1 /* 2 * Copyright (C) 2011-2012 Red Hat UK. 3 * 4 * This file is released under the GPL. 5 */ 6 7 #include "dm-thin-metadata.h" 8 #include "dm-bio-prison.h" 9 #include "dm.h" 10 11 #include <linux/device-mapper.h> 12 #include <linux/dm-io.h> 13 #include <linux/dm-kcopyd.h> 14 #include <linux/list.h> 15 #include <linux/rculist.h> 16 #include <linux/init.h> 17 #include <linux/module.h> 18 #include <linux/slab.h> 19 #include <linux/rbtree.h> 20 21 #define DM_MSG_PREFIX "thin" 22 23 /* 24 * Tunable constants 25 */ 26 #define ENDIO_HOOK_POOL_SIZE 1024 27 #define MAPPING_POOL_SIZE 1024 28 #define PRISON_CELLS 1024 29 #define COMMIT_PERIOD HZ 30 31 DECLARE_DM_KCOPYD_THROTTLE_WITH_MODULE_PARM(snapshot_copy_throttle, 32 "A percentage of time allocated for copy on write"); 33 34 /* 35 * The block size of the device holding pool data must be 36 * between 64KB and 1GB. 37 */ 38 #define DATA_DEV_BLOCK_SIZE_MIN_SECTORS (64 * 1024 >> SECTOR_SHIFT) 39 #define DATA_DEV_BLOCK_SIZE_MAX_SECTORS (1024 * 1024 * 1024 >> SECTOR_SHIFT) 40 41 /* 42 * Device id is restricted to 24 bits. 43 */ 44 #define MAX_DEV_ID ((1 << 24) - 1) 45 46 /* 47 * How do we handle breaking sharing of data blocks? 48 * ================================================= 49 * 50 * We use a standard copy-on-write btree to store the mappings for the 51 * devices (note I'm talking about copy-on-write of the metadata here, not 52 * the data). When you take an internal snapshot you clone the root node 53 * of the origin btree. After this there is no concept of an origin or a 54 * snapshot. They are just two device trees that happen to point to the 55 * same data blocks. 56 * 57 * When we get a write in we decide if it's to a shared data block using 58 * some timestamp magic. If it is, we have to break sharing. 59 * 60 * Let's say we write to a shared block in what was the origin. The 61 * steps are: 62 * 63 * i) plug io further to this physical block. (see bio_prison code). 64 * 65 * ii) quiesce any read io to that shared data block. Obviously 66 * including all devices that share this block. (see dm_deferred_set code) 67 * 68 * iii) copy the data block to a newly allocate block. This step can be 69 * missed out if the io covers the block. (schedule_copy). 70 * 71 * iv) insert the new mapping into the origin's btree 72 * (process_prepared_mapping). This act of inserting breaks some 73 * sharing of btree nodes between the two devices. Breaking sharing only 74 * effects the btree of that specific device. Btrees for the other 75 * devices that share the block never change. The btree for the origin 76 * device as it was after the last commit is untouched, ie. we're using 77 * persistent data structures in the functional programming sense. 78 * 79 * v) unplug io to this physical block, including the io that triggered 80 * the breaking of sharing. 81 * 82 * Steps (ii) and (iii) occur in parallel. 83 * 84 * The metadata _doesn't_ need to be committed before the io continues. We 85 * get away with this because the io is always written to a _new_ block. 86 * If there's a crash, then: 87 * 88 * - The origin mapping will point to the old origin block (the shared 89 * one). This will contain the data as it was before the io that triggered 90 * the breaking of sharing came in. 91 * 92 * - The snap mapping still points to the old block. As it would after 93 * the commit. 94 * 95 * The downside of this scheme is the timestamp magic isn't perfect, and 96 * will continue to think that data block in the snapshot device is shared 97 * even after the write to the origin has broken sharing. I suspect data 98 * blocks will typically be shared by many different devices, so we're 99 * breaking sharing n + 1 times, rather than n, where n is the number of 100 * devices that reference this data block. At the moment I think the 101 * benefits far, far outweigh the disadvantages. 102 */ 103 104 /*----------------------------------------------------------------*/ 105 106 /* 107 * Key building. 108 */ 109 static void build_data_key(struct dm_thin_device *td, 110 dm_block_t b, struct dm_cell_key *key) 111 { 112 key->virtual = 0; 113 key->dev = dm_thin_dev_id(td); 114 key->block = b; 115 } 116 117 static void build_virtual_key(struct dm_thin_device *td, dm_block_t b, 118 struct dm_cell_key *key) 119 { 120 key->virtual = 1; 121 key->dev = dm_thin_dev_id(td); 122 key->block = b; 123 } 124 125 /*----------------------------------------------------------------*/ 126 127 /* 128 * A pool device ties together a metadata device and a data device. It 129 * also provides the interface for creating and destroying internal 130 * devices. 131 */ 132 struct dm_thin_new_mapping; 133 134 /* 135 * The pool runs in 4 modes. Ordered in degraded order for comparisons. 136 */ 137 enum pool_mode { 138 PM_WRITE, /* metadata may be changed */ 139 PM_OUT_OF_DATA_SPACE, /* metadata may be changed, though data may not be allocated */ 140 PM_READ_ONLY, /* metadata may not be changed */ 141 PM_FAIL, /* all I/O fails */ 142 }; 143 144 struct pool_features { 145 enum pool_mode mode; 146 147 bool zero_new_blocks:1; 148 bool discard_enabled:1; 149 bool discard_passdown:1; 150 bool error_if_no_space:1; 151 }; 152 153 struct thin_c; 154 typedef void (*process_bio_fn)(struct thin_c *tc, struct bio *bio); 155 typedef void (*process_mapping_fn)(struct dm_thin_new_mapping *m); 156 157 struct pool { 158 struct list_head list; 159 struct dm_target *ti; /* Only set if a pool target is bound */ 160 161 struct mapped_device *pool_md; 162 struct block_device *md_dev; 163 struct dm_pool_metadata *pmd; 164 165 dm_block_t low_water_blocks; 166 uint32_t sectors_per_block; 167 int sectors_per_block_shift; 168 169 struct pool_features pf; 170 bool low_water_triggered:1; /* A dm event has been sent */ 171 172 struct dm_bio_prison *prison; 173 struct dm_kcopyd_client *copier; 174 175 struct workqueue_struct *wq; 176 struct work_struct worker; 177 struct delayed_work waker; 178 179 unsigned long last_commit_jiffies; 180 unsigned ref_count; 181 182 spinlock_t lock; 183 struct bio_list deferred_flush_bios; 184 struct list_head prepared_mappings; 185 struct list_head prepared_discards; 186 struct list_head active_thins; 187 188 struct dm_deferred_set *shared_read_ds; 189 struct dm_deferred_set *all_io_ds; 190 191 struct dm_thin_new_mapping *next_mapping; 192 mempool_t *mapping_pool; 193 194 process_bio_fn process_bio; 195 process_bio_fn process_discard; 196 197 process_mapping_fn process_prepared_mapping; 198 process_mapping_fn process_prepared_discard; 199 }; 200 201 static enum pool_mode get_pool_mode(struct pool *pool); 202 static void metadata_operation_failed(struct pool *pool, const char *op, int r); 203 204 /* 205 * Target context for a pool. 206 */ 207 struct pool_c { 208 struct dm_target *ti; 209 struct pool *pool; 210 struct dm_dev *data_dev; 211 struct dm_dev *metadata_dev; 212 struct dm_target_callbacks callbacks; 213 214 dm_block_t low_water_blocks; 215 struct pool_features requested_pf; /* Features requested during table load */ 216 struct pool_features adjusted_pf; /* Features used after adjusting for constituent devices */ 217 }; 218 219 /* 220 * Target context for a thin. 221 */ 222 struct thin_c { 223 struct list_head list; 224 struct dm_dev *pool_dev; 225 struct dm_dev *origin_dev; 226 dm_thin_id dev_id; 227 228 struct pool *pool; 229 struct dm_thin_device *td; 230 bool requeue_mode:1; 231 spinlock_t lock; 232 struct bio_list deferred_bio_list; 233 struct bio_list retry_on_resume_list; 234 struct rb_root sort_bio_list; /* sorted list of deferred bios */ 235 }; 236 237 /*----------------------------------------------------------------*/ 238 239 /* 240 * wake_worker() is used when new work is queued and when pool_resume is 241 * ready to continue deferred IO processing. 242 */ 243 static void wake_worker(struct pool *pool) 244 { 245 queue_work(pool->wq, &pool->worker); 246 } 247 248 /*----------------------------------------------------------------*/ 249 250 static int bio_detain(struct pool *pool, struct dm_cell_key *key, struct bio *bio, 251 struct dm_bio_prison_cell **cell_result) 252 { 253 int r; 254 struct dm_bio_prison_cell *cell_prealloc; 255 256 /* 257 * Allocate a cell from the prison's mempool. 258 * This might block but it can't fail. 259 */ 260 cell_prealloc = dm_bio_prison_alloc_cell(pool->prison, GFP_NOIO); 261 262 r = dm_bio_detain(pool->prison, key, bio, cell_prealloc, cell_result); 263 if (r) 264 /* 265 * We reused an old cell; we can get rid of 266 * the new one. 267 */ 268 dm_bio_prison_free_cell(pool->prison, cell_prealloc); 269 270 return r; 271 } 272 273 static void cell_release(struct pool *pool, 274 struct dm_bio_prison_cell *cell, 275 struct bio_list *bios) 276 { 277 dm_cell_release(pool->prison, cell, bios); 278 dm_bio_prison_free_cell(pool->prison, cell); 279 } 280 281 static void cell_release_no_holder(struct pool *pool, 282 struct dm_bio_prison_cell *cell, 283 struct bio_list *bios) 284 { 285 dm_cell_release_no_holder(pool->prison, cell, bios); 286 dm_bio_prison_free_cell(pool->prison, cell); 287 } 288 289 static void cell_defer_no_holder_no_free(struct thin_c *tc, 290 struct dm_bio_prison_cell *cell) 291 { 292 struct pool *pool = tc->pool; 293 unsigned long flags; 294 295 spin_lock_irqsave(&tc->lock, flags); 296 dm_cell_release_no_holder(pool->prison, cell, &tc->deferred_bio_list); 297 spin_unlock_irqrestore(&tc->lock, flags); 298 299 wake_worker(pool); 300 } 301 302 static void cell_error(struct pool *pool, 303 struct dm_bio_prison_cell *cell) 304 { 305 dm_cell_error(pool->prison, cell); 306 dm_bio_prison_free_cell(pool->prison, cell); 307 } 308 309 /*----------------------------------------------------------------*/ 310 311 /* 312 * A global list of pools that uses a struct mapped_device as a key. 313 */ 314 static struct dm_thin_pool_table { 315 struct mutex mutex; 316 struct list_head pools; 317 } dm_thin_pool_table; 318 319 static void pool_table_init(void) 320 { 321 mutex_init(&dm_thin_pool_table.mutex); 322 INIT_LIST_HEAD(&dm_thin_pool_table.pools); 323 } 324 325 static void __pool_table_insert(struct pool *pool) 326 { 327 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex)); 328 list_add(&pool->list, &dm_thin_pool_table.pools); 329 } 330 331 static void __pool_table_remove(struct pool *pool) 332 { 333 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex)); 334 list_del(&pool->list); 335 } 336 337 static struct pool *__pool_table_lookup(struct mapped_device *md) 338 { 339 struct pool *pool = NULL, *tmp; 340 341 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex)); 342 343 list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) { 344 if (tmp->pool_md == md) { 345 pool = tmp; 346 break; 347 } 348 } 349 350 return pool; 351 } 352 353 static struct pool *__pool_table_lookup_metadata_dev(struct block_device *md_dev) 354 { 355 struct pool *pool = NULL, *tmp; 356 357 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex)); 358 359 list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) { 360 if (tmp->md_dev == md_dev) { 361 pool = tmp; 362 break; 363 } 364 } 365 366 return pool; 367 } 368 369 /*----------------------------------------------------------------*/ 370 371 struct dm_thin_endio_hook { 372 struct thin_c *tc; 373 struct dm_deferred_entry *shared_read_entry; 374 struct dm_deferred_entry *all_io_entry; 375 struct dm_thin_new_mapping *overwrite_mapping; 376 struct rb_node rb_node; 377 }; 378 379 static void requeue_bio_list(struct thin_c *tc, struct bio_list *master) 380 { 381 struct bio *bio; 382 struct bio_list bios; 383 unsigned long flags; 384 385 bio_list_init(&bios); 386 387 spin_lock_irqsave(&tc->lock, flags); 388 bio_list_merge(&bios, master); 389 bio_list_init(master); 390 spin_unlock_irqrestore(&tc->lock, flags); 391 392 while ((bio = bio_list_pop(&bios))) 393 bio_endio(bio, DM_ENDIO_REQUEUE); 394 } 395 396 static void requeue_io(struct thin_c *tc) 397 { 398 requeue_bio_list(tc, &tc->deferred_bio_list); 399 requeue_bio_list(tc, &tc->retry_on_resume_list); 400 } 401 402 static void error_thin_retry_list(struct thin_c *tc) 403 { 404 struct bio *bio; 405 unsigned long flags; 406 struct bio_list bios; 407 408 bio_list_init(&bios); 409 410 spin_lock_irqsave(&tc->lock, flags); 411 bio_list_merge(&bios, &tc->retry_on_resume_list); 412 bio_list_init(&tc->retry_on_resume_list); 413 spin_unlock_irqrestore(&tc->lock, flags); 414 415 while ((bio = bio_list_pop(&bios))) 416 bio_io_error(bio); 417 } 418 419 static void error_retry_list(struct pool *pool) 420 { 421 struct thin_c *tc; 422 423 rcu_read_lock(); 424 list_for_each_entry_rcu(tc, &pool->active_thins, list) 425 error_thin_retry_list(tc); 426 rcu_read_unlock(); 427 } 428 429 /* 430 * This section of code contains the logic for processing a thin device's IO. 431 * Much of the code depends on pool object resources (lists, workqueues, etc) 432 * but most is exclusively called from the thin target rather than the thin-pool 433 * target. 