1 /* 2 * Copyright (C) 2011-2012 Red Hat UK. 3 * 4 * This file is released under the GPL. 5 */ 6 7 #include "dm-thin-metadata.h" 8 #include "dm-bio-prison.h" 9 #include "dm.h" 10 11 #include <linux/device-mapper.h> 12 #include <linux/dm-io.h> 13 #include <linux/dm-kcopyd.h> 14 #include <linux/list.h> 15 #include <linux/init.h> 16 #include <linux/module.h> 17 #include <linux/slab.h> 18 19 #define DM_MSG_PREFIX "thin" 20 21 /* 22 * Tunable constants 23 */ 24 #define ENDIO_HOOK_POOL_SIZE 1024 25 #define MAPPING_POOL_SIZE 1024 26 #define PRISON_CELLS 1024 27 #define COMMIT_PERIOD HZ 28 29 /* 30 * The block size of the device holding pool data must be 31 * between 64KB and 1GB. 32 */ 33 #define DATA_DEV_BLOCK_SIZE_MIN_SECTORS (64 * 1024 >> SECTOR_SHIFT) 34 #define DATA_DEV_BLOCK_SIZE_MAX_SECTORS (1024 * 1024 * 1024 >> SECTOR_SHIFT) 35 36 /* 37 * Device id is restricted to 24 bits. 38 */ 39 #define MAX_DEV_ID ((1 << 24) - 1) 40 41 /* 42 * How do we handle breaking sharing of data blocks? 43 * ================================================= 44 * 45 * We use a standard copy-on-write btree to store the mappings for the 46 * devices (note I'm talking about copy-on-write of the metadata here, not 47 * the data). When you take an internal snapshot you clone the root node 48 * of the origin btree. After this there is no concept of an origin or a 49 * snapshot. They are just two device trees that happen to point to the 50 * same data blocks. 51 * 52 * When we get a write in we decide if it's to a shared data block using 53 * some timestamp magic. If it is, we have to break sharing. 54 * 55 * Let's say we write to a shared block in what was the origin. The 56 * steps are: 57 * 58 * i) plug io further to this physical block. (see bio_prison code). 59 * 60 * ii) quiesce any read io to that shared data block. Obviously 61 * including all devices that share this block. (see dm_deferred_set code) 62 * 63 * iii) copy the data block to a newly allocate block. This step can be 64 * missed out if the io covers the block. (schedule_copy). 65 * 66 * iv) insert the new mapping into the origin's btree 67 * (process_prepared_mapping). This act of inserting breaks some 68 * sharing of btree nodes between the two devices. Breaking sharing only 69 * effects the btree of that specific device. Btrees for the other 70 * devices that share the block never change. The btree for the origin 71 * device as it was after the last commit is untouched, ie. we're using 72 * persistent data structures in the functional programming sense. 73 * 74 * v) unplug io to this physical block, including the io that triggered 75 * the breaking of sharing. 76 * 77 * Steps (ii) and (iii) occur in parallel. 78 * 79 * The metadata _doesn't_ need to be committed before the io continues. We 80 * get away with this because the io is always written to a _new_ block. 81 * If there's a crash, then: 82 * 83 * - The origin mapping will point to the old origin block (the shared 84 * one). This will contain the data as it was before the io that triggered 85 * the breaking of sharing came in. 86 * 87 * - The snap mapping still points to the old block. As it would after 88 * the commit. 89 * 90 * The downside of this scheme is the timestamp magic isn't perfect, and 91 * will continue to think that data block in the snapshot device is shared 92 * even after the write to the origin has broken sharing. I suspect data 93 * blocks will typically be shared by many different devices, so we're 94 * breaking sharing n + 1 times, rather than n, where n is the number of 95 * devices that reference this data block. At the moment I think the 96 * benefits far, far outweigh the disadvantages. 97 */ 98 99 /*----------------------------------------------------------------*/ 100 101 /* 102 * Key building. 103 */ 104 static void build_data_key(struct dm_thin_device *td, 105 dm_block_t b, struct dm_cell_key *key) 106 { 107 key->virtual = 0; 108 key->dev = dm_thin_dev_id(td); 109 key->block = b; 110 } 111 112 static void build_virtual_key(struct dm_thin_device *td, dm_block_t b, 113 struct dm_cell_key *key) 114 { 115 key->virtual = 1; 116 key->dev = dm_thin_dev_id(td); 117 key->block = b; 118 } 119 120 /*----------------------------------------------------------------*/ 121 122 /* 123 * A pool device ties together a metadata device and a data device. It 124 * also provides the interface for creating and destroying internal 125 * devices. 126 */ 127 struct dm_thin_new_mapping; 128 129 /* 130 * The pool runs in 3 modes. Ordered in degraded order for comparisons. 131 */ 132 enum pool_mode { 133 PM_WRITE, /* metadata may be changed */ 134 PM_READ_ONLY, /* metadata may not be changed */ 135 PM_FAIL, /* all I/O fails */ 136 }; 137 138 struct pool_features { 139 enum pool_mode mode; 140 141 bool zero_new_blocks:1; 142 bool discard_enabled:1; 143 bool discard_passdown:1; 144 }; 145 146 struct thin_c; 147 typedef void (*process_bio_fn)(struct thin_c *tc, struct bio *bio); 148 typedef void (*process_mapping_fn)(struct dm_thin_new_mapping *m); 149 150 struct pool { 151 struct list_head list; 152 struct dm_target *ti; /* Only set if a pool target is bound */ 153 154 struct mapped_device *pool_md; 155 struct block_device *md_dev; 156 struct dm_pool_metadata *pmd; 157 158 dm_block_t low_water_blocks; 159 uint32_t sectors_per_block; 160 int sectors_per_block_shift; 161 162 struct pool_features pf; 163 unsigned low_water_triggered:1; /* A dm event has been sent */ 164 unsigned no_free_space:1; /* A -ENOSPC warning has been issued */ 165 166 struct dm_bio_prison *prison; 167 struct dm_kcopyd_client *copier; 168 169 struct workqueue_struct *wq; 170 struct work_struct worker; 171 struct delayed_work waker; 172 173 unsigned long last_commit_jiffies; 174 unsigned ref_count; 175 176 spinlock_t lock; 177 struct bio_list deferred_bios; 178 struct bio_list deferred_flush_bios; 179 struct list_head prepared_mappings; 180 struct list_head prepared_discards; 181 182 struct bio_list retry_on_resume_list; 183 184 struct dm_deferred_set *shared_read_ds; 185 struct dm_deferred_set *all_io_ds; 186 187 struct dm_thin_new_mapping *next_mapping; 188 mempool_t *mapping_pool; 189 190 process_bio_fn process_bio; 191 process_bio_fn process_discard; 192 193 process_mapping_fn process_prepared_mapping; 194 process_mapping_fn process_prepared_discard; 195 }; 196 197 static enum pool_mode get_pool_mode(struct pool *pool); 198 static void set_pool_mode(struct pool *pool, enum pool_mode mode); 199 200 /* 201 * Target context for a pool. 202 */ 203 struct pool_c { 204 struct dm_target *ti; 205 struct pool *pool; 206 struct dm_dev *data_dev; 207 struct dm_dev *metadata_dev; 208 struct dm_target_callbacks callbacks; 209 210 dm_block_t low_water_blocks; 211 struct pool_features requested_pf; /* Features requested during table load */ 212 struct pool_features adjusted_pf; /* Features used after adjusting for constituent devices */ 213 }; 214 215 /* 216 * Target context for a thin. 217 */ 218 struct thin_c { 219 struct dm_dev *pool_dev; 220 struct dm_dev *origin_dev; 221 dm_thin_id dev_id; 222 223 struct pool *pool; 224 struct dm_thin_device *td; 225 }; 226 227 /*----------------------------------------------------------------*/ 228 229 /* 230 * A global list of pools that uses a struct mapped_device as a key. 231 */ 232 static struct dm_thin_pool_table { 233 struct mutex mutex; 234 struct list_head pools; 235 } dm_thin_pool_table; 236 237 static void pool_table_init(void) 238 { 239 mutex_init(&dm_thin_pool_table.mutex); 240 INIT_LIST_HEAD(&dm_thin_pool_table.pools); 241 } 242 243 static void __pool_table_insert(struct pool *pool) 244 { 245 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex)); 246 list_add(&pool->list, &dm_thin_pool_table.pools); 247 } 248 249 static void __pool_table_remove(struct pool *pool) 250 { 251 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex)); 252 list_del(&pool->list); 253 } 254 255 static struct pool *__pool_table_lookup(struct mapped_device *md) 256 { 257 struct pool *pool = NULL, *tmp; 258 259 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex)); 260 261 list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) { 262 if (tmp->pool_md == md) { 263 pool = tmp; 264 break; 265 } 266 } 267 268 return pool; 269 } 270 271 static struct pool *__pool_table_lookup_metadata_dev(struct block_device *md_dev) 272 { 273 struct pool *pool = NULL, *tmp; 274 275 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex)); 276 277 list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) { 278 if (tmp->md_dev == md_dev) { 279 pool = tmp; 280 break; 281 } 282 } 283 284 return pool; 285 } 286 287 /*----------------------------------------------------------------*/ 288 289 struct dm_thin_endio_hook { 290 struct thin_c *tc; 291 struct dm_deferred_entry *shared_read_entry; 292 struct dm_deferred_entry *all_io_entry; 293 struct dm_thin_new_mapping *overwrite_mapping; 294 }; 295 296 static void __requeue_bio_list(struct thin_c *tc, struct bio_list *master) 297 { 298 struct bio *bio; 299 struct bio_list bios; 300 301 bio_list_init(&bios); 302 bio_list_merge(&bios, master); 303 bio_list_init(master); 304 305 while ((bio = bio_list_pop(&bios))) { 306 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook)); 307 308 if (h->tc == tc) 309 bio_endio(bio, DM_ENDIO_REQUEUE); 310 else 311 bio_list_add(master, bio); 312 } 313 } 314 315 static void requeue_io(struct thin_c *tc) 316 { 317 struct pool *pool = tc->pool; 318 unsigned long flags; 319 320 spin_lock_irqsave(&pool->lock, flags); 321 __requeue_bio_list(tc, &pool->deferred_bios); 322 __requeue_bio_list(tc, &pool->retry_on_resume_list); 323 spin_unlock_irqrestore(&pool->lock, flags); 324 } 325 326 /* 327 * This section of code contains the logic for processing a thin device's IO. 328 * Much of the code depends on pool object resources (lists, workqueues, etc) 329 * but most is exclusively called from the thin target rather than the thin-pool 330 * target. 