xref: /linux/drivers/md/dm-thin.c (revision 3ba84ac69b53e6ee07c31d54554e00793d7b144f)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2011-2012 Red Hat UK.
4  *
5  * This file is released under the GPL.
6  */
7 
8 #include "dm-thin-metadata.h"
9 #include "dm-bio-prison-v1.h"
10 #include "dm.h"
11 
12 #include <linux/device-mapper.h>
13 #include <linux/dm-io.h>
14 #include <linux/dm-kcopyd.h>
15 #include <linux/jiffies.h>
16 #include <linux/log2.h>
17 #include <linux/list.h>
18 #include <linux/rculist.h>
19 #include <linux/init.h>
20 #include <linux/module.h>
21 #include <linux/slab.h>
22 #include <linux/vmalloc.h>
23 #include <linux/sort.h>
24 #include <linux/rbtree.h>
25 
26 #define	DM_MSG_PREFIX	"thin"
27 
28 /*
29  * Tunable constants
30  */
31 #define ENDIO_HOOK_POOL_SIZE 1024
32 #define MAPPING_POOL_SIZE 1024
33 #define COMMIT_PERIOD HZ
34 #define NO_SPACE_TIMEOUT_SECS 60
35 
36 static unsigned int no_space_timeout_secs = NO_SPACE_TIMEOUT_SECS;
37 
38 DECLARE_DM_KCOPYD_THROTTLE_WITH_MODULE_PARM(snapshot_copy_throttle,
39 		"A percentage of time allocated for copy on write");
40 
41 /*
42  * The block size of the device holding pool data must be
43  * between 64KB and 1GB.
44  */
45 #define DATA_DEV_BLOCK_SIZE_MIN_SECTORS (64 * 1024 >> SECTOR_SHIFT)
46 #define DATA_DEV_BLOCK_SIZE_MAX_SECTORS (1024 * 1024 * 1024 >> SECTOR_SHIFT)
47 
48 /*
49  * Device id is restricted to 24 bits.
50  */
51 #define MAX_DEV_ID ((1 << 24) - 1)
52 
53 /*
54  * How do we handle breaking sharing of data blocks?
55  * =================================================
56  *
57  * We use a standard copy-on-write btree to store the mappings for the
58  * devices (note I'm talking about copy-on-write of the metadata here, not
59  * the data).  When you take an internal snapshot you clone the root node
60  * of the origin btree.  After this there is no concept of an origin or a
61  * snapshot.  They are just two device trees that happen to point to the
62  * same data blocks.
63  *
64  * When we get a write in we decide if it's to a shared data block using
65  * some timestamp magic.  If it is, we have to break sharing.
66  *
67  * Let's say we write to a shared block in what was the origin.  The
68  * steps are:
69  *
70  * i) plug io further to this physical block. (see bio_prison code).
71  *
72  * ii) quiesce any read io to that shared data block.  Obviously
73  * including all devices that share this block.  (see dm_deferred_set code)
74  *
75  * iii) copy the data block to a newly allocate block.  This step can be
76  * missed out if the io covers the block. (schedule_copy).
77  *
78  * iv) insert the new mapping into the origin's btree
79  * (process_prepared_mapping).  This act of inserting breaks some
80  * sharing of btree nodes between the two devices.  Breaking sharing only
81  * effects the btree of that specific device.  Btrees for the other
82  * devices that share the block never change.  The btree for the origin
83  * device as it was after the last commit is untouched, ie. we're using
84  * persistent data structures in the functional programming sense.
85  *
86  * v) unplug io to this physical block, including the io that triggered
87  * the breaking of sharing.
88  *
89  * Steps (ii) and (iii) occur in parallel.
90  *
91  * The metadata _doesn't_ need to be committed before the io continues.  We
92  * get away with this because the io is always written to a _new_ block.
93  * If there's a crash, then:
94  *
95  * - The origin mapping will point to the old origin block (the shared
96  * one).  This will contain the data as it was before the io that triggered
97  * the breaking of sharing came in.
98  *
99  * - The snap mapping still points to the old block.  As it would after
100  * the commit.
101  *
102  * The downside of this scheme is the timestamp magic isn't perfect, and
103  * will continue to think that data block in the snapshot device is shared
104  * even after the write to the origin has broken sharing.  I suspect data
105  * blocks will typically be shared by many different devices, so we're
106  * breaking sharing n + 1 times, rather than n, where n is the number of
107  * devices that reference this data block.  At the moment I think the
108  * benefits far, far outweigh the disadvantages.
109  */
110 
111 /*----------------------------------------------------------------*/
112 
113 /*
114  * Key building.
115  */
116 enum lock_space {
117 	VIRTUAL,
118 	PHYSICAL
119 };
120 
121 static bool build_key(struct dm_thin_device *td, enum lock_space ls,
122 		      dm_block_t b, dm_block_t e, struct dm_cell_key *key)
123 {
124 	key->virtual = (ls == VIRTUAL);
125 	key->dev = dm_thin_dev_id(td);
126 	key->block_begin = b;
127 	key->block_end = e;
128 
129 	return dm_cell_key_has_valid_range(key);
130 }
131 
132 static void build_data_key(struct dm_thin_device *td, dm_block_t b,
133 			   struct dm_cell_key *key)
134 {
135 	(void) build_key(td, PHYSICAL, b, b + 1llu, key);
136 }
137 
138 static void build_virtual_key(struct dm_thin_device *td, dm_block_t b,
139 			      struct dm_cell_key *key)
140 {
141 	(void) build_key(td, VIRTUAL, b, b + 1llu, key);
142 }
143 
144 /*----------------------------------------------------------------*/
145 
146 #define THROTTLE_THRESHOLD (1 * HZ)
147 
148 struct throttle {
149 	struct rw_semaphore lock;
150 	unsigned long threshold;
151 	bool throttle_applied;
152 };
153 
154 static void throttle_init(struct throttle *t)
155 {
156 	init_rwsem(&t->lock);
157 	t->throttle_applied = false;
158 }
159 
160 static void throttle_work_start(struct throttle *t)
161 {
162 	t->threshold = jiffies + THROTTLE_THRESHOLD;
163 }
164 
165 static void throttle_work_update(struct throttle *t)
166 {
167 	if (!t->throttle_applied && time_is_before_jiffies(t->threshold)) {
168 		down_write(&t->lock);
169 		t->throttle_applied = true;
170 	}
171 }
172 
173 static void throttle_work_complete(struct throttle *t)
174 {
175 	if (t->throttle_applied) {
176 		t->throttle_applied = false;
177 		up_write(&t->lock);
178 	}
179 }
180 
181 static void throttle_lock(struct throttle *t)
182 {
183 	down_read(&t->lock);
184 }
185 
186 static void throttle_unlock(struct throttle *t)
187 {
188 	up_read(&t->lock);
189 }
190 
191 /*----------------------------------------------------------------*/
192 
193 /*
194  * A pool device ties together a metadata device and a data device.  It
195  * also provides the interface for creating and destroying internal
196  * devices.
197  */
198 struct dm_thin_new_mapping;
199 
200 /*
201  * The pool runs in various modes.  Ordered in degraded order for comparisons.
202  */
203 enum pool_mode {
204 	PM_WRITE,		/* metadata may be changed */
205 	PM_OUT_OF_DATA_SPACE,	/* metadata may be changed, though data may not be allocated */
206 
207 	/*
208 	 * Like READ_ONLY, except may switch back to WRITE on metadata resize. Reported as READ_ONLY.
209 	 */
210 	PM_OUT_OF_METADATA_SPACE,
211 	PM_READ_ONLY,		/* metadata may not be changed */
212 
213 	PM_FAIL,		/* all I/O fails */
214 };
215 
216 struct pool_features {
217 	enum pool_mode mode;
218 
219 	bool zero_new_blocks:1;
220 	bool discard_enabled:1;
221 	bool discard_passdown:1;
222 	bool error_if_no_space:1;
223 };
224 
225 struct thin_c;
226 typedef void (*process_bio_fn)(struct thin_c *tc, struct bio *bio);
227 typedef void (*process_cell_fn)(struct thin_c *tc, struct dm_bio_prison_cell *cell);
228 typedef void (*process_mapping_fn)(struct dm_thin_new_mapping *m);
229 
230 #define CELL_SORT_ARRAY_SIZE 8192
231 
232 struct pool {
233 	struct list_head list;
234 	struct dm_target *ti;	/* Only set if a pool target is bound */
235 
236 	struct mapped_device *pool_md;
237 	struct block_device *data_dev;
238 	struct block_device *md_dev;
239 	struct dm_pool_metadata *pmd;
240 
241 	dm_block_t low_water_blocks;
242 	uint32_t sectors_per_block;
243 	int sectors_per_block_shift;
244 
245 	struct pool_features pf;
246 	bool low_water_triggered:1;	/* A dm event has been sent */
247 	bool suspended:1;
248 	bool out_of_data_space:1;
249 
250 	struct dm_bio_prison *prison;
251 	struct dm_kcopyd_client *copier;
252 
253 	struct work_struct worker;
254 	struct workqueue_struct *wq;
255 	struct throttle throttle;
256 	struct delayed_work waker;
257 	struct delayed_work no_space_timeout;
258 
259 	unsigned long last_commit_jiffies;
260 	unsigned int ref_count;
261 
262 	spinlock_t lock;
263 	struct bio_list deferred_flush_bios;
264 	struct bio_list deferred_flush_completions;
265 	struct list_head prepared_mappings;
266 	struct list_head prepared_discards;
267 	struct list_head prepared_discards_pt2;
268 	struct list_head active_thins;
269 
270 	struct dm_deferred_set *shared_read_ds;
271 	struct dm_deferred_set *all_io_ds;
272 
273 	struct dm_thin_new_mapping *next_mapping;
274 
275 	process_bio_fn process_bio;
276 	process_bio_fn process_discard;
277 
278 	process_cell_fn process_cell;
279 	process_cell_fn process_discard_cell;
280 
281 	process_mapping_fn process_prepared_mapping;
282 	process_mapping_fn process_prepared_discard;
283 	process_mapping_fn process_prepared_discard_pt2;
284 
285 	struct dm_bio_prison_cell **cell_sort_array;
286 
287 	mempool_t mapping_pool;
288 };
289 
290 static void metadata_operation_failed(struct pool *pool, const char *op, int r);
291 
292 static enum pool_mode get_pool_mode(struct pool *pool)
293 {
294 	return pool->pf.mode;
295 }
296 
297 static void notify_of_pool_mode_change(struct pool *pool)
298 {
299 	static const char *descs[] = {
300 		"write",
301 		"out-of-data-space",
302 		"read-only",
303 		"read-only",
304 		"fail"
305 	};
306 	const char *extra_desc = NULL;
307 	enum pool_mode mode = get_pool_mode(pool);
308 
309 	if (mode == PM_OUT_OF_DATA_SPACE) {
310 		if (!pool->pf.error_if_no_space)
311 			extra_desc = " (queue IO)";
312 		else
313 			extra_desc = " (error IO)";
314 	}
315 
316 	dm_table_event(pool->ti->table);
317 	DMINFO("%s: switching pool to %s%s mode",
318 	       dm_device_name(pool->pool_md),
319 	       descs[(int)mode], extra_desc ? : "");
320 }
321 
322 /*
323  * Target context for a pool.
324  */
325 struct pool_c {
326 	struct dm_target *ti;
327 	struct pool *pool;
328 	struct dm_dev *data_dev;
329 	struct dm_dev *metadata_dev;
330 
331 	dm_block_t low_water_blocks;
332 	struct pool_features requested_pf; /* Features requested during table load */
333 	struct pool_features adjusted_pf;  /* Features used after adjusting for constituent devices */
334 };
335 
336 /*
337  * Target context for a thin.
338  */
339 struct thin_c {
340 	struct list_head list;
341 	struct dm_dev *pool_dev;
342 	struct dm_dev *origin_dev;
343 	sector_t origin_size;
344 	dm_thin_id dev_id;
345 
346 	struct pool *pool;
347 	struct dm_thin_device *td;
348 	struct mapped_device *thin_md;
349 
350 	bool requeue_mode:1;
351 	spinlock_t lock;
352 	struct list_head deferred_cells;
353 	struct bio_list deferred_bio_list;
354 	struct bio_list retry_on_resume_list;
355 	struct rb_root sort_bio_list; /* sorted list of deferred bios */
356 
357 	/*
358 	 * Ensures the thin is not destroyed until the worker has finished
359 	 * iterating the active_thins list.
360 	 */
361 	refcount_t refcount;
362 	struct completion can_destroy;
363 };
364 
365 /*----------------------------------------------------------------*/
366 
367 static bool block_size_is_power_of_two(struct pool *pool)
368 {
369 	return pool->sectors_per_block_shift >= 0;
370 }
371 
372 static sector_t block_to_sectors(struct pool *pool, dm_block_t b)
373 {
374 	return block_size_is_power_of_two(pool) ?
375 		(b << pool->sectors_per_block_shift) :
376 		(b * pool->sectors_per_block);
377 }
378 
379 /*----------------------------------------------------------------*/
380 
381 struct discard_op {
382 	struct thin_c *tc;
383 	struct blk_plug plug;
384 	struct bio *parent_bio;
385 	struct bio *bio;
386 };
387 
388 static void begin_discard(struct discard_op *op, struct thin_c *tc, struct bio *parent)
389 {
390 	BUG_ON(!parent);
391 
392 	op->tc = tc;
393 	blk_start_plug(&op->plug);
394 	op->parent_bio = parent;
395 	op->bio = NULL;
396 }
397 
398 static int issue_discard(struct discard_op *op, dm_block_t data_b, dm_block_t data_e)
399 {
400 	struct thin_c *tc = op->tc;
401 	sector_t s = block_to_sectors(tc->pool, data_b);
402 	sector_t len = block_to_sectors(tc->pool, data_e - data_b);
403 
404 	return __blkdev_issue_discard(tc->pool_dev->bdev, s, len, GFP_NOIO, &op->bio);
405 }
406 
407 static void end_discard(struct discard_op *op, int r)
408 {
409 	if (op->bio) {
410 		/*
411 		 * Even if one of the calls to issue_discard failed, we
412 		 * need to wait for the chain to complete.
413 		 */
414 		bio_chain(op->bio, op->parent_bio);
415 		op->bio->bi_opf = REQ_OP_DISCARD;
416 		submit_bio(op->bio);
417 	}
418 
419 	blk_finish_plug(&op->plug);
420 
421 	/*
422 	 * Even if r is set, there could be sub discards in flight that we
423 	 * need to wait for.
424 	 */
425 	if (r && !op->parent_bio->bi_status)
426 		op->parent_bio->bi_status = errno_to_blk_status(r);
427 	bio_endio(op->parent_bio);
428 }
429 
430 /*----------------------------------------------------------------*/
431 
432 /*
433  * wake_worker() is used when new work is queued and when pool_resume is
434  * ready to continue deferred IO processing.
435  */
436 static void wake_worker(struct pool *pool)
437 {
438 	queue_work(pool->wq, &pool->worker);
439 }
440 
441 /*----------------------------------------------------------------*/
442 
443 static int bio_detain(struct pool *pool, struct dm_cell_key *key, struct bio *bio,
444 		      struct dm_bio_prison_cell **cell_result)
445 {
446 	int r;
447 	struct dm_bio_prison_cell *cell_prealloc;
448 
449 	/*
450 	 * Allocate a cell from the prison's mempool.
451 	 * This might block but it can't fail.
452 	 */
453 	cell_prealloc = dm_bio_prison_alloc_cell(pool->prison, GFP_NOIO);
454 
455 	r = dm_bio_detain(pool->prison, key, bio, cell_prealloc, cell_result);
456 	if (r) {
457 		/*
458 		 * We reused an old cell; we can get rid of
459 		 * the new one.
460 		 */
461 		dm_bio_prison_free_cell(pool->prison, cell_prealloc);
462 	}
463 
464 	return r;
465 }
466 
467 static void cell_release(struct pool *pool,
468 			 struct dm_bio_prison_cell *cell,
469 			 struct bio_list *bios)
470 {
471 	dm_cell_release(pool->prison, cell, bios);
472 	dm_bio_prison_free_cell(pool->prison, cell);
473 }
474 
475 static void cell_visit_release(struct pool *pool,
476 			       void (*fn)(void *, struct dm_bio_prison_cell *),
477 			       void *context,
478 			       struct dm_bio_prison_cell *cell)
479 {
480 	dm_cell_visit_release(pool->prison, fn, context, cell);
481 	dm_bio_prison_free_cell(pool->prison, cell);
482 }
483 
484 static void cell_release_no_holder(struct pool *pool,
485 				   struct dm_bio_prison_cell *cell,
486 				   struct bio_list *bios)
487 {
488 	dm_cell_release_no_holder(pool->prison, cell, bios);
489 	dm_bio_prison_free_cell(pool->prison, cell);
490 }
491 
492 static void cell_error_with_code(struct pool *pool,
493 		struct dm_bio_prison_cell *cell, blk_status_t error_code)
494 {
495 	dm_cell_error(pool->prison, cell, error_code);
496 	dm_bio_prison_free_cell(pool->prison, cell);
497 }
498 
499 static blk_status_t get_pool_io_error_code(struct pool *pool)
500 {
501 	return pool->out_of_data_space ? BLK_STS_NOSPC : BLK_STS_IOERR;
502 }
503 
504 static void cell_error(struct pool *pool, struct dm_bio_prison_cell *cell)
505 {
506 	cell_error_with_code(pool, cell, get_pool_io_error_code(pool));
507 }
508 
509 static void cell_success(struct pool *pool, struct dm_bio_prison_cell *cell)
510 {
511 	cell_error_with_code(pool, cell, 0);
512 }
513 
514 static void cell_requeue(struct pool *pool, struct dm_bio_prison_cell *cell)
515 {
516 	cell_error_with_code(pool, cell, BLK_STS_DM_REQUEUE);
517 }
518 
519 /*----------------------------------------------------------------*/
520 
521 /*
522  * A global list of pools that uses a struct mapped_device as a key.
523  */
524 static struct dm_thin_pool_table {
525 	struct mutex mutex;
526 	struct list_head pools;
527 } dm_thin_pool_table;
528 
529 static void pool_table_init(void)
530 {
531 	mutex_init(&dm_thin_pool_table.mutex);
532 	INIT_LIST_HEAD(&dm_thin_pool_table.pools);
533 }
534 
535 static void pool_table_exit(void)
536 {
537 	mutex_destroy(&dm_thin_pool_table.mutex);
538 }
539 
540 static void __pool_table_insert(struct pool *pool)
541 {
542 	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
543 	list_add(&pool->list, &dm_thin_pool_table.pools);
544 }
545 
546 static void __pool_table_remove(struct pool *pool)
547 {
548 	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
549 	list_del(&pool->list);
550 }
551 
552 static struct pool *__pool_table_lookup(struct mapped_device *md)
553 {
554 	struct pool *pool = NULL, *tmp;
555 
556 	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
557 
558 	list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
559 		if (tmp->pool_md == md) {
560 			pool = tmp;
561 			break;
562 		}
563 	}
564 
565 	return pool;
566 }
567 
568 static struct pool *__pool_table_lookup_metadata_dev(struct block_device *md_dev)
569 {
570 	struct pool *pool = NULL, *tmp;
571 
572 	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
573 
574 	list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
575 		if (tmp->md_dev == md_dev) {
576 			pool = tmp;
577 			break;
578 		}
579 	}
580 
581 	return pool;
582 }
583 
584 /*----------------------------------------------------------------*/
585 
586 struct dm_thin_endio_hook {
587 	struct thin_c *tc;
588 	struct dm_deferred_entry *shared_read_entry;
589 	struct dm_deferred_entry *all_io_entry;
590 	struct dm_thin_new_mapping *overwrite_mapping;
591 	struct rb_node rb_node;
592 	struct dm_bio_prison_cell *cell;
593 };
594 
595 static void error_bio_list(struct bio_list *bios, blk_status_t error)
596 {
597 	struct bio *bio;
598 
599 	while ((bio = bio_list_pop(bios))) {
600 		bio->bi_status = error;
601 		bio_endio(bio);
602 	}
603 }
604 
605 static void error_thin_bio_list(struct thin_c *tc, struct bio_list *master,
606 		blk_status_t error)
607 {
608 	struct bio_list bios;
609 
610 	bio_list_init(&bios);
611 
612 	spin_lock_irq(&tc->lock);
613 	bio_list_merge_init(&bios, master);
614 	spin_unlock_irq(&tc->lock);
615 
616 	error_bio_list(&bios, error);
617 }
618 
619 static void requeue_deferred_cells(struct thin_c *tc)
620 {
621 	struct pool *pool = tc->pool;
622 	struct list_head cells;
623 	struct dm_bio_prison_cell *cell, *tmp;
624 
625 	INIT_LIST_HEAD(&cells);
626 
627 	spin_lock_irq(&tc->lock);
628 	list_splice_init(&tc->deferred_cells, &cells);
629 	spin_unlock_irq(&tc->lock);
630 
631 	list_for_each_entry_safe(cell, tmp, &cells, user_list)
632 		cell_requeue(pool, cell);
633 }
634 
635 static void requeue_io(struct thin_c *tc)
636 {
637 	struct bio_list bios;
638 
639 	bio_list_init(&bios);
640 
641 	spin_lock_irq(&tc->lock);
642 	bio_list_merge_init(&bios, &tc->deferred_bio_list);
643 	bio_list_merge_init(&bios, &tc->retry_on_resume_list);
644 	spin_unlock_irq(&tc->lock);
645 
646 	error_bio_list(&bios, BLK_STS_DM_REQUEUE);
647 	requeue_deferred_cells(tc);
648 }
649 
650 static void error_retry_list_with_code(struct pool *pool, blk_status_t error)
651 {
652 	struct thin_c *tc;
653 
654 	rcu_read_lock();
655 	list_for_each_entry_rcu(tc, &pool->active_thins, list)
656 		error_thin_bio_list(tc, &tc->retry_on_resume_list, error);
657 	rcu_read_unlock();
658 }
659 
660 static void error_retry_list(struct pool *pool)
661 {
662 	error_retry_list_with_code(pool, get_pool_io_error_code(pool));
663 }
664 
665 /*
666  * This section of code contains the logic for processing a thin device's IO.