434 */ 435 436 static bool block_size_is_power_of_two(struct pool *pool) 437 { 438 return pool->sectors_per_block_shift >= 0; 439 } 440 441 static dm_block_t get_bio_block(struct thin_c *tc, struct bio *bio) 442 { 443 struct pool *pool = tc->pool; 444 sector_t block_nr = bio->bi_iter.bi_sector; 445 446 if (block_size_is_power_of_two(pool)) 447 block_nr >>= pool->sectors_per_block_shift; 448 else 449 (void) sector_div(block_nr, pool->sectors_per_block); 450 451 return block_nr; 452 } 453 454 static void remap(struct thin_c *tc, struct bio *bio, dm_block_t block) 455 { 456 struct pool *pool = tc->pool; 457 sector_t bi_sector = bio->bi_iter.bi_sector; 458 459 bio->bi_bdev = tc->pool_dev->bdev; 460 if (block_size_is_power_of_two(pool)) 461 bio->bi_iter.bi_sector = 462 (block << pool->sectors_per_block_shift) | 463 (bi_sector & (pool->sectors_per_block - 1)); 464 else 465 bio->bi_iter.bi_sector = (block * pool->sectors_per_block) + 466 sector_div(bi_sector, pool->sectors_per_block); 467 } 468 469 static void remap_to_origin(struct thin_c *tc, struct bio *bio) 470 { 471 bio->bi_bdev = tc->origin_dev->bdev; 472 } 473 474 static int bio_triggers_commit(struct thin_c *tc, struct bio *bio) 475 { 476 return (bio->bi_rw & (REQ_FLUSH | REQ_FUA)) && 477 dm_thin_changed_this_transaction(tc->td); 478 } 479 480 static void inc_all_io_entry(struct pool *pool, struct bio *bio) 481 { 482 struct dm_thin_endio_hook *h; 483 484 if (bio->bi_rw & REQ_DISCARD) 485 return; 486 487 h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook)); 488 h->all_io_entry = dm_deferred_entry_inc(pool->all_io_ds); 489 } 490 491 static void issue(struct thin_c *tc, struct bio *bio) 492 { 493 struct pool *pool = tc->pool; 494 unsigned long flags; 495 496 if (!bio_triggers_commit(tc, bio)) { 497 generic_make_request(bio); 498 return; 499 } 500 501 /* 502 * Complete bio with an error if earlier I/O caused changes to 503 * the metadata that can't be committed e.g, due to I/O errors 504 * on the metadata device. 505 */ 506 if (dm_thin_aborted_changes(tc->td)) { 507 bio_io_error(bio); 508 return; 509 } 510 511 /* 512 * Batch together any bios that trigger commits and then issue a 513 * single commit for them in process_deferred_bios(). 514 */ 515 spin_lock_irqsave(&pool->lock, flags); 516 bio_list_add(&pool->deferred_flush_bios, bio); 517 spin_unlock_irqrestore(&pool->lock, flags); 518 } 519 520 static void remap_to_origin_and_issue(struct thin_c *tc, struct bio *bio) 521 { 522 remap_to_origin(tc, bio); 523 issue(tc, bio); 524 } 525 526 static void remap_and_issue(struct thin_c *tc, struct bio *bio, 527 dm_block_t block) 528 { 529 remap(tc, bio, block); 530 issue(tc, bio); 531 } 532 533 /*----------------------------------------------------------------*/ 534 535 /* 536 * Bio endio functions. 537 */ 538 struct dm_thin_new_mapping { 539 struct list_head list; 540 541 bool quiesced:1; 542 bool prepared:1; 543 bool pass_discard:1; 544 bool definitely_not_shared:1; 545 546 int err; 547 struct thin_c *tc; 548 dm_block_t virt_block; 549 dm_block_t data_block; 550 struct dm_bio_prison_cell *cell, *cell2; 551 552 /* 553 * If the bio covers the whole area of a block then we can avoid 554 * zeroing or copying. Instead this bio is hooked. The bio will 555 * still be in the cell, so care has to be taken to avoid issuing 556 * the bio twice. 557 */ 558 struct bio *bio; 559 bio_end_io_t *saved_bi_end_io; 560 }; 561 562 static void __maybe_add_mapping(struct dm_thin_new_mapping *m) 563 { 564 struct pool *pool = m->tc->pool; 565 566 if (m->quiesced && m->prepared) { 567 list_add_tail(&m->list, &pool->prepared_mappings); 568 wake_worker(pool); 569 } 570 } 571 572 static void copy_complete(int read_err, unsigned long write_err, void *context) 573 { 574 unsigned long flags; 575 struct dm_thin_new_mapping *m = context; 576 struct pool *pool = m->tc->pool; 577 578 m->err = read_err || write_err ? -EIO : 0; 579 580 spin_lock_irqsave(&pool->lock, flags); 581 m->prepared = true; 582 __maybe_add_mapping(m); 583 spin_unlock_irqrestore(&pool->lock, flags); 584 } 585 586 static void overwrite_endio(struct bio *bio, int err) 587 { 588 unsigned long flags; 589 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook)); 590 struct dm_thin_new_mapping *m = h->overwrite_mapping; 591 struct pool *pool = m->tc->pool; 592 593 m->err = err; 594 595 spin_lock_irqsave(&pool->lock, flags); 596 m->prepared = true; 597 __maybe_add_mapping(m); 598 spin_unlock_irqrestore(&pool->lock, flags); 599 } 600 601 /*----------------------------------------------------------------*/ 602 603 /* 604 * Workqueue. 605 */ 606 607 /* 608 * Prepared mapping jobs. 609 */ 610 611 /* 612 * This sends the bios in the cell back to the deferred_bios list. 613 */ 614 static void cell_defer(struct thin_c *tc, struct dm_bio_prison_cell *cell) 615 { 616 struct pool *pool = tc->pool; 617 unsigned long flags; 618 619 spin_lock_irqsave(&tc->lock, flags); 620 cell_release(pool, cell, &tc->deferred_bio_list); 621 spin_unlock_irqrestore(&tc->lock, flags); 622 623 wake_worker(pool); 624 } 625 626 /* 627 * Same as cell_defer above, except it omits the original holder of the cell. 628 */ 629 static void cell_defer_no_holder(struct thin_c *tc, struct dm_bio_prison_cell *cell) 630 { 631 struct pool *pool = tc->pool; 632 unsigned long flags; 633 634 spin_lock_irqsave(&tc->lock, flags); 635 cell_release_no_holder(pool, cell, &tc->deferred_bio_list); 636 spin_unlock_irqrestore(&tc->lock, flags); 637 638 wake_worker(pool); 639 } 640 641 static void process_prepared_mapping_fail(struct dm_thin_new_mapping *m) 642 { 643 if (m->bio) { 644 m->bio->bi_end_io = m->saved_bi_end_io; 645 atomic_inc(&m->bio->bi_remaining); 646 } 647 cell_error(m->tc->pool, m->cell); 648 list_del(&m->list); 649 mempool_free(m, m->tc->pool->mapping_pool); 650 } 651 652 static void process_prepared_mapping(struct dm_thin_new_mapping *m) 653 { 654 struct thin_c *tc = m->tc; 655 struct pool *pool = tc->pool; 656 struct bio *bio; 657 int r; 658 659 bio = m->bio; 660 if (bio) { 661 bio->bi_end_io = m->saved_bi_end_io; 662 atomic_inc(&bio->bi_remaining); 663 } 664 665 if (m->err) { 666 cell_error(pool, m->cell); 667 goto out; 668 } 669 670 /* 671 * Commit the prepared block into the mapping btree. 672 * Any I/O for this block arriving after this point will get 673 * remapped to it directly. 674 */ 675 r = dm_thin_insert_block(tc->td, m->virt_block, m->data_block); 676 if (r) { 677 metadata_operation_failed(pool, "dm_thin_insert_block", r); 678 cell_error(pool, m->cell); 679 goto out; 680 } 681 682 /* 683 * Release any bios held while the block was being provisioned. 684 * If we are processing a write bio that completely covers the block, 685 * we already processed it so can ignore it now when processing 686 * the bios in the cell. 687 */ 688 if (bio) { 689 cell_defer_no_holder(tc, m->cell); 690 bio_endio(bio, 0); 691 } else 692 cell_defer(tc, m->cell); 693 694 out: 695 list_del(&m->list); 696 mempool_free(m, pool->mapping_pool); 697 } 698 699 static void process_prepared_discard_fail(struct dm_thin_new_mapping *m) 700 { 701 struct thin_c *tc = m->tc; 702 703 bio_io_error(m->bio); 704 cell_defer_no_holder(tc, m->cell); 705 cell_defer_no_holder(tc, m->cell2); 706 mempool_free(m, tc->pool->mapping_pool); 707 } 708 709 static void process_prepared_discard_passdown(struct dm_thin_new_mapping *m) 710 { 711 struct thin_c *tc = m->tc; 712 713 inc_all_io_entry(tc->pool, m->bio); 714 cell_defer_no_holder(tc, m->cell); 715 cell_defer_no_holder(tc, m->cell2); 716 717 if (m->pass_discard) 718 if (m->definitely_not_shared) 719 remap_and_issue(tc, m->bio, m->data_block); 720 else { 721 bool used = false; 722 if (dm_pool_block_is_used(tc->pool->pmd, m->data_block, &used) || used) 723 bio_endio(m->bio, 0); 724 else 725 remap_and_issue(tc, m->bio, m->data_block); 726 } 727 else 728 bio_endio(m->bio, 0); 729 730 mempool_free(m, tc->pool->mapping_pool); 731 } 732 733 static void process_prepared_discard(struct dm_thin_new_mapping *m) 734 { 735 int r; 736 struct thin_c *tc = m->tc; 737 738 r = dm_thin_remove_block(tc->td, m->virt_block); 739 if (r) 740 DMERR_LIMIT("dm_thin_remove_block() failed"); 741 742 process_prepared_discard_passdown(m); 743 } 744 745 static void process_prepared(struct pool *pool, struct list_head *head, 746 process_mapping_fn *fn) 747 { 748 unsigned long flags; 749 struct list_head maps; 750 struct dm_thin_new_mapping *m, *tmp; 751 752 INIT_LIST_HEAD(&maps); 753 spin_lock_irqsave(&pool->lock, flags); 754 list_splice_init(head, &maps); 755 spin_unlock_irqrestore(&pool->lock, flags); 756 757 list_for_each_entry_safe(m, tmp, &maps, list) 758 (*fn)(m); 759 } 760 761 /* 762 * Deferred bio jobs. 763 */ 764 static int io_overlaps_block(struct pool *pool, struct bio *bio) 765 { 766 return bio->bi_iter.bi_size == 767 (pool->sectors_per_block << SECTOR_SHIFT); 768 } 769 770 static int io_overwrites_block(struct pool *pool, struct bio *bio) 771 { 772 return (bio_data_dir(bio) == WRITE) && 773 io_overlaps_block(pool, bio); 774 } 775 776 static void save_and_set_endio(struct bio *bio, bio_end_io_t **save, 777 bio_end_io_t *fn) 778 { 779 *save = bio->bi_end_io; 780 bio->bi_end_io = fn; 781 } 782 783 static int ensure_next_mapping(struct pool *pool) 784 { 785 if (pool->next_mapping) 786 return 0; 787 788 pool->next_mapping = mempool_alloc(pool->mapping_pool, GFP_ATOMIC); 789 790 return pool->next_mapping ? 0 : -ENOMEM; 791 } 792 793 static struct dm_thin_new_mapping *get_next_mapping(struct pool *pool) 794 { 795 struct dm_thin_new_mapping *m = pool->next_mapping; 796 797 BUG_ON(!pool->next_mapping); 798 799 memset(m, 0, sizeof(struct dm_thin_new_mapping)); 800 INIT_LIST_HEAD(&m->list); 801 m->bio = NULL; 802 803 pool->next_mapping = NULL; 804 805 return m; 806 } 807 808 static void schedule_copy(struct thin_c *tc, dm_block_t virt_block, 809 struct dm_dev *origin, dm_block_t data_origin, 810 dm_block_t data_dest, 811 struct dm_bio_prison_cell *cell, struct bio *bio) 812 { 813 int r; 814 struct pool *pool = tc->pool; 815 struct dm_thin_new_mapping *m = get_next_mapping(pool); 816 817 m->tc = tc; 818 m->virt_block = virt_block; 819 m->data_block = data_dest; 820 m->cell = cell; 821 822 if (!dm_deferred_set_add_work(pool->shared_read_ds, &m->list)) 823 m->quiesced = true; 824 825 /* 826 * IO to pool_dev remaps to the pool target's data_dev. 827 * 828 * If the whole block of data is being overwritten, we can issue the 829 * bio immediately. Otherwise we use kcopyd to clone the data first. 