331 */ 332 333 static dm_block_t get_bio_block(struct thin_c *tc, struct bio *bio) 334 { 335 sector_t block_nr = bio->bi_sector; 336 337 if (tc->pool->sectors_per_block_shift < 0) 338 (void) sector_div(block_nr, tc->pool->sectors_per_block); 339 else 340 block_nr >>= tc->pool->sectors_per_block_shift; 341 342 return block_nr; 343 } 344 345 static void remap(struct thin_c *tc, struct bio *bio, dm_block_t block) 346 { 347 struct pool *pool = tc->pool; 348 sector_t bi_sector = bio->bi_sector; 349 350 bio->bi_bdev = tc->pool_dev->bdev; 351 if (tc->pool->sectors_per_block_shift < 0) 352 bio->bi_sector = (block * pool->sectors_per_block) + 353 sector_div(bi_sector, pool->sectors_per_block); 354 else 355 bio->bi_sector = (block << pool->sectors_per_block_shift) | 356 (bi_sector & (pool->sectors_per_block - 1)); 357 } 358 359 static void remap_to_origin(struct thin_c *tc, struct bio *bio) 360 { 361 bio->bi_bdev = tc->origin_dev->bdev; 362 } 363 364 static int bio_triggers_commit(struct thin_c *tc, struct bio *bio) 365 { 366 return (bio->bi_rw & (REQ_FLUSH | REQ_FUA)) && 367 dm_thin_changed_this_transaction(tc->td); 368 } 369 370 static void inc_all_io_entry(struct pool *pool, struct bio *bio) 371 { 372 struct dm_thin_endio_hook *h; 373 374 if (bio->bi_rw & REQ_DISCARD) 375 return; 376 377 h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook)); 378 h->all_io_entry = dm_deferred_entry_inc(pool->all_io_ds); 379 } 380 381 static void issue(struct thin_c *tc, struct bio *bio) 382 { 383 struct pool *pool = tc->pool; 384 unsigned long flags; 385 386 if (!bio_triggers_commit(tc, bio)) { 387 generic_make_request(bio); 388 return; 389 } 390 391 /* 392 * Complete bio with an error if earlier I/O caused changes to 393 * the metadata that can't be committed e.g, due to I/O errors 394 * on the metadata device. 395 */ 396 if (dm_thin_aborted_changes(tc->td)) { 397 bio_io_error(bio); 398 return; 399 } 400 401 /* 402 * Batch together any bios that trigger commits and then issue a 403 * single commit for them in process_deferred_bios(). 404 */ 405 spin_lock_irqsave(&pool->lock, flags); 406 bio_list_add(&pool->deferred_flush_bios, bio); 407 spin_unlock_irqrestore(&pool->lock, flags); 408 } 409 410 static void remap_to_origin_and_issue(struct thin_c *tc, struct bio *bio) 411 { 412 remap_to_origin(tc, bio); 413 issue(tc, bio); 414 } 415 416 static void remap_and_issue(struct thin_c *tc, struct bio *bio, 417 dm_block_t block) 418 { 419 remap(tc, bio, block); 420 issue(tc, bio); 421 } 422 423 /* 424 * wake_worker() is used when new work is queued and when pool_resume is 425 * ready to continue deferred IO processing. 426 */ 427 static void wake_worker(struct pool *pool) 428 { 429 queue_work(pool->wq, &pool->worker); 430 } 431 432 /*----------------------------------------------------------------*/ 433 434 /* 435 * Bio endio functions. 436 */ 437 struct dm_thin_new_mapping { 438 struct list_head list; 439 440 unsigned quiesced:1; 441 unsigned prepared:1; 442 unsigned pass_discard:1; 443 444 struct thin_c *tc; 445 dm_block_t virt_block; 446 dm_block_t data_block; 447 struct dm_bio_prison_cell *cell, *cell2; 448 int err; 449 450 /* 451 * If the bio covers the whole area of a block then we can avoid 452 * zeroing or copying. Instead this bio is hooked. The bio will 453 * still be in the cell, so care has to be taken to avoid issuing 454 * the bio twice. 455 */ 456 struct bio *bio; 457 bio_end_io_t *saved_bi_end_io; 458 }; 459 460 static void __maybe_add_mapping(struct dm_thin_new_mapping *m) 461 { 462 struct pool *pool = m->tc->pool; 463 464 if (m->quiesced && m->prepared) { 465 list_add(&m->list, &pool->prepared_mappings); 466 wake_worker(pool); 467 } 468 } 469 470 static void copy_complete(int read_err, unsigned long write_err, void *context) 471 { 472 unsigned long flags; 473 struct dm_thin_new_mapping *m = context; 474 struct pool *pool = m->tc->pool; 475 476 m->err = read_err || write_err ? -EIO : 0; 477 478 spin_lock_irqsave(&pool->lock, flags); 479 m->prepared = 1; 480 __maybe_add_mapping(m); 481 spin_unlock_irqrestore(&pool->lock, flags); 482 } 483 484 static void overwrite_endio(struct bio *bio, int err) 485 { 486 unsigned long flags; 487 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook)); 488 struct dm_thin_new_mapping *m = h->overwrite_mapping; 489 struct pool *pool = m->tc->pool; 490 491 m->err = err; 492 493 spin_lock_irqsave(&pool->lock, flags); 494 m->prepared = 1; 495 __maybe_add_mapping(m); 496 spin_unlock_irqrestore(&pool->lock, flags); 497 } 498 499 /*----------------------------------------------------------------*/ 500 501 /* 502 * Workqueue. 503 */ 504 505 /* 506 * Prepared mapping jobs. 507 */ 508 509 /* 510 * This sends the bios in the cell back to the deferred_bios list. 511 */ 512 static void cell_defer(struct thin_c *tc, struct dm_bio_prison_cell *cell) 513 { 514 struct pool *pool = tc->pool; 515 unsigned long flags; 516 517 spin_lock_irqsave(&pool->lock, flags); 518 dm_cell_release(cell, &pool->deferred_bios); 519 spin_unlock_irqrestore(&tc->pool->lock, flags); 520 521 wake_worker(pool); 522 } 523 524 /* 525 * Same as cell_defer except it omits the original holder of the cell. 526 */ 527 static void cell_defer_no_holder(struct thin_c *tc, struct dm_bio_prison_cell *cell) 528 { 529 struct pool *pool = tc->pool; 530 unsigned long flags; 531 532 spin_lock_irqsave(&pool->lock, flags); 533 dm_cell_release_no_holder(cell, &pool->deferred_bios); 534 spin_unlock_irqrestore(&pool->lock, flags); 535 536 wake_worker(pool); 537 } 538 539 static void process_prepared_mapping_fail(struct dm_thin_new_mapping *m) 540 { 541 if (m->bio) 542 m->bio->bi_end_io = m->saved_bi_end_io; 543 dm_cell_error(m->cell); 544 list_del(&m->list); 545 mempool_free(m, m->tc->pool->mapping_pool); 546 } 547 static void process_prepared_mapping(struct dm_thin_new_mapping *m) 548 { 549 struct thin_c *tc = m->tc; 550 struct bio *bio; 551 int r; 552 553 bio = m->bio; 554 if (bio) 555 bio->bi_end_io = m->saved_bi_end_io; 556 557 if (m->err) { 558 dm_cell_error(m->cell); 559 goto out; 560 } 561 562 /* 563 * Commit the prepared block into the mapping btree. 564 * Any I/O for this block arriving after this point will get 565 * remapped to it directly. 566 */ 567 r = dm_thin_insert_block(tc->td, m->virt_block, m->data_block); 568 if (r) { 569 DMERR_LIMIT("dm_thin_insert_block() failed"); 570 dm_cell_error(m->cell); 571 goto out; 572 } 573 574 /* 575 * Release any bios held while the block was being provisioned. 576 * If we are processing a write bio that completely covers the block, 577 * we already processed it so can ignore it now when processing 578 * the bios in the cell. 579 */ 580 if (bio) { 581 cell_defer_no_holder(tc, m->cell); 582 bio_endio(bio, 0); 583 } else 584 cell_defer(tc, m->cell); 585 586 out: 587 list_del(&m->list); 588 mempool_free(m, tc->pool->mapping_pool); 589 } 590 591 static void process_prepared_discard_fail(struct dm_thin_new_mapping *m) 592 { 593 struct thin_c *tc = m->tc; 594 595 bio_io_error(m->bio); 596 cell_defer_no_holder(tc, m->cell); 597 cell_defer_no_holder(tc, m->cell2); 598 mempool_free(m, tc->pool->mapping_pool); 599 } 600 601 static void process_prepared_discard_passdown(struct dm_thin_new_mapping *m) 602 { 603 struct thin_c *tc = m->tc; 604 605 inc_all_io_entry(tc->pool, m->bio); 606 cell_defer_no_holder(tc, m->cell); 607 cell_defer_no_holder(tc, m->cell2); 608 609 if (m->pass_discard) 610 remap_and_issue(tc, m->bio, m->data_block); 611 else 612 bio_endio(m->bio, 0); 613 614 mempool_free(m, tc->pool->mapping_pool); 615 } 616 617 static void process_prepared_discard(struct dm_thin_new_mapping *m) 618 { 619 int r; 620 struct thin_c *tc = m->tc; 621 622 r = dm_thin_remove_block(tc->td, m->virt_block); 623 if (r) 624 DMERR_LIMIT("dm_thin_remove_block() failed"); 625 626 process_prepared_discard_passdown(m); 627 } 628 629 static void process_prepared(struct pool *pool, struct list_head *head, 630 process_mapping_fn *fn) 631 { 632 unsigned long flags; 633 struct list_head maps; 634 struct dm_thin_new_mapping *m, *tmp; 635 636 INIT_LIST_HEAD(&maps); 637 spin_lock_irqsave(&pool->lock, flags); 638 list_splice_init(head, &maps); 639 spin_unlock_irqrestore(&pool->lock, flags); 640 641 list_for_each_entry_safe(m, tmp, &maps, list) 642 (*fn)(m); 643 } 644 645 /* 646 * Deferred bio jobs. 647 */ 648 static int io_overlaps_block(struct pool *pool, struct bio *bio) 649 { 650 return bio->bi_size == (pool->sectors_per_block << SECTOR_SHIFT); 651 } 652 653 static int io_overwrites_block(struct pool *pool, struct bio *bio) 654 { 655 return (bio_data_dir(bio) == WRITE) && 656 io_overlaps_block(pool, bio); 657 } 658 659 static void save_and_set_endio(struct bio *bio, bio_end_io_t **save, 660 bio_end_io_t *fn) 661 { 662 *save = bio->bi_end_io; 663 bio->bi_end_io = fn; 664 } 665 666 static int ensure_next_mapping(struct pool *pool) 667 { 668 if (pool->next_mapping) 669 return 0; 670 671 pool->next_mapping = mempool_alloc(pool->mapping_pool, GFP_ATOMIC); 672 673 return pool->next_mapping ? 0 : -ENOMEM; 674 } 675 676 static struct dm_thin_new_mapping *get_next_mapping(struct pool *pool) 677 { 678 struct dm_thin_new_mapping *r = pool->next_mapping; 679 680 BUG_ON(!pool->next_mapping); 681 682 pool->next_mapping = NULL; 683 684 return r; 685 } 686 687 static void schedule_copy(struct thin_c *tc, dm_block_t virt_block, 688 struct dm_dev *origin, dm_block_t data_origin, 689 dm_block_t data_dest, 690 struct dm_bio_prison_cell *cell, struct bio *bio) 691 { 692 int r; 693 struct pool *pool = tc->pool; 694 struct dm_thin_new_mapping *m = get_next_mapping(pool); 695 696 INIT_LIST_HEAD(&m->list); 697 m->quiesced = 0; 698 m->prepared = 0; 699 m->tc = tc; 700 m->virt_block = virt_block; 701 m->data_block = data_dest; 702 m->cell = cell; 703 m->err = 0; 704 m->bio = NULL; 705 706 if (!dm_deferred_set_add_work(pool->shared_read_ds, &m->list)) 707 m->quiesced = 1; 708 709 /* 710 * IO to pool_dev remaps to the pool target's data_dev. 711 * 712 * If the whole block of data is being overwritten, we can issue the 713 * bio immediately. Otherwise we use kcopyd to clone the data first. 