667  * Much of the code depends on pool object resources (lists, workqueues, etc)
668  * but most is exclusively called from the thin target rather than the thin-pool
669  * target.
670  */
671 
672 static dm_block_t get_bio_block(struct thin_c *tc, struct bio *bio)
673 {
674 	struct pool *pool = tc->pool;
675 	sector_t block_nr = bio->bi_iter.bi_sector;
676 
677 	if (block_size_is_power_of_two(pool))
678 		block_nr >>= pool->sectors_per_block_shift;
679 	else
680 		(void) sector_div(block_nr, pool->sectors_per_block);
681 
682 	return block_nr;
683 }
684 
685 /*
686  * Returns the _complete_ blocks that this bio covers.
687  */
688 static void get_bio_block_range(struct thin_c *tc, struct bio *bio,
689 				dm_block_t *begin, dm_block_t *end)
690 {
691 	struct pool *pool = tc->pool;
692 	sector_t b = bio->bi_iter.bi_sector;
693 	sector_t e = b + (bio->bi_iter.bi_size >> SECTOR_SHIFT);
694 
695 	b += pool->sectors_per_block - 1ull; /* so we round up */
696 
697 	if (block_size_is_power_of_two(pool)) {
698 		b >>= pool->sectors_per_block_shift;
699 		e >>= pool->sectors_per_block_shift;
700 	} else {
701 		(void) sector_div(b, pool->sectors_per_block);
702 		(void) sector_div(e, pool->sectors_per_block);
703 	}
704 
705 	if (e < b) {
706 		/* Can happen if the bio is within a single block. */
707 		e = b;
708 	}
709 
710 	*begin = b;
711 	*end = e;
712 }
713 
714 static void remap(struct thin_c *tc, struct bio *bio, dm_block_t block)
715 {
716 	struct pool *pool = tc->pool;
717 	sector_t bi_sector = bio->bi_iter.bi_sector;
718 
719 	bio_set_dev(bio, tc->pool_dev->bdev);
720 	if (block_size_is_power_of_two(pool)) {
721 		bio->bi_iter.bi_sector =
722 			(block << pool->sectors_per_block_shift) |
723 			(bi_sector & (pool->sectors_per_block - 1));
724 	} else {
725 		bio->bi_iter.bi_sector = (block * pool->sectors_per_block) +
726 				 sector_div(bi_sector, pool->sectors_per_block);
727 	}
728 }
729 
730 static void remap_to_origin(struct thin_c *tc, struct bio *bio)
731 {
732 	bio_set_dev(bio, tc->origin_dev->bdev);
733 }
734 
735 static int bio_triggers_commit(struct thin_c *tc, struct bio *bio)
736 {
737 	return op_is_flush(bio->bi_opf) &&
738 		dm_thin_changed_this_transaction(tc->td);
739 }
740 
741 static void inc_all_io_entry(struct pool *pool, struct bio *bio)
742 {
743 	struct dm_thin_endio_hook *h;
744 
745 	if (bio_op(bio) == REQ_OP_DISCARD)
746 		return;
747 
748 	h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
749 	h->all_io_entry = dm_deferred_entry_inc(pool->all_io_ds);
750 }
751 
752 static void issue(struct thin_c *tc, struct bio *bio)
753 {
754 	struct pool *pool = tc->pool;
755 
756 	if (!bio_triggers_commit(tc, bio)) {
757 		dm_submit_bio_remap(bio, NULL);
758 		return;
759 	}
760 
761 	/*
762 	 * Complete bio with an error if earlier I/O caused changes to
763 	 * the metadata that can't be committed e.g, due to I/O errors
764 	 * on the metadata device.
765 	 */
766 	if (dm_thin_aborted_changes(tc->td)) {
767 		bio_io_error(bio);
768 		return;
769 	}
770 
771 	/*
772 	 * Batch together any bios that trigger commits and then issue a
773 	 * single commit for them in process_deferred_bios().
774 	 */
775 	spin_lock_irq(&pool->lock);
776 	bio_list_add(&pool->deferred_flush_bios, bio);
777 	spin_unlock_irq(&pool->lock);
778 }
779 
780 static void remap_to_origin_and_issue(struct thin_c *tc, struct bio *bio)
781 {
782 	remap_to_origin(tc, bio);
783 	issue(tc, bio);
784 }
785 
786 static void remap_and_issue(struct thin_c *tc, struct bio *bio,
787 			    dm_block_t block)
788 {
789 	remap(tc, bio, block);
790 	issue(tc, bio);
791 }
792 
793 /*----------------------------------------------------------------*/
794 
795 /*
796  * Bio endio functions.
797  */
798 struct dm_thin_new_mapping {
799 	struct list_head list;
800 
801 	bool pass_discard:1;
802 	bool maybe_shared:1;
803 
804 	/*
805 	 * Track quiescing, copying and zeroing preparation actions.  When this
806 	 * counter hits zero the block is prepared and can be inserted into the
807 	 * btree.
808 	 */
809 	atomic_t prepare_actions;
810 
811 	blk_status_t status;
812 	struct thin_c *tc;
813 	dm_block_t virt_begin, virt_end;
814 	dm_block_t data_block;
815 	struct dm_bio_prison_cell *cell;
816 
817 	/*
818 	 * If the bio covers the whole area of a block then we can avoid
819 	 * zeroing or copying.  Instead this bio is hooked.  The bio will
820 	 * still be in the cell, so care has to be taken to avoid issuing
821 	 * the bio twice.
822 	 */
823 	struct bio *bio;
824 	bio_end_io_t *saved_bi_end_io;
825 };
826 
827 static void __complete_mapping_preparation(struct dm_thin_new_mapping *m)
828 {
829 	struct pool *pool = m->tc->pool;
830 
831 	if (atomic_dec_and_test(&m->prepare_actions)) {
832 		list_add_tail(&m->list, &pool->prepared_mappings);
833 		wake_worker(pool);
834 	}
835 }
836 
837 static void complete_mapping_preparation(struct dm_thin_new_mapping *m)
838 {
839 	unsigned long flags;
840 	struct pool *pool = m->tc->pool;
841 
842 	spin_lock_irqsave(&pool->lock, flags);
843 	__complete_mapping_preparation(m);
844 	spin_unlock_irqrestore(&pool->lock, flags);
845 }
846 
847 static void copy_complete(int read_err, unsigned long write_err, void *context)
848 {
849 	struct dm_thin_new_mapping *m = context;
850 
851 	m->status = read_err || write_err ? BLK_STS_IOERR : 0;
852 	complete_mapping_preparation(m);
853 }
854 
855 static void overwrite_endio(struct bio *bio)
856 {
857 	struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
858 	struct dm_thin_new_mapping *m = h->overwrite_mapping;
859 
860 	bio->bi_end_io = m->saved_bi_end_io;
861 
862 	m->status = bio->bi_status;
863 	complete_mapping_preparation(m);
864 }
865 
866 /*----------------------------------------------------------------*/
867 
868 /*
869  * Workqueue.
870  */
871 
872 /*
873  * Prepared mapping jobs.
874  */
875 
876 /*
877  * This sends the bios in the cell, except the original holder, back
878  * to the deferred_bios list.
879  */
880 static void cell_defer_no_holder(struct thin_c *tc, struct dm_bio_prison_cell *cell)
881 {
882 	struct pool *pool = tc->pool;
883 	unsigned long flags;
884 	struct bio_list bios;
885 
886 	bio_list_init(&bios);
887 	cell_release_no_holder(pool, cell, &bios);
888 
889 	if (!bio_list_empty(&bios)) {
890 		spin_lock_irqsave(&tc->lock, flags);
891 		bio_list_merge(&tc->deferred_bio_list, &bios);
892 		spin_unlock_irqrestore(&tc->lock, flags);
893 		wake_worker(pool);
894 	}
895 }
896 
897 static void thin_defer_bio(struct thin_c *tc, struct bio *bio);
898 
899 struct remap_info {
900 	struct thin_c *tc;
901 	struct bio_list defer_bios;
902 	struct bio_list issue_bios;
903 };
904 
905 static void __inc_remap_and_issue_cell(void *context,
906 				       struct dm_bio_prison_cell *cell)
907 {
908 	struct remap_info *info = context;
909 	struct bio *bio;
910 
911 	while ((bio = bio_list_pop(&cell->bios))) {
912 		if (op_is_flush(bio->bi_opf) || bio_op(bio) == REQ_OP_DISCARD)
913 			bio_list_add(&info->defer_bios, bio);
914 		else {
915 			inc_all_io_entry(info->tc->pool, bio);
916 
917 			/*
918 			 * We can't issue the bios with the bio prison lock
919 			 * held, so we add them to a list to issue on
920 			 * return from this function.
921 			 */
922 			bio_list_add(&info->issue_bios, bio);
923 		}
924 	}
925 }
926 
927 static void inc_remap_and_issue_cell(struct thin_c *tc,
928 				     struct dm_bio_prison_cell *cell,
929 				     dm_block_t block)
930 {
931 	struct bio *bio;
932 	struct remap_info info;
933 
934 	info.tc = tc;
935 	bio_list_init(&info.defer_bios);
936 	bio_list_init(&info.issue_bios);
937 
938 	/*
939 	 * We have to be careful to inc any bios we're about to issue
940 	 * before the cell is released, and avoid a race with new bios
941 	 * being added to the cell.
942 	 */
943 	cell_visit_release(tc->pool, __inc_remap_and_issue_cell,
944 			   &info, cell);
945 
946 	while ((bio = bio_list_pop(&info.defer_bios)))
947 		thin_defer_bio(tc, bio);
948 
949 	while ((bio = bio_list_pop(&info.issue_bios)))
950 		remap_and_issue(info.tc, bio, block);
951 }
952 
953 static void process_prepared_mapping_fail(struct dm_thin_new_mapping *m)
954 {
955 	cell_error(m->tc->pool, m->cell);
956 	list_del(&m->list);
957 	mempool_free(m, &m->tc->pool->mapping_pool);
958 }
959 
960 static void complete_overwrite_bio(struct thin_c *tc, struct bio *bio)
961 {
962 	struct pool *pool = tc->pool;
963 
964 	/*
965 	 * If the bio has the REQ_FUA flag set we must commit the metadata
966 	 * before signaling its completion.
967 	 */
968 	if (!bio_triggers_commit(tc, bio)) {
969 		bio_endio(bio);
970 		return;
971 	}
972 
973 	/*
974 	 * Complete bio with an error if earlier I/O caused changes to the
975 	 * metadata that can't be committed, e.g, due to I/O errors on the
976 	 * metadata device.
977 	 */
978 	if (dm_thin_aborted_changes(tc->td)) {
979 		bio_io_error(bio);
980 		return;
981 	}
982 
983 	/*
984 	 * Batch together any bios that trigger commits and then issue a
985 	 * single commit for them in process_deferred_bios().
986 	 */
987 	spin_lock_irq(&pool->lock);
988 	bio_list_add(&pool->deferred_flush_completions, bio);
989 	spin_unlock_irq(&pool->lock);
990 }
991 
992 static void process_prepared_mapping(struct dm_thin_new_mapping *m)
993 {
994 	struct thin_c *tc = m->tc;
995 	struct pool *pool = tc->pool;
996 	struct bio *bio = m->bio;
997 	int r;
998 
999 	if (m->status) {
1000 		cell_error(pool, m->cell);
1001 		goto out;
1002 	}
1003 
1004 	/*
1005 	 * Commit the prepared block into the mapping btree.
1006 	 * Any I/O for this block arriving after this point will get
1007 	 * remapped to it directly.
1008 	 */
1009 	r = dm_thin_insert_block(tc->td, m->virt_begin, m->data_block);
1010 	if (r) {
1011 		metadata_operation_failed(pool, "dm_thin_insert_block", r);
1012 		cell_error(pool, m->cell);
1013 		goto out;
1014 	}
1015 
1016 	/*
1017 	 * Release any bios held while the block was being provisioned.
1018 	 * If we are processing a write bio that completely covers the block,
1019 	 * we already processed it so can ignore it now when processing
1020 	 * the bios in the cell.
1021 	 */
1022 	if (bio) {
1023 		inc_remap_and_issue_cell(tc, m->cell, m->data_block);
1024 		complete_overwrite_bio(tc, bio);
1025 	} else {
1026 		inc_all_io_entry(tc->pool, m->cell->holder);
1027 		remap_and_issue(tc, m->cell->holder, m->data_block);
1028 		inc_remap_and_issue_cell(tc, m->cell, m->data_block);
1029 	}
1030 
1031 out:
1032 	list_del(&m->list);
1033 	mempool_free(m, &pool->mapping_pool);
1034 }
1035 
1036 /*----------------------------------------------------------------*/
1037 
1038 static void free_discard_mapping(struct dm_thin_new_mapping *m)
1039 {
1040 	struct thin_c *tc = m->tc;
1041 
1042 	if (m->cell)
1043 		cell_defer_no_holder(tc, m->cell);
1044 	mempool_free(m, &tc->pool->mapping_pool);
1045 }
1046 
1047 static void process_prepared_discard_fail(struct dm_thin_new_mapping *m)
1048 {
1049 	bio_io_error(m->bio);
1050 	free_discard_mapping(m);
1051 }
1052 
1053 static void process_prepared_discard_success(struct dm_thin_new_mapping *m)
1054 {
1055 	bio_endio(m->bio);
1056 	free_discard_mapping(m);
1057 }
1058 
1059 static void process_prepared_discard_no_passdown(struct dm_thin_new_mapping *m)
1060 {
1061 	int r;
1062 	struct thin_c *tc = m->tc;
1063 
1064 	r = dm_thin_remove_range(tc->td, m->cell->key.block_begin, m->cell->key.block_end);
1065 	if (r) {
1066 		metadata_operation_failed(tc->pool, "dm_thin_remove_range", r);
1067 		bio_io_error(m->bio);
1068 	} else
1069 		bio_endio(m->bio);
1070 
1071 	cell_defer_no_holder(tc, m->cell);
1072 	mempool_free(m, &tc->pool->mapping_pool);
1073 }
1074 
1075 /*----------------------------------------------------------------*/
1076 
1077 static void passdown_double_checking_shared_status(struct dm_thin_new_mapping *m,
1078 						   struct bio *discard_parent)
1079 {
1080 	/*
1081 	 * We've already unmapped this range of blocks, but before we
1082 	 * passdown we have to check that these blocks are now unused.
1083 	 */
1084 	int r = 0;
1085 	bool shared = true;
1086 	struct thin_c *tc = m->tc;
1087 	struct pool *pool = tc->pool;
1088 	dm_block_t b = m->data_block, e, end = m->data_block + m->virt_end - m->virt_begin;
1089 	struct discard_op op;
1090 
1091 	begin_discard(&op, tc, discard_parent);
1092 	while (b != end) {
1093 		/* find start of unmapped run */
1094 		for (; b < end; b++) {
1095 			r = dm_pool_block_is_shared(pool->pmd, b, &shared);
1096 			if (r)
1097 				goto out;
1098 
1099 			if (!shared)
1100 				break;
1101 		}
1102 
1103 		if (b == end)
1104 			break;
1105 
1106 		/* find end of run */
1107 		for (e = b + 1; e != end; e++) {
1108 			r = dm_pool_block_is_shared(pool->pmd, e, &shared);
1109 			if (r)
1110 				goto out;
1111 
1112 			if (shared)
1113 				break;
1114 		}
1115 
1116 		r = issue_discard(&op, b, e);
1117 		if (r)
1118 			goto out;
1119 
1120 		b = e;
1121 	}
1122 out:
1123 	end_discard(&op, r);
1124 }
1125 
1126 static void queue_passdown_pt2(struct dm_thin_new_mapping *m)
1127 {
1128 	unsigned long flags;
1129 	struct pool *pool = m->tc->pool;
1130 
1131 	spin_lock_irqsave(&pool->lock, flags);
1132 	list_add_tail(&m->list, &pool->prepared_discards_pt2);
1133 	spin_unlock_irqrestore(&pool->lock, flags);
1134 	wake_worker(pool);
1135 }
1136 
1137 static void passdown_endio(struct bio *bio)
1138 {
1139 	/*
1140 	 * It doesn't matter if the passdown discard failed, we still want
1141 	 * to unmap (we ignore err).
1142 	 */
1143 	queue_passdown_pt2(bio->bi_private);
1144 	bio_put(bio);
1145 }
1146 
1147 static void process_prepared_discard_passdown_pt1(struct dm_thin_new_mapping *m)
1148 {
1149 	int r;
1150 	struct thin_c *tc = m->tc;
1151 	struct pool *pool = tc->pool;
1152 	struct bio *discard_parent;
1153 	dm_block_t data_end = m->data_block + (m->virt_end - m->virt_begin);
1154 
1155 	/*
1156 	 * Only this thread allocates blocks, so we can be sure that the
1157 	 * newly unmapped blocks will not be allocated before the end of
1158 	 * the function.
1159 	 */
1160 	r = dm_thin_remove_range(tc->td, m->virt_begin, m->virt_end);
1161 	if (r) {
1162 		metadata_operation_failed(pool, "dm_thin_remove_range", r);
1163 		bio_io_error(m->bio);
1164 		cell_defer_no_holder(tc, m->cell);
1165 		mempool_free(m, &pool->mapping_pool);
1166 		return;
1167 	}
1168 
1169 	/*
1170 	 * Increment the unmapped blocks.  This prevents a race between the
1171 	 * passdown io and reallocation of freed blocks.
1172 	 */
1173 	r = dm_pool_inc_data_range(pool->pmd, m->data_block, data_end);
1174 	if (r) {
1175 		metadata_operation_failed(pool, "dm_pool_inc_data_range", r);
1176 		bio_io_error(m->bio);
1177 		cell_defer_no_holder(tc, m->cell);
1178 		mempool_free(m, &pool->mapping_pool);
1179 		return;
1180 	}
1181 
1182 	discard_parent = bio_alloc(NULL, 1, 0, GFP_NOIO);
1183 	discard_parent->bi_end_io = passdown_endio;
1184 	discard_parent->bi_private = m;
1185 	if (m->maybe_shared)
1186 		passdown_double_checking_shared_status(m, discard_parent);
1187 	else {
1188 		struct discard_op op;
1189 
1190 		begin_discard(&op, tc, discard_parent);
1191 		r = issue_discard(&op, m->data_block, data_end);
1192 		end_discard(&op, r);
1193 	}
1194 }
1195 
1196 static void process_prepared_discard_passdown_pt2(struct dm_thin_new_mapping *m)
1197 {
1198 	int r;
1199 	struct thin_c *tc = m->tc;
1200 	struct pool *pool = tc->pool;
1201 
1202 	/*
1203 	 * The passdown has completed, so now we can decrement all those
1204 	 * unmapped blocks.
1205 	 */
1206 	r = dm_pool_dec_data_range(pool->pmd, m->data_block,
1207 				   m->data_block + (m->virt_end - m->virt_begin));
1208 	if (r) {
1209 		metadata_operation_failed(pool, "dm_pool_dec_data_range", r);
1210 		bio_io_error(m->bio);
1211 	} else
1212 		bio_endio(m->bio);
1213 
1214 	cell_defer_no_holder(tc, m->cell);
1215 	mempool_free(m, &pool->mapping_pool);
1216 }
1217 
1218 static void process_prepared(struct pool *pool, struct list_head *head,
1219 			     process_mapping_fn *fn)
1220 {
1221 	struct list_head maps;
1222 	struct dm_thin_new_mapping *m, *tmp;
1223 
1224 	INIT_LIST_HEAD(&maps);
1225 	spin_lock_irq(&pool->lock);
1226 	list_splice_init(head, &maps);
1227 	spin_unlock_irq(&pool->lock);
1228 
1229 	list_for_each_entry_safe(m, tmp, &maps, list)
1230 		(*fn)(m);
1231 }
1232 
1233 /*
1234  * Deferred bio jobs.