830 */ 831 if (io_overwrites_block(pool, bio)) { 832 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook)); 833 834 h->overwrite_mapping = m; 835 m->bio = bio; 836 save_and_set_endio(bio, &m->saved_bi_end_io, overwrite_endio); 837 inc_all_io_entry(pool, bio); 838 remap_and_issue(tc, bio, data_dest); 839 } else { 840 struct dm_io_region from, to; 841 842 from.bdev = origin->bdev; 843 from.sector = data_origin * pool->sectors_per_block; 844 from.count = pool->sectors_per_block; 845 846 to.bdev = tc->pool_dev->bdev; 847 to.sector = data_dest * pool->sectors_per_block; 848 to.count = pool->sectors_per_block; 849 850 r = dm_kcopyd_copy(pool->copier, &from, 1, &to, 851 0, copy_complete, m); 852 if (r < 0) { 853 mempool_free(m, pool->mapping_pool); 854 DMERR_LIMIT("dm_kcopyd_copy() failed"); 855 cell_error(pool, cell); 856 } 857 } 858 } 859 860 static void schedule_internal_copy(struct thin_c *tc, dm_block_t virt_block, 861 dm_block_t data_origin, dm_block_t data_dest, 862 struct dm_bio_prison_cell *cell, struct bio *bio) 863 { 864 schedule_copy(tc, virt_block, tc->pool_dev, 865 data_origin, data_dest, cell, bio); 866 } 867 868 static void schedule_external_copy(struct thin_c *tc, dm_block_t virt_block, 869 dm_block_t data_dest, 870 struct dm_bio_prison_cell *cell, struct bio *bio) 871 { 872 schedule_copy(tc, virt_block, tc->origin_dev, 873 virt_block, data_dest, cell, bio); 874 } 875 876 static void schedule_zero(struct thin_c *tc, dm_block_t virt_block, 877 dm_block_t data_block, struct dm_bio_prison_cell *cell, 878 struct bio *bio) 879 { 880 struct pool *pool = tc->pool; 881 struct dm_thin_new_mapping *m = get_next_mapping(pool); 882 883 m->quiesced = true; 884 m->prepared = false; 885 m->tc = tc; 886 m->virt_block = virt_block; 887 m->data_block = data_block; 888 m->cell = cell; 889 890 /* 891 * If the whole block of data is being overwritten or we are not 892 * zeroing pre-existing data, we can issue the bio immediately. 893 * Otherwise we use kcopyd to zero the data first. 894 */ 895 if (!pool->pf.zero_new_blocks) 896 process_prepared_mapping(m); 897 898 else if (io_overwrites_block(pool, bio)) { 899 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook)); 900 901 h->overwrite_mapping = m; 902 m->bio = bio; 903 save_and_set_endio(bio, &m->saved_bi_end_io, overwrite_endio); 904 inc_all_io_entry(pool, bio); 905 remap_and_issue(tc, bio, data_block); 906 } else { 907 int r; 908 struct dm_io_region to; 909 910 to.bdev = tc->pool_dev->bdev; 911 to.sector = data_block * pool->sectors_per_block; 912 to.count = pool->sectors_per_block; 913 914 r = dm_kcopyd_zero(pool->copier, 1, &to, 0, copy_complete, m); 915 if (r < 0) { 916 mempool_free(m, pool->mapping_pool); 917 DMERR_LIMIT("dm_kcopyd_zero() failed"); 918 cell_error(pool, cell); 919 } 920 } 921 } 922 923 /* 924 * A non-zero return indicates read_only or fail_io mode. 925 * Many callers don't care about the return value. 926 */ 927 static int commit(struct pool *pool) 928 { 929 int r; 930 931 if (get_pool_mode(pool) != PM_WRITE) 932 return -EINVAL; 933 934 r = dm_pool_commit_metadata(pool->pmd); 935 if (r) 936 metadata_operation_failed(pool, "dm_pool_commit_metadata", r); 937 938 return r; 939 } 940 941 static void check_low_water_mark(struct pool *pool, dm_block_t free_blocks) 942 { 943 unsigned long flags; 944 945 if (free_blocks <= pool->low_water_blocks && !pool->low_water_triggered) { 946 DMWARN("%s: reached low water mark for data device: sending event.", 947 dm_device_name(pool->pool_md)); 948 spin_lock_irqsave(&pool->lock, flags); 949 pool->low_water_triggered = true; 950 spin_unlock_irqrestore(&pool->lock, flags); 951 dm_table_event(pool->ti->table); 952 } 953 } 954 955 static void set_pool_mode(struct pool *pool, enum pool_mode new_mode); 956 957 static int alloc_data_block(struct thin_c *tc, dm_block_t *result) 958 { 959 int r; 960 dm_block_t free_blocks; 961 struct pool *pool = tc->pool; 962 963 if (WARN_ON(get_pool_mode(pool) != PM_WRITE)) 964 return -EINVAL; 965 966 r = dm_pool_get_free_block_count(pool->pmd, &free_blocks); 967 if (r) { 968 metadata_operation_failed(pool, "dm_pool_get_free_block_count", r); 969 return r; 970 } 971 972 check_low_water_mark(pool, free_blocks); 973 974 if (!free_blocks) { 975 /* 976 * Try to commit to see if that will free up some 977 * more space. 978 */ 979 r = commit(pool); 980 if (r) 981 return r; 982 983 r = dm_pool_get_free_block_count(pool->pmd, &free_blocks); 984 if (r) { 985 metadata_operation_failed(pool, "dm_pool_get_free_block_count", r); 986 return r; 987 } 988 989 if (!free_blocks) { 990 set_pool_mode(pool, PM_OUT_OF_DATA_SPACE); 991 return -ENOSPC; 992 } 993 } 994 995 r = dm_pool_alloc_data_block(pool->pmd, result); 996 if (r) { 997 metadata_operation_failed(pool, "dm_pool_alloc_data_block", r); 998 return r; 999 } 1000 1001 return 0; 1002 } 1003 1004 /* 1005 * If we have run out of space, queue bios until the device is 1006 * resumed, presumably after having been reloaded with more space. 1007 */ 1008 static void retry_on_resume(struct bio *bio) 1009 { 1010 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook)); 1011 struct thin_c *tc = h->tc; 1012 unsigned long flags; 1013 1014 spin_lock_irqsave(&tc->lock, flags); 1015 bio_list_add(&tc->retry_on_resume_list, bio); 1016 spin_unlock_irqrestore(&tc->lock, flags); 1017 } 1018 1019 static bool should_error_unserviceable_bio(struct pool *pool) 1020 { 1021 enum pool_mode m = get_pool_mode(pool); 1022 1023 switch (m) { 1024 case PM_WRITE: 1025 /* Shouldn't get here */ 1026 DMERR_LIMIT("bio unserviceable, yet pool is in PM_WRITE mode"); 1027 return true; 1028 1029 case PM_OUT_OF_DATA_SPACE: 1030 return pool->pf.error_if_no_space; 1031 1032 case PM_READ_ONLY: 1033 case PM_FAIL: 1034 return true; 1035 default: 1036 /* Shouldn't get here */ 1037 DMERR_LIMIT("bio unserviceable, yet pool has an unknown mode"); 1038 return true; 1039 } 1040 } 1041 1042 static void handle_unserviceable_bio(struct pool *pool, struct bio *bio) 1043 { 1044 if (should_error_unserviceable_bio(pool)) 1045 bio_io_error(bio); 1046 else 1047 retry_on_resume(bio); 1048 } 1049 1050 static void retry_bios_on_resume(struct pool *pool, struct dm_bio_prison_cell *cell) 1051 { 1052 struct bio *bio; 1053 struct bio_list bios; 1054 1055 if (should_error_unserviceable_bio(pool)) { 1056 cell_error(pool, cell); 1057 return; 1058 } 1059 1060 bio_list_init(&bios); 1061 cell_release(pool, cell, &bios); 1062 1063 if (should_error_unserviceable_bio(pool)) 1064 while ((bio = bio_list_pop(&bios))) 1065 bio_io_error(bio); 1066 else 1067 while ((bio = bio_list_pop(&bios))) 1068 retry_on_resume(bio); 1069 } 1070 1071 static void process_discard(struct thin_c *tc, struct bio *bio) 1072 { 1073 int r; 1074 unsigned long flags; 1075 struct pool *pool = tc->pool; 1076 struct dm_bio_prison_cell *cell, *cell2; 1077 struct dm_cell_key key, key2; 1078 dm_block_t block = get_bio_block(tc, bio); 1079 struct dm_thin_lookup_result lookup_result; 1080 struct dm_thin_new_mapping *m; 1081 1082 build_virtual_key(tc->td, block, &key); 1083 if (bio_detain(tc->pool, &key, bio, &cell)) 1084 return; 1085 1086 r = dm_thin_find_block(tc->td, block, 1, &lookup_result); 1087 switch (r) { 1088 case 0: 1089 /* 1090 * Check nobody is fiddling with this pool block. This can 1091 * happen if someone's in the process of breaking sharing 1092 * on this block. 1093 */ 1094 build_data_key(tc->td, lookup_result.block, &key2); 1095 if (bio_detain(tc->pool, &key2, bio, &cell2)) { 1096 cell_defer_no_holder(tc, cell); 1097 break; 1098 } 1099 1100 if (io_overlaps_block(pool, bio)) { 1101 /* 1102 * IO may still be going to the destination block. We must 1103 * quiesce before we can do the removal. 1104 */ 1105 m = get_next_mapping(pool); 1106 m->tc = tc; 1107 m->pass_discard = pool->pf.discard_passdown; 1108 m->definitely_not_shared = !lookup_result.shared; 1109 m->virt_block = block; 1110 m->data_block = lookup_result.block; 1111 m->cell = cell; 1112 m->cell2 = cell2; 1113 m->bio = bio; 1114 1115 if (!dm_deferred_set_add_work(pool->all_io_ds, &m->list)) { 1116 spin_lock_irqsave(&pool->lock, flags); 1117 list_add_tail(&m->list, &pool->prepared_discards); 1118 spin_unlock_irqrestore(&pool->lock, flags); 1119 wake_worker(pool); 1120 } 1121 } else { 1122 inc_all_io_entry(pool, bio); 1123 cell_defer_no_holder(tc, cell); 1124 cell_defer_no_holder(tc, cell2); 1125 1126 /* 1127 * The DM core makes sure that the discard doesn't span 1128 * a block boundary. So we submit the discard of a 1129 * partial block appropriately. 1130 */ 1131 if ((!lookup_result.shared) && pool->pf.discard_passdown) 1132 remap_and_issue(tc, bio, lookup_result.block); 1133 else 1134 bio_endio(bio, 0); 1135 } 1136 break; 1137 1138 case -ENODATA: 1139 /* 1140 * It isn't provisioned, just forget it. 1141 */ 1142 cell_defer_no_holder(tc, cell); 1143 bio_endio(bio, 0); 1144 break; 1145 1146 default: 1147 DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d", 1148 __func__, r); 1149 cell_defer_no_holder(tc, cell); 1150 bio_io_error(bio); 1151 break; 1152 } 1153 } 1154 1155 static void break_sharing(struct thin_c *tc, struct bio *bio, dm_block_t block, 1156 struct dm_cell_key *key, 1157 struct dm_thin_lookup_result *lookup_result, 1158 struct dm_bio_prison_cell *cell) 1159 { 1160 int r; 1161 dm_block_t data_block; 1162 struct pool *pool = tc->pool; 1163 1164 r = alloc_data_block(tc, &data_block); 1165 switch (r) { 1166 case 0: 1167 schedule_internal_copy(tc, block, lookup_result->block, 1168 data_block, cell, bio); 1169 break; 1170 1171 case -ENOSPC: 1172 retry_bios_on_resume(pool, cell); 1173 break; 1174 1175 default: 1176 DMERR_LIMIT("%s: alloc_data_block() failed: error = %d", 1177 __func__, r); 1178 cell_error(pool, cell); 1179 break; 1180 } 1181 } 1182 1183 static void process_shared_bio(struct thin_c *tc, struct bio *bio, 1184 dm_block_t block, 1185 struct dm_thin_lookup_result *lookup_result) 1186 { 1187 struct dm_bio_prison_cell *cell; 1188 struct pool *pool = tc->pool; 1189 struct dm_cell_key key; 1190 1191 /* 1192 * If cell is already occupied, then sharing is already in the process 1193 * of being broken so we have nothing further to do here. 1194 */ 1195 build_data_key(tc->td, lookup_result->block, &key); 1196 if (bio_detain(pool, &key, bio, &cell)) 1197 return; 1198 1199 if (bio_data_dir(bio) == WRITE && bio->bi_iter.bi_size) 1200 break_sharing(tc, bio, block, &key, lookup_result, cell); 1201 else { 1202 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook)); 1203 1204 h->shared_read_entry = dm_deferred_entry_inc(pool->shared_read_ds); 1205 inc_all_io_entry(pool, bio); 1206 cell_defer_no_holder(tc, cell); 1207 1208 remap_and_issue(tc, bio, lookup_result->block); 1209 } 1210 } 1211 1212 static void provision_block(struct thin_c *tc, struct bio *bio, dm_block_t block, 1213 struct dm_bio_prison_cell *cell) 1214 { 1215 int r; 1216 dm_block_t data_block; 1217 struct pool *pool = tc->pool; 1218 1219 /* 1220 * Remap empty bios (flushes) immediately, without provisioning. 1221 */ 1222 if (!bio->bi_iter.bi_size) { 1223 inc_all_io_entry(pool, bio); 1224 cell_defer_no_holder(tc, cell); 1225 1226 remap_and_issue(tc, bio, 0); 1227 return; 1228 } 1229 1230 /* 1231 * Fill read bios with zeroes and complete them immediately. 1232 */ 1233 if (bio_data_dir(bio) == READ) { 1234 zero_fill_bio(bio); 1235 cell_defer_no_holder(tc, cell); 1236 bio_endio(bio, 0); 1237 return; 1238 } 1239 1240 r = alloc_data_block(tc, &data_block); 1241 switch (r) { 1242 case 0: 1243 if (tc->origin_dev) 1244 schedule_external_copy(tc, block, data_block, cell, bio); 1245 else 1246 schedule_zero(tc, block, data_block, cell, bio); 1247 break; 1248 1249 case -ENOSPC: 1250 retry_bios_on_resume(pool, cell); 1251 break; 1252 1253 default: 1254 DMERR_LIMIT("%s: alloc_data_block() failed: error = %d", 1255 __func__, r); 1256 cell_error(pool, cell); 1257 break; 1258 } 1259 } 1260 1261 static void process_bio(struct thin_c *tc, struct bio *bio) 1262 { 1263 int r; 1264 struct pool *pool = tc->pool; 1265 dm_block_t block = get_bio_block(tc, bio); 1266 struct dm_bio_prison_cell *cell; 1267 struct dm_cell_key key; 1268 struct dm_thin_lookup_result lookup_result; 1269 1270 /* 1271 * If cell is already occupied, then the block is already 1272 * being provisioned so we have nothing further to do here. 1273 */ 1274 build_virtual_key(tc->td, block, &key); 1275 if (bio_detain(pool, &key, bio, &cell)) 1276 return; 1277 1278 r = dm_thin_find_block(tc->td, block, 1, &lookup_result); 1279 switch (r) { 1280 case 0: 1281 if (lookup_result.shared) { 1282 process_shared_bio(tc, bio, block, &lookup_result); 1283 cell_defer_no_holder(tc, cell); /* FIXME: pass this cell into process_shared? */ 1284 } else { 1285 inc_all_io_entry(pool, bio); 1286 cell_defer_no_holder(tc, cell); 1287 1288 remap_and_issue(tc, bio, lookup_result.block); 1289 } 1290 break; 1291 1292 case -ENODATA: 1293 if (bio_data_dir(bio) == READ && tc->origin_dev) { 1294 inc_all_io_entry(pool, bio); 1295 cell_defer_no_holder(tc, cell); 1296 1297 remap_to_origin_and_issue(tc, bio); 1298 } else 1299 provision_block(tc, bio, block, cell); 1300 break; 1301 1302 default: 1303 DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d", 1304 __func__, r); 1305 cell_defer_no_holder(tc, cell); 1306 bio_io_error(bio); 1307 break; 1308 } 1309 } 1310 1311 static void process_bio_read_only(struct thin_c *tc, struct bio *bio) 1312 { 1313 int r; 1314 int rw = bio_data_dir(bio); 1315 dm_block_t block = get_bio_block(tc, bio); 1316 struct dm_thin_lookup_result lookup_result; 1317 1318 r = dm_thin_find_block(tc->td, block, 1, &lookup_result); 1319 switch (r) { 1320 case 0: 1321 if (lookup_result.shared && (rw == WRITE) && bio->bi_iter.bi_size) 1322 handle_unserviceable_bio(tc->pool, bio); 1323 else { 1324 inc_all_io_entry(tc->pool, bio); 1325 remap_and_issue(tc, bio, lookup_result.block); 1326 } 1327 break; 1328 1329 case -ENODATA: 1330 if (rw != READ) { 1331 handle_unserviceable_bio(tc->pool, bio); 1332 break; 1333 } 1334 1335 if (tc->origin_dev) { 1336 inc_all_io_entry(tc->pool, bio); 1337 remap_to_origin_and_issue(tc, bio); 1338 break; 1339 } 1340 1341 zero_fill_bio(bio); 1342 bio_endio(bio, 0); 1343 break; 1344 1345 default: 1346 DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d", 1347 __func__, r); 1348 bio_io_error(bio); 1349 break; 1350 } 1351 } 1352 1353 static void process_bio_success(struct thin_c *tc, struct bio *bio) 1354 { 1355 bio_endio(bio, 0); 1356 } 1357 1358 static void process_bio_fail(struct thin_c *tc, struct bio *bio) 1359 { 1360 bio_io_error(bio); 1361 } 1362 1363 /* 1364 * FIXME: should we also commit due to size of transaction, measured in 1365 * metadata blocks? 