714 */ 715 if (io_overwrites_block(pool, bio)) { 716 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook)); 717 718 h->overwrite_mapping = m; 719 m->bio = bio; 720 save_and_set_endio(bio, &m->saved_bi_end_io, overwrite_endio); 721 inc_all_io_entry(pool, bio); 722 remap_and_issue(tc, bio, data_dest); 723 } else { 724 struct dm_io_region from, to; 725 726 from.bdev = origin->bdev; 727 from.sector = data_origin * pool->sectors_per_block; 728 from.count = pool->sectors_per_block; 729 730 to.bdev = tc->pool_dev->bdev; 731 to.sector = data_dest * pool->sectors_per_block; 732 to.count = pool->sectors_per_block; 733 734 r = dm_kcopyd_copy(pool->copier, &from, 1, &to, 735 0, copy_complete, m); 736 if (r < 0) { 737 mempool_free(m, pool->mapping_pool); 738 DMERR_LIMIT("dm_kcopyd_copy() failed"); 739 dm_cell_error(cell); 740 } 741 } 742 } 743 744 static void schedule_internal_copy(struct thin_c *tc, dm_block_t virt_block, 745 dm_block_t data_origin, dm_block_t data_dest, 746 struct dm_bio_prison_cell *cell, struct bio *bio) 747 { 748 schedule_copy(tc, virt_block, tc->pool_dev, 749 data_origin, data_dest, cell, bio); 750 } 751 752 static void schedule_external_copy(struct thin_c *tc, dm_block_t virt_block, 753 dm_block_t data_dest, 754 struct dm_bio_prison_cell *cell, struct bio *bio) 755 { 756 schedule_copy(tc, virt_block, tc->origin_dev, 757 virt_block, data_dest, cell, bio); 758 } 759 760 static void schedule_zero(struct thin_c *tc, dm_block_t virt_block, 761 dm_block_t data_block, struct dm_bio_prison_cell *cell, 762 struct bio *bio) 763 { 764 struct pool *pool = tc->pool; 765 struct dm_thin_new_mapping *m = get_next_mapping(pool); 766 767 INIT_LIST_HEAD(&m->list); 768 m->quiesced = 1; 769 m->prepared = 0; 770 m->tc = tc; 771 m->virt_block = virt_block; 772 m->data_block = data_block; 773 m->cell = cell; 774 m->err = 0; 775 m->bio = NULL; 776 777 /* 778 * If the whole block of data is being overwritten or we are not 779 * zeroing pre-existing data, we can issue the bio immediately. 780 * Otherwise we use kcopyd to zero the data first. 781 */ 782 if (!pool->pf.zero_new_blocks) 783 process_prepared_mapping(m); 784 785 else if (io_overwrites_block(pool, bio)) { 786 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook)); 787 788 h->overwrite_mapping = m; 789 m->bio = bio; 790 save_and_set_endio(bio, &m->saved_bi_end_io, overwrite_endio); 791 inc_all_io_entry(pool, bio); 792 remap_and_issue(tc, bio, data_block); 793 } else { 794 int r; 795 struct dm_io_region to; 796 797 to.bdev = tc->pool_dev->bdev; 798 to.sector = data_block * pool->sectors_per_block; 799 to.count = pool->sectors_per_block; 800 801 r = dm_kcopyd_zero(pool->copier, 1, &to, 0, copy_complete, m); 802 if (r < 0) { 803 mempool_free(m, pool->mapping_pool); 804 DMERR_LIMIT("dm_kcopyd_zero() failed"); 805 dm_cell_error(cell); 806 } 807 } 808 } 809 810 static int commit(struct pool *pool) 811 { 812 int r; 813 814 r = dm_pool_commit_metadata(pool->pmd); 815 if (r) 816 DMERR_LIMIT("commit failed: error = %d", r); 817 818 return r; 819 } 820 821 /* 822 * A non-zero return indicates read_only or fail_io mode. 823 * Many callers don't care about the return value. 824 */ 825 static int commit_or_fallback(struct pool *pool) 826 { 827 int r; 828 829 if (get_pool_mode(pool) != PM_WRITE) 830 return -EINVAL; 831 832 r = commit(pool); 833 if (r) 834 set_pool_mode(pool, PM_READ_ONLY); 835 836 return r; 837 } 838 839 static int alloc_data_block(struct thin_c *tc, dm_block_t *result) 840 { 841 int r; 842 dm_block_t free_blocks; 843 unsigned long flags; 844 struct pool *pool = tc->pool; 845 846 r = dm_pool_get_free_block_count(pool->pmd, &free_blocks); 847 if (r) 848 return r; 849 850 if (free_blocks <= pool->low_water_blocks && !pool->low_water_triggered) { 851 DMWARN("%s: reached low water mark, sending event.", 852 dm_device_name(pool->pool_md)); 853 spin_lock_irqsave(&pool->lock, flags); 854 pool->low_water_triggered = 1; 855 spin_unlock_irqrestore(&pool->lock, flags); 856 dm_table_event(pool->ti->table); 857 } 858 859 if (!free_blocks) { 860 if (pool->no_free_space) 861 return -ENOSPC; 862 else { 863 /* 864 * Try to commit to see if that will free up some 865 * more space. 866 */ 867 (void) commit_or_fallback(pool); 868 869 r = dm_pool_get_free_block_count(pool->pmd, &free_blocks); 870 if (r) 871 return r; 872 873 /* 874 * If we still have no space we set a flag to avoid 875 * doing all this checking and return -ENOSPC. 876 */ 877 if (!free_blocks) { 878 DMWARN("%s: no free space available.", 879 dm_device_name(pool->pool_md)); 880 spin_lock_irqsave(&pool->lock, flags); 881 pool->no_free_space = 1; 882 spin_unlock_irqrestore(&pool->lock, flags); 883 return -ENOSPC; 884 } 885 } 886 } 887 888 r = dm_pool_alloc_data_block(pool->pmd, result); 889 if (r) 890 return r; 891 892 return 0; 893 } 894 895 /* 896 * If we have run out of space, queue bios until the device is 897 * resumed, presumably after having been reloaded with more space. 898 */ 899 static void retry_on_resume(struct bio *bio) 900 { 901 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook)); 902 struct thin_c *tc = h->tc; 903 struct pool *pool = tc->pool; 904 unsigned long flags; 905 906 spin_lock_irqsave(&pool->lock, flags); 907 bio_list_add(&pool->retry_on_resume_list, bio); 908 spin_unlock_irqrestore(&pool->lock, flags); 909 } 910 911 static void no_space(struct dm_bio_prison_cell *cell) 912 { 913 struct bio *bio; 914 struct bio_list bios; 915 916 bio_list_init(&bios); 917 dm_cell_release(cell, &bios); 918 919 while ((bio = bio_list_pop(&bios))) 920 retry_on_resume(bio); 921 } 922 923 static void process_discard(struct thin_c *tc, struct bio *bio) 924 { 925 int r; 926 unsigned long flags; 927 struct pool *pool = tc->pool; 928 struct dm_bio_prison_cell *cell, *cell2; 929 struct dm_cell_key key, key2; 930 dm_block_t block = get_bio_block(tc, bio); 931 struct dm_thin_lookup_result lookup_result; 932 struct dm_thin_new_mapping *m; 933 934 build_virtual_key(tc->td, block, &key); 935 if (dm_bio_detain(tc->pool->prison, &key, bio, &cell)) 936 return; 937 938 r = dm_thin_find_block(tc->td, block, 1, &lookup_result); 939 switch (r) { 940 case 0: 941 /* 942 * Check nobody is fiddling with this pool block. This can 943 * happen if someone's in the process of breaking sharing 944 * on this block. 945 */ 946 build_data_key(tc->td, lookup_result.block, &key2); 947 if (dm_bio_detain(tc->pool->prison, &key2, bio, &cell2)) { 948 cell_defer_no_holder(tc, cell); 949 break; 950 } 951 952 if (io_overlaps_block(pool, bio)) { 953 /* 954 * IO may still be going to the destination block. We must 955 * quiesce before we can do the removal. 956 */ 957 m = get_next_mapping(pool); 958 m->tc = tc; 959 m->pass_discard = (!lookup_result.shared) && pool->pf.discard_passdown; 960 m->virt_block = block; 961 m->data_block = lookup_result.block; 962 m->cell = cell; 963 m->cell2 = cell2; 964 m->err = 0; 965 m->bio = bio; 966 967 if (!dm_deferred_set_add_work(pool->all_io_ds, &m->list)) { 968 spin_lock_irqsave(&pool->lock, flags); 969 list_add(&m->list, &pool->prepared_discards); 970 spin_unlock_irqrestore(&pool->lock, flags); 971 wake_worker(pool); 972 } 973 } else { 974 inc_all_io_entry(pool, bio); 975 cell_defer_no_holder(tc, cell); 976 cell_defer_no_holder(tc, cell2); 977 978 /* 979 * The DM core makes sure that the discard doesn't span 980 * a block boundary. So we submit the discard of a 981 * partial block appropriately. 982 */ 983 if ((!lookup_result.shared) && pool->pf.discard_passdown) 984 remap_and_issue(tc, bio, lookup_result.block); 985 else 986 bio_endio(bio, 0); 987 } 988 break; 989 990 case -ENODATA: 991 /* 992 * It isn't provisioned, just forget it. 993 */ 994 cell_defer_no_holder(tc, cell); 995 bio_endio(bio, 0); 996 break; 997 998 default: 999 DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d", 1000 __func__, r); 1001 cell_defer_no_holder(tc, cell); 1002 bio_io_error(bio); 1003 break; 1004 } 1005 } 1006 1007 static void break_sharing(struct thin_c *tc, struct bio *bio, dm_block_t block, 1008 struct dm_cell_key *key, 1009 struct dm_thin_lookup_result *lookup_result, 1010 struct dm_bio_prison_cell *cell) 1011 { 1012 int r; 1013 dm_block_t data_block; 1014 1015 r = alloc_data_block(tc, &data_block); 1016 switch (r) { 1017 case 0: 1018 schedule_internal_copy(tc, block, lookup_result->block, 1019 data_block, cell, bio); 1020 break; 1021 1022 case -ENOSPC: 1023 no_space(cell); 1024 break; 1025 1026 default: 1027 DMERR_LIMIT("%s: alloc_data_block() failed: error = %d", 1028 __func__, r); 1029 dm_cell_error(cell); 1030 break; 1031 } 1032 } 1033 1034 static void process_shared_bio(struct thin_c *tc, struct bio *bio, 1035 dm_block_t block, 1036 struct dm_thin_lookup_result *lookup_result) 1037 { 1038 struct dm_bio_prison_cell *cell; 1039 struct pool *pool = tc->pool; 1040 struct dm_cell_key key; 1041 1042 /* 1043 * If cell is already occupied, then sharing is already in the process 1044 * of being broken so we have nothing further to do here. 1045 */ 1046 build_data_key(tc->td, lookup_result->block, &key); 1047 if (dm_bio_detain(pool->prison, &key, bio, &cell)) 1048 return; 1049 1050 if (bio_data_dir(bio) == WRITE && bio->bi_size) 1051 break_sharing(tc, bio, block, &key, lookup_result, cell); 1052 else { 1053 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook)); 1054 1055 h->shared_read_entry = dm_deferred_entry_inc(pool->shared_read_ds); 1056 inc_all_io_entry(pool, bio); 1057 cell_defer_no_holder(tc, cell); 1058 1059 remap_and_issue(tc, bio, lookup_result->block); 1060 } 1061 } 1062 1063 static void provision_block(struct thin_c *tc, struct bio *bio, dm_block_t block, 1064 struct dm_bio_prison_cell *cell) 1065 { 1066 int r; 1067 dm_block_t data_block; 1068 1069 /* 1070 * Remap empty bios (flushes) immediately, without provisioning. 