1235  */
1236 static int io_overlaps_block(struct pool *pool, struct bio *bio)
1237 {
1238 	return bio->bi_iter.bi_size ==
1239 		(pool->sectors_per_block << SECTOR_SHIFT);
1240 }
1241 
1242 static int io_overwrites_block(struct pool *pool, struct bio *bio)
1243 {
1244 	return (bio_data_dir(bio) == WRITE) &&
1245 		io_overlaps_block(pool, bio);
1246 }
1247 
1248 static void save_and_set_endio(struct bio *bio, bio_end_io_t **save,
1249 			       bio_end_io_t *fn)
1250 {
1251 	*save = bio->bi_end_io;
1252 	bio->bi_end_io = fn;
1253 }
1254 
1255 static int ensure_next_mapping(struct pool *pool)
1256 {
1257 	if (pool->next_mapping)
1258 		return 0;
1259 
1260 	pool->next_mapping = mempool_alloc(&pool->mapping_pool, GFP_ATOMIC);
1261 
1262 	return pool->next_mapping ? 0 : -ENOMEM;
1263 }
1264 
1265 static struct dm_thin_new_mapping *get_next_mapping(struct pool *pool)
1266 {
1267 	struct dm_thin_new_mapping *m = pool->next_mapping;
1268 
1269 	BUG_ON(!pool->next_mapping);
1270 
1271 	memset(m, 0, sizeof(struct dm_thin_new_mapping));
1272 	INIT_LIST_HEAD(&m->list);
1273 	m->bio = NULL;
1274 
1275 	pool->next_mapping = NULL;
1276 
1277 	return m;
1278 }
1279 
1280 static void ll_zero(struct thin_c *tc, struct dm_thin_new_mapping *m,
1281 		    sector_t begin, sector_t end)
1282 {
1283 	struct dm_io_region to;
1284 
1285 	to.bdev = tc->pool_dev->bdev;
1286 	to.sector = begin;
1287 	to.count = end - begin;
1288 
1289 	dm_kcopyd_zero(tc->pool->copier, 1, &to, 0, copy_complete, m);
1290 }
1291 
1292 static void remap_and_issue_overwrite(struct thin_c *tc, struct bio *bio,
1293 				      dm_block_t data_begin,
1294 				      struct dm_thin_new_mapping *m)
1295 {
1296 	struct pool *pool = tc->pool;
1297 	struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1298 
1299 	h->overwrite_mapping = m;
1300 	m->bio = bio;
1301 	save_and_set_endio(bio, &m->saved_bi_end_io, overwrite_endio);
1302 	inc_all_io_entry(pool, bio);
1303 	remap_and_issue(tc, bio, data_begin);
1304 }
1305 
1306 /*
1307  * A partial copy also needs to zero the uncopied region.
1308  */
1309 static void schedule_copy(struct thin_c *tc, dm_block_t virt_block,
1310 			  struct dm_dev *origin, dm_block_t data_origin,
1311 			  dm_block_t data_dest,
1312 			  struct dm_bio_prison_cell *cell, struct bio *bio,
1313 			  sector_t len)
1314 {
1315 	struct pool *pool = tc->pool;
1316 	struct dm_thin_new_mapping *m = get_next_mapping(pool);
1317 
1318 	m->tc = tc;
1319 	m->virt_begin = virt_block;
1320 	m->virt_end = virt_block + 1u;
1321 	m->data_block = data_dest;
1322 	m->cell = cell;
1323 
1324 	/*
1325 	 * quiesce action + copy action + an extra reference held for the
1326 	 * duration of this function (we may need to inc later for a
1327 	 * partial zero).
1328 	 */
1329 	atomic_set(&m->prepare_actions, 3);
1330 
1331 	if (!dm_deferred_set_add_work(pool->shared_read_ds, &m->list))
1332 		complete_mapping_preparation(m); /* already quiesced */
1333 
1334 	/*
1335 	 * IO to pool_dev remaps to the pool target's data_dev.
1336 	 *
1337 	 * If the whole block of data is being overwritten, we can issue the
1338 	 * bio immediately. Otherwise we use kcopyd to clone the data first.
1339 	 */
1340 	if (io_overwrites_block(pool, bio))
1341 		remap_and_issue_overwrite(tc, bio, data_dest, m);
1342 	else {
1343 		struct dm_io_region from, to;
1344 
1345 		from.bdev = origin->bdev;
1346 		from.sector = data_origin * pool->sectors_per_block;
1347 		from.count = len;
1348 
1349 		to.bdev = tc->pool_dev->bdev;
1350 		to.sector = data_dest * pool->sectors_per_block;
1351 		to.count = len;
1352 
1353 		dm_kcopyd_copy(pool->copier, &from, 1, &to,
1354 			       0, copy_complete, m);
1355 
1356 		/*
1357 		 * Do we need to zero a tail region?
1358 		 */
1359 		if (len < pool->sectors_per_block && pool->pf.zero_new_blocks) {
1360 			atomic_inc(&m->prepare_actions);
1361 			ll_zero(tc, m,
1362 				data_dest * pool->sectors_per_block + len,
1363 				(data_dest + 1) * pool->sectors_per_block);
1364 		}
1365 	}
1366 
1367 	complete_mapping_preparation(m); /* drop our ref */
1368 }
1369 
1370 static void schedule_internal_copy(struct thin_c *tc, dm_block_t virt_block,
1371 				   dm_block_t data_origin, dm_block_t data_dest,
1372 				   struct dm_bio_prison_cell *cell, struct bio *bio)
1373 {
1374 	schedule_copy(tc, virt_block, tc->pool_dev,
1375 		      data_origin, data_dest, cell, bio,
1376 		      tc->pool->sectors_per_block);
1377 }
1378 
1379 static void schedule_zero(struct thin_c *tc, dm_block_t virt_block,
1380 			  dm_block_t data_block, struct dm_bio_prison_cell *cell,
1381 			  struct bio *bio)
1382 {
1383 	struct pool *pool = tc->pool;
1384 	struct dm_thin_new_mapping *m = get_next_mapping(pool);
1385 
1386 	atomic_set(&m->prepare_actions, 1); /* no need to quiesce */
1387 	m->tc = tc;
1388 	m->virt_begin = virt_block;
1389 	m->virt_end = virt_block + 1u;
1390 	m->data_block = data_block;
1391 	m->cell = cell;
1392 
1393 	/*
1394 	 * If the whole block of data is being overwritten or we are not
1395 	 * zeroing pre-existing data, we can issue the bio immediately.
1396 	 * Otherwise we use kcopyd to zero the data first.
1397 	 */
1398 	if (pool->pf.zero_new_blocks) {
1399 		if (io_overwrites_block(pool, bio))
1400 			remap_and_issue_overwrite(tc, bio, data_block, m);
1401 		else {
1402 			ll_zero(tc, m, data_block * pool->sectors_per_block,
1403 				(data_block + 1) * pool->sectors_per_block);
1404 		}
1405 	} else
1406 		process_prepared_mapping(m);
1407 }
1408 
1409 static void schedule_external_copy(struct thin_c *tc, dm_block_t virt_block,
1410 				   dm_block_t data_dest,
1411 				   struct dm_bio_prison_cell *cell, struct bio *bio)
1412 {
1413 	struct pool *pool = tc->pool;
1414 	sector_t virt_block_begin = virt_block * pool->sectors_per_block;
1415 	sector_t virt_block_end = (virt_block + 1) * pool->sectors_per_block;
1416 
1417 	if (virt_block_end <= tc->origin_size) {
1418 		schedule_copy(tc, virt_block, tc->origin_dev,
1419 			      virt_block, data_dest, cell, bio,
1420 			      pool->sectors_per_block);
1421 
1422 	} else if (virt_block_begin < tc->origin_size) {
1423 		schedule_copy(tc, virt_block, tc->origin_dev,
1424 			      virt_block, data_dest, cell, bio,
1425 			      tc->origin_size - virt_block_begin);
1426 
1427 	} else
1428 		schedule_zero(tc, virt_block, data_dest, cell, bio);
1429 }
1430 
1431 static void set_pool_mode(struct pool *pool, enum pool_mode new_mode);
1432 
1433 static void requeue_bios(struct pool *pool);
1434 
1435 static bool is_read_only_pool_mode(enum pool_mode mode)
1436 {
1437 	return (mode == PM_OUT_OF_METADATA_SPACE || mode == PM_READ_ONLY);
1438 }
1439 
1440 static bool is_read_only(struct pool *pool)
1441 {
1442 	return is_read_only_pool_mode(get_pool_mode(pool));
1443 }
1444 
1445 static void check_for_metadata_space(struct pool *pool)
1446 {
1447 	int r;
1448 	const char *ooms_reason = NULL;
1449 	dm_block_t nr_free;
1450 
1451 	r = dm_pool_get_free_metadata_block_count(pool->pmd, &nr_free);
1452 	if (r)
1453 		ooms_reason = "Could not get free metadata blocks";
1454 	else if (!nr_free)
1455 		ooms_reason = "No free metadata blocks";
1456 
1457 	if (ooms_reason && !is_read_only(pool)) {
1458 		DMERR("%s", ooms_reason);
1459 		set_pool_mode(pool, PM_OUT_OF_METADATA_SPACE);
1460 	}
1461 }
1462 
1463 static void check_for_data_space(struct pool *pool)
1464 {
1465 	int r;
1466 	dm_block_t nr_free;
1467 
1468 	if (get_pool_mode(pool) != PM_OUT_OF_DATA_SPACE)
1469 		return;
1470 
1471 	r = dm_pool_get_free_block_count(pool->pmd, &nr_free);
1472 	if (r)
1473 		return;
1474 
1475 	if (nr_free) {
1476 		set_pool_mode(pool, PM_WRITE);
1477 		requeue_bios(pool);
1478 	}
1479 }
1480 
1481 /*
1482  * A non-zero return indicates read_only or fail_io mode.
1483  * Many callers don't care about the return value.
1484  */
1485 static int commit(struct pool *pool)
1486 {
1487 	int r;
1488 
1489 	if (get_pool_mode(pool) >= PM_OUT_OF_METADATA_SPACE)
1490 		return -EINVAL;
1491 
1492 	r = dm_pool_commit_metadata(pool->pmd);
1493 	if (r)
1494 		metadata_operation_failed(pool, "dm_pool_commit_metadata", r);
1495 	else {
1496 		check_for_metadata_space(pool);
1497 		check_for_data_space(pool);
1498 	}
1499 
1500 	return r;
1501 }
1502 
1503 static void check_low_water_mark(struct pool *pool, dm_block_t free_blocks)
1504 {
1505 	if (free_blocks <= pool->low_water_blocks && !pool->low_water_triggered) {
1506 		DMWARN("%s: reached low water mark for data device: sending event.",
1507 		       dm_device_name(pool->pool_md));
1508 		spin_lock_irq(&pool->lock);
1509 		pool->low_water_triggered = true;
1510 		spin_unlock_irq(&pool->lock);
1511 		dm_table_event(pool->ti->table);
1512 	}
1513 }
1514 
1515 static int alloc_data_block(struct thin_c *tc, dm_block_t *result)
1516 {
1517 	int r;
1518 	dm_block_t free_blocks;
1519 	struct pool *pool = tc->pool;
1520 
1521 	if (WARN_ON(get_pool_mode(pool) != PM_WRITE))
1522 		return -EINVAL;
1523 
1524 	r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
1525 	if (r) {
1526 		metadata_operation_failed(pool, "dm_pool_get_free_block_count", r);
1527 		return r;
1528 	}
1529 
1530 	check_low_water_mark(pool, free_blocks);
1531 
1532 	if (!free_blocks) {
1533 		/*
1534 		 * Try to commit to see if that will free up some
1535 		 * more space.
1536 		 */
1537 		r = commit(pool);
1538 		if (r)
1539 			return r;
1540 
1541 		r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
1542 		if (r) {
1543 			metadata_operation_failed(pool, "dm_pool_get_free_block_count", r);
1544 			return r;
1545 		}
1546 
1547 		if (!free_blocks) {
1548 			set_pool_mode(pool, PM_OUT_OF_DATA_SPACE);
1549 			return -ENOSPC;
1550 		}
1551 	}
1552 
1553 	r = dm_pool_alloc_data_block(pool->pmd, result);
1554 	if (r) {
1555 		if (r == -ENOSPC)
1556 			set_pool_mode(pool, PM_OUT_OF_DATA_SPACE);
1557 		else
1558 			metadata_operation_failed(pool, "dm_pool_alloc_data_block", r);
1559 		return r;
1560 	}
1561 
1562 	r = dm_pool_get_free_metadata_block_count(pool->pmd, &free_blocks);
1563 	if (r) {
1564 		metadata_operation_failed(pool, "dm_pool_get_free_metadata_block_count", r);
1565 		return r;
1566 	}
1567 
1568 	if (!free_blocks) {
1569 		/* Let's commit before we use up the metadata reserve. */
1570 		r = commit(pool);
1571 		if (r)
1572 			return r;
1573 	}
1574 
1575 	return 0;
1576 }
1577 
1578 /*
1579  * If we have run out of space, queue bios until the device is
1580  * resumed, presumably after having been reloaded with more space.
1581  */
1582 static void retry_on_resume(struct bio *bio)
1583 {
1584 	struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1585 	struct thin_c *tc = h->tc;
1586 
1587 	spin_lock_irq(&tc->lock);
1588 	bio_list_add(&tc->retry_on_resume_list, bio);
1589 	spin_unlock_irq(&tc->lock);
1590 }
1591 
1592 static blk_status_t should_error_unserviceable_bio(struct pool *pool)
1593 {
1594 	enum pool_mode m = get_pool_mode(pool);
1595 
1596 	switch (m) {
1597 	case PM_WRITE:
1598 		/* Shouldn't get here */
1599 		DMERR_LIMIT("bio unserviceable, yet pool is in PM_WRITE mode");
1600 		return BLK_STS_IOERR;
1601 
1602 	case PM_OUT_OF_DATA_SPACE:
1603 		return pool->pf.error_if_no_space ? BLK_STS_NOSPC : 0;
1604 
1605 	case PM_OUT_OF_METADATA_SPACE:
1606 	case PM_READ_ONLY:
1607 	case PM_FAIL:
1608 		return BLK_STS_IOERR;
1609 	default:
1610 		/* Shouldn't get here */
1611 		DMERR_LIMIT("bio unserviceable, yet pool has an unknown mode");
1612 		return BLK_STS_IOERR;
1613 	}
1614 }
1615 
1616 static void handle_unserviceable_bio(struct pool *pool, struct bio *bio)
1617 {
1618 	blk_status_t error = should_error_unserviceable_bio(pool);
1619 
1620 	if (error) {
1621 		bio->bi_status = error;
1622 		bio_endio(bio);
1623 	} else
1624 		retry_on_resume(bio);
1625 }
1626 
1627 static void retry_bios_on_resume(struct pool *pool, struct dm_bio_prison_cell *cell)
1628 {
1629 	struct bio *bio;
1630 	struct bio_list bios;
1631 	blk_status_t error;
1632 
1633 	error = should_error_unserviceable_bio(pool);
1634 	if (error) {
1635 		cell_error_with_code(pool, cell, error);
1636 		return;
1637 	}
1638 
1639 	bio_list_init(&bios);
1640 	cell_release(pool, cell, &bios);
1641 
1642 	while ((bio = bio_list_pop(&bios)))
1643 		retry_on_resume(bio);
1644 }
1645 
1646 static void process_discard_cell_no_passdown(struct thin_c *tc,
1647 					     struct dm_bio_prison_cell *virt_cell)
1648 {
1649 	struct pool *pool = tc->pool;
1650 	struct dm_thin_new_mapping *m = get_next_mapping(pool);
1651 
1652 	/*
1653 	 * We don't need to lock the data blocks, since there's no
1654 	 * passdown.  We only lock data blocks for allocation and breaking sharing.
1655 	 */
1656 	m->tc = tc;
1657 	m->virt_begin = virt_cell->key.block_begin;
1658 	m->virt_end = virt_cell->key.block_end;
1659 	m->cell = virt_cell;
1660 	m->bio = virt_cell->holder;
1661 
1662 	if (!dm_deferred_set_add_work(pool->all_io_ds, &m->list))
1663 		pool->process_prepared_discard(m);
1664 }
1665 
1666 static void break_up_discard_bio(struct thin_c *tc, dm_block_t begin, dm_block_t end,
1667 				 struct bio *bio)
1668 {
1669 	struct pool *pool = tc->pool;
1670 
1671 	int r;
1672 	bool maybe_shared;
1673 	struct dm_cell_key data_key;
1674 	struct dm_bio_prison_cell *data_cell;
1675 	struct dm_thin_new_mapping *m;
1676 	dm_block_t virt_begin, virt_end, data_begin, data_end;
1677 	dm_block_t len, next_boundary;
1678 
1679 	while (begin != end) {
1680 		r = dm_thin_find_mapped_range(tc->td, begin, end, &virt_begin, &virt_end,
1681 					      &data_begin, &maybe_shared);
1682 		if (r) {
1683 			/*
1684 			 * Silently fail, letting any mappings we've
1685 			 * created complete.
1686 			 */
1687 			break;
1688 		}
1689 
1690 		data_end = data_begin + (virt_end - virt_begin);
1691 
1692 		/*
1693 		 * Make sure the data region obeys the bio prison restrictions.
1694 		 */
1695 		while (data_begin < data_end) {
1696 			r = ensure_next_mapping(pool);
1697 			if (r)
1698 				return; /* we did our best */
1699 
1700 			next_boundary = ((data_begin >> BIO_PRISON_MAX_RANGE_SHIFT) + 1)
1701 				<< BIO_PRISON_MAX_RANGE_SHIFT;
1702 			len = min_t(sector_t, data_end - data_begin, next_boundary - data_begin);
1703 
1704 			/* This key is certainly within range given the above splitting */
1705 			(void) build_key(tc->td, PHYSICAL, data_begin, data_begin + len, &data_key);
1706 			if (bio_detain(tc->pool, &data_key, NULL, &data_cell)) {
1707 				/* contention, we'll give up with this range */
1708 				data_begin += len;
1709 				continue;
1710 			}
1711 
1712 			/*
1713 			 * IO may still be going to the destination block.  We must
1714 			 * quiesce before we can do the removal.
1715 			 */
1716 			m = get_next_mapping(pool);
1717 			m->tc = tc;
1718 			m->maybe_shared = maybe_shared;
1719 			m->virt_begin = virt_begin;
1720 			m->virt_end = virt_begin + len;
1721 			m->data_block = data_begin;
1722 			m->cell = data_cell;
1723 			m->bio = bio;
1724 
1725 			/*
1726 			 * The parent bio must not complete before sub discard bios are
1727 			 * chained to it (see end_discard's bio_chain)!
1728 			 *
1729 			 * This per-mapping bi_remaining increment is paired with
1730 			 * the implicit decrement that occurs via bio_endio() in
1731 			 * end_discard().
1732 			 */
1733 			bio_inc_remaining(bio);
1734 			if (!dm_deferred_set_add_work(pool->all_io_ds, &m->list))
1735 				pool->process_prepared_discard(m);
1736 
1737 			virt_begin += len;
1738 			data_begin += len;
1739 		}
1740 
1741 		begin = virt_end;
1742 	}
1743 }
1744 
1745 static void process_discard_cell_passdown(struct thin_c *tc, struct dm_bio_prison_cell *virt_cell)
1746 {
1747 	struct bio *bio = virt_cell->holder;
1748 	struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1749 
1750 	/*
1751 	 * The virt_cell will only get freed once the origin bio completes.
1752 	 * This means it will remain locked while all the individual
1753 	 * passdown bios are in flight.
1754 	 */
1755 	h->cell = virt_cell;
1756 	break_up_discard_bio(tc, virt_cell->key.block_begin, virt_cell->key.block_end, bio);
1757 
1758 	/*
1759 	 * We complete the bio now, knowing that the bi_remaining field
1760 	 * will prevent completion until the sub range discards have
1761 	 * completed.
1762 	 */
1763 	bio_endio(bio);
1764 }
1765 
1766 static void process_discard_bio(struct thin_c *tc, struct bio *bio)
1767 {
1768 	dm_block_t begin, end;
1769 	struct dm_cell_key virt_key;
1770 	struct dm_bio_prison_cell *virt_cell;
1771 
1772 	get_bio_block_range(tc, bio, &begin, &end);
1773 	if (begin == end) {
1774 		/*
1775 		 * The discard covers less than a block.
1776 		 */
1777 		bio_endio(bio);
1778 		return;
1779 	}
1780 
1781 	if (unlikely(!build_key(tc->td, VIRTUAL, begin, end, &virt_key))) {
1782 		DMERR_LIMIT("Discard doesn't respect bio prison limits");
1783 		bio_endio(bio);
1784 		return;
1785 	}
1786 
1787 	if (bio_detain(tc->pool, &virt_key, bio, &virt_cell)) {
1788 		/*
1789 		 * Potential starvation issue: We're relying on the
1790 		 * fs/application being well behaved, and not trying to
1791 		 * send IO to a region at the same time as discarding it.
