587 /*
588  * Target context for a thin.
589  */
590 struct thin_c {
591 	struct dm_dev *pool_dev;
592 	struct dm_dev *origin_dev;
593 	dm_thin_id dev_id;
594 
595 	struct pool *pool;
596 	struct dm_thin_device *td;
597 };
598 
599 /*----------------------------------------------------------------*/
600 
601 /*
602  * A global list of pools that uses a struct mapped_device as a key.
603  */
604 static struct dm_thin_pool_table {
605 	struct mutex mutex;
606 	struct list_head pools;
607 } dm_thin_pool_table;
608 
609 static void pool_table_init(void)
610 {
611 	mutex_init(&dm_thin_pool_table.mutex);
612 	INIT_LIST_HEAD(&dm_thin_pool_table.pools);
613 }
614 
615 static void __pool_table_insert(struct pool *pool)
616 {
617 	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
618 	list_add(&pool->list, &dm_thin_pool_table.pools);
619 }
620 
621 static void __pool_table_remove(struct pool *pool)
622 {
623 	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
624 	list_del(&pool->list);
625 }
626 
627 static struct pool *__pool_table_lookup(struct mapped_device *md)
628 {
629 	struct pool *pool = NULL, *tmp;
630 
631 	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
632 
633 	list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
634 		if (tmp->pool_md == md) {
635 			pool = tmp;
636 			break;
637 		}
638 	}
639 
640 	return pool;
641 }
642 
643 static struct pool *__pool_table_lookup_metadata_dev(struct block_device *md_dev)
644 {
645 	struct pool *pool = NULL, *tmp;
646 
647 	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
648 
649 	list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
650 		if (tmp->md_dev == md_dev) {
651 			pool = tmp;
652 			break;
653 		}
654 	}
655 
656 	return pool;
657 }
658 
659 /*----------------------------------------------------------------*/
660 
661 struct dm_thin_endio_hook {
662 	struct thin_c *tc;
663 	struct deferred_entry *shared_read_entry;
664 	struct deferred_entry *all_io_entry;
665 	struct dm_thin_new_mapping *overwrite_mapping;
666 };
667 
668 static void __requeue_bio_list(struct thin_c *tc, struct bio_list *master)
669 {
670 	struct bio *bio;
671 	struct bio_list bios;
672 
673 	bio_list_init(&bios);
674 	bio_list_merge(&bios, master);
675 	bio_list_init(master);
676 
677 	while ((bio = bio_list_pop(&bios))) {
678 		struct dm_thin_endio_hook *h = dm_get_mapinfo(bio)->ptr;
679 
680 		if (h->tc == tc)
681 			bio_endio(bio, DM_ENDIO_REQUEUE);
682 		else
683 			bio_list_add(master, bio);
684 	}
685 }
686 
687 static void requeue_io(struct thin_c *tc)
688 {
689 	struct pool *pool = tc->pool;
690 	unsigned long flags;
691 
692 	spin_lock_irqsave(&pool->lock, flags);
693 	__requeue_bio_list(tc, &pool->deferred_bios);
694 	__requeue_bio_list(tc, &pool->retry_on_resume_list);
695 	spin_unlock_irqrestore(&pool->lock, flags);
696 }
697 
698 /*
699  * This section of code contains the logic for processing a thin device's IO.
700  * Much of the code depends on pool object resources (lists, workqueues, etc)
701  * but most is exclusively called from the thin target rather than the thin-pool
702  * target.
703  */
704 
705 static dm_block_t get_bio_block(struct thin_c *tc, struct bio *bio)
706 {
707 	sector_t block_nr = bio->bi_sector;
708 
709 	if (tc->pool->sectors_per_block_shift < 0)
710 		(void) sector_div(block_nr, tc->pool->sectors_per_block);
711 	else
712 		block_nr >>= tc->pool->sectors_per_block_shift;
713 
714 	return block_nr;
715 }
716 
717 static void remap(struct thin_c *tc, struct bio *bio, dm_block_t block)
718 {
719 	struct pool *pool = tc->pool;
720 	sector_t bi_sector = bio->bi_sector;
721 
722 	bio->bi_bdev = tc->pool_dev->bdev;
723 	if (tc->pool->sectors_per_block_shift < 0)
724 		bio->bi_sector = (block * pool->sectors_per_block) +
725 				 sector_div(bi_sector, pool->sectors_per_block);
726 	else
727 		bio->bi_sector = (block << pool->sectors_per_block_shift) |
728 				(bi_sector & (pool->sectors_per_block - 1));
729 }
730 
731 static void remap_to_origin(struct thin_c *tc, struct bio *bio)
732 {
733 	bio->bi_bdev = tc->origin_dev->bdev;
734 }
735 
736 static int bio_triggers_commit(struct thin_c *tc, struct bio *bio)
737 {
738 	return (bio->bi_rw & (REQ_FLUSH | REQ_FUA)) &&
739 		dm_thin_changed_this_transaction(tc->td);
740 }
741 
742 static void issue(struct thin_c *tc, struct bio *bio)
743 {
744 	struct pool *pool = tc->pool;
745 	unsigned long flags;
746 
747 	if (!bio_triggers_commit(tc, bio)) {
748 		generic_make_request(bio);
749 		return;
750 	}
751 
752 	/*
753 	 * Complete bio with an error if earlier I/O caused changes to
754 	 * the metadata that can't be committed e.g, due to I/O errors
755 	 * on the metadata device.
756 	 */
757 	if (dm_thin_aborted_changes(tc->td)) {
758 		bio_io_error(bio);
759 		return;
760 	}
761 
762 	/*
763 	 * Batch together any bios that trigger commits and then issue a
764 	 * single commit for them in process_deferred_bios().
765 	 */
766 	spin_lock_irqsave(&pool->lock, flags);
767 	bio_list_add(&pool->deferred_flush_bios, bio);
768 	spin_unlock_irqrestore(&pool->lock, flags);
769 }
770 
771 static void remap_to_origin_and_issue(struct thin_c *tc, struct bio *bio)
772 {
773 	remap_to_origin(tc, bio);
774 	issue(tc, bio);
775 }
776 
777 static void remap_and_issue(struct thin_c *tc, struct bio *bio,
778 			    dm_block_t block)
779 {
780 	remap(tc, bio, block);
781 	issue(tc, bio);
782 }
783 
784 /*
785  * wake_worker() is used when new work is queued and when pool_resume is
786  * ready to continue deferred IO processing.
787  */
788 static void wake_worker(struct pool *pool)
789 {
790 	queue_work(pool->wq, &pool->worker);
791 }
792 
793 /*----------------------------------------------------------------*/
794 
795 /*
796  * Bio endio functions.
797  */
798 struct dm_thin_new_mapping {
799 	struct list_head list;
800 
801 	unsigned quiesced:1;
802 	unsigned prepared:1;
803 	unsigned pass_discard:1;
804 
805 	struct thin_c *tc;
806 	dm_block_t virt_block;
807 	dm_block_t data_block;
808 	struct dm_bio_prison_cell *cell, *cell2;
809 	int err;
810 
811 	/*
812 	 * If the bio covers the whole area of a block then we can avoid
813 	 * zeroing or copying.  Instead this bio is hooked.  The bio will
814 	 * still be in the cell, so care has to be taken to avoid issuing
815 	 * the bio twice.
816 	 */
817 	struct bio *bio;
818 	bio_end_io_t *saved_bi_end_io;
819 };
820 
821 static void __maybe_add_mapping(struct dm_thin_new_mapping *m)
822 {
823 	struct pool *pool = m->tc->pool;
824 
825 	if (m->quiesced && m->prepared) {
826 		list_add(&m->list, &pool->prepared_mappings);
827 		wake_worker(pool);
828 	}
829 }
830 
831 static void copy_complete(int read_err, unsigned long write_err, void *context)
832 {
833 	unsigned long flags;
834 	struct dm_thin_new_mapping *m = context;
835 	struct pool *pool = m->tc->pool;
836 
837 	m->err = read_err || write_err ? -EIO : 0;
838 
839 	spin_lock_irqsave(&pool->lock, flags);
840 	m->prepared = 1;
841 	__maybe_add_mapping(m);
842 	spin_unlock_irqrestore(&pool->lock, flags);
843 }
844 
845 static void overwrite_endio(struct bio *bio, int err)
846 {
847 	unsigned long flags;
848 	struct dm_thin_endio_hook *h = dm_get_mapinfo(bio)->ptr;
849 	struct dm_thin_new_mapping *m = h->overwrite_mapping;
850 	struct pool *pool = m->tc->pool;
851 
852 	m->err = err;
853 
854 	spin_lock_irqsave(&pool->lock, flags);
855 	m->prepared = 1;
856 	__maybe_add_mapping(m);
857 	spin_unlock_irqrestore(&pool->lock, flags);
858 }
859 
860 /*----------------------------------------------------------------*/
861 
862 /*
863  * Workqueue.
864  */
865 
866 /*
867  * Prepared mapping jobs.
868  */
869 
870 /*
871  * This sends the bios in the cell back to the deferred_bios list.
872  */
873 static void cell_defer(struct thin_c *tc, struct dm_bio_prison_cell *cell,
874 		       dm_block_t data_block)
875 {
876 	struct pool *pool = tc->pool;
877 	unsigned long flags;
878 
879 	spin_lock_irqsave(&pool->lock, flags);
880 	cell_release(cell, &pool->deferred_bios);
881 	spin_unlock_irqrestore(&tc->pool->lock, flags);
882 
883 	wake_worker(pool);
884 }
885 
886 /*
887  * Same as cell_defer above, except it omits one particular detainee,
888  * a write bio that covers the block and has already been processed.
889  */
890 static void cell_defer_except(struct thin_c *tc, struct dm_bio_prison_cell *cell)
891 {
892 	struct bio_list bios;
893 	struct pool *pool = tc->pool;
894 	unsigned long flags;
895 
896 	bio_list_init(&bios);
897 
898 	spin_lock_irqsave(&pool->lock, flags);
899 	cell_release_no_holder(cell, &pool->deferred_bios);
900 	spin_unlock_irqrestore(&pool->lock, flags);
901 
902 	wake_worker(pool);
903 }
904 
905 static void process_prepared_mapping_fail(struct dm_thin_new_mapping *m)
906 {
907 	if (m->bio)
908 		m->bio->bi_end_io = m->saved_bi_end_io;
909 	cell_error(m->cell);
910 	list_del(&m->list);
911 	mempool_free(m, m->tc->pool->mapping_pool);
912 }
913 static void process_prepared_mapping(struct dm_thin_new_mapping *m)
914 {
915 	struct thin_c *tc = m->tc;
916 	struct bio *bio;
917 	int r;
918 
919 	bio = m->bio;
920 	if (bio)
921 		bio->bi_end_io = m->saved_bi_end_io;
922 
923 	if (m->err) {
924 		cell_error(m->cell);
925 		goto out;
926 	}
927 
928 	/*
929 	 * Commit the prepared block into the mapping btree.
930 	 * Any I/O for this block arriving after this point will get
931 	 * remapped to it directly.
932 	 */
933 	r = dm_thin_insert_block(tc->td, m->virt_block, m->data_block);
934 	if (r) {
935 		DMERR("dm_thin_insert_block() failed");
936 		cell_error(m->cell);
937 		goto out;
938 	}
939 
940 	/*
941 	 * Release any bios held while the block was being provisioned.
942 	 * If we are processing a write bio that completely covers the block,
943 	 * we already processed it so can ignore it now when processing
944 	 * the bios in the cell.