1071 */ 1072 if (!bio->bi_size) { 1073 inc_all_io_entry(tc->pool, bio); 1074 cell_defer_no_holder(tc, cell); 1075 1076 remap_and_issue(tc, bio, 0); 1077 return; 1078 } 1079 1080 /* 1081 * Fill read bios with zeroes and complete them immediately. 1082 */ 1083 if (bio_data_dir(bio) == READ) { 1084 zero_fill_bio(bio); 1085 cell_defer_no_holder(tc, cell); 1086 bio_endio(bio, 0); 1087 return; 1088 } 1089 1090 r = alloc_data_block(tc, &data_block); 1091 switch (r) { 1092 case 0: 1093 if (tc->origin_dev) 1094 schedule_external_copy(tc, block, data_block, cell, bio); 1095 else 1096 schedule_zero(tc, block, data_block, cell, bio); 1097 break; 1098 1099 case -ENOSPC: 1100 no_space(cell); 1101 break; 1102 1103 default: 1104 DMERR_LIMIT("%s: alloc_data_block() failed: error = %d", 1105 __func__, r); 1106 set_pool_mode(tc->pool, PM_READ_ONLY); 1107 dm_cell_error(cell); 1108 break; 1109 } 1110 } 1111 1112 static void process_bio(struct thin_c *tc, struct bio *bio) 1113 { 1114 int r; 1115 dm_block_t block = get_bio_block(tc, bio); 1116 struct dm_bio_prison_cell *cell; 1117 struct dm_cell_key key; 1118 struct dm_thin_lookup_result lookup_result; 1119 1120 /* 1121 * If cell is already occupied, then the block is already 1122 * being provisioned so we have nothing further to do here. 1123 */ 1124 build_virtual_key(tc->td, block, &key); 1125 if (dm_bio_detain(tc->pool->prison, &key, bio, &cell)) 1126 return; 1127 1128 r = dm_thin_find_block(tc->td, block, 1, &lookup_result); 1129 switch (r) { 1130 case 0: 1131 if (lookup_result.shared) { 1132 process_shared_bio(tc, bio, block, &lookup_result); 1133 cell_defer_no_holder(tc, cell); 1134 } else { 1135 inc_all_io_entry(tc->pool, bio); 1136 cell_defer_no_holder(tc, cell); 1137 1138 remap_and_issue(tc, bio, lookup_result.block); 1139 } 1140 break; 1141 1142 case -ENODATA: 1143 if (bio_data_dir(bio) == READ && tc->origin_dev) { 1144 inc_all_io_entry(tc->pool, bio); 1145 cell_defer_no_holder(tc, cell); 1146 1147 remap_to_origin_and_issue(tc, bio); 1148 } else 1149 provision_block(tc, bio, block, cell); 1150 break; 1151 1152 default: 1153 DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d", 1154 __func__, r); 1155 cell_defer_no_holder(tc, cell); 1156 bio_io_error(bio); 1157 break; 1158 } 1159 } 1160 1161 static void process_bio_read_only(struct thin_c *tc, struct bio *bio) 1162 { 1163 int r; 1164 int rw = bio_data_dir(bio); 1165 dm_block_t block = get_bio_block(tc, bio); 1166 struct dm_thin_lookup_result lookup_result; 1167 1168 r = dm_thin_find_block(tc->td, block, 1, &lookup_result); 1169 switch (r) { 1170 case 0: 1171 if (lookup_result.shared && (rw == WRITE) && bio->bi_size) 1172 bio_io_error(bio); 1173 else { 1174 inc_all_io_entry(tc->pool, bio); 1175 remap_and_issue(tc, bio, lookup_result.block); 1176 } 1177 break; 1178 1179 case -ENODATA: 1180 if (rw != READ) { 1181 bio_io_error(bio); 1182 break; 1183 } 1184 1185 if (tc->origin_dev) { 1186 inc_all_io_entry(tc->pool, bio); 1187 remap_to_origin_and_issue(tc, bio); 1188 break; 1189 } 1190 1191 zero_fill_bio(bio); 1192 bio_endio(bio, 0); 1193 break; 1194 1195 default: 1196 DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d", 1197 __func__, r); 1198 bio_io_error(bio); 1199 break; 1200 } 1201 } 1202 1203 static void process_bio_fail(struct thin_c *tc, struct bio *bio) 1204 { 1205 bio_io_error(bio); 1206 } 1207 1208 static int need_commit_due_to_time(struct pool *pool) 1209 { 1210 return jiffies < pool->last_commit_jiffies || 1211 jiffies > pool->last_commit_jiffies + COMMIT_PERIOD; 1212 } 1213 1214 static void process_deferred_bios(struct pool *pool) 1215 { 1216 unsigned long flags; 1217 struct bio *bio; 1218 struct bio_list bios; 1219 1220 bio_list_init(&bios); 1221 1222 spin_lock_irqsave(&pool->lock, flags); 1223 bio_list_merge(&bios, &pool->deferred_bios); 1224 bio_list_init(&pool->deferred_bios); 1225 spin_unlock_irqrestore(&pool->lock, flags); 1226 1227 while ((bio = bio_list_pop(&bios))) { 1228 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook)); 1229 struct thin_c *tc = h->tc; 1230 1231 /* 1232 * If we've got no free new_mapping structs, and processing 1233 * this bio might require one, we pause until there are some 1234 * prepared mappings to process. 1235 */ 1236 if (ensure_next_mapping(pool)) { 1237 spin_lock_irqsave(&pool->lock, flags); 1238 bio_list_merge(&pool->deferred_bios, &bios); 1239 spin_unlock_irqrestore(&pool->lock, flags); 1240 1241 break; 1242 } 1243 1244 if (bio->bi_rw & REQ_DISCARD) 1245 pool->process_discard(tc, bio); 1246 else 1247 pool->process_bio(tc, bio); 1248 } 1249 1250 /* 1251 * If there are any deferred flush bios, we must commit 1252 * the metadata before issuing them. 1253 */ 1254 bio_list_init(&bios); 1255 spin_lock_irqsave(&pool->lock, flags); 1256 bio_list_merge(&bios, &pool->deferred_flush_bios); 1257 bio_list_init(&pool->deferred_flush_bios); 1258 spin_unlock_irqrestore(&pool->lock, flags); 1259 1260 if (bio_list_empty(&bios) && !need_commit_due_to_time(pool)) 1261 return; 1262 1263 if (commit_or_fallback(pool)) { 1264 while ((bio = bio_list_pop(&bios))) 1265 bio_io_error(bio); 1266 return; 1267 } 1268 pool->last_commit_jiffies = jiffies; 1269 1270 while ((bio = bio_list_pop(&bios))) 1271 generic_make_request(bio); 1272 } 1273 1274 static void do_worker(struct work_struct *ws) 1275 { 1276 struct pool *pool = container_of(ws, struct pool, worker); 1277 1278 process_prepared(pool, &pool->prepared_mappings, &pool->process_prepared_mapping); 1279 process_prepared(pool, &pool->prepared_discards, &pool->process_prepared_discard); 1280 process_deferred_bios(pool); 1281 } 1282 1283 /* 1284 * We want to commit periodically so that not too much 1285 * unwritten data builds up. 1286 */ 1287 static void do_waker(struct work_struct *ws) 1288 { 1289 struct pool *pool = container_of(to_delayed_work(ws), struct pool, waker); 1290 wake_worker(pool); 1291 queue_delayed_work(pool->wq, &pool->waker, COMMIT_PERIOD); 1292 } 1293 1294 /*----------------------------------------------------------------*/ 1295 1296 static enum pool_mode get_pool_mode(struct pool *pool) 1297 { 1298 return pool->pf.mode; 1299 } 1300 1301 static void set_pool_mode(struct pool *pool, enum pool_mode mode) 1302 { 1303 int r; 1304 1305 pool->pf.mode = mode; 1306 1307 switch (mode) { 1308 case PM_FAIL: 1309 DMERR("switching pool to failure mode"); 1310 pool->process_bio = process_bio_fail; 1311 pool->process_discard = process_bio_fail; 1312 pool->process_prepared_mapping = process_prepared_mapping_fail; 1313 pool->process_prepared_discard = process_prepared_discard_fail; 1314 break; 1315 1316 case PM_READ_ONLY: 1317 DMERR("switching pool to read-only mode"); 1318 r = dm_pool_abort_metadata(pool->pmd); 1319 if (r) { 1320 DMERR("aborting transaction failed"); 1321 set_pool_mode(pool, PM_FAIL); 1322 } else { 1323 dm_pool_metadata_read_only(pool->pmd); 1324 pool->process_bio = process_bio_read_only; 1325 pool->process_discard = process_discard; 1326 pool->process_prepared_mapping = process_prepared_mapping_fail; 1327 pool->process_prepared_discard = process_prepared_discard_passdown; 1328 } 1329 break; 1330 1331 case PM_WRITE: 1332 pool->process_bio = process_bio; 1333 pool->process_discard = process_discard; 1334 pool->process_prepared_mapping = process_prepared_mapping; 1335 pool->process_prepared_discard = process_prepared_discard; 1336 break; 1337 } 1338 } 1339 1340 /*----------------------------------------------------------------*/ 1341 1342 /* 1343 * Mapping functions. 1344 */ 1345 1346 /* 1347 * Called only while mapping a thin bio to hand it over to the workqueue. 1348 */ 1349 static void thin_defer_bio(struct thin_c *tc, struct bio *bio) 1350 { 1351 unsigned long flags; 1352 struct pool *pool = tc->pool; 1353 1354 spin_lock_irqsave(&pool->lock, flags); 1355 bio_list_add(&pool->deferred_bios, bio); 1356 spin_unlock_irqrestore(&pool->lock, flags); 1357 1358 wake_worker(pool); 1359 } 1360 1361 static void thin_hook_bio(struct thin_c *tc, struct bio *bio) 1362 { 1363 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook)); 1364 1365 h->tc = tc; 1366 h->shared_read_entry = NULL; 1367 h->all_io_entry = NULL; 1368 h->overwrite_mapping = NULL; 1369 } 1370 1371 /* 1372 * Non-blocking function called from the thin target's map function. 1373 */ 1374 static int thin_bio_map(struct dm_target *ti, struct bio *bio) 1375 { 1376 int r; 1377 struct thin_c *tc = ti->private; 1378 dm_block_t block = get_bio_block(tc, bio); 1379 struct dm_thin_device *td = tc->td; 1380 struct dm_thin_lookup_result result; 1381 struct dm_bio_prison_cell *cell1, *cell2; 1382 struct dm_cell_key key; 1383 1384 thin_hook_bio(tc, bio); 1385 1386 if (get_pool_mode(tc->pool) == PM_FAIL) { 1387 bio_io_error(bio); 1388 return DM_MAPIO_SUBMITTED; 1389 } 1390 1391 if (bio->bi_rw & (REQ_DISCARD | REQ_FLUSH | REQ_FUA)) { 1392 thin_defer_bio(tc, bio); 1393 return DM_MAPIO_SUBMITTED; 1394 } 1395 1396 r = dm_thin_find_block(td, block, 0, &result); 1397 1398 /* 1399 * Note that we defer readahead too. 1400 */ 1401 switch (r) { 1402 case 0: 1403 if (unlikely(result.shared)) { 1404 /* 1405 * We have a race condition here between the 1406 * result.shared value returned by the lookup and 1407 * snapshot creation, which may cause new 1408 * sharing. 