1366 */ 1367 static int need_commit_due_to_time(struct pool *pool) 1368 { 1369 return jiffies < pool->last_commit_jiffies || 1370 jiffies > pool->last_commit_jiffies + COMMIT_PERIOD; 1371 } 1372 1373 #define thin_pbd(node) rb_entry((node), struct dm_thin_endio_hook, rb_node) 1374 #define thin_bio(pbd) dm_bio_from_per_bio_data((pbd), sizeof(struct dm_thin_endio_hook)) 1375 1376 static void __thin_bio_rb_add(struct thin_c *tc, struct bio *bio) 1377 { 1378 struct rb_node **rbp, *parent; 1379 struct dm_thin_endio_hook *pbd; 1380 sector_t bi_sector = bio->bi_iter.bi_sector; 1381 1382 rbp = &tc->sort_bio_list.rb_node; 1383 parent = NULL; 1384 while (*rbp) { 1385 parent = *rbp; 1386 pbd = thin_pbd(parent); 1387 1388 if (bi_sector < thin_bio(pbd)->bi_iter.bi_sector) 1389 rbp = &(*rbp)->rb_left; 1390 else 1391 rbp = &(*rbp)->rb_right; 1392 } 1393 1394 pbd = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook)); 1395 rb_link_node(&pbd->rb_node, parent, rbp); 1396 rb_insert_color(&pbd->rb_node, &tc->sort_bio_list); 1397 } 1398 1399 static void __extract_sorted_bios(struct thin_c *tc) 1400 { 1401 struct rb_node *node; 1402 struct dm_thin_endio_hook *pbd; 1403 struct bio *bio; 1404 1405 for (node = rb_first(&tc->sort_bio_list); node; node = rb_next(node)) { 1406 pbd = thin_pbd(node); 1407 bio = thin_bio(pbd); 1408 1409 bio_list_add(&tc->deferred_bio_list, bio); 1410 rb_erase(&pbd->rb_node, &tc->sort_bio_list); 1411 } 1412 1413 WARN_ON(!RB_EMPTY_ROOT(&tc->sort_bio_list)); 1414 } 1415 1416 static void __sort_thin_deferred_bios(struct thin_c *tc) 1417 { 1418 struct bio *bio; 1419 struct bio_list bios; 1420 1421 bio_list_init(&bios); 1422 bio_list_merge(&bios, &tc->deferred_bio_list); 1423 bio_list_init(&tc->deferred_bio_list); 1424 1425 /* Sort deferred_bio_list using rb-tree */ 1426 while ((bio = bio_list_pop(&bios))) 1427 __thin_bio_rb_add(tc, bio); 1428 1429 /* 1430 * Transfer the sorted bios in sort_bio_list back to 1431 * deferred_bio_list to allow lockless submission of 1432 * all bios. 1433 */ 1434 __extract_sorted_bios(tc); 1435 } 1436 1437 static void process_thin_deferred_bios(struct thin_c *tc) 1438 { 1439 struct pool *pool = tc->pool; 1440 unsigned long flags; 1441 struct bio *bio; 1442 struct bio_list bios; 1443 struct blk_plug plug; 1444 1445 if (tc->requeue_mode) { 1446 requeue_bio_list(tc, &tc->deferred_bio_list); 1447 return; 1448 } 1449 1450 bio_list_init(&bios); 1451 1452 spin_lock_irqsave(&tc->lock, flags); 1453 1454 if (bio_list_empty(&tc->deferred_bio_list)) { 1455 spin_unlock_irqrestore(&tc->lock, flags); 1456 return; 1457 } 1458 1459 __sort_thin_deferred_bios(tc); 1460 1461 bio_list_merge(&bios, &tc->deferred_bio_list); 1462 bio_list_init(&tc->deferred_bio_list); 1463 1464 spin_unlock_irqrestore(&tc->lock, flags); 1465 1466 blk_start_plug(&plug); 1467 while ((bio = bio_list_pop(&bios))) { 1468 /* 1469 * If we've got no free new_mapping structs, and processing 1470 * this bio might require one, we pause until there are some 1471 * prepared mappings to process. 1472 */ 1473 if (ensure_next_mapping(pool)) { 1474 spin_lock_irqsave(&tc->lock, flags); 1475 bio_list_add(&tc->deferred_bio_list, bio); 1476 bio_list_merge(&tc->deferred_bio_list, &bios); 1477 spin_unlock_irqrestore(&tc->lock, flags); 1478 break; 1479 } 1480 1481 if (bio->bi_rw & REQ_DISCARD) 1482 pool->process_discard(tc, bio); 1483 else 1484 pool->process_bio(tc, bio); 1485 } 1486 blk_finish_plug(&plug); 1487 } 1488 1489 static void process_deferred_bios(struct pool *pool) 1490 { 1491 unsigned long flags; 1492 struct bio *bio; 1493 struct bio_list bios; 1494 struct thin_c *tc; 1495 1496 rcu_read_lock(); 1497 list_for_each_entry_rcu(tc, &pool->active_thins, list) 1498 process_thin_deferred_bios(tc); 1499 rcu_read_unlock(); 1500 1501 /* 1502 * If there are any deferred flush bios, we must commit 1503 * the metadata before issuing them. 1504 */ 1505 bio_list_init(&bios); 1506 spin_lock_irqsave(&pool->lock, flags); 1507 bio_list_merge(&bios, &pool->deferred_flush_bios); 1508 bio_list_init(&pool->deferred_flush_bios); 1509 spin_unlock_irqrestore(&pool->lock, flags); 1510 1511 if (bio_list_empty(&bios) && 1512 !(dm_pool_changed_this_transaction(pool->pmd) && need_commit_due_to_time(pool))) 1513 return; 1514 1515 if (commit(pool)) { 1516 while ((bio = bio_list_pop(&bios))) 1517 bio_io_error(bio); 1518 return; 1519 } 1520 pool->last_commit_jiffies = jiffies; 1521 1522 while ((bio = bio_list_pop(&bios))) 1523 generic_make_request(bio); 1524 } 1525 1526 static void do_worker(struct work_struct *ws) 1527 { 1528 struct pool *pool = container_of(ws, struct pool, worker); 1529 1530 process_prepared(pool, &pool->prepared_mappings, &pool->process_prepared_mapping); 1531 process_prepared(pool, &pool->prepared_discards, &pool->process_prepared_discard); 1532 process_deferred_bios(pool); 1533 } 1534 1535 /* 1536 * We want to commit periodically so that not too much 1537 * unwritten data builds up. 1538 */ 1539 static void do_waker(struct work_struct *ws) 1540 { 1541 struct pool *pool = container_of(to_delayed_work(ws), struct pool, waker); 1542 wake_worker(pool); 1543 queue_delayed_work(pool->wq, &pool->waker, COMMIT_PERIOD); 1544 } 1545 1546 /*----------------------------------------------------------------*/ 1547 1548 struct noflush_work { 1549 struct work_struct worker; 1550 struct thin_c *tc; 1551 1552 atomic_t complete; 1553 wait_queue_head_t wait; 1554 }; 1555 1556 static void complete_noflush_work(struct noflush_work *w) 1557 { 1558 atomic_set(&w->complete, 1); 1559 wake_up(&w->wait); 1560 } 1561 1562 static void do_noflush_start(struct work_struct *ws) 1563 { 1564 struct noflush_work *w = container_of(ws, struct noflush_work, worker); 1565 w->tc->requeue_mode = true; 1566 requeue_io(w->tc); 1567 complete_noflush_work(w); 1568 } 1569 1570 static void do_noflush_stop(struct work_struct *ws) 1571 { 1572 struct noflush_work *w = container_of(ws, struct noflush_work, worker); 1573 w->tc->requeue_mode = false; 1574 complete_noflush_work(w); 1575 } 1576 1577 static void noflush_work(struct thin_c *tc, void (*fn)(struct work_struct *)) 1578 { 1579 struct noflush_work w; 1580 1581 INIT_WORK(&w.worker, fn); 1582 w.tc = tc; 1583 atomic_set(&w.complete, 0); 1584 init_waitqueue_head(&w.wait); 1585 1586 queue_work(tc->pool->wq, &w.worker); 1587 1588 wait_event(w.wait, atomic_read(&w.complete)); 1589 } 1590 1591 /*----------------------------------------------------------------*/ 1592 1593 static enum pool_mode get_pool_mode(struct pool *pool) 1594 { 1595 return pool->pf.mode; 1596 } 1597 1598 static void notify_of_pool_mode_change(struct pool *pool, const char *new_mode) 1599 { 1600 dm_table_event(pool->ti->table); 1601 DMINFO("%s: switching pool to %s mode", 1602 dm_device_name(pool->pool_md), new_mode); 1603 } 1604 1605 static void set_pool_mode(struct pool *pool, enum pool_mode new_mode) 1606 { 1607 struct pool_c *pt = pool->ti->private; 1608 bool needs_check = dm_pool_metadata_needs_check(pool->pmd); 1609 enum pool_mode old_mode = get_pool_mode(pool); 1610 1611 /* 1612 * Never allow the pool to transition to PM_WRITE mode if user 1613 * intervention is required to verify metadata and data consistency. 1614 */ 1615 if (new_mode == PM_WRITE && needs_check) { 1616 DMERR("%s: unable to switch pool to write mode until repaired.", 1617 dm_device_name(pool->pool_md)); 1618 if (old_mode != new_mode) 1619 new_mode = old_mode; 1620 else 1621 new_mode = PM_READ_ONLY; 1622 } 1623 /* 1624 * If we were in PM_FAIL mode, rollback of metadata failed. We're 1625 * not going to recover without a thin_repair. So we never let the 1626 * pool move out of the old mode. 1627 */ 1628 if (old_mode == PM_FAIL) 1629 new_mode = old_mode; 1630 1631 switch (new_mode) { 1632 case PM_FAIL: 1633 if (old_mode != new_mode) 1634 notify_of_pool_mode_change(pool, "failure"); 1635 dm_pool_metadata_read_only(pool->pmd); 1636 pool->process_bio = process_bio_fail; 1637 pool->process_discard = process_bio_fail; 1638 pool->process_prepared_mapping = process_prepared_mapping_fail; 1639 pool->process_prepared_discard = process_prepared_discard_fail; 1640 1641 error_retry_list(pool); 1642 break; 1643 1644 case PM_READ_ONLY: 1645 if (old_mode != new_mode) 1646 notify_of_pool_mode_change(pool, "read-only"); 1647 dm_pool_metadata_read_only(pool->pmd); 1648 pool->process_bio = process_bio_read_only; 1649 pool->process_discard = process_bio_success; 1650 pool->process_prepared_mapping = process_prepared_mapping_fail; 1651 pool->process_prepared_discard = process_prepared_discard_passdown; 1652 1653 error_retry_list(pool); 1654 break; 1655 1656 case PM_OUT_OF_DATA_SPACE: 1657 /* 1658 * Ideally we'd never hit this state; the low water mark 1659 * would trigger userland to extend the pool before we 1660 * completely run out of data space. However, many small 1661 * IOs to unprovisioned space can consume data space at an 1662 * alarming rate. Adjust your low water mark if you're 1663 * frequently seeing this mode. 1664 */ 1665 if (old_mode != new_mode) 1666 notify_of_pool_mode_change(pool, "out-of-data-space"); 1667 pool->process_bio = process_bio_read_only; 1668 pool->process_discard = process_discard; 1669 pool->process_prepared_mapping = process_prepared_mapping; 1670 pool->process_prepared_discard = process_prepared_discard_passdown; 1671 break; 1672 1673 case PM_WRITE: 1674 if (old_mode != new_mode) 1675 notify_of_pool_mode_change(pool, "write"); 1676 dm_pool_metadata_read_write(pool->pmd); 1677 pool->process_bio = process_bio; 1678 pool->process_discard = process_discard; 1679 pool->process_prepared_mapping = process_prepared_mapping; 1680 pool->process_prepared_discard = process_prepared_discard; 1681 break; 1682 } 1683 1684 pool->pf.mode = new_mode; 1685 /* 1686 * The pool mode may have changed, sync it so bind_control_target() 1687 * doesn't cause an unexpected mode transition on resume. 1688 */ 1689 pt->adjusted_pf.mode = new_mode; 1690 } 1691 1692 static void abort_transaction(struct pool *pool) 1693 { 1694 const char *dev_name = dm_device_name(pool->pool_md); 1695 1696 DMERR_LIMIT("%s: aborting current metadata transaction", dev_name); 1697 if (dm_pool_abort_metadata(pool->pmd)) { 1698 DMERR("%s: failed to abort metadata transaction", dev_name); 1699 set_pool_mode(pool, PM_FAIL); 1700 } 1701 1702 if (dm_pool_metadata_set_needs_check(pool->pmd)) { 1703 DMERR("%s: failed to set 'needs_check' flag in metadata", dev_name); 1704 set_pool_mode(pool, PM_FAIL); 1705 } 1706 } 1707 1708 static void metadata_operation_failed(struct pool *pool, const char *op, int r) 1709 { 1710 DMERR_LIMIT("%s: metadata operation '%s' failed: error = %d", 1711 dm_device_name(pool->pool_md), op, r); 1712 1713 abort_transaction(pool); 1714 set_pool_mode(pool, PM_READ_ONLY); 1715 } 1716 1717 /*----------------------------------------------------------------*/ 1718 1719 /* 1720 * Mapping functions. 