1792 		 * If they do this persistently then it's possible this
1793 		 * cell will never be granted.
1794 		 */
1795 		return;
1796 	}
1797 
1798 	tc->pool->process_discard_cell(tc, virt_cell);
1799 }
1800 
1801 static void break_sharing(struct thin_c *tc, struct bio *bio, dm_block_t block,
1802 			  struct dm_cell_key *key,
1803 			  struct dm_thin_lookup_result *lookup_result,
1804 			  struct dm_bio_prison_cell *cell)
1805 {
1806 	int r;
1807 	dm_block_t data_block;
1808 	struct pool *pool = tc->pool;
1809 
1810 	r = alloc_data_block(tc, &data_block);
1811 	switch (r) {
1812 	case 0:
1813 		schedule_internal_copy(tc, block, lookup_result->block,
1814 				       data_block, cell, bio);
1815 		break;
1816 
1817 	case -ENOSPC:
1818 		retry_bios_on_resume(pool, cell);
1819 		break;
1820 
1821 	default:
1822 		DMERR_LIMIT("%s: alloc_data_block() failed: error = %d",
1823 			    __func__, r);
1824 		cell_error(pool, cell);
1825 		break;
1826 	}
1827 }
1828 
1829 static void __remap_and_issue_shared_cell(void *context,
1830 					  struct dm_bio_prison_cell *cell)
1831 {
1832 	struct remap_info *info = context;
1833 	struct bio *bio;
1834 
1835 	while ((bio = bio_list_pop(&cell->bios))) {
1836 		if (bio_data_dir(bio) == WRITE || op_is_flush(bio->bi_opf) ||
1837 		    bio_op(bio) == REQ_OP_DISCARD)
1838 			bio_list_add(&info->defer_bios, bio);
1839 		else {
1840 			struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1841 
1842 			h->shared_read_entry = dm_deferred_entry_inc(info->tc->pool->shared_read_ds);
1843 			inc_all_io_entry(info->tc->pool, bio);
1844 			bio_list_add(&info->issue_bios, bio);
1845 		}
1846 	}
1847 }
1848 
1849 static void remap_and_issue_shared_cell(struct thin_c *tc,
1850 					struct dm_bio_prison_cell *cell,
1851 					dm_block_t block)
1852 {
1853 	struct bio *bio;
1854 	struct remap_info info;
1855 
1856 	info.tc = tc;
1857 	bio_list_init(&info.defer_bios);
1858 	bio_list_init(&info.issue_bios);
1859 
1860 	cell_visit_release(tc->pool, __remap_and_issue_shared_cell,
1861 			   &info, cell);
1862 
1863 	while ((bio = bio_list_pop(&info.defer_bios)))
1864 		thin_defer_bio(tc, bio);
1865 
1866 	while ((bio = bio_list_pop(&info.issue_bios)))
1867 		remap_and_issue(tc, bio, block);
1868 }
1869 
1870 static void process_shared_bio(struct thin_c *tc, struct bio *bio,
1871 			       dm_block_t block,
1872 			       struct dm_thin_lookup_result *lookup_result,
1873 			       struct dm_bio_prison_cell *virt_cell)
1874 {
1875 	struct dm_bio_prison_cell *data_cell;
1876 	struct pool *pool = tc->pool;
1877 	struct dm_cell_key key;
1878 
1879 	/*
1880 	 * If cell is already occupied, then sharing is already in the process
1881 	 * of being broken so we have nothing further to do here.
1882 	 */
1883 	build_data_key(tc->td, lookup_result->block, &key);
1884 	if (bio_detain(pool, &key, bio, &data_cell)) {
1885 		cell_defer_no_holder(tc, virt_cell);
1886 		return;
1887 	}
1888 
1889 	if (bio_data_dir(bio) == WRITE && bio->bi_iter.bi_size) {
1890 		break_sharing(tc, bio, block, &key, lookup_result, data_cell);
1891 		cell_defer_no_holder(tc, virt_cell);
1892 	} else {
1893 		struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1894 
1895 		h->shared_read_entry = dm_deferred_entry_inc(pool->shared_read_ds);
1896 		inc_all_io_entry(pool, bio);
1897 		remap_and_issue(tc, bio, lookup_result->block);
1898 
1899 		remap_and_issue_shared_cell(tc, data_cell, lookup_result->block);
1900 		remap_and_issue_shared_cell(tc, virt_cell, lookup_result->block);
1901 	}
1902 }
1903 
1904 static void provision_block(struct thin_c *tc, struct bio *bio, dm_block_t block,
1905 			    struct dm_bio_prison_cell *cell)
1906 {
1907 	int r;
1908 	dm_block_t data_block;
1909 	struct pool *pool = tc->pool;
1910 
1911 	/*
1912 	 * Remap empty bios (flushes) immediately, without provisioning.
1913 	 */
1914 	if (!bio->bi_iter.bi_size) {
1915 		inc_all_io_entry(pool, bio);
1916 		cell_defer_no_holder(tc, cell);
1917 
1918 		remap_and_issue(tc, bio, 0);
1919 		return;
1920 	}
1921 
1922 	/*
1923 	 * Fill read bios with zeroes and complete them immediately.
1924 	 */
1925 	if (bio_data_dir(bio) == READ) {
1926 		zero_fill_bio(bio);
1927 		cell_defer_no_holder(tc, cell);
1928 		bio_endio(bio);
1929 		return;
1930 	}
1931 
1932 	r = alloc_data_block(tc, &data_block);
1933 	switch (r) {
1934 	case 0:
1935 		if (tc->origin_dev)
1936 			schedule_external_copy(tc, block, data_block, cell, bio);
1937 		else
1938 			schedule_zero(tc, block, data_block, cell, bio);
1939 		break;
1940 
1941 	case -ENOSPC:
1942 		retry_bios_on_resume(pool, cell);
1943 		break;
1944 
1945 	default:
1946 		DMERR_LIMIT("%s: alloc_data_block() failed: error = %d",
1947 			    __func__, r);
1948 		cell_error(pool, cell);
1949 		break;
1950 	}
1951 }
1952 
1953 static void process_cell(struct thin_c *tc, struct dm_bio_prison_cell *cell)
1954 {
1955 	int r;
1956 	struct pool *pool = tc->pool;
1957 	struct bio *bio = cell->holder;
1958 	dm_block_t block = get_bio_block(tc, bio);
1959 	struct dm_thin_lookup_result lookup_result;
1960 
1961 	if (tc->requeue_mode) {
1962 		cell_requeue(pool, cell);
1963 		return;
1964 	}
1965 
1966 	r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1967 	switch (r) {
1968 	case 0:
1969 		if (lookup_result.shared)
1970 			process_shared_bio(tc, bio, block, &lookup_result, cell);
1971 		else {
1972 			inc_all_io_entry(pool, bio);
1973 			remap_and_issue(tc, bio, lookup_result.block);
1974 			inc_remap_and_issue_cell(tc, cell, lookup_result.block);
1975 		}
1976 		break;
1977 
1978 	case -ENODATA:
1979 		if (bio_data_dir(bio) == READ && tc->origin_dev) {
1980 			inc_all_io_entry(pool, bio);
1981 			cell_defer_no_holder(tc, cell);
1982 
1983 			if (bio_end_sector(bio) <= tc->origin_size)
1984 				remap_to_origin_and_issue(tc, bio);
1985 
1986 			else if (bio->bi_iter.bi_sector < tc->origin_size) {
1987 				zero_fill_bio(bio);
1988 				bio->bi_iter.bi_size = (tc->origin_size - bio->bi_iter.bi_sector) << SECTOR_SHIFT;
1989 				remap_to_origin_and_issue(tc, bio);
1990 
1991 			} else {
1992 				zero_fill_bio(bio);
1993 				bio_endio(bio);
1994 			}
1995 		} else
1996 			provision_block(tc, bio, block, cell);
1997 		break;
1998 
1999 	default:
2000 		DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
2001 			    __func__, r);
2002 		cell_defer_no_holder(tc, cell);
2003 		bio_io_error(bio);
2004 		break;
2005 	}
2006 }
2007 
2008 static void process_bio(struct thin_c *tc, struct bio *bio)
2009 {
2010 	struct pool *pool = tc->pool;
2011 	dm_block_t block = get_bio_block(tc, bio);
2012 	struct dm_bio_prison_cell *cell;
2013 	struct dm_cell_key key;
2014 
2015 	/*
2016 	 * If cell is already occupied, then the block is already
2017 	 * being provisioned so we have nothing further to do here.
2018 	 */
2019 	build_virtual_key(tc->td, block, &key);
2020 	if (bio_detain(pool, &key, bio, &cell))
2021 		return;
2022 
2023 	process_cell(tc, cell);
2024 }
2025 
2026 static void __process_bio_read_only(struct thin_c *tc, struct bio *bio,
2027 				    struct dm_bio_prison_cell *cell)
2028 {
2029 	int r;
2030 	int rw = bio_data_dir(bio);
2031 	dm_block_t block = get_bio_block(tc, bio);
2032 	struct dm_thin_lookup_result lookup_result;
2033 
2034 	r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
2035 	switch (r) {
2036 	case 0:
2037 		if (lookup_result.shared && (rw == WRITE) && bio->bi_iter.bi_size) {
2038 			handle_unserviceable_bio(tc->pool, bio);
2039 			if (cell)
2040 				cell_defer_no_holder(tc, cell);
2041 		} else {
2042 			inc_all_io_entry(tc->pool, bio);
2043 			remap_and_issue(tc, bio, lookup_result.block);
2044 			if (cell)
2045 				inc_remap_and_issue_cell(tc, cell, lookup_result.block);
2046 		}
2047 		break;
2048 
2049 	case -ENODATA:
2050 		if (cell)
2051 			cell_defer_no_holder(tc, cell);
2052 		if (rw != READ) {
2053 			handle_unserviceable_bio(tc->pool, bio);
2054 			break;
2055 		}
2056 
2057 		if (tc->origin_dev) {
2058 			inc_all_io_entry(tc->pool, bio);
2059 			remap_to_origin_and_issue(tc, bio);
2060 			break;
2061 		}
2062 
2063 		zero_fill_bio(bio);
2064 		bio_endio(bio);
2065 		break;
2066 
2067 	default:
2068 		DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
2069 			    __func__, r);
2070 		if (cell)
2071 			cell_defer_no_holder(tc, cell);
2072 		bio_io_error(bio);
2073 		break;
2074 	}
2075 }
2076 
2077 static void process_bio_read_only(struct thin_c *tc, struct bio *bio)
2078 {
2079 	__process_bio_read_only(tc, bio, NULL);
2080 }
2081 
2082 static void process_cell_read_only(struct thin_c *tc, struct dm_bio_prison_cell *cell)
2083 {
2084 	__process_bio_read_only(tc, cell->holder, cell);
2085 }
2086 
2087 static void process_bio_success(struct thin_c *tc, struct bio *bio)
2088 {
2089 	bio_endio(bio);
2090 }
2091 
2092 static void process_bio_fail(struct thin_c *tc, struct bio *bio)
2093 {
2094 	bio_io_error(bio);
2095 }
2096 
2097 static void process_cell_success(struct thin_c *tc, struct dm_bio_prison_cell *cell)
2098 {
2099 	cell_success(tc->pool, cell);
2100 }
2101 
2102 static void process_cell_fail(struct thin_c *tc, struct dm_bio_prison_cell *cell)
2103 {
2104 	cell_error(tc->pool, cell);
2105 }
2106 
2107 /*
2108  * FIXME: should we also commit due to size of transaction, measured in
2109  * metadata blocks?
2110  */
2111 static int need_commit_due_to_time(struct pool *pool)
2112 {
2113 	return !time_in_range(jiffies, pool->last_commit_jiffies,
2114 			      pool->last_commit_jiffies + COMMIT_PERIOD);
2115 }
2116 
2117 #define thin_pbd(node) rb_entry((node), struct dm_thin_endio_hook, rb_node)
2118 #define thin_bio(pbd) dm_bio_from_per_bio_data((pbd), sizeof(struct dm_thin_endio_hook))
2119 
2120 static void __thin_bio_rb_add(struct thin_c *tc, struct bio *bio)
2121 {
2122 	struct rb_node **rbp, *parent;
2123 	struct dm_thin_endio_hook *pbd;
2124 	sector_t bi_sector = bio->bi_iter.bi_sector;
2125 
2126 	rbp = &tc->sort_bio_list.rb_node;
2127 	parent = NULL;
2128 	while (*rbp) {
2129 		parent = *rbp;
2130 		pbd = thin_pbd(parent);
2131 
2132 		if (bi_sector < thin_bio(pbd)->bi_iter.bi_sector)
2133 			rbp = &(*rbp)->rb_left;
2134 		else
2135 			rbp = &(*rbp)->rb_right;
2136 	}
2137 
2138 	pbd = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
2139 	rb_link_node(&pbd->rb_node, parent, rbp);
2140 	rb_insert_color(&pbd->rb_node, &tc->sort_bio_list);
2141 }
2142 
2143 static void __extract_sorted_bios(struct thin_c *tc)
2144 {
2145 	struct rb_node *node;
2146 	struct dm_thin_endio_hook *pbd;
2147 	struct bio *bio;
2148 
2149 	for (node = rb_first(&tc->sort_bio_list); node; node = rb_next(node)) {
2150 		pbd = thin_pbd(node);
2151 		bio = thin_bio(pbd);
2152 
2153 		bio_list_add(&tc->deferred_bio_list, bio);
2154 		rb_erase(&pbd->rb_node, &tc->sort_bio_list);
2155 	}
2156 
2157 	WARN_ON(!RB_EMPTY_ROOT(&tc->sort_bio_list));
2158 }
2159 
2160 static void __sort_thin_deferred_bios(struct thin_c *tc)
2161 {
2162 	struct bio *bio;
2163 	struct bio_list bios;
2164 
2165 	bio_list_init(&bios);
2166 	bio_list_merge(&bios, &tc->deferred_bio_list);
2167 	bio_list_init(&tc->deferred_bio_list);
2168 
2169 	/* Sort deferred_bio_list using rb-tree */
2170 	while ((bio = bio_list_pop(&bios)))
2171 		__thin_bio_rb_add(tc, bio);
2172 
2173 	/*
2174 	 * Transfer the sorted bios in sort_bio_list back to
2175 	 * deferred_bio_list to allow lockless submission of
2176 	 * all bios.
2177 	 */
2178 	__extract_sorted_bios(tc);
2179 }
2180 
2181 static void process_thin_deferred_bios(struct thin_c *tc)
2182 {
2183 	struct pool *pool = tc->pool;
2184 	struct bio *bio;
2185 	struct bio_list bios;
2186 	struct blk_plug plug;
2187 	unsigned int count = 0;
2188 
2189 	if (tc->requeue_mode) {
2190 		error_thin_bio_list(tc, &tc->deferred_bio_list,
2191 				BLK_STS_DM_REQUEUE);
2192 		return;
2193 	}
2194 
2195 	bio_list_init(&bios);
2196 
2197 	spin_lock_irq(&tc->lock);
2198 
2199 	if (bio_list_empty(&tc->deferred_bio_list)) {
2200 		spin_unlock_irq(&tc->lock);
2201 		return;
2202 	}
2203 
2204 	__sort_thin_deferred_bios(tc);
2205 
2206 	bio_list_merge(&bios, &tc->deferred_bio_list);
2207 	bio_list_init(&tc->deferred_bio_list);
2208 
2209 	spin_unlock_irq(&tc->lock);
2210 
2211 	blk_start_plug(&plug);
2212 	while ((bio = bio_list_pop(&bios))) {
2213 		/*
2214 		 * If we've got no free new_mapping structs, and processing
2215 		 * this bio might require one, we pause until there are some
2216 		 * prepared mappings to process.
2217 		 */
2218 		if (ensure_next_mapping(pool)) {
2219 			spin_lock_irq(&tc->lock);
2220 			bio_list_add(&tc->deferred_bio_list, bio);
2221 			bio_list_merge(&tc->deferred_bio_list, &bios);
2222 			spin_unlock_irq(&tc->lock);
2223 			break;
2224 		}
2225 
2226 		if (bio_op(bio) == REQ_OP_DISCARD)
2227 			pool->process_discard(tc, bio);
2228 		else
2229 			pool->process_bio(tc, bio);
2230 
2231 		if ((count++ & 127) == 0) {
2232 			throttle_work_update(&pool->throttle);
2233 			dm_pool_issue_prefetches(pool->pmd);
2234 		}
2235 		cond_resched();
2236 	}
2237 	blk_finish_plug(&plug);
2238 }
2239 
2240 static int cmp_cells(const void *lhs, const void *rhs)
2241 {
2242 	struct dm_bio_prison_cell *lhs_cell = *((struct dm_bio_prison_cell **) lhs);
2243 	struct dm_bio_prison_cell *rhs_cell = *((struct dm_bio_prison_cell **) rhs);
2244 
2245 	BUG_ON(!lhs_cell->holder);
2246 	BUG_ON(!rhs_cell->holder);
2247 
2248 	if (lhs_cell->holder->bi_iter.bi_sector < rhs_cell->holder->bi_iter.bi_sector)
2249 		return -1;
2250 
2251 	if (lhs_cell->holder->bi_iter.bi_sector > rhs_cell->holder->bi_iter.bi_sector)
2252 		return 1;
2253 
2254 	return 0;
2255 }
2256 
2257 static unsigned int sort_cells(struct pool *pool, struct list_head *cells)
2258 {
2259 	unsigned int count = 0;
2260 	struct dm_bio_prison_cell *cell, *tmp;
2261 
2262 	list_for_each_entry_safe(cell, tmp, cells, user_list) {
2263 		if (count >= CELL_SORT_ARRAY_SIZE)
2264 			break;
2265 
2266 		pool->cell_sort_array[count++] = cell;
2267 		list_del(&cell->user_list);
2268 	}
2269 
2270 	sort(pool->cell_sort_array, count, sizeof(cell), cmp_cells, NULL);
2271 
2272 	return count;
2273 }
2274 
2275 static void process_thin_deferred_cells(struct thin_c *tc)
2276 {
2277 	struct pool *pool = tc->pool;
2278 	struct list_head cells;
2279 	struct dm_bio_prison_cell *cell;
2280 	unsigned int i, j, count;
2281 
2282 	INIT_LIST_HEAD(&cells);
2283 
2284 	spin_lock_irq(&tc->lock);
2285 	list_splice_init(&tc->deferred_cells, &cells);
2286 	spin_unlock_irq(&tc->lock);
2287 
2288 	if (list_empty(&cells))
2289 		return;
2290 
2291 	do {
2292 		count = sort_cells(tc->pool, &cells);
2293 
2294 		for (i = 0; i < count; i++) {
2295 			cell = pool->cell_sort_array[i];
2296 			BUG_ON(!cell->holder);
2297 
2298 			/*
2299 			 * If we've got no free new_mapping structs, and processing
2300 			 * this bio might require one, we pause until there are some
2301 			 * prepared mappings to process.
2302 			 */
2303 			if (ensure_next_mapping(pool)) {
2304 				for (j = i; j < count; j++)
2305 					list_add(&pool->cell_sort_array[j]->user_list, &cells);
2306 
2307 				spin_lock_irq(&tc->lock);
2308 				list_splice(&cells, &tc->deferred_cells);
2309 				spin_unlock_irq(&tc->lock);
2310 				return;
2311 			}
2312 
2313 			if (bio_op(cell->holder) == REQ_OP_DISCARD)
2314 				pool->process_discard_cell(tc, cell);
2315 			else
2316 				pool->process_cell(tc, cell);
2317 		}
2318 		cond_resched();
2319 	} while (!list_empty(&cells));
2320 }
2321 
2322 static void thin_get(struct thin_c *tc);
2323 static void thin_put(struct thin_c *tc);
2324 
2325 /*
2326  * We can't hold rcu_read_lock() around code that can block.  So we
2327  * find a thin with the rcu lock held; bump a refcount; then drop
2328  * the lock.
2329  */
2330 static struct thin_c *get_first_thin(struct pool *pool)
2331 {
2332 	struct thin_c *tc = NULL;
2333 
2334 	rcu_read_lock();
2335 	if (!list_empty(&pool->active_thins)) {
2336 		tc = list_entry_rcu(pool->active_thins.next, struct thin_c, list);
2337 		thin_get(tc);
2338 	}
2339 	rcu_read_unlock();
2340 
2341 	return tc;
2342 }
2343 
2344 static struct thin_c *get_next_thin(struct pool *pool, struct thin_c *tc)
2345 {
2346 	struct thin_c *old_tc = tc;
2347 
2348 	rcu_read_lock();
2349 	list_for_each_entry_continue_rcu(tc, &pool->active_thins, list) {
2350 		thin_get(tc);
2351 		thin_put(old_tc);
2352 		rcu_read_unlock();
2353 		return tc;
2354 	}
2355 	thin_put(old_tc);
2356 	rcu_read_unlock();
2357 
2358 	return NULL;
2359 }
2360 
2361 static void process_deferred_bios(struct pool *pool)
2362 {
2363 	struct bio *bio;
2364 	struct bio_list bios, bio_completions;
2365 	struct thin_c *tc;
2366 
2367 	tc = get_first_thin(pool);
2368 	while (tc) {
2369 		process_thin_deferred_cells(tc);
2370 		process_thin_deferred_bios(tc);
2371 		tc = get_next_thin(pool, tc);
2372 	}
2373 
2374 	/*
2375 	 * If there are any deferred flush bios, we must commit the metadata
2376 	 * before issuing them or signaling their completion.