945 	 */
946 	if (bio) {
947 		cell_defer_except(tc, m->cell);
948 		bio_endio(bio, 0);
949 	} else
950 		cell_defer(tc, m->cell, m->data_block);
951 
952 out:
953 	list_del(&m->list);
954 	mempool_free(m, tc->pool->mapping_pool);
955 }
956 
957 static void process_prepared_discard_fail(struct dm_thin_new_mapping *m)
958 {
959 	struct thin_c *tc = m->tc;
960 
961 	bio_io_error(m->bio);
962 	cell_defer_except(tc, m->cell);
963 	cell_defer_except(tc, m->cell2);
964 	mempool_free(m, tc->pool->mapping_pool);
965 }
966 
967 static void process_prepared_discard_passdown(struct dm_thin_new_mapping *m)
968 {
969 	struct thin_c *tc = m->tc;
970 
971 	if (m->pass_discard)
972 		remap_and_issue(tc, m->bio, m->data_block);
973 	else
974 		bio_endio(m->bio, 0);
975 
976 	cell_defer_except(tc, m->cell);
977 	cell_defer_except(tc, m->cell2);
978 	mempool_free(m, tc->pool->mapping_pool);
979 }
980 
981 static void process_prepared_discard(struct dm_thin_new_mapping *m)
982 {
983 	int r;
984 	struct thin_c *tc = m->tc;
985 
986 	r = dm_thin_remove_block(tc->td, m->virt_block);
987 	if (r)
988 		DMERR("dm_thin_remove_block() failed");
989 
990 	process_prepared_discard_passdown(m);
991 }
992 
993 static void process_prepared(struct pool *pool, struct list_head *head,
994 			     process_mapping_fn *fn)
995 {
996 	unsigned long flags;
997 	struct list_head maps;
998 	struct dm_thin_new_mapping *m, *tmp;
999 
1000 	INIT_LIST_HEAD(&maps);
1001 	spin_lock_irqsave(&pool->lock, flags);
1002 	list_splice_init(head, &maps);
1003 	spin_unlock_irqrestore(&pool->lock, flags);
1004 
1005 	list_for_each_entry_safe(m, tmp, &maps, list)
1006 		(*fn)(m);
1007 }
1008 
1009 /*
1010  * Deferred bio jobs.
1011  */
1012 static int io_overlaps_block(struct pool *pool, struct bio *bio)
1013 {
1014 	return bio->bi_size == (pool->sectors_per_block << SECTOR_SHIFT);
1015 }
1016 
1017 static int io_overwrites_block(struct pool *pool, struct bio *bio)
1018 {
1019 	return (bio_data_dir(bio) == WRITE) &&
1020 		io_overlaps_block(pool, bio);
1021 }
1022 
1023 static void save_and_set_endio(struct bio *bio, bio_end_io_t **save,
1024 			       bio_end_io_t *fn)
1025 {
1026 	*save = bio->bi_end_io;
1027 	bio->bi_end_io = fn;
1028 }
1029 
1030 static int ensure_next_mapping(struct pool *pool)
1031 {
1032 	if (pool->next_mapping)
1033 		return 0;
1034 
1035 	pool->next_mapping = mempool_alloc(pool->mapping_pool, GFP_ATOMIC);
1036 
1037 	return pool->next_mapping ? 0 : -ENOMEM;
1038 }
1039 
1040 static struct dm_thin_new_mapping *get_next_mapping(struct pool *pool)
1041 {
1042 	struct dm_thin_new_mapping *r = pool->next_mapping;
1043 
1044 	BUG_ON(!pool->next_mapping);
1045 
1046 	pool->next_mapping = NULL;
1047 
1048 	return r;
1049 }
1050 
1051 static void schedule_copy(struct thin_c *tc, dm_block_t virt_block,
1052 			  struct dm_dev *origin, dm_block_t data_origin,
1053 			  dm_block_t data_dest,
1054 			  struct dm_bio_prison_cell *cell, struct bio *bio)
1055 {
1056 	int r;
1057 	struct pool *pool = tc->pool;
1058 	struct dm_thin_new_mapping *m = get_next_mapping(pool);
1059 
1060 	INIT_LIST_HEAD(&m->list);
1061 	m->quiesced = 0;
1062 	m->prepared = 0;
1063 	m->tc = tc;
1064 	m->virt_block = virt_block;
1065 	m->data_block = data_dest;
1066 	m->cell = cell;
1067 	m->err = 0;
1068 	m->bio = NULL;
1069 
1070 	if (!ds_add_work(&pool->shared_read_ds, &m->list))
1071 		m->quiesced = 1;
1072 
1073 	/*
1074 	 * IO to pool_dev remaps to the pool target's data_dev.
1075 	 *
1076 	 * If the whole block of data is being overwritten, we can issue the
1077 	 * bio immediately. Otherwise we use kcopyd to clone the data first.
1078 	 */
1079 	if (io_overwrites_block(pool, bio)) {
1080 		struct dm_thin_endio_hook *h = dm_get_mapinfo(bio)->ptr;
1081 
1082 		h->overwrite_mapping = m;
1083 		m->bio = bio;
1084 		save_and_set_endio(bio, &m->saved_bi_end_io, overwrite_endio);
1085 		remap_and_issue(tc, bio, data_dest);
1086 	} else {
1087 		struct dm_io_region from, to;
1088 
1089 		from.bdev = origin->bdev;
1090 		from.sector = data_origin * pool->sectors_per_block;
1091 		from.count = pool->sectors_per_block;
1092 
1093 		to.bdev = tc->pool_dev->bdev;
1094 		to.sector = data_dest * pool->sectors_per_block;
1095 		to.count = pool->sectors_per_block;
1096 
1097 		r = dm_kcopyd_copy(pool->copier, &from, 1, &to,
1098 				   0, copy_complete, m);
1099 		if (r < 0) {
1100 			mempool_free(m, pool->mapping_pool);
1101 			DMERR("dm_kcopyd_copy() failed");
1102 			cell_error(cell);
1103 		}
1104 	}
1105 }
1106 
1107 static void schedule_internal_copy(struct thin_c *tc, dm_block_t virt_block,
1108 				   dm_block_t data_origin, dm_block_t data_dest,
1109 				   struct dm_bio_prison_cell *cell, struct bio *bio)
1110 {
1111 	schedule_copy(tc, virt_block, tc->pool_dev,
1112 		      data_origin, data_dest, cell, bio);
1113 }
1114 
1115 static void schedule_external_copy(struct thin_c *tc, dm_block_t virt_block,
1116 				   dm_block_t data_dest,
1117 				   struct dm_bio_prison_cell *cell, struct bio *bio)
1118 {
1119 	schedule_copy(tc, virt_block, tc->origin_dev,
1120 		      virt_block, data_dest, cell, bio);
1121 }
1122 
1123 static void schedule_zero(struct thin_c *tc, dm_block_t virt_block,
1124 			  dm_block_t data_block, struct dm_bio_prison_cell *cell,
1125 			  struct bio *bio)
1126 {
1127 	struct pool *pool = tc->pool;
1128 	struct dm_thin_new_mapping *m = get_next_mapping(pool);
1129 
1130 	INIT_LIST_HEAD(&m->list);
1131 	m->quiesced = 1;
1132 	m->prepared = 0;
1133 	m->tc = tc;
1134 	m->virt_block = virt_block;
1135 	m->data_block = data_block;
1136 	m->cell = cell;
1137 	m->err = 0;
1138 	m->bio = NULL;
1139 
1140 	/*
1141 	 * If the whole block of data is being overwritten or we are not
1142 	 * zeroing pre-existing data, we can issue the bio immediately.
1143 	 * Otherwise we use kcopyd to zero the data first.
1144 	 */
1145 	if (!pool->pf.zero_new_blocks)
1146 		process_prepared_mapping(m);
1147 
1148 	else if (io_overwrites_block(pool, bio)) {
1149 		struct dm_thin_endio_hook *h = dm_get_mapinfo(bio)->ptr;
1150 
1151 		h->overwrite_mapping = m;
1152 		m->bio = bio;
1153 		save_and_set_endio(bio, &m->saved_bi_end_io, overwrite_endio);
1154 		remap_and_issue(tc, bio, data_block);
1155 	} else {
1156 		int r;
1157 		struct dm_io_region to;
1158 
1159 		to.bdev = tc->pool_dev->bdev;
1160 		to.sector = data_block * pool->sectors_per_block;
1161 		to.count = pool->sectors_per_block;
1162 
1163 		r = dm_kcopyd_zero(pool->copier, 1, &to, 0, copy_complete, m);
1164 		if (r < 0) {
1165 			mempool_free(m, pool->mapping_pool);
1166 			DMERR("dm_kcopyd_zero() failed");
1167 			cell_error(cell);
1168 		}
1169 	}
1170 }
1171 
1172 static int commit(struct pool *pool)
1173 {
1174 	int r;
1175 
1176 	r = dm_pool_commit_metadata(pool->pmd);
1177 	if (r)
1178 		DMERR("commit failed, error = %d", r);
1179 
1180 	return r;
1181 }
1182 
1183 /*
1184  * A non-zero return indicates read_only or fail_io mode.
1185  * Many callers don't care about the return value.
1186  */
1187 static int commit_or_fallback(struct pool *pool)
1188 {
1189 	int r;
1190 
1191 	if (get_pool_mode(pool) != PM_WRITE)
1192 		return -EINVAL;
1193 
1194 	r = commit(pool);
1195 	if (r)
1196 		set_pool_mode(pool, PM_READ_ONLY);
1197 
1198 	return r;
1199 }
1200 
1201 static int alloc_data_block(struct thin_c *tc, dm_block_t *result)
1202 {
1203 	int r;
1204 	dm_block_t free_blocks;
1205 	unsigned long flags;
1206 	struct pool *pool = tc->pool;
1207 
1208 	r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
1209 	if (r)
1210 		return r;
1211 
1212 	if (free_blocks <= pool->low_water_blocks && !pool->low_water_triggered) {
1213 		DMWARN("%s: reached low water mark, sending event.",
1214 		       dm_device_name(pool->pool_md));
1215 		spin_lock_irqsave(&pool->lock, flags);
1216 		pool->low_water_triggered = 1;
1217 		spin_unlock_irqrestore(&pool->lock, flags);
1218 		dm_table_event(pool->ti->table);
1219 	}
1220 
1221 	if (!free_blocks) {
1222 		if (pool->no_free_space)
1223 			return -ENOSPC;
1224 		else {
1225 			/*
1226 			 * Try to commit to see if that will free up some
1227 			 * more space.
1228 			 */
1229 			(void) commit_or_fallback(pool);
1230 
1231 			r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
1232 			if (r)
1233 				return r;
1234 
1235 			/*
1236 			 * If we still have no space we set a flag to avoid
1237 			 * doing all this checking and return -ENOSPC.
1238 			 */
1239 			if (!free_blocks) {
1240 				DMWARN("%s: no free space available.",
1241 				       dm_device_name(pool->pool_md));
1242 				spin_lock_irqsave(&pool->lock, flags);
1243 				pool->no_free_space = 1;
1244 				spin_unlock_irqrestore(&pool->lock, flags);
1245 				return -ENOSPC;
1246 			}
1247 		}
1248 	}
1249 
1250 	r = dm_pool_alloc_data_block(pool->pmd, result);
1251 	if (r)
1252 		return r;
1253 
1254 	return 0;
1255 }
1256 
1257 /*
1258  * If we have run out of space, queue bios until the device is
1259  * resumed, presumably after having been reloaded with more space.