1721 */ 1722 1723 /* 1724 * Called only while mapping a thin bio to hand it over to the workqueue. 1725 */ 1726 static void thin_defer_bio(struct thin_c *tc, struct bio *bio) 1727 { 1728 unsigned long flags; 1729 struct pool *pool = tc->pool; 1730 1731 spin_lock_irqsave(&tc->lock, flags); 1732 bio_list_add(&tc->deferred_bio_list, bio); 1733 spin_unlock_irqrestore(&tc->lock, flags); 1734 1735 wake_worker(pool); 1736 } 1737 1738 static void thin_hook_bio(struct thin_c *tc, struct bio *bio) 1739 { 1740 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook)); 1741 1742 h->tc = tc; 1743 h->shared_read_entry = NULL; 1744 h->all_io_entry = NULL; 1745 h->overwrite_mapping = NULL; 1746 } 1747 1748 /* 1749 * Non-blocking function called from the thin target's map function. 1750 */ 1751 static int thin_bio_map(struct dm_target *ti, struct bio *bio) 1752 { 1753 int r; 1754 struct thin_c *tc = ti->private; 1755 dm_block_t block = get_bio_block(tc, bio); 1756 struct dm_thin_device *td = tc->td; 1757 struct dm_thin_lookup_result result; 1758 struct dm_bio_prison_cell cell1, cell2; 1759 struct dm_bio_prison_cell *cell_result; 1760 struct dm_cell_key key; 1761 1762 thin_hook_bio(tc, bio); 1763 1764 if (tc->requeue_mode) { 1765 bio_endio(bio, DM_ENDIO_REQUEUE); 1766 return DM_MAPIO_SUBMITTED; 1767 } 1768 1769 if (get_pool_mode(tc->pool) == PM_FAIL) { 1770 bio_io_error(bio); 1771 return DM_MAPIO_SUBMITTED; 1772 } 1773 1774 if (bio->bi_rw & (REQ_DISCARD | REQ_FLUSH | REQ_FUA)) { 1775 thin_defer_bio(tc, bio); 1776 return DM_MAPIO_SUBMITTED; 1777 } 1778 1779 r = dm_thin_find_block(td, block, 0, &result); 1780 1781 /* 1782 * Note that we defer readahead too. 1783 */ 1784 switch (r) { 1785 case 0: 1786 if (unlikely(result.shared)) { 1787 /* 1788 * We have a race condition here between the 1789 * result.shared value returned by the lookup and 1790 * snapshot creation, which may cause new 1791 * sharing. 1792 * 1793 * To avoid this always quiesce the origin before 1794 * taking the snap. You want to do this anyway to 1795 * ensure a consistent application view 1796 * (i.e. lockfs). 1797 * 1798 * More distant ancestors are irrelevant. The 1799 * shared flag will be set in their case. 1800 */ 1801 thin_defer_bio(tc, bio); 1802 return DM_MAPIO_SUBMITTED; 1803 } 1804 1805 build_virtual_key(tc->td, block, &key); 1806 if (dm_bio_detain(tc->pool->prison, &key, bio, &cell1, &cell_result)) 1807 return DM_MAPIO_SUBMITTED; 1808 1809 build_data_key(tc->td, result.block, &key); 1810 if (dm_bio_detain(tc->pool->prison, &key, bio, &cell2, &cell_result)) { 1811 cell_defer_no_holder_no_free(tc, &cell1); 1812 return DM_MAPIO_SUBMITTED; 1813 } 1814 1815 inc_all_io_entry(tc->pool, bio); 1816 cell_defer_no_holder_no_free(tc, &cell2); 1817 cell_defer_no_holder_no_free(tc, &cell1); 1818 1819 remap(tc, bio, result.block); 1820 return DM_MAPIO_REMAPPED; 1821 1822 case -ENODATA: 1823 if (get_pool_mode(tc->pool) == PM_READ_ONLY) { 1824 /* 1825 * This block isn't provisioned, and we have no way 1826 * of doing so. 1827 */ 1828 handle_unserviceable_bio(tc->pool, bio); 1829 return DM_MAPIO_SUBMITTED; 1830 } 1831 /* fall through */ 1832 1833 case -EWOULDBLOCK: 1834 /* 1835 * In future, the failed dm_thin_find_block above could 1836 * provide the hint to load the metadata into cache. 1837 */ 1838 thin_defer_bio(tc, bio); 1839 return DM_MAPIO_SUBMITTED; 1840 1841 default: 1842 /* 1843 * Must always call bio_io_error on failure. 1844 * dm_thin_find_block can fail with -EINVAL if the 1845 * pool is switched to fail-io mode. 1846 */ 1847 bio_io_error(bio); 1848 return DM_MAPIO_SUBMITTED; 1849 } 1850 } 1851 1852 static int pool_is_congested(struct dm_target_callbacks *cb, int bdi_bits) 1853 { 1854 struct pool_c *pt = container_of(cb, struct pool_c, callbacks); 1855 struct request_queue *q; 1856 1857 if (get_pool_mode(pt->pool) == PM_OUT_OF_DATA_SPACE) 1858 return 1; 1859 1860 q = bdev_get_queue(pt->data_dev->bdev); 1861 return bdi_congested(&q->backing_dev_info, bdi_bits); 1862 } 1863 1864 static void requeue_bios(struct pool *pool) 1865 { 1866 unsigned long flags; 1867 struct thin_c *tc; 1868 1869 rcu_read_lock(); 1870 list_for_each_entry_rcu(tc, &pool->active_thins, list) { 1871 spin_lock_irqsave(&tc->lock, flags); 1872 bio_list_merge(&tc->deferred_bio_list, &tc->retry_on_resume_list); 1873 bio_list_init(&tc->retry_on_resume_list); 1874 spin_unlock_irqrestore(&tc->lock, flags); 1875 } 1876 rcu_read_unlock(); 1877 } 1878 1879 /*---------------------------------------------------------------- 1880 * Binding of control targets to a pool object 1881 *--------------------------------------------------------------*/ 1882 static bool data_dev_supports_discard(struct pool_c *pt) 1883 { 1884 struct request_queue *q = bdev_get_queue(pt->data_dev->bdev); 1885 1886 return q && blk_queue_discard(q); 1887 } 1888 1889 static bool is_factor(sector_t block_size, uint32_t n) 1890 { 1891 return !sector_div(block_size, n); 1892 } 1893 1894 /* 1895 * If discard_passdown was enabled verify that the data device 1896 * supports discards. Disable discard_passdown if not. 1897 */ 1898 static void disable_passdown_if_not_supported(struct pool_c *pt) 1899 { 1900 struct pool *pool = pt->pool; 1901 struct block_device *data_bdev = pt->data_dev->bdev; 1902 struct queue_limits *data_limits = &bdev_get_queue(data_bdev)->limits; 1903 sector_t block_size = pool->sectors_per_block << SECTOR_SHIFT; 1904 const char *reason = NULL; 1905 char buf[BDEVNAME_SIZE]; 1906 1907 if (!pt->adjusted_pf.discard_passdown) 1908 return; 1909 1910 if (!data_dev_supports_discard(pt)) 1911 reason = "discard unsupported"; 1912 1913 else if (data_limits->max_discard_sectors < pool->sectors_per_block) 1914 reason = "max discard sectors smaller than a block"; 1915 1916 else if (data_limits->discard_granularity > block_size) 1917 reason = "discard granularity larger than a block"; 1918 1919 else if (!is_factor(block_size, data_limits->discard_granularity)) 1920 reason = "discard granularity not a factor of block size"; 1921 1922 if (reason) { 1923 DMWARN("Data device (%s) %s: Disabling discard passdown.", bdevname(data_bdev, buf), reason); 1924 pt->adjusted_pf.discard_passdown = false; 1925 } 1926 } 1927 1928 static int bind_control_target(struct pool *pool, struct dm_target *ti) 1929 { 1930 struct pool_c *pt = ti->private; 1931 1932 /* 1933 * We want to make sure that a pool in PM_FAIL mode is never upgraded. 1934 */ 1935 enum pool_mode old_mode = get_pool_mode(pool); 1936 enum pool_mode new_mode = pt->adjusted_pf.mode; 1937 1938 /* 1939 * Don't change the pool's mode until set_pool_mode() below. 1940 * Otherwise the pool's process_* function pointers may 1941 * not match the desired pool mode. 1942 */ 1943 pt->adjusted_pf.mode = old_mode; 1944 1945 pool->ti = ti; 1946 pool->pf = pt->adjusted_pf; 1947 pool->low_water_blocks = pt->low_water_blocks; 1948 1949 set_pool_mode(pool, new_mode); 1950 1951 return 0; 1952 } 1953 1954 static void unbind_control_target(struct pool *pool, struct dm_target *ti) 1955 { 1956 if (pool->ti == ti) 1957 pool->ti = NULL; 1958 } 1959 1960 /*---------------------------------------------------------------- 1961 * Pool creation 1962 *--------------------------------------------------------------*/ 1963 /* Initialize pool features. */ 1964 static void pool_features_init(struct pool_features *pf) 1965 { 1966 pf->mode = PM_WRITE; 1967 pf->zero_new_blocks = true; 1968 pf->discard_enabled = true; 1969 pf->discard_passdown = true; 1970 pf->error_if_no_space = false; 1971 } 1972 1973 static void __pool_destroy(struct pool *pool) 1974 { 1975 __pool_table_remove(pool); 1976 1977 if (dm_pool_metadata_close(pool->pmd) < 0) 1978 DMWARN("%s: dm_pool_metadata_close() failed.", __func__); 1979 1980 dm_bio_prison_destroy(pool->prison); 1981 dm_kcopyd_client_destroy(pool->copier); 1982 1983 if (pool->wq) 1984 destroy_workqueue(pool->wq); 1985 1986 if (pool->next_mapping) 1987 mempool_free(pool->next_mapping, pool->mapping_pool); 1988 mempool_destroy(pool->mapping_pool); 1989 dm_deferred_set_destroy(pool->shared_read_ds); 1990 dm_deferred_set_destroy(pool->all_io_ds); 1991 kfree(pool); 1992 } 1993 1994 static struct kmem_cache *_new_mapping_cache; 1995 1996 static struct pool *pool_create(struct mapped_device *pool_md, 1997 struct block_device *metadata_dev, 1998 unsigned long block_size, 1999 int read_only, char **error) 2000 { 2001 int r; 2002 void *err_p; 2003 struct pool *pool; 2004 struct dm_pool_metadata *pmd; 2005 bool format_device = read_only ? false : true; 2006 2007 pmd = dm_pool_metadata_open(metadata_dev, block_size, format_device); 2008 if (IS_ERR(pmd)) { 2009 *error = "Error creating metadata object"; 2010 return (struct pool *)pmd; 2011 } 2012 2013 pool = kmalloc(sizeof(*pool), GFP_KERNEL); 2014 if (!pool) { 2015 *error = "Error allocating memory for pool"; 2016 err_p = ERR_PTR(-ENOMEM); 2017 goto bad_pool; 2018 } 2019 2020 pool->pmd = pmd; 2021 pool->sectors_per_block = block_size; 2022 if (block_size & (block_size - 1)) 2023 pool->sectors_per_block_shift = -1; 2024 else 2025 pool->sectors_per_block_shift = __ffs(block_size); 2026 pool->low_water_blocks = 0; 2027 pool_features_init(&pool->pf); 2028 pool->prison = dm_bio_prison_create(PRISON_CELLS); 2029 if (!pool->prison) { 2030 *error = "Error creating pool's bio prison"; 2031 err_p = ERR_PTR(-ENOMEM); 2032 goto bad_prison; 2033 } 2034 2035 pool->copier = dm_kcopyd_client_create(&dm_kcopyd_throttle); 2036 if (IS_ERR(pool->copier)) { 2037 r = PTR_ERR(pool->copier); 2038 *error = "Error creating pool's kcopyd client"; 2039 err_p = ERR_PTR(r); 2040 goto bad_kcopyd_client; 2041 } 2042 2043 /* 2044 * Create singlethreaded workqueue that will service all devices 2045 * that use this metadata. 2046 */ 2047 pool->wq = alloc_ordered_workqueue("dm-" DM_MSG_PREFIX, WQ_MEM_RECLAIM); 2048 if (!pool->wq) { 2049 *error = "Error creating pool's workqueue"; 2050 err_p = ERR_PTR(-ENOMEM); 2051 goto bad_wq; 2052 } 2053 2054 INIT_WORK(&pool->worker, do_worker); 2055 INIT_DELAYED_WORK(&pool->waker, do_waker); 2056 spin_lock_init(&pool->lock); 2057 bio_list_init(&pool->deferred_flush_bios); 2058 INIT_LIST_HEAD(&pool->prepared_mappings); 2059 INIT_LIST_HEAD(&pool->prepared_discards); 2060 INIT_LIST_HEAD(&pool->active_thins); 2061 pool->low_water_triggered = false; 2062 2063 pool->shared_read_ds = dm_deferred_set_create(); 2064 if (!pool->shared_read_ds) { 2065 *error = "Error creating pool's shared read deferred set"; 2066 err_p = ERR_PTR(-ENOMEM); 2067 goto bad_shared_read_ds; 2068 } 2069 2070 pool->all_io_ds = dm_deferred_set_create(); 2071 if (!pool->all_io_ds) { 2072 *error = "Error creating pool's all io deferred set"; 2073 err_p = ERR_PTR(-ENOMEM); 2074 goto bad_all_io_ds; 2075 } 2076 2077 pool->next_mapping = NULL; 2078 pool->mapping_pool = mempool_create_slab_pool(MAPPING_POOL_SIZE, 2079 _new_mapping_cache); 2080 if (!pool->mapping_pool) { 2081 *error = "Error creating pool's mapping mempool"; 2082 err_p = ERR_PTR(-ENOMEM); 2083 goto bad_mapping_pool; 2084 } 2085 2086 pool->ref_count = 1; 2087 pool->last_commit_jiffies = jiffies; 2088 pool->pool_md = pool_md; 2089 pool->md_dev = metadata_dev; 2090 __pool_table_insert(pool); 2091 2092 return pool; 2093 2094 bad_mapping_pool: 2095 dm_deferred_set_destroy(pool->all_io_ds); 2096 bad_all_io_ds: 2097 dm_deferred_set_destroy(pool->shared_read_ds); 2098 bad_shared_read_ds: 2099 destroy_workqueue(pool->wq); 2100 bad_wq: 2101 dm_kcopyd_client_destroy(pool->copier); 2102 bad_kcopyd_client: 2103 dm_bio_prison_destroy(pool->prison); 2104 bad_prison: 2105 kfree(pool); 2106 bad_pool: 2107 if (dm_pool_metadata_close(pmd)) 2108 DMWARN("%s: dm_pool_metadata_close() failed.", __func__); 2109 2110 return err_p; 2111 } 2112 2113 static void __pool_inc(struct pool *pool) 2114 { 2115 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex)); 2116 pool->ref_count++; 2117 } 2118 2119 static void __pool_dec(struct pool *pool) 2120 { 2121 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex)); 2122 BUG_ON(!pool->ref_count); 2123 if (!