2377 	 */
2378 	bio_list_init(&bios);
2379 	bio_list_init(&bio_completions);
2380 
2381 	spin_lock_irq(&pool->lock);
2382 	bio_list_merge(&bios, &pool->deferred_flush_bios);
2383 	bio_list_init(&pool->deferred_flush_bios);
2384 
2385 	bio_list_merge(&bio_completions, &pool->deferred_flush_completions);
2386 	bio_list_init(&pool->deferred_flush_completions);
2387 	spin_unlock_irq(&pool->lock);
2388 
2389 	if (bio_list_empty(&bios) && bio_list_empty(&bio_completions) &&
2390 	    !(dm_pool_changed_this_transaction(pool->pmd) && need_commit_due_to_time(pool)))
2391 		return;
2392 
2393 	if (commit(pool)) {
2394 		bio_list_merge(&bios, &bio_completions);
2395 
2396 		while ((bio = bio_list_pop(&bios)))
2397 			bio_io_error(bio);
2398 		return;
2399 	}
2400 	pool->last_commit_jiffies = jiffies;
2401 
2402 	while ((bio = bio_list_pop(&bio_completions)))
2403 		bio_endio(bio);
2404 
2405 	while ((bio = bio_list_pop(&bios))) {
2406 		/*
2407 		 * The data device was flushed as part of metadata commit,
2408 		 * so complete redundant flushes immediately.
2409 		 */
2410 		if (bio->bi_opf & REQ_PREFLUSH)
2411 			bio_endio(bio);
2412 		else
2413 			dm_submit_bio_remap(bio, NULL);
2414 	}
2415 }
2416 
2417 static void do_worker(struct work_struct *ws)
2418 {
2419 	struct pool *pool = container_of(ws, struct pool, worker);
2420 
2421 	throttle_work_start(&pool->throttle);
2422 	dm_pool_issue_prefetches(pool->pmd);
2423 	throttle_work_update(&pool->throttle);
2424 	process_prepared(pool, &pool->prepared_mappings, &pool->process_prepared_mapping);
2425 	throttle_work_update(&pool->throttle);
2426 	process_prepared(pool, &pool->prepared_discards, &pool->process_prepared_discard);
2427 	throttle_work_update(&pool->throttle);
2428 	process_prepared(pool, &pool->prepared_discards_pt2, &pool->process_prepared_discard_pt2);
2429 	throttle_work_update(&pool->throttle);
2430 	process_deferred_bios(pool);
2431 	throttle_work_complete(&pool->throttle);
2432 }
2433 
2434 /*
2435  * We want to commit periodically so that not too much
2436  * unwritten data builds up.
2437  */
2438 static void do_waker(struct work_struct *ws)
2439 {
2440 	struct pool *pool = container_of(to_delayed_work(ws), struct pool, waker);
2441 
2442 	wake_worker(pool);
2443 	queue_delayed_work(pool->wq, &pool->waker, COMMIT_PERIOD);
2444 }
2445 
2446 /*
2447  * We're holding onto IO to allow userland time to react.  After the
2448  * timeout either the pool will have been resized (and thus back in
2449  * PM_WRITE mode), or we degrade to PM_OUT_OF_DATA_SPACE w/ error_if_no_space.
2450  */
2451 static void do_no_space_timeout(struct work_struct *ws)
2452 {
2453 	struct pool *pool = container_of(to_delayed_work(ws), struct pool,
2454 					 no_space_timeout);
2455 
2456 	if (get_pool_mode(pool) == PM_OUT_OF_DATA_SPACE && !pool->pf.error_if_no_space) {
2457 		pool->pf.error_if_no_space = true;
2458 		notify_of_pool_mode_change(pool);
2459 		error_retry_list_with_code(pool, BLK_STS_NOSPC);
2460 	}
2461 }
2462 
2463 /*----------------------------------------------------------------*/
2464 
2465 struct pool_work {
2466 	struct work_struct worker;
2467 	struct completion complete;
2468 };
2469 
2470 static struct pool_work *to_pool_work(struct work_struct *ws)
2471 {
2472 	return container_of(ws, struct pool_work, worker);
2473 }
2474 
2475 static void pool_work_complete(struct pool_work *pw)
2476 {
2477 	complete(&pw->complete);
2478 }
2479 
2480 static void pool_work_wait(struct pool_work *pw, struct pool *pool,
2481 			   void (*fn)(struct work_struct *))
2482 {
2483 	INIT_WORK_ONSTACK(&pw->worker, fn);
2484 	init_completion(&pw->complete);
2485 	queue_work(pool->wq, &pw->worker);
2486 	wait_for_completion(&pw->complete);
2487 }
2488 
2489 /*----------------------------------------------------------------*/
2490 
2491 struct noflush_work {
2492 	struct pool_work pw;
2493 	struct thin_c *tc;
2494 };
2495 
2496 static struct noflush_work *to_noflush(struct work_struct *ws)
2497 {
2498 	return container_of(to_pool_work(ws), struct noflush_work, pw);
2499 }
2500 
2501 static void do_noflush_start(struct work_struct *ws)
2502 {
2503 	struct noflush_work *w = to_noflush(ws);
2504 
2505 	w->tc->requeue_mode = true;
2506 	requeue_io(w->tc);
2507 	pool_work_complete(&w->pw);
2508 }
2509 
2510 static void do_noflush_stop(struct work_struct *ws)
2511 {
2512 	struct noflush_work *w = to_noflush(ws);
2513 
2514 	w->tc->requeue_mode = false;
2515 	pool_work_complete(&w->pw);
2516 }
2517 
2518 static void noflush_work(struct thin_c *tc, void (*fn)(struct work_struct *))
2519 {
2520 	struct noflush_work w;
2521 
2522 	w.tc = tc;
2523 	pool_work_wait(&w.pw, tc->pool, fn);
2524 }
2525 
2526 /*----------------------------------------------------------------*/
2527 
2528 static void set_discard_callbacks(struct pool *pool)
2529 {
2530 	struct pool_c *pt = pool->ti->private;
2531 
2532 	if (pt->adjusted_pf.discard_passdown) {
2533 		pool->process_discard_cell = process_discard_cell_passdown;
2534 		pool->process_prepared_discard = process_prepared_discard_passdown_pt1;
2535 		pool->process_prepared_discard_pt2 = process_prepared_discard_passdown_pt2;
2536 	} else {
2537 		pool->process_discard_cell = process_discard_cell_no_passdown;
2538 		pool->process_prepared_discard = process_prepared_discard_no_passdown;
2539 	}
2540 }
2541 
2542 static void set_pool_mode(struct pool *pool, enum pool_mode new_mode)
2543 {
2544 	struct pool_c *pt = pool->ti->private;
2545 	bool needs_check = dm_pool_metadata_needs_check(pool->pmd);
2546 	enum pool_mode old_mode = get_pool_mode(pool);
2547 	unsigned long no_space_timeout = READ_ONCE(no_space_timeout_secs) * HZ;
2548 
2549 	/*
2550 	 * Never allow the pool to transition to PM_WRITE mode if user
2551 	 * intervention is required to verify metadata and data consistency.
2552 	 */
2553 	if (new_mode == PM_WRITE && needs_check) {
2554 		DMERR("%s: unable to switch pool to write mode until repaired.",
2555 		      dm_device_name(pool->pool_md));
2556 		if (old_mode != new_mode)
2557 			new_mode = old_mode;
2558 		else
2559 			new_mode = PM_READ_ONLY;
2560 	}
2561 	/*
2562 	 * If we were in PM_FAIL mode, rollback of metadata failed.  We're
2563 	 * not going to recover without a thin_repair.	So we never let the
2564 	 * pool move out of the old mode.
2565 	 */
2566 	if (old_mode == PM_FAIL)
2567 		new_mode = old_mode;
2568 
2569 	switch (new_mode) {
2570 	case PM_FAIL:
2571 		dm_pool_metadata_read_only(pool->pmd);
2572 		pool->process_bio = process_bio_fail;
2573 		pool->process_discard = process_bio_fail;
2574 		pool->process_cell = process_cell_fail;
2575 		pool->process_discard_cell = process_cell_fail;
2576 		pool->process_prepared_mapping = process_prepared_mapping_fail;
2577 		pool->process_prepared_discard = process_prepared_discard_fail;
2578 
2579 		error_retry_list(pool);
2580 		break;
2581 
2582 	case PM_OUT_OF_METADATA_SPACE:
2583 	case PM_READ_ONLY:
2584 		dm_pool_metadata_read_only(pool->pmd);
2585 		pool->process_bio = process_bio_read_only;
2586 		pool->process_discard = process_bio_success;
2587 		pool->process_cell = process_cell_read_only;
2588 		pool->process_discard_cell = process_cell_success;
2589 		pool->process_prepared_mapping = process_prepared_mapping_fail;
2590 		pool->process_prepared_discard = process_prepared_discard_success;
2591 
2592 		error_retry_list(pool);
2593 		break;
2594 
2595 	case PM_OUT_OF_DATA_SPACE:
2596 		/*
2597 		 * Ideally we'd never hit this state; the low water mark
2598 		 * would trigger userland to extend the pool before we
2599 		 * completely run out of data space.  However, many small
2600 		 * IOs to unprovisioned space can consume data space at an
2601 		 * alarming rate.  Adjust your low water mark if you're
2602 		 * frequently seeing this mode.
2603 		 */
2604 		pool->out_of_data_space = true;
2605 		pool->process_bio = process_bio_read_only;
2606 		pool->process_discard = process_discard_bio;
2607 		pool->process_cell = process_cell_read_only;
2608 		pool->process_prepared_mapping = process_prepared_mapping;
2609 		set_discard_callbacks(pool);
2610 
2611 		if (!pool->pf.error_if_no_space && no_space_timeout)
2612 			queue_delayed_work(pool->wq, &pool->no_space_timeout, no_space_timeout);
2613 		break;
2614 
2615 	case PM_WRITE:
2616 		if (old_mode == PM_OUT_OF_DATA_SPACE)
2617 			cancel_delayed_work_sync(&pool->no_space_timeout);
2618 		pool->out_of_data_space = false;
2619 		pool->pf.error_if_no_space = pt->requested_pf.error_if_no_space;
2620 		dm_pool_metadata_read_write(pool->pmd);
2621 		pool->process_bio = process_bio;
2622 		pool->process_discard = process_discard_bio;
2623 		pool->process_cell = process_cell;
2624 		pool->process_prepared_mapping = process_prepared_mapping;
2625 		set_discard_callbacks(pool);
2626 		break;
2627 	}
2628 
2629 	pool->pf.mode = new_mode;
2630 	/*
2631 	 * The pool mode may have changed, sync it so bind_control_target()
2632 	 * doesn't cause an unexpected mode transition on resume.
2633 	 */
2634 	pt->adjusted_pf.mode = new_mode;
2635 
2636 	if (old_mode != new_mode)
2637 		notify_of_pool_mode_change(pool);
2638 }
2639 
2640 static void abort_transaction(struct pool *pool)
2641 {
2642 	const char *dev_name = dm_device_name(pool->pool_md);
2643 
2644 	DMERR_LIMIT("%s: aborting current metadata transaction", dev_name);
2645 	if (dm_pool_abort_metadata(pool->pmd)) {
2646 		DMERR("%s: failed to abort metadata transaction", dev_name);
2647 		set_pool_mode(pool, PM_FAIL);
2648 	}
2649 
2650 	if (dm_pool_metadata_set_needs_check(pool->pmd)) {
2651 		DMERR("%s: failed to set 'needs_check' flag in metadata", dev_name);
2652 		set_pool_mode(pool, PM_FAIL);
2653 	}
2654 }
2655 
2656 static void metadata_operation_failed(struct pool *pool, const char *op, int r)
2657 {
2658 	DMERR_LIMIT("%s: metadata operation '%s' failed: error = %d",
2659 		    dm_device_name(pool->pool_md), op, r);
2660 
2661 	abort_transaction(pool);
2662 	set_pool_mode(pool, PM_READ_ONLY);
2663 }
2664 
2665 /*----------------------------------------------------------------*/
2666 
2667 /*
2668  * Mapping functions.
2669  */
2670 
2671 /*
2672  * Called only while mapping a thin bio to hand it over to the workqueue.
2673  */
2674 static void thin_defer_bio(struct thin_c *tc, struct bio *bio)
2675 {
2676 	struct pool *pool = tc->pool;
2677 
2678 	spin_lock_irq(&tc->lock);
2679 	bio_list_add(&tc->deferred_bio_list, bio);
2680 	spin_unlock_irq(&tc->lock);
2681 
2682 	wake_worker(pool);
2683 }
2684 
2685 static void thin_defer_bio_with_throttle(struct thin_c *tc, struct bio *bio)
2686 {
2687 	struct pool *pool = tc->pool;
2688 
2689 	throttle_lock(&pool->throttle);
2690 	thin_defer_bio(tc, bio);
2691 	throttle_unlock(&pool->throttle);
2692 }
2693 
2694 static void thin_defer_cell(struct thin_c *tc, struct dm_bio_prison_cell *cell)
2695 {
2696 	struct pool *pool = tc->pool;
2697 
2698 	throttle_lock(&pool->throttle);
2699 	spin_lock_irq(&tc->lock);
2700 	list_add_tail(&cell->user_list, &tc->deferred_cells);
2701 	spin_unlock_irq(&tc->lock);
2702 	throttle_unlock(&pool->throttle);
2703 
2704 	wake_worker(pool);
2705 }
2706 
2707 static void thin_hook_bio(struct thin_c *tc, struct bio *bio)
2708 {
2709 	struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
2710 
2711 	h->tc = tc;
2712 	h->shared_read_entry = NULL;
2713 	h->all_io_entry = NULL;
2714 	h->overwrite_mapping = NULL;
2715 	h->cell = NULL;
2716 }
2717 
2718 /*
2719  * Non-blocking function called from the thin target's map function.
2720  */
2721 static int thin_bio_map(struct dm_target *ti, struct bio *bio)
2722 {
2723 	int r;
2724 	struct thin_c *tc = ti->private;
2725 	dm_block_t block = get_bio_block(tc, bio);
2726 	struct dm_thin_device *td = tc->td;
2727 	struct dm_thin_lookup_result result;
2728 	struct dm_bio_prison_cell *virt_cell, *data_cell;
2729 	struct dm_cell_key key;
2730 
2731 	thin_hook_bio(tc, bio);
2732 
2733 	if (tc->requeue_mode) {
2734 		bio->bi_status = BLK_STS_DM_REQUEUE;
2735 		bio_endio(bio);
2736 		return DM_MAPIO_SUBMITTED;
2737 	}
2738 
2739 	if (get_pool_mode(tc->pool) == PM_FAIL) {
2740 		bio_io_error(bio);
2741 		return DM_MAPIO_SUBMITTED;
2742 	}
2743 
2744 	if (op_is_flush(bio->bi_opf) || bio_op(bio) == REQ_OP_DISCARD) {
2745 		thin_defer_bio_with_throttle(tc, bio);
2746 		return DM_MAPIO_SUBMITTED;
2747 	}
2748 
2749 	/*
2750 	 * We must hold the virtual cell before doing the lookup, otherwise
2751 	 * there's a race with discard.
2752 	 */
2753 	build_virtual_key(tc->td, block, &key);
2754 	if (bio_detain(tc->pool, &key, bio, &virt_cell))
2755 		return DM_MAPIO_SUBMITTED;
2756 
2757 	r = dm_thin_find_block(td, block, 0, &result);
2758 
2759 	/*
2760 	 * Note that we defer readahead too.
2761 	 */
2762 	switch (r) {
2763 	case 0:
2764 		if (unlikely(result.shared)) {
2765 			/*
2766 			 * We have a race condition here between the
2767 			 * result.shared value returned by the lookup and
2768 			 * snapshot creation, which may cause new
2769 			 * sharing.
2770 			 *
2771 			 * To avoid this always quiesce the origin before
2772 			 * taking the snap.  You want to do this anyway to
2773 			 * ensure a consistent application view
2774 			 * (i.e. lockfs).
2775 			 *
2776 			 * More distant ancestors are irrelevant. The
2777 			 * shared flag will be set in their case.
2778 			 */
2779 			thin_defer_cell(tc, virt_cell);
2780 			return DM_MAPIO_SUBMITTED;
2781 		}
2782 
2783 		build_data_key(tc->td, result.block, &key);
2784 		if (bio_detain(tc->pool, &key, bio, &data_cell)) {
2785 			cell_defer_no_holder(tc, virt_cell);
2786 			return DM_MAPIO_SUBMITTED;
2787 		}
2788 
2789 		inc_all_io_entry(tc->pool, bio);
2790 		cell_defer_no_holder(tc, data_cell);
2791 		cell_defer_no_holder(tc, virt_cell);
2792 
2793 		remap(tc, bio, result.block);
2794 		return DM_MAPIO_REMAPPED;
2795 
2796 	case -ENODATA:
2797 	case -EWOULDBLOCK:
2798 		thin_defer_cell(tc, virt_cell);
2799 		return DM_MAPIO_SUBMITTED;
2800 
2801 	default:
2802 		/*
2803 		 * Must always call bio_io_error on failure.
2804 		 * dm_thin_find_block can fail with -EINVAL if the
2805 		 * pool is switched to fail-io mode.
2806 		 */
2807 		bio_io_error(bio);
2808 		cell_defer_no_holder(tc, virt_cell);
2809 		return DM_MAPIO_SUBMITTED;
2810 	}
2811 }
2812 
2813 static void requeue_bios(struct pool *pool)
2814 {
2815 	struct thin_c *tc;
2816 
2817 	rcu_read_lock();
2818 	list_for_each_entry_rcu(tc, &pool->active_thins, list) {
2819 		spin_lock_irq(&tc->lock);
2820 		bio_list_merge(&tc->deferred_bio_list, &tc->retry_on_resume_list);
2821 		bio_list_init(&tc->retry_on_resume_list);
2822 		spin_unlock_irq(&tc->lock);
2823 	}
2824 	rcu_read_unlock();
2825 }
2826 
2827 /*
2828  *--------------------------------------------------------------
2829  * Binding of control targets to a pool object
2830  *--------------------------------------------------------------
2831  */
2832 static bool is_factor(sector_t block_size, uint32_t n)
2833 {
2834 	return !sector_div(block_size, n);
2835 }
2836 
2837 /*
2838  * If discard_passdown was enabled verify that the data device
2839  * supports discards.  Disable discard_passdown if not.
2840  */
2841 static void disable_discard_passdown_if_not_supported(struct pool_c *pt)
2842 {
2843 	struct pool *pool = pt->pool;
2844 	struct block_device *data_bdev = pt->data_dev->bdev;
2845 	struct queue_limits *data_limits = &bdev_get_queue(data_bdev)->limits;
2846 	const char *reason = NULL;
2847 
2848 	if (!pt->adjusted_pf.discard_passdown)
2849 		return;
2850 
2851 	if (!bdev_max_discard_sectors(pt->data_dev->bdev))
2852 		reason = "discard unsupported";
2853 
2854 	else if (data_limits->max_discard_sectors < pool->sectors_per_block)
2855 		reason = "max discard sectors smaller than a block";
2856 
2857 	if (reason) {
2858 		DMWARN("Data device (%pg) %s: Disabling discard passdown.", data_bdev, reason);
2859 		pt->adjusted_pf.discard_passdown = false;
2860 	}
2861 }
2862 
2863 static int bind_control_target(struct pool *pool, struct dm_target *ti)
2864 {
2865 	struct pool_c *pt = ti->private;
2866 
2867 	/*
2868 	 * We want to make sure that a pool in PM_FAIL mode is never upgraded.
2869 	 */
2870 	enum pool_mode old_mode = get_pool_mode(pool);
2871 	enum pool_mode new_mode = pt->adjusted_pf.mode;
2872 
2873 	/*
2874 	 * Don't change the pool's mode until set_pool_mode() below.
2875 	 * Otherwise the pool's process_* function pointers may
2876 	 * not match the desired pool mode.