1260  */
1261 static void retry_on_resume(struct bio *bio)
1262 {
1263 	struct dm_thin_endio_hook *h = dm_get_mapinfo(bio)->ptr;
1264 	struct thin_c *tc = h->tc;
1265 	struct pool *pool = tc->pool;
1266 	unsigned long flags;
1267 
1268 	spin_lock_irqsave(&pool->lock, flags);
1269 	bio_list_add(&pool->retry_on_resume_list, bio);
1270 	spin_unlock_irqrestore(&pool->lock, flags);
1271 }
1272 
1273 static void no_space(struct dm_bio_prison_cell *cell)
1274 {
1275 	struct bio *bio;
1276 	struct bio_list bios;
1277 
1278 	bio_list_init(&bios);
1279 	cell_release(cell, &bios);
1280 
1281 	while ((bio = bio_list_pop(&bios)))
1282 		retry_on_resume(bio);
1283 }
1284 
1285 static void process_discard(struct thin_c *tc, struct bio *bio)
1286 {
1287 	int r;
1288 	unsigned long flags;
1289 	struct pool *pool = tc->pool;
1290 	struct dm_bio_prison_cell *cell, *cell2;
1291 	struct cell_key key, key2;
1292 	dm_block_t block = get_bio_block(tc, bio);
1293 	struct dm_thin_lookup_result lookup_result;
1294 	struct dm_thin_new_mapping *m;
1295 
1296 	build_virtual_key(tc->td, block, &key);
1297 	if (bio_detain(tc->pool->prison, &key, bio, &cell))
1298 		return;
1299 
1300 	r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1301 	switch (r) {
1302 	case 0:
1303 		/*
1304 		 * Check nobody is fiddling with this pool block.  This can
1305 		 * happen if someone's in the process of breaking sharing
1306 		 * on this block.
1307 		 */
1308 		build_data_key(tc->td, lookup_result.block, &key2);
1309 		if (bio_detain(tc->pool->prison, &key2, bio, &cell2)) {
1310 			cell_release_singleton(cell, bio);
1311 			break;
1312 		}
1313 
1314 		if (io_overlaps_block(pool, bio)) {
1315 			/*
1316 			 * IO may still be going to the destination block.  We must
1317 			 * quiesce before we can do the removal.
1318 			 */
1319 			m = get_next_mapping(pool);
1320 			m->tc = tc;
1321 			m->pass_discard = (!lookup_result.shared) && pool->pf.discard_passdown;
1322 			m->virt_block = block;
1323 			m->data_block = lookup_result.block;
1324 			m->cell = cell;
1325 			m->cell2 = cell2;
1326 			m->err = 0;
1327 			m->bio = bio;
1328 
1329 			if (!ds_add_work(&pool->all_io_ds, &m->list)) {
1330 				spin_lock_irqsave(&pool->lock, flags);
1331 				list_add(&m->list, &pool->prepared_discards);
1332 				spin_unlock_irqrestore(&pool->lock, flags);
1333 				wake_worker(pool);
1334 			}
1335 		} else {
1336 			/*
1337 			 * The DM core makes sure that the discard doesn't span
1338 			 * a block boundary.  So we submit the discard of a
1339 			 * partial block appropriately.
1340 			 */
1341 			cell_release_singleton(cell, bio);
1342 			cell_release_singleton(cell2, bio);
1343 			if ((!lookup_result.shared) && pool->pf.discard_passdown)
1344 				remap_and_issue(tc, bio, lookup_result.block);
1345 			else
1346 				bio_endio(bio, 0);
1347 		}
1348 		break;
1349 
1350 	case -ENODATA:
1351 		/*
1352 		 * It isn't provisioned, just forget it.
1353 		 */
1354 		cell_release_singleton(cell, bio);
1355 		bio_endio(bio, 0);
1356 		break;
1357 
1358 	default:
1359 		DMERR("discard: find block unexpectedly returned %d", r);
1360 		cell_release_singleton(cell, bio);
1361 		bio_io_error(bio);
1362 		break;
1363 	}
1364 }
1365 
1366 static void break_sharing(struct thin_c *tc, struct bio *bio, dm_block_t block,
1367 			  struct cell_key *key,
1368 			  struct dm_thin_lookup_result *lookup_result,
1369 			  struct dm_bio_prison_cell *cell)
1370 {
1371 	int r;
1372 	dm_block_t data_block;
1373 
1374 	r = alloc_data_block(tc, &data_block);
1375 	switch (r) {
1376 	case 0:
1377 		schedule_internal_copy(tc, block, lookup_result->block,
1378 				       data_block, cell, bio);
1379 		break;
1380 
1381 	case -ENOSPC:
1382 		no_space(cell);
1383 		break;
1384 
1385 	default:
1386 		DMERR("%s: alloc_data_block() failed, error = %d", __func__, r);
1387 		cell_error(cell);
1388 		break;
1389 	}
1390 }
1391 
1392 static void process_shared_bio(struct thin_c *tc, struct bio *bio,
1393 			       dm_block_t block,
1394 			       struct dm_thin_lookup_result *lookup_result)
1395 {
1396 	struct dm_bio_prison_cell *cell;
1397 	struct pool *pool = tc->pool;
1398 	struct cell_key key;
1399 
1400 	/*
1401 	 * If cell is already occupied, then sharing is already in the process
1402 	 * of being broken so we have nothing further to do here.
1403 	 */
1404 	build_data_key(tc->td, lookup_result->block, &key);
1405 	if (bio_detain(pool->prison, &key, bio, &cell))
1406 		return;
1407 
1408 	if (bio_data_dir(bio) == WRITE && bio->bi_size)
1409 		break_sharing(tc, bio, block, &key, lookup_result, cell);
1410 	else {
1411 		struct dm_thin_endio_hook *h = dm_get_mapinfo(bio)->ptr;
1412 
1413 		h->shared_read_entry = ds_inc(&pool->shared_read_ds);
1414 
1415 		cell_release_singleton(cell, bio);
1416 		remap_and_issue(tc, bio, lookup_result->block);
1417 	}
1418 }
1419 
1420 static void provision_block(struct thin_c *tc, struct bio *bio, dm_block_t block,
1421 			    struct dm_bio_prison_cell *cell)
1422 {
1423 	int r;
1424 	dm_block_t data_block;
1425 
1426 	/*
1427 	 * Remap empty bios (flushes) immediately, without provisioning.
1428 	 */
1429 	if (!bio->bi_size) {
1430 		cell_release_singleton(cell, bio);
1431 		remap_and_issue(tc, bio, 0);
1432 		return;
1433 	}
1434 
1435 	/*
1436 	 * Fill read bios with zeroes and complete them immediately.
1437 	 */
1438 	if (bio_data_dir(bio) == READ) {
1439 		zero_fill_bio(bio);
1440 		cell_release_singleton(cell, bio);
1441 		bio_endio(bio, 0);
1442 		return;
1443 	}
1444 
1445 	r = alloc_data_block(tc, &data_block);
1446 	switch (r) {
1447 	case 0:
1448 		if (tc->origin_dev)
1449 			schedule_external_copy(tc, block, data_block, cell, bio);
1450 		else
1451 			schedule_zero(tc, block, data_block, cell, bio);
1452 		break;
1453 
1454 	case -ENOSPC:
1455 		no_space(cell);
1456 		break;
1457 
1458 	default:
1459 		DMERR("%s: alloc_data_block() failed, error = %d", __func__, r);
1460 		set_pool_mode(tc->pool, PM_READ_ONLY);
1461 		cell_error(cell);
1462 		break;
1463 	}
1464 }
1465 
1466 static void process_bio(struct thin_c *tc, struct bio *bio)
1467 {
1468 	int r;
1469 	dm_block_t block = get_bio_block(tc, bio);
1470 	struct dm_bio_prison_cell *cell;
1471 	struct cell_key key;
1472 	struct dm_thin_lookup_result lookup_result;
1473 
1474 	/*
1475 	 * If cell is already occupied, then the block is already
1476 	 * being provisioned so we have nothing further to do here.
1477 	 */
1478 	build_virtual_key(tc->td, block, &key);
1479 	if (bio_detain(tc->pool->prison, &key, bio, &cell))
1480 		return;
1481 
1482 	r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1483 	switch (r) {
1484 	case 0:
1485 		/*
1486 		 * We can release this cell now.  This thread is the only
1487 		 * one that puts bios into a cell, and we know there were
1488 		 * no preceding bios.
1489 		 */
1490 		/*
1491 		 * TODO: this will probably have to change when discard goes
1492 		 * back in.
1493 		 */
1494 		cell_release_singleton(cell, bio);
1495 
1496 		if (lookup_result.shared)
1497 			process_shared_bio(tc, bio, block, &lookup_result);
1498 		else
1499 			remap_and_issue(tc, bio, lookup_result.block);
1500 		break;
1501 
1502 	case -ENODATA:
1503 		if (bio_data_dir(bio) == READ && tc->origin_dev) {
1504 			cell_release_singleton(cell, bio);
1505 			remap_to_origin_and_issue(tc, bio);
1506 		} else
1507 			provision_block(tc, bio, block, cell);
1508 		break;
1509 
1510 	default:
1511 		DMERR("dm_thin_find_block() failed, error = %d", r);
1512 		cell_release_singleton(cell, bio);
1513 		bio_io_error(bio);
1514 		break;
1515 	}
1516 }
1517 
1518 static void process_bio_read_only(struct thin_c *tc, struct bio *bio)
1519 {
1520 	int r;
1521 	int rw = bio_data_dir(bio);
1522 	dm_block_t block = get_bio_block(tc, bio);
1523 	struct dm_thin_lookup_result lookup_result;
1524 
1525 	r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1526 	switch (r) {
1527 	case 0:
1528 		if (lookup_result.shared && (rw == WRITE) && bio->bi_size)
1529 			bio_io_error(bio);
1530 		else
1531 			remap_and_issue(tc, bio, lookup_result.block);
1532 		break;
1533 
1534 	case -ENODATA:
1535 		if (rw != READ) {
1536 			bio_io_error(bio);
1537 			break;
1538 		}
1539 
1540 		if (tc->origin_dev) {
1541 			remap_to_origin_and_issue(tc, bio);
1542 			break;
1543 		}
1544 
1545 		zero_fill_bio(bio);
1546 		bio_endio(bio, 0);
1547 		break;
1548 
1549 	default:
1550 		DMERR("dm_thin_find_block() failed, error = %d", r);
1551 		bio_io_error(bio);
1552 		break;
1553 	}
1554 }
1555 
1556 static void process_bio_fail(struct thin_c *tc, struct bio *bio)
1557 {
1558 	bio_io_error(bio);
1559 }
1560 
1561 static int need_commit_due_to_time(struct pool *pool)
1562 {
1563 	return jiffies < pool->last_commit_jiffies ||
1564 	       jiffies > pool->last_commit_jiffies + COMMIT_PERIOD;
1565 }
1566 
1567 static void process_deferred_bios(struct pool *pool)
1568 {
1569 	unsigned long flags;
1570 	struct bio *bio;
1571 	struct bio_list bios;
1572 
1573 	bio_list_init(&bios);
1574 
1575 	spin_lock_irqsave(&pool->lock, flags);
1576 	bio_list_merge(&bios, &pool->deferred_bios);
1577 	bio_list_init(&pool->deferred_bios);
1578 	spin_unlock_irqrestore(&pool->lock, flags);
1579 
1580 	while ((bio = bio_list_pop(&bios))) {
1581 		struct dm_thin_endio_hook *h = dm_get_mapinfo(bio)->ptr;
1582 		struct thin_c *tc = h->tc;
1583 
1584 		/*
1585 		 * If we've got no free new_mapping structs, and processing
1586 		 * this bio might require one, we pause until there are some
1587 		 * prepared mappings to process.
1588 		 */
1589 		if (ensure_next_mapping(pool)) {
1590 			spin_lock_irqsave(&pool->lock, flags);
1591 			bio_list_merge(&pool->deferred_bios, &bios);
1592 			spin_unlock_irqrestore(&pool->lock, flags);
1593 
1594 			break;
1595 		}
1596 
1597 		if (bio->bi_rw & REQ_DISCARD)
1598 			pool->process_discard(tc, bio);
1599 		else
1600 			pool->process_bio(tc, bio);
1601 	}
1602 
1603 	/*
1604 	 * If there are any deferred flush bios, we must commit
1605 	 * the metadata before issuing them.