--pool->ref_count) 2124 __pool_destroy(pool); 2125 } 2126 2127 static struct pool *__pool_find(struct mapped_device *pool_md, 2128 struct block_device *metadata_dev, 2129 unsigned long block_size, int read_only, 2130 char **error, int *created) 2131 { 2132 struct pool *pool = __pool_table_lookup_metadata_dev(metadata_dev); 2133 2134 if (pool) { 2135 if (pool->pool_md != pool_md) { 2136 *error = "metadata device already in use by a pool"; 2137 return ERR_PTR(-EBUSY); 2138 } 2139 __pool_inc(pool); 2140 2141 } else { 2142 pool = __pool_table_lookup(pool_md); 2143 if (pool) { 2144 if (pool->md_dev != metadata_dev) { 2145 *error = "different pool cannot replace a pool"; 2146 return ERR_PTR(-EINVAL); 2147 } 2148 __pool_inc(pool); 2149 2150 } else { 2151 pool = pool_create(pool_md, metadata_dev, block_size, read_only, error); 2152 *created = 1; 2153 } 2154 } 2155 2156 return pool; 2157 } 2158 2159 /*---------------------------------------------------------------- 2160 * Pool target methods 2161 *--------------------------------------------------------------*/ 2162 static void pool_dtr(struct dm_target *ti) 2163 { 2164 struct pool_c *pt = ti->private; 2165 2166 mutex_lock(&dm_thin_pool_table.mutex); 2167 2168 unbind_control_target(pt->pool, ti); 2169 __pool_dec(pt->pool); 2170 dm_put_device(ti, pt->metadata_dev); 2171 dm_put_device(ti, pt->data_dev); 2172 kfree(pt); 2173 2174 mutex_unlock(&dm_thin_pool_table.mutex); 2175 } 2176 2177 static int parse_pool_features(struct dm_arg_set *as, struct pool_features *pf, 2178 struct dm_target *ti) 2179 { 2180 int r; 2181 unsigned argc; 2182 const char *arg_name; 2183 2184 static struct dm_arg _args[] = { 2185 {0, 4, "Invalid number of pool feature arguments"}, 2186 }; 2187 2188 /* 2189 * No feature arguments supplied. 2190 */ 2191 if (!as->argc) 2192 return 0; 2193 2194 r = dm_read_arg_group(_args, as, &argc, &ti->error); 2195 if (r) 2196 return -EINVAL; 2197 2198 while (argc && !r) { 2199 arg_name = dm_shift_arg(as); 2200 argc--; 2201 2202 if (!strcasecmp(arg_name, "skip_block_zeroing")) 2203 pf->zero_new_blocks = false; 2204 2205 else if (!strcasecmp(arg_name, "ignore_discard")) 2206 pf->discard_enabled = false; 2207 2208 else if (!strcasecmp(arg_name, "no_discard_passdown")) 2209 pf->discard_passdown = false; 2210 2211 else if (!strcasecmp(arg_name, "read_only")) 2212 pf->mode = PM_READ_ONLY; 2213 2214 else if (!strcasecmp(arg_name, "error_if_no_space")) 2215 pf->error_if_no_space = true; 2216 2217 else { 2218 ti->error = "Unrecognised pool feature requested"; 2219 r = -EINVAL; 2220 break; 2221 } 2222 } 2223 2224 return r; 2225 } 2226 2227 static void metadata_low_callback(void *context) 2228 { 2229 struct pool *pool = context; 2230 2231 DMWARN("%s: reached low water mark for metadata device: sending event.", 2232 dm_device_name(pool->pool_md)); 2233 2234 dm_table_event(pool->ti->table); 2235 } 2236 2237 static sector_t get_dev_size(struct block_device *bdev) 2238 { 2239 return i_size_read(bdev->bd_inode) >> SECTOR_SHIFT; 2240 } 2241 2242 static void warn_if_metadata_device_too_big(struct block_device *bdev) 2243 { 2244 sector_t metadata_dev_size = get_dev_size(bdev); 2245 char buffer[BDEVNAME_SIZE]; 2246 2247 if (metadata_dev_size > THIN_METADATA_MAX_SECTORS_WARNING) 2248 DMWARN("Metadata device %s is larger than %u sectors: excess space will not be used.", 2249 bdevname(bdev, buffer), THIN_METADATA_MAX_SECTORS); 2250 } 2251 2252 static sector_t get_metadata_dev_size(struct block_device *bdev) 2253 { 2254 sector_t metadata_dev_size = get_dev_size(bdev); 2255 2256 if (metadata_dev_size > THIN_METADATA_MAX_SECTORS) 2257 metadata_dev_size = THIN_METADATA_MAX_SECTORS; 2258 2259 return metadata_dev_size; 2260 } 2261 2262 static dm_block_t get_metadata_dev_size_in_blocks(struct block_device *bdev) 2263 { 2264 sector_t metadata_dev_size = get_metadata_dev_size(bdev); 2265 2266 sector_div(metadata_dev_size, THIN_METADATA_BLOCK_SIZE); 2267 2268 return metadata_dev_size; 2269 } 2270 2271 /* 2272 * When a metadata threshold is crossed a dm event is triggered, and 2273 * userland should respond by growing the metadata device. We could let 2274 * userland set the threshold, like we do with the data threshold, but I'm 2275 * not sure they know enough to do this well. 2276 */ 2277 static dm_block_t calc_metadata_threshold(struct pool_c *pt) 2278 { 2279 /* 2280 * 4M is ample for all ops with the possible exception of thin 2281 * device deletion which is harmless if it fails (just retry the 2282 * delete after you've grown the device). 2283 */ 2284 dm_block_t quarter = get_metadata_dev_size_in_blocks(pt->metadata_dev->bdev) / 4; 2285 return min((dm_block_t)1024ULL /* 4M */, quarter); 2286 } 2287 2288 /* 2289 * thin-pool <metadata dev> <data dev> 2290 * <data block size (sectors)> 2291 * <low water mark (blocks)> 2292 * [<#feature args> [<arg>]*] 2293 * 2294 * Optional feature arguments are: 2295 * skip_block_zeroing: skips the zeroing of newly-provisioned blocks. 2296 * ignore_discard: disable discard 2297 * no_discard_passdown: don't pass discards down to the data device 2298 * read_only: Don't allow any changes to be made to the pool metadata. 2299 * error_if_no_space: error IOs, instead of queueing, if no space. 2300 */ 2301 static int pool_ctr(struct dm_target *ti, unsigned argc, char **argv) 2302 { 2303 int r, pool_created = 0; 2304 struct pool_c *pt; 2305 struct pool *pool; 2306 struct pool_features pf; 2307 struct dm_arg_set as; 2308 struct dm_dev *data_dev; 2309 unsigned long block_size; 2310 dm_block_t low_water_blocks; 2311 struct dm_dev *metadata_dev; 2312 fmode_t metadata_mode; 2313 2314 /* 2315 * FIXME Remove validation from scope of lock. 2316 */ 2317 mutex_lock(&dm_thin_pool_table.mutex); 2318 2319 if (argc < 4) { 2320 ti->error = "Invalid argument count"; 2321 r = -EINVAL; 2322 goto out_unlock; 2323 } 2324 2325 as.argc = argc; 2326 as.argv = argv; 2327 2328 /* 2329 * Set default pool features. 2330 */ 2331 pool_features_init(&pf); 2332 2333 dm_consume_args(&as, 4); 2334 r = parse_pool_features(&as, &pf, ti); 2335 if (r) 2336 goto out_unlock; 2337 2338 metadata_mode = FMODE_READ | ((pf.mode == PM_READ_ONLY) ? 0 : FMODE_WRITE); 2339 r = dm_get_device(ti, argv[0], metadata_mode, &metadata_dev); 2340 if (r) { 2341 ti->error = "Error opening metadata block device"; 2342 goto out_unlock; 2343 } 2344 warn_if_metadata_device_too_big(metadata_dev->bdev); 2345 2346 r = dm_get_device(ti, argv[1], FMODE_READ | FMODE_WRITE, &data_dev); 2347 if (r) { 2348 ti->error = "Error getting data device"; 2349 goto out_metadata; 2350 } 2351 2352 if (kstrtoul(argv[2], 10, &block_size) || !block_size || 2353 block_size < DATA_DEV_BLOCK_SIZE_MIN_SECTORS || 2354 block_size > DATA_DEV_BLOCK_SIZE_MAX_SECTORS || 2355 block_size & (DATA_DEV_BLOCK_SIZE_MIN_SECTORS - 1)) { 2356 ti->error = "Invalid block size"; 2357 r = -EINVAL; 2358 goto out; 2359 } 2360 2361 if (kstrtoull(argv[3], 10, (unsigned long long *)&low_water_blocks)) { 2362 ti->error = "Invalid low water mark"; 2363 r = -EINVAL; 2364 goto out; 2365 } 2366 2367 pt = kzalloc(sizeof(*pt), GFP_KERNEL); 2368 if (!pt) { 2369 r = -ENOMEM; 2370 goto out; 2371 } 2372 2373 pool = __pool_find(dm_table_get_md(ti->table), metadata_dev->bdev, 2374 block_size, pf.mode == PM_READ_ONLY, &ti->error, &pool_created); 2375 if (IS_ERR(pool)) { 2376 r = PTR_ERR(pool); 2377 goto out_free_pt; 2378 } 2379 2380 /* 2381 * 'pool_created' reflects whether this is the first table load. 2382 * Top level discard support is not allowed to be changed after 2383 * initial load. This would require a pool reload to trigger thin 2384 * device changes. 2385 */ 2386 if (!pool_created && pf.discard_enabled != pool->pf.discard_enabled) { 2387 ti->error = "Discard support cannot be disabled once enabled"; 2388 r = -EINVAL; 2389 goto out_flags_changed; 2390 } 2391 2392 pt->pool = pool; 2393 pt->ti = ti; 2394 pt->metadata_dev = metadata_dev; 2395 pt->data_dev = data_dev; 2396 pt->low_water_blocks = low_water_blocks; 2397 pt->adjusted_pf = pt->requested_pf = pf; 2398 ti->num_flush_bios = 1; 2399 2400 /* 2401 * Only need to enable discards if the pool should pass 2402 * them down to the data device. The thin device's discard 2403 * processing will cause mappings to be removed from the btree. 2404 */ 2405 ti->discard_zeroes_data_unsupported = true; 2406 if (pf.discard_enabled && pf.discard_passdown) { 2407 ti->num_discard_bios = 1; 2408 2409 /* 2410 * Setting 'discards_supported' circumvents the normal 2411 * stacking of discard limits (this keeps the pool and 2412 * thin devices' discard limits consistent). 2413 */ 2414 ti->discards_supported = true; 2415 } 2416 ti->private = pt; 2417 2418 r = dm_pool_register_metadata_threshold(pt->pool->pmd, 2419 calc_metadata_threshold(pt), 2420 metadata_low_callback, 2421 pool); 2422 if (r) 2423 goto out_free_pt; 2424 2425 pt->callbacks.congested_fn = pool_is_congested; 2426 dm_table_add_target_callbacks(ti->table, &pt->callbacks); 2427 2428 mutex_unlock(&dm_thin_pool_table.mutex); 2429 2430 return 0; 2431 2432 out_flags_changed: 2433 __pool_dec(pool); 2434 out_free_pt: 2435 kfree(pt); 2436 out: 2437 dm_put_device(ti, data_dev); 2438 out_metadata: 2439 dm_put_device(ti, metadata_dev); 2440 out_unlock: 2441 mutex_unlock(&dm_thin_pool_table.mutex); 2442 2443 return r; 2444 } 2445 2446 static int pool_map(struct dm_target *ti, struct bio *bio) 2447 { 2448 int r; 2449 struct pool_c *pt = ti->private; 2450 struct pool *pool = pt->pool; 2451 unsigned long flags; 2452 2453 /* 2454 * As this is a singleton target, ti->begin is always zero. 2455 */ 2456 spin_lock_irqsave(&pool->lock, flags); 2457 bio->bi_bdev = pt->data_dev->bdev; 2458 r = DM_MAPIO_REMAPPED; 2459 spin_unlock_irqrestore(&pool->lock, flags); 2460 2461 return r; 2462 } 2463 2464 static int maybe_resize_data_dev(struct dm_target *ti, bool *need_commit) 2465 { 2466 int r; 2467 struct pool_c *pt = ti->private; 2468 struct pool *pool = pt->pool; 2469 sector_t data_size = ti->len; 2470 dm_block_t sb_data_size; 2471 2472 *need_commit = false; 2473 2474 (void) sector_div(data_size, pool->sectors_per_block); 2475 2476 r = dm_pool_get_data_dev_size(pool->pmd, &sb_data_size); 2477 if (r) { 2478 DMERR("%s: failed to retrieve data device size", 2479 dm_device_name(pool->pool_md)); 2480 return r; 2481 } 2482 2483 if (data_size < sb_data_size) { 2484 DMERR("%s: pool target (%llu blocks) too small: expected %llu", 2485 dm_device_name(pool->pool_md), 2486 (unsigned long long)data_size, sb_data_size); 2487 return -EINVAL; 2488 2489 } else if (data_size > sb_data_size) { 2490 if (dm_pool_metadata_needs_check(pool->pmd)) { 2491 DMERR("%s: unable to grow the data device until repaired.", 2492 dm_device_name(pool->pool_md)); 2493 return 0; 2494 } 2495 2496 if (sb_data_size) 2497 DMINFO("%s: growing the data device from %llu to %llu blocks", 2498 dm_device_name(pool->pool_md), 2499 sb_data_size, (unsigned long long)data_size); 2500 r = dm_pool_resize_data_dev(pool->pmd, data_size); 2501 if (r) { 2502 metadata_operation_failed(pool, "dm_pool_resize_data_dev", r); 2503 return r; 2504 } 2505 2506 *need_commit = true; 2507 } 2508 2509 return 0; 2510 } 2511 2512 static int maybe_resize_metadata_dev(struct dm_target *ti, bool *need_commit) 2513 { 2514 int r; 2515 struct pool_c *pt = ti->private; 2516 struct pool *pool = pt->pool; 2517 dm_block_t metadata_dev_size, sb_metadata_dev_size; 2518 2519 *need_commit = false; 2520 2521 metadata_dev_size = get_metadata_dev_size_in_blocks(pool->md_dev); 2522 2523 r = dm_pool_get_metadata_dev_size(pool->pmd, &sb_metadata_dev_size); 2524 if (r) { 2525 DMERR("%s: failed to retrieve metadata device size", 2526 dm_device_name(pool->pool_md)); 2527 return r; 2528 } 2529 2530 if (metadata_dev_size < sb_metadata_dev_size) { 2531 DMERR("%s: metadata device (%llu blocks) too small: expected %llu", 2532 dm_device_name(pool->pool_md), 2533 metadata_dev_size, sb_metadata_dev_size); 2534 return -EINVAL; 2535 2536 } else if (metadata_dev_size > sb_metadata_dev_size) { 2537 if (dm_pool_metadata_needs_check(pool->pmd)) { 2538 DMERR("%s: unable to grow the metadata device until repaired.", 2539 dm_device_name(pool->pool_md)); 2540 return 0; 2541 } 2542 2543 warn_if_metadata_device_too_big(pool->md_dev); 2544 DMINFO("%s: growing the metadata device from %llu to %llu blocks", 2545 dm_device_name(pool->pool_md), 2546 sb_metadata_dev_size, metadata_dev_size); 2547 r = dm_pool_resize_metadata_dev(pool->pmd, metadata_dev_size); 2548 if (r) { 2549 metadata_operation_failed(pool, "dm_pool_resize_metadata_dev", r); 2550 return r; 2551 } 2552 2553 *need_commit = true; 2554 } 2555 2556 return 0; 2557 } 2558 2559 /* 2560 * Retrieves the number of blocks of the data device from 2561 * the superblock and compares it to the actual device size, 2562 * thus resizing the data device in case it has grown. 