2877 	 */
2878 	pt->adjusted_pf.mode = old_mode;
2879 
2880 	pool->ti = ti;
2881 	pool->pf = pt->adjusted_pf;
2882 	pool->low_water_blocks = pt->low_water_blocks;
2883 
2884 	set_pool_mode(pool, new_mode);
2885 
2886 	return 0;
2887 }
2888 
2889 static void unbind_control_target(struct pool *pool, struct dm_target *ti)
2890 {
2891 	if (pool->ti == ti)
2892 		pool->ti = NULL;
2893 }
2894 
2895 /*
2896  *--------------------------------------------------------------
2897  * Pool creation
2898  *--------------------------------------------------------------
2899  */
2900 /* Initialize pool features. */
2901 static void pool_features_init(struct pool_features *pf)
2902 {
2903 	pf->mode = PM_WRITE;
2904 	pf->zero_new_blocks = true;
2905 	pf->discard_enabled = true;
2906 	pf->discard_passdown = true;
2907 	pf->error_if_no_space = false;
2908 }
2909 
2910 static void __pool_destroy(struct pool *pool)
2911 {
2912 	__pool_table_remove(pool);
2913 
2914 	vfree(pool->cell_sort_array);
2915 	if (dm_pool_metadata_close(pool->pmd) < 0)
2916 		DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
2917 
2918 	dm_bio_prison_destroy(pool->prison);
2919 	dm_kcopyd_client_destroy(pool->copier);
2920 
2921 	cancel_delayed_work_sync(&pool->waker);
2922 	cancel_delayed_work_sync(&pool->no_space_timeout);
2923 	if (pool->wq)
2924 		destroy_workqueue(pool->wq);
2925 
2926 	if (pool->next_mapping)
2927 		mempool_free(pool->next_mapping, &pool->mapping_pool);
2928 	mempool_exit(&pool->mapping_pool);
2929 	dm_deferred_set_destroy(pool->shared_read_ds);
2930 	dm_deferred_set_destroy(pool->all_io_ds);
2931 	kfree(pool);
2932 }
2933 
2934 static struct kmem_cache *_new_mapping_cache;
2935 
2936 static struct pool *pool_create(struct mapped_device *pool_md,
2937 				struct block_device *metadata_dev,
2938 				struct block_device *data_dev,
2939 				unsigned long block_size,
2940 				int read_only, char **error)
2941 {
2942 	int r;
2943 	void *err_p;
2944 	struct pool *pool;
2945 	struct dm_pool_metadata *pmd;
2946 	bool format_device = read_only ? false : true;
2947 
2948 	pmd = dm_pool_metadata_open(metadata_dev, block_size, format_device);
2949 	if (IS_ERR(pmd)) {
2950 		*error = "Error creating metadata object";
2951 		return ERR_CAST(pmd);
2952 	}
2953 
2954 	pool = kzalloc(sizeof(*pool), GFP_KERNEL);
2955 	if (!pool) {
2956 		*error = "Error allocating memory for pool";
2957 		err_p = ERR_PTR(-ENOMEM);
2958 		goto bad_pool;
2959 	}
2960 
2961 	pool->pmd = pmd;
2962 	pool->sectors_per_block = block_size;
2963 	if (block_size & (block_size - 1))
2964 		pool->sectors_per_block_shift = -1;
2965 	else
2966 		pool->sectors_per_block_shift = __ffs(block_size);
2967 	pool->low_water_blocks = 0;
2968 	pool_features_init(&pool->pf);
2969 	pool->prison = dm_bio_prison_create();
2970 	if (!pool->prison) {
2971 		*error = "Error creating pool's bio prison";
2972 		err_p = ERR_PTR(-ENOMEM);
2973 		goto bad_prison;
2974 	}
2975 
2976 	pool->copier = dm_kcopyd_client_create(&dm_kcopyd_throttle);
2977 	if (IS_ERR(pool->copier)) {
2978 		r = PTR_ERR(pool->copier);
2979 		*error = "Error creating pool's kcopyd client";
2980 		err_p = ERR_PTR(r);
2981 		goto bad_kcopyd_client;
2982 	}
2983 
2984 	/*
2985 	 * Create singlethreaded workqueue that will service all devices
2986 	 * that use this metadata.
2987 	 */
2988 	pool->wq = alloc_ordered_workqueue("dm-" DM_MSG_PREFIX, WQ_MEM_RECLAIM);
2989 	if (!pool->wq) {
2990 		*error = "Error creating pool's workqueue";
2991 		err_p = ERR_PTR(-ENOMEM);
2992 		goto bad_wq;
2993 	}
2994 
2995 	throttle_init(&pool->throttle);
2996 	INIT_WORK(&pool->worker, do_worker);
2997 	INIT_DELAYED_WORK(&pool->waker, do_waker);
2998 	INIT_DELAYED_WORK(&pool->no_space_timeout, do_no_space_timeout);
2999 	spin_lock_init(&pool->lock);
3000 	bio_list_init(&pool->deferred_flush_bios);
3001 	bio_list_init(&pool->deferred_flush_completions);
3002 	INIT_LIST_HEAD(&pool->prepared_mappings);
3003 	INIT_LIST_HEAD(&pool->prepared_discards);
3004 	INIT_LIST_HEAD(&pool->prepared_discards_pt2);
3005 	INIT_LIST_HEAD(&pool->active_thins);
3006 	pool->low_water_triggered = false;
3007 	pool->suspended = true;
3008 	pool->out_of_data_space = false;
3009 
3010 	pool->shared_read_ds = dm_deferred_set_create();
3011 	if (!pool->shared_read_ds) {
3012 		*error = "Error creating pool's shared read deferred set";
3013 		err_p = ERR_PTR(-ENOMEM);
3014 		goto bad_shared_read_ds;
3015 	}
3016 
3017 	pool->all_io_ds = dm_deferred_set_create();
3018 	if (!pool->all_io_ds) {
3019 		*error = "Error creating pool's all io deferred set";
3020 		err_p = ERR_PTR(-ENOMEM);
3021 		goto bad_all_io_ds;
3022 	}
3023 
3024 	pool->next_mapping = NULL;
3025 	r = mempool_init_slab_pool(&pool->mapping_pool, MAPPING_POOL_SIZE,
3026 				   _new_mapping_cache);
3027 	if (r) {
3028 		*error = "Error creating pool's mapping mempool";
3029 		err_p = ERR_PTR(r);
3030 		goto bad_mapping_pool;
3031 	}
3032 
3033 	pool->cell_sort_array =
3034 		vmalloc(array_size(CELL_SORT_ARRAY_SIZE,
3035 				   sizeof(*pool->cell_sort_array)));
3036 	if (!pool->cell_sort_array) {
3037 		*error = "Error allocating cell sort array";
3038 		err_p = ERR_PTR(-ENOMEM);
3039 		goto bad_sort_array;
3040 	}
3041 
3042 	pool->ref_count = 1;
3043 	pool->last_commit_jiffies = jiffies;
3044 	pool->pool_md = pool_md;
3045 	pool->md_dev = metadata_dev;
3046 	pool->data_dev = data_dev;
3047 	__pool_table_insert(pool);
3048 
3049 	return pool;
3050 
3051 bad_sort_array:
3052 	mempool_exit(&pool->mapping_pool);
3053 bad_mapping_pool:
3054 	dm_deferred_set_destroy(pool->all_io_ds);
3055 bad_all_io_ds:
3056 	dm_deferred_set_destroy(pool->shared_read_ds);
3057 bad_shared_read_ds:
3058 	destroy_workqueue(pool->wq);
3059 bad_wq:
3060 	dm_kcopyd_client_destroy(pool->copier);
3061 bad_kcopyd_client:
3062 	dm_bio_prison_destroy(pool->prison);
3063 bad_prison:
3064 	kfree(pool);
3065 bad_pool:
3066 	if (dm_pool_metadata_close(pmd))
3067 		DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
3068 
3069 	return err_p;
3070 }
3071 
3072 static void __pool_inc(struct pool *pool)
3073 {
3074 	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
3075 	pool->ref_count++;
3076 }
3077 
3078 static void __pool_dec(struct pool *pool)
3079 {
3080 	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
3081 	BUG_ON(!pool->ref_count);
3082 	if (!--pool->ref_count)
3083 		__pool_destroy(pool);
3084 }
3085 
3086 static struct pool *__pool_find(struct mapped_device *pool_md,
3087 				struct block_device *metadata_dev,
3088 				struct block_device *data_dev,
3089 				unsigned long block_size, int read_only,
3090 				char **error, int *created)
3091 {
3092 	struct pool *pool = __pool_table_lookup_metadata_dev(metadata_dev);
3093 
3094 	if (pool) {
3095 		if (pool->pool_md != pool_md) {
3096 			*error = "metadata device already in use by a pool";
3097 			return ERR_PTR(-EBUSY);
3098 		}
3099 		if (pool->data_dev != data_dev) {
3100 			*error = "data device already in use by a pool";
3101 			return ERR_PTR(-EBUSY);
3102 		}
3103 		__pool_inc(pool);
3104 
3105 	} else {
3106 		pool = __pool_table_lookup(pool_md);
3107 		if (pool) {
3108 			if (pool->md_dev != metadata_dev || pool->data_dev != data_dev) {
3109 				*error = "different pool cannot replace a pool";
3110 				return ERR_PTR(-EINVAL);
3111 			}
3112 			__pool_inc(pool);
3113 
3114 		} else {
3115 			pool = pool_create(pool_md, metadata_dev, data_dev, block_size, read_only, error);
3116 			*created = 1;
3117 		}
3118 	}
3119 
3120 	return pool;
3121 }
3122 
3123 /*
3124  *--------------------------------------------------------------
3125  * Pool target methods
3126  *--------------------------------------------------------------
3127  */
3128 static void pool_dtr(struct dm_target *ti)
3129 {
3130 	struct pool_c *pt = ti->private;
3131 
3132 	mutex_lock(&dm_thin_pool_table.mutex);
3133 
3134 	unbind_control_target(pt->pool, ti);
3135 	__pool_dec(pt->pool);
3136 	dm_put_device(ti, pt->metadata_dev);
3137 	dm_put_device(ti, pt->data_dev);
3138 	kfree(pt);
3139 
3140 	mutex_unlock(&dm_thin_pool_table.mutex);
3141 }
3142 
3143 static int parse_pool_features(struct dm_arg_set *as, struct pool_features *pf,
3144 			       struct dm_target *ti)
3145 {
3146 	int r;
3147 	unsigned int argc;
3148 	const char *arg_name;
3149 
3150 	static const struct dm_arg _args[] = {
3151 		{0, 4, "Invalid number of pool feature arguments"},
3152 	};
3153 
3154 	/*
3155 	 * No feature arguments supplied.
3156 	 */
3157 	if (!as->argc)
3158 		return 0;
3159 
3160 	r = dm_read_arg_group(_args, as, &argc, &ti->error);
3161 	if (r)
3162 		return -EINVAL;
3163 
3164 	while (argc && !r) {
3165 		arg_name = dm_shift_arg(as);
3166 		argc--;
3167 
3168 		if (!strcasecmp(arg_name, "skip_block_zeroing"))
3169 			pf->zero_new_blocks = false;
3170 
3171 		else if (!strcasecmp(arg_name, "ignore_discard"))
3172 			pf->discard_enabled = false;
3173 
3174 		else if (!strcasecmp(arg_name, "no_discard_passdown"))
3175 			pf->discard_passdown = false;
3176 
3177 		else if (!strcasecmp(arg_name, "read_only"))
3178 			pf->mode = PM_READ_ONLY;
3179 
3180 		else if (!strcasecmp(arg_name, "error_if_no_space"))
3181 			pf->error_if_no_space = true;
3182 
3183 		else {
3184 			ti->error = "Unrecognised pool feature requested";
3185 			r = -EINVAL;
3186 			break;
3187 		}
3188 	}
3189 
3190 	return r;
3191 }
3192 
3193 static void metadata_low_callback(void *context)
3194 {
3195 	struct pool *pool = context;
3196 
3197 	DMWARN("%s: reached low water mark for metadata device: sending event.",
3198 	       dm_device_name(pool->pool_md));
3199 
3200 	dm_table_event(pool->ti->table);
3201 }
3202 
3203 /*
3204  * We need to flush the data device **before** committing the metadata.
3205  *
3206  * This ensures that the data blocks of any newly inserted mappings are
3207  * properly written to non-volatile storage and won't be lost in case of a
3208  * crash.
3209  *
3210  * Failure to do so can result in data corruption in the case of internal or
3211  * external snapshots and in the case of newly provisioned blocks, when block
3212  * zeroing is enabled.
3213  */
3214 static int metadata_pre_commit_callback(void *context)
3215 {
3216 	struct pool *pool = context;
3217 
3218 	return blkdev_issue_flush(pool->data_dev);
3219 }
3220 
3221 static sector_t get_dev_size(struct block_device *bdev)
3222 {
3223 	return bdev_nr_sectors(bdev);
3224 }
3225 
3226 static void warn_if_metadata_device_too_big(struct block_device *bdev)
3227 {
3228 	sector_t metadata_dev_size = get_dev_size(bdev);
3229 
3230 	if (metadata_dev_size > THIN_METADATA_MAX_SECTORS_WARNING)
3231 		DMWARN("Metadata device %pg is larger than %u sectors: excess space will not be used.",
3232 		       bdev, THIN_METADATA_MAX_SECTORS);
3233 }
3234 
3235 static sector_t get_metadata_dev_size(struct block_device *bdev)
3236 {
3237 	sector_t metadata_dev_size = get_dev_size(bdev);
3238 
3239 	if (metadata_dev_size > THIN_METADATA_MAX_SECTORS)
3240 		metadata_dev_size = THIN_METADATA_MAX_SECTORS;
3241 
3242 	return metadata_dev_size;
3243 }
3244 
3245 static dm_block_t get_metadata_dev_size_in_blocks(struct block_device *bdev)
3246 {
3247 	sector_t metadata_dev_size = get_metadata_dev_size(bdev);
3248 
3249 	sector_div(metadata_dev_size, THIN_METADATA_BLOCK_SIZE);
3250 
3251 	return metadata_dev_size;
3252 }
3253 
3254 /*
3255  * When a metadata threshold is crossed a dm event is triggered, and
3256  * userland should respond by growing the metadata device.  We could let
3257  * userland set the threshold, like we do with the data threshold, but I'm
3258  * not sure they know enough to do this well.
3259  */
3260 static dm_block_t calc_metadata_threshold(struct pool_c *pt)
3261 {
3262 	/*
3263 	 * 4M is ample for all ops with the possible exception of thin
3264 	 * device deletion which is harmless if it fails (just retry the
3265 	 * delete after you've grown the device).
3266 	 */
3267 	dm_block_t quarter = get_metadata_dev_size_in_blocks(pt->metadata_dev->bdev) / 4;
3268 
3269 	return min((dm_block_t)1024ULL /* 4M */, quarter);
3270 }
3271 
3272 /*
3273  * thin-pool <metadata dev> <data dev>
3274  *	     <data block size (sectors)>
3275  *	     <low water mark (blocks)>
3276  *	     [<#feature args> [<arg>]*]
3277  *
3278  * Optional feature arguments are:
3279  *	     skip_block_zeroing: skips the zeroing of newly-provisioned blocks.
3280  *	     ignore_discard: disable discard
3281  *	     no_discard_passdown: don't pass discards down to the data device
3282  *	     read_only: Don't allow any changes to be made to the pool metadata.
3283  *	     error_if_no_space: error IOs, instead of queueing, if no space.
3284  */
3285 static int pool_ctr(struct dm_target *ti, unsigned int argc, char **argv)
3286 {
3287 	int r, pool_created = 0;
3288 	struct pool_c *pt;
3289 	struct pool *pool;
3290 	struct pool_features pf;
3291 	struct dm_arg_set as;
3292 	struct dm_dev *data_dev;
3293 	unsigned long block_size;
3294 	dm_block_t low_water_blocks;
3295 	struct dm_dev *metadata_dev;
3296 	blk_mode_t metadata_mode;
3297 
3298 	/*
3299 	 * FIXME Remove validation from scope of lock.
3300 	 */
3301 	mutex_lock(&dm_thin_pool_table.mutex);
3302 
3303 	if (argc < 4) {
3304 		ti->error = "Invalid argument count";
3305 		r = -EINVAL;
3306 		goto out_unlock;
3307 	}
3308 
3309 	as.argc = argc;
3310 	as.argv = argv;
3311 
3312 	/* make sure metadata and data are different devices */
3313 	if (!strcmp(argv[0], argv[1])) {
3314 		ti->error = "Error setting metadata or data device";
3315 		r = -EINVAL;
3316 		goto out_unlock;
3317 	}
3318 
3319 	/*
3320 	 * Set default pool features.
3321 	 */
3322 	pool_features_init(&pf);
3323 
3324 	dm_consume_args(&as, 4);
3325 	r = parse_pool_features(&as, &pf, ti);
3326 	if (r)
3327 		goto out_unlock;
3328 
3329 	metadata_mode = BLK_OPEN_READ |
3330 		((pf.mode == PM_READ_ONLY) ? 0 : BLK_OPEN_WRITE);
3331 	r = dm_get_device(ti, argv[0], metadata_mode, &metadata_dev);
3332 	if (r) {
3333 		ti->error = "Error opening metadata block device";
3334 		goto out_unlock;
3335 	}
3336 	warn_if_metadata_device_too_big(metadata_dev->bdev);
3337 
3338 	r = dm_get_device(ti, argv[1], BLK_OPEN_READ | BLK_OPEN_WRITE, &data_dev);
3339 	if (r) {
3340 		ti->error = "Error getting data device";
3341 		goto out_metadata;
3342 	}
3343 
3344 	if (kstrtoul(argv[2], 10, &block_size) || !block_size ||
3345 	    block_size < DATA_DEV_BLOCK_SIZE_MIN_SECTORS ||
3346 	    block_size > DATA_DEV_BLOCK_SIZE_MAX_SECTORS ||
3347 	    block_size & (DATA_DEV_BLOCK_SIZE_MIN_SECTORS - 1)) {
3348 		ti->error = "Invalid block size";
3349 		r = -EINVAL;
3350 		goto out;
3351 	}
3352 
3353 	if (kstrtoull(argv[3], 10, (unsigned long long *)&low_water_blocks)) {
3354 		ti->error = "Invalid low water mark";
3355 		r = -EINVAL;
3356 		goto out;
3357 	}
3358 
3359 	pt = kzalloc(sizeof(*pt), GFP_KERNEL);
3360 	if (!pt) {
3361 		r = -ENOMEM;
3362 		goto out;
3363 	}
3364 
3365 	pool = __pool_find(dm_table_get_md(ti->table), metadata_dev->bdev, data_dev->bdev,
3366 			   block_size, pf.mode == PM_READ_ONLY, &ti->error, &pool_created);
3367 	if (IS_ERR(pool)) {
3368 		r = PTR_ERR(pool);
3369 		goto out_free_pt;
3370 	}
3371 
3372 	/*
3373 	 * 'pool_created' reflects whether this is the first table load.
3374 	 * Top level discard support is not allowed to be changed after
3375 	 * initial load.  This would require a pool reload to trigger thin
3376 	 * device changes.
3377 	 */
3378 	if (!pool_created && pf.discard_enabled != pool->pf.discard_enabled) {
3379 		ti->error = "Discard support cannot be disabled once enabled";
3380 		r = -EINVAL;
3381 		goto out_flags_changed;
3382 	}
3383 
3384 	pt->pool = pool;
3385 	pt->ti = ti;
3386 	pt->metadata_dev = metadata_dev;
3387 	pt->data_dev = data_dev;
3388 	pt->low_water_blocks = low_water_blocks;
3389 	pt->adjusted_pf = pt->requested_pf = pf;
3390 	ti->num_flush_bios = 1;
3391 	ti->limit_swap_bios = true;
3392 
3393 	/*
3394 	 * Only need to enable discards if the pool should pass
3395 	 * them down to the data device.  The thin device's discard
3396 	 * processing will cause mappings to be removed from the btree.
3397 	 */
3398 	if (pf.discard_enabled && pf.discard_passdown) {
3399 		ti->num_discard_bios = 1;
3400 		/*
3401 		 * Setting 'discards_supported' circumvents the normal
3402 		 * stacking of discard limits (this keeps the pool and
3403 		 * thin devices' discard limits consistent).
3404 		 */
3405 		ti->discards_supported = true;
3406 		ti->max_discard_granularity = true;
3407 	}
3408 	ti->private = pt;
3409 
3410 	r = dm_pool_register_metadata_threshold(pt->pool->pmd,
3411 						calc_metadata_threshold(pt),
3412 						metadata_low_callback,
3413 						pool);
3414 	if (r) {
3415 		ti->error = "Error registering metadata threshold";
3416 		goto out_flags_changed;
3417 	}
3418 
3419 	dm_pool_register_pre_commit_callback(pool->pmd,
3420 					     metadata_pre_commit_callback, pool);
3421 
3422 	mutex_unlock(&dm_thin_pool_table.mutex);
3423 
3424 	return 0;
3425 
3426 out_flags_changed:
3427 	__pool_dec(pool);
3428 out_free_pt:
3429 	kfree(pt);
3430 out:
3431 	dm_put_device(ti, data_dev);
3432 out_metadata:
3433 	dm_put_device(ti, metadata_dev);
3434 out_unlock:
3435 	mutex_unlock(&dm_thin_pool_table.mutex);
3436 
3437 	return r;
3438 }
3439 
3440 static int pool_map(struct dm_target *ti, struct bio *bio)
3441 {
3442 	struct pool_c *pt = ti->private;
3443 	struct pool *pool = pt->pool;
3444 
3445 	/*
3446 	 * As this is a singleton target, ti->begin is always zero.