1606 	 */
1607 	bio_list_init(&bios);
1608 	spin_lock_irqsave(&pool->lock, flags);
1609 	bio_list_merge(&bios, &pool->deferred_flush_bios);
1610 	bio_list_init(&pool->deferred_flush_bios);
1611 	spin_unlock_irqrestore(&pool->lock, flags);
1612 
1613 	if (bio_list_empty(&bios) && !need_commit_due_to_time(pool))
1614 		return;
1615 
1616 	if (commit_or_fallback(pool)) {
1617 		while ((bio = bio_list_pop(&bios)))
1618 			bio_io_error(bio);
1619 		return;
1620 	}
1621 	pool->last_commit_jiffies = jiffies;
1622 
1623 	while ((bio = bio_list_pop(&bios)))
1624 		generic_make_request(bio);
1625 }
1626 
1627 static void do_worker(struct work_struct *ws)
1628 {
1629 	struct pool *pool = container_of(ws, struct pool, worker);
1630 
1631 	process_prepared(pool, &pool->prepared_mappings, &pool->process_prepared_mapping);
1632 	process_prepared(pool, &pool->prepared_discards, &pool->process_prepared_discard);
1633 	process_deferred_bios(pool);
1634 }
1635 
1636 /*
1637  * We want to commit periodically so that not too much
1638  * unwritten data builds up.
1639  */
1640 static void do_waker(struct work_struct *ws)
1641 {
1642 	struct pool *pool = container_of(to_delayed_work(ws), struct pool, waker);
1643 	wake_worker(pool);
1644 	queue_delayed_work(pool->wq, &pool->waker, COMMIT_PERIOD);
1645 }
1646 
1647 /*----------------------------------------------------------------*/
1648 
1649 static enum pool_mode get_pool_mode(struct pool *pool)
1650 {
1651 	return pool->pf.mode;
1652 }
1653 
1654 static void set_pool_mode(struct pool *pool, enum pool_mode mode)
1655 {
1656 	int r;
1657 
1658 	pool->pf.mode = mode;
1659 
1660 	switch (mode) {
1661 	case PM_FAIL:
1662 		DMERR("switching pool to failure mode");
1663 		pool->process_bio = process_bio_fail;
1664 		pool->process_discard = process_bio_fail;
1665 		pool->process_prepared_mapping = process_prepared_mapping_fail;
1666 		pool->process_prepared_discard = process_prepared_discard_fail;
1667 		break;
1668 
1669 	case PM_READ_ONLY:
1670 		DMERR("switching pool to read-only mode");
1671 		r = dm_pool_abort_metadata(pool->pmd);
1672 		if (r) {
1673 			DMERR("aborting transaction failed");
1674 			set_pool_mode(pool, PM_FAIL);
1675 		} else {
1676 			dm_pool_metadata_read_only(pool->pmd);
1677 			pool->process_bio = process_bio_read_only;
1678 			pool->process_discard = process_discard;
1679 			pool->process_prepared_mapping = process_prepared_mapping_fail;
1680 			pool->process_prepared_discard = process_prepared_discard_passdown;
1681 		}
1682 		break;
1683 
1684 	case PM_WRITE:
1685 		pool->process_bio = process_bio;
1686 		pool->process_discard = process_discard;
1687 		pool->process_prepared_mapping = process_prepared_mapping;
1688 		pool->process_prepared_discard = process_prepared_discard;
1689 		break;
1690 	}
1691 }
1692 
1693 /*----------------------------------------------------------------*/
1694 
1695 /*
1696  * Mapping functions.
1697  */
1698 
1699 /*
1700  * Called only while mapping a thin bio to hand it over to the workqueue.
1701  */
1702 static void thin_defer_bio(struct thin_c *tc, struct bio *bio)
1703 {
1704 	unsigned long flags;
1705 	struct pool *pool = tc->pool;
1706 
1707 	spin_lock_irqsave(&pool->lock, flags);
1708 	bio_list_add(&pool->deferred_bios, bio);
1709 	spin_unlock_irqrestore(&pool->lock, flags);
1710 
1711 	wake_worker(pool);
1712 }
1713 
1714 static struct dm_thin_endio_hook *thin_hook_bio(struct thin_c *tc, struct bio *bio)
1715 {
1716 	struct pool *pool = tc->pool;
1717 	struct dm_thin_endio_hook *h = mempool_alloc(pool->endio_hook_pool, GFP_NOIO);
1718 
1719 	h->tc = tc;
1720 	h->shared_read_entry = NULL;
1721 	h->all_io_entry = bio->bi_rw & REQ_DISCARD ? NULL : ds_inc(&pool->all_io_ds);
1722 	h->overwrite_mapping = NULL;
1723 
1724 	return h;
1725 }
1726 
1727 /*
1728  * Non-blocking function called from the thin target's map function.
1729  */
1730 static int thin_bio_map(struct dm_target *ti, struct bio *bio,
1731 			union map_info *map_context)
1732 {
1733 	int r;
1734 	struct thin_c *tc = ti->private;
1735 	dm_block_t block = get_bio_block(tc, bio);
1736 	struct dm_thin_device *td = tc->td;
1737 	struct dm_thin_lookup_result result;
1738 
1739 	map_context->ptr = thin_hook_bio(tc, bio);
1740 
1741 	if (get_pool_mode(tc->pool) == PM_FAIL) {
1742 		bio_io_error(bio);
1743 		return DM_MAPIO_SUBMITTED;
1744 	}
1745 
1746 	if (bio->bi_rw & (REQ_DISCARD | REQ_FLUSH | REQ_FUA)) {
1747 		thin_defer_bio(tc, bio);
1748 		return DM_MAPIO_SUBMITTED;
1749 	}
1750 
1751 	r = dm_thin_find_block(td, block, 0, &result);
1752 
1753 	/*
1754 	 * Note that we defer readahead too.
1755 	 */
1756 	switch (r) {
1757 	case 0:
1758 		if (unlikely(result.shared)) {
1759 			/*
1760 			 * We have a race condition here between the
1761 			 * result.shared value returned by the lookup and
1762 			 * snapshot creation, which may cause new
1763 			 * sharing.
1764 			 *
1765 			 * To avoid this always quiesce the origin before
1766 			 * taking the snap.  You want to do this anyway to
1767 			 * ensure a consistent application view
1768 			 * (i.e. lockfs).
1769 			 *
1770 			 * More distant ancestors are irrelevant. The
1771 			 * shared flag will be set in their case.
1772 			 */
1773 			thin_defer_bio(tc, bio);
1774 			r = DM_MAPIO_SUBMITTED;
1775 		} else {
1776 			remap(tc, bio, result.block);
1777 			r = DM_MAPIO_REMAPPED;
1778 		}
1779 		break;
1780 
1781 	case -ENODATA:
1782 		if (get_pool_mode(tc->pool) == PM_READ_ONLY) {
1783 			/*
1784 			 * This block isn't provisioned, and we have no way
1785 			 * of doing so.  Just error it.
1786 			 */
1787 			bio_io_error(bio);
1788 			r = DM_MAPIO_SUBMITTED;
1789 			break;
1790 		}
1791 		/* fall through */
1792 
1793 	case -EWOULDBLOCK:
1794 		/*
1795 		 * In future, the failed dm_thin_find_block above could
1796 		 * provide the hint to load the metadata into cache.
1797 		 */
1798 		thin_defer_bio(tc, bio);
1799 		r = DM_MAPIO_SUBMITTED;
1800 		break;
1801 
1802 	default:
1803 		/*
1804 		 * Must always call bio_io_error on failure.
1805 		 * dm_thin_find_block can fail with -EINVAL if the
1806 		 * pool is switched to fail-io mode.
1807 		 */
1808 		bio_io_error(bio);
1809 		r = DM_MAPIO_SUBMITTED;
1810 		break;
1811 	}
1812 
1813 	return r;
1814 }
1815 
1816 static int pool_is_congested(struct dm_target_callbacks *cb, int bdi_bits)
1817 {
1818 	int r;
1819 	unsigned long flags;
1820 	struct pool_c *pt = container_of(cb, struct pool_c, callbacks);
1821 
1822 	spin_lock_irqsave(&pt->pool->lock, flags);
1823 	r = !bio_list_empty(&pt->pool->retry_on_resume_list);
1824 	spin_unlock_irqrestore(&pt->pool->lock, flags);
1825 
1826 	if (!r) {
1827 		struct request_queue *q = bdev_get_queue(pt->data_dev->bdev);
1828 		r = bdi_congested(&q->backing_dev_info, bdi_bits);
1829 	}
1830 
1831 	return r;
1832 }
1833 
1834 static void __requeue_bios(struct pool *pool)
1835 {
1836 	bio_list_merge(&pool->deferred_bios, &pool->retry_on_resume_list);
1837 	bio_list_init(&pool->retry_on_resume_list);
1838 }
1839 
1840 /*----------------------------------------------------------------
1841  * Binding of control targets to a pool object
1842  *--------------------------------------------------------------*/
1843 static bool data_dev_supports_discard(struct pool_c *pt)
1844 {
1845 	struct request_queue *q = bdev_get_queue(pt->data_dev->bdev);
1846 
1847 	return q && blk_queue_discard(q);
1848 }
1849 
1850 /*
1851  * If discard_passdown was enabled verify that the data device
1852  * supports discards.  Disable discard_passdown if not.
1853  */
1854 static void disable_passdown_if_not_supported(struct pool_c *pt)
1855 {
1856 	struct pool *pool = pt->pool;
1857 	struct block_device *data_bdev = pt->data_dev->bdev;
1858 	struct queue_limits *data_limits = &bdev_get_queue(data_bdev)->limits;
1859 	sector_t block_size = pool->sectors_per_block << SECTOR_SHIFT;
1860 	const char *reason = NULL;
1861 	char buf[BDEVNAME_SIZE];
1862 
1863 	if (!pt->adjusted_pf.discard_passdown)
1864 		return;
1865 
1866 	if (!data_dev_supports_discard(pt))
1867 		reason = "discard unsupported";
1868 
1869 	else if (data_limits->max_discard_sectors < pool->sectors_per_block)
1870 		reason = "max discard sectors smaller than a block";
1871 
1872 	else if (data_limits->discard_granularity > block_size)
1873 		reason = "discard granularity larger than a block";
1874 
1875 	else if (block_size & (data_limits->discard_granularity - 1))
1876 		reason = "discard granularity not a factor of block size";
1877 
1878 	if (reason) {
1879 		DMWARN("Data device (%s) %s: Disabling discard passdown.", bdevname(data_bdev, buf), reason);
1880 		pt->adjusted_pf.discard_passdown = false;
1881 	}
1882 }
1883 
1884 static int bind_control_target(struct pool *pool, struct dm_target *ti)
1885 {
1886 	struct pool_c *pt = ti->private;
1887 
1888 	/*
1889 	 * We want to make sure that degraded pools are never upgraded.