2563 * 2564 * This both copes with opening preallocated data devices in the ctr 2565 * being followed by a resume 2566 * -and- 2567 * calling the resume method individually after userspace has 2568 * grown the data device in reaction to a table event. 2569 */ 2570 static int pool_preresume(struct dm_target *ti) 2571 { 2572 int r; 2573 bool need_commit1, need_commit2; 2574 struct pool_c *pt = ti->private; 2575 struct pool *pool = pt->pool; 2576 2577 /* 2578 * Take control of the pool object. 2579 */ 2580 r = bind_control_target(pool, ti); 2581 if (r) 2582 return r; 2583 2584 r = maybe_resize_data_dev(ti, &need_commit1); 2585 if (r) 2586 return r; 2587 2588 r = maybe_resize_metadata_dev(ti, &need_commit2); 2589 if (r) 2590 return r; 2591 2592 if (need_commit1 || need_commit2) 2593 (void) commit(pool); 2594 2595 return 0; 2596 } 2597 2598 static void pool_resume(struct dm_target *ti) 2599 { 2600 struct pool_c *pt = ti->private; 2601 struct pool *pool = pt->pool; 2602 unsigned long flags; 2603 2604 spin_lock_irqsave(&pool->lock, flags); 2605 pool->low_water_triggered = false; 2606 spin_unlock_irqrestore(&pool->lock, flags); 2607 requeue_bios(pool); 2608 2609 do_waker(&pool->waker.work); 2610 } 2611 2612 static void pool_postsuspend(struct dm_target *ti) 2613 { 2614 struct pool_c *pt = ti->private; 2615 struct pool *pool = pt->pool; 2616 2617 cancel_delayed_work(&pool->waker); 2618 flush_workqueue(pool->wq); 2619 (void) commit(pool); 2620 } 2621 2622 static int check_arg_count(unsigned argc, unsigned args_required) 2623 { 2624 if (argc != args_required) { 2625 DMWARN("Message received with %u arguments instead of %u.", 2626 argc, args_required); 2627 return -EINVAL; 2628 } 2629 2630 return 0; 2631 } 2632 2633 static int read_dev_id(char *arg, dm_thin_id *dev_id, int warning) 2634 { 2635 if (!kstrtoull(arg, 10, (unsigned long long *)dev_id) && 2636 *dev_id <= MAX_DEV_ID) 2637 return 0; 2638 2639 if (warning) 2640 DMWARN("Message received with invalid device id: %s", arg); 2641 2642 return -EINVAL; 2643 } 2644 2645 static int process_create_thin_mesg(unsigned argc, char **argv, struct pool *pool) 2646 { 2647 dm_thin_id dev_id; 2648 int r; 2649 2650 r = check_arg_count(argc, 2); 2651 if (r) 2652 return r; 2653 2654 r = read_dev_id(argv[1], &dev_id, 1); 2655 if (r) 2656 return r; 2657 2658 r = dm_pool_create_thin(pool->pmd, dev_id); 2659 if (r) { 2660 DMWARN("Creation of new thinly-provisioned device with id %s failed.", 2661 argv[1]); 2662 return r; 2663 } 2664 2665 return 0; 2666 } 2667 2668 static int process_create_snap_mesg(unsigned argc, char **argv, struct pool *pool) 2669 { 2670 dm_thin_id dev_id; 2671 dm_thin_id origin_dev_id; 2672 int r; 2673 2674 r = check_arg_count(argc, 3); 2675 if (r) 2676 return r; 2677 2678 r = read_dev_id(argv[1], &dev_id, 1); 2679 if (r) 2680 return r; 2681 2682 r = read_dev_id(argv[2], &origin_dev_id, 1); 2683 if (r) 2684 return r; 2685 2686 r = dm_pool_create_snap(pool->pmd, dev_id, origin_dev_id); 2687 if (r) { 2688 DMWARN("Creation of new snapshot %s of device %s failed.", 2689 argv[1], argv[2]); 2690 return r; 2691 } 2692 2693 return 0; 2694 } 2695 2696 static int process_delete_mesg(unsigned argc, char **argv, struct pool *pool) 2697 { 2698 dm_thin_id dev_id; 2699 int r; 2700 2701 r = check_arg_count(argc, 2); 2702 if (r) 2703 return r; 2704 2705 r = read_dev_id(argv[1], &dev_id, 1); 2706 if (r) 2707 return r; 2708 2709 r = dm_pool_delete_thin_device(pool->pmd, dev_id); 2710 if (r) 2711 DMWARN("Deletion of thin device %s failed.", argv[1]); 2712 2713 return r; 2714 } 2715 2716 static int process_set_transaction_id_mesg(unsigned argc, char **argv, struct pool *pool) 2717 { 2718 dm_thin_id old_id, new_id; 2719 int r; 2720 2721 r = check_arg_count(argc, 3); 2722 if (r) 2723 return r; 2724 2725 if (kstrtoull(argv[1], 10, (unsigned long long *)&old_id)) { 2726 DMWARN("set_transaction_id message: Unrecognised id %s.", argv[1]); 2727 return -EINVAL; 2728 } 2729 2730 if (kstrtoull(argv[2], 10, (unsigned long long *)&new_id)) { 2731 DMWARN("set_transaction_id message: Unrecognised new id %s.", argv[2]); 2732 return -EINVAL; 2733 } 2734 2735 r = dm_pool_set_metadata_transaction_id(pool->pmd, old_id, new_id); 2736 if (r) { 2737 DMWARN("Failed to change transaction id from %s to %s.", 2738 argv[1], argv[2]); 2739 return r; 2740 } 2741 2742 return 0; 2743 } 2744 2745 static int process_reserve_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool) 2746 { 2747 int r; 2748 2749 r = check_arg_count(argc, 1); 2750 if (r) 2751 return r; 2752 2753 (void) commit(pool); 2754 2755 r = dm_pool_reserve_metadata_snap(pool->pmd); 2756 if (r) 2757 DMWARN("reserve_metadata_snap message failed."); 2758 2759 return r; 2760 } 2761 2762 static int process_release_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool) 2763 { 2764 int r; 2765 2766 r = check_arg_count(argc, 1); 2767 if (r) 2768 return r; 2769 2770 r = dm_pool_release_metadata_snap(pool->pmd); 2771 if (r) 2772 DMWARN("release_metadata_snap message failed."); 2773 2774 return r; 2775 } 2776 2777 /* 2778 * Messages supported: 2779 * create_thin <dev_id> 2780 * create_snap <dev_id> <origin_id> 2781 * delete <dev_id> 2782 * trim <dev_id> <new_size_in_sectors> 2783 * set_transaction_id <current_trans_id> <new_trans_id> 2784 * reserve_metadata_snap 2785 * release_metadata_snap 2786 */ 2787 static int pool_message(struct dm_target *ti, unsigned argc, char **argv) 2788 { 2789 int r = -EINVAL; 2790 struct pool_c *pt = ti->private; 2791 struct pool *pool = pt->pool; 2792 2793 if (!strcasecmp(argv[0], "create_thin")) 2794 r = process_create_thin_mesg(argc, argv, pool); 2795 2796 else if (!strcasecmp(argv[0], "create_snap")) 2797 r = process_create_snap_mesg(argc, argv, pool); 2798 2799 else if (!strcasecmp(argv[0], "delete")) 2800 r = process_delete_mesg(argc, argv, pool); 2801 2802 else if (!strcasecmp(argv[0], "set_transaction_id")) 2803 r = process_set_transaction_id_mesg(argc, argv, pool); 2804 2805 else if (!strcasecmp(argv[0], "reserve_metadata_snap")) 2806 r = process_reserve_metadata_snap_mesg(argc, argv, pool); 2807 2808 else if (!strcasecmp(argv[0], "release_metadata_snap")) 2809 r = process_release_metadata_snap_mesg(argc, argv, pool); 2810 2811 else 2812 DMWARN("Unrecognised thin pool target message received: %s", argv[0]); 2813 2814 if (!r) 2815 (void) commit(pool); 2816 2817 return r; 2818 } 2819 2820 static void emit_flags(struct pool_features *pf, char *result, 2821 unsigned sz, unsigned maxlen) 2822 { 2823 unsigned count = !pf->zero_new_blocks + !pf->discard_enabled + 2824 !pf->discard_passdown + (pf->mode == PM_READ_ONLY) + 2825 pf->error_if_no_space; 2826 DMEMIT("%u ", count); 2827 2828 if (!pf->zero_new_blocks) 2829 DMEMIT("skip_block_zeroing "); 2830 2831 if (!pf->discard_enabled) 2832 DMEMIT("ignore_discard "); 2833 2834 if (!pf->discard_passdown) 2835 DMEMIT("no_discard_passdown "); 2836 2837 if (pf->mode == PM_READ_ONLY) 2838 DMEMIT("read_only "); 2839 2840 if (pf->error_if_no_space) 2841 DMEMIT("error_if_no_space "); 2842 } 2843 2844 /* 2845 * Status line is: 2846 * <transaction id> <used metadata sectors>/<total metadata sectors> 2847 * <used data sectors>/<total data sectors> <held metadata root> 2848 */ 2849 static void pool_status(struct dm_target *ti, status_type_t type, 2850 unsigned status_flags, char *result, unsigned maxlen) 2851 { 2852 int r; 2853 unsigned sz = 0; 2854 uint64_t transaction_id; 2855 dm_block_t nr_free_blocks_data; 2856 dm_block_t nr_free_blocks_metadata; 2857 dm_block_t nr_blocks_data; 2858 dm_block_t nr_blocks_metadata; 2859 dm_block_t held_root; 2860 char buf[BDEVNAME_SIZE]; 2861 char buf2[BDEVNAME_SIZE]; 2862 struct pool_c *pt = ti->private; 2863 struct pool *pool = pt->pool; 2864 2865 switch (type) { 2866 case STATUSTYPE_INFO: 2867 if (get_pool_mode(pool) == PM_FAIL) { 2868 DMEMIT("Fail"); 2869 break; 2870 } 2871 2872 /* Commit to ensure statistics aren't out-of-date */ 2873 if (!(status_flags & DM_STATUS_NOFLUSH_FLAG) && !dm_suspended(ti)) 2874 (void) commit(pool); 2875 2876 r = dm_pool_get_metadata_transaction_id(pool->pmd, &transaction_id); 2877 if (r) { 2878 DMERR("%s: dm_pool_get_metadata_transaction_id returned %d", 2879 dm_device_name(pool->pool_md), r); 2880 goto err; 2881 } 2882 2883 r = dm_pool_get_free_metadata_block_count(pool->pmd, &nr_free_blocks_metadata); 2884 if (r) { 2885 DMERR("%s: dm_pool_get_free_metadata_block_count returned %d", 2886 dm_device_name(pool->pool_md), r); 2887 goto err; 2888 } 2889 2890 r = dm_pool_get_metadata_dev_size(pool->pmd, &nr_blocks_metadata); 2891 if (r) { 2892 DMERR("%s: dm_pool_get_metadata_dev_size returned %d", 2893 dm_device_name(pool->pool_md), r); 2894 goto err; 2895 } 2896 2897 r = dm_pool_get_free_block_count(pool->pmd, &nr_free_blocks_data); 2898 if (r) { 2899 DMERR("%s: dm_pool_get_free_block_count returned %d", 2900 dm_device_name(pool->pool_md), r); 2901 goto err; 2902 } 2903 2904 r = dm_pool_get_data_dev_size(pool->pmd, &nr_blocks_data); 2905 if (r) { 2906 DMERR("%s: dm_pool_get_data_dev_size returned %d", 2907 dm_device_name(pool->pool_md), r); 2908 goto err; 2909 } 2910 2911 r = dm_pool_get_metadata_snap(pool->pmd, &held_root); 2912 if (r) { 2913 DMERR("%s: dm_pool_get_metadata_snap returned %d", 2914 dm_device_name(pool->pool_md), r); 2915 goto err; 2916 } 2917 2918 DMEMIT("%llu %llu/%llu %llu/%llu ", 2919 (unsigned long long)transaction_id, 2920 (unsigned long long)(nr_blocks_metadata - nr_free_blocks_metadata), 2921 (unsigned long long)nr_blocks_metadata, 2922 (unsigned long long)(nr_blocks_data - nr_free_blocks_data), 2923 (unsigned long long)nr_blocks_data); 2924 2925 if (held_root) 2926 DMEMIT("%llu ", held_root); 2927 else 2928 DMEMIT("- "); 2929 2930 if (pool->pf.mode == PM_OUT_OF_DATA_SPACE) 2931 DMEMIT("out_of_data_space "); 2932 else if (pool->pf.mode == PM_READ_ONLY) 2933 DMEMIT("ro "); 2934 else 2935 DMEMIT("rw "); 2936 2937 if (!pool->pf.discard_enabled) 2938 DMEMIT("ignore_discard "); 2939 else if (pool->pf.discard_passdown) 2940 DMEMIT("discard_passdown "); 2941 else 2942 DMEMIT("no_discard_passdown "); 2943 2944 if (pool->pf.error_if_no_space) 2945 DMEMIT("error_if_no_space "); 2946 else 2947 DMEMIT("queue_if_no_space "); 2948 2949 break; 2950 2951 case STATUSTYPE_TABLE: 2952 DMEMIT("%s %s %lu %llu ", 2953 format_dev_t(buf, pt->metadata_dev->bdev->bd_dev), 2954 format_dev_t(buf2, pt->data_dev->bdev->bd_dev), 2955 (unsigned long)pool->sectors_per_block, 2956 (unsigned long long)pt->low_water_blocks); 2957 emit_flags(&pt->requested_pf, result, sz, maxlen); 2958 break; 2959 } 2960 return; 2961 2962 err: 2963 DMEMIT("Error"); 2964 } 2965 2966 static int pool_iterate_devices(struct dm_target *ti, 2967 iterate_devices_callout_fn fn, void *data) 2968 { 2969 struct pool_c *pt = ti->private; 2970 2971 return fn(ti, pt->data_dev, 0, ti->len, data); 2972 } 2973 2974 static int pool_merge(struct dm_target *ti, struct bvec_merge_data *bvm, 2975 struct bio_vec *biovec, int max_size) 2976 { 2977 struct pool_c *pt = ti->private; 2978 struct request_queue *q = bdev_get_queue(pt->data_dev->bdev); 2979 2980 if (!q->merge_bvec_fn) 2981 return max_size; 2982 2983 bvm->bi_bdev = pt->data_dev->bdev; 2984 2985 return min(max_size, q->merge_bvec_fn(q, bvm, biovec)); 2986 } 2987 2988 static void set_discard_limits(struct pool_c *pt, struct queue_limits *limits) 2989 { 2990 struct pool *pool = pt->pool; 2991 struct queue_limits *data_limits; 2992 2993 limits->max_discard_sectors = pool->sectors_per_block; 2994 2995 /* 2996 * discard_granularity is just a hint, and not enforced. 