3447 	 */
3448 	spin_lock_irq(&pool->lock);
3449 	bio_set_dev(bio, pt->data_dev->bdev);
3450 	spin_unlock_irq(&pool->lock);
3451 
3452 	return DM_MAPIO_REMAPPED;
3453 }
3454 
3455 static int maybe_resize_data_dev(struct dm_target *ti, bool *need_commit)
3456 {
3457 	int r;
3458 	struct pool_c *pt = ti->private;
3459 	struct pool *pool = pt->pool;
3460 	sector_t data_size = ti->len;
3461 	dm_block_t sb_data_size;
3462 
3463 	*need_commit = false;
3464 
3465 	(void) sector_div(data_size, pool->sectors_per_block);
3466 
3467 	r = dm_pool_get_data_dev_size(pool->pmd, &sb_data_size);
3468 	if (r) {
3469 		DMERR("%s: failed to retrieve data device size",
3470 		      dm_device_name(pool->pool_md));
3471 		return r;
3472 	}
3473 
3474 	if (data_size < sb_data_size) {
3475 		DMERR("%s: pool target (%llu blocks) too small: expected %llu",
3476 		      dm_device_name(pool->pool_md),
3477 		      (unsigned long long)data_size, sb_data_size);
3478 		return -EINVAL;
3479 
3480 	} else if (data_size > sb_data_size) {
3481 		if (dm_pool_metadata_needs_check(pool->pmd)) {
3482 			DMERR("%s: unable to grow the data device until repaired.",
3483 			      dm_device_name(pool->pool_md));
3484 			return 0;
3485 		}
3486 
3487 		if (sb_data_size)
3488 			DMINFO("%s: growing the data device from %llu to %llu blocks",
3489 			       dm_device_name(pool->pool_md),
3490 			       sb_data_size, (unsigned long long)data_size);
3491 		r = dm_pool_resize_data_dev(pool->pmd, data_size);
3492 		if (r) {
3493 			metadata_operation_failed(pool, "dm_pool_resize_data_dev", r);
3494 			return r;
3495 		}
3496 
3497 		*need_commit = true;
3498 	}
3499 
3500 	return 0;
3501 }
3502 
3503 static int maybe_resize_metadata_dev(struct dm_target *ti, bool *need_commit)
3504 {
3505 	int r;
3506 	struct pool_c *pt = ti->private;
3507 	struct pool *pool = pt->pool;
3508 	dm_block_t metadata_dev_size, sb_metadata_dev_size;
3509 
3510 	*need_commit = false;
3511 
3512 	metadata_dev_size = get_metadata_dev_size_in_blocks(pool->md_dev);
3513 
3514 	r = dm_pool_get_metadata_dev_size(pool->pmd, &sb_metadata_dev_size);
3515 	if (r) {
3516 		DMERR("%s: failed to retrieve metadata device size",
3517 		      dm_device_name(pool->pool_md));
3518 		return r;
3519 	}
3520 
3521 	if (metadata_dev_size < sb_metadata_dev_size) {
3522 		DMERR("%s: metadata device (%llu blocks) too small: expected %llu",
3523 		      dm_device_name(pool->pool_md),
3524 		      metadata_dev_size, sb_metadata_dev_size);
3525 		return -EINVAL;
3526 
3527 	} else if (metadata_dev_size > sb_metadata_dev_size) {
3528 		if (dm_pool_metadata_needs_check(pool->pmd)) {
3529 			DMERR("%s: unable to grow the metadata device until repaired.",
3530 			      dm_device_name(pool->pool_md));
3531 			return 0;
3532 		}
3533 
3534 		warn_if_metadata_device_too_big(pool->md_dev);
3535 		DMINFO("%s: growing the metadata device from %llu to %llu blocks",
3536 		       dm_device_name(pool->pool_md),
3537 		       sb_metadata_dev_size, metadata_dev_size);
3538 
3539 		if (get_pool_mode(pool) == PM_OUT_OF_METADATA_SPACE)
3540 			set_pool_mode(pool, PM_WRITE);
3541 
3542 		r = dm_pool_resize_metadata_dev(pool->pmd, metadata_dev_size);
3543 		if (r) {
3544 			metadata_operation_failed(pool, "dm_pool_resize_metadata_dev", r);
3545 			return r;
3546 		}
3547 
3548 		*need_commit = true;
3549 	}
3550 
3551 	return 0;
3552 }
3553 
3554 /*
3555  * Retrieves the number of blocks of the data device from
3556  * the superblock and compares it to the actual device size,
3557  * thus resizing the data device in case it has grown.
3558  *
3559  * This both copes with opening preallocated data devices in the ctr
3560  * being followed by a resume
3561  * -and-
3562  * calling the resume method individually after userspace has
3563  * grown the data device in reaction to a table event.
3564  */
3565 static int pool_preresume(struct dm_target *ti)
3566 {
3567 	int r;
3568 	bool need_commit1, need_commit2;
3569 	struct pool_c *pt = ti->private;
3570 	struct pool *pool = pt->pool;
3571 
3572 	/*
3573 	 * Take control of the pool object.
3574 	 */
3575 	r = bind_control_target(pool, ti);
3576 	if (r)
3577 		goto out;
3578 
3579 	r = maybe_resize_data_dev(ti, &need_commit1);
3580 	if (r)
3581 		goto out;
3582 
3583 	r = maybe_resize_metadata_dev(ti, &need_commit2);
3584 	if (r)
3585 		goto out;
3586 
3587 	if (need_commit1 || need_commit2)
3588 		(void) commit(pool);
3589 out:
3590 	/*
3591 	 * When a thin-pool is PM_FAIL, it cannot be rebuilt if
3592 	 * bio is in deferred list. Therefore need to return 0
3593 	 * to allow pool_resume() to flush IO.
3594 	 */
3595 	if (r && get_pool_mode(pool) == PM_FAIL)
3596 		r = 0;
3597 
3598 	return r;
3599 }
3600 
3601 static void pool_suspend_active_thins(struct pool *pool)
3602 {
3603 	struct thin_c *tc;
3604 
3605 	/* Suspend all active thin devices */
3606 	tc = get_first_thin(pool);
3607 	while (tc) {
3608 		dm_internal_suspend_noflush(tc->thin_md);
3609 		tc = get_next_thin(pool, tc);
3610 	}
3611 }
3612 
3613 static void pool_resume_active_thins(struct pool *pool)
3614 {
3615 	struct thin_c *tc;
3616 
3617 	/* Resume all active thin devices */
3618 	tc = get_first_thin(pool);
3619 	while (tc) {
3620 		dm_internal_resume(tc->thin_md);
3621 		tc = get_next_thin(pool, tc);
3622 	}
3623 }
3624 
3625 static void pool_resume(struct dm_target *ti)
3626 {
3627 	struct pool_c *pt = ti->private;
3628 	struct pool *pool = pt->pool;
3629 
3630 	/*
3631 	 * Must requeue active_thins' bios and then resume
3632 	 * active_thins _before_ clearing 'suspend' flag.
3633 	 */
3634 	requeue_bios(pool);
3635 	pool_resume_active_thins(pool);
3636 
3637 	spin_lock_irq(&pool->lock);
3638 	pool->low_water_triggered = false;
3639 	pool->suspended = false;
3640 	spin_unlock_irq(&pool->lock);
3641 
3642 	do_waker(&pool->waker.work);
3643 }
3644 
3645 static void pool_presuspend(struct dm_target *ti)
3646 {
3647 	struct pool_c *pt = ti->private;
3648 	struct pool *pool = pt->pool;
3649 
3650 	spin_lock_irq(&pool->lock);
3651 	pool->suspended = true;
3652 	spin_unlock_irq(&pool->lock);
3653 
3654 	pool_suspend_active_thins(pool);
3655 }
3656 
3657 static void pool_presuspend_undo(struct dm_target *ti)
3658 {
3659 	struct pool_c *pt = ti->private;
3660 	struct pool *pool = pt->pool;
3661 
3662 	pool_resume_active_thins(pool);
3663 
3664 	spin_lock_irq(&pool->lock);
3665 	pool->suspended = false;
3666 	spin_unlock_irq(&pool->lock);
3667 }
3668 
3669 static void pool_postsuspend(struct dm_target *ti)
3670 {
3671 	struct pool_c *pt = ti->private;
3672 	struct pool *pool = pt->pool;
3673 
3674 	cancel_delayed_work_sync(&pool->waker);
3675 	cancel_delayed_work_sync(&pool->no_space_timeout);
3676 	flush_workqueue(pool->wq);
3677 	(void) commit(pool);
3678 }
3679 
3680 static int check_arg_count(unsigned int argc, unsigned int args_required)
3681 {
3682 	if (argc != args_required) {
3683 		DMWARN("Message received with %u arguments instead of %u.",
3684 		       argc, args_required);
3685 		return -EINVAL;
3686 	}
3687 
3688 	return 0;
3689 }
3690 
3691 static int read_dev_id(char *arg, dm_thin_id *dev_id, int warning)
3692 {
3693 	if (!kstrtoull(arg, 10, (unsigned long long *)dev_id) &&
3694 	    *dev_id <= MAX_DEV_ID)
3695 		return 0;
3696 
3697 	if (warning)
3698 		DMWARN("Message received with invalid device id: %s", arg);
3699 
3700 	return -EINVAL;
3701 }
3702 
3703 static int process_create_thin_mesg(unsigned int argc, char **argv, struct pool *pool)
3704 {
3705 	dm_thin_id dev_id;
3706 	int r;
3707 
3708 	r = check_arg_count(argc, 2);
3709 	if (r)
3710 		return r;
3711 
3712 	r = read_dev_id(argv[1], &dev_id, 1);
3713 	if (r)
3714 		return r;
3715 
3716 	r = dm_pool_create_thin(pool->pmd, dev_id);
3717 	if (r) {
3718 		DMWARN("Creation of new thinly-provisioned device with id %s failed.",
3719 		       argv[1]);
3720 		return r;
3721 	}
3722 
3723 	return 0;
3724 }
3725 
3726 static int process_create_snap_mesg(unsigned int argc, char **argv, struct pool *pool)
3727 {
3728 	dm_thin_id dev_id;
3729 	dm_thin_id origin_dev_id;
3730 	int r;
3731 
3732 	r = check_arg_count(argc, 3);
3733 	if (r)
3734 		return r;
3735 
3736 	r = read_dev_id(argv[1], &dev_id, 1);
3737 	if (r)
3738 		return r;
3739 
3740 	r = read_dev_id(argv[2], &origin_dev_id, 1);
3741 	if (r)
3742 		return r;
3743 
3744 	r = dm_pool_create_snap(pool->pmd, dev_id, origin_dev_id);
3745 	if (r) {
3746 		DMWARN("Creation of new snapshot %s of device %s failed.",
3747 		       argv[1], argv[2]);
3748 		return r;
3749 	}
3750 
3751 	return 0;
3752 }
3753 
3754 static int process_delete_mesg(unsigned int argc, char **argv, struct pool *pool)
3755 {
3756 	dm_thin_id dev_id;
3757 	int r;
3758 
3759 	r = check_arg_count(argc, 2);
3760 	if (r)
3761 		return r;
3762 
3763 	r = read_dev_id(argv[1], &dev_id, 1);
3764 	if (r)
3765 		return r;
3766 
3767 	r = dm_pool_delete_thin_device(pool->pmd, dev_id);
3768 	if (r)
3769 		DMWARN("Deletion of thin device %s failed.", argv[1]);
3770 
3771 	return r;
3772 }
3773 
3774 static int process_set_transaction_id_mesg(unsigned int argc, char **argv, struct pool *pool)
3775 {
3776 	dm_thin_id old_id, new_id;
3777 	int r;
3778 
3779 	r = check_arg_count(argc, 3);
3780 	if (r)
3781 		return r;
3782 
3783 	if (kstrtoull(argv[1], 10, (unsigned long long *)&old_id)) {
3784 		DMWARN("set_transaction_id message: Unrecognised id %s.", argv[1]);
3785 		return -EINVAL;
3786 	}
3787 
3788 	if (kstrtoull(argv[2], 10, (unsigned long long *)&new_id)) {
3789 		DMWARN("set_transaction_id message: Unrecognised new id %s.", argv[2]);
3790 		return -EINVAL;
3791 	}
3792 
3793 	r = dm_pool_set_metadata_transaction_id(pool->pmd, old_id, new_id);
3794 	if (r) {
3795 		DMWARN("Failed to change transaction id from %s to %s.",
3796 		       argv[1], argv[2]);
3797 		return r;
3798 	}
3799 
3800 	return 0;
3801 }
3802 
3803 static int process_reserve_metadata_snap_mesg(unsigned int argc, char **argv, struct pool *pool)
3804 {
3805 	int r;
3806 
3807 	r = check_arg_count(argc, 1);
3808 	if (r)
3809 		return r;
3810 
3811 	(void) commit(pool);
3812 
3813 	r = dm_pool_reserve_metadata_snap(pool->pmd);
3814 	if (r)
3815 		DMWARN("reserve_metadata_snap message failed.");
3816 
3817 	return r;
3818 }
3819 
3820 static int process_release_metadata_snap_mesg(unsigned int argc, char **argv, struct pool *pool)
3821 {
3822 	int r;
3823 
3824 	r = check_arg_count(argc, 1);
3825 	if (r)
3826 		return r;
3827 
3828 	r = dm_pool_release_metadata_snap(pool->pmd);
3829 	if (r)
3830 		DMWARN("release_metadata_snap message failed.");
3831 
3832 	return r;
3833 }
3834 
3835 /*
3836  * Messages supported:
3837  *   create_thin	<dev_id>
3838  *   create_snap	<dev_id> <origin_id>
3839  *   delete		<dev_id>
3840  *   set_transaction_id <current_trans_id> <new_trans_id>
3841  *   reserve_metadata_snap
3842  *   release_metadata_snap
3843  */
3844 static int pool_message(struct dm_target *ti, unsigned int argc, char **argv,
3845 			char *result, unsigned int maxlen)
3846 {
3847 	int r = -EINVAL;
3848 	struct pool_c *pt = ti->private;
3849 	struct pool *pool = pt->pool;
3850 
3851 	if (get_pool_mode(pool) >= PM_OUT_OF_METADATA_SPACE) {
3852 		DMERR("%s: unable to service pool target messages in READ_ONLY or FAIL mode",
3853 		      dm_device_name(pool->pool_md));
3854 		return -EOPNOTSUPP;
3855 	}
3856 
3857 	if (!strcasecmp(argv[0], "create_thin"))
3858 		r = process_create_thin_mesg(argc, argv, pool);
3859 
3860 	else if (!strcasecmp(argv[0], "create_snap"))
3861 		r = process_create_snap_mesg(argc, argv, pool);
3862 
3863 	else if (!strcasecmp(argv[0], "delete"))
3864 		r = process_delete_mesg(argc, argv, pool);
3865 
3866 	else if (!strcasecmp(argv[0], "set_transaction_id"))
3867 		r = process_set_transaction_id_mesg(argc, argv, pool);
3868 
3869 	else if (!strcasecmp(argv[0], "reserve_metadata_snap"))
3870 		r = process_reserve_metadata_snap_mesg(argc, argv, pool);
3871 
3872 	else if (!strcasecmp(argv[0], "release_metadata_snap"))
3873 		r = process_release_metadata_snap_mesg(argc, argv, pool);
3874 
3875 	else
3876 		DMWARN("Unrecognised thin pool target message received: %s", argv[0]);
3877 
3878 	if (!r)
3879 		(void) commit(pool);
3880 
3881 	return r;
3882 }
3883 
3884 static void emit_flags(struct pool_features *pf, char *result,
3885 		       unsigned int sz, unsigned int maxlen)
3886 {
3887 	unsigned int count = !pf->zero_new_blocks + !pf->discard_enabled +
3888 		!pf->discard_passdown + (pf->mode == PM_READ_ONLY) +
3889 		pf->error_if_no_space;
3890 	DMEMIT("%u ", count);
3891 
3892 	if (!pf->zero_new_blocks)
3893 		DMEMIT("skip_block_zeroing ");
3894 
3895 	if (!pf->discard_enabled)
3896 		DMEMIT("ignore_discard ");
3897 
3898 	if (!pf->discard_passdown)
3899 		DMEMIT("no_discard_passdown ");
3900 
3901 	if (pf->mode == PM_READ_ONLY)
3902 		DMEMIT("read_only ");
3903 
3904 	if (pf->error_if_no_space)
3905 		DMEMIT("error_if_no_space ");
3906 }
3907 
3908 /*
3909  * Status line is:
3910  *    <transaction id> <used metadata sectors>/<total metadata sectors>
3911  *    <used data sectors>/<total data sectors> <held metadata root>
3912  *    <pool mode> <discard config> <no space config> <needs_check>
3913  */
3914 static void pool_status(struct dm_target *ti, status_type_t type,
3915 			unsigned int status_flags, char *result, unsigned int maxlen)
3916 {
3917 	int r;
3918 	unsigned int sz = 0;
3919 	uint64_t transaction_id;
3920 	dm_block_t nr_free_blocks_data;
3921 	dm_block_t nr_free_blocks_metadata;
3922 	dm_block_t nr_blocks_data;
3923 	dm_block_t nr_blocks_metadata;
3924 	dm_block_t held_root;
3925 	enum pool_mode mode;
3926 	char buf[BDEVNAME_SIZE];
3927 	char buf2[BDEVNAME_SIZE];
3928 	struct pool_c *pt = ti->private;
3929 	struct pool *pool = pt->pool;
3930 
3931 	switch (type) {
3932 	case STATUSTYPE_INFO:
3933 		if (get_pool_mode(pool) == PM_FAIL) {
3934 			DMEMIT("Fail");
3935 			break;
3936 		}
3937 
3938 		/* Commit to ensure statistics aren't out-of-date */
3939 		if (!(status_flags & DM_STATUS_NOFLUSH_FLAG) && !dm_suspended(ti))
3940 			(void) commit(pool);
3941 
3942 		r = dm_pool_get_metadata_transaction_id(pool->pmd, &transaction_id);
3943 		if (r) {
3944 			DMERR("%s: dm_pool_get_metadata_transaction_id returned %d",
3945 			      dm_device_name(pool->pool_md), r);
3946 			goto err;
3947 		}
3948 
3949 		r = dm_pool_get_free_metadata_block_count(pool->pmd, &nr_free_blocks_metadata);
3950 		if (r) {
3951 			DMERR("%s: dm_pool_get_free_metadata_block_count returned %d",
3952 			      dm_device_name(pool->pool_md), r);
3953 			goto err;
3954 		}
3955 
3956 		r = dm_pool_get_metadata_dev_size(pool->pmd, &nr_blocks_metadata);
3957 		if (r) {
3958 			DMERR("%s: dm_pool_get_metadata_dev_size returned %d",
3959 			      dm_device_name(pool->pool_md), r);
3960 			goto err;
3961 		}
3962 
3963 		r = dm_pool_get_free_block_count(pool->pmd, &nr_free_blocks_data);
3964 		if (r) {
3965 			DMERR("%s: dm_pool_get_free_block_count returned %d",
3966 			      dm_device_name(pool->pool_md), r);
3967 			goto err;
3968 		}
3969 
3970 		r = dm_pool_get_data_dev_size(pool->pmd, &nr_blocks_data);
3971 		if (r) {
3972 			DMERR("%s: dm_pool_get_data_dev_size returned %d",
3973 			      dm_device_name(pool->pool_md), r);
3974 			goto err;
3975 		}
3976 
3977 		r = dm_pool_get_metadata_snap(pool->pmd, &held_root);
3978 		if (r) {
3979 			DMERR("%s: dm_pool_get_metadata_snap returned %d",
3980 			      dm_device_name(pool->pool_md), r);
3981 			goto err;
3982 		}
3983 
3984 		DMEMIT("%llu %llu/%llu %llu/%llu ",
3985 		       (unsigned long long)transaction_id,
3986 		       (unsigned long long)(nr_blocks_metadata - nr_free_blocks_metadata),
3987 		       (unsigned long long)nr_blocks_metadata,
3988 		       (unsigned long long)(nr_blocks_data - nr_free_blocks_data),
3989 		       (unsigned long long)nr_blocks_data);
3990 
3991 		if (held_root)
3992 			DMEMIT("%llu ", held_root);
3993 		else
3994 			DMEMIT("- ");
3995 
3996 		mode = get_pool_mode(pool);
3997 		if (mode == PM_OUT_OF_DATA_SPACE)
3998 			DMEMIT("out_of_data_space ");
3999 		else if (is_read_only_pool_mode(mode))
4000 			DMEMIT("ro ");
4001 		else
4002 			DMEMIT("rw ");
4003 
4004 		if (!pool->pf.discard_enabled)
4005 			DMEMIT("ignore_discard ");
4006 		else if (pool->pf.discard_passdown)
4007 			DMEMIT("discard_passdown ");
4008 		else
4009 			DMEMIT("no_discard_passdown ");
4010 
4011 		if (pool->pf.error_if_no_space)
4012 			DMEMIT("error_if_no_space ");
4013 		else
4014 			DMEMIT("queue_if_no_space ");
4015 
4016 		if (dm_pool_metadata_needs_check(pool->pmd))
4017 			DMEMIT("needs_check ");
4018 		else
4019 			DMEMIT("- ");
4020 
4021 		DMEMIT("%llu ", (unsigned long long)calc_metadata_threshold(pt));
4022 
4023 		break;
4024 
4025 	case STATUSTYPE_TABLE:
4026 		DMEMIT("%s %s %lu %llu ",
4027 		       format_dev_t(buf, pt->metadata_dev->bdev->bd_dev),
4028 		       format_dev_t(buf2, pt->data_dev->bdev->bd_dev),
4029 		       (unsigned long)pool->sectors_per_block,
4030 		       (unsigned long long)pt->low_water_blocks);
4031 		emit_flags(&pt->requested_pf, result, sz, maxlen);
4032 		break;
4033 
4034 	case STATUSTYPE_IMA:
4035 		*result = '\0';
4036 		break;
4037 	}
4038 	return;
4039 
4040 err:
4041 	DMEMIT("Error");
4042 }
4043 
4044 static int pool_iterate_devices(struct dm_target *ti,
4045 				iterate_devices_callout_fn fn, void *data)
4046 {
4047 	struct pool_c *pt = ti->private;
4048 
4049 	return fn(ti, pt->data_dev, 0, ti->len, data);
4050 }
4051 
4052 static void pool_io_hints(struct dm_target *ti, struct queue_limits *limits)
4053 {
4054 	struct pool_c *pt = ti->private;
4055 	struct pool *pool = pt->pool;
4056 	sector_t io_opt_sectors = limits->io_opt >> SECTOR_SHIFT;
4057 
4058 	/*
4059 	 * If max_sectors is smaller than pool->sectors_per_block adjust it
4060 	 * to the highest possible power-of-2 factor of pool->sectors_per_block.