1890 	 */
1891 	enum pool_mode old_mode = pool->pf.mode;
1892 	enum pool_mode new_mode = pt->adjusted_pf.mode;
1893 
1894 	if (old_mode > new_mode)
1895 		new_mode = old_mode;
1896 
1897 	pool->ti = ti;
1898 	pool->low_water_blocks = pt->low_water_blocks;
1899 	pool->pf = pt->adjusted_pf;
1900 
1901 	set_pool_mode(pool, new_mode);
1902 
1903 	return 0;
1904 }
1905 
1906 static void unbind_control_target(struct pool *pool, struct dm_target *ti)
1907 {
1908 	if (pool->ti == ti)
1909 		pool->ti = NULL;
1910 }
1911 
1912 /*----------------------------------------------------------------
1913  * Pool creation
1914  *--------------------------------------------------------------*/
1915 /* Initialize pool features. */
1916 static void pool_features_init(struct pool_features *pf)
1917 {
1918 	pf->mode = PM_WRITE;
1919 	pf->zero_new_blocks = true;
1920 	pf->discard_enabled = true;
1921 	pf->discard_passdown = true;
1922 }
1923 
1924 static void __pool_destroy(struct pool *pool)
1925 {
1926 	__pool_table_remove(pool);
1927 
1928 	if (dm_pool_metadata_close(pool->pmd) < 0)
1929 		DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
1930 
1931 	prison_destroy(pool->prison);
1932 	dm_kcopyd_client_destroy(pool->copier);
1933 
1934 	if (pool->wq)
1935 		destroy_workqueue(pool->wq);
1936 
1937 	if (pool->next_mapping)
1938 		mempool_free(pool->next_mapping, pool->mapping_pool);
1939 	mempool_destroy(pool->mapping_pool);
1940 	mempool_destroy(pool->endio_hook_pool);
1941 	kfree(pool);
1942 }
1943 
1944 static struct kmem_cache *_new_mapping_cache;
1945 static struct kmem_cache *_endio_hook_cache;
1946 
1947 static struct pool *pool_create(struct mapped_device *pool_md,
1948 				struct block_device *metadata_dev,
1949 				unsigned long block_size,
1950 				int read_only, char **error)
1951 {
1952 	int r;
1953 	void *err_p;
1954 	struct pool *pool;
1955 	struct dm_pool_metadata *pmd;
1956 	bool format_device = read_only ? false : true;
1957 
1958 	pmd = dm_pool_metadata_open(metadata_dev, block_size, format_device);
1959 	if (IS_ERR(pmd)) {
1960 		*error = "Error creating metadata object";
1961 		return (struct pool *)pmd;
1962 	}
1963 
1964 	pool = kmalloc(sizeof(*pool), GFP_KERNEL);
1965 	if (!pool) {
1966 		*error = "Error allocating memory for pool";
1967 		err_p = ERR_PTR(-ENOMEM);
1968 		goto bad_pool;
1969 	}
1970 
1971 	pool->pmd = pmd;
1972 	pool->sectors_per_block = block_size;
1973 	if (block_size & (block_size - 1))
1974 		pool->sectors_per_block_shift = -1;
1975 	else
1976 		pool->sectors_per_block_shift = __ffs(block_size);
1977 	pool->low_water_blocks = 0;
1978 	pool_features_init(&pool->pf);
1979 	pool->prison = prison_create(PRISON_CELLS);
1980 	if (!pool->prison) {
1981 		*error = "Error creating pool's bio prison";
1982 		err_p = ERR_PTR(-ENOMEM);
1983 		goto bad_prison;
1984 	}
1985 
1986 	pool->copier = dm_kcopyd_client_create();
1987 	if (IS_ERR(pool->copier)) {
1988 		r = PTR_ERR(pool->copier);
1989 		*error = "Error creating pool's kcopyd client";
1990 		err_p = ERR_PTR(r);
1991 		goto bad_kcopyd_client;
1992 	}
1993 
1994 	/*
1995 	 * Create singlethreaded workqueue that will service all devices
1996 	 * that use this metadata.
1997 	 */
1998 	pool->wq = alloc_ordered_workqueue("dm-" DM_MSG_PREFIX, WQ_MEM_RECLAIM);
1999 	if (!pool->wq) {
2000 		*error = "Error creating pool's workqueue";
2001 		err_p = ERR_PTR(-ENOMEM);
2002 		goto bad_wq;
2003 	}
2004 
2005 	INIT_WORK(&pool->worker, do_worker);
2006 	INIT_DELAYED_WORK(&pool->waker, do_waker);
2007 	spin_lock_init(&pool->lock);
2008 	bio_list_init(&pool->deferred_bios);
2009 	bio_list_init(&pool->deferred_flush_bios);
2010 	INIT_LIST_HEAD(&pool->prepared_mappings);
2011 	INIT_LIST_HEAD(&pool->prepared_discards);
2012 	pool->low_water_triggered = 0;
2013 	pool->no_free_space = 0;
2014 	bio_list_init(&pool->retry_on_resume_list);
2015 	ds_init(&pool->shared_read_ds);
2016 	ds_init(&pool->all_io_ds);
2017 
2018 	pool->next_mapping = NULL;
2019 	pool->mapping_pool = mempool_create_slab_pool(MAPPING_POOL_SIZE,
2020 						      _new_mapping_cache);
2021 	if (!pool->mapping_pool) {
2022 		*error = "Error creating pool's mapping mempool";
2023 		err_p = ERR_PTR(-ENOMEM);
2024 		goto bad_mapping_pool;
2025 	}
2026 
2027 	pool->endio_hook_pool = mempool_create_slab_pool(ENDIO_HOOK_POOL_SIZE,
2028 							 _endio_hook_cache);
2029 	if (!pool->endio_hook_pool) {
2030 		*error = "Error creating pool's endio_hook mempool";
2031 		err_p = ERR_PTR(-ENOMEM);
2032 		goto bad_endio_hook_pool;
2033 	}
2034 	pool->ref_count = 1;
2035 	pool->last_commit_jiffies = jiffies;
2036 	pool->pool_md = pool_md;
2037 	pool->md_dev = metadata_dev;
2038 	__pool_table_insert(pool);
2039 
2040 	return pool;
2041 
2042 bad_endio_hook_pool:
2043 	mempool_destroy(pool->mapping_pool);
2044 bad_mapping_pool:
2045 	destroy_workqueue(pool->wq);
2046 bad_wq:
2047 	dm_kcopyd_client_destroy(pool->copier);
2048 bad_kcopyd_client:
2049 	prison_destroy(pool->prison);
2050 bad_prison:
2051 	kfree(pool);
2052 bad_pool:
2053 	if (dm_pool_metadata_close(pmd))
2054 		DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
2055 
2056 	return err_p;
2057 }
2058 
2059 static void __pool_inc(struct pool *pool)
2060 {
2061 	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
2062 	pool->ref_count++;
2063 }
2064 
2065 static void __pool_dec(struct pool *pool)
2066 {
2067 	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
2068 	BUG_ON(!pool->ref_count);
2069 	if (!--pool->ref_count)
2070 		__pool_destroy(pool);
2071 }
2072 
2073 static struct pool *__pool_find(struct mapped_device *pool_md,
2074 				struct block_device *metadata_dev,
2075 				unsigned long block_size, int read_only,
2076 				char **error, int *created)
2077 {
2078 	struct pool *pool = __pool_table_lookup_metadata_dev(metadata_dev);
2079 
2080 	if (pool) {
2081 		if (pool->pool_md != pool_md) {
2082 			*error = "metadata device already in use by a pool";
2083 			return ERR_PTR(-EBUSY);
2084 		}
2085 		__pool_inc(pool);
2086 
2087 	} else {
2088 		pool = __pool_table_lookup(pool_md);
2089 		if (pool) {
2090 			if (pool->md_dev != metadata_dev) {
2091 				*error = "different pool cannot replace a pool";
2092 				return ERR_PTR(-EINVAL);
2093 			}
2094 			__pool_inc(pool);
2095 
2096 		} else {
2097 			pool = pool_create(pool_md, metadata_dev, block_size, read_only, error);
2098 			*created = 1;
2099 		}
2100 	}
2101 
2102 	return pool;
2103 }
2104 
2105 /*----------------------------------------------------------------
2106  * Pool target methods
2107  *--------------------------------------------------------------*/
2108 static void pool_dtr(struct dm_target *ti)
2109 {
2110 	struct pool_c *pt = ti->private;
2111 
2112 	mutex_lock(&dm_thin_pool_table.mutex);
2113 
2114 	unbind_control_target(pt->pool, ti);
2115 	__pool_dec(pt->pool);
2116 	dm_put_device(ti, pt->metadata_dev);
2117 	dm_put_device(ti, pt->data_dev);
2118 	kfree(pt);
2119 
2120 	mutex_unlock(&dm_thin_pool_table.mutex);
2121 }
2122 
2123 static int parse_pool_features(struct dm_arg_set *as, struct pool_features *pf,
2124 			       struct dm_target *ti)
2125 {
2126 	int r;
2127 	unsigned argc;
2128 	const char *arg_name;
2129 
2130 	static struct dm_arg _args[] = {
2131 		{0, 3, "Invalid number of pool feature arguments"},
2132 	};
2133 
2134 	/*
2135 	 * No feature arguments supplied.
2136 	 */
2137 	if (!as->argc)
2138 		return 0;
2139 
2140 	r = dm_read_arg_group(_args, as, &argc, &ti->error);
2141 	if (r)
2142 		return -EINVAL;
2143 
2144 	while (argc && !r) {
2145 		arg_name = dm_shift_arg(as);
2146 		argc--;
2147 
2148 		if (!strcasecmp(arg_name, "skip_block_zeroing"))
2149 			pf->zero_new_blocks = false;
2150 
2151 		else if (!strcasecmp(arg_name, "ignore_discard"))
2152 			pf->discard_enabled = false;
2153 
2154 		else if (!strcasecmp(arg_name, "no_discard_passdown"))
2155 			pf->discard_passdown = false;
2156 
2157 		else if (!strcasecmp(arg_name, "read_only"))
2158 			pf->mode = PM_READ_ONLY;
2159 
2160 		else {
2161 			ti->error = "Unrecognised pool feature requested";
2162 			r = -EINVAL;
2163 			break;
2164 		}
2165 	}
2166 
2167 	return r;
2168 }
2169 
2170 /*
2171  * thin-pool <metadata dev> <data dev>
2172  *	     <data block size (sectors)>
2173  *	     <low water mark (blocks)>
2174  *	     [<#feature args> [<arg>]*]
2175  *
2176  * Optional feature arguments are:
2177  *	     skip_block_zeroing: skips the zeroing of newly-provisioned blocks.
2178  *	     ignore_discard: disable discard
2179  *	     no_discard_passdown: don't pass discards down to the data device
2180  */
2181 static int pool_ctr(struct dm_target *ti, unsigned argc, char **argv)
2182 {
2183 	int r, pool_created = 0;
2184 	struct pool_c *pt;
2185 	struct pool *pool;
2186 	struct pool_features pf;
2187 	struct dm_arg_set as;
2188 	struct dm_dev *data_dev;
2189 	unsigned long block_size;
2190 	dm_block_t low_water_blocks;
2191 	struct dm_dev *metadata_dev;
2192 	sector_t metadata_dev_size;
2193 	char b[BDEVNAME_SIZE];
2194 
2195 	/*
2196 	 * FIXME Remove validation from scope of lock.