1409 * 1410 * To avoid this always quiesce the origin before 1411 * taking the snap. You want to do this anyway to 1412 * ensure a consistent application view 1413 * (i.e. lockfs). 1414 * 1415 * More distant ancestors are irrelevant. The 1416 * shared flag will be set in their case. 1417 */ 1418 thin_defer_bio(tc, bio); 1419 return DM_MAPIO_SUBMITTED; 1420 } 1421 1422 build_virtual_key(tc->td, block, &key); 1423 if (dm_bio_detain(tc->pool->prison, &key, bio, &cell1)) 1424 return DM_MAPIO_SUBMITTED; 1425 1426 build_data_key(tc->td, result.block, &key); 1427 if (dm_bio_detain(tc->pool->prison, &key, bio, &cell2)) { 1428 cell_defer_no_holder(tc, cell1); 1429 return DM_MAPIO_SUBMITTED; 1430 } 1431 1432 inc_all_io_entry(tc->pool, bio); 1433 cell_defer_no_holder(tc, cell2); 1434 cell_defer_no_holder(tc, cell1); 1435 1436 remap(tc, bio, result.block); 1437 return DM_MAPIO_REMAPPED; 1438 1439 case -ENODATA: 1440 if (get_pool_mode(tc->pool) == PM_READ_ONLY) { 1441 /* 1442 * This block isn't provisioned, and we have no way 1443 * of doing so. Just error it. 1444 */ 1445 bio_io_error(bio); 1446 return DM_MAPIO_SUBMITTED; 1447 } 1448 /* fall through */ 1449 1450 case -EWOULDBLOCK: 1451 /* 1452 * In future, the failed dm_thin_find_block above could 1453 * provide the hint to load the metadata into cache. 1454 */ 1455 thin_defer_bio(tc, bio); 1456 return DM_MAPIO_SUBMITTED; 1457 1458 default: 1459 /* 1460 * Must always call bio_io_error on failure. 1461 * dm_thin_find_block can fail with -EINVAL if the 1462 * pool is switched to fail-io mode. 1463 */ 1464 bio_io_error(bio); 1465 return DM_MAPIO_SUBMITTED; 1466 } 1467 } 1468 1469 static int pool_is_congested(struct dm_target_callbacks *cb, int bdi_bits) 1470 { 1471 int r; 1472 unsigned long flags; 1473 struct pool_c *pt = container_of(cb, struct pool_c, callbacks); 1474 1475 spin_lock_irqsave(&pt->pool->lock, flags); 1476 r = !bio_list_empty(&pt->pool->retry_on_resume_list); 1477 spin_unlock_irqrestore(&pt->pool->lock, flags); 1478 1479 if (!r) { 1480 struct request_queue *q = bdev_get_queue(pt->data_dev->bdev); 1481 r = bdi_congested(&q->backing_dev_info, bdi_bits); 1482 } 1483 1484 return r; 1485 } 1486 1487 static void __requeue_bios(struct pool *pool) 1488 { 1489 bio_list_merge(&pool->deferred_bios, &pool->retry_on_resume_list); 1490 bio_list_init(&pool->retry_on_resume_list); 1491 } 1492 1493 /*---------------------------------------------------------------- 1494 * Binding of control targets to a pool object 1495 *--------------------------------------------------------------*/ 1496 static bool data_dev_supports_discard(struct pool_c *pt) 1497 { 1498 struct request_queue *q = bdev_get_queue(pt->data_dev->bdev); 1499 1500 return q && blk_queue_discard(q); 1501 } 1502 1503 /* 1504 * If discard_passdown was enabled verify that the data device 1505 * supports discards. Disable discard_passdown if not. 1506 */ 1507 static void disable_passdown_if_not_supported(struct pool_c *pt) 1508 { 1509 struct pool *pool = pt->pool; 1510 struct block_device *data_bdev = pt->data_dev->bdev; 1511 struct queue_limits *data_limits = &bdev_get_queue(data_bdev)->limits; 1512 sector_t block_size = pool->sectors_per_block << SECTOR_SHIFT; 1513 const char *reason = NULL; 1514 char buf[BDEVNAME_SIZE]; 1515 1516 if (!pt->adjusted_pf.discard_passdown) 1517 return; 1518 1519 if (!data_dev_supports_discard(pt)) 1520 reason = "discard unsupported"; 1521 1522 else if (data_limits->max_discard_sectors < pool->sectors_per_block) 1523 reason = "max discard sectors smaller than a block"; 1524 1525 else if (data_limits->discard_granularity > block_size) 1526 reason = "discard granularity larger than a block"; 1527 1528 else if (block_size & (data_limits->discard_granularity - 1)) 1529 reason = "discard granularity not a factor of block size"; 1530 1531 if (reason) { 1532 DMWARN("Data device (%s) %s: Disabling discard passdown.", bdevname(data_bdev, buf), reason); 1533 pt->adjusted_pf.discard_passdown = false; 1534 } 1535 } 1536 1537 static int bind_control_target(struct pool *pool, struct dm_target *ti) 1538 { 1539 struct pool_c *pt = ti->private; 1540 1541 /* 1542 * We want to make sure that degraded pools are never upgraded. 1543 */ 1544 enum pool_mode old_mode = pool->pf.mode; 1545 enum pool_mode new_mode = pt->adjusted_pf.mode; 1546 1547 if (old_mode > new_mode) 1548 new_mode = old_mode; 1549 1550 pool->ti = ti; 1551 pool->low_water_blocks = pt->low_water_blocks; 1552 pool->pf = pt->adjusted_pf; 1553 1554 set_pool_mode(pool, new_mode); 1555 1556 return 0; 1557 } 1558 1559 static void unbind_control_target(struct pool *pool, struct dm_target *ti) 1560 { 1561 if (pool->ti == ti) 1562 pool->ti = NULL; 1563 } 1564 1565 /*---------------------------------------------------------------- 1566 * Pool creation 1567 *--------------------------------------------------------------*/ 1568 /* Initialize pool features. */ 1569 static void pool_features_init(struct pool_features *pf) 1570 { 1571 pf->mode = PM_WRITE; 1572 pf->zero_new_blocks = true; 1573 pf->discard_enabled = true; 1574 pf->discard_passdown = true; 1575 } 1576 1577 static void __pool_destroy(struct pool *pool) 1578 { 1579 __pool_table_remove(pool); 1580 1581 if (dm_pool_metadata_close(pool->pmd) < 0) 1582 DMWARN("%s: dm_pool_metadata_close() failed.", __func__); 1583 1584 dm_bio_prison_destroy(pool->prison); 1585 dm_kcopyd_client_destroy(pool->copier); 1586 1587 if (pool->wq) 1588 destroy_workqueue(pool->wq); 1589 1590 if (pool->next_mapping) 1591 mempool_free(pool->next_mapping, pool->mapping_pool); 1592 mempool_destroy(pool->mapping_pool); 1593 dm_deferred_set_destroy(pool->shared_read_ds); 1594 dm_deferred_set_destroy(pool->all_io_ds); 1595 kfree(pool); 1596 } 1597 1598 static struct kmem_cache *_new_mapping_cache; 1599 1600 static struct pool *pool_create(struct mapped_device *pool_md, 1601 struct block_device *metadata_dev, 1602 unsigned long block_size, 1603 int read_only, char **error) 1604 { 1605 int r; 1606 void *err_p; 1607 struct pool *pool; 1608 struct dm_pool_metadata *pmd; 1609 bool format_device = read_only ? false : true; 1610 1611 pmd = dm_pool_metadata_open(metadata_dev, block_size, format_device); 1612 if (IS_ERR(pmd)) { 1613 *error = "Error creating metadata object"; 1614 return (struct pool *)pmd; 1615 } 1616 1617 pool = kmalloc(sizeof(*pool), GFP_KERNEL); 1618 if (!pool) { 1619 *error = "Error allocating memory for pool"; 1620 err_p = ERR_PTR(-ENOMEM); 1621 goto bad_pool; 1622 } 1623 1624 pool->pmd = pmd; 1625 pool->sectors_per_block = block_size; 1626 if (block_size & (block_size - 1)) 1627 pool->sectors_per_block_shift = -1; 1628 else 1629 pool->sectors_per_block_shift = __ffs(block_size); 1630 pool->low_water_blocks = 0; 1631 pool_features_init(&pool->pf); 1632 pool->prison = dm_bio_prison_create(PRISON_CELLS); 1633 if (!pool->prison) { 1634 *error = "Error creating pool's bio prison"; 1635 err_p = ERR_PTR(-ENOMEM); 1636 goto bad_prison; 1637 } 1638 1639 pool->copier = dm_kcopyd_client_create(); 1640 if (IS_ERR(pool->copier)) { 1641 r = PTR_ERR(pool->copier); 1642 *error = "Error creating pool's kcopyd client"; 1643 err_p = ERR_PTR(r); 1644 goto bad_kcopyd_client; 1645 } 1646 1647 /* 1648 * Create singlethreaded workqueue that will service all devices 1649 * that use this metadata. 1650 */ 1651 pool->wq = alloc_ordered_workqueue("dm-" DM_MSG_PREFIX, WQ_MEM_RECLAIM); 1652 if (!pool->wq) { 1653 *error = "Error creating pool's workqueue"; 1654 err_p = ERR_PTR(-ENOMEM); 1655 goto bad_wq; 1656 } 1657 1658 INIT_WORK(&pool->worker, do_worker); 1659 INIT_DELAYED_WORK(&pool->waker, do_waker); 1660 spin_lock_init(&pool->lock); 1661 bio_list_init(&pool->deferred_bios); 1662 bio_list_init(&pool->deferred_flush_bios); 1663 INIT_LIST_HEAD(&pool->prepared_mappings); 1664 INIT_LIST_HEAD(&pool->prepared_discards); 1665 pool->low_water_triggered = 0; 1666 pool->no_free_space = 0; 1667 bio_list_init(&pool->retry_on_resume_list); 1668 1669 pool->shared_read_ds = dm_deferred_set_create(); 1670 if (!pool->shared_read_ds) { 1671 *error = "Error creating pool's shared read deferred set"; 1672 err_p = ERR_PTR(-ENOMEM); 1673 goto bad_shared_read_ds; 1674 } 1675 1676 pool->all_io_ds = dm_deferred_set_create(); 1677 if (!pool->all_io_ds) { 1678 *error = "Error creating pool's all io deferred set"; 1679 err_p = ERR_PTR(-ENOMEM); 1680 goto bad_all_io_ds; 1681 } 1682 1683 pool->next_mapping = NULL; 1684 pool->mapping_pool = mempool_create_slab_pool(MAPPING_POOL_SIZE, 1685 _new_mapping_cache); 1686 if (!pool->mapping_pool) { 1687 *error = "Error creating pool's mapping mempool"; 1688 err_p = ERR_PTR(-ENOMEM); 1689 goto bad_mapping_pool; 1690 } 1691 1692 pool->ref_count = 1; 1693 pool->last_commit_jiffies = jiffies; 1694 pool->pool_md = pool_md; 1695 pool->md_dev = metadata_dev; 1696 __pool_table_insert(pool); 1697 1698 return pool; 1699 1700 bad_mapping_pool: 1701 dm_deferred_set_destroy(pool->all_io_ds); 1702 bad_all_io_ds: 1703 dm_deferred_set_destroy(pool->shared_read_ds); 1704 bad_shared_read_ds: 1705 destroy_workqueue(pool->wq); 1706 bad_wq: 1707 dm_kcopyd_client_destroy(pool->copier); 1708 bad_kcopyd_client: 1709 dm_bio_prison_destroy(pool->prison); 1710 bad_prison: 1711 kfree(pool); 1712 bad_pool: 1713 if (dm_pool_metadata_close(pmd)) 1714 DMWARN("%s: dm_pool_metadata_close() failed.", __func__); 1715 1716 return err_p; 1717 } 1718 1719 static void __pool_inc(struct pool *pool) 1720 { 1721 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex)); 1722 pool->ref_count++; 1723 } 1724 1725 static void __pool_dec(struct pool *pool) 1726 { 1727 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex)); 1728 BUG_ON(!pool->ref_count); 1729 if (!