2997 */ 2998 if (pt->adjusted_pf.discard_passdown) { 2999 data_limits = &bdev_get_queue(pt->data_dev->bdev)->limits; 3000 limits->discard_granularity = data_limits->discard_granularity; 3001 } else 3002 limits->discard_granularity = pool->sectors_per_block << SECTOR_SHIFT; 3003 } 3004 3005 static void pool_io_hints(struct dm_target *ti, struct queue_limits *limits) 3006 { 3007 struct pool_c *pt = ti->private; 3008 struct pool *pool = pt->pool; 3009 uint64_t io_opt_sectors = limits->io_opt >> SECTOR_SHIFT; 3010 3011 /* 3012 * If the system-determined stacked limits are compatible with the 3013 * pool's blocksize (io_opt is a factor) do not override them. 3014 */ 3015 if (io_opt_sectors < pool->sectors_per_block || 3016 do_div(io_opt_sectors, pool->sectors_per_block)) { 3017 blk_limits_io_min(limits, 0); 3018 blk_limits_io_opt(limits, pool->sectors_per_block << SECTOR_SHIFT); 3019 } 3020 3021 /* 3022 * pt->adjusted_pf is a staging area for the actual features to use. 3023 * They get transferred to the live pool in bind_control_target() 3024 * called from pool_preresume(). 3025 */ 3026 if (!pt->adjusted_pf.discard_enabled) { 3027 /* 3028 * Must explicitly disallow stacking discard limits otherwise the 3029 * block layer will stack them if pool's data device has support. 3030 * QUEUE_FLAG_DISCARD wouldn't be set but there is no way for the 3031 * user to see that, so make sure to set all discard limits to 0. 3032 */ 3033 limits->discard_granularity = 0; 3034 return; 3035 } 3036 3037 disable_passdown_if_not_supported(pt); 3038 3039 set_discard_limits(pt, limits); 3040 } 3041 3042 static struct target_type pool_target = { 3043 .name = "thin-pool", 3044 .features = DM_TARGET_SINGLETON | DM_TARGET_ALWAYS_WRITEABLE | 3045 DM_TARGET_IMMUTABLE, 3046 .version = {1, 12, 0}, 3047 .module = THIS_MODULE, 3048 .ctr = pool_ctr, 3049 .dtr = pool_dtr, 3050 .map = pool_map, 3051 .postsuspend = pool_postsuspend, 3052 .preresume = pool_preresume, 3053 .resume = pool_resume, 3054 .message = pool_message, 3055 .status = pool_status, 3056 .merge = pool_merge, 3057 .iterate_devices = pool_iterate_devices, 3058 .io_hints = pool_io_hints, 3059 }; 3060 3061 /*---------------------------------------------------------------- 3062 * Thin target methods 3063 *--------------------------------------------------------------*/ 3064 static void thin_dtr(struct dm_target *ti) 3065 { 3066 struct thin_c *tc = ti->private; 3067 unsigned long flags; 3068 3069 spin_lock_irqsave(&tc->pool->lock, flags); 3070 list_del_rcu(&tc->list); 3071 spin_unlock_irqrestore(&tc->pool->lock, flags); 3072 synchronize_rcu(); 3073 3074 mutex_lock(&dm_thin_pool_table.mutex); 3075 3076 __pool_dec(tc->pool); 3077 dm_pool_close_thin_device(tc->td); 3078 dm_put_device(ti, tc->pool_dev); 3079 if (tc->origin_dev) 3080 dm_put_device(ti, tc->origin_dev); 3081 kfree(tc); 3082 3083 mutex_unlock(&dm_thin_pool_table.mutex); 3084 } 3085 3086 /* 3087 * Thin target parameters: 3088 * 3089 * <pool_dev> <dev_id> [origin_dev] 3090 * 3091 * pool_dev: the path to the pool (eg, /dev/mapper/my_pool) 3092 * dev_id: the internal device identifier 3093 * origin_dev: a device external to the pool that should act as the origin 3094 * 3095 * If the pool device has discards disabled, they get disabled for the thin 3096 * device as well. 3097 */ 3098 static int thin_ctr(struct dm_target *ti, unsigned argc, char **argv) 3099 { 3100 int r; 3101 struct thin_c *tc; 3102 struct dm_dev *pool_dev, *origin_dev; 3103 struct mapped_device *pool_md; 3104 3105 mutex_lock(&dm_thin_pool_table.mutex); 3106 3107 if (argc != 2 && argc != 3) { 3108 ti->error = "Invalid argument count"; 3109 r = -EINVAL; 3110 goto out_unlock; 3111 } 3112 3113 tc = ti->private = kzalloc(sizeof(*tc), GFP_KERNEL); 3114 if (!tc) { 3115 ti->error = "Out of memory"; 3116 r = -ENOMEM; 3117 goto out_unlock; 3118 } 3119 spin_lock_init(&tc->lock); 3120 bio_list_init(&tc->deferred_bio_list); 3121 bio_list_init(&tc->retry_on_resume_list); 3122 tc->sort_bio_list = RB_ROOT; 3123 3124 if (argc == 3) { 3125 r = dm_get_device(ti, argv[2], FMODE_READ, &origin_dev); 3126 if (r) { 3127 ti->error = "Error opening origin device"; 3128 goto bad_origin_dev; 3129 } 3130 tc->origin_dev = origin_dev; 3131 } 3132 3133 r = dm_get_device(ti, argv[0], dm_table_get_mode(ti->table), &pool_dev); 3134 if (r) { 3135 ti->error = "Error opening pool device"; 3136 goto bad_pool_dev; 3137 } 3138 tc->pool_dev = pool_dev; 3139 3140 if (read_dev_id(argv[1], (unsigned long long *)&tc->dev_id, 0)) { 3141 ti->error = "Invalid device id"; 3142 r = -EINVAL; 3143 goto bad_common; 3144 } 3145 3146 pool_md = dm_get_md(tc->pool_dev->bdev->bd_dev); 3147 if (!pool_md) { 3148 ti->error = "Couldn't get pool mapped device"; 3149 r = -EINVAL; 3150 goto bad_common; 3151 } 3152 3153 tc->pool = __pool_table_lookup(pool_md); 3154 if (!tc->pool) { 3155 ti->error = "Couldn't find pool object"; 3156 r = -EINVAL; 3157 goto bad_pool_lookup; 3158 } 3159 __pool_inc(tc->pool); 3160 3161 if (get_pool_mode(tc->pool) == PM_FAIL) { 3162 ti->error = "Couldn't open thin device, Pool is in fail mode"; 3163 r = -EINVAL; 3164 goto bad_thin_open; 3165 } 3166 3167 r = dm_pool_open_thin_device(tc->pool->pmd, tc->dev_id, &tc->td); 3168 if (r) { 3169 ti->error = "Couldn't open thin internal device"; 3170 goto bad_thin_open; 3171 } 3172 3173 r = dm_set_target_max_io_len(ti, tc->pool->sectors_per_block); 3174 if (r) 3175 goto bad_target_max_io_len; 3176 3177 ti->num_flush_bios = 1; 3178 ti->flush_supported = true; 3179 ti->per_bio_data_size = sizeof(struct dm_thin_endio_hook); 3180 3181 /* In case the pool supports discards, pass them on. */ 3182 ti->discard_zeroes_data_unsupported = true; 3183 if (tc->pool->pf.discard_enabled) { 3184 ti->discards_supported = true; 3185 ti->num_discard_bios = 1; 3186 /* Discard bios must be split on a block boundary */ 3187 ti->split_discard_bios = true; 3188 } 3189 3190 dm_put(pool_md); 3191 3192 mutex_unlock(&dm_thin_pool_table.mutex); 3193 3194 spin_lock(&tc->pool->lock); 3195 list_add_tail_rcu(&tc->list, &tc->pool->active_thins); 3196 spin_unlock(&tc->pool->lock); 3197 /* 3198 * This synchronize_rcu() call is needed here otherwise we risk a 3199 * wake_worker() call finding no bios to process (because the newly 3200 * added tc isn't yet visible). So this reduces latency since we 3201 * aren't then dependent on the periodic commit to wake_worker(). 3202 */ 3203 synchronize_rcu(); 3204 3205 return 0; 3206 3207 bad_target_max_io_len: 3208 dm_pool_close_thin_device(tc->td); 3209 bad_thin_open: 3210 __pool_dec(tc->pool); 3211 bad_pool_lookup: 3212 dm_put(pool_md); 3213 bad_common: 3214 dm_put_device(ti, tc->pool_dev); 3215 bad_pool_dev: 3216 if (tc->origin_dev) 3217 dm_put_device(ti, tc->origin_dev); 3218 bad_origin_dev: 3219 kfree(tc); 3220 out_unlock: 3221 mutex_unlock(&dm_thin_pool_table.mutex); 3222 3223 return r; 3224 } 3225 3226 static int thin_map(struct dm_target *ti, struct bio *bio) 3227 { 3228 bio->bi_iter.bi_sector = dm_target_offset(ti, bio->bi_iter.bi_sector); 3229 3230 return thin_bio_map(ti, bio); 3231 } 3232 3233 static int thin_endio(struct dm_target *ti, struct bio *bio, int err) 3234 { 3235 unsigned long flags; 3236 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook)); 3237 struct list_head work; 3238 struct dm_thin_new_mapping *m, *tmp; 3239 struct pool *pool = h->tc->pool; 3240 3241 if (h->shared_read_entry) { 3242 INIT_LIST_HEAD(&work); 3243 dm_deferred_entry_dec(h->shared_read_entry, &work); 3244 3245 spin_lock_irqsave(&pool->lock, flags); 3246 list_for_each_entry_safe(m, tmp, &work, list) { 3247 list_del(&m->list); 3248 m->quiesced = true; 3249 __maybe_add_mapping(m); 3250 } 3251 spin_unlock_irqrestore(&pool->lock, flags); 3252 } 3253 3254 if (h->all_io_entry) { 3255 INIT_LIST_HEAD(&work); 3256 dm_deferred_entry_dec(h->all_io_entry, &work); 3257 if (!list_empty(&work)) { 3258 spin_lock_irqsave(&pool->lock, flags); 3259 list_for_each_entry_safe(m, tmp, &work, list) 3260 list_add_tail(&m->list, &pool->prepared_discards); 3261 spin_unlock_irqrestore(&pool->lock, flags); 3262 wake_worker(pool); 3263 } 3264 } 3265 3266 return 0; 3267 } 3268 3269 static void thin_presuspend(struct dm_target *ti) 3270 { 3271 struct thin_c *tc = ti->private; 3272 3273 if (dm_noflush_suspending(ti)) 3274 noflush_work(tc, do_noflush_start); 3275 } 3276 3277 static void thin_postsuspend(struct dm_target *ti) 3278 { 3279 struct thin_c *tc = ti->private; 3280 3281 /* 3282 * The dm_noflush_suspending flag has been cleared by now, so 3283 * unfortunately we must always run this. 3284 */ 3285 noflush_work(tc, do_noflush_stop); 3286 } 3287 3288 /* 3289 * <nr mapped sectors> <highest mapped sector> 3290 */ 3291 static void thin_status(struct dm_target *ti, status_type_t type, 3292 unsigned status_flags, char *result, unsigned maxlen) 3293 { 3294 int r; 3295 ssize_t sz = 0; 3296 dm_block_t mapped, highest; 3297 char buf[BDEVNAME_SIZE]; 3298 struct thin_c *tc = ti->private; 3299 3300 if (get_pool_mode(tc->pool) == PM_FAIL) { 3301 DMEMIT("Fail"); 3302 return; 3303 } 3304 3305 if (!tc->td) 3306 DMEMIT("-"); 3307 else { 3308 switch (type) { 3309 case STATUSTYPE_INFO: 3310 r = dm_thin_get_mapped_count(tc->td, &mapped); 3311 if (r) { 3312 DMERR("dm_thin_get_mapped_count returned %d", r); 3313 goto err; 3314 } 3315 3316 r = dm_thin_get_highest_mapped_block(tc->td, &highest); 3317 if (r < 0) { 3318 DMERR("dm_thin_get_highest_mapped_block returned %d", r); 3319 goto err; 3320 } 3321 3322 DMEMIT("%llu ", mapped * tc->pool->sectors_per_block); 3323 if (r) 3324 DMEMIT("%llu", ((highest + 1) * 3325 tc->pool->sectors_per_block) - 1); 3326 else 3327 DMEMIT("-"); 3328 break; 3329 3330 case STATUSTYPE_TABLE: 3331 DMEMIT("%s %lu", 3332 format_dev_t(buf, tc->pool_dev->bdev->bd_dev), 3333 (unsigned long) tc->dev_id); 3334 if (tc->origin_dev) 3335 DMEMIT(" %s", format_dev_t(buf, tc->origin_dev->bdev->bd_dev)); 3336 break; 3337 } 3338 } 3339 3340 return; 3341 3342 err: 3343 DMEMIT("Error"); 3344 } 3345 3346 static int thin_iterate_devices(struct dm_target *ti, 3347 iterate_devices_callout_fn fn, void *data) 3348 { 3349 sector_t blocks; 3350 struct thin_c *tc = ti->private; 3351 struct pool *pool = tc->pool; 3352 3353 /* 3354 * We can't call dm_pool_get_data_dev_size() since that blocks. So 3355 * we follow a more convoluted path through to the pool's target. 3356 */ 3357 if (!pool->ti) 3358 return 0; /* nothing is bound */ 3359 3360 blocks = pool->ti->len; 3361 (void) sector_div(blocks, pool->sectors_per_block); 3362 if (blocks) 3363 return fn(ti, tc->pool_dev, 0, pool->sectors_per_block * blocks, data); 3364 3365 return 0; 3366 } 3367 3368 static struct target_type thin_target = { 3369 .name = "thin", 3370 .version = {1, 12, 0}, 3371 .module = THIS_MODULE, 3372 .ctr = thin_ctr, 3373 .dtr = thin_dtr, 3374 .map = thin_map, 3375 .end_io = thin_endio, 3376 .presuspend = thin_presuspend, 3377 .postsuspend = thin_postsuspend, 3378 .status = thin_status, 3379 .iterate_devices = thin_iterate_devices, 3380 }; 3381 3382 /*----------------------------------------------------------------*/ 3383 3384 static int __init dm_thin_init(void) 3385 { 3386 int r; 3387 3388 pool_table_init(); 3389 3390 r = dm_register_target(&thin_target); 3391 if (r) 3392 return r; 3393 3394 r = dm_register_target(&pool_target); 3395 if (r) 3396 goto bad_pool_target; 3397 3398 r = -ENOMEM; 3399 3400 _new_mapping_cache = KMEM_CACHE(dm_thin_new_mapping, 0); 3401 if (!_new_mapping_cache) 3402 goto bad_new_mapping_cache; 3403 3404 return 0; 3405 3406 bad_new_mapping_cache: 3407 dm_unregister_target(&pool_target); 3408 bad_pool_target: 3409 dm_unregister_target(&thin_target); 3410 3411 return r; 3412 } 3413 3414 static void dm_thin_exit(void) 3415 { 3416 dm_unregister_target(&thin_target); 3417 dm_unregister_target(&pool_target); 3418 3419 kmem_cache_destroy(_new_mapping_cache); 3420 } 3421 3422 module_init(dm_thin_init); 3423 module_exit(dm_thin_exit); 3424 3425 MODULE_DESCRIPTION(DM_NAME " thin provisioning target"); 3426 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>"); 3427 MODULE_LICENSE("GPL"); 3428