2197 	 */
2198 	mutex_lock(&dm_thin_pool_table.mutex);
2199 
2200 	if (argc < 4) {
2201 		ti->error = "Invalid argument count";
2202 		r = -EINVAL;
2203 		goto out_unlock;
2204 	}
2205 	as.argc = argc;
2206 	as.argv = argv;
2207 
2208 	r = dm_get_device(ti, argv[0], FMODE_READ | FMODE_WRITE, &metadata_dev);
2209 	if (r) {
2210 		ti->error = "Error opening metadata block device";
2211 		goto out_unlock;
2212 	}
2213 
2214 	metadata_dev_size = i_size_read(metadata_dev->bdev->bd_inode) >> SECTOR_SHIFT;
2215 	if (metadata_dev_size > THIN_METADATA_MAX_SECTORS_WARNING)
2216 		DMWARN("Metadata device %s is larger than %u sectors: excess space will not be used.",
2217 		       bdevname(metadata_dev->bdev, b), THIN_METADATA_MAX_SECTORS);
2218 
2219 	r = dm_get_device(ti, argv[1], FMODE_READ | FMODE_WRITE, &data_dev);
2220 	if (r) {
2221 		ti->error = "Error getting data device";
2222 		goto out_metadata;
2223 	}
2224 
2225 	if (kstrtoul(argv[2], 10, &block_size) || !block_size ||
2226 	    block_size < DATA_DEV_BLOCK_SIZE_MIN_SECTORS ||
2227 	    block_size > DATA_DEV_BLOCK_SIZE_MAX_SECTORS ||
2228 	    block_size & (DATA_DEV_BLOCK_SIZE_MIN_SECTORS - 1)) {
2229 		ti->error = "Invalid block size";
2230 		r = -EINVAL;
2231 		goto out;
2232 	}
2233 
2234 	if (kstrtoull(argv[3], 10, (unsigned long long *)&low_water_blocks)) {
2235 		ti->error = "Invalid low water mark";
2236 		r = -EINVAL;
2237 		goto out;
2238 	}
2239 
2240 	/*
2241 	 * Set default pool features.
2242 	 */
2243 	pool_features_init(&pf);
2244 
2245 	dm_consume_args(&as, 4);
2246 	r = parse_pool_features(&as, &pf, ti);
2247 	if (r)
2248 		goto out;
2249 
2250 	pt = kzalloc(sizeof(*pt), GFP_KERNEL);
2251 	if (!pt) {
2252 		r = -ENOMEM;
2253 		goto out;
2254 	}
2255 
2256 	pool = __pool_find(dm_table_get_md(ti->table), metadata_dev->bdev,
2257 			   block_size, pf.mode == PM_READ_ONLY, &ti->error, &pool_created);
2258 	if (IS_ERR(pool)) {
2259 		r = PTR_ERR(pool);
2260 		goto out_free_pt;
2261 	}
2262 
2263 	/*
2264 	 * 'pool_created' reflects whether this is the first table load.
2265 	 * Top level discard support is not allowed to be changed after
2266 	 * initial load.  This would require a pool reload to trigger thin
2267 	 * device changes.
2268 	 */
2269 	if (!pool_created && pf.discard_enabled != pool->pf.discard_enabled) {
2270 		ti->error = "Discard support cannot be disabled once enabled";
2271 		r = -EINVAL;
2272 		goto out_flags_changed;
2273 	}
2274 
2275 	/*
2276 	 * The block layer requires discard_granularity to be a power of 2.
2277 	 */
2278 	if (pf.discard_enabled && !is_power_of_2(block_size)) {
2279 		ti->error = "Discard support must be disabled when the block size is not a power of 2";
2280 		r = -EINVAL;
2281 		goto out_flags_changed;
2282 	}
2283 
2284 	pt->pool = pool;
2285 	pt->ti = ti;
2286 	pt->metadata_dev = metadata_dev;
2287 	pt->data_dev = data_dev;
2288 	pt->low_water_blocks = low_water_blocks;
2289 	pt->adjusted_pf = pt->requested_pf = pf;
2290 	ti->num_flush_requests = 1;
2291 
2292 	/*
2293 	 * Only need to enable discards if the pool should pass
2294 	 * them down to the data device.  The thin device's discard
2295 	 * processing will cause mappings to be removed from the btree.
2296 	 */
2297 	if (pf.discard_enabled && pf.discard_passdown) {
2298 		ti->num_discard_requests = 1;
2299 
2300 		/*
2301 		 * Setting 'discards_supported' circumvents the normal
2302 		 * stacking of discard limits (this keeps the pool and
2303 		 * thin devices' discard limits consistent).
2304 		 */
2305 		ti->discards_supported = true;
2306 		ti->discard_zeroes_data_unsupported = true;
2307 	}
2308 	ti->private = pt;
2309 
2310 	pt->callbacks.congested_fn = pool_is_congested;
2311 	dm_table_add_target_callbacks(ti->table, &pt->callbacks);
2312 
2313 	mutex_unlock(&dm_thin_pool_table.mutex);
2314 
2315 	return 0;
2316 
2317 out_flags_changed:
2318 	__pool_dec(pool);
2319 out_free_pt:
2320 	kfree(pt);
2321 out:
2322 	dm_put_device(ti, data_dev);
2323 out_metadata:
2324 	dm_put_device(ti, metadata_dev);
2325 out_unlock:
2326 	mutex_unlock(&dm_thin_pool_table.mutex);
2327 
2328 	return r;
2329 }
2330 
2331 static int pool_map(struct dm_target *ti, struct bio *bio,
2332 		    union map_info *map_context)
2333 {
2334 	int r;
2335 	struct pool_c *pt = ti->private;
2336 	struct pool *pool = pt->pool;
2337 	unsigned long flags;
2338 
2339 	/*
2340 	 * As this is a singleton target, ti->begin is always zero.
2341 	 */
2342 	spin_lock_irqsave(&pool->lock, flags);
2343 	bio->bi_bdev = pt->data_dev->bdev;
2344 	r = DM_MAPIO_REMAPPED;
2345 	spin_unlock_irqrestore(&pool->lock, flags);
2346 
2347 	return r;
2348 }
2349 
2350 /*
2351  * Retrieves the number of blocks of the data device from
2352  * the superblock and compares it to the actual device size,
2353  * thus resizing the data device in case it has grown.
2354  *
2355  * This both copes with opening preallocated data devices in the ctr
2356  * being followed by a resume
2357  * -and-
2358  * calling the resume method individually after userspace has
2359  * grown the data device in reaction to a table event.
2360  */
2361 static int pool_preresume(struct dm_target *ti)
2362 {
2363 	int r;
2364 	struct pool_c *pt = ti->private;
2365 	struct pool *pool = pt->pool;
2366 	sector_t data_size = ti->len;
2367 	dm_block_t sb_data_size;
2368 
2369 	/*
2370 	 * Take control of the pool object.
2371 	 */
2372 	r = bind_control_target(pool, ti);
2373 	if (r)
2374 		return r;
2375 
2376 	(void) sector_div(data_size, pool->sectors_per_block);
2377 
2378 	r = dm_pool_get_data_dev_size(pool->pmd, &sb_data_size);
2379 	if (r) {
2380 		DMERR("failed to retrieve data device size");
2381 		return r;
2382 	}
2383 
2384 	if (data_size < sb_data_size) {
2385 		DMERR("pool target too small, is %llu blocks (expected %llu)",
2386 		      (unsigned long long)data_size, sb_data_size);
2387 		return -EINVAL;
2388 
2389 	} else if (data_size > sb_data_size) {
2390 		r = dm_pool_resize_data_dev(pool->pmd, data_size);
2391 		if (r) {
2392 			DMERR("failed to resize data device");
2393 			/* FIXME Stricter than necessary: Rollback transaction instead here */
2394 			set_pool_mode(pool, PM_READ_ONLY);
2395 			return r;
2396 		}
2397 
2398 		(void) commit_or_fallback(pool);
2399 	}
2400 
2401 	return 0;
2402 }
2403 
2404 static void pool_resume(struct dm_target *ti)
2405 {
2406 	struct pool_c *pt = ti->private;
2407 	struct pool *pool = pt->pool;
2408 	unsigned long flags;
2409 
2410 	spin_lock_irqsave(&pool->lock, flags);
2411 	pool->low_water_triggered = 0;
2412 	pool->no_free_space = 0;
2413 	__requeue_bios(pool);
2414 	spin_unlock_irqrestore(&pool->lock, flags);
2415 
2416 	do_waker(&pool->waker.work);
2417 }
2418 
2419 static void pool_postsuspend(struct dm_target *ti)
2420 {
2421 	struct pool_c *pt = ti->private;
2422 	struct pool *pool = pt->pool;
2423 
2424 	cancel_delayed_work(&pool->waker);
2425 	flush_workqueue(pool->wq);
2426 	(void) commit_or_fallback(pool);
2427 }
2428 
2429 static int check_arg_count(unsigned argc, unsigned args_required)
2430 {
2431 	if (argc != args_required) {
2432 		DMWARN("Message received with %u arguments instead of %u.",
2433 		       argc, args_required);
2434 		return -EINVAL;
2435 	}
2436 
2437 	return 0;
2438 }
2439 
2440 static int read_dev_id(char *arg, dm_thin_id *dev_id, int warning)
2441 {
2442 	if (!kstrtoull(arg, 10, (unsigned long long *)dev_id) &&
2443 	    *dev_id <= MAX_DEV_ID)
2444 		return 0;
2445 
2446 	if (warning)
2447 		DMWARN("Message received with invalid device id: %s", arg);
2448 
2449 	return -EINVAL;
2450 }
2451 
2452 static int process_create_thin_mesg(unsigned argc, char **argv, struct pool *pool)
2453 {
2454 	dm_thin_id dev_id;
2455 	int r;
2456 
2457 	r = check_arg_count(argc, 2);
2458 	if (r)
2459 		return r;
2460 
2461 	r = read_dev_id(argv[1], &dev_id, 1);
2462 	if (r)
2463 		return r;
2464 
2465 	r = dm_pool_create_thin(pool->pmd, dev_id);
2466 	if (r) {
2467 		DMWARN("Creation of new thinly-provisioned device with id %s failed.",
2468 		       argv[1]);
2469 		return r;
2470 	}
2471 
2472 	return 0;
2473 }
2474 
2475 static int process_create_snap_mesg(unsigned argc, char **argv, struct pool *pool)
2476 {
2477 	dm_thin_id dev_id;
2478 	dm_thin_id origin_dev_id;
2479 	int r;
2480 
2481 	r = check_arg_count(argc, 3);
2482 	if (r)
2483 		return r;
2484 
2485 	r = read_dev_id(argv[1], &dev_id, 1);
2486 	if (r)
2487 		return r;
2488 
2489 	r = read_dev_id(argv[2], &origin_dev_id, 1);
2490 	if (r)
2491 		return r;
2492 
2493 	r = dm_pool_create_snap(pool->pmd, dev_id, origin_dev_id);
2494 	if (r) {
2495 		DMWARN("Creation of new snapshot %s of device %s failed.",
2496 		       argv[1], argv[2]);
2497 		return r;
2498 	}
2499 
2500 	return 0;
2501 }
2502 
2503 static int process_delete_mesg(unsigned argc, char **argv, struct pool *pool)
2504 {
2505 	dm_thin_id dev_id;
2506 	int r;
2507 
2508 	r = check_arg_count(argc, 2);
2509 	if (r)
2510 		return r;
2511 
2512 	r = read_dev_id(argv[1], &dev_id, 1);
2513 	if (r)
2514 		return r;
2515 
2516 	r = dm_pool_delete_thin_device(pool->pmd, dev_id);
2517 	if (r)
2518 		DMWARN("Deletion of thin device %s failed.", argv[1]);
2519 
2520 	return r;
2521 }
2522 
2523 static int process_set_transaction_id_mesg(unsigned argc, char **argv, struct pool *pool)
2524 {
2525 	dm_thin_id old_id, new_id;
2526 	int r;
2527 
2528 	r = check_arg_count(argc, 3);
2529 	if (r)
2530 		return r;
2531 
2532 	if (kstrtoull(argv[1], 10, (unsigned long long *)&old_id)) {
2533 		DMWARN("set_transaction_id message: Unrecognised id %s.", argv[1]);