--pool->ref_count) 1730 __pool_destroy(pool); 1731 } 1732 1733 static struct pool *__pool_find(struct mapped_device *pool_md, 1734 struct block_device *metadata_dev, 1735 unsigned long block_size, int read_only, 1736 char **error, int *created) 1737 { 1738 struct pool *pool = __pool_table_lookup_metadata_dev(metadata_dev); 1739 1740 if (pool) { 1741 if (pool->pool_md != pool_md) { 1742 *error = "metadata device already in use by a pool"; 1743 return ERR_PTR(-EBUSY); 1744 } 1745 __pool_inc(pool); 1746 1747 } else { 1748 pool = __pool_table_lookup(pool_md); 1749 if (pool) { 1750 if (pool->md_dev != metadata_dev) { 1751 *error = "different pool cannot replace a pool"; 1752 return ERR_PTR(-EINVAL); 1753 } 1754 __pool_inc(pool); 1755 1756 } else { 1757 pool = pool_create(pool_md, metadata_dev, block_size, read_only, error); 1758 *created = 1; 1759 } 1760 } 1761 1762 return pool; 1763 } 1764 1765 /*---------------------------------------------------------------- 1766 * Pool target methods 1767 *--------------------------------------------------------------*/ 1768 static void pool_dtr(struct dm_target *ti) 1769 { 1770 struct pool_c *pt = ti->private; 1771 1772 mutex_lock(&dm_thin_pool_table.mutex); 1773 1774 unbind_control_target(pt->pool, ti); 1775 __pool_dec(pt->pool); 1776 dm_put_device(ti, pt->metadata_dev); 1777 dm_put_device(ti, pt->data_dev); 1778 kfree(pt); 1779 1780 mutex_unlock(&dm_thin_pool_table.mutex); 1781 } 1782 1783 static int parse_pool_features(struct dm_arg_set *as, struct pool_features *pf, 1784 struct dm_target *ti) 1785 { 1786 int r; 1787 unsigned argc; 1788 const char *arg_name; 1789 1790 static struct dm_arg _args[] = { 1791 {0, 3, "Invalid number of pool feature arguments"}, 1792 }; 1793 1794 /* 1795 * No feature arguments supplied. 1796 */ 1797 if (!as->argc) 1798 return 0; 1799 1800 r = dm_read_arg_group(_args, as, &argc, &ti->error); 1801 if (r) 1802 return -EINVAL; 1803 1804 while (argc && !r) { 1805 arg_name = dm_shift_arg(as); 1806 argc--; 1807 1808 if (!strcasecmp(arg_name, "skip_block_zeroing")) 1809 pf->zero_new_blocks = false; 1810 1811 else if (!strcasecmp(arg_name, "ignore_discard")) 1812 pf->discard_enabled = false; 1813 1814 else if (!strcasecmp(arg_name, "no_discard_passdown")) 1815 pf->discard_passdown = false; 1816 1817 else if (!strcasecmp(arg_name, "read_only")) 1818 pf->mode = PM_READ_ONLY; 1819 1820 else { 1821 ti->error = "Unrecognised pool feature requested"; 1822 r = -EINVAL; 1823 break; 1824 } 1825 } 1826 1827 return r; 1828 } 1829 1830 /* 1831 * thin-pool <metadata dev> <data dev> 1832 * <data block size (sectors)> 1833 * <low water mark (blocks)> 1834 * [<#feature args> [<arg>]*] 1835 * 1836 * Optional feature arguments are: 1837 * skip_block_zeroing: skips the zeroing of newly-provisioned blocks. 1838 * ignore_discard: disable discard 1839 * no_discard_passdown: don't pass discards down to the data device 1840 */ 1841 static int pool_ctr(struct dm_target *ti, unsigned argc, char **argv) 1842 { 1843 int r, pool_created = 0; 1844 struct pool_c *pt; 1845 struct pool *pool; 1846 struct pool_features pf; 1847 struct dm_arg_set as; 1848 struct dm_dev *data_dev; 1849 unsigned long block_size; 1850 dm_block_t low_water_blocks; 1851 struct dm_dev *metadata_dev; 1852 sector_t metadata_dev_size; 1853 char b[BDEVNAME_SIZE]; 1854 1855 /* 1856 * FIXME Remove validation from scope of lock. 1857 */ 1858 mutex_lock(&dm_thin_pool_table.mutex); 1859 1860 if (argc < 4) { 1861 ti->error = "Invalid argument count"; 1862 r = -EINVAL; 1863 goto out_unlock; 1864 } 1865 as.argc = argc; 1866 as.argv = argv; 1867 1868 r = dm_get_device(ti, argv[0], FMODE_READ | FMODE_WRITE, &metadata_dev); 1869 if (r) { 1870 ti->error = "Error opening metadata block device"; 1871 goto out_unlock; 1872 } 1873 1874 metadata_dev_size = i_size_read(metadata_dev->bdev->bd_inode) >> SECTOR_SHIFT; 1875 if (metadata_dev_size > THIN_METADATA_MAX_SECTORS_WARNING) 1876 DMWARN("Metadata device %s is larger than %u sectors: excess space will not be used.", 1877 bdevname(metadata_dev->bdev, b), THIN_METADATA_MAX_SECTORS); 1878 1879 r = dm_get_device(ti, argv[1], FMODE_READ | FMODE_WRITE, &data_dev); 1880 if (r) { 1881 ti->error = "Error getting data device"; 1882 goto out_metadata; 1883 } 1884 1885 if (kstrtoul(argv[2], 10, &block_size) || !block_size || 1886 block_size < DATA_DEV_BLOCK_SIZE_MIN_SECTORS || 1887 block_size > DATA_DEV_BLOCK_SIZE_MAX_SECTORS || 1888 block_size & (DATA_DEV_BLOCK_SIZE_MIN_SECTORS - 1)) { 1889 ti->error = "Invalid block size"; 1890 r = -EINVAL; 1891 goto out; 1892 } 1893 1894 if (kstrtoull(argv[3], 10, (unsigned long long *)&low_water_blocks)) { 1895 ti->error = "Invalid low water mark"; 1896 r = -EINVAL; 1897 goto out; 1898 } 1899 1900 /* 1901 * Set default pool features. 1902 */ 1903 pool_features_init(&pf); 1904 1905 dm_consume_args(&as, 4); 1906 r = parse_pool_features(&as, &pf, ti); 1907 if (r) 1908 goto out; 1909 1910 pt = kzalloc(sizeof(*pt), GFP_KERNEL); 1911 if (!pt) { 1912 r = -ENOMEM; 1913 goto out; 1914 } 1915 1916 pool = __pool_find(dm_table_get_md(ti->table), metadata_dev->bdev, 1917 block_size, pf.mode == PM_READ_ONLY, &ti->error, &pool_created); 1918 if (IS_ERR(pool)) { 1919 r = PTR_ERR(pool); 1920 goto out_free_pt; 1921 } 1922 1923 /* 1924 * 'pool_created' reflects whether this is the first table load. 1925 * Top level discard support is not allowed to be changed after 1926 * initial load. This would require a pool reload to trigger thin 1927 * device changes. 1928 */ 1929 if (!pool_created && pf.discard_enabled != pool->pf.discard_enabled) { 1930 ti->error = "Discard support cannot be disabled once enabled"; 1931 r = -EINVAL; 1932 goto out_flags_changed; 1933 } 1934 1935 pt->pool = pool; 1936 pt->ti = ti; 1937 pt->metadata_dev = metadata_dev; 1938 pt->data_dev = data_dev; 1939 pt->low_water_blocks = low_water_blocks; 1940 pt->adjusted_pf = pt->requested_pf = pf; 1941 ti->num_flush_requests = 1; 1942 1943 /* 1944 * Only need to enable discards if the pool should pass 1945 * them down to the data device. The thin device's discard 1946 * processing will cause mappings to be removed from the btree. 1947 */ 1948 if (pf.discard_enabled && pf.discard_passdown) { 1949 ti->num_discard_requests = 1; 1950 1951 /* 1952 * Setting 'discards_supported' circumvents the normal 1953 * stacking of discard limits (this keeps the pool and 1954 * thin devices' discard limits consistent). 1955 */ 1956 ti->discards_supported = true; 1957 ti->discard_zeroes_data_unsupported = true; 1958 } 1959 ti->private = pt; 1960 1961 pt->callbacks.congested_fn = pool_is_congested; 1962 dm_table_add_target_callbacks(ti->table, &pt->callbacks); 1963 1964 mutex_unlock(&dm_thin_pool_table.mutex); 1965 1966 return 0; 1967 1968 out_flags_changed: 1969 __pool_dec(pool); 1970 out_free_pt: 1971 kfree(pt); 1972 out: 1973 dm_put_device(ti, data_dev); 1974 out_metadata: 1975 dm_put_device(ti, metadata_dev); 1976 out_unlock: 1977 mutex_unlock(&dm_thin_pool_table.mutex); 1978 1979 return r; 1980 } 1981 1982 static int pool_map(struct dm_target *ti, struct bio *bio) 1983 { 1984 int r; 1985 struct pool_c *pt = ti->private; 1986 struct pool *pool = pt->pool; 1987 unsigned long flags; 1988 1989 /* 1990 * As this is a singleton target, ti->begin is always zero. 1991 */ 1992 spin_lock_irqsave(&pool->lock, flags); 1993 bio->bi_bdev = pt->data_dev->bdev; 1994 r = DM_MAPIO_REMAPPED; 1995 spin_unlock_irqrestore(&pool->lock, flags); 1996 1997 return r; 1998 } 1999 2000 /* 2001 * Retrieves the number of blocks of the data device from 2002 * the superblock and compares it to the actual device size, 2003 * thus resizing the data device in case it has grown. 2004 * 2005 * This both copes with opening preallocated data devices in the ctr 2006 * being followed by a resume 2007 * -and- 2008 * calling the resume method individually after userspace has 2009 * grown the data device in reaction to a table event. 2010 */ 2011 static int pool_preresume(struct dm_target *ti) 2012 { 2013 int r; 2014 struct pool_c *pt = ti->private; 2015 struct pool *pool = pt->pool; 2016 sector_t data_size = ti->len; 2017 dm_block_t sb_data_size; 2018 2019 /* 2020 * Take control of the pool object. 2021 */ 2022 r = bind_control_target(pool, ti); 2023 if (r) 2024 return r; 2025 2026 (void) sector_div(data_size, pool->sectors_per_block); 2027 2028 r = dm_pool_get_data_dev_size(pool->pmd, &sb_data_size); 2029 if (r) { 2030 DMERR("failed to retrieve data device size"); 2031 return r; 2032 } 2033 2034 if (data_size < sb_data_size) { 2035 DMERR("pool target too small, is %llu blocks (expected %llu)", 2036 (unsigned long long)data_size, sb_data_size); 2037 return -EINVAL; 2038 2039 } else if (data_size > sb_data_size) { 2040 r = dm_pool_resize_data_dev(pool->pmd, data_size); 2041 if (r) { 2042 DMERR("failed to resize data device"); 2043 /* FIXME Stricter than necessary: Rollback transaction instead here */ 2044 set_pool_mode(pool, PM_READ_ONLY); 2045 return r; 2046 } 2047 2048 (void) commit_or_fallback(pool); 2049 } 2050 2051 return 0; 2052 } 2053 2054 static void pool_resume(struct dm_target *ti) 2055 { 2056 struct pool_c *pt = ti->private; 2057 struct pool *pool = pt->pool; 2058 unsigned long flags; 2059 2060 spin_lock_irqsave(&pool->lock, flags); 2061 pool->low_water_triggered = 0; 2062 pool->no_free_space = 0; 2063 __requeue_bios(pool); 2064 spin_unlock_irqrestore(&pool->lock, flags); 2065 2066 do_waker(&pool->waker.work); 2067 } 2068 2069 static void pool_postsuspend(struct dm_target *ti) 2070 { 2071 struct pool_c *pt = ti->private; 2072 struct pool *pool = pt->pool; 2073 2074 cancel_delayed_work(&pool->waker); 2075 flush_workqueue(pool->wq); 2076 (void) commit_or_fallback(pool); 2077 } 2078 2079 static int check_arg_count(unsigned argc, unsigned args_required) 2080 { 2081 if (argc != args_required) { 2082 DMWARN("Message received with %u arguments instead of %u.", 2083 argc, args_required); 2084 return -EINVAL; 2085 } 2086 2087 return 0; 2088 } 2089 2090 static int