4061 	 * This is especially beneficial when the pool's data device is a RAID
4062 	 * device that has a full stripe width that matches pool->sectors_per_block
4063 	 * -- because even though partial RAID stripe-sized IOs will be issued to a
4064 	 *    single RAID stripe; when aggregated they will end on a full RAID stripe
4065 	 *    boundary.. which avoids additional partial RAID stripe writes cascading
4066 	 */
4067 	if (limits->max_sectors < pool->sectors_per_block) {
4068 		while (!is_factor(pool->sectors_per_block, limits->max_sectors)) {
4069 			if ((limits->max_sectors & (limits->max_sectors - 1)) == 0)
4070 				limits->max_sectors--;
4071 			limits->max_sectors = rounddown_pow_of_two(limits->max_sectors);
4072 		}
4073 	}
4074 
4075 	/*
4076 	 * If the system-determined stacked limits are compatible with the
4077 	 * pool's blocksize (io_opt is a factor) do not override them.
4078 	 */
4079 	if (io_opt_sectors < pool->sectors_per_block ||
4080 	    !is_factor(io_opt_sectors, pool->sectors_per_block)) {
4081 		if (is_factor(pool->sectors_per_block, limits->max_sectors))
4082 			limits->io_min = limits->max_sectors << SECTOR_SHIFT;
4083 		else
4084 			limits->io_min = pool->sectors_per_block << SECTOR_SHIFT;
4085 		limits->io_opt = pool->sectors_per_block << SECTOR_SHIFT;
4086 	}
4087 
4088 	/*
4089 	 * pt->adjusted_pf is a staging area for the actual features to use.
4090 	 * They get transferred to the live pool in bind_control_target()
4091 	 * called from pool_preresume().
4092 	 */
4093 
4094 	if (pt->adjusted_pf.discard_enabled) {
4095 		disable_discard_passdown_if_not_supported(pt);
4096 		if (!pt->adjusted_pf.discard_passdown)
4097 			limits->max_hw_discard_sectors = 0;
4098 		/*
4099 		 * The pool uses the same discard limits as the underlying data
4100 		 * device.  DM core has already set this up.
4101 		 */
4102 	} else {
4103 		/*
4104 		 * Must explicitly disallow stacking discard limits otherwise the
4105 		 * block layer will stack them if pool's data device has support.
4106 		 */
4107 		limits->discard_granularity = 0;
4108 	}
4109 }
4110 
4111 static struct target_type pool_target = {
4112 	.name = "thin-pool",
4113 	.features = DM_TARGET_SINGLETON | DM_TARGET_ALWAYS_WRITEABLE |
4114 		    DM_TARGET_IMMUTABLE,
4115 	.version = {1, 23, 0},
4116 	.module = THIS_MODULE,
4117 	.ctr = pool_ctr,
4118 	.dtr = pool_dtr,
4119 	.map = pool_map,
4120 	.presuspend = pool_presuspend,
4121 	.presuspend_undo = pool_presuspend_undo,
4122 	.postsuspend = pool_postsuspend,
4123 	.preresume = pool_preresume,
4124 	.resume = pool_resume,
4125 	.message = pool_message,
4126 	.status = pool_status,
4127 	.iterate_devices = pool_iterate_devices,
4128 	.io_hints = pool_io_hints,
4129 };
4130 
4131 /*
4132  *--------------------------------------------------------------
4133  * Thin target methods
4134  *--------------------------------------------------------------
4135  */
4136 static void thin_get(struct thin_c *tc)
4137 {
4138 	refcount_inc(&tc->refcount);
4139 }
4140 
4141 static void thin_put(struct thin_c *tc)
4142 {
4143 	if (refcount_dec_and_test(&tc->refcount))
4144 		complete(&tc->can_destroy);
4145 }
4146 
4147 static void thin_dtr(struct dm_target *ti)
4148 {
4149 	struct thin_c *tc = ti->private;
4150 
4151 	spin_lock_irq(&tc->pool->lock);
4152 	list_del_rcu(&tc->list);
4153 	spin_unlock_irq(&tc->pool->lock);
4154 	synchronize_rcu();
4155 
4156 	thin_put(tc);
4157 	wait_for_completion(&tc->can_destroy);
4158 
4159 	mutex_lock(&dm_thin_pool_table.mutex);
4160 
4161 	__pool_dec(tc->pool);
4162 	dm_pool_close_thin_device(tc->td);
4163 	dm_put_device(ti, tc->pool_dev);
4164 	if (tc->origin_dev)
4165 		dm_put_device(ti, tc->origin_dev);
4166 	kfree(tc);
4167 
4168 	mutex_unlock(&dm_thin_pool_table.mutex);
4169 }
4170 
4171 /*
4172  * Thin target parameters:
4173  *
4174  * <pool_dev> <dev_id> [origin_dev]
4175  *
4176  * pool_dev: the path to the pool (eg, /dev/mapper/my_pool)
4177  * dev_id: the internal device identifier
4178  * origin_dev: a device external to the pool that should act as the origin
4179  *
4180  * If the pool device has discards disabled, they get disabled for the thin
4181  * device as well.
4182  */
4183 static int thin_ctr(struct dm_target *ti, unsigned int argc, char **argv)
4184 {
4185 	int r;
4186 	struct thin_c *tc;
4187 	struct dm_dev *pool_dev, *origin_dev;
4188 	struct mapped_device *pool_md;
4189 
4190 	mutex_lock(&dm_thin_pool_table.mutex);
4191 
4192 	if (argc != 2 && argc != 3) {
4193 		ti->error = "Invalid argument count";
4194 		r = -EINVAL;
4195 		goto out_unlock;
4196 	}
4197 
4198 	tc = ti->private = kzalloc(sizeof(*tc), GFP_KERNEL);
4199 	if (!tc) {
4200 		ti->error = "Out of memory";
4201 		r = -ENOMEM;
4202 		goto out_unlock;
4203 	}
4204 	tc->thin_md = dm_table_get_md(ti->table);
4205 	spin_lock_init(&tc->lock);
4206 	INIT_LIST_HEAD(&tc->deferred_cells);
4207 	bio_list_init(&tc->deferred_bio_list);
4208 	bio_list_init(&tc->retry_on_resume_list);
4209 	tc->sort_bio_list = RB_ROOT;
4210 
4211 	if (argc == 3) {
4212 		if (!strcmp(argv[0], argv[2])) {
4213 			ti->error = "Error setting origin device";
4214 			r = -EINVAL;
4215 			goto bad_origin_dev;
4216 		}
4217 
4218 		r = dm_get_device(ti, argv[2], BLK_OPEN_READ, &origin_dev);
4219 		if (r) {
4220 			ti->error = "Error opening origin device";
4221 			goto bad_origin_dev;
4222 		}
4223 		tc->origin_dev = origin_dev;
4224 	}
4225 
4226 	r = dm_get_device(ti, argv[0], dm_table_get_mode(ti->table), &pool_dev);
4227 	if (r) {
4228 		ti->error = "Error opening pool device";
4229 		goto bad_pool_dev;
4230 	}
4231 	tc->pool_dev = pool_dev;
4232 
4233 	if (read_dev_id(argv[1], (unsigned long long *)&tc->dev_id, 0)) {
4234 		ti->error = "Invalid device id";
4235 		r = -EINVAL;
4236 		goto bad_common;
4237 	}
4238 
4239 	pool_md = dm_get_md(tc->pool_dev->bdev->bd_dev);
4240 	if (!pool_md) {
4241 		ti->error = "Couldn't get pool mapped device";
4242 		r = -EINVAL;
4243 		goto bad_common;
4244 	}
4245 
4246 	tc->pool = __pool_table_lookup(pool_md);
4247 	if (!tc->pool) {
4248 		ti->error = "Couldn't find pool object";
4249 		r = -EINVAL;
4250 		goto bad_pool_lookup;
4251 	}
4252 	__pool_inc(tc->pool);
4253 
4254 	if (get_pool_mode(tc->pool) == PM_FAIL) {
4255 		ti->error = "Couldn't open thin device, Pool is in fail mode";
4256 		r = -EINVAL;
4257 		goto bad_pool;
4258 	}
4259 
4260 	r = dm_pool_open_thin_device(tc->pool->pmd, tc->dev_id, &tc->td);
4261 	if (r) {
4262 		ti->error = "Couldn't open thin internal device";
4263 		goto bad_pool;
4264 	}
4265 
4266 	r = dm_set_target_max_io_len(ti, tc->pool->sectors_per_block);
4267 	if (r)
4268 		goto bad;
4269 
4270 	ti->num_flush_bios = 1;
4271 	ti->limit_swap_bios = true;
4272 	ti->flush_supported = true;
4273 	ti->accounts_remapped_io = true;
4274 	ti->per_io_data_size = sizeof(struct dm_thin_endio_hook);
4275 
4276 	/* In case the pool supports discards, pass them on. */
4277 	if (tc->pool->pf.discard_enabled) {
4278 		ti->discards_supported = true;
4279 		ti->num_discard_bios = 1;
4280 		ti->max_discard_granularity = true;
4281 	}
4282 
4283 	mutex_unlock(&dm_thin_pool_table.mutex);
4284 
4285 	spin_lock_irq(&tc->pool->lock);
4286 	if (tc->pool->suspended) {
4287 		spin_unlock_irq(&tc->pool->lock);
4288 		mutex_lock(&dm_thin_pool_table.mutex); /* reacquire for __pool_dec */
4289 		ti->error = "Unable to activate thin device while pool is suspended";
4290 		r = -EINVAL;
4291 		goto bad;
4292 	}
4293 	refcount_set(&tc->refcount, 1);
4294 	init_completion(&tc->can_destroy);
4295 	list_add_tail_rcu(&tc->list, &tc->pool->active_thins);
4296 	spin_unlock_irq(&tc->pool->lock);
4297 	/*
4298 	 * This synchronize_rcu() call is needed here otherwise we risk a
4299 	 * wake_worker() call finding no bios to process (because the newly
4300 	 * added tc isn't yet visible).  So this reduces latency since we
4301 	 * aren't then dependent on the periodic commit to wake_worker().
4302 	 */
4303 	synchronize_rcu();
4304 
4305 	dm_put(pool_md);
4306 
4307 	return 0;
4308 
4309 bad:
4310 	dm_pool_close_thin_device(tc->td);
4311 bad_pool:
4312 	__pool_dec(tc->pool);
4313 bad_pool_lookup:
4314 	dm_put(pool_md);
4315 bad_common:
4316 	dm_put_device(ti, tc->pool_dev);
4317 bad_pool_dev:
4318 	if (tc->origin_dev)
4319 		dm_put_device(ti, tc->origin_dev);
4320 bad_origin_dev:
4321 	kfree(tc);
4322 out_unlock:
4323 	mutex_unlock(&dm_thin_pool_table.mutex);
4324 
4325 	return r;
4326 }
4327 
4328 static int thin_map(struct dm_target *ti, struct bio *bio)
4329 {
4330 	bio->bi_iter.bi_sector = dm_target_offset(ti, bio->bi_iter.bi_sector);
4331 
4332 	return thin_bio_map(ti, bio);
4333 }
4334 
4335 static int thin_endio(struct dm_target *ti, struct bio *bio,
4336 		blk_status_t *err)
4337 {
4338 	unsigned long flags;
4339 	struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
4340 	struct list_head work;
4341 	struct dm_thin_new_mapping *m, *tmp;
4342 	struct pool *pool = h->tc->pool;
4343 
4344 	if (h->shared_read_entry) {
4345 		INIT_LIST_HEAD(&work);
4346 		dm_deferred_entry_dec(h->shared_read_entry, &work);
4347 
4348 		spin_lock_irqsave(&pool->lock, flags);
4349 		list_for_each_entry_safe(m, tmp, &work, list) {
4350 			list_del(&m->list);
4351 			__complete_mapping_preparation(m);
4352 		}
4353 		spin_unlock_irqrestore(&pool->lock, flags);
4354 	}
4355 
4356 	if (h->all_io_entry) {
4357 		INIT_LIST_HEAD(&work);
4358 		dm_deferred_entry_dec(h->all_io_entry, &work);
4359 		if (!list_empty(&work)) {
4360 			spin_lock_irqsave(&pool->lock, flags);
4361 			list_for_each_entry_safe(m, tmp, &work, list)
4362 				list_add_tail(&m->list, &pool->prepared_discards);
4363 			spin_unlock_irqrestore(&pool->lock, flags);
4364 			wake_worker(pool);
4365 		}
4366 	}
4367 
4368 	if (h->cell)
4369 		cell_defer_no_holder(h->tc, h->cell);
4370 
4371 	return DM_ENDIO_DONE;
4372 }
4373 
4374 static void thin_presuspend(struct dm_target *ti)
4375 {
4376 	struct thin_c *tc = ti->private;
4377 
4378 	if (dm_noflush_suspending(ti))
4379 		noflush_work(tc, do_noflush_start);
4380 }
4381 
4382 static void thin_postsuspend(struct dm_target *ti)
4383 {
4384 	struct thin_c *tc = ti->private;
4385 
4386 	/*
4387 	 * The dm_noflush_suspending flag has been cleared by now, so
4388 	 * unfortunately we must always run this.
4389 	 */
4390 	noflush_work(tc, do_noflush_stop);
4391 }
4392 
4393 static int thin_preresume(struct dm_target *ti)
4394 {
4395 	struct thin_c *tc = ti->private;
4396 
4397 	if (tc->origin_dev)
4398 		tc->origin_size = get_dev_size(tc->origin_dev->bdev);
4399 
4400 	return 0;
4401 }
4402 
4403 /*
4404  * <nr mapped sectors> <highest mapped sector>
4405  */
4406 static void thin_status(struct dm_target *ti, status_type_t type,
4407 			unsigned int status_flags, char *result, unsigned int maxlen)
4408 {
4409 	int r;
4410 	ssize_t sz = 0;
4411 	dm_block_t mapped, highest;
4412 	char buf[BDEVNAME_SIZE];
4413 	struct thin_c *tc = ti->private;
4414 
4415 	if (get_pool_mode(tc->pool) == PM_FAIL) {
4416 		DMEMIT("Fail");
4417 		return;
4418 	}
4419 
4420 	if (!tc->td)
4421 		DMEMIT("-");
4422 	else {
4423 		switch (type) {
4424 		case STATUSTYPE_INFO:
4425 			r = dm_thin_get_mapped_count(tc->td, &mapped);
4426 			if (r) {
4427 				DMERR("dm_thin_get_mapped_count returned %d", r);
4428 				goto err;
4429 			}
4430 
4431 			r = dm_thin_get_highest_mapped_block(tc->td, &highest);
4432 			if (r < 0) {
4433 				DMERR("dm_thin_get_highest_mapped_block returned %d", r);
4434 				goto err;
4435 			}
4436 
4437 			DMEMIT("%llu ", mapped * tc->pool->sectors_per_block);
4438 			if (r)
4439 				DMEMIT("%llu", ((highest + 1) *
4440 						tc->pool->sectors_per_block) - 1);
4441 			else
4442 				DMEMIT("-");
4443 			break;
4444 
4445 		case STATUSTYPE_TABLE:
4446 			DMEMIT("%s %lu",
4447 			       format_dev_t(buf, tc->pool_dev->bdev->bd_dev),
4448 			       (unsigned long) tc->dev_id);
4449 			if (tc->origin_dev)
4450 				DMEMIT(" %s", format_dev_t(buf, tc->origin_dev->bdev->bd_dev));
4451 			break;
4452 
4453 		case STATUSTYPE_IMA:
4454 			*result = '\0';
4455 			break;
4456 		}
4457 	}
4458 
4459 	return;
4460 
4461 err:
4462 	DMEMIT("Error");
4463 }
4464 
4465 static int thin_iterate_devices(struct dm_target *ti,
4466 				iterate_devices_callout_fn fn, void *data)
4467 {
4468 	sector_t blocks;
4469 	struct thin_c *tc = ti->private;
4470 	struct pool *pool = tc->pool;
4471 
4472 	/*
4473 	 * We can't call dm_pool_get_data_dev_size() since that blocks.  So
4474 	 * we follow a more convoluted path through to the pool's target.
4475 	 */
4476 	if (!pool->ti)
4477 		return 0;	/* nothing is bound */
4478 
4479 	blocks = pool->ti->len;
4480 	(void) sector_div(blocks, pool->sectors_per_block);
4481 	if (blocks)
4482 		return fn(ti, tc->pool_dev, 0, pool->sectors_per_block * blocks, data);
4483 
4484 	return 0;
4485 }
4486 
4487 static void thin_io_hints(struct dm_target *ti, struct queue_limits *limits)
4488 {
4489 	struct thin_c *tc = ti->private;
4490 	struct pool *pool = tc->pool;
4491 
4492 	if (pool->pf.discard_enabled) {
4493 		limits->discard_granularity = pool->sectors_per_block << SECTOR_SHIFT;
4494 		limits->max_hw_discard_sectors = pool->sectors_per_block * BIO_PRISON_MAX_RANGE;
4495 	}
4496 }
4497 
4498 static struct target_type thin_target = {
4499 	.name = "thin",
4500 	.version = {1, 23, 0},
4501 	.module	= THIS_MODULE,
4502 	.ctr = thin_ctr,
4503 	.dtr = thin_dtr,
4504 	.map = thin_map,
4505 	.end_io = thin_endio,
4506 	.preresume = thin_preresume,
4507 	.presuspend = thin_presuspend,
4508 	.postsuspend = thin_postsuspend,
4509 	.status = thin_status,
4510 	.iterate_devices = thin_iterate_devices,
4511 	.io_hints = thin_io_hints,
4512 };
4513 
4514 /*----------------------------------------------------------------*/
4515 
4516 static int __init dm_thin_init(void)
4517 {
4518 	int r = -ENOMEM;
4519 
4520 	pool_table_init();
4521 
4522 	_new_mapping_cache = KMEM_CACHE(dm_thin_new_mapping, 0);
4523 	if (!_new_mapping_cache)
4524 		return r;
4525 
4526 	r = dm_register_target(&thin_target);
4527 	if (r)
4528 		goto bad_new_mapping_cache;
4529 
4530 	r = dm_register_target(&pool_target);
4531 	if (r)
4532 		goto bad_thin_target;
4533 
4534 	return 0;
4535 
4536 bad_thin_target:
4537 	dm_unregister_target(&thin_target);
4538 bad_new_mapping_cache:
4539 	kmem_cache_destroy(_new_mapping_cache);
4540 
4541 	return r;
4542 }
4543 
4544 static void dm_thin_exit(void)
4545 {
4546 	dm_unregister_target(&thin_target);
4547 	dm_unregister_target(&pool_target);
4548 
4549 	kmem_cache_destroy(_new_mapping_cache);
4550 
4551 	pool_table_exit();
4552 }
4553 
4554 module_init(dm_thin_init);
4555 module_exit(dm_thin_exit);
4556 
4557 module_param_named(no_space_timeout, no_space_timeout_secs, uint, 0644);
4558 MODULE_PARM_DESC(no_space_timeout, "Out of data space queue IO timeout in seconds");
4559 
4560 MODULE_DESCRIPTION(DM_NAME " thin provisioning target");
4561 MODULE_AUTHOR("Joe Thornber <dm-devel@lists.linux.dev>");
4562 MODULE_LICENSE("GPL");
4563