2534 		return -EINVAL;
2535 	}
2536 
2537 	if (kstrtoull(argv[2], 10, (unsigned long long *)&new_id)) {
2538 		DMWARN("set_transaction_id message: Unrecognised new id %s.", argv[2]);
2539 		return -EINVAL;
2540 	}
2541 
2542 	r = dm_pool_set_metadata_transaction_id(pool->pmd, old_id, new_id);
2543 	if (r) {
2544 		DMWARN("Failed to change transaction id from %s to %s.",
2545 		       argv[1], argv[2]);
2546 		return r;
2547 	}
2548 
2549 	return 0;
2550 }
2551 
2552 static int process_reserve_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool)
2553 {
2554 	int r;
2555 
2556 	r = check_arg_count(argc, 1);
2557 	if (r)
2558 		return r;
2559 
2560 	(void) commit_or_fallback(pool);
2561 
2562 	r = dm_pool_reserve_metadata_snap(pool->pmd);
2563 	if (r)
2564 		DMWARN("reserve_metadata_snap message failed.");
2565 
2566 	return r;
2567 }
2568 
2569 static int process_release_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool)
2570 {
2571 	int r;
2572 
2573 	r = check_arg_count(argc, 1);
2574 	if (r)
2575 		return r;
2576 
2577 	r = dm_pool_release_metadata_snap(pool->pmd);
2578 	if (r)
2579 		DMWARN("release_metadata_snap message failed.");
2580 
2581 	return r;
2582 }
2583 
2584 /*
2585  * Messages supported:
2586  *   create_thin	<dev_id>
2587  *   create_snap	<dev_id> <origin_id>
2588  *   delete		<dev_id>
2589  *   trim		<dev_id> <new_size_in_sectors>
2590  *   set_transaction_id <current_trans_id> <new_trans_id>
2591  *   reserve_metadata_snap
2592  *   release_metadata_snap
2593  */
2594 static int pool_message(struct dm_target *ti, unsigned argc, char **argv)
2595 {
2596 	int r = -EINVAL;
2597 	struct pool_c *pt = ti->private;
2598 	struct pool *pool = pt->pool;
2599 
2600 	if (!strcasecmp(argv[0], "create_thin"))
2601 		r = process_create_thin_mesg(argc, argv, pool);
2602 
2603 	else if (!strcasecmp(argv[0], "create_snap"))
2604 		r = process_create_snap_mesg(argc, argv, pool);
2605 
2606 	else if (!strcasecmp(argv[0], "delete"))
2607 		r = process_delete_mesg(argc, argv, pool);
2608 
2609 	else if (!strcasecmp(argv[0], "set_transaction_id"))
2610 		r = process_set_transaction_id_mesg(argc, argv, pool);
2611 
2612 	else if (!strcasecmp(argv[0], "reserve_metadata_snap"))
2613 		r = process_reserve_metadata_snap_mesg(argc, argv, pool);
2614 
2615 	else if (!strcasecmp(argv[0], "release_metadata_snap"))
2616 		r = process_release_metadata_snap_mesg(argc, argv, pool);
2617 
2618 	else
2619 		DMWARN("Unrecognised thin pool target message received: %s", argv[0]);
2620 
2621 	if (!r)
2622 		(void) commit_or_fallback(pool);
2623 
2624 	return r;
2625 }
2626 
2627 static void emit_flags(struct pool_features *pf, char *result,
2628 		       unsigned sz, unsigned maxlen)
2629 {
2630 	unsigned count = !pf->zero_new_blocks + !pf->discard_enabled +
2631 		!pf->discard_passdown + (pf->mode == PM_READ_ONLY);
2632 	DMEMIT("%u ", count);
2633 
2634 	if (!pf->zero_new_blocks)
2635 		DMEMIT("skip_block_zeroing ");
2636 
2637 	if (!pf->discard_enabled)
2638 		DMEMIT("ignore_discard ");
2639 
2640 	if (!pf->discard_passdown)
2641 		DMEMIT("no_discard_passdown ");
2642 
2643 	if (pf->mode == PM_READ_ONLY)
2644 		DMEMIT("read_only ");
2645 }
2646 
2647 /*
2648  * Status line is:
2649  *    <transaction id> <used metadata sectors>/<total metadata sectors>
2650  *    <used data sectors>/<total data sectors> <held metadata root>
2651  */
2652 static int pool_status(struct dm_target *ti, status_type_t type,
2653 		       unsigned status_flags, char *result, unsigned maxlen)
2654 {
2655 	int r;
2656 	unsigned sz = 0;
2657 	uint64_t transaction_id;
2658 	dm_block_t nr_free_blocks_data;
2659 	dm_block_t nr_free_blocks_metadata;
2660 	dm_block_t nr_blocks_data;
2661 	dm_block_t nr_blocks_metadata;
2662 	dm_block_t held_root;
2663 	char buf[BDEVNAME_SIZE];
2664 	char buf2[BDEVNAME_SIZE];
2665 	struct pool_c *pt = ti->private;
2666 	struct pool *pool = pt->pool;
2667 
2668 	switch (type) {
2669 	case STATUSTYPE_INFO:
2670 		if (get_pool_mode(pool) == PM_FAIL) {
2671 			DMEMIT("Fail");
2672 			break;
2673 		}
2674 
2675 		/* Commit to ensure statistics aren't out-of-date */
2676 		if (!(status_flags & DM_STATUS_NOFLUSH_FLAG) && !dm_suspended(ti))
2677 			(void) commit_or_fallback(pool);
2678 
2679 		r = dm_pool_get_metadata_transaction_id(pool->pmd,
2680 							&transaction_id);
2681 		if (r)
2682 			return r;
2683 
2684 		r = dm_pool_get_free_metadata_block_count(pool->pmd,
2685 							  &nr_free_blocks_metadata);
2686 		if (r)
2687 			return r;
2688 
2689 		r = dm_pool_get_metadata_dev_size(pool->pmd, &nr_blocks_metadata);
2690 		if (r)
2691 			return r;
2692 
2693 		r = dm_pool_get_free_block_count(pool->pmd,
2694 						 &nr_free_blocks_data);
2695 		if (r)
2696 			return r;
2697 
2698 		r = dm_pool_get_data_dev_size(pool->pmd, &nr_blocks_data);
2699 		if (r)
2700 			return r;
2701 
2702 		r = dm_pool_get_metadata_snap(pool->pmd, &held_root);
2703 		if (r)
2704 			return r;
2705 
2706 		DMEMIT("%llu %llu/%llu %llu/%llu ",
2707 		       (unsigned long long)transaction_id,
2708 		       (unsigned long long)(nr_blocks_metadata - nr_free_blocks_metadata),
2709 		       (unsigned long long)nr_blocks_metadata,
2710 		       (unsigned long long)(nr_blocks_data - nr_free_blocks_data),
2711 		       (unsigned long long)nr_blocks_data);
2712 
2713 		if (held_root)
2714 			DMEMIT("%llu ", held_root);
2715 		else
2716 			DMEMIT("- ");
2717 
2718 		if (pool->pf.mode == PM_READ_ONLY)
2719 			DMEMIT("ro ");
2720 		else
2721 			DMEMIT("rw ");
2722 
2723 		if (pool->pf.discard_enabled && pool->pf.discard_passdown)
2724 			DMEMIT("discard_passdown");
2725 		else
2726 			DMEMIT("no_discard_passdown");
2727 
2728 		break;
2729 
2730 	case STATUSTYPE_TABLE:
2731 		DMEMIT("%s %s %lu %llu ",
2732 		       format_dev_t(buf, pt->metadata_dev->bdev->bd_dev),
2733 		       format_dev_t(buf2, pt->data_dev->bdev->bd_dev),
2734 		       (unsigned long)pool->sectors_per_block,
2735 		       (unsigned long long)pt->low_water_blocks);
2736 		emit_flags(&pt->requested_pf, result, sz, maxlen);
2737 		break;
2738 	}
2739 
2740 	return 0;
2741 }
2742 
2743 static int pool_iterate_devices(struct dm_target *ti,
2744 				iterate_devices_callout_fn fn, void *data)
2745 {
2746 	struct pool_c *pt = ti->private;
2747 
2748 	return fn(ti, pt->data_dev, 0, ti->len, data);
2749 }
2750 
2751 static int pool_merge(struct dm_target *ti, struct bvec_merge_data *bvm,
2752 		      struct bio_vec *biovec, int max_size)
2753 {
2754 	struct pool_c *pt = ti->private;
2755 	struct request_queue *q = bdev_get_queue(pt->data_dev->bdev);
2756 
2757 	if (!q->merge_bvec_fn)
2758 		return max_size;
2759 
2760 	bvm->bi_bdev = pt->data_dev->bdev;
2761 
2762 	return min(max_size, q->merge_bvec_fn(q, bvm, biovec));
2763 }
2764 
2765 static void set_discard_limits(struct pool_c *pt, struct queue_limits *limits)
2766 {
2767 	struct pool *pool = pt->pool;
2768 	struct queue_limits *data_limits;
2769 
2770 	limits->max_discard_sectors = pool->sectors_per_block;
2771 
2772 	/*
2773 	 * discard_granularity is just a hint, and not enforced.
2774 	 */
2775 	if (pt->adjusted_pf.discard_passdown) {
2776 		data_limits = &bdev_get_queue(pt->data_dev->bdev)->limits;
2777 		limits->discard_granularity = data_limits->discard_granularity;
2778 	} else
2779 		limits->discard_granularity = pool->sectors_per_block << SECTOR_SHIFT;
2780 }
2781 
2782 static void pool_io_hints(struct dm_target *ti, struct queue_limits *limits)
2783 {
2784 	struct pool_c *pt = ti->private;
2785 	struct pool *pool = pt->pool;
2786 
2787 	blk_limits_io_min(limits, 0);
2788 	blk_limits_io_opt(limits, pool->sectors_per_block << SECTOR_SHIFT);
2789 
2790 	/*
2791 	 * pt->adjusted_pf is a staging area for the actual features to use.
2792 	 * They get transferred to the live pool in bind_control_target()
2793 	 * called from pool_preresume().
2794 	 */
2795 	if (!pt->adjusted_pf.discard_enabled)
2796 		return;
2797 
2798 	disable_passdown_if_not_supported(pt);
2799 
2800 	set_discard_limits(pt, limits);
2801 }
2802 
2803 static struct target_type pool_target = {
2804 	.name = "thin-pool",
2805 	.features = DM_TARGET_SINGLETON | DM_TARGET_ALWAYS_WRITEABLE |
2806 		    DM_TARGET_IMMUTABLE,
2807 	.version = {1, 4, 0},
2808 	.module = THIS_MODULE,
2809 	.ctr = pool_ctr,
2810 	.dtr = pool_dtr,
2811 	.map = pool_map,
2812 	.postsuspend = pool_postsuspend,
2813 	.preresume = pool_preresume,
2814 	.resume = pool_resume,
2815 	.message = pool_message,
2816 	.status = pool_status,
2817 	.merge = pool_merge,
2818 	.iterate_devices = pool_iterate_devices,
2819 	.io_hints = pool_io_hints,
2820 };
2821 
2822 /*----------------------------------------------------------------
2823  * Thin target methods
2824  *--------------------------------------------------------------*/
2825 static void thin_dtr(struct dm_target *ti)
2826 {
2827 	struct thin_c *tc = ti->private;
2828 
2829 	mutex_lock(&dm_thin_pool_table.mutex);
2830 
2831 	__pool_dec(tc->pool);
2832 	dm_pool_close_thin_device(tc->td);
2833 	dm_put_device(ti, tc->pool_dev);
2834 	if (tc->origin_dev)
2835 		dm_put_device(ti, tc->origin_dev);
2836 	kfree(tc);
2837 
2838 	mutex_unlock(&dm_thin_pool_table.mutex);
2839 }
2840 
2841 /*
2842  * Thin target parameters:
2843  *
2844  * <pool_dev> <dev_id> [origin_dev]
2845  *
2846  * pool_dev: the path to the pool (eg, /dev/mapper/my_pool)
2847  * dev_id: the internal device identifier
2848  * origin_dev: a device external to the pool that should act as the origin
2849  *
2850  * If the pool device has discards disabled, they get disabled for the thin
2851  * device as well.