read_dev_id(char *arg, dm_thin_id *dev_id, int warning) 2091 { 2092 if (!kstrtoull(arg, 10, (unsigned long long *)dev_id) && 2093 *dev_id <= MAX_DEV_ID) 2094 return 0; 2095 2096 if (warning) 2097 DMWARN("Message received with invalid device id: %s", arg); 2098 2099 return -EINVAL; 2100 } 2101 2102 static int process_create_thin_mesg(unsigned argc, char **argv, struct pool *pool) 2103 { 2104 dm_thin_id dev_id; 2105 int r; 2106 2107 r = check_arg_count(argc, 2); 2108 if (r) 2109 return r; 2110 2111 r = read_dev_id(argv[1], &dev_id, 1); 2112 if (r) 2113 return r; 2114 2115 r = dm_pool_create_thin(pool->pmd, dev_id); 2116 if (r) { 2117 DMWARN("Creation of new thinly-provisioned device with id %s failed.", 2118 argv[1]); 2119 return r; 2120 } 2121 2122 return 0; 2123 } 2124 2125 static int process_create_snap_mesg(unsigned argc, char **argv, struct pool *pool) 2126 { 2127 dm_thin_id dev_id; 2128 dm_thin_id origin_dev_id; 2129 int r; 2130 2131 r = check_arg_count(argc, 3); 2132 if (r) 2133 return r; 2134 2135 r = read_dev_id(argv[1], &dev_id, 1); 2136 if (r) 2137 return r; 2138 2139 r = read_dev_id(argv[2], &origin_dev_id, 1); 2140 if (r) 2141 return r; 2142 2143 r = dm_pool_create_snap(pool->pmd, dev_id, origin_dev_id); 2144 if (r) { 2145 DMWARN("Creation of new snapshot %s of device %s failed.", 2146 argv[1], argv[2]); 2147 return r; 2148 } 2149 2150 return 0; 2151 } 2152 2153 static int process_delete_mesg(unsigned argc, char **argv, struct pool *pool) 2154 { 2155 dm_thin_id dev_id; 2156 int r; 2157 2158 r = check_arg_count(argc, 2); 2159 if (r) 2160 return r; 2161 2162 r = read_dev_id(argv[1], &dev_id, 1); 2163 if (r) 2164 return r; 2165 2166 r = dm_pool_delete_thin_device(pool->pmd, dev_id); 2167 if (r) 2168 DMWARN("Deletion of thin device %s failed.", argv[1]); 2169 2170 return r; 2171 } 2172 2173 static int process_set_transaction_id_mesg(unsigned argc, char **argv, struct pool *pool) 2174 { 2175 dm_thin_id old_id, new_id; 2176 int r; 2177 2178 r = check_arg_count(argc, 3); 2179 if (r) 2180 return r; 2181 2182 if (kstrtoull(argv[1], 10, (unsigned long long *)&old_id)) { 2183 DMWARN("set_transaction_id message: Unrecognised id %s.", argv[1]); 2184 return -EINVAL; 2185 } 2186 2187 if (kstrtoull(argv[2], 10, (unsigned long long *)&new_id)) { 2188 DMWARN("set_transaction_id message: Unrecognised new id %s.", argv[2]); 2189 return -EINVAL; 2190 } 2191 2192 r = dm_pool_set_metadata_transaction_id(pool->pmd, old_id, new_id); 2193 if (r) { 2194 DMWARN("Failed to change transaction id from %s to %s.", 2195 argv[1], argv[2]); 2196 return r; 2197 } 2198 2199 return 0; 2200 } 2201 2202 static int process_reserve_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool) 2203 { 2204 int r; 2205 2206 r = check_arg_count(argc, 1); 2207 if (r) 2208 return r; 2209 2210 (void) commit_or_fallback(pool); 2211 2212 r = dm_pool_reserve_metadata_snap(pool->pmd); 2213 if (r) 2214 DMWARN("reserve_metadata_snap message failed."); 2215 2216 return r; 2217 } 2218 2219 static int process_release_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool) 2220 { 2221 int r; 2222 2223 r = check_arg_count(argc, 1); 2224 if (r) 2225 return r; 2226 2227 r = dm_pool_release_metadata_snap(pool->pmd); 2228 if (r) 2229 DMWARN("release_metadata_snap message failed."); 2230 2231 return r; 2232 } 2233 2234 /* 2235 * Messages supported: 2236 * create_thin <dev_id> 2237 * create_snap <dev_id> <origin_id> 2238 * delete <dev_id> 2239 * trim <dev_id> <new_size_in_sectors> 2240 * set_transaction_id <current_trans_id> <new_trans_id> 2241 * reserve_metadata_snap 2242 * release_metadata_snap 2243 */ 2244 static int pool_message(struct dm_target *ti, unsigned argc, char **argv) 2245 { 2246 int r = -EINVAL; 2247 struct pool_c *pt = ti->private; 2248 struct pool *pool = pt->pool; 2249 2250 if (!strcasecmp(argv[0], "create_thin")) 2251 r = process_create_thin_mesg(argc, argv, pool); 2252 2253 else if (!strcasecmp(argv[0], "create_snap")) 2254 r = process_create_snap_mesg(argc, argv, pool); 2255 2256 else if (!strcasecmp(argv[0], "delete")) 2257 r = process_delete_mesg(argc, argv, pool); 2258 2259 else if (!strcasecmp(argv[0], "set_transaction_id")) 2260 r = process_set_transaction_id_mesg(argc, argv, pool); 2261 2262 else if (!strcasecmp(argv[0], "reserve_metadata_snap")) 2263 r = process_reserve_metadata_snap_mesg(argc, argv, pool); 2264 2265 else if (!strcasecmp(argv[0], "release_metadata_snap")) 2266 r = process_release_metadata_snap_mesg(argc, argv, pool); 2267 2268 else 2269 DMWARN("Unrecognised thin pool target message received: %s", argv[0]); 2270 2271 if (!r) 2272 (void) commit_or_fallback(pool); 2273 2274 return r; 2275 } 2276 2277 static void emit_flags(struct pool_features *pf, char *result, 2278 unsigned sz, unsigned maxlen) 2279 { 2280 unsigned count = !pf->zero_new_blocks + !pf->discard_enabled + 2281 !pf->discard_passdown + (pf->mode == PM_READ_ONLY); 2282 DMEMIT("%u ", count); 2283 2284 if (!pf->zero_new_blocks) 2285 DMEMIT("skip_block_zeroing "); 2286 2287 if (!pf->discard_enabled) 2288 DMEMIT("ignore_discard "); 2289 2290 if (!pf->discard_passdown) 2291 DMEMIT("no_discard_passdown "); 2292 2293 if (pf->mode == PM_READ_ONLY) 2294 DMEMIT("read_only "); 2295 } 2296 2297 /* 2298 * Status line is: 2299 * <transaction id> <used metadata sectors>/<total metadata sectors> 2300 * <used data sectors>/<total data sectors> <held metadata root> 2301 */ 2302 static int pool_status(struct dm_target *ti, status_type_t type, 2303 unsigned status_flags, char *result, unsigned maxlen) 2304 { 2305 int r; 2306 unsigned sz = 0; 2307 uint64_t transaction_id; 2308 dm_block_t nr_free_blocks_data; 2309 dm_block_t nr_free_blocks_metadata; 2310 dm_block_t nr_blocks_data; 2311 dm_block_t nr_blocks_metadata; 2312 dm_block_t held_root; 2313 char buf[BDEVNAME_SIZE]; 2314 char buf2[BDEVNAME_SIZE]; 2315 struct pool_c *pt = ti->private; 2316 struct pool *pool = pt->pool; 2317 2318 switch (type) { 2319 case STATUSTYPE_INFO: 2320 if (get_pool_mode(pool) == PM_FAIL) { 2321 DMEMIT("Fail"); 2322 break; 2323 } 2324 2325 /* Commit to ensure statistics aren't out-of-date */ 2326 if (!(status_flags & DM_STATUS_NOFLUSH_FLAG) && !dm_suspended(ti)) 2327 (void) commit_or_fallback(pool); 2328 2329 r = dm_pool_get_metadata_transaction_id(pool->pmd, 2330 &transaction_id); 2331 if (r) 2332 return r; 2333 2334 r = dm_pool_get_free_metadata_block_count(pool->pmd, 2335 &nr_free_blocks_metadata); 2336 if (r) 2337 return r; 2338 2339 r = dm_pool_get_metadata_dev_size(pool->pmd, &nr_blocks_metadata); 2340 if (r) 2341 return r; 2342 2343 r = dm_pool_get_free_block_count(pool->pmd, 2344 &nr_free_blocks_data); 2345 if (r) 2346 return r; 2347 2348 r = dm_pool_get_data_dev_size(pool->pmd, &nr_blocks_data); 2349 if (r) 2350 return r; 2351 2352 r = dm_pool_get_metadata_snap(pool->pmd, &held_root); 2353 if (r) 2354 return r; 2355 2356 DMEMIT("%llu %llu/%llu %llu/%llu ", 2357 (unsigned long long)transaction_id, 2358 (unsigned long long)(nr_blocks_metadata - nr_free_blocks_metadata), 2359 (unsigned long long)nr_blocks_metadata, 2360 (unsigned long long)(nr_blocks_data - nr_free_blocks_data), 2361 (unsigned long long)nr_blocks_data); 2362 2363 if (held_root) 2364 DMEMIT("%llu ", held_root); 2365 else 2366 DMEMIT("- "); 2367 2368 if (pool->pf.mode == PM_READ_ONLY) 2369 DMEMIT("ro "); 2370 else 2371 DMEMIT("rw "); 2372 2373 if (!pool->pf.discard_enabled) 2374 DMEMIT("ignore_discard"); 2375 else if (pool->pf.discard_passdown) 2376 DMEMIT("discard_passdown"); 2377 else 2378 DMEMIT("no_discard_passdown"); 2379 2380 break; 2381 2382 case STATUSTYPE_TABLE: 2383 DMEMIT("%s %s %lu %llu ", 2384 format_dev_t(buf, pt->metadata_dev->bdev->bd_dev), 2385 format_dev_t(buf2, pt->data_dev->bdev->bd_dev), 2386 (unsigned long)pool->sectors_per_block, 2387 (unsigned long long)pt->low_water_blocks); 2388 emit_flags(&pt->requested_pf, result, sz, maxlen); 2389 break; 2390 } 2391 2392 return 0; 2393 } 2394 2395 static int pool_iterate_devices(struct dm_target *ti, 2396 iterate_devices_callout_fn fn, void *data) 2397 { 2398 struct pool_c *pt = ti->private; 2399 2400 return fn(ti, pt->data_dev, 0, ti->len, data); 2401 } 2402 2403 static int pool_merge(struct dm_target *ti, struct bvec_merge_data *bvm, 2404 struct bio_vec *biovec, int max_size) 2405 { 2406 struct pool_c *pt = ti->private; 2407 struct request_queue *q = bdev_get_queue(pt->data_dev->bdev); 2408 2409 if (!q->merge_bvec_fn) 2410 return max_size; 2411 2412 bvm->bi_bdev = pt->data_dev->bdev; 2413 2414 return min(max_size, q->merge_bvec_fn(q, bvm, biovec)); 2415 } 2416 2417 static bool block_size_is_power_of_two(struct pool *pool) 2418 { 2419 return pool->sectors_per_block_shift >= 0; 2420 } 2421 2422 static void set_discard_limits(struct pool_c *pt, struct queue_limits *limits) 2423 { 2424 struct pool *pool = pt->pool; 2425 struct queue_limits *data_limits; 2426 2427 limits->max_discard_sectors = pool->sectors_per_block; 2428 2429 /* 2430 * discard_granularity is just a hint, and not enforced. 2431 */ 2432 if (pt->adjusted_pf.discard_passdown) { 2433 data_limits = &bdev_get_queue(pt->data_dev->bdev)->limits; 2434 limits->discard_granularity = data_limits->discard_granularity; 2435 } else if (block_size_is_power_of_two(pool)) 2436 limits->discard_granularity = pool->sectors_per_block << SECTOR_SHIFT; 2437 else 2438 /* 2439 * Use largest power of 2 that is a factor of sectors_per_block 2440 * but at least DATA_DEV_BLOCK_SIZE_MIN_SECTORS. 2441 */ 2442 limits->discard_granularity = max(1 << (ffs(pool->sectors_per_block) - 1), 2443 DATA_DEV_BLOCK_SIZE_MIN_SECTORS) << SECTOR_SHIFT; 2444 } 2445 2446 static void pool_io_hints(struct dm_target *ti, struct queue_limits *limits) 2447 { 2448 struct pool_c *pt = ti->private; 2449 struct pool *pool = pt->pool; 2450 2451 blk_limits_io_min(limits, 0); 2452 blk_limits_io_opt(limits, pool->sectors_per_block << SECTOR_SHIFT); 2453 2454 /* 2455 * pt->adjusted_pf is a staging area for the actual features to use. 2456 * They get transferred to the live pool in bind_control_target() 2457 * called from pool_preresume(). 