2852  */
2853 static int thin_ctr(struct dm_target *ti, unsigned argc, char **argv)
2854 {
2855 	int r;
2856 	struct thin_c *tc;
2857 	struct dm_dev *pool_dev, *origin_dev;
2858 	struct mapped_device *pool_md;
2859 
2860 	mutex_lock(&dm_thin_pool_table.mutex);
2861 
2862 	if (argc != 2 && argc != 3) {
2863 		ti->error = "Invalid argument count";
2864 		r = -EINVAL;
2865 		goto out_unlock;
2866 	}
2867 
2868 	tc = ti->private = kzalloc(sizeof(*tc), GFP_KERNEL);
2869 	if (!tc) {
2870 		ti->error = "Out of memory";
2871 		r = -ENOMEM;
2872 		goto out_unlock;
2873 	}
2874 
2875 	if (argc == 3) {
2876 		r = dm_get_device(ti, argv[2], FMODE_READ, &origin_dev);
2877 		if (r) {
2878 			ti->error = "Error opening origin device";
2879 			goto bad_origin_dev;
2880 		}
2881 		tc->origin_dev = origin_dev;
2882 	}
2883 
2884 	r = dm_get_device(ti, argv[0], dm_table_get_mode(ti->table), &pool_dev);
2885 	if (r) {
2886 		ti->error = "Error opening pool device";
2887 		goto bad_pool_dev;
2888 	}
2889 	tc->pool_dev = pool_dev;
2890 
2891 	if (read_dev_id(argv[1], (unsigned long long *)&tc->dev_id, 0)) {
2892 		ti->error = "Invalid device id";
2893 		r = -EINVAL;
2894 		goto bad_common;
2895 	}
2896 
2897 	pool_md = dm_get_md(tc->pool_dev->bdev->bd_dev);
2898 	if (!pool_md) {
2899 		ti->error = "Couldn't get pool mapped device";
2900 		r = -EINVAL;
2901 		goto bad_common;
2902 	}
2903 
2904 	tc->pool = __pool_table_lookup(pool_md);
2905 	if (!tc->pool) {
2906 		ti->error = "Couldn't find pool object";
2907 		r = -EINVAL;
2908 		goto bad_pool_lookup;
2909 	}
2910 	__pool_inc(tc->pool);
2911 
2912 	if (get_pool_mode(tc->pool) == PM_FAIL) {
2913 		ti->error = "Couldn't open thin device, Pool is in fail mode";
2914 		goto bad_thin_open;
2915 	}
2916 
2917 	r = dm_pool_open_thin_device(tc->pool->pmd, tc->dev_id, &tc->td);
2918 	if (r) {
2919 		ti->error = "Couldn't open thin internal device";
2920 		goto bad_thin_open;
2921 	}
2922 
2923 	r = dm_set_target_max_io_len(ti, tc->pool->sectors_per_block);
2924 	if (r)
2925 		goto bad_thin_open;
2926 
2927 	ti->num_flush_requests = 1;
2928 	ti->flush_supported = true;
2929 
2930 	/* In case the pool supports discards, pass them on. */
2931 	if (tc->pool->pf.discard_enabled) {
2932 		ti->discards_supported = true;
2933 		ti->num_discard_requests = 1;
2934 		ti->discard_zeroes_data_unsupported = true;
2935 		/* Discard requests must be split on a block boundary */
2936 		ti->split_discard_requests = true;
2937 	}
2938 
2939 	dm_put(pool_md);
2940 
2941 	mutex_unlock(&dm_thin_pool_table.mutex);
2942 
2943 	return 0;
2944 
2945 bad_thin_open:
2946 	__pool_dec(tc->pool);
2947 bad_pool_lookup:
2948 	dm_put(pool_md);
2949 bad_common:
2950 	dm_put_device(ti, tc->pool_dev);
2951 bad_pool_dev:
2952 	if (tc->origin_dev)
2953 		dm_put_device(ti, tc->origin_dev);
2954 bad_origin_dev:
2955 	kfree(tc);
2956 out_unlock:
2957 	mutex_unlock(&dm_thin_pool_table.mutex);
2958 
2959 	return r;
2960 }
2961 
2962 static int thin_map(struct dm_target *ti, struct bio *bio,
2963 		    union map_info *map_context)
2964 {
2965 	bio->bi_sector = dm_target_offset(ti, bio->bi_sector);
2966 
2967 	return thin_bio_map(ti, bio, map_context);
2968 }
2969 
2970 static int thin_endio(struct dm_target *ti,
2971 		      struct bio *bio, int err,
2972 		      union map_info *map_context)
2973 {
2974 	unsigned long flags;
2975 	struct dm_thin_endio_hook *h = map_context->ptr;
2976 	struct list_head work;
2977 	struct dm_thin_new_mapping *m, *tmp;
2978 	struct pool *pool = h->tc->pool;
2979 
2980 	if (h->shared_read_entry) {
2981 		INIT_LIST_HEAD(&work);
2982 		ds_dec(h->shared_read_entry, &work);
2983 
2984 		spin_lock_irqsave(&pool->lock, flags);
2985 		list_for_each_entry_safe(m, tmp, &work, list) {
2986 			list_del(&m->list);
2987 			m->quiesced = 1;
2988 			__maybe_add_mapping(m);
2989 		}
2990 		spin_unlock_irqrestore(&pool->lock, flags);
2991 	}
2992 
2993 	if (h->all_io_entry) {
2994 		INIT_LIST_HEAD(&work);
2995 		ds_dec(h->all_io_entry, &work);
2996 		spin_lock_irqsave(&pool->lock, flags);
2997 		list_for_each_entry_safe(m, tmp, &work, list)
2998 			list_add(&m->list, &pool->prepared_discards);
2999 		spin_unlock_irqrestore(&pool->lock, flags);
3000 	}
3001 
3002 	mempool_free(h, pool->endio_hook_pool);
3003 
3004 	return 0;
3005 }
3006 
3007 static void thin_postsuspend(struct dm_target *ti)
3008 {
3009 	if (dm_noflush_suspending(ti))
3010 		requeue_io((struct thin_c *)ti->private);
3011 }
3012 
3013 /*
3014  * <nr mapped sectors> <highest mapped sector>
3015  */
3016 static int thin_status(struct dm_target *ti, status_type_t type,
3017 		       unsigned status_flags, char *result, unsigned maxlen)
3018 {
3019 	int r;
3020 	ssize_t sz = 0;
3021 	dm_block_t mapped, highest;
3022 	char buf[BDEVNAME_SIZE];
3023 	struct thin_c *tc = ti->private;
3024 
3025 	if (get_pool_mode(tc->pool) == PM_FAIL) {
3026 		DMEMIT("Fail");
3027 		return 0;
3028 	}
3029 
3030 	if (!tc->td)
3031 		DMEMIT("-");
3032 	else {
3033 		switch (type) {
3034 		case STATUSTYPE_INFO:
3035 			r = dm_thin_get_mapped_count(tc->td, &mapped);
3036 			if (r)
3037 				return r;
3038 
3039 			r = dm_thin_get_highest_mapped_block(tc->td, &highest);
3040 			if (r < 0)
3041 				return r;
3042 
3043 			DMEMIT("%llu ", mapped * tc->pool->sectors_per_block);
3044 			if (r)
3045 				DMEMIT("%llu", ((highest + 1) *
3046 						tc->pool->sectors_per_block) - 1);
3047 			else
3048 				DMEMIT("-");
3049 			break;
3050 
3051 		case STATUSTYPE_TABLE:
3052 			DMEMIT("%s %lu",
3053 			       format_dev_t(buf, tc->pool_dev->bdev->bd_dev),
3054 			       (unsigned long) tc->dev_id);
3055 			if (tc->origin_dev)
3056 				DMEMIT(" %s", format_dev_t(buf, tc->origin_dev->bdev->bd_dev));
3057 			break;
3058 		}
3059 	}
3060 
3061 	return 0;
3062 }
3063 
3064 static int thin_iterate_devices(struct dm_target *ti,
3065 				iterate_devices_callout_fn fn, void *data)
3066 {
3067 	sector_t blocks;
3068 	struct thin_c *tc = ti->private;
3069 	struct pool *pool = tc->pool;
3070 
3071 	/*
3072 	 * We can't call dm_pool_get_data_dev_size() since that blocks.  So
3073 	 * we follow a more convoluted path through to the pool's target.
3074 	 */
3075 	if (!pool->ti)
3076 		return 0;	/* nothing is bound */
3077 
3078 	blocks = pool->ti->len;
3079 	(void) sector_div(blocks, pool->sectors_per_block);
3080 	if (blocks)
3081 		return fn(ti, tc->pool_dev, 0, pool->sectors_per_block * blocks, data);
3082 
3083 	return 0;
3084 }
3085 
3086 /*
3087  * A thin device always inherits its queue limits from its pool.
3088  */
3089 static void thin_io_hints(struct dm_target *ti, struct queue_limits *limits)
3090 {
3091 	struct thin_c *tc = ti->private;
3092 
3093 	*limits = bdev_get_queue(tc->pool_dev->bdev)->limits;
3094 }
3095 
3096 static struct target_type thin_target = {
3097 	.name = "thin",
3098 	.version = {1, 4, 0},
3099 	.module	= THIS_MODULE,
3100 	.ctr = thin_ctr,
3101 	.dtr = thin_dtr,
3102 	.map = thin_map,
3103 	.end_io = thin_endio,
3104 	.postsuspend = thin_postsuspend,
3105 	.status = thin_status,
3106 	.iterate_devices = thin_iterate_devices,
3107 	.io_hints = thin_io_hints,
3108 };
3109 
3110 /*----------------------------------------------------------------*/
3111 
3112 static int __init dm_thin_init(void)
3113 {
3114 	int r;
3115 
3116 	pool_table_init();
3117 
3118 	r = dm_register_target(&thin_target);
3119 	if (r)
3120 		return r;
3121 
3122 	r = dm_register_target(&pool_target);
3123 	if (r)
3124 		goto bad_pool_target;
3125 
3126 	r = -ENOMEM;
3127 
3128 	_cell_cache = KMEM_CACHE(dm_bio_prison_cell, 0);
3129 	if (!_cell_cache)
3130 		goto bad_cell_cache;
3131 
3132 	_new_mapping_cache = KMEM_CACHE(dm_thin_new_mapping, 0);
3133 	if (!_new_mapping_cache)
3134 		goto bad_new_mapping_cache;
3135 
3136 	_endio_hook_cache = KMEM_CACHE(dm_thin_endio_hook, 0);
3137 	if (!_endio_hook_cache)
3138 		goto bad_endio_hook_cache;
3139 
3140 	return 0;
3141 
3142 bad_endio_hook_cache:
3143 	kmem_cache_destroy(_new_mapping_cache);
3144 bad_new_mapping_cache:
3145 	kmem_cache_destroy(_cell_cache);
3146 bad_cell_cache:
3147 	dm_unregister_target(&pool_target);
3148 bad_pool_target:
3149 	dm_unregister_target(&thin_target);
3150 
3151 	return r;
3152 }
3153 
3154 static void dm_thin_exit(void)
3155 {
3156 	dm_unregister_target(&thin_target);
3157 	dm_unregister_target(&pool_target);
3158 
3159 	kmem_cache_destroy(_cell_cache);
3160 	kmem_cache_destroy(_new_mapping_cache);
3161 	kmem_cache_destroy(_endio_hook_cache);
3162 }
3163 
3164 module_init(dm_thin_init);
3165 module_exit(dm_thin_exit);
3166 
3167 MODULE_DESCRIPTION(DM_NAME " thin provisioning target");
3168 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
3169 MODULE_LICENSE("GPL");
3170