2458 */ 2459 if (!pt->adjusted_pf.discard_enabled) 2460 return; 2461 2462 disable_passdown_if_not_supported(pt); 2463 2464 set_discard_limits(pt, limits); 2465 } 2466 2467 static struct target_type pool_target = { 2468 .name = "thin-pool", 2469 .features = DM_TARGET_SINGLETON | DM_TARGET_ALWAYS_WRITEABLE | 2470 DM_TARGET_IMMUTABLE, 2471 .version = {1, 6, 0}, 2472 .module = THIS_MODULE, 2473 .ctr = pool_ctr, 2474 .dtr = pool_dtr, 2475 .map = pool_map, 2476 .postsuspend = pool_postsuspend, 2477 .preresume = pool_preresume, 2478 .resume = pool_resume, 2479 .message = pool_message, 2480 .status = pool_status, 2481 .merge = pool_merge, 2482 .iterate_devices = pool_iterate_devices, 2483 .io_hints = pool_io_hints, 2484 }; 2485 2486 /*---------------------------------------------------------------- 2487 * Thin target methods 2488 *--------------------------------------------------------------*/ 2489 static void thin_dtr(struct dm_target *ti) 2490 { 2491 struct thin_c *tc = ti->private; 2492 2493 mutex_lock(&dm_thin_pool_table.mutex); 2494 2495 __pool_dec(tc->pool); 2496 dm_pool_close_thin_device(tc->td); 2497 dm_put_device(ti, tc->pool_dev); 2498 if (tc->origin_dev) 2499 dm_put_device(ti, tc->origin_dev); 2500 kfree(tc); 2501 2502 mutex_unlock(&dm_thin_pool_table.mutex); 2503 } 2504 2505 /* 2506 * Thin target parameters: 2507 * 2508 * <pool_dev> <dev_id> [origin_dev] 2509 * 2510 * pool_dev: the path to the pool (eg, /dev/mapper/my_pool) 2511 * dev_id: the internal device identifier 2512 * origin_dev: a device external to the pool that should act as the origin 2513 * 2514 * If the pool device has discards disabled, they get disabled for the thin 2515 * device as well. 2516 */ 2517 static int thin_ctr(struct dm_target *ti, unsigned argc, char **argv) 2518 { 2519 int r; 2520 struct thin_c *tc; 2521 struct dm_dev *pool_dev, *origin_dev; 2522 struct mapped_device *pool_md; 2523 2524 mutex_lock(&dm_thin_pool_table.mutex); 2525 2526 if (argc != 2 && argc != 3) { 2527 ti->error = "Invalid argument count"; 2528 r = -EINVAL; 2529 goto out_unlock; 2530 } 2531 2532 tc = ti->private = kzalloc(sizeof(*tc), GFP_KERNEL); 2533 if (!tc) { 2534 ti->error = "Out of memory"; 2535 r = -ENOMEM; 2536 goto out_unlock; 2537 } 2538 2539 if (argc == 3) { 2540 r = dm_get_device(ti, argv[2], FMODE_READ, &origin_dev); 2541 if (r) { 2542 ti->error = "Error opening origin device"; 2543 goto bad_origin_dev; 2544 } 2545 tc->origin_dev = origin_dev; 2546 } 2547 2548 r = dm_get_device(ti, argv[0], dm_table_get_mode(ti->table), &pool_dev); 2549 if (r) { 2550 ti->error = "Error opening pool device"; 2551 goto bad_pool_dev; 2552 } 2553 tc->pool_dev = pool_dev; 2554 2555 if (read_dev_id(argv[1], (unsigned long long *)&tc->dev_id, 0)) { 2556 ti->error = "Invalid device id"; 2557 r = -EINVAL; 2558 goto bad_common; 2559 } 2560 2561 pool_md = dm_get_md(tc->pool_dev->bdev->bd_dev); 2562 if (!pool_md) { 2563 ti->error = "Couldn't get pool mapped device"; 2564 r = -EINVAL; 2565 goto bad_common; 2566 } 2567 2568 tc->pool = __pool_table_lookup(pool_md); 2569 if (!tc->pool) { 2570 ti->error = "Couldn't find pool object"; 2571 r = -EINVAL; 2572 goto bad_pool_lookup; 2573 } 2574 __pool_inc(tc->pool); 2575 2576 if (get_pool_mode(tc->pool) == PM_FAIL) { 2577 ti->error = "Couldn't open thin device, Pool is in fail mode"; 2578 goto bad_thin_open; 2579 } 2580 2581 r = dm_pool_open_thin_device(tc->pool->pmd, tc->dev_id, &tc->td); 2582 if (r) { 2583 ti->error = "Couldn't open thin internal device"; 2584 goto bad_thin_open; 2585 } 2586 2587 r = dm_set_target_max_io_len(ti, tc->pool->sectors_per_block); 2588 if (r) 2589 goto bad_thin_open; 2590 2591 ti->num_flush_requests = 1; 2592 ti->flush_supported = true; 2593 ti->per_bio_data_size = sizeof(struct dm_thin_endio_hook); 2594 2595 /* In case the pool supports discards, pass them on. */ 2596 if (tc->pool->pf.discard_enabled) { 2597 ti->discards_supported = true; 2598 ti->num_discard_requests = 1; 2599 ti->discard_zeroes_data_unsupported = true; 2600 /* Discard requests must be split on a block boundary */ 2601 ti->split_discard_requests = true; 2602 } 2603 2604 dm_put(pool_md); 2605 2606 mutex_unlock(&dm_thin_pool_table.mutex); 2607 2608 return 0; 2609 2610 bad_thin_open: 2611 __pool_dec(tc->pool); 2612 bad_pool_lookup: 2613 dm_put(pool_md); 2614 bad_common: 2615 dm_put_device(ti, tc->pool_dev); 2616 bad_pool_dev: 2617 if (tc->origin_dev) 2618 dm_put_device(ti, tc->origin_dev); 2619 bad_origin_dev: 2620 kfree(tc); 2621 out_unlock: 2622 mutex_unlock(&dm_thin_pool_table.mutex); 2623 2624 return r; 2625 } 2626 2627 static int thin_map(struct dm_target *ti, struct bio *bio) 2628 { 2629 bio->bi_sector = dm_target_offset(ti, bio->bi_sector); 2630 2631 return thin_bio_map(ti, bio); 2632 } 2633 2634 static int thin_endio(struct dm_target *ti, struct bio *bio, int err) 2635 { 2636 unsigned long flags; 2637 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook)); 2638 struct list_head work; 2639 struct dm_thin_new_mapping *m, *tmp; 2640 struct pool *pool = h->tc->pool; 2641 2642 if (h->shared_read_entry) { 2643 INIT_LIST_HEAD(&work); 2644 dm_deferred_entry_dec(h->shared_read_entry, &work); 2645 2646 spin_lock_irqsave(&pool->lock, flags); 2647 list_for_each_entry_safe(m, tmp, &work, list) { 2648 list_del(&m->list); 2649 m->quiesced = 1; 2650 __maybe_add_mapping(m); 2651 } 2652 spin_unlock_irqrestore(&pool->lock, flags); 2653 } 2654 2655 if (h->all_io_entry) { 2656 INIT_LIST_HEAD(&work); 2657 dm_deferred_entry_dec(h->all_io_entry, &work); 2658 if (!list_empty(&work)) { 2659 spin_lock_irqsave(&pool->lock, flags); 2660 list_for_each_entry_safe(m, tmp, &work, list) 2661 list_add(&m->list, &pool->prepared_discards); 2662 spin_unlock_irqrestore(&pool->lock, flags); 2663 wake_worker(pool); 2664 } 2665 } 2666 2667 return 0; 2668 } 2669 2670 static void thin_postsuspend(struct dm_target *ti) 2671 { 2672 if (dm_noflush_suspending(ti)) 2673 requeue_io((struct thin_c *)ti->private); 2674 } 2675 2676 /* 2677 * <nr mapped sectors> <highest mapped sector> 2678 */ 2679 static int thin_status(struct dm_target *ti, status_type_t type, 2680 unsigned status_flags, char *result, unsigned maxlen) 2681 { 2682 int r; 2683 ssize_t sz = 0; 2684 dm_block_t mapped, highest; 2685 char buf[BDEVNAME_SIZE]; 2686 struct thin_c *tc = ti->private; 2687 2688 if (get_pool_mode(tc->pool) == PM_FAIL) { 2689 DMEMIT("Fail"); 2690 return 0; 2691 } 2692 2693 if (!tc->td) 2694 DMEMIT("-"); 2695 else { 2696 switch (type) { 2697 case STATUSTYPE_INFO: 2698 r = dm_thin_get_mapped_count(tc->td, &mapped); 2699 if (r) 2700 return r; 2701 2702 r = dm_thin_get_highest_mapped_block(tc->td, &highest); 2703 if (r < 0) 2704 return r; 2705 2706 DMEMIT("%llu ", mapped * tc->pool->sectors_per_block); 2707 if (r) 2708 DMEMIT("%llu", ((highest + 1) * 2709 tc->pool->sectors_per_block) - 1); 2710 else 2711 DMEMIT("-"); 2712 break; 2713 2714 case STATUSTYPE_TABLE: 2715 DMEMIT("%s %lu", 2716 format_dev_t(buf, tc->pool_dev->bdev->bd_dev), 2717 (unsigned long) tc->dev_id); 2718 if (tc->origin_dev) 2719 DMEMIT(" %s", format_dev_t(buf, tc->origin_dev->bdev->bd_dev)); 2720 break; 2721 } 2722 } 2723 2724 return 0; 2725 } 2726 2727 static int thin_iterate_devices(struct dm_target *ti, 2728 iterate_devices_callout_fn fn, void *data) 2729 { 2730 sector_t blocks; 2731 struct thin_c *tc = ti->private; 2732 struct pool *pool = tc->pool; 2733 2734 /* 2735 * We can't call dm_pool_get_data_dev_size() since that blocks. So 2736 * we follow a more convoluted path through to the pool's target. 2737 */ 2738 if (!pool->ti) 2739 return 0; /* nothing is bound */ 2740 2741 blocks = pool->ti->len; 2742 (void) sector_div(blocks, pool->sectors_per_block); 2743 if (blocks) 2744 return fn(ti, tc->pool_dev, 0, pool->sectors_per_block * blocks, data); 2745 2746 return 0; 2747 } 2748 2749 /* 2750 * A thin device always inherits its queue limits from its pool. 2751 */ 2752 static void thin_io_hints(struct dm_target *ti, struct queue_limits *limits) 2753 { 2754 struct thin_c *tc = ti->private; 2755 2756 *limits = bdev_get_queue(tc->pool_dev->bdev)->limits; 2757 } 2758 2759 static struct target_type thin_target = { 2760 .name = "thin", 2761 .version = {1, 6, 0}, 2762 .module = THIS_MODULE, 2763 .ctr = thin_ctr, 2764 .dtr = thin_dtr, 2765 .map = thin_map, 2766 .end_io = thin_endio, 2767 .postsuspend = thin_postsuspend, 2768 .status = thin_status, 2769 .iterate_devices = thin_iterate_devices, 2770 .io_hints = thin_io_hints, 2771 }; 2772 2773 /*----------------------------------------------------------------*/ 2774 2775 static int __init dm_thin_init(void) 2776 { 2777 int r; 2778 2779 pool_table_init(); 2780 2781 r = dm_register_target(&thin_target); 2782 if (r) 2783 return r; 2784 2785 r = dm_register_target(&pool_target); 2786 if (r) 2787 goto bad_pool_target; 2788 2789 r = -ENOMEM; 2790 2791 _new_mapping_cache = KMEM_CACHE(dm_thin_new_mapping, 0); 2792 if (!_new_mapping_cache) 2793 goto bad_new_mapping_cache; 2794 2795 return 0; 2796 2797 bad_new_mapping_cache: 2798 dm_unregister_target(&pool_target); 2799 bad_pool_target: 2800 dm_unregister_target(&thin_target); 2801 2802 return r; 2803 } 2804 2805 static void dm_thin_exit(void) 2806 { 2807 dm_unregister_target(&thin_target); 2808 dm_unregister_target(&pool_target); 2809 2810 kmem_cache_destroy(_new_mapping_cache); 2811 } 2812 2813 module_init(dm_thin_init); 2814 module_exit(dm_thin_exit); 2815 2816 MODULE_DESCRIPTION(DM_NAME " thin provisioning target"); 2817 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>"); 2818 MODULE_LICENSE("GPL"); 2819